
Latency-aware Resource
Management in Data Centres.

July 2020M
as

te
r's

 th
es

is

M
aster's thesis

Abhinav Padala

2020
Abhinav Padala

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Latency-aware Resource Management in
Data Centres.

Abhinav Padala

Information Systems
Submission date: July 2020
Supervisor: Rajiv Nishtala
Co-supervisor: Björn Gottschall

Norwegian University of Science and Technology
Department of Computer Science

Abstract

Energy efficiency is a key issue in data centres. Data centres consume half of its maximum
power even at low utilisation. In order to improve energy proportionality, machine util-
isation is increased by co-locating best-effort (BE) workloads with latency-critical (LC)
workloads. However, latency-critical workloads have strict quality-of-service (QoS) tar-
gets which must be met. When workloads are co-located, they share resources such as
cores and last-level cache (LLC). A cluster manager is responsible for dynamically man-
aging resources of the workloads in order to protect the performance of the LC workload
while improving machine utilisation.

This thesis aims to study an existing cluster manager called Intel PRM. Intel PRM uses
cycles per instruction (CPI) a throughput based metric, to make resource management
decisions when workloads are co-located. We aim to optimise the existing cluster man-
ager by modifying it to make decisions based on the application-level latency. This thesis
only deals with CPU resource management. We succeed in improving the throughput of
the best-effort workload from 4.6% to 54.0% while providing 100% QoS-guarantee.

i

Preface

I would like to thank my supervisors Rajiv Nishtala and Björn Gottschall for helping me
throughout the project by providing valuable insights, and for introducing me to the
world of resource efficient computing. I would also like to thank NTNU, Trondheim for
providing the resources needed to conduct this study.

iii

Assignment Text

QoS-aware cluster manager using machine learning.

A typical latency-critical service is based on client-server interaction, in which the client
will send a certain request and the server side application will have to respond within
a given time frame. This time frame is typically referred to as Quality of Service (QoS)
target. To cope with user demand, such services are scaled across numerous servers.
The question is how to maintain QoS, generally for any application that runs in a cluster
environment, while aiming to minimise energy consumption or maximse throughput
(by running batch jobs). For this, we need to do the following:

1. Run latency-critical services to multi-node scenario. Examples of latency-critical
services given by programs in benchmark suite such as TailBench.

2. Experiment with and understand the existing cluster manager (Uber’s Peleton).
3. Apply techniques using machine learning (such as Reinforcement learning) to op-

timise existing cluster scheduler (placement management strategies).

Research questions we would like to answer:

1. How workloads are currently scaled/distributed to multiple nodes to cope with
user demand? i.e., exploring containers, Apache Mesos, etc.,

2. How do cluster schedulers work, and hypothetically, what is required to build one?
(We will learn this from point (2)).

3. Optimise existing strategies with machine learning techniques .

v

Contents

Abstract . i
Preface . iii
Assignment Text . v
Contents . vii
Figures . ix
Tables . xi
Code Listings . xiii
List of abbreviations . xv
1 Introduction . 1

1.1 Research Objectives . 2
1.2 Contributions . 2
1.3 Outline . 3

2 Background and Literature Review . 5
2.1 Background . 5

2.1.1 Workloads in data centres . 6
2.1.2 Tail latency . 6

2.2 Linux scheduler . 7
2.2.1 Scheduling policy of Linux . 7
2.2.2 CFS Scheduler . 8

2.3 Resource Manager . 8
2.3.1 Latency vs CPI . 9

2.4 Related work . 10
3 Resource Managers Design . 13

3.1 Intel PRM Design . 13
3.1.1 Core Isolation Mechanism . 14
3.1.2 Design approach . 15

3.2 Latency-aware PRM . 17
3.3 Hybrid PRM . 19

3.3.1 Tuning in Hybrid PRM . 20
4 Implementation . 21

4.1 Intel PRM Implementation . 21
4.1.1 Prerequisites . 21
4.1.2 Implementation of Step One . 21
4.1.3 Implementation of Step Two . 24

vii

viii Latency-aware Resource Management in Data centres

4.2 Latency-aware PRM Implementation . 25
4.3 Hybrid PRM Implementation . 26

5 Evaluation . 27
5.1 Experimentation Methodology . 27

5.1.1 Hardware . 27
5.1.2 Workloads . 27
5.1.3 Determining Maximum throughput of Memcached 28
5.1.4 Workload co-location . 29
5.1.5 Evaluation Metrics . 30

5.2 Results . 30
5.2.1 Intel PRM Results . 31
5.2.2 Latency-aware PRM Results . 31
5.2.3 Hybrid PRM Results . 34
5.2.4 Tuned Hybrid PRM Results . 34

5.3 Discussion . 35
6 Conclusion . 37
Bibliography . 39

Figures

2.1 Impact of interference of a BE workload on the 95-th percentile tail latency
of Memcached. 7

2.2 Example of red-black tree [12]. 9
2.3 Latency and CPI of a Memcached. 10

3.1 High-level overview of Intel PRM . 17
3.2 High-level overview of Hybrid PRM Implementation 20

5.1 Variation in 95-th percentile tail latency of Memcached with varying load. 29
5.2 Variation in 95-th percentile tail latency of Memcached with varying load-2. 30
5.3 Variation in 95-th percentile tail latency of Memcached when CPU re-

sources are controlled by Intel PRM . 31
5.5 Variation in 95-th percentile tail latency of Memcached when CPU re-

sources are controlled by Latency-aware PRM - 2 32
5.4 Variation in 95-th percentile tail latency of Memcached when CPU re-

sources are controlled by Latency-aware PRM 33
5.6 Variatation in 95-th percentile tail latency of Memcached when CPU re-

sources are controlled by Hybrid PRM . 34
5.7 Varitation in tail latency of Memcached when resources are controlled by

Hybrid PRM tuned . 35

ix

Tables

5.1 Summary of QoS-guarantee of Memcached and Throughput of Stress-ng
when scheduled by different PRM variants 30

xi

Code Listings

3.1 Pesudo code for Heracles Top-level Controller 20
4.1 A sample workload configuration file . 22
4.2 Python code to convert cpu usage of a container into a percentage value . 23
4.3 Algorithm for detecting if the BE workload is overutilising the cpu resources 25

xiii

List of abbreviations

TCO: Total Cost of Ownership
SLO: Service Level Objectives
LC: latency-critical
BE: best-effort
QoS: quality-of-service
RPS: Requests Per Second
PRM: Platform Resource Manager
IPC: Instructions Per Cycle
DVFS: Dynamic Voltage and Frequency Scaling

xv

Chapter 1

Introduction

Data centres are places that provide software and hardware infrastructure that allow
us to host large number of web applications [1]. In data centres, energy management
is a key issue [2]. Barroso et al., suggest that servers in data centres are never idle nor
are they utilised to the maximum extent. In most data centres, the server utilisation is
between 10% and 50% of their maximum capacity. Servers consume about half of their
full power even when the server utilisation is low. Low utilisation increases operational
costs.
Many important web applications such as Web-search are latency-critical. They operate
with strict quality-of-service (QoS) targets to improve the user experience. The load on
these services is not always constant and sometimes it varies greatly. For example, in
a 24 hour period, Google servers experience an average idleness of 30% [3]. During
the times of low load, servers can be exploited by co-locating other non latency sensit-
ive workloads or best-effort (BE) workloads to improve energy efficiency by increasing
machine utilisation. However, workload management is a challenging task because of
QoS policies of latency-critical (LC) workloads. Latency-critical workloads are expec-
ted to respond within a very short time frame, often within a fraction of second [1]. For
latency-critical workloads, it is crucial that they meet the QoS tail latency [4]. Tail latency
is the latency of slowest requests in the latency distribution. When other workloads are
co-located with latency-critical workloads, there might be cases where the workloads
may undergo a resource conflict. Resource interference negatively affects tail latency of
latency-critical workload. Hence, co-location is a challenging task because while trying
to improve machine utilisation, we must also consider QoS targets of latency-critical
workloads. Workloads running on the same server share resources such as cores, last-
level cache (LLC) etc. Cluster managers predict when a latency-critical workload is suf-
fering from resource interference and suspend the co-located workloads to protect the
LC workload performance. However, terminating the workloads completely for the sake
of protecting LC workloads reduces the opportunity for improving machine utilisation.

1

2 Latency-aware Resource Management in Data centres

1.1 Research Objectives

The research objectives are presented as a high-level goals and sub-goals are defined to
present work to be done to achieve the objective.

1. Examine the behaviour of latency-critical workloads when co-located with batch
workloads.

2. How do cluster schedulers work, and hypothetically, what is required to build one?

• Experiment with existing cluster manager.
• Explore the strategies used by the cluster manager to manage shared re-

sources when workloads are co-located.

3. Optimise existing strategies of the cluster manager to improve machine utilisation.

1.2 Contributions

During this study, we explored two existing cluster managers: Uber Peloton and Intel
PRM. Peloton was developed by Uber to manage diverse workloads in their organisation
[5]. Initially, Peloton was chosen to conduct this research. During the exploration phase,
it was found that Peloton is tightly coupled with many open-source projects such as
Mesos, Zookeeper, Cassandra etc. Considering the time constraints of the Thesis, the
idea to work with Peloton was dropped because it requires understanding of the tools
that are coupled with it. Intel PRM is another Resource Manager that co-locates best-
effort (BE) workloads with latency-critical workloads in an attempt to improve machine
utilisation [6].1 To the best of our knowledge, there is no academic publication that
conducted a study on Intel PRM and this is the first known study that is conducted to
optimise strategies of Intel PRM. Experiments are conducted by running a latency-critical
workload and a best-effort workload on the same server. During the study, we found
that Intel PRM uses cycles per instruction (CPI), a throughput based metric to manage
workloads on the server. Even though it helps in co-locating best-effort workloads, we
found that by making it latency-aware we can improve the machine utilisation greatly.
This study deals with CPU resource management only. The major contributions of this
work are:

1. Exploring Intel PRM to understand the strategies used by it to manage CPU re-
sources when workloads are co-located.

2. We present Latency-aware PRM which uses strategies from Intel PRM but makes
resource management decisions based on application-level latency of the latency-
critical application. We show that it improves the throughput of the co-located
workload from 4.6% to 56.2%. However, in some cases, QoS tail latency is not
met.

