
 P.C. Iversen, H
. Thorstensen

Autom
atic W

ind Pow
er Forecasting as a Service

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Pål Christian Glenna Iversen
Håkon Thorstensen

Automatic Wind Power
Forecasting as a Service

Master’s thesis in Computer Science

Supervisor: Odd Erik Gundersen

June 2020





i

Abstract

Time series forecasting is a highly relevant and valuable tool for a wide range
of businesses applications and domains. However, due to the vast technical
challenges and required expertise to optimize modern forecasting techniques,
many businesses lack the in-house competence required to achieve good results. In
this project, we investigate and experimentally develop an automatically scaling,
machine learning based forecasting service for wind power forecasting. The
system uses modelling techniques tailored for wind power forecasting, in order to
compete with more general AutoML services, which provides a similar value to
end users.

A model-based transfer learning strategy of pre-training, testing, pruning and
refining is used with gradient tree boosting to leverage data from other wind
farms. The use of transfer learning improve forecasting accuracy and provide
valuable predictions even for wind farms with little available data. We also test
several strategies for utilizing the multitude of source wind farms available, and
we test two strategies for weighting source wind farms based on similarity and
transfer performance.

The system itself is implemented with a focus on scalability and modifiability,
with the specific purpose of planning for future challenges. To achieve these
qualities our primary focus is on the overall system architecture, and in particular
how a software system could be designed to support machine learning processes.
We utilize concepts such as microservices, cloud computing, automation and
technical debt reduction.

Through practical and analysis based experiments we demonstrate that it is
possible to create a system that automates the use of wind power forecasting,
even for wind farms with little available data. We show that the use of transfer
learning with gradient tree boosting gives consistent improvements in forecasting
performance across a wide range of forecasting horizons and target training data
availability. Particularly for small available data quantities, transfer learning
provides significant improvements. The tested weight generation strategies fails
to provide substantial improvements to model performance compared to equal
weights. We also perform experiments to demonstrate that the system can
scale to support training of multiple models and accommodate increased user
load. These experiments show that the system can accommodate at least 500
concurrent users, and that the training time is not vastly affected by whether the
system trains 10 or 20 project. Finally, based on an analysis of our modifiability
requirements, we also demonstrate that the system should be easy to modify to
accommodate future requirements.



ii

Preface

This report represent the the findings for our master’s thesis conducted at the
Norwegian university of science and technology (NTNU), under the department
computer science. The work was performed by two fifth year computer science
students; P̊al Christian Glenna Iversen, who specializes in software development,
and H̊akon Thorstensen, who specializes in artificial intelligence. The work
was conducted in collaboration with the AI department at TrønderEnergi, that
provided domain knowledge and test data to conduct our experiments.

We would like to thank our supervisor Odd Erik Gundersen who is an Associate
Professor at the NTNU and chief AI officer at TrønderEnergi, for his interest
and guidance. We would also like to thank Gleb Sizov who is an AI engineer at
TrønderEnergi, for his feedback and help during the project.

P̊al Christian Glenna Iversen

H̊akon Thorstensen

Trondheim, June 10, 2020



Contents

Abbreviations xii

1 Introduction 1

2 Background Theory 5
2.1 Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Statistical Approaches . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Machine Learning Approaches . . . . . . . . . . . . . . . . 6
2.1.3 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . 7
2.2.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Formal Definition and Setting . . . . . . . . . . . . . . . . . 14

2.4 Practices and Techniques in Software Engineering . . . . . . . . . . 15
2.4.1 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Container Technologies . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Technical Debt . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Related Work 21
3.1 Current Commercial Competition . . . . . . . . . . . . . . . . . . . 21
3.2 Time Series Forecasting and Transfer Learning . . . . . . . . . . . 23

3.2.1 The M4 Competition . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Deep Transfer Learning . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Wind Power Forecasting: Multi-Task Neural Network . . . 26

iii



iv CONTENTS

3.2.4 Wind Power Forecasting: DNN Ensemble
Meta-regression . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.5 Wind Power Forecasting: Instance-based Transfer
Learning with Gradient Boosting Decision Trees . . . . . . 31

3.2.6 Wind Power Forecasting: Cluster-based Predictor Weighting 31
3.3 Software Engineering for Machine Learning . . . . . . . . . . . . . 33

3.3.1 Technical Debt . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Machine Learning Production Readiness and Technical Debt

Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Architectural Technical Debt in Microservices . . . . . . . . 36
3.4.2 Serverless Computing for Container-based Architectures . . 38

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Forecasting and Transfer Learning Methods 41
4.1 Transfer Learning for Gradient Tree Boosting . . . . . . . . . . . . 41
4.2 Source Utilization Strategies . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Single-Source Transfer . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Combined-Source Transfer . . . . . . . . . . . . . . . . . . . 43
4.2.3 Transfer Ensemble . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Source Weight Generation . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Wind Profile Similarity-Based Weights . . . . . . . . . . . . 44
4.3.2 Single-Source Transfer Performance-Based Weights . . . . . 45

4.4 Multi-Step Forecasting Strategies . . . . . . . . . . . . . . . . . . . 46
4.4.1 Recursive Model Forecasting . . . . . . . . . . . . . . . . . 46
4.4.2 Productionless Direct Forecasting . . . . . . . . . . . . . . . 47

5 System functionality and implementation 49
5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Functional Requirements . . . . . . . . . . . . . . . . . . . 50
5.1.2 Non-functional Requirements . . . . . . . . . . . . . . . . . 52

5.2 Deployment Platform . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1 Azure Functions . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Azure Container Instances . . . . . . . . . . . . . . . . . . . 54
5.2.3 Azure App Services . . . . . . . . . . . . . . . . . . . . . . 55
5.2.4 Azure Kubernetes Service (AKS) . . . . . . . . . . . . . . . 55
5.2.5 Azure Service Fabric . . . . . . . . . . . . . . . . . . . . . . 55
5.2.6 Comparison and choice of service . . . . . . . . . . . . . . . 56

5.3 External Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Azure Kubernetes Service (AKS) . . . . . . . . . . . . . . . 56
5.3.2 Azure Database for PostgreSQL . . . . . . . . . . . . . . . 57



CONTENTS v

5.3.3 Azure File storage . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.4 Azure DevOps . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.5 Azure Container Registry (ACR) . . . . . . . . . . . . . . . 57
5.3.6 GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.7 Amazon Simple Email Service . . . . . . . . . . . . . . . . . 58
5.3.8 Meteomatics . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 Management Service . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Training Service . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.3 Inference Service . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.4 Other Services/System utilities . . . . . . . . . . . . . . . . 63
5.4.5 Developing and Deploying the System . . . . . . . . . . . . 64

5.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.1 Logical View . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Development View . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.3 Process View . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.4 Physical View . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.5 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Experiments 87
6.1 Transfer Learning Experiments . . . . . . . . . . . . . . . . . . . . 87

6.1.1 GEFCOM2014 Wind Power Dataset . . . . . . . . . . . . . 87
6.1.2 Data Preprocessing and Feature Engineering . . . . . . . . 88
6.1.3 Validation Strategy . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.4 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.5 GTB and TL-GTB Implementation and Parameters . . . . 90
6.1.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 System Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . 92
6.2.2 Non-functional Requirements . . . . . . . . . . . . . . . . . 92

7 Results and Discussion 95
7.1 Transfer Learning Results . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 TL-Exp. 1: TL-GTB and Source Utilization Effectiveness . 96
7.1.2 TL-Exp. 2: Wind Profile Based Weight Generation and

Optimal Cluster Count . . . . . . . . . . . . . . . . . . . . 97
7.1.3 TL-Exp. 3: Performance Based Weight Generation and

Optimal Decay Factor . . . . . . . . . . . . . . . . . . . . . 98
7.1.4 TL-Exp. 4: Multi-Step Forecasting Strategies . . . . . . . . 99
7.1.5 TL-Exp. 5: Forecasting Performance for Varying Target

Data Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



vi CONTENTS

7.1.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . 101
7.2 System Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . 102
7.2.2 Non-functional Requirements . . . . . . . . . . . . . . . . . 102

8 Evaluation and Future Work 109
8.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113

Appendix 121
A Application Screenshots . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 Management Service . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Training Service . . . . . . . . . . . . . . . . . . . . . . . . 139
A.3 Inference Service . . . . . . . . . . . . . . . . . . . . . . . . 140



List of Figures

3.1 Example neural network with adversarial domain classification la-
bel. (adapted from [49]) . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The MTL network for wind speed forecasting used by Hu et al.
[22] (adapted from [22]) . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The training and testing procedure for ATL-DNN (adapted from
[44]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Illustration of the 4 training steps for a TL-GTB model . . . . . . 42

5.1 Screenshot - Management Service - project page . . . . . . . . . . 59
5.2 Github repository for Management Service . . . . . . . . . . . . . . 66
5.3 Illustration of 4 + 1 architecture view model from Dekker [12] . . . 67
5.4 Logical view - system . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Logical view - Management Service . . . . . . . . . . . . . . . . . . 69
5.6 Logical view - Training Service . . . . . . . . . . . . . . . . . . . . 70
5.7 Logical view - Inference Service . . . . . . . . . . . . . . . . . . . . 70
5.8 Entity-relationship model (ER) . . . . . . . . . . . . . . . . . . . . 71
5.9 Development view - Management Service . . . . . . . . . . . . . . 73
5.10 Development view - Management Service - accounts application . . 74
5.11 Development view - Management Service - project application . . . 76
5.12 Development view - Management Service - JavaScript . . . . . . . 77
5.13 Development view - Training Service . . . . . . . . . . . . . . . . . 78
5.14 Development view - Inference Service . . . . . . . . . . . . . . . . . 79
5.15 Development view - FaaS database manager . . . . . . . . . . . . . 79
5.16 Process view - Management Service . . . . . . . . . . . . . . . . . . 81
5.17 Process view - Inference Service . . . . . . . . . . . . . . . . . . . . 82
5.18 Process view - create project . . . . . . . . . . . . . . . . . . . . . 83
5.19 Physical view - DevOps . . . . . . . . . . . . . . . . . . . . . . . . 84
5.20 Physical view - runtime . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



viii LIST OF FIGURES

5.21 Use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Diagram showing the sliding window validation strategy . . . . . . 89

