
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Sondre Kvisli

Investigating how debugging tools can
be used to improve programming
teaching systems and ease the
transition to traditional programming

Master’s thesis in Informatikk

Supervisor: Trond Aalberg

August 2020

Sondre Kvisli

Investigating how debugging tools can
be used to improve programming
teaching systems and ease the
transition to traditional programming

Master’s thesis in Informatikk
Supervisor: Trond Aalberg
August 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This master’s thesis investigates the role of debugging when teaching programming to

novices. It explores if traditional debugging tools can be implemented in modern

programming teaching systems to improve their effectiveness and ease the transition to

traditional programming.

A block-based programming teaching system was developed from the ground up,

specifically designed to conduct a quasi-experiment with a static group comparison. The

results showed that traditional debugging tools does not affect the amount of tinkering,

code understanding or general performance of the programmers. They also showed that

the purpose of both the debugger and game graphics is to aid the programmer in

understanding the execution of the program, but when available, the game graphics is

preferred. This led to the conclusion that implementing a gradual transition from game

graphics to a traditional debugger in teaching systems might be just as important for

easing the transition to traditional programming as a gradual transition from block-based

to text-based programming, as is the main focus of most research today.

Sammendrag

Denne masteroppgaven undersøker rollen til debugging i læring av programmering til

nybegynnere. Den utforsker om tradisjonelle debuggingsverktøy kan implementeres i

moderne programmerings-læringssystemer for å forbedre deres effekt og letteregjøre

overgangen til tradisjonell programmering.

Et blokkbasert programmerings-læringssystem ble utviklet fra grunnen, spesifikt designet

for å gjennomføre et kvasieksperiment med statisk gruppesammenligning. Resultatene

viste at tradisjonelle debuggingsverktøy ikke påvirket graden av «tinkering»,

kodeforståelsen eller den generelle ytelsen til programmererne. De viste også at

hensikten med både debuggeren og spillgrafikken er å hjelpe programmereren å forstå

kjøringen av programmet, men når tilgjengelig, var spillgrafikken foretrukket. Dette førte

til konklusjonen om at å implementere en gradvis overgang fra spillgrafikk til en

tradisjonell debugger i læringssystemer kan være like viktig for å letteregjøre

overgangen til tradisjonell programmering som en gradvis overgang fra blokkbasert til

tekstbasert programmering, som er hovedfokuset til forskningen i dag

Preface

The following thesis is the resulting work of a master’s thesis conducted at the Norwegian

University of Science and Technology (NTNU) in Trondheim, Norway, in the period of

12.08.2019 – 03.08.2020.

I would like to thank my supervisor Trond Aalberg for inspiration and guidance

throughout the project. I would also like to thank my father Harald Kvisli for valuable

dialogues, perspectives and proof-reading.

Sondre Kvisli

Notodden, July 31, 2020

Table of Contents

1 INTRODUCTION .. 1

1.1 BACKGROUND AND MOTIVATION .. 1
1.2 GOALS AND RESEARCH QUESTIONS ... 2
1.3 METHODOLOGY ... 2
1.4 RESEARCH PROCESS .. 3
1.5 THESIS STRUCTURE ... 3

2 BACKGROUND THEORY AND STATE OF THE ART ... 4

2.1 TAXONOMY OF TEACHING SYSTEMS ... 4
2.1.1 Expressing programs ... 5
2.1.2 Structuring Programs ... 6
2.1.3 Understanding Program Execution ... 7

2.2 STATE OF THE ART OF TEACHING SYSTEMS .. 8
2.3 TRANSITIONING FROM BLOCK-BASED TEACHING SYSTEMS TO TRADITIONAL PROGRAMMING... 9

3 THE GAME ... 11

3.1 WHY DEVELOP FROM SCRATCH? ..11
3.2 LIMITING THE SCOPE ...11
3.3 DIFFICULTY AND PEDAGOGIC DESIGN ...15
3.4 INSTRUCTING THE PARTICIPANTS ...17
3.5 DEBUGGING TOOLS ..17

3.5.1 Stepping ...18
3.5.2 Variables ...19
3.5.3 Log ...19
3.5.4 Grid ..20
3.5.5 Loop iteration counter ...20

4 EXPERIMENT DESIGN ... 22

4.1 EXPERIMENT DESIGN ...22
4.2 OBSERVATION ...22
4.3 INTERVIEW ..24
4.4 PILOT EXPERIMENT ...25
4.5 EXPERIMENT EXECUTION ...25

5 RESULTS ... 26

5.1 OBSERVATIONS ...26
5.1.1 Debugger tools usage ...26
5.1.2 Comparing the performance ..27

5.2 INTERVIEWS ...33

6 GOAL EVALUATION AND DISCUSSION .. 36

6.1 GOAL EVALUATION ...36
6.2 FURTHER DISCUSSION ...37
6.3 WEAKNESSES ...37

7 CONCLUSION AND FUTURE WORK .. 39

7.1 FUTURE WORK ...39

8 BIBLIOGRAPHY .. 40

APPENDIX A: OBSERVATION TABLES .. 42

DEBUGGER GROUP ...42
CONTROL GROUP ...50

List of Figures

FIGURE 2.1: TAXONOMY OF TEACHING SYSTEMS (ADAPTED FROM [15]) 5
FIGURE 2.2: A TYPICAL GAME LEVEL IN 7 BILLION HUMANS [20] ... 8
FIGURE 2.3: CODE.ORG COURSE ON LOOPS [12] .. 9
FIGURE 3.1: LEVEL 2 FOCUSED ON PUTTING BLOCKS INTO SEQUENCES TO AVOID OBSTACLES AND REACH

THE END FLAG. THE BLOCKS AVAILABLE ARE “STEP RIGHT” AND “JUMP”12
FIGURE 3.2: LEVEL 6 FOCUSED ON USING A WHILE LOOP TO REUSE CODE TO SOLVE LEVELS WITH A

REPEATING PATTERN. AVAILABLE BLOCKS ARE “STEP RIGHT”, “JUMP” AND “REPEAT”13
FIGURE 3.3: LEVEL 11 FOCUSED ON USING NESTED LOOPS TO PICK ALL THE COINS FROM THE CHESTS

BEFORE REACHING THE END FLAG WITH AS FEW BLOCKS OF CODE AS POSSIBLE. THE AVAILABLE

BLOCKS ARE “STEP RIGHT”, “PICK COIN” AND “REPEAT X AMOUNT OF TIMES”14
FIGURE 3.4: LEVEL 13 INTRODUCED NO PV. NOTE THAT THE PROGRAM IS RUNNING (INDICATED BY THE

GREEN MARKER IN THE CODE), BUT THE GAME CHARACTER IS INVISIBLE AND THE CURRENT NUMBER

OF COINS IN THE CHESTS ARE HIDDEN ...15
FIGURE 3.5: RUN AND DEBUG BUTTONS ..17
FIGURE 3.6: AN OVERVIEW OF THE DIFFERENT TOOLS THE DEBUGGER OFFERED18
FIGURE 3.7: THE STEP FORWARD AND BACKWARD BUTTONS ...18
FIGURE 3.8: THE VARIABLES VIEW...19
FIGURE 3.9: THE LOG VIEW ...19
FIGURE 3.10: THE GRID ..20
FIGURE 3.11: LOOP ITERATION COUNTER ...20
FIGURE 5.1: DEBUGGING TOOLS' USAGE ...27
FIGURE 5.2: PERFORMANCE COMPARISON TOTAL ..29
FIGURE 5.3: PERFORMANCE COMPARISON WITH PROGRAM VISUALIZATION30
FIGURE 5.4: PERFORMANCE COMPARISON WITHOUT PROGRAM VISUALIZATION31
FIGURE 5.5: PERFORMANCE COMPARISON PRE-BUILT PROGRAMS ..32
FIGURE 5.6 EXAMPLE OF DARK LINES IN GRASS SEPARATING GRID CELLS34
FIGURE 5.7 THE SAME AREA WITH GRID ENABLED ...34

https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280572
https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280572
https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280573
https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280573
https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280573
https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280574
https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280574
https://d.docs.live.net/11c690163b705f80/MASTEROPPGAVE/Masteroppgave.docx#_Toc47280574

List of Tables

TABLE 3.1: OVERVIEW OF THE GAME LEVELS ...16
TABLE 4.1: OBSERVATION EVENTS ..23
TABLE 4.2: TABLE EXPLAINING HOW THE CODING CONCEPT PROFICIENCY WAS GRADED24
TABLE 5.1: PERFORMANCE RESULTS TOTAL ...28
TABLE 5.2: PERFORMANCE RESULTS WITH PROGRAM VISUALIZATION ..29
TABLE 5.3: PERFORMANCE RESULTS WITHOUT PROGRAM VISUALIZATION....................................31
TABLE 5.4: PERFORMANCE RESULTS PRE-BUILT PROGRAMS ..32

List of Abbreviations

BBP Block Based Programming

TBP Text Based Programming

VP Visual Programming

PV Program Visualization

GPPL General Purpose Programming Language

DSPL Domain Specific Programming Language

1 Introduction

This chapter presents an overview of this master’s thesis. First the subject of the thesis

and the motivation behind it is presented, followed by the overarching goal and research

questions. Then the research method and process are described and finally the structure

of the rest of the thesis is presented.