3. We present Hybrid PRM, which uses strategies from Intel PRM and Heracles, a
resource manager used to improve machine utilisation.

1cluster manager and resource manager are used interchangeably. They are used to manage resources
in clusters.

Chapter 1: Introduction 3

4. Furthermore, we tune parameters of Hybrid PRM in order to improve machine util-
isation. We show that, this method improves the throughput of co-located work-
load to 54% while providing 100% QoS-guarantee.

1.3 Outline

Chapter 2: The chapter discusses the background of the problem, types of workloads in
the data centres, tail latency and presents other works that deal with resource manage-
ment in data centres.
Chapter 3: The chapter presents the design of Intel PRM. It also discusses the design
of the variants of the Intel PRM developed during the study in an attempt to improve
machine utilisation.
Chapter 4: The chapter presents implementation details of the variants of Intel PRM
that could not be covered in Chapter 3.
Chapter 5: The chapter discusses the evaluation methodology and presents results ob-
tained when resources are controlled with different variants of the resource manager.
Chapter 6: The chapter concludes the research.

Chapter 2

Background and Literature Review

This chapter discusses the motivation behind the study and the related background . We
briefly discuss the problem, complications in the problem and provide a high level over-
view of the solution. Later, we present the related work conducted by other researchers
and organisations to address the problem.

2.1 Background

Data centres are places which host several servers that serve clients of applications [1,
p. 2]. Data centres provide hardware and software infrastructure which allows busi-
nesses and organisations to deploy a large number of web applications. when it comes
to operating and maintaining data centres, the total cost of ownership (TCO) includes
infrastructure costs, electricity bill and other energy-dependent factors such as cost of
energy which is required to cool hardware infrastructure. Barroso et al., [2] suggest
that computer-energy consumption is a growing concern and shows that current trends
indicate energy as a crucial factor in the total cost of ownership.
A system is said to be energy proportional if its energy consumption is directly pro-
portional to the resource utilisation [7]. An ideal energy proportional system does not
consume power at the idle stage and consumes power linearly with respect to utilisation
of the system. For example, an ideal energy proportional system consumes 20 % of its
maximum power when it is 20% utilised. Servers in the data centres are not energy pro-
portional and they tend to consume excessive energy even when the utilisation is low.
One way to improve return on investment is to maximise server utilisation. However,
load on web applications running in data centres is not always constant. The load on
most web applications differ greatly based on the number of end-users using it. A study
conducted by Bilgir et al., suggests that in a 24 hour time period, load on Facebook data
centres vary greatly and can go below 40% and above 90% of its maximum allowed capa-
city [8]. The average utilisation in most data centres is low, even at low utilisation servers
still consume about 60% of their maximum energy [2, 8]. One straight-forward way to
improve energy proportionality in data centres is to co-locate multiple workloads on
servers and saturate resources [9]. However, co-locating workloads on the same server
without taking proper measures has negative implications because of the nature of the

5

6 Latency-aware Resource Management in Data centres

workloads.

2.1.1 Workloads in data centres

On a high level, there are two broad classes of workloads in data centres: online services
and batch workloads [1, p. 24]. Online services such as web-search, social networking
are latency-critical. These services are required to have low user-perceived latency to im-
prove end-user experience. Along with user-facing services, back end services used by
user-facing services such as Memcached is expected to operate with low latency. High
throughput is also another key performance metric because popular internet services like
these must serve thousands of requests per second [1, p. 25]. An example of a latency-
critical service is Google search. Google search system performs the search and shows
the results within a few milliseconds. It also interactively predicts and updates query
results as user types in the search box [4]. As the size and complexity of the service
and system that hosts the service increases, it becomes challenging to keep worst-case
latency of the service short because worst-case latency gets amplified as system scales
[4]. The worst-case latency can be referred to as Tail latency. Tail latency is the latency of
the slowest requests in the tail of the latency distribution [1, p. 30]. On the other hand,
batch workloads or best-effort (BE) workloads are non-interactive and non-latency sens-
itive workloads. Some examples are the workloads that perform data analytics, model
training, backing up data and other maintenance tasks. Batch workloads have loose
completion deadlines and are immune to variations in their completion time.

2.1.2 Tail latency

Generally, the communication between the machines in data centres takes place within
a few milliseconds. In some cases, the latency values go beyond the average and lead
to slower responses to requests. A 95th percentile tail latency of 10 ms means that 5
requests in every 100 requests are experiencing a delay of 10 ms. Popular web services
handle hundreds of thousand requests a day and a delay in 5 % requests could create a
bad experience for many end-users. This is a case when requests are served by a single
server. In distributed systems, 1 client request may have to collect responses from tens to
hundreds of servers. The severity of tail latency increases with scaling. Workloads that
are latency-critical are commonly referred to as LC workloads. LC workloads have strict
service level objectives (SLO) on tail latency. Various workloads in the data centres have
different quality-of-service (QoS) demands. QoS of an LC workload can be understood
as a relevant performance metric described in its service level requirements [10]. For
instance, the QoS of Google’s web search is measured using query latency and RPS
(queries-per-second). Another example is Memcached which has QoS target that 95-th
percentile tail latency must be below 10 ms. When running latency-critical workloads
in data centres measures are taken to meet the QoS demands of the workload.
Conventional knowledge says that when LC workloads are co-located with other work-
loads they do not perform well. This is because co-located workloads can interfere with
shared resources such as cores, last-level cache (LLC) that can lead to performance de-
gradation of LC workloads which in turn leads to high variability in tail latency. To

Chapter 2: Background and Literature Review 7

avoid this, latency-critical workloads are run alone. This results in low machine utilisa-
tion when load is low and high energy consumption even at low machine utilisation.
The variability in 95-th percentile tail latency of Memcached, when co-located with a
batch workload is demonstrated using Figure 2.1. The figure demonstrates the effect
of co-location on the LC workload when the workload is scheduled by Completely Fair
Scheduler (CFS) of the Linux Operating System. More about conventional scheduling in
Linux is discussed in section 2.2.

100k 200k 300k 400k

0

2

4

6

8

10

12

Memcached alone Memcached co­located with a BE workload

Requests per second

95
­t
h 
pe
rc
en
ti
le
 t
ai
l l
at
en
cy
 (
m
s)

Figure 2.1: Impact of interference of a BE workload on the 95-th percentile tail latency
of Memcached.

2.2 Linux scheduler

This section discusses the conventional scheduling policy of Linux Operating System to
dynamically manage CPU resources allocated to the workloads running on the machine.

2.2.1 Scheduling policy of Linux

In a machine with a single core, Linux executes multiple processes by switching control
of execution from one process to another process. An instance of a program executing
on a machine is called a Process. Control switching happens within a very short time
frame. The method that deals with when to switch control and which process to select
to execute is called Scheduling. Usually, all the available resources of the machine are
shared by the processes running on the machine. The sharing of resources to processes

8 Latency-aware Resource Management in Data centres

is handled by Scheduler. Process starvation is a scenario where a process is in need of
resources but is not given any resources because of resources being used by other pro-
cesses. This arises because of resource conflicts amongst process. A scheduling algorithm
is responsible for avoiding resource conflicts and process starvation. A Scheduling Policy
is that which consists of rules that are used to determine which process to execute and
when to switch control to another process [11]. In Linux, CPU time is divided into time
slices. Each process is given one time slice worth of CPU time and when the time slice
of that process expires, control switches to another process. At the time of conducting
this study, Completely Fair Scheduler (CFS) is the process scheduler used by Linux.

2.2.2 CFS Scheduler

CFS is the process scheduler in Linux systems starting from version 2.6.23. CFS tries
to maintain fairness when providing CPU time to processes running on the system. The
amount of CPU time provided to a given process is called as virtual runtime [12]. CFS is
responsible for keeping track of virtual time given to processes and any process which
has been given an unfair amount of CPU time must be compensated by providing it the
CPU time it needs. In other words, the smaller the virtual time of a process, the greater
is its need of CPU time and vice versa. CFS achieves fairness by using a red-black tree.
All the processes which need to be scheduled are stored in a red-black tree. Processes
with low virtual time are stored on the left side of the tree and the process with higher
virtual time are stored on the right side of the tree. CFS picks the processes from the
left side, executes them for a certain period and adds the time it allocated to the process
to the virtual time. If the execution of the process is complete, it removes the process
from the tree or else the process is moved to the right side of the tree. By following this
process, process with the need for the processor are given CPU time and are moved to
the right side. Of the available process, the processes on the right with low virtual time
are moved to the left to maintain fairness. An example of a red-black tree is represented
in Figure 2.2. The idea of fairness does not work well in data centres as LC workloads
have to be given higher priority over other workloads and at the same time machine
utilisation must be improved. To address this researches are coming up with different
techniques that can be used to develop resource managers that can help address the
problem at hand.

2.3 Resource Manager

The problem we are trying to address can be formulated as improving machine utilisa-
tion in data centres by co-locating a BE workload with the LC workload while trying
to meet QoS demands of the LC workloads. In this context, a resource manager is that
which attempts to address the problem by allowing co-location of BE workload along
with the host application (LC workload) in order to improve machine utilisation by
saturating resources without compromising performance of the LC workload. Resource
Managers dynamically allocate shared resources to workloads running on the machine
and manage them in a way as to avoid performance degradation of the LC workload

Chapter 2: Background and Literature Review 9

Figure 2.2: Example of red-black tree [12].

while attempting to improve energy proportionality. Researchers have suggested vari-
ous techniques to build resource managers which are discussed in section 2.4. Resource
managers like Intel PRM uses cycles per instruction (CPI) as the primary metric to make
scheduling decisions when workloads are co-located on the server and some other like
Heracles [3] use application-level latency as a guiding metric to make scheduling de-
cisions.