7.1 Plot of Mean Absolute Error for different cluster counts c. . . . . . 97
7.2 Plot of Mean Absolute Error for different exponential decay factors

d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Plot of mean absolute error over horizons from 1 to 48. . . . . . . . 99
7.4 Plot of mean absolute error over horizons from 5 to 48, excluding

naive baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 Plot of mean absolute error over increasing target training data. . 100
7.6 Graphs used to visualize the load for NFR6. . . . . . . . . . . . . . 104

9.1 Screenshot - login . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2 Screenshot - forgot password page . . . . . . . . . . . . . . . . . . 122
9.3 Screenshot - reset password confirmation . . . . . . . . . . . . . . . 123
9.4 Screenshot - reset password email . . . . . . . . . . . . . . . . . . . 123
9.5 Screenshot - main page/list of projects . . . . . . . . . . . . . . . . 124
9.6 Screenshot - delete project . . . . . . . . . . . . . . . . . . . . . . . 124
9.7 Screenshot - create new project . . . . . . . . . . . . . . . . . . . . 125
9.8 Screenshot - create new project - including content . . . . . . . . . 126
9.9 Screenshot - uploading training data and creating project . . . . . 126
9.10 Screenshot - project acquiring weather data . . . . . . . . . . . . . 127
9.11 Screenshot - starting training . . . . . . . . . . . . . . . . . . . . . 127
9.12 Screenshot - example of training step . . . . . . . . . . . . . . . . . 128
9.13 Screenshot - training completed, ready to forecast . . . . . . . . . . 128
9.14 Screenshot - project page . . . . . . . . . . . . . . . . . . . . . . . 129
9.15 Screenshot - project settings . . . . . . . . . . . . . . . . . . . . . . 130
9.16 Screenshot - make forecast . . . . . . . . . . . . . . . . . . . . . . . 130
9.17 Screenshot - graph settings . . . . . . . . . . . . . . . . . . . . . . 131
9.18 Screenshot - graph settings close . . . . . . . . . . . . . . . . . . . 131
9.19 Screenshot - graph after setting date . . . . . . . . . . . . . . . . . 132
9.20 Screenshot - all data graph . . . . . . . . . . . . . . . . . . . . . . 132
9.21 Screenshot - test performance graph . . . . . . . . . . . . . . . . . 133
9.22 Screenshot - recent forecast graph . . . . . . . . . . . . . . . . . . . 133
9.23 Screenshot - future forecast graph . . . . . . . . . . . . . . . . . . . 134
9.24 Screenshot - list of users . . . . . . . . . . . . . . . . . . . . . . . . 135
9.25 Screenshot - view detailed user information . . . . . . . . . . . . . 135
9.26 Screenshot - create new user . . . . . . . . . . . . . . . . . . . . . . 136
9.27 Screenshot - profile for currently signed in user . . . . . . . . . . . 136
9.28 Screenshot - change password page . . . . . . . . . . . . . . . . . . 137
9.29 Screenshot - overview of administration . . . . . . . . . . . . . . . 138



LIST OF FIGURES ix

9.30 Screenshot - admin - List of projects . . . . . . . . . . . . . . . . . 138
9.31 Screenshot - admin - Change project . . . . . . . . . . . . . . . . . 139
9.32 Screenshot - Training result . . . . . . . . . . . . . . . . . . . . . . 140
9.33 Screenshot - Inference Service main page . . . . . . . . . . . . . . . 141
9.34 Screenshot - project data using web interface . . . . . . . . . . . . 142
9.35 Screenshot - project data using URL . . . . . . . . . . . . . . . . . 142



x LIST OF FIGURES



List of Tables

2.1 Settings for traditional machine learning and transfer learning given
domain and task similarity (adapted from [41]) . . . . . . . . . . . 14

2.2 Settings for transfer learning given data availability (adapted from
[41]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Comparison of commercial competition . . . . . . . . . . . . . . . . 22
3.2 Interpreting an ML test score (adapted from table V in [5]) . . . . 36

5.1 List of functional requirements (1/2) . . . . . . . . . . . . . . . . . 51
5.2 List of functional requirements (2/2) . . . . . . . . . . . . . . . . . 52
5.3 List of non-functional requirements . . . . . . . . . . . . . . . . . . 53
5.4 Azure services compatibility . . . . . . . . . . . . . . . . . . . . . . 54

7.1 The mean absolute error for TL-GTB with each source utilization
strategy compared to baselines for each target wind farm. Lowest
error is marked as bold. . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 The result of the non-functional requirements experiments . . . . . 102

xi



xii LIST OF TABLES

Abbreviations

Symbol = Definition
ACR = Azure Container Registry
AKS = Azure Kubernetes Service
ANN = Artificial Neural Network
API = Application Programming Interface
ARIMA = AutoRegressive Integrated Moving Averages
ASGI = Synchronous Server Gateway Interface
ATL-DNN = Adaptive Transfer Learning in Deep Neural Networks
AutoML = Automated Machine Learning
CaaS = Containers as a Service
CACE = Changing Anything Changes Everything
CD = Continuous Delivery
CD/CDE = Continuous Deployment
CI = Continuous Integration
CSRF = Cross Site Request Forgery
CSS = Cascading Style Sheets
DA = Domain Adaption
DBN = Deep Belief Network
DNN = Deep Neural Network
DNN-MRT = Deep Neural Network based Meta Regression and

Transfer learning
DSL = Domain Specific Language
ES = Exponential Smoothing
ES-RNN = Exponential Smoothing Recurrent Neural Network
FaaS = Forecasting as a Service
FFORMA = Feature-based FORecast Model Averaging
GRU = Gated Recurrent Unit
GTB = Gradient Tree Boosting
GUI = Graphical User Interface
HTML = HyperText Markup Language
HTTPS = HyperText Transfer Protocol Secure
IaaS = Infrastructure as a Service
IBT-GBDT = Instance Based Transfer - Gradient Boosted Decision Trees
ISO = Organization for Standardization



LIST OF TABLES xiii

Symbol = Definition
JSON = JavaScript Object Notation
LSTM = Long Short-Term Memory
MAE = Mean Absolute Error
MLP = Multi-Layer Perceptron
MSDA = Multi-Source Domain Adaption
MTL = Multi-Task Learning
MVC = Model View Controller
ORM = Object-relational mapper
PaaS = Platform as a Service
RBM = Restricted Boltzmann Machine
ReLU = Rectified Linear Unit
REST = Representational State Transfer
RMSE = Root Mean Square Error
RNN = Recurrent Neural Network
SaaS = Software as a Service
SDK = Software Development Kit
SQL = Structured Query Language
TCN = Temporal Convolutional Network
TL = Transfer Learning
TL-GTB = Transfer Learning - Gradient Tree Boosting
TLS = Transport Layer Security
URL = Uniform Resource Locator
WSGI = Web Server Gateway Interface
XSS = Cross Site Scripting



xiv LIST OF TABLES



Chapter 1

Introduction

Within the energy sector, a wide range of uncertain energy producers and con-
sumers exists. Predicting the amount of energy produced or consumed by these
entities, allows for better resource management and market trading. While simple
methods of predicting production and load in energy systems are widely utilized,
Foley et al. [18] demonstrate that more accurate predictions can be achieved
by using machine learning. However, many power companies lack the in-house
competence to create such models with good results.

This creates the demand for a software as a service approach(SaaS), where the
power companies delegate the modelling process to a competent third party.
Within the energy sector, such a service can be provided for specific problems,
for example wind power production. The service needs to handle a large number
of problem instances that need to be solved, with related data available. Several
challenges for such a service needs to be addressed, in terms of scaling infrastruc-
ture with problem instances, minimizing modelling overhead for each problem
instance and maximizing model accuracy across all problem instances.

Several leading cloud providers offer automated machine learning(AutoML) as a
service. According to Feurer et al. [17] AutoML can give good results with limited
machine learning expertise. Existing AutoML can be applied to any problem,
however the result is usually not as good as a modelling solution manually tailored
to the forecasting problem. We believe there is a relevant middle ground between
AutoML and manual modelling, where an automatic modelling service can be
created and optimized for a specific problem type, providing both the automatic
scalability of AutoML and the tailored performance of manual modelling.

1



2 CHAPTER 1. INTRODUCTION

Such a system will have access to many different instances of similar prob-
lems, which motivates the use of transfer learning to improve model perfor-
mance. Transfer learning is a strategy within machine learning, where data
and/or learned knowledge from similar source problems are leveraged to im-
prove model performance on a target problem. This is analogous to knowledge
transfer in human learning, which is a critical aspect of the generalizability and
flexibility of human intelligence. It is for example easier for a human learner to
learn Japanese if they can already speak Chinese, compared to if they can only
speak western languages. Transfer learning can particularly facilitate good model
performance with little to no available training data on the target problem.

During this project, we investigate a fully automatic system to handle the creation
and modelling of new problem instances for time series forecasting for wind
power production. Through experimental development we utilize state of the art
techniques and processes, to develop a highly competitive system. The system
allows users to upload data for a wind farm through a web application and have
a model optimized for their wind farm automatically trained for them. This
training procedure uses transfer learning to leverage data from other wind farms
to improve performance. The user is able to use this model for future forecasts
for their own application needs, by accessing it through a REST API.

In physical energy markets, expected production must be reported the day before,
for a 24 hour window. This expected production is reported 12 hours before the
start of this window. Additionally, there might be a delay in the availability of
power production data. The system therefore provides wind power forecasts for
48 hours forwards in time.

The project is carried out in two parts spanning one term each. The first
term was to conduct a literature review and the creation of simple experiments
to ensure the feasibility of such as system. This report covers the results of
the second term and will consist of a complete system implementation and a
thorough investigation into the effectiveness of transfer learning on wind power
forecasting. The project is carried out in cooperation with TrønderEnergi, a
green energy company situated in Trondheim, Norway. Our system is designed
with the existing knowledge and practices of TrønderEnergi in mind, leading
us to focus on a python centered implementation built on Microsoft’s Azure
cloud infrastructure. TrønderEnergi provides datasets for experimentation on
wind power forecasting and this report will serve as technical documentation for
TrønderEnergi, to help maintain the system.

Based on the purpose of the project, we propose the following hypothesis and
research questions:



3

HYP: An automatic, scalable machine learning service can be developed
for wind power forecasting for wind farms with little available
data.

RQ1: How can transfer learning be applied to improve wind power
production forecasting performance?

RQ2: How can a system be designed to automate the use of transfer
learning for wind power forecasting?