1.1 Background and Motivation

Programming courses are making their way into the primary and secondary education

systems of many countries [1]. From 2014-2020, 50 countries and all 50 US states have

set policies or announced efforts to offer computer science classes and the EU have put

programming on its Digital agenda for Europe, encouraging its members to promote

programming in their schools [2], [3].

The introduction of programming at such an early stage leads to challenges for both

teachers, students and software [1, p. 94]. How do you most effectively teach

programming to students in this age group? Much research has been done on

programming teaching systems and how they should be designed to teach programming

to novices in an effective and motivating manner. Popular modern teaching systems like

Code.org [4] and Scratch [5] are the results of this research. They combine block-based

programming (BBP) with intuitive and colorful game graphics that are controlled by the

program. This combination has been proven to increase motivation and make

programming more accessible for novices [6, p. 22], [7], [8]. The increasing relevance of

these systems motivated this thesis’ explorative work on how these systems can be

improved further.

A review of popular teaching systems revealed that despite directly targeting debugging,

there were a distinct lack of more advanced debugging tools like those found in

traditional programming environments. By not offering debugging tools these teaching

systems gave off the impression that they encouraged tinkering, that is mindlessly

remixing the code and running it over and over until bugs are corrected, rather than

creating a deeper understanding of the code and underlying concepts. This observation

was supported by C. Kim and J. Yan in their article “Debugging in block-based

programming” [9]. These observations motivated an experiment to see if implementing

traditional debugging tools into teaching systems could decrease the amount of tinkering.

BBP teaching systems lowers the bar of entry for programming, but this way of

programming does not scale well to more complex systems [10]. Moving from a novice

to intermediate programming skill-level therefore requires transitioning to a traditional

programming environment. This transition has shown to be challenging, often leaving the

programmers feeling overwhelmed and with a loss of confidence in their programming

 1.2. Introduction 2

skills [11]. This motivated the research of strategies for easing this transition and this

thesis will address the debugging aspect of the transition.

1.2 Goals and Research Questions

GOAL: How can traditional debugging tools be implemented in modern teaching systems

to improve them?

The overarching goal of this thesis was to explore if and how traditional debugging tools

can be implemented into modern BBP teaching systems to improve them. Two areas to

improve were recognized. The first was the teaching systems’ effectiveness in teaching

programming and the second was aiding in the transition to traditional programming.

Research question 1: How does the inclusion of debugger tools affect the amount of

tinkering, the code understanding and the general performance of novice kids in BBP

teaching systems?

The first research question is directed at the teaching system’s effectiveness. More

specifically it asks if the inclusion of traditional debugging tools can decrease the amount

of tinkering, increase the code understanding, and increase the performance of the

programmers in general.

Research question 2: How can traditional debugging tools be used to ease the

transition from teaching systems to traditional programming?

The second research question explores how traditional debugging tools can be used to

bridge the gap between modern teaching systems and traditional programming.

1.3 Methodology

This is a quick overview of what was done in this master’s thesis:

• A quasi-experiment with static group comparison was designed

• Observation tables and interview guides for data gathering were designed

• A new BBP teaching system with traditional debugging tools was developed

• Pilot testing was done

• The research questions and BBP teaching system was revised based on pilot test

results

• Final experiment

• Data analysis of quantitative and qualitative data

To answer the research questions a quasi-experiment with a static group comparison was

chosen to compare the results of a debugger group, with access to traditional debugging

tools, and a control group. As this thesis explored untested ideas, a BBP teaching system

fitting for this experiment did not yet exist. A big part of this master’s thesis therefore

consisted of developing a new BBP teaching system from the ground up, inspired by the

design and curriculum of Code.org’s K-5 computer science courses [12]. An observation

 1.4. Introduction 3

table of pre-defined events was developed to observe any differences between the

groups that could help answer the research questions. A guide for semi-structured

interviews was developed to try to capture qualitative data of the programmers’

experience and thought processes during the experiment. Both the quantitative and

qualitative data was then analyzed and compared between the groups to answer the

research questions.

1.4 Research Process

This thesis started out with an initial review of the most popular BBP teaching systems to

identify possible areas to improve. Personal, previous knowledge with Scratch and

Code.org made these a good starting point. Code.org’s catalogue of other resources

combined with google searches for variants of the keyword “learn programming” was

used to explore other alternative teaching systems.

The issue of tinkering was found, and the literature was consulted for previous research

on this topic. The research was also reviewed for background theory on teaching systems

and block-based programming in general. During this review the challenges of

transitioning from BBP teaching systems to traditional programming occurred in several

articles. This subject was also brought up by my supervisor as a relevant subject of

research.

After the initial subjects of this thesis was set, a structured literature review was done.

The search engines Google Scholar [13] and Scopus [14] was used to find relevant

publications. The literature was found on a wide range of keyword, the main ones being

“block-based programming”, “debugging in block-based programming”, “novice

programming” and “visual programming”. The papers were filtered on relevance by

reading their abstract and number of citations to ensure it was well regarded among the

community. For highly relevant papers a review of their reference list was done to

discover additional relevant literature.

1.5 Thesis Structure

The remainder of this thesis is structured as following. Chapter two presents background

theory of teaching systems, the state of the art of teaching systems and the current

research on the transitioning from BBP teaching systems to traditional programming.

Chapter three presents the BBP teaching system developed to support the quasi-

experiment and explains its design process. Chapter four explains the design of the

experiment, observation table and interview guide. Chapter five presents the results from

the experiment followed by chapter six that discusses these results in the light of the

research questions. Finally, chapter seven concludes this thesis findings and contributions

and suggests areas for future work.

 2.1. Background Theory and State of the Art 4

2 Background Theory and State

of the Art

This chapter gives insight into the previous research done in the field of teaching systems

and introduces terminology useful for discussing them. It first presents a taxonomy of

teaching systems that highlight different aspects of the mechanics of programming. The

state of the art of teaching systems are then presented followed by the current research

on the challenges of transitioning from block-based programming teaching systems to

traditional programming.

2.1 Taxonomy of Teaching Systems

In “Lowering the Barriers to Programming: A Taxonomy of Programming Environments

and Languages for Novice Programmers” [15] Kelleher & Pausch identify different aspects

of programming and strategies that teaching systems can implement for making them

more approachable for beginners. They then present a taxonomy that categorize these

strategies and gives examples of how they can be implemented. According to Kelleher

and Pausch most of the existing teaching systems focuses on the mechanics of

programming, that is expressing intentions to the computer through writing programs

and understanding the outcoming actions of the computer [16].

 2.1. Background Theory and State of the Art 5

Figure 2.1: Taxonomy of Teaching Systems (adapted from [15])

They state that the mechanics of programming can be divided into three sub-categories:

expressing the program, structuring the program and understanding the execution of the

program. The next sections will address these categories and strategies that teaching

systems have implemented to lower the barrier to programming.

2.1.1 Expressing programs

Novice programmers often find both the complexity of general purpose programming

languages (GPPL) and the strict syntax of traditional programming to be challenging

when trying to express their intentions to the computer [15]. The taxonomy has two

categories of strategies that solve this. The first is to simplify entering code. The second

is to find alternatives to typing programs.

 2.1. Background Theory and State of the Art 6

2.1.1.1 Simplify entering code

This category has two sub-categories.

Simplify the Language

With the power and flexibility of a GPPL, also comes complexity. This complexity can

make novices feel overwhelmed and the expressive power it gives is unnecessary when

learning basic programming concepts. This motivates the creation of simpler domain

specific programming languages (DSPL) in teaching systems. J.M. Hoc identified that

novices tend to look at programming like a conversation with a human, motivating a

programming language more closely resembling natural language [17]. The

programmers are expected to transition to GPPLs at some point and it is therefore

beneficial that the DSPLs resembles the GPPLs. The goal of teaching systems that take

this approach therefore is to create a DSPL that best balances simplifying the language

while keeping it as close to GPPLs as possible.

Prevent Syntax Errors

Remembering intricate syntax rules and getting syntax error messages can be very

frustrating for novices when trying to express their intentions. Eliminating syntax errors

is therefore a major feature of teaching systems [11]. The interaction design principle of

feedback [18, p. 23] states that giving feedback to the user as early as possible is

important to prevent user frustration. This category offers strategies that gives

immediate feedback in the form of graphical elements like shape and color or sound, as

signifiers as to which commands can be combined and in what order. They can also offer

templates that can be filled with parameters further abstracting the syntax.