2.3.1 Latency vs CPI

Some resource managers use throughput based metrics such as cycles per instruction
(CPI) as a guiding metric to make scheduling decisions. CPI gives measurement of
throughput and serves well when dealing with only batch workloads. However, when
dealing with latency-critical workloads, CPI fails to capture how well the workload is
running and how well it is meeting its QoS target. To demonstrate this, we conducted a
simple experiment. We measured 95-th percentile latency and CPI of Memcached work-
load. While executing it, we simulated shared resource interference by applying pressure
using a best-effort workload. The pressure on shared resources made the latency vary
from the latency when the workload was running alone without any pressure on shared
resources. We collected latency and CPI at various times and plotted the subplots to
demonstrate how the metrics changed from one point to another. We observed that,
given the CPI value it is difficult to determine how well a LC workload is meeting its
QoS target. The QoS target of Memcached is 10 ms. In Figure 2.3, even with almost
same CPI, 95-th percentile tail latency is below and above the QoS target which leads
to ambiguity in determining the performance of the LC workload. We conclude that us-
ing CPI as a primary metric, it is not possible to determine the latency behaviour of the
workload.

10 Latency-aware Resource Management in Data centres

0
2
4
6
8
10
12
14
16

0 20 40 60 80 100 120
1.2

1.4

1.6

1.8

2

Time(s)

95
­t
h 
pe
rc
en
ti
le
 t
ai
l l
at
en
cy
 (
m
s)

C
PI

Figure 2.3: Latency and CPI of a Memcached.

2.4 Related work

Uber Peloton is a resource scheduler for managing workloads in a cluster environment
[5]. It is built to improve machine utilisation in clusters when there are vast fluctuations
in the load. It can manage resources of various kinds of workloads such as stateless,
stateful and batch workloads. It co-locates workloads in a cluster and dynamically man-
ages resources allocated to the workloads based on the requirements of the workload.
Peloton organises workloads into different groups and allocates fixed resources to them.
When the load on a specific group is low, resources of that group are lent to another
group of workloads. Resources are returned back to the original group of workloads if
there is an increase in load on the workloads of that group.
Bubble-Up [10] is a characterisation methodology that attempts to predict the perform-
ance degradation of workloads because of shared resource contention by co-located
workloads. Prediction is carried out as a two step process. In Step 1, it measures to what
degree the workload suffers when exposed to different levels of pressure on shared re-
sources. This step tests how much pressure the LC workload can handle before violating
QoS demands. In step 2, it measures the amount of pressure a BE workload puts on the
shared resources. Using this measurements, Bubble-Up co-locates a best-effort work-
load with the latency-critical workload while respecting QoS policy of the LC workload.

Chapter 2: Background and Literature Review 11

Since it is already aware of the pressure the LC workload can take and pressure the BE
workload generates, it handles resources in a way that pressure on the LC workload
does not affect its QoS target. Bubble-Up method tries to improve machine utilisation
while enforcing QoS policies by allowing co-location of workload with the LC workloads
only when the predicted performance degradation of the LC workload is within specified
thresholds. It is based on static profiling which means it requires prior knowledge of the
workloads and data processing is conducted offline.
Bubble-flux [13] is based on run time approach and is a dynamic resource interference
measurement methodology to maximise server utilisation. Bubble-flux probes server in
real-time to measure any resource interference on the LC workloads and frequently pre-
dicts QoS of the LC workloads. The resource interference is measured by monitoring last-
level cache occupancy and memory bandwidth. When it comes to controlling resources,
another component frequently monitors the predicted QoS and adjusts resources alloc-
ated to BE workloads based on the condition whether the LC workload is meeting its
QoS target or not. Bubble-flux does not require prior knowledge of the workloads that
will be co-located and can adapt to the dynamic behaviour of workloads. It can be used
to co-locate more than two workloads.
Leverich et al., [9] demonstrate how co-location can lead to QoS violations, using Mem-
cached as a LC workload. In the study, they show the reasons such as queuing delay, load
imbalances lead to QoS violations in Memcached when co-located with other workloads.
They propose techniques like adjusting cpu shares and enforcing cpu bandwidth limits
on co-located workloads as mitigation techniques to avoid QoS violation of an LC work-
loads. Setting cpu resource limits help to allocate fixed resources for the workloads. Ul-
timately, they demonstrate that it is possible to aggressively co-locate other workloads
with a low latency sensitive workload like Memcached by respecting QoS policies. They
use Memcached as a latency-critical workload and the throughput of SPEC CPU2006
benchmarks to determine effective machine utilisation when workloads are co-located.
Heracles [3] is a feedback-based controller that manages shared resources such as CPU,
last-level cache (LLC) when BE workloads are co-located with a LC workload. Heracles
controller frequently polls tail latency of the LC workload and calculates slack which
is the difference between latency target we want to achieve and current latency value.
Based on the slack value, Heracles allocates or takes away resources to and from the LC
workload and BE workloads. Heracles also has another safeguard to protect LC work-
loads from resource interference. When the load on LC workload is greater than 85%
of its maximum capacity, Heracles disables the execution of best-effort workload and
allocates all the resources to the latency-critical workload.
Pythia [14] is another co-location manager that makes scheduling decisions based on
instructions per cycle (IPC) metric. It considers IPC as a QoS metric of the latency-critical
workload. It calculates the contention score of the best-effort workloads which we want
to co-locate. Contention score of BE workload is associated with the LC workload and
it is different for different LC workloads because some workloads are more sensitive to
resource contentions while some are less sensitive. Initially, the contention score of each
best-effort workload is calculated when co-located with the LC workload. After that, BE
workloads whose contentiousness is detrimental to performance of the LC workload are

12 Latency-aware Resource Management in Data centres

identified. When co-locating workloads, it selects best-effort workloads that does not
negatively effect the latency-critical workload.
Hipster [7] is a solution that combines heuristic techniques and reinforcement learning
to map latency-critical workloads and best-effort workloads on heterogeneous cores.
It also attempts to select optimised Dynamic Voltage and Frequency Scaling (DVFS)
settings to improve energy efficiency.
Cui et al., [15] propose a framework to detect sources that result in tail latency in an
event-driven web services. They specifically conduct a study on asynchronous event-
driven execution using Node.js framework. Node.js a JavaScript-based framework to
develop event-driven web applications [16]. The authors suggest that, asynchronous
event-driven services put forward a unique challenge in identifying sources of tail latency
because of their event-driven nature. They identified that the major bottleneck of tail
latency in Node.js is CPU processing because of the involvement of event queue and
JavaScript garbage collector and propose a framework to reduce tail latency.
Paragon [17] is a QoS-aware scheduler that is also aware of interference on shared
resources from co-located workloads. Paragon can schedule workloads that are unknown
to it. When a new workload is introduced Paragon classifies the workload to the existing
group of workloads and determines the server configuration on which the workload can
perform better. While determining the server configuration, it also finds out the level of
interference the workload can cause on other co-located workloads and also the level
of interference it can tolerate. After scheduling, Paragon frequently monitors workload’s
performance metrics and alters scheduling decisions based on the workload behaviour.
Kubernetes [18] is an open-source container orchestration system which helps to de-
ploy, manage containerised workloads. A containerised workload is also referred to as
a container. A Linux container is that which consists of all the required dependencies
that are needed to run a workload. Kubernetes helps to manage a cluster of containers
and their hardware resources in order to maximise resource usage. It is mostly used in
production servers and contains many other business-related advantages.

Chapter 3

Resource Managers Design

This chapter discusses the design of the variants of resource managers that are developed
during the study. The variants are based on Intel Platform Resource Manager (PRM)
design. Taking Intel PRM as a base, new variants have been developed by incrementally
adding new methods in an attempt to maximise resource utilisation of data centres while
respecting QoS policies of LC workloads. Each section describes one variant.

3.1 Intel PRM Design

Intel Platform Resource Manager (PRM) helps to co-locate best-effort workloads with
latency-critical workloads in a cluster environment [6]. Intel PRM relies on Intel Re-
source Director Technology (Intel RDT) which has the capability to control shared re-
sources such as Last Level Cache (LLC) and Memory Bandwidth which are used by the
workloads. Intel RDT provides features for cache monitoring, cache allocation, memory
monitoring and memory allocation. To manage CPU resources, Intel PRM uses tuning
parameters provided by the Linux Kernel. This is discussed in detail in section Sec-
tion 3.1.1. Intel PRM can control different shared resources that are available in a cluster.
The focus of this study has been narrowed down to CPU resource management. The
design addresses a scenario where there are only two workloads on the server, that is
one latency-critical workload co-located with a best-effort workload. This is also referred
to as pairwise-co-location.
Xu et al., has classified the techniques to schedule workloads in data centres into two cat-
egories: static scheduling and dynamic scheduling [14]. In the static scheduling, models
which are used to make scheduling decisions are built offline and are used to predict the
performance of the co-located applications [10]. In this approach, the system is aware
of the workloads that are being co-located on the server. In the dynamic approach, per-
formance metrics of the workloads are profiled online. Unlike static approach, dynamic
approach is tolerant towards unforeseen situations such as situations where a new work-
load is deployed dynamically. Dynamic approach has capability to deal with unknown
incoming workloads and unknown application behaviour.
Intel PRM uses a combination of static and dynamic approaches. Initially, it monitors
and records the performance metrics of the latency-critical workload and a threshold

13

14 Latency-aware Resource Management in Data centres

model is generated using the collected data. The threshold model is then used to detect
any performance degradation caused on the LC workload by dynamically monitoring
the current performance metrics of the workload and comparing them against the best
case metrics that are determined when building the threshold model. This approach is
referred to as dynamic monitoring and control approach [14]. In dynamic monitoring
and control approach, when the system detects that the LC workload is affected by a
BE workload, it schedules out BE workload for a certain specified period. However, In-
tel PRM has a different method to tackle such situations. Instead of scheduling out BE
workloads, it sets the shared resources allocated to BE workloads to a bare minimum.
Intel PRM handles resource allocation dynamically. It uses different isolation techniques
to isolate and handle different shared resources separately. The primary shared resource
in the server are the cores. Section 3.1.1 discusses the techniques used by Intel PRM to
manage cores when workloads are co-located. Furthermore, section 3.1.2 discuss the
design of Intel PRM by categorising it into two steps.