RQ3: How can a system for wind power production forecasting
utilizing transfer learning be designed to support modifiability and
scalability?

The hypothesis and research questions are designed with the the purpose of
identifying whether it is possible to create a system that can utilize transfer
learning and system engineering practices inr order to compete with existing
solutions. RQ1 is concerned with the adaption of transfer learning to the specific
problem domain of wind power forecasting, and whether or not it can be used
to improve the performance of such a system. This is of particular interest for
wind farms with little to no target data. RQ2 is concerned with the system
implementation of transfer learning, and how a transfer learning solution can
be integrated into a lager system. Finally RQ3 is concerned with the quality
attributes of the system, namely modifiability and scalability. These quality
attributes are selected to support the future development and ensure that the
system can be adapted to future demand. Modifiability was selected to ensure
that the system can be changed according to the needs of TrønderEnergi. This
could for instance be to add new machine learning methods or even support
forecasting of other time series related problems. Scalability was added to ensure
that the system can scale to accommodate a larger user base, particularly in
regard to simultaneously training multiple wind farms.

This report is structured as follows: Relevant background theory for the project
is presented in chapter 2. Related works and the most relevant findings of the
literature review are presented in chapter 3. The transfer learning methods to
be tested are presented in chapter 4. The system design, implementation and
architecture is described in chapter 5. The experiments and results are presented
in chapter 6 and chapter 7. Finally, an evaluation of our work and suggestions
for future work are covered in chapter 8.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background Theory

To design a system that has good forecasting performance, while also being
modifiable and scalable; interdisciplinary knowledge is essential. This chapter
will introduce the basis for time series based machine learning problems and
software engineering techniques and practices. The topics to be explained will
provide fundamental knowledge of the problem domain, and is meant to give
context for our research.

2.1 Time Series Forecasting

Time series forecasting [24] is the prediction of the future value of a time-varying
variable at one or more times in the future. Time series forecasting encompasses
anything from weather forecasting to market prognosis, and have been the subject
of a great deal of interest and research.

A time series forecast can either be univariate, where only the value future value
of a single variable is predicted, or multivariate, where multiple target variables
are predicted. The forecasting might use only the variables that are forecasted,
or other, related time-dependent, exogenous variables. A distinction is also made
between single-step forecasting, in which the value for only the next timestep is
forecasted, and multi-step forecasting, where forecasts are made for a forecasting
horizon of multiple timesteps forwards. Wind power forecasting is univariate, as
power production is predicted, uses weather forecasts as exogenous variables, and
we are interested in forecasts for multiple hours ahead, making it multi-variate.

Forecasting entails predicting the value of target variable yi,t for entity i at time

5



6 CHAPTER 2. BACKGROUND THEORY

t. Different entities correspond to different groupings of time series data, and in
our case corresponds to different wind farms. Such a forecast can be expressed
as:

ŷi,t = f(yi,t−h−k:t−h,xi,t−h−k:t−h, si)

Where ŷi,t is forecast, yi,t−h−k:t−h = {yi,t−h−k, ..., yi,t−h} are past observations
for the value to be predicted, xi,t−h−k:t−h = {xi,t−h−k, ...,xi,t−h} are past obser-
vations for the exogenous variables, h is the forecasting horizon, k is the size of
the input window of each variable and si is a set of static metadata for the specific
entity. f(·) is the predictive function, implemented by a forecasting model.

Modern approaches for time series forecasting generally falls into one of the three
categories: statistical methods, machine learning methods or hybrid approaches.

2.1.1 Statistical Approaches

Classical, statistical approaches to time series forecasting utilize simple statistics
across past data to predict future values. A couple of notable examples: Expo-
nential smoothing (ES), which uses a window of past values with exponentially
decaying weights to extract level, trend and seasonality used for predicting future
values. Autoregressive integrated moving averages (ARIMA), which differenciates
the data for stationarity, uses regression on past values and past residuals then
reintegrates the result.

2.1.2 Machine Learning Approaches

Machine learning approaches treats time series forecasting as a supervised regres-
sion learning problem, aiming to learn a mapping from known observations to
future time series values. This mapping is learned automatically by a machine
learning algorithm, utilizing historical data for the time series to be forecasted,
and possibly data from related problems through transfer learning.

2.1.3 Hybrid Approaches

Hybrid approaches to time series forecasting aim to combine aspects of classical,
statistical time series forecasting methods with machine learning. A common ap-
proach is to use statistical methods to preprocess the time series, like detrending
and deseasonalizing, then predicting only the level component of the time series
using machine learning. Another alternative is integrating aspects of statistical
forecasting methods directly into a machine learning model, trained as an end-
to-end system.



2.2. MACHINE LEARNING METHODS 7

2.2 Machine Learning Methods

Supervised machine learning regression utilizes general machine learning algo-
rithms to automatically learn underlying statistical relationships from data in
order to create a predictive model. Given a feature space X and a label space Y,
a predictive function f : X → Y is learned using a set of N training examples
{(x1, y1), ..., (xN , yN )}, where xi ∈ X and yi ∈ Y. When applied to time series
forecasting, X consists of previous time series values and related data, such as
weather forecasts, while Y consists of future time series values. The predictive
function f(·) is learned to minimize the prediction error on future predictions,
using a machine learning algorithm.

2.2.1 Artificial Neural Networks

Artificial Neural Networks are computational models inspired by the distributed
nature of the brain [46, pp. 727-737]. The core idea behind neural networks,
is the use of many, simple computational units connected to each other in a
larger network, which can represent complicated computational functions. Many
specialized computational units exists, and with a wide range of possible network
structures and the ability to flexibly combine different types of units into one
network. Consequently, neural networks encompasses a wide range of different
modeling approaches well suited for many different learning problems.

Network Structure

A neural network is typically structured into layers, where each layer consists of
one or more units. The units in each layer take the output of the previous layer
as input, and the output of the layer is a vector of the output of all the units
within the layer. Each layer implements a transformation that is applied to the
input vector, giving a transformed output vector, starting with x as the input
to the network and ending in the prediction ŷ as output. In between each layer,
the data goes through different internal representations, which gradually extract
information relevant for the final prediction.

Activation Functions

Activation functions are simple functions that map an input value to an output
value. Activation functions are used within many different units, with the pri-
mary purpose of introducing non-linearity into the network. Without such non-
linearities, parts of or the entire network might consist of only linear operations,
and can therefore only represent linear functions. Many different activation
functions exists, the most commonly used being the Rectified Linear Unit (ReLU),



8 CHAPTER 2. BACKGROUND THEORY

the sigmoid function (σ) and the hyperbolic tangent function (tanh).

ReLU(x) =

{
x, if x > 0

0, otherwise

σ(x) =
1

1 + e−x

tanh(x) =
2

1 + e−2x
− 1

Standard Neuron

The simplest and most commonly used units in neural networks are standard
neurons. Fully connected layers of such units are often referred to as dense layers
and a neural network consistent of only dense layers are also called multi-layer
perceptrons (MLP). Standard neurons take a weighted sum of its inputs plus an
internal bias, transforms it through an activation function and passes the result as
its output. The weights and bias are learnable parameters, which are optimized
for the learning problem during training. Mathematically, standard neurons can
be expressed as follows:

y = f(

n∑
i=1

wixi + b)

Where y is the output of the neuron, n is the number of inputs, corresponding
to the number of units in the previous layer for fully connected layers, wi is the
learnable weight for the i-th input, xi is the i-th input, b is the learnable bias
and f is the activation function.

Long Short-Term Memory

Long Short-Term Memory (LSTM), originally proposed by Hochreiter and Schmid-
huber [20], is a type of recurrent neural network unit that adds an internal
memory state to the network. Recurrent units are units in which the units
output from the previous run of the network is also fed as input. This recurrent
loop creates an internal memory state that allows the network to learn to model
dependencies across examples. Recurrent neural networks is a natural fit for
problems where there is a dependency between subsequent examples, as is the
case in time series data. Recurrent loops can be implemented with standard
neuron units, however these networks struggle to learn and remember long term
dependencies. LSTM units were developed to better capture both the long and
the short term dependencies in data.



2.2. MACHINE LEARNING METHODS 9

In addition to taking the output of all LSTM units within the layer as input at
the timestep, an LSTM unit has a second, cell state which is also passed across
timesteps. The cell state is manipulated through three gates, the input gate,
the output gate and the forget gate. The input gate regulates how information
from a new input is added to the cell state. The forget gate regulates whether
information is kept in the cell state and the output gate regulates how cell state
information is used for computing the output. Mathematically, an LSTM unit
can be expressed as follows:

ft = σ(

n∑
i=1

wfi xt,i +

m∑
j=1

ufj ht−1,j)

it = σ(

n∑
i=1

wiixt,i +

m∑
j=1

uijht−1,j)

ot = σ(

n∑
i=1

woi xt,i +

m∑
j=1

uojht−1,j)

ct = ftct−1 + it tanh(

n∑
i=1

wcixt,i +

m∑
j=1

ucjht−1,j)

ht = ot tanh(ct)

c0 = 0, h0 = 0

Subscript t denotes the timestep. ft is the forget gate activation, it is the input
gate activation and ot is the output gate activation. n is the number of inputs
to the unit and m is the number of units within the LSTM layer. wfi , wii, w

o
i

and wci are learnable weights for the i-th input and xt,i is the current i-th input.

ufj , uij , u
o
j and ucj are learnable weights for the previous output of j-th LSTM

unit and hj,t−1 is the previous output of the j-th LSTM unit. σ is the sigmoid
activation function and tanh is the tanh activation function.

Training

Neural networks typically learn parameter values from data by utilizing error
gradients. For a set of training data the network is used to predict target values
for each example. The resulting prediction is compared to the true labels of the
data using a loss function, most commonly root mean square error (RMSE) or
mean absolute error (MAE) for regression problems. The gradient of this loss
function of all trainable parameters within the network is computed and used to



10 CHAPTER 2. BACKGROUND THEORY

update parameter values in the opposite direction of the gradient, in order to
reduce the loss. The simplest, gradient descent update rule is as follows:

pi+1 = pi − η∇L(pi)

Where pi is a vector of all trainable parameters within the network. L(pi) is
the loss, in this case as a function of trainable parameters, given a fixed set of
training data. η is the learning rate, which is a tunable hyperparameter of the
model. p0 is typically initialized to a random vector.