2.1.1.2 Alternatives to typing programs

The design of this category is based on the hypothesis that writing plain text is not the

optimal method for novices. There are three main alternatives. The first is using

graphical objects that represent code that can be dragged and combined with other

objects to create programs. The most significant advantage of this is that the

programmers can recognize objects that represent what they want to express instead of

having to recall how to build the statement with text. This is significant because the

human brain is much better at recognizing than recalling. The second method creates a

program using an interface consisting of a combination of switches and dials to

manipulate the program. The third alternative combines multiple input methods. A

common idea is to combine graphical elements with text-based programming thus

harnessing the power of both. The programmer can then pick the alternative best suited

for their needs at any time. All three alternatives to typing a program can be considered

Visual Programming (VP). This style of programming is defined by Myrrs as any program

language that specify a program in a two- (or more) dimensional fashion [19]. This has

shown to better utilize the human visual information processing systems and allows for

processing data in a way that is closer to the real world, making it more intuitive for

novices.

2.1.2 Structuring Programs

Teaching systems focusing on this aspect of programming try to create new

programming paradigms by organizing the code in a different, more intuitive way. These

techniques are more disruptive, and the major pitfall is that the eventual transition to

 2.1. Background Theory and State of the Art 7

traditional programming can be much harder. This might be the reason why this is a less

popular approach and it will not be given much attention in this thesis.

2.1.3 Understanding Program Execution

Teaching systems focusing on this aspect of programming offer tools that help the

programmer understand the computer’s actions when executing the program. It is

common to use some form of graphical elements to make the program execution more

understandable and this strategy is called Program Visualization (VP) [19]. The

distinction between Visual Programming and Program Visualization is important and

defined as VP is used for creating programs while PV is used to illustrate programs at

runtime. Myrrs argues that programs created with VP obviously should be illustrated with

graphics, thus it is more correct to use the term PV for programs created with text and

graphics are used for execution visualization only. However, I find this distinction artificial

and find it very useful to have two terms to separate the VP and PV elements of the

same teaching systems. This thesis will therefore not use this distinction.

2.1.3.1 Tracking Program Execution

Teaching systems using this strategy offer tools that help the programmers follow the

execution of programs. The scope of these tools often resembles that of a modern

debugger, which is worth noting as it will be a point of discussion for later in this thesis.

The systems often include some representation of the state of the program, either

graphical or textual or both. When done graphically, Myrrs classifies this as data

visualization. The representation will change to reflect the outcome of the instructions

being executed. Myrrs separates between dynamic and static visualization. Dynamic can

show animations and transitions between states while static only shows snapshots [19].

It is also common to indicate what line of code is up next for execution. The strategy of

adding graphical marks to the code is called code visualization and can offer much more

advanced features than just indicating a line of code.

2.1.3.2 Actors in Microworld

Teaching systems using this strategy aim to make programming more concrete by

allowing the programmer to control an actor in a microworld. The actors often have a

limited set of actions they can perform, making it easy to create a simplified and intuitive

DSPL. A graphical simulator is often included, and it can show the actor’s actions in the

microworld as the program executes, often in a dynamic way.

2.1.3.3 Models of Program Execution

Teaching systems using this strategy uses physical metaphors to explain code in a more

concrete and intuitive way. This is best explained with an example. In the game “7 billion

people” [20] data registers are replaced with green boxes called “data cubes” as seen in

Figure 2.2 below.

 2.2. Background Theory and State of the Art 8

Figure 2.2: A typical game level in 7 billion Humans [20]

The data cubes can store values between zero and hundred and the programmer controls

a set of workers that can act upon these cubes. The actions include picking them up,

moving them, reading, and writing to them and performing arithmetic computations with

their values. If the programmer wants to delete a register he instructs one of the workers

to bring the data cube over to a shredding machine to destroy the block. The game

replaces abstract concepts of data storage with physical objects that can be manipulated

in physical space.

2.2 State of the Art of Teaching Systems

The most popular modern teaching systems incorporate multiple strategies to lower the

barriers for novice programmers discussed in the taxonomy. They use a Visual

Programming paradigm called Block-Based Programming (BBP). BBP uses draggable

blocks representing code that can be picked up from a palette, placed in the workspace

and pieced together to create programs. The blocks use color and shape to categorize

them and interlocks when compatible with each other, preventing syntax errors [11].

Some of the blocks also act as templates, allowing the programmer to change

parameters via drop-down menus or input fields, increasing the expressive power while

maintaining the simplified syntax. The programming languages are simplified DSPLs that

describe actions an actor can do in a microworld [11], [15]. The languages often contain

flow control blocks that resemble those found in GPPLs like loops, conditionals and event

handlers . This allows for learning basic flow control in a beginner friendly environment.

Both the actions of the actor and the state of the microworld are dynamically simulated

 2.3. Background Theory and State of the Art 9

and some code visualization is included in the form of highlighting the current line of

code being executed.

Figure 2.3: Code.org course on loops [12]

One could say that these systems are the pinnacle of teaching systems based on, and

evolved from, knowledge gathered over the last decades. They have been proven

successful in motivating and inspiring novices to program. But in the pursuit of lowering

the barrier of entry, the gap from BBP games to traditional programming has become

wide, and the transition has proven to be difficult. This has created a need for new

strategies to bridge the gap.

2.3 Transitioning from Block-Based Teaching Systems

to Traditional Programming

BBP teaching systems have mostly been shown to be more effective at teaching novices

the basic concepts of programming than text-based systems [21], however an important

part of teaching systems is that the knowledge gained will prepare the programmers for

more advanced programming [8]. Research have proven this not to be the case,

documenting programmers feeling overwhelmed by “syntax overload”, loss of confidence

and development of misconceptions and bad habits [11]. In a quasi-experiment, D.

Wintrop found that students that learned programming in a BBP environment showed

greater learning gains, but that this difference quickly faded when transitioning to

traditional programming, arguing that better strategies and tools for making the

transition are needed [8].

 2.3. Background Theory and State of the Art 10

A good amount of attention has already been given to easing the transition from BBP to

TBP component of the transition. Bi-directional systems like the Droplet editor [22] found

in Code.org Labs [23] and the BlockPy editor [24] found in EduBlocks [25] offer block

based versions of GPPLs with seamless switching between a block- and text-based

representation of the program. These types of systems are a promising intermediate step

between existing block-based environments and textual languages according to L. Moors

[11].

Another approach is dual-modality, which instead of separating the block- and textual-

representations of the program, tries to combine the benefits of both with the use of

frames that separates each code-statement into a indivisible unit, helping with syntax

errors and keeping track of the scope, but keeping much of the freedom of TBP [26].

Despite much research on the area there are plenty of room for improvement according

to Moors [11].

A common trait of the aforementioned attempts at easing the transition is that they focus

on the challenges of expressing the program. This thesis will therefore explore challenges

of understanding the program execution and how novices can transition from program

visualization to a traditional debugger.

 3.1. The Game 11

3 The Game

This chapter will first explain the reasoning behind developing a game from scratch to

conduct the experiment. It will then explain how the game was designed including

deciding on a scope, level design, difficulty curve and how instructions were

communicated to the participants. Finally, the different debugging tools implemented are

discussed in detail. A huge amount of time and effort was put into creating the game to

make the experiment possible. The full game is available at

https://master.d33fy60y53bq5n.amplifyapp.com/ .

3.1 Why develop from scratch?

To conduct the experiment for this thesis a game was needed that fulfilled the following

criteria:

1. Feature Virtual Programming in the form of Block Based Programming

2. Feature Program Visualization in the form of Actors in a Microworld

3. Feature a simple to learn DSPL

4. Feature Debugging Tools

5. Be highly flexible. Feature ability to toggle functionality like PV and debugging

tools on and off for different testing groups.

6. Runs on low end hardware with no time-consuming installation processes.

Several existing solutions like Code.org, Scratch, CodeCombat [27], 7 Billion Humans

[20] were evaluated and attempted adapted to the experiment to save time and

resources. However, the conclusion was that none of these solutions were satisfactory

and it was decided to create a custom game from the ground up.

Using a library for the BBP aspect of the game, like Google’s Blockly [28], was considered

to save development time. However there were two main reasons for not adding it.

1. The cost of limited flexibility of the block’s design and function was assessed as

too high compared to the amount of time it would save.

2. The limited scope of the game meant only a small part of the library was going to

be used, making it hard to justify spending time familiarizing with a library.

Based on these decisions the game was made from the ground up in JavaScript with the

game engine Phaser 3 [29].

3.2 Limiting the Scope

Inspired by Code.org’s computer science curriculum for Grades K-5, five fundamental

programming concepts were identified:

https://master.d33fy60y53bq5n.amplifyapp.com/

 3.2. The Game 12

• Sequences

• Events

• Loops

• Conditionals

• Debugging

Given that the test subjects had no prior programming experience and given a desire to

keep the duration of a single test limited to less than one hour, the scope of the game

had to be limited. The game was therefore limited to the three concepts of sequences,

debugging and loops. As stringing code together in sequences is the most fundamental

concept of programming this was a natural starting point for the earliest game levels.

Figure 3.1: Level 2 focused on putting blocks into sequences to avoid obstacles and reach the end

flag. The blocks available are “step right” and “jump”

Debugging would hopefully give useful insight into if there were any difference between

the debugger- and control group regarding debugging existing code. Finally, the concept

of loops was chosen as it gives great opportunities for increasing the difficulty of the

levels from basic infinite loops, to for-loops to nested for-loops. This would also give

flexibility in scaling the difficulty on a per level basis as the more difficult levels could be

solved either optimally with nested loops or in a more verbose way with several single

loops for lower performing students.