3.1.1 Core Isolation Mechanism

Control groups

Control groups, also shortly referred as ’cgroups’ allow us to group processes or tasks
running in a system and allocate resources such as CPU time to that group of processes.
Cgroups provide methods to group a set of tasks including their children processes into
hierarchical groups. Using cgroups, the grouped processes can be associated to a set of
parameters for subsystems [19]. A subsystem is a module and can be considered as a
resource controller that can set resource restrictions on a set of processes. There are
multiple subsystems and each subsystem represents a single resource such as CPU time
or memory [20]. The subsystems relevant for this study are given below:

• cpu: This system uses scheduler to allocate CPU to cgroup processes.
• cpuacct: cpuacct generates reports for CPU resource usage by cgroup processes.

Intel PRM makes use of the concept of cgroups to categorise processes of a workload.
It collects metrics related to cpu utilisation of the workload by reading metrics from
cpuacct subsystem. It alters CPU resource allocated to the workload by tuning the para-
meters present in cpu subsystem. These are called tunable parameters.

CFS tunable parameters

In CFS, there are two ways using which CPU resources can be allocated to cgroups. One
is relative tuning and the other is ceiling enforcement tuning [21]. In relative tuning,
CPU resources allocated to cgroups is based on relative shares and in ceiling enforce-
ment tuning, CPU resources are allocated by setting a hard limit which tells scheduler
about how much resources a cgroup is allowed to use. This is briefly discussed in the
subsections below:
Relative tuning: cpu share is a relative tunable parameter in CFS and it contains an
integer value that describes the relative amount of CPU time given to the processes of

Chapter 3: Resource Managers Design 15

a cgroup. Each cgroup has its own cpu share parameter. For example, if cpu share of
two cgroups is set to same value then it implies that processes of those two cgroups will
receive equal amount of CPU time. Continuing the same example, if the cpu share of
third cgroup is set to twice the value then it implies that the third cgroup will receive
twice the CPU time than the first two cgroups. The minimum value that can be specified
in cpu share is 2. Using relative tuning for resource management has implications. Rel-
ative tuning makes it hard to determine how much CPU time a cgroup is assigned. Since
it is relative, the amount of CPU time assigned to a cgroup depends on the number of
cgroups created in the system. For example, two cgroups with relative share of 1000
receive 50% of CPU time each. If the share of third cgroup is set as 1000 then the CPU
time received by all the three cgroups is equal to 1/3 of total available CPU time. If we
add another cgroup and set a relative share of 1000 then CPU time received by four
cgroups becomes 25%.
Ceiling Enforcement tuning: Unlike relative tuning, this type of tuning helps in setting
hard limits on the amount of CPU that a cgroup can use. To implement this type of tun-
ing cfs period and cfs quota parameters are used. The quota that can be set to a cgroup
depends on the integer value set to cfs period. The default value of cfs period in the ma-
chine that is used for this study is 100000 microseconds. By setting integer value x to cfs
quota of a cgroup allows all the processes of that cgroup to run for x micro seconds dur-
ing one period, which is 100000 microseconds. After processes run for the specified time,
they are throttled and are only allowed to run during the next time period. Alternatively
ceiling enforcement tuning can be understood intuitively using the following example:
To make a cgroup use 100% of a single core set cfs quota value of a cgroup to 100000.
In a multi-core machine setting the quota value to 200000 makes a cgroup use 2 cores.
This behaviour has been observed during the study by running a workload, setting the
parameters and by monitoring its CPU utilisation. The default value of cfs quota is -1
and it indicates that the cgroup is not under any CPU time restrictions. The lower limit
of the cfs quota is 1000 microseconds [21].
Intel PRM uses both relative tuning and ceiling enforcement tuning to manage CPU
resources allocated to BE workloads. This is discussed in the section 3.1.2.

3.1.2 Design approach

Intel Platform Resource Manager’s design can be explained by classifying the methodo-
logy of it into two steps:

1. In Step 1, the best case performance metrics of the latency-critical workload is
determined. This is done by collecting performance metrics of the latency-critical
workload and by statistically analysing the collected metrics to build a best case
threshold model.

2. In Step 2, the threshold model is used to detect resource contention by predict-
ing the resource interference caused by best-effort workload. Then scheduling de-
cisions are made in a way that the performance of the latency-critical workload is
not affected by resource interference caused by best-effort workload.

16 Latency-aware Resource Management in Data centres

Step One: Building threshold model

In Step one, Intel PRM determines the best case performance metrics of the latency-
critical workload. It has two monitors that run with different time periods. For discussion
purposes the monitors are hereby referred to as main-monitor and sub-monitor. When
a latency-critical workload is running on the server, main-monitor polls for platform
metrics such as cycles (C), instructions (I), cpu utilisation and other performance related
metrics of the workload. Main-monitor collects metrics for every 18.5 seconds 1. Along
with main-monitor, sub-monitor polls for cpu utilisation of the workload for every 2
seconds. The usefulness of the sub-monitor is discussed in Step two.
Main-monitor uses Intel RDT to collect metrics. The primary metric of interest here is
cycles per instruction (CPI) which is calculated for every 18.5 seconds. It denotes the
number of cycles needed to execute an instruction of the latency-critical workload. Sub-
monitor reads cpuacct subsystem to collect cpu utilisation of the latency-critical workload
for every 2 seconds. cpuacct reports total CPU time consumed by the cgroup in nano-
seconds. Intel PRM converts the CPU usage of the workload into a percentage value. For
example, a cpu utilisation of 100% means that the workload is utilising one core to full
extent. More details about converting CPU time into cpu utilisation percentage value is
discussed in Chapter 4.
After collecting the performance and cpu usage metrics, a threshold model is built by
analysing the collected data. The analysis is done offline. Intel PRM, by default, uses
Gaussian Mixture Model to find the best case CPI. It considers maximum recorded cpu
utilisation of the latency-critical workload as the total available cpu utilisation of the
machine. Consider the following example: let us say a machine has 10 cores which
gives us the possibility to use 1000 % of CPU resources. Let us say that the maximum
recorded cpu utilisation of the LC workload is 800%. Even though LC workload uses
200% less cpu, Intel PRM considers the 800 % as the maximum available cpu resource
on the machine and ignores the remaining resources.

Step Two: Contention detection and resource controlling

The second step includes detecting shared resource contention and controlling the shared
resources of the best-effort workload when it is co-located with the latency-critical work-
load. Initially, when a LC workload is co-located with a BE workload, Intel PRM sets
shared resources allocated to the BE workload to minimum value possible. In case of
CPU resources, it sets cpu shares and cpu quota of the BE workload to minimum integer
values. Main-monitor polls for cycles, instructions of the latency-critical workload and
calculates CPI periodically. CPI is lesser the better metric. If the current CPI of the LC
workload is lower than CPI value in threshold model then it means that the LC workload
is getting the required CPU resources and there is no interference on shared resource
that leads to performance degradation of the LC workload. The comparison is done by a
contention detector. Along with the main-monitor, sub-monitor runs for every 2 seconds
to check if best-effort effort workload is consuming more cpu resources that may negat-

1From the code, we observed that by default main-monitor polls for every 20 * 1000 - 1500 milliseconds

Chapter 3: Resource Managers Design 17

ively impact the latency-critical workload. The idea is that the sum of the cpu utilisation
of the LC and the BE workload must not be greater than maximum recorded cpu util-
isation determined in Step One. When these safeguards are not active, Intel PRM uses
the opportunity to increase CPU resources of the BE workload by a constant step. When
two monitors find that there is no interference from the best-effort workload, then the
resources allocated to the BE workload are increased incrementally. The CPU time avail-
able on the machine is divided into 20 levels and one level is increased whenever corres-
ponding condition is met. Increasing of resources to the best-effort workload happens
periodically until one of the monitor finds that the current configuration is detrimental
to the performance of the latency-critical workload. When the resource level of the BE
workload reaches level 20, Intel PRM handles control over to the CFS scheduler.
If the current CPI is higher than that of CPI determined during the threshold model gen-
eration, then it means that the best-effort workload is consuming more shared resources
that can lead to performance degradation of the latency-critical workload. If there is
contention, it signals a resource controller that a contention has been detected and re-
source allocation to the best-effort workload must be altered to keep the performance of
the latency-critical workload healthy. Resource controller controls the corresponding re-
source 2. A corresponding resource, in this case is cpu quota of best-effort workload. Intel
PRM mitigates contention by setting the CPU resources allocated to best-effort workload
to minimum value by tuning relative and ceiling enforcement parameters as discussed in
3.1.1. Along with the main-monitor, the sub-monitor runs for every 2 seconds to check if
BE workload cpu consumption is affecting the LC workload utilisation. If a violation of
this rule is detected, then contention detector sends a signal to the resource controller
that resources of best-effort workload must be set to minimum.

Workloads
Main-monitor

Sub-monitor

Contention
detector

Threshold model

Resource
controllersignals Resource (CPU

quota)

Figure 3.1: High-level overview of Intel PRM

3.2 Latency-aware PRM

As discussed in the Chapter 2, CPI is not a reliable metric when co-locating work-
loads with a latency-critical workload. To overcome this limitation, we attempt to make

2In general, resource can be cpu quota, LLC.