Due to the risk of this optimization method getting stuck in suboptimal local min-
ima, more complex gradient based optimization algorithms have been developed,
such as ADAM and RMSprop. These methods use concept such as momentum
and decay to better balance the exploration-exploitation trade-off during training.

A problem known as the vanishing gradient problem arises in deep neural net-
works with many layers. As the error gradient is calculated from the output layer
and propagated backwards through the network, the gradient tends to become
smaller and smaller. For deep networks, this results in early layers receiving a
gradient that is too small for learning optimal weights from random initialization.
A common approach to resolving the vanishing gradient problem, is by utilizing
layer-wise unsupervised pre-training of the network. A common method is to
pre-train each hidden layer as the hidden layer in a three-layer autoencoder. The
autoencoder is trained to recreate its own input, and is trained on the output
of the previous layer in the deep network. Alternatively, a similar pre-training
strategy uses a stack of Restricted Boltzmann Machines (RBM), which are two-
layer networks trained to recreate model input through a backward pass through
the network. Deep neural networks pre-trained with stacked RBMs are known as
Deep Belief Networks (DBN). These pre-trained networks are then fine-tuned on
labeled data using backpropagated gradients to create the final, predictive model.

2.2.2 Decision Trees

Decision trees are a simple and intuitive, yet powerful modelling approach used in
machine learning [46, pp. 697-707]. Decision trees are trees where each internal
node represents conditional decisions on input data in a flowchart-like manner.
For each example, the tree is traversed from the root and down, with each decision
indicating what child node to traverse to. The final, leaf node indicates the final
prediction for the example. Decision trees can be used for regression problems
with both numerical features and numerical labels. In such a case the conditional
decision made in each internal node will be in the format xj > s where xj is the
j’th feature of example x and s is a numerical split point numerical threshold.



2.2. MACHINE LEARNING METHODS 11

Decision trees can represent a wide range of predictive functions while excelling
at intuitiveness and explainability.

Decision Tree Learning

Several different algorithms for decision tree learning exists, but most build
on the idea of recursively building the tree by splitting the training data to
best separate label values. Depending on whether features are categorical or
numerical, different strategies need to be employed for choosing the splitting
feature and condition. Depending on whether labels are categorical (classification
trees) or numerical (regression trees), different strategies for leaf node values and
split quality metrics needs to be used. To illustrate the learning of a decision tree,
the Classification and Regression Tree (CART) algorithm for learning a binary
regression tree is described.

In CART, a decision tree is learned in a greedy, top-down recursive manner.
Starting with a dataset D = {(xi, yi)}i=1..n with n examples. Given a splitting
feature j and split point s, the dataset is split into two sets as follows:

R1(j, s) = {x ∈ D | xj ≤ s}

R2(j, s) = {x ∈ D | xj > s}

The goal of one split is to find the optimal split feature k and split point s that
minimizes the loss metric, which is sum of squares for CART. That is, solving:

arg min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2


where c1 is the predicted value for the examples in R1(j, s) and c2 is the predicted
value for the examples in R2(j, s).

The inner minimizations are easily solved as the average of the label for the data
in each respective partition of the dataset:

c1 =
1

|R1(j, s)|
∑

xi∈R1(j,s)

yi

c2 =
1

|R2(j, s)|
∑

xi∈R2(j,s)

yi



12 CHAPTER 2. BACKGROUND THEORY

The outer minimization is solved by testing all splitting features j and all unique
values for xj in D as splitting point s.

After finding optimal values for j and s, an inner decision node in the tree is
generated based of these values, for each child is either made into a leaf node the
corresponding optimal prediction c1 or c2 if a stopping criteria has been met, for
example max depth or 0 error. Alternatively a new split is generated as the child
node by running this procedure recursively on the partitioned dataset given by
R1(j, s) or R2(j, s)

Gradient Tree Boosting

Gradient Tree Boosting is an ensemble method that combines multiple decision
trees to create more complex and more accurate models. Gradient boosting can
be applied to any base model, not only decision trees, but decision trees is the
most commonly used base model in practice.

Gradient Tree Boosting builds an ensemble of decision tree models in a gradient
descent fashion, by training new models on the negative gradient of the loss
function in respect to the predictions of the previous set of models in the ensemble.

Given a set of training data D = {(xk, yk)}k=1..n with n examples, a gradient
boosting ensemble predictor FM (·) consistent of M base models is trained itera-
tively. At iteration 1 ≤ m ≤M a training set for a new base model is generated
based on the partially built ensemble Fm−1(·):

Dm =

{
(xk,−

∂L(yk, Fm−1(xk)

∂Fm−1(xk)
)

}
k=1..n

Where L(y, x) is a loss function, for example MAE or RMSE.

A new base predictor hm(·) is trained learned from the dataset Dm, and added
to the ensemble:

Fm(x) = Fm−1(x) + ηhm(x)

Where η is the learning rate.

This method of utilizing gradient descent for constructing an ensemble is similar
to the usage of gradient descent described in subsection 2.2.1, where neural
network parameters are gradually shifted and optimized to minimize the loss
function. In the case of gradient boosting, it is the predictions that are shifted to



2.3. TRANSFER LEARNING 13

minimize the loss function, using base models trained on the negative gradient
to ensure generalization to new examples.

The gradient tree boosting implementation CatBoost presented by Dorogush
et al. [15], has been the most successful modelling method in TrønderEnergi’s
previous experiments with wind power forecasting.

2.2.3 K-means Clustering

Clustering is a different problem type than forecasting. The goal of clustering is
to identify groups, or so called clusters, of similar examples within a set of data.
New examples can then be assigned to one of these clusters. k-means clustering
is a common machine learning approach for clustering.

Given observations x1, ..., xn ∈ Rd and initial, randomly chosen clusters centers
c1, ..., ck ∈ Rd, a two-step iterative process is used to re-compute the cluster
centers.

In the assignment step, each observation is assigned to the closest cluster center
according to some distance metric, usually squared eucledian distance:

ai := arg min
j

‖xi − cj‖2

Then in the update step, the cluster centers are updated to be the average
position of all observations assigned to it:

cj :=

∑n
i=1[ai = j]xi∑n
i=1[ai = j]

Which is expressed using Iverson bracket notation, where [P ] is 1 if proposition
P is true and 0 otherwise.

Repeated steps of assignment and cluster center updating is repeated until con-
vergence, which occurs when no cluster center is moved during an update step.

2.3 Transfer Learning

In traditional machine learning approaches, a critical assumption is that all the
training data is sampled from the same underlying distribution as the data the
model will be applied to. Transfer learning seeks to surpass these limitations, and
leverage training data from similar, but nonidentical distributions to learning the
target distribution.



14 CHAPTER 2. BACKGROUND THEORY

2.3.1 Formal Definition and Setting

Pan and Yang [41], introduces a formal definition of transfer learning, based on
the concept of domain and task. A domain D = {X , P (X)} consists of a feature
space X and a marginal probability distribution P (X), where X = {x1, ..., xn} ∈
X . A task T = {Y, f(·)} consists of a label space Y and a predictive function
f(·), which is learned from training data consisting of pairs (xi, yi) where xi ∈ X
and yi ∈ Y.

Pan and Yang defines transfer learning as follows:

Given a source domain Ds and learning task Ts, a target domain Dt

and learning task Tt, transfer learning aims to improve the learning
of the target predictive function ft(·) in Dt using knowledge in Ds

and Ts, where Ds 6= Dt or Ts 6= Tt.

Further, Pan and Yang [41] specifies different settings transfer learning based on
the relationship between the source and target domain and task (Table 2.1) and
data availability (Table 2.2).

Learning Setting Source and Target Domains Source and Target Tasks
Traditional Machine Learning The Same The Same

Transfer Learning
Inductive Transfer Learning / The Same Different but Related

Unsupervised Transfer Learning Different but Related Different but Related
Transductive Transfer Learning Different but Related The Same

Table 2.1: Settings for traditional machine learning and transfer learning given
domain and task similarity (adapted from [41])

Transfer Learning Setting Related Areas Source Domain Labels Target Domain Labels Tasks

Inductive Transfer Learning
Multi-task Learning Available Available

Regression
Classification

Self-taught Learning Unavailable Available
Regression
Classification

Transductive Transfer Learning

Domain Adaption
Sample Selection Bias
Co-variate Shift Available Unavailable

Regression
Classification

Unsupervised Transfer Learning Unavailable Unavailable
Clustering
Dimensionality Reduction

Table 2.2: Settings for transfer learning given data availability (adapted from
[41])

For our case, the feature space X and the label space Y are assumed to be the same
between different wind farms. P (X) and f(·) are however both different, resulting
in both the domains and the tasks being different. We also have available data
for both the source and target wind farms. Our use case is therefore inductive
transfer learning, which highly relates to multi-task learning (MTL).



2.4. PRACTICES AND TECHNIQUES IN SOFTWARE ENGINEERING 15

Caruana [8] describes multi-task learning as an approach to inductive transfer
learning where models for multiple different tasks are trained simultaneously,
all sharing knowledge and benefiting mutually from each other. The multi-task
learning context fit our system needs very well. We are interested not only in
applying transfer learning to improve performance on new wind farms, but also
leveraging this new data to improve performance on old wind farms.

2.4 Practices and Techniques in Software Engi-
neering

A well working machine is about more than just its functionality; it also requires
certain qualities. Similarly the development of quality software requires planning
and well working procedures and practices. This section will firstly define mod-
ifiability and scalability before presenting some of the common techniques that
are used to develop services with high modifiability and scalability.

To discuss system qualities in regard to modifiability and scalability, the concepts
must first be define for our usage. The International Organization for Standard-
ization (ISO) has developed a standard for system quality requirements presented
in ISO/IEC 25010:2011 [25]. They define modifiability as:

Degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product
quality.

Put simply we want to make it easy for TrønderEnergi to modify the system,
specifically in terms of being able to support different machine learning models
and also the potential of supporting other time series related problems.

Techniques used to achieve a specific quality attribute are called architecture
tactics [2]. Tactics are design decisions that directly affects one or more quality
attributes of a system. In the case of modifiability, Bass et al. [2] presents
four tactics that can be used to improve the modifiability of the system; reduce
module size, increase cohesion, reduce coupling and defer binding. In this context
cohesion refers to the degree to which the responsibilities within a module are
aligned, coupling refers to the reliance between modules and defer binding refers
to the use of generic code that allows mapping of specific values or concepts late
in the development process.