 3.2. The Game 13

Figure 3.2: level 6 focused on using a while loop to reuse code to solve levels with a repeating pattern. Available
blocks are “step right”, “jump” and “repeat”

 3.2. The Game 14

Figure 3.3: level 11 focused on using nested loops to pick all the coins from the chests before reaching the end
flag with as few blocks of code as possible. The available blocks are “step right”, “pick coin” and “repeat X amount

of times”

 3.3. The Game 15

3.3 Difficulty and Pedagogic Design

To teach programming in a pedagogic and effective manner the courses C, D and E of

Code.org Computer Science Fundamentals for Elementary School [12] was used to get

inspiration for exercises and to calibrate the difficulty curve. The fifteen game levels

designed can be divided into five topics, each topic roughly following the same structure.

First a new concept is introduced, and the programmer must use this in an elementary

way to solve a level. Then the same concept must be used to solve a more difficult level.

Finally, a level with a pre-built program containing errors and/or incompleteness is

presented to the programmer and it must be debugged and corrected to complete the

level.

Four of the topics were picked based on the three fundamental coding concepts discussed

in the previous chapter. The fifth topic of no program visualization was added as a result

of pilot testing of the game.

The levels built upon each other, so the programmer had to combine previous knowledge

with the new concepts to complete the levels. This was especially true for the more

Figure 3.4: level 13 introduced no PV. Note that the program is running (indicated by the green marker in the

code), but the game character is invisible and the current number of coins in the chests are hidden

 3.3. The Game 16

difficult levels of each topic. An overview of all the game levels, with the five topics and

what the programmer was learning is presented in the table below.

Lvl
Pre-built

program PV Topic What the programmer is learning

1 No Yes

equences a) Add a block to the program and run it

b) Add multiple blocks into a program to

create sequences

c) Move the game character with code

d) Avoid world obstacles like spikes

e) Complete levels by reaching the end flag

2 No Yes

3 Yes Yes

4 No Yes While-loops f) Repeat parts of the code with loops
 5 No Yes

6 No Yes

7 Yes Yes

8 No Yes For-loops a) Set custom number of iterations for a loop

b) Use multiple loops in one program (non-

nested)
 9 Yes Yes

10 No Yes
Nested for-

loops

a) Pick up coins from chests

b) Use nested loops to repeat code to

efficiently pick up coins from multiple

chests

11 No Yes

12 Yes Yes

13 No No No Program

Visualization

a) Use all previous knowledge but with no PV

14 No No

15 Yes No

Table 3.1: Overview of the game levels

 3.4. The Game 17

3.4 Instructing the Participants

The game was designed to be as intuitive as possible, however for a person who have

never seen a piece of computer code in their lives, some basics were necessary to

explain. The instructions were standardized and spoken orally to the participants for each

level. Using text was considered and would be the best option if the participants were

programming on their own. However, some participants expressed anxiousness of

programming in front of another person for the first time, in fear of being judged. The

choice of giving instructions orally was done to create a dialog and try to create a more

relaxed and comfortable testing environment for the participant to gather the most

representative data.

Before the participants started programming on their own, a brief introduction to BBP

was given. This included how to create programs by dragging and dropping blocks, how

to start the program, how a computer program executes each line of code after the other

and how the program represents instructions to the game character on how to act in the

mini world. Finally, the overarching goal of moving the game character to the end flag

with as few lines of code as possible was explained. The debugger group also got an

introduction to the debugging tools, how to use stepping, read variables and use the

other tools explained in chapter 3.5 Debugging Tools.

On each new level the participants also got a brief introduction. If the level introduced

new blocks their basic usage was explained. If the level had a pre-built program the

participants were instructed to try to find errors and fix the program. When reaching the

levels with no PV, the participants were told that they would not be able to watch the

character and number of coins when running the program and that they should try to

cope with this as best as possible. The instructions were carefully designed not to lead

the participants to use the debugging tools in any way.

3.5 Debugging Tools

The debugging tools implemented in the game were similar to those found in traditional

programming environments, but with a few modifications. The debugging group had

access to a debugging button placed adjacent to the run button that would make the

game enter debugging mode. Having a separate mode made it easier to recognize when

participants were actively using its features.

Figure 3.5: Run and debug buttons

The debugging tools implemented were forward and backward stepping in code

execution, a variable view, a log, a grid and a loop iteration counter. A screenshot of

 3.5. The Game 18

these tools is shown in Error! Reference source not found. below. The tools were

available to the debugging group throughout all of the fifteen game levels.

Figure 3.6: An overview of the different tools the debugger offered

3.5.1 Stepping

Figure 3.7: The step forward and backward buttons

 3.5. The Game 19

This tool allows the programmer to step through the execution of the program one code

line at the time. While more traditional debuggers only allow for stepping forward from a

specified point, the simplified nature of the micro world makes it feasible to store a copy

of the state for each instruction and move between them. The rationale behind

implementing this tool was to help the programmers easier identify what exactly went

wrong by stepping back and forth around areas of interest. The buttons’ icons were

designed differently to communicate that forward button was playing the next line while

back acted more like an undo button. Implementing break-points was considered, but

was omitted to save on development time. The programs created never got very long, so

although break-points could have been convenient, stepping from the start each time

was a satisfactory user experience.

3.5.2 Variables

Figure 3.8: The variables view

The variable view shows the current value of variables at a specific time in the execution

of the program. The view included the players x, y position, if a player was standing on a

chest or not and the current number of coins in each chest in the level.

3.5.3 Log

Figure 3.9: The log view

The log prints out every major action the game character does, like moving to a new

location and picking up coins. The actions are listed in a chronological scrollable list. The

log works similarly to manually printing events to the console in more traditional

programming. Although it is not strictly a part of the debugger it is a valid debug

strategy deemed worthy of being included in the game. A separate print block was

 3.5. The Game 20

considered, giving the programmer freedom of what and when to log things, but it was

decided that this would unnecessary complicate the process.

3.5.4 Grid

Figure 3.10: The grid

The grid can be activated by toggling a checkbox in the debugger menu. It adds a grid

overlay to the game world with x, y coordinates associated with each cell. Together with

the players x, y coordinates this can be used to locate the game characters position in

the game world.

3.5.5 Loop iteration counter

Figure 3.11: Loop iteration counter

 3.5. The Game 21

The loop iteration counter is a form of code visualization that keeps track of how many

iterations a loop has done at a specific time during the program execution. The counter

was placed next to the associated loop block to easily identify the associated block. In

Figure 3.11 the counters indicate that the outer loop is on its 2nd iteration and the inner

loop on its 1st.

 4.1. Experiment design 22

4 Experiment design

This chapter describes the design of the experiment and how observations and interviews

were used to gather data to best answer the research questions. It also describes the

pilot tests that were done and how the experiment was revised based on the results of

these. Finally, this chapter describes how the final experiment was conducted.

4.1 Experiment design

Originally the participants of the experiment were going to be students from a fifth grade

in elementary school from Notodden, Norway, randomly assigned to the two test groups.

This would ensure a representative selection of the population and the randomness would

ensure an approximately equal skill between the groups. Due to the COVID-19 pandemic

and closed schools, this was not feasible. The participants were therefore chosen at

random from adults with minimal to no previous experience with programming. The

effects of this is further discussed in Error! Reference source not found. Error!

Reference source not found.. The pilot tests showed that age and previous experience

with computer games dramatically impacted the results. This combined with the

relatively small number of participants made it clear that a random selection was not the

optimal way to create two groups of equal skill. The criteria of an age between 20-30

years, some experience with games and an academic background of more than three

years was therefore added to keep the factors constant. The participants were distributed

among the two test groups with an even distribution among sex and academic

background.

4.2 Observation

The observation process can be divided into two parts. The first part was a highly

systematic observation of pre-defined events that gathered quantitative data. The events

were chosen by their ability to measure the participants’ performance in light of the

research questions. The specific events and the reasoning behind them are shown in the

table below.

 4.2. Experiment design 23

 Event What it measures

Data

type

Both

groups

The program is

ran

A high number can indicate that the

participant is tinkering.

A low number can indicate that the

participant understands the underlying

concepts well enough to predict the

outcome

Number

A block is deleted Same as above Number

Deaths Same as above Number

Level completed The participant showed enough coding

proficiency to solve the level

Boolean

Level completed

with optimal

solution

The participant showed enough coding

proficiency to solve the level AND can use

the concepts in an optimal way to create

short and concise programs

Boolean

Time used A performance metric. Can also indicate

which levels were more difficult than others

Time

(mm:ss)

Coding concept

proficiency grade

A grade given to the participant based on

their understanding of the code and the

concepts being teached (for more details

see grading table below)

Grade

from 1-

5

Debugger

group

only

Debug mode is

entered

How useful the combination of all the

debugging tools was

Number

The grid is used How useful this specific tool was Number

The variables are

read

Same as above Number

The log is read Same as above Number

Step forward is

used

Same as above Number

Step backwards

is used

Same as above Number

Loop’s times ran

indicator is read

Same as above Number

Table 4.1: Observation events

 4.3. Experiment design 24

Coding concept proficiency grading

1. No proficiency The test subject showed no understanding of the code

and made it look like they tinkered their way to a

working program. No understanding of the underling

coding concepts.