18 Latency-aware Resource Management in Data centres

scheduling decisions based on the application-level latency of the LC workload. LC work-
loads have QoS targets. For example, a latency-critical workload has QoS target that the
95-th percentile latency of the workload cannot be more than 10 ms. Latency-aware
PRM is a variant of the Intel PRM which makes scheduling decisions based on QoS tar-
get of the LC workload rather than depending on CPI as originally done by Intel PRM.
This variant implements an iso-latency method, which means that it can improve ma-
chine utilisation as long as latency-critical workload is meeting its QoS target. Iso-latency
management means adjusting resources in a way such that the latency-critical workload
barely meets its QoS target [22].
This variant consists of only one monitor called as QoS-monitor which periodically polls
for tail latency of the LC workload. The period with which it polls for tail latency is
equal to the period of Main-monitor which is (20*1000 - 1500) ms. We consider that
there is a shared resource contention when latency of the LC workload is beyond the QoS
target. This variant adopts the idea of original Intel PRM where a contention is detected
only when current CPI is greater that determined threshold CPI. Similar to that idea,
the detector of this variant considers that there is an interference when the current tail
latency is greater than the QoS target of the LC workload.
The available CPU resources are divided into 50 levels. The number of levels has been
increased from 20 to 50 because some applications like Memcached are sensitive to
resource interference. A small resource interference on workloads like Memcached can
cause significant QoS violations. To avoid this and to carefully allocate resources to BE
workload the number of levels has been increased. By increasing levels, we are trying to
lessen the quantity of resource associated with each level. Intel PRM treats the maximum
recorded CPU utilisation value of LC workload as the total CPU resource value available
on the machine. This wastes the CPU resources which have not been used. This variant
uses all the available CPU resources on the machine. For example, in a machine with 20
cores, by increasing each level we increase CPU resources equal to (20/50) cores. A limit
is set on maximum number of levels that can be assigned to a BE workload. The limit is
48 and we determined it empirically while conducting experiments. The reason behind
setting the limit is because we observed that when resource level of the BE workload is
maximum, Intel PRM handles control over to CFS scheduler. To avoid this and to have
complete control over the way resources are allocated, we set a limit. By setting a hard
limit on the resource we also make sure that there is also some CPU resources left for
the latency-critical workload to use.
Latency-aware PRM contains a new component called Fetcher which collects tail latency
from the latency-critical workload. Fetcher also stores the most recent latency data. QoS-
monitor polls for tail latency periodically from Fetcher and the detector decides if the
the resources of the BE workload must be increased or decreased depending on the
current latency value and specified best case latency value. When detector detects that
the tail latency of the workload is below the threshold it signals resource controller to
increase the level of CPU resources allocated to BE workload by 1 and keeps repeating
this process. In case, if the tail latency is above or equal to threshold, detector signals
resource controller to set the CPU resources of best-effort workload to minimum. Similar
to Intel PRM, this variant uses CFS tunable parameters and sets cpu shares and cpu quota

Chapter 3: Resource Managers Design 19

to minimum.

3.3 Hybrid PRM

Hybrid PRM is another variant based on the previous variants. It adopts methods from
Intel PRM, it is latency-aware and also adopts methods from another resource man-
ager called Heracles. Heracles is dynamic resource manager which makes scheduling
decisions based on application-level latency. It manages shared resources such as cores,
last-level-cache, memory bandwidth etc when workloads are co-located with a latency-
critical workload. Hybrid PRM uses the core management algorithm from Heracles re-
source controller. Heracles manages resources of both LC and BE workloads. The current
variant extracts parts of Heracles which deal with BE resource management only and
leaves LC resource management to Completely Fair Scheduler scheduler.
The idea behind Hybrid PRM is that, resources must be saturated to improve the ma-
chine utilisation. The resources can be saturated as much as possible, by letting the
co-located BE workload use them, as long as performance of the LC workload is not
affected negatively. In this case, latency of the workload is used as a metric to determ-
ine performance. Hybrid PRM continuously monitors tail latency and latency slack to
make scheduling decisions. Latency Slack is the difference between the target latency
we want to achieve and current latency the workload is experiencing. It also considers
the load on the LC workload as input to decide if a workload must be co-located or not.
Because as discussed previously, load on many web applications varies greatly. Hybrid
PRM disables co location when load on the latency-critical workload is above certain
threshold. Unlike Intel PRM, this variant does not require any threshold model building
but it needs value of latency target we want to achieve.
This variant consists of two controllers: Top-level controller and Sub-controller. The
pseudo code for the Top-level controller is given in code listing 3.1. The high-level
overview of Hybrid PRM is presented using Figure 3.2. Similar to Latency-aware PRM,
Fetcher is responsible for collecting metrics. Here, it collects two metrics: latency value
and load. Top-level controller polls for tail latency and load of the LC workload from
Fetcher for every 15 seconds. If the load on the LC workload is higher than 85% of its
maximum capacity, Top-level controller suspends the execution of the BE workload. A
co-located best-effort workload is allowed to run only when the load on LC workload
is below 80% of its maximum capacity. This is done to guard the latency-critical work-
load from resource interference caused by BE workload and prevent the workload from
violating QoS policies because of pressure from the BE workload. When the slack value
is negative, Top-level controller suspends co-location by suspending the BE workload.
The slack value becomes negative when there is a spike in load on the workload. When
this happens, the BE workload is suspended for 5 minutes to let the LC workload use all
the resources to recover the latency to its normal state. When the previously mentioned
conditions are not active, then Hybrid PRM signs the sub-controller to increase CPU re-
source of BE workload. Sub-controller loop runs for every 2 seconds and increases one
core every time. If the previously mentioned conditions are active then sub-controller is
disabled and will not run until it receives a signal from Top-level controller.

20 Latency-aware Resource Management in Data centres

Code listing 3.1: Pesudo code for Heracles Top-level Controller

1 while True:
2 slack = (Qos_target - latency) / QoS_target
3 if slack < 0:
4 SuspendBE()
5 CoolDown()
6 elif load > 0.85:
7 SuspendBE()
8 elif slack < 0.80:
9 EnableBE()

10 elif slack < 0.10:
11 HoldBEResources()
12 elif slack > 0.10:
13 SignalSubController() -> IncreaseBECore()
14 sleep(15)

3.3.1 Tuning in Hybrid PRM

Three modifications has been made to Hybrid PRM to improve machine utilisation:

• Hybrid PRM increases resources equivalent to one core every time it detects an
opportunity. In this variant, the total available CPU resources have been divided
into 50 levels. This is similar to the method followed by Latency-aware PRM.
• When the load on the LC workload is above 95% of its maximum capacity, the BE

workload is suspended and when the load is below 90%, resource allocation to
the BE workload is started.
• When there is a latency spike, slack becomes negative. In such case, cool down

time has been changed to 3 minutes from 5 minutes.

LC workload
Config file

Manage
resources

Fetcher Top-controller

Sub-controller

Suspend
execution

Figure 3.2: High-level overview of Hybrid PRM Implementation

Chapter 4

Implementation

This chapter describes the implementation details of the variants of PRM discussed in
Chapter 3.

4.1 Intel PRM Implementation

Most of the Intel PRM is developed with Python programming language and some parts
of it use Go and C programming languages. Intel PRM uses popular python libraries such
as numpy [23], pandas [24], scipy [25] and scikit-learn [26] for data pre processing
and statistical analysis. Intel PRM uses the concept of docker containers to monitor and
control shared resources of workloads running in docker containers. In the docker en-
vironment, applications are packaged into a standard form along with all the required
dependencies. The packaged formed is called a container [27].

4.1.1 Prerequisites

As discussed previously, Intel PRM relies mainly on Intel RDT technology to collect plat-
form metrics. At the time of conducting this study, Linux is the only supported operating
system that can run Intel RDT software. To run Intel PRM, a copy of Intel RDT must be
installed on the machine. Intel PRM requires that copies of Python 3.6.x interpreter, a
Go language compiler and a GCC compiler be installed on the machine. We must also
install previously mentioned Python libraries and Docker on the machine in order to
make Intel PRM work.

4.1.2 Implementation of Step One

Initially, the latency-critical workload must be monitored and platform metrics of the
workload must be recorded in order to build a best case threshold model for the work-
load. Intel PRM uses a workload configuration file provided by the user to identify the
workloads. The configuration file is a Json file and it must include details such as name
of the workload, requested cpu count for the workload and the type of the workload

21

22 Latency-aware Resource Management in Data centres

which indicates if the workload is latency-critical or best-effort. The name of the work-
load must be the name of the docker container in which the workload is running. A
sample workload configuration file is given in Code listing 4.1.

Code listing 4.1: A sample workload configuration file

1 {
2 "workload1": {
3 "cpus":8,
4 "type": "latency_critical"
5 },
6 "workload2": {
7 "cpus":2,
8 "type":"best_efforts"
9 }

10 }

Intel PRM monitors and records the platform metrics of all the workloads given in the
workload configuration file. However, we observed that the threshold model is built
using the metrics of the latency-critical workload. To make Intel PRM monitor the work-
loads, workloads must be run as docker containers. For each workload, one docker con-
tainer is created and for the container, a cgroup is created which groups all processes,
including child processes of the workload. Intel PRM uses the created cgroup to track
the group of processes that spawned from the workloads and collects platform metrics
for every 18.5 seconds using the main-monitor. Sub-monitor reads cpu utilisation of the
workloads from cpuacct subsystem. cpu utilisation metric exposed by cpuacct subsystem
is in nanoseconds.
Intel PRM converts the cpu utilisation of the workloads into a percentage value using
Code listing 4.2. It reads the total cpu usage of the system using /proc/stat file system. It
reads the cpu utilisation of cgroup using cpuacct.usage file. It calculates the usage every
2 seconds by taking a difference of two consecutive readings. Difference is calculated for
total usage of the system and usage of the cgroup. Conversion of time metric into a per-
centage value is given in line 24 of 4.2. This process is carried out for each workload and
corresponding cpu utilisation is recorded as a percentage value. Main-monitor collects
performance metrics such as cycles, instructions using a utility called ’pgos’. The utility
gives command line access to Intel RDT. Using the utility as an intermediary, Intel PRM
collects metrics using Intel RDT. Pgos collects metrics for each cgroup which contains all
the processes belonging to the workload that we want to monitor. The recordings from
monitors are stored independently in two csv files. The variables of Code listing 4.2 is
given below:

Chapter 4: Implementation 23

Code listing 4.2: Python code to convert cpu usage of a container into a percentage
value

1 def update_cpu_usage(self):
2 """ calculate cpu usage of container """
3 try:
4 total_usage = 0
5 system_usage = 0
6 cpu_util = 0.0
7 cur = time.time() * 1e9
8
9 with open("/proc/stat") as f:

10 stats = [int(e) for e in f.readline().split()[1:]]
11 system_usage = sum(stats) * 1e9 / 100
12
13 cgroup_stat = path_join(’/sys/fs/cgroup/cpu’, self.parent_path,
14 self.con_path, ’cpuacct.usage’)
15
16 with open(cgroup_stat, ’r’) as fi:
17 total_usage = int(fi.read().strip())
18
19 cpu_delta = total_usage - self.cpu_usage
20 system_delta = system_usage - self.system_usage
21 cpu_no = multiprocessing.cpu_count()
22
23 if cpu_delta > 0 and system_delta > 0:
24 cpu_util = (float(cpu_delta) / system_delta) * cpu_no * 100
25
26 self.timestamp = cur
27 self.utils = cpu_util
28 self.cpu_usage = total_usage
29 self.system_usage = system_usage
30 except (ValueError, IOError):
31 pass

• system_usage: system_usage is the CPU time spent on performing different kinds
of work in the system.
• self.parent_path: For each cgroup one docker container is created and /sys/fs/c-

group/cpu/docker contains list of all the containers running in the system.
• self.con_path: Indicates docker container name for which we want to monitor CPU

usage
• cgroup_stat: reads CPU time used by the workload since it started.
• cpu_no: Indicates total availble cores on the machine.
• cpu_util: Indicates the cpu utilisation of the workload as a percentage value.