An ISO standard for scalability does not exist, so in this thesis we will use the
definition by Bondi [4] who defines scalability as:

The ability of a system to accommodate an increasing number of



16 CHAPTER 2. BACKGROUND THEORY

elements or objects, to process growing volumes of work gracefully,
and/or to be susceptible to enlargement.

For the proposed system we are specifically interested in its scalability in terms
of its ability to scale to an increase in active users.

There are two ways of achieving scalability in a system; horizontally and ver-
tically. Horizontal scaling, also known as scaling out, refers to adding more
resources to a logical unit [2], such as adding another compute instance to a
cluster. Vertical scaling also known as scaling up refer to adding more resources
to a physical unit [2], such as adding to the CPU or memory capacity of a single
compute instance. Both types are used today, but as soon as an applications
presides the capacity for a single machine, horizontal scaling is the only option.

The first thing to consider when developing a system with specific quality at-
tribute goals, is the architecture of the solution. Traditional systems often have
a large code base that does everything. Such systems are known as monolithic
systems. These monolithic systems are not ideal for modifiability and scalability.
Changing them require an understanding of a large and possibly complicated
application, and scaling can only be done to the entire application, even if only
part of it needs extra compute or memory. In this thesis we will focus on an
architecture known as microservices, that offer better scalability and modifiability
then monolithic systems [40].

2.4.1 Microservices

Microservices is a type of software architecture where each software module is
operated as an independent software system. One of the key advantages of this
approach is the ability to use different technologies in each microservice. For
instance it is possible to have a web service that is using Java, and it can use
Python to perform some sub task. This advantage means that it is possible to
leverage the best language for each task.

Another advantage of having smaller modules is the ability to scale each module
individually and independently. This is particularly useful for systems where
some functionality requires extra computation power for a short amount of time,
such as when training new machine learning models. This also means that each
module also can be deployed to different compute targets, where the compute
target is optimized for CPU or GPU workloads.

In the case of modifiability microservices makes each module smaller, and there-
fore makes it easier to understand and modify a single module. This has the
advantage of making it easier to divide the system into smaller organizational
units, and it is important as smaller teams working on smaller repositories often



2.4. PRACTICES AND TECHNIQUES IN SOFTWARE ENGINEERING 17

are more productive [40]. An example of this is that developers can work on one
module, while data scientists can work on another. The small modules can also be
easier to replace at a later time, as the barrier to replace modules are often lower
for microservices than for monolithic systems [40]. This is particularly important
as the projects grows and older modules may become outdated. Finally the
small modules can be deployed separately, reducing the risk of a system wide
downtime. To achieve frequent updates of the service, microservices are typically
used together with DevOps practices.

2.4.2 DevOps

The word DevOps is comprised of the abbreviations for development and oper-
ations, according to Ebert et al. [16] it aims to automate the building, testing
and release of software, by building a closer relationship between operations and
development. DevOps is a practice that combines process with software practices
and tools to allow a faster and more frequent delivery of software services, while
also delivering high quality. This will make it easier to modify the system, as
changes can be released with less overhead. The three terms explained below can
be used to describe different stages of the deployment process.

Continuous Integration

Continuous integration(CI) is the process of integrating code into a shared repos-
itory on a frequent basis. Frequent integration allows for faster detection of
integration errors, and thus less time backtracking. When using CI, it is also
common to have automated tests and build scripts to ensure the code can merge
without errors.

Continuous Delivery

Continuous Delivery(CD) is the process of automating delivery of software such
that it can be deployed at any point in time. However the process of starting the
deployment is done manually.

Continuous Deployment

Continuous Deployment(CD/CDE) is a process where software functionality is
delivered frequently through automated deployments. As such it differs from
continuous delivery in that no manual interaction is needed in the process.

A fully autonomous deployment utilizes continuous integration and continuous
deployment, often written as CI/CD. However it is possible and sometimes also
desirable to only use continuous delivery, depending on organization needs. In



18 CHAPTER 2. BACKGROUND THEORY

the case of microservices each service will have its own deployment strategy and
the level of automation can be set up individually for each service. CI/CD can
be setup and ran manually, however many cloud provides offer solutions that
simplifies the process.

2.4.3 Cloud Computing

Cloud computing is the offer of on-demand computer system resources over the
internet as a service [33]. This means users can deploy applications to the cloud
without knowledge about available resources or having to purchase equipment.
This reduces the upfront cost of deploying new solutions, and due to economy at
scale the cost also stays low once operative. Many cloud provides also offer tools
and service for CI/CD, logging, compliance, authentication, backup and more,
providing a more efficient experience then on-premise solutions.

Cloud services are typically categorized into one of four architectural categories;
infrastructure as a service (IaaS), platform as a service (PaaS), serverless, and
software as a Service (SaaS). IaaS is a barebone solution that typically gives users
access to services like Virtual Machines. PaaS are managed to a higher degree,
and typically give the ability to develop, manage and run applications within
a given environment. Serverless removes the need to manage infrastructure,
while SaaS is the highest degree of management and offers completed, managed
software.

As presented earlier in this chapter, we intend to utilize a microservice archi-
tecture. This means the system can use one or more cloud services to deploy
a set of independent software modules. This can be done in many ways, but
one common way is to utilize containerization. Containers can be ran in IaaS,
PaaS and serverless environments and some providers also offer container native
environments sometimes referred to as containers as a service (CaaS).

2.4.4 Container Technologies

Containers enable software to run in isolated environments, while offering lower
overhead than traditional virtual machines [39]. Multiple containers can share
the same operating system kernel, running on the container engine, while virtual
machines require a full operating system for each environment managed by a
hypervisor.

Docker [14] is a popular platform for containerization. The Docker platform
enables developers to run their application both locally and in production using
the same platform. Docker applications are configured using Dockerfiles, that
specify a list of commands that will be used to create a Docker image. A Docker



2.4. PRACTICES AND TECHNIQUES IN SOFTWARE ENGINEERING 19

image consist of multiple read-only layers corresponding to the commands in the
Dockerfile. Docker containers can in turn be created using Docker images.

The combination of microservices, DevOps, cloud services and container technol-
ogy is specifically selected to create a system that is both modifiable and scalable.
They offer a good framework to achieve the desired quality attributes, however
equally important is the implementation of each microservice. One of the tactics
we utilized to get a system that is highly modifiable and that applies both to the
system architecture and implementation, is to reduce the technical debt of the
system.

2.4.5 Technical Debt

Technical debt is the concept of choosing the quick or easy solution now, instead
of a possibly harder to implement solution that will offer less work later [6]. Tech-
nical debt can be compared to monetary debt in the sense that debt accumulate
interest, that will have to be repaid later. The longer the easy solution exists, the
more work will be required to improve it later. The term is used to emphasize
the need to make proper preparation, and complete tasks before they can cause
additional issues.

Reducing technical debt is essential to ensure that a system can evolve and be
maintained. According to Kruchten et al. [27] many agile teams seem to believe
they are immune to technical debt. However due to time constrains and the need
to deliver quick, technical debt can easily accumulate. Technical debt should
not always be avoided, in some cases the short term benefits can outweigh the
long term cost. In our case however, the system is intended to be delivered to
TrønderEnergi as a highly modifiable system and as such reducing technical debt
is vital.



20 CHAPTER 2. BACKGROUND THEORY



Chapter 3

Related Work

For the proposed system to get the desired capabilities and ensure that it is
competitive against current competition, we have conducted research into exist-
ing forecasting provides and a literature review into the current state-of-the-art
methods within software engineering and machine learning. The literature review
first aimed at getting a wide understanding of the topics, before diving into the
concepts that were most relevant to our system. For machine learning it meant
investigating time series forecasting and transfer learning, particularly transfer
learning applied to wind power prediction. As for software engineering this meant
requiring practical knowledge of microservices and investigating machine learning
solutions in a complex software system. Based on the literature review, this
chapter will present the research we think can have an impact on our system.

3.1 Current Commercial Competition

Forecasting within the energy sector and specifically for the application of wind
power is nothing new. In fact, numerous commercial actors exists in the market
today and TrønderEnergi has tested forecasts using the services of companies
such as Alpiq [1], Powel [42] and ConWX [10]. TrønderEnergi’s experience was
that the processes used by these companies requires vast amount of manual labor
and that the process often takes weeks to complete. This manual process makes
it difficult for both the forecast providers and the power companies interested in
the service.

Automating the forecast creation process does not only make the process easier
for potential customers, but it also means that the marginal cost of creating

21



22 CHAPTER 3. RELATED WORK

new projects are only dependent on the cost of running the service. This cost
advantage can for instance be used to offer free trails or offer significant savings
for multiple parks. This also means that the service greatly benefits from a large
customer base, meaning that another option is to offer the service at a discount
compared to the competitors.

Based on our research we were able to find one company by the name of WindSim
[52] that offers a similar level of automation to our proposed service. Compared
to WindSim we think our proposed system offer a few advantages. Firstly for our
proposed system the end user is not required to have any knowledge about wind
power forecasting, WindSim on the other hand requires users to select between
multiple options including artificial neural network (ANN) and computational
fluid dynamics (CFD). Secondly we intend to leverage the power of transfer
learning to improve forecasts as the service get more customer and more data.
Thirdly the proposed system is intend to be made in such a way that also the
sign up and payment for the service can be automated.

The commercial actors offering custom implementations are not the only competi-
tors to the proposed system. Large corporations such as Amazon, Google and
Microsoft offer Automated machine learning(AutoML) as part of their Cloud
offer. AutoML allows users to apply machine learning to real-world problems
whiteout the need for machine learning expertise [23]. AutoML automates the
process of feature engineering, algorithm selection and hyperparameter optimiza-
tion, meaning that no knowledge of these topics are required from the user.
AutoML services are can typically be accessed using an online web interface,
making them easy to use. The vast scale of the cloud providers also means they
are very competitive from a price perspective. Table 3.1 illustrates the advantages
of each solution.

Proposed System Traditional Providers AutoML WindSim

High forecast accuracy X X X
Ease of use X X X

Low marginal cost X X X
Utilize transfer learning X X

Table 3.1: Comparison of commercial competition



3.2. TIME SERIES FORECASTING AND TRANSFER LEARNING 23

3.2 Time Series Forecasting and Transfer Learn-
ing

This section will present a selection of related works on time series forecasting
and transfer learning. The aim is to give insight into the recent, most successful
approaches for time series forecasting, a broad understanding of relevant transfer
learning approaches and concrete examples on applications to the wind power
domain.