2. Low level of

proficiency

The test subject showed some understanding of the

code, but many parts were unclear. Low understanding

of underlying concepts.

3. Medium level of

proficiency

The test subject showed understanding of large parts of

the code, but some parts were unclear. The participants

could use the basic concepts.

4. High level of

proficiency

The participant could explain most of the code and use

the underlying concepts. Some advanced concepts like

nested loops were unclear.

5. Full level of proficiency The test subject could explain all of the code and

created optimal solutions based on the underlying

concepts.

Table 4.2: table explaining how the coding concept proficiency was graded

Originally the number of times a participant asked for help and number of times they got

completely stuck on a level was going to be observed. The first metric was dropped

because it was discovered to be more dependent on personality traits than performance.

The second metric was dropped because it never occurred. An approach where the game

was programmed to automatically log all quantitative data was considered, but some of

the metrics had some nuances to them that needed human evaluation, like evaluating if

a program was optimal or not and grading the coding concept proficiency.

The second part of the observation was a less systematic one. It consisted of reviewing

the recordings and mapping patterns and behavior of the participants, creating

qualitative data. This strategy was implemented to capture results that was difficult to

predict and emerged during testing.

4.3 Interview

After completing the game, the participants were interviewed in a semi-structured

manner to get further insight into their experience. Both groups were asked the following

questions:

• How was your general experience with the game?

• How did the removal of the game graphics affect you?

In addition, the debugging group was asked the following questions:

• What was your general experience with the debugging tools?

• When and how did you use the grid?

• When and how did you use the variable view?

• When and how did you use the log?

 4.4. Experiment design 25

• When and how did you use the step forward and backward tools?

• When and how did you use the indicator for how many times a loop had ran?

4.4 Pilot experiment

Before the initial pilot tests the main focus on this thesis was research question 1: How

does the inclusion of debugger tools affect the amount of tinkering, the code

understanding and the general performance of novice kids in BBP teaching systems?

After a prototype of the game was developed there were conducted two pilot tests were

both participants had access to the debugging tools. The results showed that the tools

were minimally or not used at all. The literature was consulted, and a hypothesis that the

results could be explained by an overlap in functionality of the debugger and game

graphics was formed. Both the debugger and game graphics serve the purpose of helping

the programmer understand the program execution, only that the graphics does so in a

more intuitive manner. This makes the debugging tools redundant. To test out this

hypothesis three levels with no program visualization was added to the game (level 13-

15). If this resulted in an increase in the debugging tool usage it would prove that there

was indeed an overlap between the two.

4.5 Experiment execution

The experiments were executed by videocall. The test-subjects accessed a website

hosting the game and shared their screen so that the researcher could observe their

interaction with the game. The videocalls were recorded, giving a record of both audio

and video of the experiments. These were later used as the main input for the data

analysis. The test subjects were encouraged to vocalize their thought processes to give

the researcher insight. They were also instructed to create the shortest programs

possible (i.e., fewest lines of code). This was to encourage the use of loops and clean

code. Examples of unclean code are the use of loops with only one iteration and using

more lines of code than necessary to guarantee that the character moves at least as far

as the end flag.

 5.1. Results 26

5 Results

This chapter presents the results from the experiment. First the debugging tools’ usage,

how often the different tools were used and on what type of levels, are presented. Then

the results from the observation of pre-defined events are used to compare the

performance between the debugging group and control group. After this the results from

the interviews are presented, shedding light on the experience of the debugging group

5.1 Observations

The records of the videocalls were used as the source for data analysis. The records were

played back and occurrences of actions of interest were logged in an individual

observation table for each participant. The data consisted mostly of discrete ratio data,

with a few sets of ordinal data and was organized and analyzed in an Excel spreadsheet.

The experiment originally had seven participants in each test group. The debugger group

had one extreme outlier that in some cases scored values four times the median and

were therefore excluded from further statistical analyses.

5.1.1 Debugger tools usage

As the pilot tests showed minimal usage of the debugging tools, this was an aspect of

interest to analyze after the final experiment. These results are presented first to give

context to the rest of the results.

To be able to compare the relative usage between different types of levels, their average

usage per level was used. The average was calculated by dividing the number of uses by

the number of levels of a specific type. For example the debug mode was entered seven

times across eight normal levels with PV, which results in:

7 𝑢𝑠𝑒𝑠

8 𝑙𝑒𝑣𝑒𝑙𝑠
= 0,875 𝑢𝑠𝑒𝑠 𝑝𝑒𝑟 𝑙𝑒𝑣𝑒𝑙

The chart below displays the usage results for the different types of levels.

 5.1. Results 27

Figure 5.1: Debugging tools' usage

The results show that the debugging tools were used very sparingly during levels with

PV, both in normal and pre-built program levels. The tools most used on these levels was

the grid. When PV was removed there was an increase in the debugging tools’ usage by

4,5 times for normal levels and 5 times for pre-built program levels. The most used tools

were step forward followed by the grid.

5.1.2 Comparing the performance

The performance metrics were compared between the debugger and control group for

different types of levels. As a result of the removal of an outlier the two groups had a

different number of participants and the results are therefore given as an average for the

group. The differences were evaluated with the Student’s T-Test for statistical

significance in Excel, using two-tail distribution and two-sample equal variance.

Significant scores of p < 0,05 are highlighted in green in the tables. Also recall that the

coding concept proficiency grade is a scale from one to five, were five is the highest

score. The grade is therefore shown as an average across the levels to be easier to

understand.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Debug mode is
entered

The grid is used The variables
are read

The log is read Step forward is
used

Step backwards
is used

Loop iteration
counter is read

Average debugging tool usage per level

Normal with PV Pre-built program with PV Normal without PV Pre-built program without PV

 5.1. Results 28

5.1.2.1 Total

The results for all the levels combined are presented in the table below.

 Avg. use per person T-test
Debugger Control

The program was ran 29,0 21,4 0,116

A block was deleted 15,0 9,4 0,027

Deaths 9,3 3,3 0,020

Lvls completed 15,0 15,0

Lvls completed with optimal solution 11,2 13,4 0,095

Time used 20:30 16:04 0,036

Coding concept proficiency grade 4,4 (65,8) 4,8 (72,0) 0,089

Table 5.1: Performance results total

There was a noticeable difference between the two groups. Firstly, the debugger group

scored worse in every metric except levels completed, which was the same. A block is

deleted, number of deaths and time used showed a statistically significant difference with

p < 0,05.

The diagram below shows the relative performance of the debugger group compared to

the control group, where the control group’s score is 100%. This makes it possible to

compare the performance of different metrics, despite having different types of values,

like number of occurrences, time and proficiency grade. It also accounts for a difference

in metrics if a higher or lower score is better.

 5.1. Results 29

Figure 5.2: Performance comparison total

5.1.2.2 With Program Visualization

The table below shows the results from all the levels with PV, both normal and

debugging.

 Avg. use per person T-test
Debugger Control

The program was ran 23 16,4 0,097

A block was deleted 11 6,7 0,046

Deaths 7 2 0,018

Lvls completed 12 12

Lvls completed with optimal solution 8,8 10,7 0,095

Time used 12:39:10 9:53:26 0,170

Coding concept proficiency grade 4,4 4,8 0,117

Table 5.2: Performance results with Program Visualization

21,4 9,4 3,3 15 13,4 16:04 4,8

29

15

9,3

15

11,2
20:30

4,4

0%

20%

40%

60%

80%

100%

120%

The program is
ran

A block is
deleted

Deaths Lvls completedLvls completed
with optimal

solution

Time used Coding
concept

proficiency
grade

%
 o

f
co

n
tr

o
l g

ro
u

p
's

 p
er

fo
rm

an
ce

Total

Control group Debug group

 5.1. Results 30

Figure 5.3: Performance comparison with Program Visualization

The results are very similar to the results from the total. Given the knowledge that the

debugging tools were barely used during these levels, we can quite confidently conclude

that the differences seen between the groups are not because of the debugging tools, but

another factor. This is more discussed in chapter Error! Reference source not found..

Error! Reference source not found.. The T-test shows that the difference in time used

no longer is statistically significant, even though the relative performance is similar to the

results from the total at 80% of the control group’s. This is because of a higher standard

deviation in the results.

5.1.2.3 Without Program Visualization

The table below shows the results from all the levels without PV, both normal and with

pre-built programs.