After gathering the required data, data must be analysed offline to build a best case
threshold model that can help us detect contention on shared resources. scikit-learn is a
machine learning library which consists of tools required for performing statistical ana-
lysis. Intel PRM uses Gaussian Mixture model provided by scikit-learn to analyse the
collected data. It initially pre-processes collected data using pandas and numpy, which
are data processing libraries, and then uses the processed data to build a Gaussian Mix-
ture Model. The outcome of the analysis is a Json file which contains best case perform-
ance metrics of the LC workload. The two metrics that are relevant for the study are:
a CPI threshold of LC workload and maximum cpu utilisation of LC workload. Using

24 Latency-aware Resource Management in Data centres

these metrics, Intel PRM decides how to orchestrate CPU resources when workloads are
co-located.

4.1.3 Implementation of Step Two

This section discusses the implementation details of contention detection and resource
controlling. After the threshold model is generated, the model serves as a basis for con-
tention detector to detect resource contention from the BE workload. When the LC
workload and the BE workload are running together in a server, Intel PRM monitors
the performance metrics and cpu utilisation of the workloads. If current CPI of the LC
workload is greater that the best case CPI, it implies that the LC workload is being af-
fected because of some resource interference from the BE workload. This is also referred
as a resource contention. Another step taken by Intel PRM to avoid performance degrad-
ation of LC workload is by checking its cpu utilisation using the sub-monitor. The sum
of cpu utilisation of LC workload and BE workload must not be greater than cpu util-
isation threshold determined during threshold model building. If the aforementioned
condition is violated, Intel PRM considers that there is a resource interference from the
BE workload.
Intel PRM initially sets cpu shares of the LC workload to 200000 and of the BE workload
to 2 using relative tuning. By setting such values, it is restricting the relative share of the
BE workload to the lowest value and thus giving high share of CPU time to processes of
the LC workload. Along with relative tuning, Eris also uses ceiling enforcement tuning
by setting cpu quota of the BE workload to integer value of 1000 micro seconds using
cpu.csf_quota_us parameter. This is the lowest limit of ceiling enforcement parameter. By
default, Intel PRM divides the CPU resources into 20 levels and increases CPU resource
of the BE workload by 1 level when corresponding condition is met. Increasing each level
increases cpu quota of BE workload by a constant step which is determined by dividing
maximum cpu utilisation of LC workloads by total number of levels which is 20. If there
is a resource contention, then the CPU time of the BE workload is set to minimum again
by setting ceiling enforcement parameter to 1000. In case where resource level of BE
workload reaches 20, then Intel PRM sets the ceiling parameter of BE workload to -1,
which is the default value. It implies that Intel PRM has handed resource allocation of
the BE workload to CFS scheduler and CFS tries to maintain fairness in allocating CPU
resources to both the workloads, that is LC and BE workload.
To increase resources Intel PRM uses another safeguard. When contention detector does
not detect any contention from sub-monitor, it increments a cycle count value by 1 which
is just a variable. From the source code, we identified that cycle threshold is hard-coded
as 7. One resource level is increased whenever cycle count is equal to cycle threshold.
Cycle count is reset to zero when contention detector detects contention. It implies that,
one resource level is increased for every 14 seconds if Intel PRM detects no contention
1. Algorithm for detecting if the BE workload is over utilising the cpu resources is given
in Code listing 4.3. The algorithm also contains condition for increases CPU resource of

1It is to be noted that Intel PRM has mechanisms similar to this to increment other resource levels such
as LLC. It contains LLC count and different LLC threshold values

Chapter 4: Implementation 25

the BE workload.

Code listing 4.3: Algorithm for detecting if the BE workload is overutilising the cpu
resources

1 while True:
2 margin = 100000 * 0.5
3 cyc_count = 0
4 cyc_threshold = 7
5 exceed = (LC_utilisation + BE_utilisation) * 1000 + margin > LC_max_utilisation
6 if exceed:
7 BE_cpu_quota = cpu_quota_min
8 else:
9 cyc_count = cyc_count + 1

10 if cyc_count >= cyc_threshold:
11 cyc_count = 0
12 BE.increase_resource_level()

• margin: margin is the value equal to the cpu quota of half a logical processor
• cyc_count: cycle count used to check if a resource level must be increased or not.
• cyc_threshold: cycle threshold.
• LC_utilisation: CPU utilisation of LC workload running on the machine.
• BE_utilisation: CPU utilisation of BE workload running on the machine.
• LC_max_utilisation: The maximum recorded cpu utilisation of the LC workload.
• BE_cpu_quota: cpu quota given to a BE workload.
• cpu_quota_min: indicates the lowest possible cpu quota that could be set which

is 1000 microseconds.
• BE_increase_resource_level(): Represents a function that increments cpu quota

level of BE workload by 1 level.

4.2 Latency-aware PRM Implementation

Implementation of Latency-aware PRM can be categorised into two steps. In step one,
the QoS target which is a latency target must be determined. It is usually determined
by the developers of the workload. After obtaining the target, it must be specified in a
configuration file which is a JSON file. In step two, latency-critical workload and best-
effort workload are co-located on the same server. Fetcher is a component which collects
latency value from the LC workload and stores it. QoS-monitor polls for latency from
Fetcher. Detector periodically reads current latency from QoS-monitor and latency tar-
get value from configuration file and decides if there is a performance degradation in
latency-critical workload. Similar to Intel PRM, when started this variant sets the cpu
shares of LC workload to 200000 and BE workload to 2 using relative tuning and sets cpu
quota of BE workload to lowest value which is 1000. For every 18.5 seconds, depending
on if the latency is in desired range or not, detector signals resource manager to adjust
resources. If the latency is above the target, the CPU resources are again set to minimum
by setting cpu.shares and cpu.cfs_quota to minimum. In case the latency value is below
the target then detector signals resource manager to increase CPU resource level of BE
workload by 1. In this variant, each level is equal to the total available CPU resources in
percentage divided by 50.

26 Latency-aware Resource Management in Data centres

4.3 Hybrid PRM Implementation

Similar to previous variants, this variant when started sets the CPU resources of the BE
workload to a bare minimum by tuning relative and ceiling enforcement parameters.
It sets the cpu.shares parameter of the LC workload to 200000 and of the BE work-
load to 2. Additionally, it also sets cpu quota of the BE workload to 1000 by tuning
cpu.cfs_quota_us parameter. When the safeguards of this variant are not active then it
increases CPU resources of the BE workload by increasing cpu quota of the workload.
For example, setting cpu.cfs_quota_us parameters of the cgroup to which the workload
belongs to the value equal to cfs period of the machine makes the workload use CPU re-
sources equal to one core. For every two seconds, Sub-controller increases the resources
of the BE workload by 1 core. Sub-controller stops only when it receives a signal from
Top-level controller that BE workload is affecting the latency of the LC workload.

Chapter 5

Evaluation

This chapter presents the experimentation methodology that is followed to evaluate the
different variants of the platform resource manager. The methodology contains details
about the machine and the workloads used for this study. Additionally, it discusses the
process followed to determine the maximum throughput of the latency-critical workload
chosen for this study and presents the evaluation metrics used to evaluate each PRM.
Later, it presents the results obtained when the CPU resources are controlled by different
variants.

5.1 Experimentation Methodology

5.1.1 Hardware

We perform the evaluation of different variants of PRM on the NTNU EPIC compute
cluster. Each node runs Linux kernel 3.10 and contains two Intel Xeon E5-2695v4 sockets
that together comprise 36 CPUs. Each core is capable of frequency scaling from 1.20 GHz
to 2.00 GHz with steps of 0.1 GHz. Each socket has 1.2 MB, 4.5 MB, and 45 MB of L1,
L2 and shared last level cache, respectively. The server contains 128 GB of DDR4-2400
GHz RAM. Hyperthreading was disabled as in most production servers.

5.1.2 Workloads

This section discusses the workloads used for the study. Memcached is chosen as a LC
workload and stress-ng is chosen as a BE workload to stress CPU resources.

Memcached

Cloudsuite is an open-source benchmark suite for cloud services [28]. Data caching is
one of the applications provided by Cloudsuite benchmark. Data caching is a Memcached
data caching server which uses twitter data set and simulates Twitter data caching server
behaviour. Memcached is an open-source distributed caching system [29]. It acts as a
store for small chunks of data which is extracted from the results of database calls or

27

28 Latency-aware Resource Management in Data centres

API calls. Memcached is not a user-facing service, however, it is used by many important
web services and has strict QoS targets. Motivations behind choosing Memcached as a
LC workload for the study are listed below:

• Memcached is very sensitive to resource interference from co-located workloads
[9]. This makes the job of simulating resource interference easy when co-located
with a BE workload.
• Memcached has strict quality of service targets. Data caching workload from Cloud-

suite benchmark assumes that 95% of the requests are responded or serviced
within 10ms.
• Memcached is not directly a user-facing-service. However, it is an important ser-

vice used in the back-ends of many large applications and deployed on thousands
of servers [9]. We believe that knowledge gained from this study can be used in
real world scenarios.