3.2.1 The M4 Competition

The 2018 M4 forecasting competition [32] is the largest scale time series forecast-
ing competition to date, consisting of 100,000 single-variate time series, and 50
submissions. The major findings from the M4 competition was that pure machine
learning methods performed poorly, with none of them beating the simple statis-
tical baseline of the competition. Combined methods utilizing multiple methods,
mostly statistical methods, were the consistently best performing methods of the
competition, with 12 out of the 17 best methods being combination methods.
The two best methods, performing well for both point prediction and prediction
intervals, were both hybrid methods, combining statistical and machine learning
methods.

1st Place: ES-RNN

ES-RNN by Slawek Smyl [48] is the winning method of the M4 forecasting com-
petition, combining exponential smoothing (ES) with an LSTM-based recurrent
neural network (RNN). ES-RNN combines the concept of time series specific local
models with the concept of cross-time series global models into a hybrid model.

Winter-Holt exponential smoothing with level and seasonality is implemented as
a preprocessing step, using exponential smoothing parameters learned for each
time series separately. The resulting, normalized and deseasonalized time series
is then fed to an LSTM-based neural network, which is trained on all time series
in the training set. The resulting time series prediction is then denormalized
and reseasonalized using exponential smoothing. The globally trained RNN
in ES-RNN means that transfer learning is an integral part of ES-RNN, with
the network learning to make forecast on time series spanning a wide range of
domains, all preprocessed for increased homogeneity.

ES-RNN is the current state of the art for single-variate time series forecast-
ing, but is not applicable to multivariate time series forecasting. Independent
exponential smoothing preprocessing of input time series in multivariate time



24 CHAPTER 3. RELATED WORK

series prediction would eliminate the relationships between variables that are the
basis for good predictions. The core idea of combining learned, problem instance
specific preprocessing with a global model trained across all problem instances is
however a relevant approach also for multivariate time series forecasting.

2nd Place: FFORMA

FFORMA (Feature-based FORecast Model Averaging) proposed by Montero-
Manso et al. [38], is the second place winner method of the M4 forecasting
competition. As with ES-RNN, FFORMA combines local, statistical models with
a global machine learning model, utilizing transfer learning. FFORMA takes a
meta-learning and meta-transfer approach, where a machine learning model is
trained to combine different statistical methods.

FFORMA consists of an ensemble of multiple different, statistical forecasting
models, such as exponential smoothing and ARIMA. These models are fitted to
each time series individually. Rather than combining these different forecasts
statically using fixed weight, a machine learning based meta-model is trained to
predict the weight of each individual forecasting method based on the specific
time series. The meta-model uses the gradient tree boosting implementation
XGBoost. Input to the meta-learner is a set of 42 features extracted from the
time series, such as strength of trend, strength of seasonality, etc.

FFORMA illustrates an interesting meta-transfer approach that is also applicable
to multivariate time series. Training a global model to combine results of multiple
local models. A limitation is however the potentially large amount of problem
instances required to train the meta-model. Since each problem instance only
gives a single training example for training the meta-model. While 100,000
different problem instances were available in the M4 competition, such instance
availability is not realistic for most problem specific systems within the energy
sector, and certainly not for wind power production.

3.2.2 Deep Transfer Learning

In a survey by Tan et al. [49], reviews the current work on transfer learning on
deep neural networks, and specify four main categories of transfer learning within
deep learning: instance-based, mapping-based, network-based and adversarial-
based methods.

Instance-based

Instance-based approaches are based on the selective reuse and weighting of some
instances in the source domain to augment the training set for the target domain.



3.2. TIME SERIES FORECASTING AND TRANSFER LEARNING 25

Source domain examples are weighted based of similarity to target domain, with
more similar source examples being weighted higher. Instance-based methods
assume that there is a partial overlap between the source data and target data
within feature space with similar label mapping.

Mapping-based

Mapping-based approaches attempt to increase homogeneity between target and
source data by mapping the data to a shared, intermediate space. Mapping can
either be applied as a preprocessing step, with unique mapping functions for
each domain. The simplest example of this would be to normalize data for each
domain independently. Alternatively, adaption layers can be worked directly into
the network using domain confusion [51].

Network-based

Network-based approaches are based on reusing parts of neural networks trained
on source domains to create and train a neural network for the target domain.
Neural networks consists of multiple layers, where each layer represents a trans-
formation through different internal representations. Particularly early layers in
neural networks learn to extract general, useful features from the input data.
Network-based approaches assume that some internal representations learned on
the source domain can also be useful on the target domain.

Adversarial-based

Adversarial-based approaches utilizes an adversarial learning process to improve
generalization of internal representations learned within a network between source
and target. A neural network with shared early layers between source and target,
but separate output layers, is trained on source and target data simultaneously.
In addition to the label prediction, a domain classification output layer is added,
which is trained to classify whether the example originates from the target do-
main or the source domain. See Figure 3.1 for example layout. The inverse
of the domain classification loss is worked into the loss function for the entire
network, meaning the network is optimized to minimize prediction error while
maximizing domain classification error simultaneously. The addition of this
adversarial component drives the learning of the shared layers to learn better
shared representations for the source and target domain compared to normal
network based multi-task learning methods, such as presented in subsection 3.2.3.



26 CHAPTER 3. RELATED WORK

Figure 3.1: Example neural network with adversarial domain classification label.
(adapted from [49])

3.2.3 Wind Power Forecasting: Multi-Task Neural Net-
work

Hu et al. [22] experimented with a neural network based multi-task learning
(MTL) approach for short-term wind speed prediction. The experiments were
performed on wind speeds measured at different wind farms, and not the wind
farm power production itself. Experiments were performed on data from four
different wind farms spaced out across northern China, with distinct differences
in climate and topology.

The model is a multi-task learning based neural network, with a set of shared
hidden layers and separate output layers for each individual farm. The model
consists of two hidden layers with 100 units each. The hidden layers were pre-
trained unsupervised using auto-encoders, before supervised fine-tuning with
labeled data. The output layer for each farm and the hidden layer fine-tuning is
done in parallel for all farms, ensuring that the hidden layers learn a representa-
tion effective for forecasting on all farms. See Figure 3.2 for an illustration of the
network structure.



3.2. TIME SERIES FORECASTING AND TRANSFER LEARNING 27

Figure 3.2: The MTL network for wind speed forecasting used by Hu et al. [22]
(adapted from [22])

Data with 10-minute data is used, with input to the model being wind speed
for the past 24 hours (144 timesteps). The model is used to predict future
wind speeds multiple timesteps ahead. The strategy for multi-step forecasting is
not specified, but the multiple output neurons per farm in Figure 3.2 indicates
a multi-output strategy, with one output neuron for each predicted timestep.
Experiments were conducted with transfer to one target farm with different,
smaller quantities of data from the three other farms as sources, with one year
of data each. Results are compared to several non-transfer methods trained only
on the target wind farm data. A neural network with the same architecture as
the transfer model, but with output only for the target wind farm, a support
vector regressor with linear kernel and an extreme learning machine with linear
kernel. Their experiments show consistent good results with the MTL network,
particularly for shorter forecasting horizons and smaller target data availability.

While these experiments show multi-task learning of neural networks with shared
layers to be a promising strategy for wind power forecasting transfer learning,
there are several limitations with these experiments that make them less relevant
for our work. Most importantly, the experiments are based of single-variate time
series forecasting, using only historical values of the time series to be predicted,
and does not include weather forecasts. The experiments were also performed on
wind speed measured at the wind farm, not actual wind farm power production.
While experiments for seven different quantities of target data were performed



28 CHAPTER 3. RELATED WORK

(0.5 month and 1-6 months), we find this granularity to be insufficient. Results
were also only reported for 10-minute, 30-minute, 1-hour and 2-hours forecasting,
while we wish to make forecasts for several hours into the future.

3.2.4 Wind Power Forecasting: DNN Ensemble
Meta-regression

DNN-MRT

Qureshi et al. [45] introduces a neural network based ensemble for wind power
forecasting called DNN-MRT (Deep Neural Network based Meta Regression and
Transfer Learning). DNN-MRT utilizes a neural network based meta-regressor to
combine results from an ensemble of neural network based base regressors, and
utilizes transfer learning by re-using pre-trained base regressors from one wind
farm to speed up the learning process. The model uses previously generated wind
power and weather forecasts as inputs.

The model consists of an ensemble of nine base regressors, each being a deep
neural network. In addition to the forecasting loss, the base regressors utilize
L2 weight regularization, which optimizes weights to be small, and sparsity
regularization, which optimizes average output of each neuron within the network
to be small to enforce output sparsity. The base regressors are pre-trained as
stacked autoencoders, before they are fine-tuned with labeled data. Each of the
nine base regressors consists of different network structures and hyperparameter
choices, to facilitate variety in base regressor representations. The forecasts from
each base regressor is combined with the original input and used to train a meta-
regressor for final forecast, which is a deep belief network.

DNN-MRT utilizes transfer learning to speed up the learning process of base
regressors. The base regressors are only pre-trained on the first wind farm, and
models for subsequent wind farms reuse and fine-tune these pre-trained base
regressors. The result is a faster training process for new wind farms, but does
not leverage transfer learning to improve performance on target wind farms.

DNN-MRT was tested for single-step forecasting on five different wind farms
and compared to the performance of three other relevant works on wind power
forecasting. DNN-MRT was found to give better performance than previous
works, particularly in terms of forecast stability, as seen by a greater improvement
in RMSE compared to other techniques than MAE.

DNN-MRT shows positive effects of neural network ensemble techniques for wind
power forecasting, which is a promising modelling approach given neural networks
flexibility for transfer learning techniques. DNN-MRT’s use of transfer learning
is quite limited, only focusing on training time reduction and not on model



3.2. TIME SERIES FORECASTING AND TRANSFER LEARNING 29

accuracy improvement for smaller data quantities. Additionally, no experiments
were conducted to actually evaluate the impacts of transfer learning on training
time.

ATL-DNN

Qureshi and Khan [44] expands on their previous work with DNN-MRT by
introducing ATL-DNN (Adaptive Transfer Learning in Deep Neural Networks).
ATL-DNN functions similarly to DNN-MRT, but this work focuses on designing
and online wind power forecasting system to handle the continuous income of
new data for all wind farms.