 Avg. use per person T-test

Debugger Control

The program was ran 6 5 0,398

A block was deleted 4 2,7 0,280

Deaths 2,3 1,3 0,198

Lvls completed 3 3

Lvls completed with optimal solution 2,3 2,7 0,320

Time used 7:50:50 6:10:17 0,037

Coding concept proficiency grade 4,2 4,9 0,082

16,4 6,7 2 12 10,7 9:53:26 4,8

23

11

7

12

8,8
12:39:10

4,4

0%

20%

40%

60%

80%

100%

120%

The program is
ran

A block is
deleted

Deaths Lvls completedLvls completed
with optimal

solution

Time used Coding
concept

proficiency
grade

%
 o

f
co

n
tr

o
l g

ro
u

p
's

 p
er

fo
rm

an
ce

With PV

Control group Debug group

 5.1. Results 31

Table 5.3: Performance results without Program Visualization

Figure 5.4: Performance comparison without Program Visualization

The results very much follow the same pattern as both the total and with PV. These

levels had a good amount of debugger tool usage, further supporting the conclusion that

the observed differences in performance are not due to access to debugging tools.

5.1.2.4 Pre-built program levels

As shown in the previous results there seemed to be no relative difference in

performance between the levels with and without PV. The results of all the pre-built

program levels, both with and without PV, are therefore combined and compared

between the two group which can be seen in the table below.

 Avg. use per person T-test
Debugger Control

The program is ran 12,17 6,71 0,215

A block is deleted 7,83 4,71 0,378

Deaths 5,83 1,57 0,009

Lvls completed 5,00 5,00

Lvls completed with optimal solution 3,83 4,57 0,037

Time used 8:52:00 5:02:00 0,407

5 2,7 1,3 3 2,7 6:10:17 4,9

6

4

2,3

3

2,3
7:50:50

4,2

0%

20%

40%

60%

80%

100%

120%

The program is
ran

A block is
deleted

Deaths Lvls completedLvls completed
with optimal

solution

Time used Coding
concept

proficiency
grade

%
 o

f
co

n
tr

o
l g

ro
u

p
's

 p
er

fo
rm

an
ce

Without PV

Control group Debug group

 5.1. Results 32

Coding concept proficiency grade 21,00 24,14 0,0002

Table 5.4: Performance results pre-built programs

Figure 5.5: Performance comparison pre-built programs

In the pre-built programs levels, the patterns are the same as previously but the

debugger group falls even further behind the control group.

6,71 4,71 1,57 5,00 4,57 5:02:00 24,14

12,17
7,83

5,83

5,00

3,83

8:52:00

21,00

0%

20%

40%

60%

80%

100%

120%

The program is
ran

A block is
deleted

Deaths Lvls completedLvls completed
with optimal

solution

Time used Coding
concept

proficiency
grade

%
 o

f
co

n
tr

o
l g

ro
u

p
's

 p
er

fo
rm

an
ce

Pre-built programs

Control group Debug group

 5.2. Results 33

5.2 Interviews

The interviews were transcribed from the video recordings and organized in Word. Each

question was then analyzed for emerging themes and patterns in the answers. The

participant excluded from the quantitative analysis was included to give valuable insight

into how a person who struggled used the debugging tools. The most common themes

from each question are presented, with some additional comments of particular interest.

General Experience

The answers from the interviews match the results from the observations to a large

degree. Five of seven participants answered that they used the debugger more when the

program visualization was removed. Especially the tools that directly replaced the game

graphics, like the grid and the variables players x,y-coordinates and number of coins in

the chests. Several of the participants stated that they forgot that the debugging tools

existed, and only when the PV was removed did they recall them. One participant never

used the debugger and argued that “it is easier to understand what is happening

watching the graphics than reading it in text”. This person performed well above average

on all levels and did not struggle when the PV was removed.

One participant tried to use the debugging tools but found them confusing and quickly

discarded them. The person said the tools gave him the feeling of information overload

which only derailed his train of thought and it was easier just to ignore them. This

participant scored lower than the average and struggled on the levels with no PV.

The participant that was the outlier in the performance analysis used the debugging tools

extensively and stated that “I would not stand a chance on the invisible levels (no PV)

without the grid, variable view and the arrow showing which line of code the program

was on”. This participant seemed more interested in investing time into the game and

learning to use the debugger. The person also created programs by adding a few number

of blocks and running them often to investigate their effect. The person said this was a

conscious strategy to not get confused. This explains the low scores on both time and

other performance metrics.

Grid

There were two use cases for the grid. The most frequently occurring was to use the

characters x, y coordinates to locate the character in the world on the last three levels

with no PV. The other more unexpected use case was to easier visualize the movement

grid. Some of the participants struggled to recognize the dark lines in the grass indicating

one cell or unit in the grid. By enabling the grid, the cell borders were easier to identify.

 5.2. Results 34

Figure 5.6 Example of dark lines in grass separating grid cells

Figure 5.7 The same area with grid enabled

This should be considered a design flaw of the program where aesthetics was prioritized

over function.

Variable view

The participants that used the variable view used it on levels with no PV to get the

coordinates of the player and the amount of coins left in the chests to try to imagine

where the player was in the program execution.

Log

The log had overlapping use-cases as the variable view.

 5.2. Results 35

Step forward and backward

Two participants answered that they used the step forward and backward when they did

not immediately understand the reason for the programs failing. One participant

mentioned a particularly tricky part in level 14 where a new movement pattern is

introduced, but the execution is invisible, making the results difficult to predict.

One participant answered that he used the step forward to move slowly towards the

problem area of the program, but never saw the need to step back when it was located.

One participant tried the stepping but said it was confusing and preferred to run the

program normally.

Loop iteration counter

Six of seven participants stated that they never noticed this tool. One participant used

the tool and the use case was that the person was stepping forward and did not

understand why the character did not move all the way to the goal flag. The participant

then discovered the iteration counter and could conclude that the program was not

finished, and she continued to step forward.

 6.1. Goal Evaluation and Discussion 36

6 Goal Evaluation and

Discussion

This chapter answers the research questions in light of the results from the experiment

and discusses other relevant topics that emerged. It then discusses weaknesses

recognized with the experiment.

6.1 Goal Evaluation

Research question 1: How does the inclusion of debugger tools affect the amount of

tinkering, the code understanding and the general performance of novice kids in BBP

teaching systems?

The results from the experiment show that implementing traditional debugging tools into

BBP teaching systems is not a good way of neither decreasing the amount of tinkering,

increasing code understanding or increasing the general performance of novice. The main

reason for this is that BBP teaching systems already offer superior tools for

understanding the program execution. The program visualization offered by the dynamic

simulation of the actor and the microworld is shown by both the observations and the

interviews to be preferred over the traditional debugging tools, making the debugging

tools redundant.

Research question 2: How can traditional debugging tools be used to ease the

transition from teaching systems to traditional programming?

The removal of program visualization dramatically increased the usage of the debugging

tools, indicating that there is an overlap of the purpose of the debugging tools and the

PV. They are both tools that aid the programmer in understanding the execution of the

program and the transitioning from PV to debugger tools in the context of transitioning to

a traditional programming environment is therefore interesting. This thesis argues that

this transition is just as important as the transition from BBP to TBP and should therefore

be given a similar focus.

The transition from PV to debugging tools could be approached in a similar way to the

transition from BBP to TBP, either with a bi-directional or dual-modality approach. In

practice this would mean offering the programmer to switch between PV and a traditional

debugger to describe the execution of the program for a bi-directional approach. For a

dual-modality some elements could be described with PV, like a game character and

other more specific elements could be described by a debugger, like a characters

statistic, inventory etc. A third option were the PV is gradually replaced by debugging

tools are also possible.

 6.2. Goal Evaluation and Discussion 37

6.2 Further discussion

To look at the bigger picture of the transition to traditional programming, the feeling of

being overwhelmed described by novices is most likely a result of being introduced to too

many new concepts at once. In addition to the transition from BBP to TBP, and PV to

debugging tools, the programmers also transition from a domain specific programming

language to a general purpose programming language. A strategy to decrease the feeling

of being overwhelmed would be to isolate each of these aspects, and tackle one at a

time. For example one programming environment with TBP and PV, like the existing Code

Monkey [30] and CodeBattle [27], another programming environment with BBP and

debugging tools and one with BBP-based GPPL with PV. After the novices have gained

experience with each of these new aspect of programming on their own, they can be

combined as a final step towards traditional programming.

6.3 Weaknesses

Internal validity

In chapter 5.1.2 Comparing the performance, the conclusion was made that because the

difference in performance between the groups was seen even when the debugging tools

were barely used, the difference must be caused by another factor. This poor internal

validity is most likely caused by an uneven distribution of the participants, making the

control group better performing from the start. This was attempted accounted for by

using the differences seen on these levels as a baseline to see if the difference increased

or decreased on other types of levels.

Too old participants

As a result of the COVID-19 pandemic, the experiment was not conducted on a 5th grade

in primary schools as it was designed for, but older people between 20-30 years old. The

consequence was that the difficulty of the levels was generally easy for the participants.