Stress-ng

Stress-ng is a tool used to stress test a computer in various ways. It can be used to stress
different resources of a computer such as CPU, cache etc. For this study, stress-ng is used
as a BE workload. We use stress-ng to put stress on CPU resources of the machine.
To make Intel PRM monitor and control the resources used by the workloads, the work-
loads must be formatted into docker images before they are run on the machine. Clou-
suite benchmark provides docker images for Memcached client and Memcached server.
Memcached client sends requests to the Memcached server to access the server’s data.

5.1.3 Determining Maximum throughput of Memcached

Maximum throughput is the maximum number of requests that a Memcached server
can serve without violating QoS policies. The target QoS is that 95-th percentile tail
latency must be under 10ms. To identify maximum throughput that can be achieved
using our hardware we ran Memcached server by varying load, that is, the number of
requests sent through Memcached client. We recorded 95-th percentile tail latency under
different load.
The experimental set up to determine the maximum throughput of Memcached server
consists of one instance of Memcached server and one instance of Memcached client. Of
the available 36 cores on our hardware, we used 17 cores of socket 0 to run Memcached
server with 17 threads, one core for each thread. We used 18 cores of socket 1 to run
Memcached client with 18 threads. We left 1 core of socket 0 idle to run Intel PRM on
it. This was done to not let any overhead from Intel PRM interfere with the Memcached
server.
Memcached client provided by Cloudsuite allows us to enter the number of requests
that must be sent by client. To determine the maximum throughput, we simulated a time
varying load. The difference between every two consecutive loads is constant. The load is
increased by constant load factor for every 200 seconds. Starting with the minimum load
of 50k requests per second, load is increased by change factor until the QoS requirements

Chapter 5: Evaluation 29

of the Memcached are violated. In our case, QoS requirements are violated when the
95-th percentile latency is above 10 milliseconds.
When performing experiment we observed a latency spike when the rps is in between
450k and 500k. This is represented using Figure Figure 5.1. To determine the maximum
throughput accurately we conducted another experiment by varying load by constant
factor. This is represented using Figure 5.2. From the experiment, we observed that, for
our hardware set up Memcached can serve 450k requests per second while respecting
QoS target. Increase in load after 450k rps would result in QoS violation. Even though
we varied load by constant factor, we can see that load curve is not uniform in Figure 5.2.
This because of the queuing of requests. For example, when we configure Memcached
client to send 430k requests per second, Memcached server does not serve exactly 430k
requests. We observed there if a variation in number of requests configured to be sent
and number of requests processed.

Figure 5.1: Variation in 95-th percentile tail latency of Memcached with varying load.

5.1.4 Workload co-location

During the whole study the LC workload is made to run as mentioned in Section 5.1.3.
To evaluate different versions of PRMs, we ran stress-ng as a BE workload and stressed 8
cores of the machine completely. Stress-ng was co-located on the same socket as Mem-
cached server. To pin Memcached server and stress-ng to socket 0 a Linux tool called
taskset is used [30]. Taskset helps in running the workloads on the selected set of cores.
The idea behind this set up is to simulate CPU resource interference by BE workload by
letting the workloads run on the same socket. As a consequence, the interference cause
by BE workload affects the performance of the LC workloads which in turn leads to QoS
violation.

30 Latency-aware Resource Management in Data centres

Figure 5.2: Variation in 95-th percentile tail latency of Memcached with varying load-2.

5.1.5 Evaluation Metrics

We evaluate different variants of PRM using two metrics: QoS-guarantee and BE through-
put. QoS-guarantee indicates the percentage of samples that met QoS target. BE through-
put indicates the number of instructions that are executed when the resources are con-
trolled by a PRM. We use perf tool [31] to determine the throughput of Stress-ng. We
compute the throughput of the BE workload when resources are controlled by different
variants of PRM and normalise it to the throughput of the workload when it is running
alone. We also report the percentage of CPU resources used by the workloads to explain
the results. Additionally, we report CPI of Memcached to highlight the cases where CPI
fails to indicate the latency behaviour of Memcached.

5.2 Results

In this section we present the results obtained by evaluating various variants of PRM:
Intel PRM, Latency-aware PRM, Hybrid PRM, Tuned Hybrid PRM. The summary of the
results are given in Table 5.1. In the following sections, each subsection explain results
of each variant.

Table 5.1: Summary of QoS-guarantee of Memcached and Throughput of Stress-ng
when scheduled by different PRM variants

PRM variant QoS guarantee Throughput
Intel PRM 100% 4.6%

latency-aware PRM 89.2 - 97% 56.2%
Hybrid PRM 100% 14.7%

Hybrid PRM tuned 100% 54.0%

Chapter 5: Evaluation 31

5.2.1 Intel PRM Results

Figure 5.3 presents the impact of co-location on the tail latency of the Memcached when
CPU resource are controlled by Intel PRM. Intel PRM provides 100% QoS-guarantee
which means all the samples are under QoS-target of 10 ms. Intel PRM makes schedul-
ing decisions based on CPI metric. As a result, it sets CPU resources of the BE workload
to minimum whenever current CPI of Memcached is greater than determined threshold
CPI. Intel PRM helps in obtaining the throughput of only 4.6% compared to the through-
put when Stress-ng is run alone. At all loads there are no violations in meeting QoS
targets. Even at lowest load in the graph, Memcached still uses 65% of CPU resources.

350k

375k

400k

425k

450k

0
2
4
6
8
10
12
14

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2

Plot 1: Requests per second of Memcached Plot 2: 95­th percentile latency of Memcached in ms

Plot 3:Memcached CPU utilisation (%) Plot 3: Stress­ng CPU utilisation (%)

Plot 4: CPI

Time (s)

R
PS

95
­t
h 
%
 il
e 
la
te
nc
y 
(m
s)

C
PU
 u
ti
lis
at
io
n 
(%
)

C
PI
 o
f 
M
em
ca
ch
ed

Figure 5.3: Variation in 95-th percentile tail latency of Memcached when CPU resources
are controlled by Intel PRM

5.2.2 Latency-aware PRM Results

This variant makes scheduling decisions based on application level latency of the LC
workload. Figure 5.4 presents the impact of co-location on tail latency of Memcached
when CPU resources are controlled by Latency-aware PRM. Initially, CPU resources of
the BE workload are set to minimum. From the figure, it can be seen that as QoS target

32 Latency-aware Resource Management in Data centres

is met, the resource manager starts increasing CPU resources allocated to Stress-ng. As a
result, CPU utilisation of Stress-ng increases. When at low load, Memcached needs only
half of the total available CPU resources. This variant, uses this opportunity to improve
the throughput of Stress-ng. When the PRM detects that the tail latency is above the
target, which is 10 ms, it sets the CPU resources of Stress-ng to minimum. But this
happens only after the latency has crossed the target. This is a serious drawback of this
variant. It does not have any safeguard to prevent this. However, it improves machine
utilisation by running Stress-ng when the latency is low. From the experimentation,
we observed that the throughput of Stress-ng reaches upto 56.2% when CPU resources
are handled by this variant. Another major observation from the figure is that, when
the load is low, Memcached only needs half of the CPU resources to meet QoS-target.
Comparing this to the results of Intel PRM, Intel PRM was allowing Memcached to use
more resources that it needed. From this observation we can conclude that when co-
locating workloads application level latency is more reliable metric to improve machine
utilisation than throughput based metric such as CPI. However, we observed that during
the times of high load this variant fails to provide 100 % QoS-guarantee. During the
times of high load there is a possibility of experiencing latency spikes which may be
create bad experience to end-users. Figure 5.5 shows that when the load is at maximum
capacity there is a possibility of experiencing huge latency spikes.

350k

375k

400k

425k

450k

0
2
4
6
8
10
12
14
16
18
20

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

Plot 1: Requests per second of Memcached Plot 2: 95­th percentile latency of Memcached (ms)

Plot 3:Memcached CPU utilisation (%) Plot 3: Stress­ng CPU utilisation (%)

Time

R
PS

95
­t
h 
%
 il
e 
la
te
nc
y 
(m
s)

C
PU
 u
ti
lis
at
io
n 
(%
)

Figure 5.5: Variation in 95-th percentile tail latency of Memcached when CPU resources
are controlled by Latency-aware PRM - 2

Chapter 5: Evaluation 33

350k

375k

400k

425k

450k

0
2
4
6
8
10
12
14

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2

Plot 1: Requests per second of Memcached Plot 2: 95­th percentile latency of Memcached (ms)

Plot 3:Memcached CPU utilisation (%) Plot 3: Stress­ng CPU utilisation (%)

Plot 4: CPI

Time (s)

R
PS

95
­t
h 
%
 il
e 
la
te
nc
y 
(m
s)

C
PU
 u
ti
lis
at
io
n 
(%
)

C
PI
 o
f 
M
em
ca
ch
ed

Figure 5.4: Variation in 95-th percentile tail latency of Memcached when CPU resources
are controlled by Latency-aware PRM

34 Latency-aware Resource Management in Data centres

5.2.3 Hybrid PRM Results

This variant fixes the drawback of the previous variant. When the load is high previous
variant fails to handle the tail latency. Hybrid PRM suspends the Stress-ng workload
when the load on Memcached is above 85% of its maximum capacity and enables it
only when the load on the Memcached is below 80% of its maximum capacity. Figure
5.6 shows the impact of co-location on tail latency of Memcached when resources are
controlled by Hybrid PRM. This variant achieves 100% QoS-guarantee but when re-
sources are controlled by this variant the throughput of Stress-ng is only 14.7%. This is
because the experimentation was done on small scale. This variant enables execution of
Stress-ng when the load on the Memcached reaches 360k rps.