Similar to DNN-MRT, ATL-DNN utilizes an ensemble of neural network base
regressors pre-trained as stacked, sparse auto-encoders, and a deep belief net-
work as a meta-regressor to make a final prediction. The meta-regressor takes
the original input and the base regressor predictions as input to make a final
prediction. In ATL-DNN, rather than having an ensemble of nine base regressors
with different parameters, the ensemble consists of three base regressors with the
same parameters, but trained on different subsets of data. Each of the three base
regressors for all wind farms are fine-tuned on a base-regressor pre-trained on
the first four months of data from the same, randomly chosen wind farm. The
base regressor are trained on the first four, eight and twelve months of training
data respectively. An online training scheme for training a new base-regressor to
replace the oldest base-regressor every four months is then proposed. This new
base regressor is trained on the data for the previous base regressor plus the four
next months of data. Figure 3.3 shows the training and testing procedure of the
system.



30 CHAPTER 3. RELATED WORK

Figure 3.3: The training and testing procedure for ATL-DNN (adapted from [44])

ATL-DNN is tested on five different wind farms, using one as source for pre-
training the base regressor. The meta-regressor consistently outperforms all base
regressors, showing the positive value in an ensemble of base regressors trained
on different data subsets. The performance of the system is compared to four
other, relevant works on wind power production, including DNN-MRT, achieving
the best performance.

ATL-DNN, as with DNN-MRT utilizes transfer learning to speed up the training
process, not to improve model performance. ATL-DNN proposes an online
learning approach where only one new base regressor needs to be retrained per
four months, rather than retraining the entire system. The concept of online
learning is relevant for our system in terms of better leveraging newer data and
handle potential seasonal drifts within the data, but we believe four months
is too long for this purpose, and a more regular retraining strategy would be



3.2. TIME SERIES FORECASTING AND TRANSFER LEARNING 31

more effective. Experiments were not conducted to evaluate the effects of the
online retraining procedure beyond the first set of base regressors illustrated in
Figure 3.3.

3.2.5 Wind Power Forecasting: Instance-based Transfer
Learning with Gradient Boosting Decision Trees

Cai et al. [7] tests an instance-based transfer learning method with gradient tree
boosting, which they call IBT-GBDT (Instance-Based Transfer Gradient Boosted
Decision Trees) for wind power quantile regression. The method uses weighted
source wind farm data to augment the training set for the target wind farm, using
weights generated by analyzing error distribution in an iterative process.

In IBT-GBDT the weights for the target wind farm is a fixed hyperparameter,
and weights for source wind farms are initialized to 1. The source weights are
then refined iteratively by first training a gradient tree boosting model with
the current weights, and then using predictions on each source wind farm to
recompute weights based on the error distribution. The error distribution is
assumed to be Laplace distributed, and maximum likelihood is used to estimate
the scale parameter of the Laplace distribution for each source wind farms based
on predictions. The source weights are then re-computed as the multiplicative
inverse of the scale parameter for the source. All source weights are then scaled
by dividing by the smallest source weight. This process is repeated with the new
set of source weights, until convergence.

Experiments showed that IBT-GBDT achieves notable improvements compared
to training gradient tree boosting only on data for the target wind farm, and
significantly better than training on a combined dataset of target and source
data with equal weights. The model performs particularly good compared to
alternatives when there is little data available for the target wind farm.

3.2.6 Wind Power Forecasting: Cluster-based Predictor
Weighting

Tasnim et al. [50] introduces a cluster-based similarity estimation approach to
generate weights for an ensemble of predictors trained on different sources for day-
ahead power forecasting on a new target wind farm. Only historical wind data
is utilized as input to the model, without historical power production or future
weather forecasts, with power production being the prediction target. Because
historical wind data is available in large quantities for newly built wind farms
through meteorological services. This turns the problem into a transductive
transfer problem, where large quantities of labeled data is available in source



32 CHAPTER 3. RELATED WORK

domains, and large quantities of unlabeled data are available in target domain.
Such a source model weighting approach is known as multi-source domain adap-
tion (MSDA), with other, instance-based (rather than cluster-based) weighting
approaches existing in the literature.

The proposed cluster-based weighting strategy utilizes the similarity of clusters
within the target data and source data to estimate domain similarity. For each
source domain, k-means clustering is applied to generate k clusters. The k cluster
centers from the source data is also applied to the target data, with each target
example being allocated to the closest cluster center. Two statistical difference
measures between source and target are computed for each cluster: Difference
in marginal probability distribution, which is the proportion of data assigned to
the cluster, and difference in conditional probability distribution, which is the
distribution of label values within each cluster. Since labels are not available for
target domain, predictions generated by the source predictor are used instead.
These two differences across all clusters are aggregated, and multiplicatively
inversed to form the relative source weight. This procedure is done for each
source domain independently, and final weights are then normalized to sum to 1
across source domains.

13 different spectrum-based statistical features are extracted from the a 30-day
window of past wind speed is used as input features. These features provide a
more stable basis for similarity estimation than raw wind speed values. Support
vector regressors trained on each source dataset are used as base regressors. The
system is tested on a set of 70 datasets with synthetic labels, for locations spread
across Australia. The synthetic labels are generated from transforming measured
wind speed through a power curve, with the same power curve being used for
all datasets. Performance is measured using each dataset as target in turn, with
the other 69 datasets as sources, and averaged across all targets. The proposed
method is compared to a regressor trained on all source datasets combined, an
ensemble of source regressors with equal weights and an ensemble of source models
with weights generated by an instance-based MSDA approach. The proposed
cluster-based MSDA approach outperforms the combined dataset regressor by
12.54%, the equal weight ensemble by 16.88% and the instance-based MSDA
approach by 20.63%.

The most interesting takeaway from this work is the idea of utilizing the larger
amount of historical wind data, and possibly also historical weather forecasts
available for before the construction of a new wind farm to improve transfer from
other wind farms. This approach utilizes no power production data for target
farms, allowing potentially good predictive models to be constructed earlier for
new wind farm than what is possible with target wind farm label reliant transfer
methods. An advantage with the proposed approach, is that the cluster-based



3.3. SOFTWARE ENGINEERING FOR MACHINE LEARNING 33

weight generation approach, which can only utilize data available for before wind
farm construction, is independent from the base regressor modelling approach.
The result is a lot of flexibility for the base regressor modelling, which can use any
modelling method and input features, including power production, which are not
available historically. This approach can also be combined with other label-based
model refinement strategies to improve the performance of base regressors with
labeled target farm data as it becomes available.

3.3 Software Engineering for Machine Learning

This section will present how software engineering practices can be used to create
machine learning models that are more reliable and easier to modify. This is done
by identifying and paying down technical debt.

3.3.1 Technical Debt

This section will focus on technical debt risk factors that are specific to machine
learning solutions. Sculley et al. [47] argue that while machine learning packages
have the same basic code complexity as normal code, it also has a larger system-
level complexity that can create hidden debt. Sculley et al. [47] then goes on
to introduce some of the common reasons for hidden technical debt in machine
learning.

Eroded Boundaries

Software engineering practices has demonstrated that enforcing boundaries using
encapsulation and modular design typically help create maintainable code [47].
However it is hard to enforce the same boundaries for machine learning solutions
due to its entanglement to the underlying data, as a consequence changing
anything changes everything(CACE). In return this makes it difficult to modify
existing machine learning models, due to the uncertain outcome.

Hidden feedback loops can lead to issues in analyzing system performance [47]. A
hidden feedback loop arises when the performance of the system itself changes the
prediction problem. This can lead to an additional drift in the distribution not
present in historical data. Quick experiments before system deployment would
not capture these feedback loops, making analyzing the system difficult.

Predictions made from machine learning models are often consumed by other
systems. Without access control to the predictions, it is possible to have unde-
clared consumer that uses the prediction as input. In such a case changing the



34 CHAPTER 3. RELATED WORK

machine learning model can cause issues for its undeclared consumers and as a
consequence making it difficult to change the machine learning model at all.

Data Dependencies

Kruchten et al. [28] argue that dependency debt contributes to code complexity
and technical debt in software engineering. Based on this Sculley et al. [47] argue
that data dependencies can build debt in a similar manner for machine learning
systems. For instance some input features are unstable, meaning they can change
behavior over time. This can cause unexpected behavior in a machine learning
model due to CACE. One strategy to prevent unstable data dependencies is to
use version control of the data, and migrate to the newest version when it is fully
validated for the input system.

Underutilized data dependencies add complexity to the system, as it makes the
system vulnerable to changes. Therefore efforts should be made to frequently
evaluate the need for every feature, and remove any feature that does not provide
sufficient value.

System-level Spaghetti

One common problem for machine learning solutions is the extensive use of the
glue code design pattern, in which high amounts of supporting code is written to
get data in and out of libraries. This can make it difficult to test other packages
or other machine learning approaches. In the case that the modules are written
in different languages it may be beneficial to re-implement specific algorithms
within the system, reducing glue code and making the system easier to maintain
and test.

A special case of glue code known as pipeline jungles can appear if care is not
taken when adding and merging new data sources. In worst case the resulting sys-
tem can become a jungle of scrapes, joints and sampling steps with intermediate
file outputs, making the system difficult to test and maintain.

Finally it can be tempting to perform experiments using conditional branches
within the main production code. This can however cause issues over time and it
is recommend to periodically examine each experimental branch to see if it can
be removed.

Usage for Our System

One of the system requirements is that the system should be modifiable. Systems
that accumulate a high degree of technical debt, can be difficult to modify, as
such our aim was to reduce technical debt. Due to the unpredictable nature of



3.3. SOFTWARE ENGINEERING FOR MACHINE LEARNING 35

machine learning solutions, extra care should be taken to ensure the quality of
the machine learning solution.

3.3.2 Machine Learning Production Readiness and Techni-
cal Debt Reduction

When preparing new software for production, it is vital that it is well tested and
works reliably. Breck et al. [5] presents 28 specific tests and monitoring needs to
improve production readiness and pay down machine learning debt. Although
testing seems obvious, in a survey of a dozen projects at Google, none of the
suggested tests where implemented by over 80% of the teams.

Tests for Features and Data

Unlike traditional systems that are only dependet on the source code, machine
learning systems behavior is also dependent on the input data. Therefore Breck
et al. [5] proposes a set of tests to validate the input data, this include tests for
feature expectations, feature benefits, feature cost, meta-level requirements and
time to add new features.