This is believed to be one of the reasons for why the debugging group scored lower than

the control group in the levels with no PV. None of the participant in the control group

found these levels especially challenging and a common characteristic of the best

performing participants was their ability to run the programs in their heads before

executing them. This allowed them to not rely on the PV and as a consequence they were

not very affected by its removal. The generally weaker performing participants in the

debugging group was overall worse at running the programs in their heads and were

more affected by the removal of PV, despite the access to debugger tools. If harder game

levels were implemented, requiring longer more complex programs to solve them, having

the debugger tools might have been a bigger advantage.

Inaccurate data

Observing every move the test subject made was difficult, even with video recordings of

the experiments available. Values that needed the user’s interaction like mouse clicks

were easy to catch, but others were the subject were glancing at information were hard

to recognize. A possible improvement to the accuracy of this would be to implement eye

tracking. The subjects were encouraged to speak their mind and vocalize their thought

process and every move. In practice this was unreliable because when the levels got

 6.3. Goal Evaluation and Discussion 38

harder, the participant needed to focus their attention at solving the level and forgot to

describe their actions.

The interviews were not perfectly accurate either. Due to the length and mental demand

of the experiments, the process became kind of a blur for the participants. There were a

few instances of participants claiming not to use some debugging tools, when the

videotape clearly showed otherwise. Combining the result from both the observations

and the interviews was therefore critical to obtain a best effort representation of what

actually happened.

 7.1. Conclusion and future work 39

7 Conclusion and future work

The experiment done in this thesis has shown that implementing traditional debugging

tools into modern block-based programming teaching systems is not a good way to

decrease the tinkering, increase code understanding or increase general performance. In

fact, the debugging tools were minimally used because these teaching systems already

offer program visualization, in the form of an actor in a microworld, that explain the

program execution in a more intuitive and concrete way than the debugging tools.

The removal of program visualization dramatically increased the usage of the debugging

tools, indicating that they serve a similar role of aiding in understanding the execution of

the program. The transitioning from PV to debugger tools in the context of transitioning

to a traditional programming environment is therefore believed to contribute to the

feelings of being overwhelmed, expressed by novice programmers making the transition

to traditional programming. This is argued to be a just as important reason for the

challenges as the transition from block-based programming to text-based programming

and should therefore be given a similar amount of focus in further research.

7.1 Future work

Firstly, the hypothesis that a more gradual transition from PV to debugging tools will help

mitigate the challenges and negative effects seen with programmers making the

transition to traditional programming should be investigated. A possible research strategy

for this is a case study following two intro classes in programming where one of them are

using teaching system that gradually exposes them to debugging tools. The two groups

should then do exercises in traditional programming, measuring any differences in

motivation and frustration, code understanding and performance due to the different

teaching approaches.

If this study supports the hypothesis, research and experimentation on how the

debugging tools best can be implemented and introduced in teaching systems should be

done.

Investigating if isolating different aspects of the transition to traditional programming can

be beneficial could also be done.

 7.1. Bibliography 40

8 Bibliography

[1] European Commission/EACEA/Eurydice, “Digital education at School in Europe

Eurydice Report,” 2019.

[2] “Coding - the 21st century skill | Shaping Europe’s digital future,” European

Commission, 2018. [Online]. Available: https://ec.europa.eu/digital-single-

market/en/coding-21st-century-skill. [Accessed: 31-Jul-2020].

[3] “Code.org 2019 Annual Report | Code.org.” [Online]. Available:

https://code.org/about/2019. [Accessed: 01-Aug-2020].

[4] “Code.org,” 2020. [Online]. Available: https://code.org/. [Accessed: 22-Jun-2020].

[5] “Scratch,” 2020. [Online]. Available: https://scratch.mit.edu/. [Accessed: 20-Jul-

2020].

[6] F. García-Peñalvo, “TACCLE 3, O5: An overview of the most relevant literature on

coding and computational thinking with emphasis on the relevant issues for

teachers KA2 project " TACCLE 3 – Coding " (2015-1-BE02-KA201-012307),” p.

2016, 2016.

[7] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From scratch to ‘Real’

programming,” ACM Trans. Comput. Educ., vol. 14, no. 4, pp. 1–15, Dec. 2015.

[8] D. Weintrop and U. Wilensky, “Transitioning from introductory block-based and

text-based environments to professional programming languages in high school

computer science classrooms,” Comput. Educ., vol. 142, p. 103646, Dec. 2019.

[9] C. M. Kim, J. Yuan, L. Vasconcelos, M. Shin, and R. B. Hill, “Debugging during

block-based programming,” Instr. Sci., vol. 46, no. 5, pp. 767–787, 2018.

[10] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, and S. Yang, “Scaling Up Visual

Programming Languages,” Computer, vol. 28, no. 3. pp. 45–54, 1995.

[11] L. Moors, A. Luxton-Reilly, and P. Denny, “Transitioning from Block-Based to Text-

Based Programming Languages,” in Proceedings - 2018 6th International

Conference on Learning and Teaching in Computing and Engineering, LaTiCE 2018,

2018, pp. 57–64.

[12] “Computer Science Curriculum for Grades K-5 | Code.org,” 2020. [Online].

Available: https://code.org/student/elementary. [Accessed: 07-May-2020].

[13] “Google Scholar,” 2020. [Online]. Available: https://scholar.google.com/.

[Accessed: 17-Jul-2020].

[14] “Scopus,” 2020. [Online]. Available: https://www.scopus.com. [Accessed: 17-Jul-

2020].

[15] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers,” ACM

Computing Surveys, vol. 37, no. 2. pp. 83–137, Jun-2005.

[16] N. S. Anderson, D. A. Norman, and S. W. Draper, “User Centered System Design:

New Perspectives on Human-Computer Interaction,” Am. J. Psychol., vol. 101, no.

 7.1. Bibliography 41

1, p. 148, 1988.

[17] J. Hoc, “psychology of programming thinking.” 2014.

[18] D. Norman, The Design of Everyday Things. 2016.

[19] B. A. Myrrs-T", “Taxonomies of Visual Programming and Program Visualization*,”

1990.

[20] “Tomorrow Corporation : 7 Billion Humans,” 2020. [Online]. Available:

https://tomorrowcorporation.com/7billionhumans. [Accessed: 08-May-2020].

[21] D. Weintrop and U. Wilensky, “Using commutative assessments to compare

conceptual understanding in blocks-based and text-based programs,” in ICER 2015

- Proceedings of the 2015 ACM Conference on International Computing Education

Research, 2015, pp. 101–110.

[22] “Droplet.” [Online]. Available: http://droplet-editor.github.io/. [Accessed: 31-Jul-

2020].

[23] “App Lab | Code.org,” 2020. [Online]. Available: https://code.org/educate/applab.

[Accessed: 30-Jun-2020].

[24] “BlockPy.” [Online]. Available: https://think.cs.vt.edu/blockpy/. [Accessed: 31-Jul-

2020].

[25] “EduBlocks,” 2020. [Online]. Available: https://edublocks.org/index.html.

[Accessed: 30-Jun-2020].

[26] N. C. C. Brown, A. Altadmri, and M. Kolling, “Frame-based editing: Combining the

best of blocks and text programming,” in Proceedings - 2016 International

Conference on Learning and Teaching in Computing and Engineering, LaTiCE 2016,

2016, pp. 47–53.

[27] “CodeCombat,” 2020. [Online]. Available: https://codecombat.com/. [Accessed:

08-May-2020].

[28] “Blockly | Google Developers,” 2020. [Online]. Available:

https://developers.google.com/blockly. [Accessed: 08-May-2020].

[29] “Phaser 3.” [Online]. Available: https://phaser.io/phaser3. [Accessed: 08-May-

2020].

[30] “CodeMonkey.” [Online]. Available: https://www.codemonkey.com/partner-no-tell-

forlag/. [Accessed: 01-Aug-2020].

 0. Appendix A: Observation tables 42

Appendix A: Observation tables

Debugger group

 0. Appendix A: Observation tables 43

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 2 3 3 2 3 2 4 3 2 7 4 6 2 1

A block is deleted 6 2 1 1 3 2 1 1

Deaths 1 1 1 2 3 1 1

Participant asked for help 1 3 1

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T T T F T F F F F T

Time used 0:50 1:00 2:44 1:23 0:36 1:26 0:41 1:59 2:19 0:43 5:20 6:11 17:49 9:11 9:09

Coding concept proficiency

grade

4 4 5 5 5 5 5 5 5 5 4 3 5 4 5

Debugger

group

only

The program is debugged 3 6 2

The grid is used 2 1 2

The variables are read 2

The log is read 4 4 2

Step forward is used 4 5 1

Step backwards is used

Loop’s times ran indicator

is read

 1

 0. Appendix A: Observation tables 44

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 2 1 2 1 1 1 2 2 2 2 1 1 2 1

A block is deleted 1 1 2 2 1 1 2

Deaths 1 2 1 1 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T T T T T T T T T T

Time used 0:10 0:46 0:37 0:29 0:12 0:47 1:10 0:55 0:43 0:13 1:20 0:52 3:48 1:43 2:13