350k

375k

400k

425k

450k

0
2
4
6
8
10
12
14

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2

Plot 1: Requests per second of Memcached Plot 2: 95­th percentile latency of Memcached (ms)

Plot 3:Memcached CPU utilisation (%) Plot 3: Stress­ng CPU utilisation (%)

Plot 4: CPI

Time (s)

R
PS

95
­t
h 
%
 il
e 
la
te
nc
y 
(m
s)

C
PU
 u
ti
lis
at
io
n 
(%
)

C
PI
 o
f 
M
em
ca
ch
ed

Figure 5.6: Variatation in 95-th percentile tail latency of Memcached when CPU re-
sources are controlled by Hybrid PRM

5.2.4 Tuned Hybrid PRM Results

By tuning parameters of Hybrid PRM we achieve the QoS-guarantee of 100% and the
throughput of 54.0%. Figure 5.7 shows the results obtained when resources are con-

Chapter 5: Evaluation 35

trolled by this variant. This variant suspends the execution of the BE workload when the
load on the Memcached is above 95% of its maximum capacity and enables it only when
load is below 90%. When the load is below 90%, it polls for latency slack value and uses
the opportunity to execute Stress-ng. Subplot 3 of the figure shows that this variant at-
tempts to utilise the machine to the maximum extent possible. A major observation of
the graph is the utilisation of latency slack to guide scheduling decisions. This variant
checks that latency-critical barely meets the QoS target and exploits other resources to
run best-effort workload.

350k

375k

400k

425k

450k

0
2
4
6
8
10
12
14

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2

Plot 1: Requests per second of Memcached Plot 2: 95­th percentile latency of Memcached (ms)

Plot 3:Memcached CPU utilisation (%) Plot 3: Stress­ng CPU utilisation (%)

Plot 4: CPI

Time (s)

R
PS

95
­t
h 
%
 il
e 
la
te
nc
y 
(m
s)

C
PU
 u
ti
lis
at
io
n 
(%
)

C
PI
 o
f 
M
em
ca
ch
ed

Figure 5.7: Varitation in tail latency of Memcached when resources are controlled by
Hybrid PRM tuned

5.3 Discussion

Four different variants have been evaluated during this study. Of all the variants, Intel
PRM over provisions resources to the latency-critical workload. Applications like Mem-
cached can run with moderate resources and still meet QoS target. Intel PRM fails to
detect this and does not use this opportunity to co-locate best-effort workloads. How-

36 Latency-aware Resource Management in Data centres

ever, it always makes sure that performance of the latency-critical workload is healthy.
On the other hand, variants that made scheduling decisions based on application level
latency were able to co-locate best-effort workload when the latency-critical workload
did not need resources. Latency-aware PRM is a naive approach that did not have any
safeguards to protect the LC workload from violating service level objectives (SLO). Hy-
brid PRM’s strategy of suspending the best-effort workload based on the current load and
current latency of the Memcached improves machine utilisation greatly while respecting
QoS policies of the Memcached.

Chapter 6

Conclusion

In this work we explored the strategies used by Intel PRM to make scheduling decisions
when a best-effort workload is co-located with a latency-critical workload. We show that
cycles per instruction (CPI) is not a reliable metric to determine latency behaviour of
the latency-critical workload and we show that using CPI as a QoS metric does not yield
great results in improving machine utilisation. We introduce different variants of PRM
which are based on the methods of Intel PRM but which make scheduling decisions
based on application level latency of the latency-critical workload. We implement core
management algorithm from Heracles into Intel PRM and with simple tuning of paramet-
ers we show that the throughput of co-located workload can be improved significantly.
We conduct experiments and show that Hybrid PRM, which uses methods from Intel
PRM and Heracles, achieves 100% QoS-guarantee and achieves a best-effort workload
throughput of 54.0%.

37

Bibliography

[1] L. A. Barroso, J. CLidaras and U. Holzle, ‘The datacenter as a computer an intro-
duction to the design of warehouse-scale machines second edition’, 2013.

[2] L. Barroso and U. Holzle, ‘The case for energy-proportional computing’, Com-
puter, vol. 40, pp. 33–37, Jan. 2008. DOI: 10.1109/MC.2007.443.

[3] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan and C. Kozyrakis, ‘Heracles:
Improving resource efficiency at scale’, SIGARCH Comput. Archit. News, 2015.

[4] J. Dean and L. A. Barroso, ‘The tail at scale’, Commun. ACM, vol. 56, no. 2, pp. 74–
80, Feb. 2013, ISSN: 0001-0782. DOI: 10 . 1145 / 2408776 . 2408794. [Online].
Available: https://doi.org/10.1145/2408776.2408794.

[5] Uber, Peloton, Available at:https://github.com/uber/peloton, (Accessed 4-
June-2020).

[6] Intel, Intel platform resource manager, Available at:https://github.com/intel/
platform-resource-manager, (Accessed 13-May-2020).

[7] R. Nishtala, P. Carpenter, V. Petrucci and X. Martorell, ‘Hipster: Hybrid task man-
ager for latency-critical cloud workloads’, pp. 409–420, 2017.

[8] O. Bilgir, M. Martonosi and Q. Wu, ‘Exploring the potential of cmp core count
management on data center energy savings’, May 2012.

[9] J. Leverich and C. Kozyrakis, ‘Reconciling high server utilization and sub-millisecond
quality-of-service’, 2014.

[10] J. Mars, L. Tang, R. Hundt, K. Skadron and M. L. Soffa, ‘Bubble-up: Increasing util-
ization in modern warehouse scale computers via sensible co-locations’, pp. 248–
259, 2011. [Online]. Available: https://doi.org/10.1145/2155620.2155650.

[11] C. Marco and B. Daniel P., Understanding the linux kernel, 2005.

[12] J. M, Inside the linux 2.6 completely fair scheduler, Available at:https://developer.
ibm.com/tutorials/l- completely- fair- scheduler/, 2018, (Accessed 28-
Mar-2020).

[13] H. Yang, A. Breslow, J. Mars and L. Tang, ‘Bubble-flux: Precise online qos manage-
ment for increased utilization in warehouse scale computers’, ISCA ’13, pp. 607–
618, 2013. DOI: 10.1145/2485922.2485974. [Online]. Available: https://doi.
org/10.1145/2485922.2485974.

39

https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794
https://github.com/uber/peloton
https://github.com/intel/platform-resource-manager
https://github.com/intel/platform-resource-manager
https://doi.org/10.1145/2155620.2155650
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/
https://doi.org/10.1145/2485922.2485974
https://doi.org/10.1145/2485922.2485974
https://doi.org/10.1145/2485922.2485974

40 Latency-aware Resource Management in Data centres

[14] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bronevetsky and S. Bagchi, ‘Pythia:
Improving datacenter utilization via precise contention prediction for multiple
co-located workloads’, pp. 146–160, 2018.

[15] W. Cui, D. Richins, Y. Zhu and V. J. Reddi, ‘Tail latency in node.js: Energy efficient
turbo boosting for long latency requests in event-driven web services’, VEE 2019,
pp. 152–164, 2019. DOI: 10.1145/3313808.3313823. [Online]. Available: https:
//doi.org/10.1145/3313808.3313823.

[16] O. Foundation, About node.js, https://nodejs.org/en/about/, (Accessed 26-06-
2020).

[17] C. Delimitrou and C. Kozyrakis, ‘Qos-aware scheduling in heterogeneous data-
centers with paragon’, ACM Trans. Comput. Syst., vol. 31, no. 4, Dec. 2013, ISSN:
0734-2071. DOI: 10.1145/2556583. [Online]. Available: https://doi.org/10.
1145/2556583.

[18] Kubernetes, Kubernetes documentation, Available at:https://kubernetes.io/
docs/home, (Accessed 7-June-2020).

[19] P. Menage, Cgroups, Available at:https://www.kernel.org/doc/Documentation/
cgroup-v1/cgroups.txt, (Accessed 4-Apr-2020).

[20] R. hat, Chapter 1. introduction to control groups (cgroups), Available at:https:
//access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/
html/resource_management_guide/ch01, (Accessed 4-Apr-2020).

[21] R. hat, Cpu, Available at:https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-
cpu, (Accessed 4-Apr-2020).

[22] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso and C. Kozyrakis, ‘Towards energy
proportionality for large-scale latency-critical workloads’, pp. 301–312, 2014.

[23] NumPy, Numpy, Available at:https://numpy.org/, (Accessed 13-May-2020).

[24] pandas, Pandas, Available at:https://pandas.pydata.org/, (Accessed 13-May-
2020).

[25] Scipy, Scipy, Available at:https://www.scipy.org/, (Accessed 13-May-2020).

[26] scikit-learn, Scikit-learn machine learning in python, Available at:https://scikit-
learn.org/stable/, (Accessed 13-May-2020).

[27] Docker, What is a container? a standardized unit of software, Available at:https:
//www.docker.com/resources/what-container, (Accessed 13-May-2020).

[28] Cloudsuite, A benchmark suite for cloud services, Available at:https://www.cloudsuite.
ch/, (Accessed 26-06-2020).

[29] Memcached, What is memcached?, Available at:http://memcached.org/, (Ac-
cessed 26-06-2020).

[30] taskset, Taskset(1) - linux man page, Available at:https://linux.die.net/man/
1/taskset, (Accessed 26-06-2020).

https://doi.org/10.1145/3313808.3313823
https://doi.org/10.1145/3313808.3313823
https://doi.org/10.1145/3313808.3313823
https://doi.org/10.1145/2556583
https://doi.org/10.1145/2556583
https://doi.org/10.1145/2556583
https://kubernetes.io/docs/home
https://kubernetes.io/docs/home
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpu
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpu
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpu
https://numpy.org/
https://pandas.pydata.org/
https://www.scipy.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.cloudsuite.ch/
https://www.cloudsuite.ch/
http://memcached.org/
https://linux.die.net/man/1/taskset
https://linux.die.net/man/1/taskset

Bibliography 41

[31] Linux kernel profiling with perf, Available at:https://perf.wiki.kernel.org/
index.php/Tutorial#Counting_with_perf_stat, (Accessed 20-June-2020).

https://perf.wiki.kernel.org/index.php/Tutorial##Counting_with_perf_stat
https://perf.wiki.kernel.org/index.php/Tutorial##Counting_with_perf_stat