Coding concept proficiency

grade

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Debugger

group

only

The program is debugged 2 1 1 1 1 1 2

The grid is used 1 1 1 1 1

The variables are read

The log is read 1

Step forward is used 1 1 1 1 2

Step backwards is used 1

Loop’s times ran indicator

is read

 0. Appendix A: Observation tables 45

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 3 1 1 2 2 3 5 2 2 3 1 15 3 3 4

A block is deleted 1 1 1 3 1 1 3 5 1

Deaths 1 2 1 4 1 5 1 3

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

F F T F T T F F F T T T F F T

Time used 0:24 0:13 0:41 0:14 0:13 0:39 0:50 0:29 0:36 0:16 1:28 7:19 1:43 1:30 2:53

Coding concept proficiency

grade

2 4 5 4 5 5 3 3 3 5 5 4 3 3 3

Debugger

group

only

The program is debugged 3 2 3

The grid is used 1 1 3

The variables are read

The log is read 1

Step forward is used 3 2 3

Step backwards is used

Loop’s times ran indicator

is read

 0. Appendix A: Observation tables 46

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 1 2 2 1 1 1 2 1 1 1 1 2 4 1

A block is deleted 1 1 1 1 1 4

Deaths 1 3

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

F F T T T T T T T T T T T T T

Time used 0:13 0:35 0:31 0:46 0:19 0:34 0:32 1:15 1:15 0:16 1:01 1:09 2:39 6:17 1:25

Coding concept proficiency

grade

4 4 5 5 5 5 5 5 5 5 5 5 5 5 5

Debugger

group

only

The program is debugged 1

The grid is used 1

The variables are read

The log is read

Step forward is used 2

Step backwards is used 1

Loop’s times ran indicator

is read

 0. Appendix A: Observation tables 47

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 3 2 2 2 2 1 1 2 2 1 7 3 2 3

A block is deleted 1 1 1 5 1 2 1 3 4

Deaths 1 1 2 1 5 2 1 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T F T F F T F F F T T

Time used 0:22 0:40 0:25 0:39 0:31 4:04 0:19 0:28 1:32 0:32 1:03 7:19 3:52 2:29 3:50

Coding concept proficiency

grade

5 4 4 4 5 2 5 4 3 4 4 2 3 4 3

Debugger

group

only

The program is debugged 2 1 2 1

The grid is used 2 1 2

The variables are read 1

The log is read

Step forward is used 1

Step backwards is used

Loop’s times ran indicator

is read

 0. Appendix A: Observation tables 48

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 3 1 2 1 1 3 2 1 2 2 1 1 2 1

A block is deleted 1 1 2 4 6 2 2

Deaths 1 2 1 1 1 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T F F T T F T T T T

Time used 0:10 0:43 0:20 0:37 0:22 0:16 2:46 0:57 0:46 0:44 3:21 0:52 1:13 3:04 1:17

Coding concept proficiency

grade

5 5 5 5 5 5 2 3 5 4 4 5 5 5 5

Debugger

group

only

The program is debugged 1 1

The grid is used 1 1

The variables are read

The log is read

Step forward is used

Step backwards is used

Loop’s times ran indicator

is read

 0. Appendix A: Observation tables 49

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 1 1 1 1 1 2 1 1 2 3 4 1 1 2

A block is deleted 1 2 2 2 1 4 5

Deaths 1 1 4 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T F T T T F F T F T

Time used 0:08 0:10 0:19 0:48 1:35 0:43 0:53 1:28 0:47 0:40 2:48 5:46 2:32 1:22 3:15

Coding concept proficiency

grade

5 5 5 5 5 5 2 5 5 5 5 2 3 4 5

Debugger

group

only

The program is debugged

The grid is used

The variables are read

The log is read

Step forward is used

Step backwards is used

Loop’s times ran indicator

is read

 0. Appendix A: Observation tables 50

Control group

 0. Appendix A: Observation tables 51

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 1 1 1 1 1 3 1 2 1 1 1 2 1 1

A block is deleted 1 2 2 1 2

Deaths 1 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T T T F T F T T T T

Time used 0:18 0:15 0:15 0:29 0:32 0:28 2:39 0:56 1:44 0:16 1:08 1:23 2:01 1:13 1:02

Coding concept proficiency

grade

5 5 5 5 5 5 4 5 4 5 4 5 5 5 5

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1

A block is deleted 2 1 1 2 1

Deaths 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T T T T T T T T T T

Time used 0:16 0:23 0:49 0:24 0:09 0:27 0:39 0:41 0:59 0:37 1:48 1:16 1:13 2:44 2:09

Coding concept proficiency

grade

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 0. Appendix A: Observation tables 52

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 1 1 2 2 4 1 1 1 1 1 3 2 1 2 2

A block is deleted 1 1 1 3

Deaths 1 1 1 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T F T T F F T T T T F T

Time used 0:15 0:20 0:25 0:22 1:49 0:53 0:20 0:26 0:52 0:20 1:56 0:29 1:20 1:05 0:38

Coding concept proficiency

grade

5 5 5 5 1 5 5 4 3 5 4 4 5 4 4

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 2 1 1 1 1 1 1 2 1 1 1 1 2 3 1

A block is deleted 1 1 1 2 3 2

Deaths 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T T T T T F T T T T

Time used 0:49 0:18 0:32 0:28 0:25 0:22 0:22 0:22 0:44 0:12 0:45 1:02 2:01 4:27 1:21

Coding concept proficiency

grade

5 5 5 5 5 5 5 5 5 5 4 5 5 5 5

 0. Appendix A: Observation tables 53

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 2 1 2 1 1 1 3 1 1 1 1 2 1 1 5

A block is deleted 1 3 1 4 3

Deaths 1 1 1 4

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T F F T T T T T T T T T T F T

Time used 0:14 0:15 0:41 0:37 0:21 0:26 1:43 0:49 0:35 0:20 1:30 0:48 1:20 2:14 5:38

Coding concept proficiency

grade

5 4 4 5 5 5 5 5 5 5 5 5 5 5 5

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 2 1 1 2 1 1 1 1 1 1 2 1 1 2 1

A block is deleted 1 1 1 1 1 2

Deaths 1 1 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T T T T T T T T T T

Time used 0:14 0:25 0:24 0:45 0:30 0:23 2:23 0:59 0:36 0:24 5:05 0:56 1:13 3:48 1:13

Coding concept proficiency

grade

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 0. Appendix A: Observation tables 54

 Event lvl1 lvl2 lvl3 lvl4 lvl5 lvl6 lvl7 lvl8 lvl9 lvl10 lvl11 lvl12 lvl13 lvl14 lvl15

Both

groups

The program is ran 2 1 2 2 1 1 2 2 1 2 3 2 1 2 1

A block is deleted 1 5 1 1 3 1 2 2

Deaths 1 1 1 1 1

Participant asked for help

Participant is completely

stuck

Completed T T T T T T T T T T T T T T T

Completed with optimal

solution

T T T T T T F T T T T T T T T

Time used 0:20 0:18 1:35 0:33 0:17 0:35 0:47 1:35 0:38 0:21 5:31 1:42 1:44 3:34 1:14

Coding concept proficiency

grade

5 5 5 4 5 5 2 5 5 5 5 5 5 5 5

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Sondre Kvisli

Investigating how debugging tools can
be used to improve programming
teaching systems and ease the
transition to traditional programming

Master’s thesis in Informatikk

Supervisor: Trond Aalberg

August 2020

	1 Introduction
	1.1 Background and Motivation
	1.2 Goals and Research Questions
	1.3 Methodology
	1.4 Research Process
	1.5 Thesis Structure

	2 Background Theory and State of the Art
	2.1 Taxonomy of Teaching Systems
	2.1.1 Expressing programs
	2.1.1.1 Simplify entering code
	2.1.1.2 Alternatives to typing programs

	2.1.2 Structuring Programs
	2.1.3 Understanding Program Execution
	2.1.3.1 Tracking Program Execution
	2.1.3.2 Actors in Microworld
	2.1.3.3 Models of Program Execution

	2.2 State of the Art of Teaching Systems
	2.3 Transitioning from Block-Based Teaching Systems to Traditional Programming

	3 The Game
	3.1 Why develop from scratch?
	3.2 Limiting the Scope
	3.3 Difficulty and Pedagogic Design
	3.4 Instructing the Participants
	3.5 Debugging Tools
	3.5.1 Stepping
	3.5.2 Variables
	3.5.3 Log
	3.5.4 Grid
	3.5.5 Loop iteration counter

	4 Experiment design
	4.1 Experiment design
	4.2 Observation
	4.3 Interview
	4.4 Pilot experiment
	4.5 Experiment execution

	5 Results
	5.1 Observations
	5.1.1 Debugger tools usage
	5.1.2 Comparing the performance
	5.1.2.1 Total
	5.1.2.2 With Program Visualization
	5.1.2.3 Without Program Visualization
	5.1.2.4 Pre-built program levels

	5.2 Interviews

	6 Goal Evaluation and Discussion
	6.1 Goal Evaluation
	6.2 Further discussion
	6.3 Weaknesses

	7 Conclusion and future work
	7.1 Future work

	8 Bibliography
	Appendix A: Observation tables
	Debugger group
	Control group