Tests for Model Development

Breck et al. [5] propose a set of tests to ensure quality models, this includes
the use of code review, comparing offline and online proxy metrics, tuning of
all hyperparameters, impact of model staleness, verify that simpler models are
not better, ensuring that small improvements in overall model performance don’t
significantly impacts subsets and ensure model fairness.

Tests for ML Infrastructure

Breck et al. [5] have created a set of tests for the project infrastructure, including
the project pipeline. The tests consist of unit, integration and canary testing, as
well as testing for step by step debugging, reproducibility, model validation and
rollback capability.

Monitoring Tests for ML

The tests for monitoring were created to ensure reliable operation after a product
is launched. The tests includes the use of notifications in case of changes to
dependencies, notifications if the input data differ significantly from expected
value, ensure that the system produces the same values in training and produc-
tion, monitor model staleness, validating the the model is numerically stable and
monitor performance.



36 CHAPTER 3. RELATED WORK

The ML Test Score

Based on the presented tests, Breck et al. [5] propose to validate system readiness
using a test score. The test score can be used as a guideline by developers
to improve system readiness and as such improve reliability. The test score is
calculated by first finding the score for each category, this is done by adding the
points for each test in the category. For each test half a point is rewarded if the
test is conducted manually and one point if conducted automatically. The final
score is the minimum score of the four categories, and it can be used to validate
system readiness using Table 3.2.

Points Description
0 More of a research project than a productionized system.

(0,1] Not totally untested, but it is worth considering the possibility of serious holes in reliability.
(1,2] There’s been first pass at basic productionization, but additional investment may be needed.
(2,3] Reasonably tested, but it’s possible that more of those tests and procedures may be automated.
(3,5] Strong levels of automated testing and monitoring, appropriate for mission-critical systems.
>5 Exceptional levels of automated testing and monitoring.

Table 3.2: Interpreting an ML test score (adapted from table V in [5])

Usage for our system

Sculley et al. [47] presented a set of technical debt risk factors, while Breck et al.
[5] presents a framework that can help reduce technical debt and improve system
reliability. This framework can be use in conjunction with the presented risk
factors to help reduce technical dept. Even without implementing the framework
it can be used as a steeping stones toward a reliable commercial system.

3.4 Software Architecture

This section will present the literature that is relevant to the overall design of
the system. As the system is intended to be developed using microservices, this
will serve as the main focus of this research. First the section will present how
architecture technical debt can be reduced in a microservice architecture, such
that the system is more maintainable and easier to modify over time. Second it
will investigate the possibility of using a serverless platform with microservices,
as a solution for very unstable work loads.

3.4.1 Architectural Technical Debt in Microservices

de Toledo et al. [11] states that microservices is a popular way to achieve contin-
uous delivery, but that it also can create architecture technical debt. de Toledo



3.4. SOFTWARE ARCHITECTURE 37

et al. [11] conducted a case study into the microservices of a large financial
institution, with over 1000 microservices. Based on this research they where
able to find specific issues, that could be useful to consider in the design of our
system.

According to Kruchten et al. [27] architecture technical debt is the most chal-
lenging type of technical debt to uncover. Therefore having awareness of possible
architecture technical debt and the cost of refactor can reduce it in the first place.
Based on interviews de Toledo et al. [11] came up with a list of issues and list of
solutions based on the company’s experience.

The main issues related to architecture technical debt was found in the commu-
nication layer, which is the way microservices communicate. de Toledo et al. [11]
found a high number of point-to-point communications among services, mean-
ing that the services had different interfaces for each service they communicate
with. This increases the coupling between the services and is the opposite of
the intended use of microservices, which is to reduce coupling. In turn this
makes it difficult to maintain the system, as every data connection must be
maintained individually. This can however be fixed by rewriting the point-to-
point connections to one common connection point.

Another issue is the existence of business logic in the communication layer.
de Toledo et al. [11] were able to discover cases where data was transformed
between endpoints. In addition the company being researched had a policy
that required that changes first had to be agreed upon by the communication
layer team. This significantly slows down the development process, and can also
result in new business logic being added with new endpoints. This case can
be avoided by moving the business logic from the communication layer, to the
services themselves.

A third issue is that the teams creating the microservices had not agreed upon
format, as a result many services needs to transform and filter their data to
communicate. This issue can be reduced by defining a canonical model per
domain, that is to create a standardized model.

The paper clearly identified the need for standardizing communication among
microservices. If such issues are not addressed, they can cause significant interest
on the technical debt. However with planning technical debt can be decreased,
making the system easier to modify and maintain.



38 CHAPTER 3. RELATED WORK

3.4.2 Serverless Computing for Container-based Architec-
tures

In resent years serverless computing has emerged as a fully managed alternative
to IaaS and PaaS. A major advantage of serverless, is that it is event driven
and only runs for the execution time of the program. In addition due to its
manged nature, scaling can be done without the need for extensive configuration.
However most providers only offer serverless in specific programming languages
and environments. Therefore Pérez et al. [43] propose a framework that can
run Docker images on top of serverless applications and thereby removing the
environment restriction.

The framework is intended to be used for highly-parallel event driven applications.
Pérez et al. [43] tests the framework using an image path recognition framework
based on deep learning. By running AWS lambda (serverless offer by AWS), they
were able to find 4 575 objects from 1 000 images in 2 minutes and at a cost of
less than one US dollar. The use of serverless for making predictions in deep
learning solutions seems promising, and could be an important tool to handle
high number of requests at specific times, and reduce the overall system cost.

As the tests performed by Pérez et al. [43] are similar to the predictions we
will be making for our system, it presents an opportunity to explore serverless
computing, as a possible platform.

3.5 Summary

Based on the presented literature, we have gained a better understanding of the
possible methods and techniques that can be used to created a scalable machine
learning service. We see several relevant applications of transfer learning in state-
of-the-art single-variate time series forecasting through the M4 competition, and
successful application on transfer learning for improved prediction accuracy for
wind power forecasting. Few works have been published on the use of transfer
learning for wind power forecasting. However, the presented works on wind power
forecasting shows promising effects of transfer learning on performance in an
MTL network setting as presented in subsection 3.2.3. This technique can be
further expanded with adversarial techniques as presented in subsection 3.2.2.
subsection 3.2.5 shows that experiments with transfer learning for wind power
forecasting using gradient tree boosting has been done previously, using instance-
based transfer learning. We could however not find any examples of model-
based transfer learning approaches with gradient tree boosting being applied to
wind power forecasting. The idea of leveraging the larger amount of available
historical wind data without power production data, as was done by the cluster-



3.5. SUMMARY 39

based MSDA presented in subsection 3.2.6, is also worth exploring further for
our system.

We were also able to find relevant literature related to software engineering that
could help improve the qualities of the system. section 3.3 presents the concept
of hidden technical debt in machine learning systems, and a framework to reduce
technical debt and improve production readiness. The investigation into technical
debt for microservices, discovered concrete cases that can be used to improve
the modifiability of our system. The research into serverless computing shows
potential for running containerized application in a highly scalable environment.
By utilizing the work done by other researchers, we have the potential to create a
system with low technical debt, that is highly scalable, reliable and maintainable.



40 CHAPTER 3. RELATED WORK



Chapter 4

Forecasting and Transfer
Learning Methods

4.1 Transfer Learning for Gradient Tree Boost-
ing

In TrønderEnergi’s previous experiments with wind power forecasting, Gradient
Tree Boosting (GTB) has been the machine learning method yielding most suc-
cess. In addition to good end performance, GTB has few parameters that require
tuning, and has achieved consistently good results on wind farms without wind
farm specific parameter tuning. This out-of-the-box flexibility makes it a good
fit for a large scale machine learning service, where models for a wide range of
different wind farms from different customers need to be trained. We therefore
choose to base our transfer learning methods and experiments on GTB.

Based on the general transfer learning paradigm of source pre-training and target
refinement we propose an extension to the GTB training process to include
transfer learning, which we call TL-GTB in this report. TL-GTB consists of
four steps:

1. Source pre-training: A standard GTB ensemble with ns trees is trained
on source training data.

2. Sub-ensemble target testing: For each integer cut-off point k where
1 ≤ k ≤ ns, test the sub-ensemble consistent of trees {1, ..., k} on target
training data.

41



42CHAPTER 4. FORECASTING AND TRANSFER LEARNING METHODS

3. Ensemble pruning: The GTB model is pruned to the best sub-ensemble
found in in step two, discarding later trees in the ensemble.

4. Target refinement: New trees are learned from target training data and
added to the ensemble.

Figure 4.1 illustrates the training steps of a TL-GTB model.

Figure 4.1: Illustration of the 4 training steps for a TL-GTB model

4.2 Source Utilization Strategies

While the TL-GTB method explained in the previous section is made to transfer
knowledge from one source data set, each target wind farm will have a multitude
of source wind farms available as candidate source wind farms. Here we present
a few alternative approaches for utilizing multiple source wind farms.



4.2. SOURCE UTILIZATION STRATEGIES 43

4.2.1 Single-Source Transfer

The simplest approach is to choose only one of the candidate source wind farms
as source wind farm for transfer learning. Several strategies for choosing which
candidate source wind farm to use could be employed, for example: Using the
wind farm with most available data, the wind farm with shortest geographical
distance to the target wind farm, the wind farm with best initial performance on
the target training set after step two of the TL-GTB training process or the wind
farm with greatest weight following one of the weighting strategies in section 4.3.

4.2.2 Combined-Source Transfer

An alternative that utilizes data from multiple or all candidate source wind farms,
is to combine the training sets of all source wind farms into one, and using this
combined dataset as the source training set for TL-GTB. This strategy is able
to utilize a larger amount of data, and would be forced to learn an optimal
compromise between the different source wind farms. The resulting model would
focus on features and relationships that apply to all the source wind farms, and
would therefore be more likely to generalize well to the target wind farm. The
drawback to this strategy is however that in the case where some, but not all
wind farms share more unique patterns with the target wind farm, the learning
of these patterns might be lost in favor of a weaker, more generic forecaster.

Using this strategy, source wind farms can be weighted by weighting the source
training data during source training. The impact of errors for each data point is
multiplied with its weight, allowing the learner to prioritize minimizing error on
data from higher weighted source wind farms.

4.2.3 Transfer Ensemble

A compromise between the two previous strategies, which could potentially yield
the best of both, would be building an ensemble of single-source models, one
for each source wind farm. The forecasts from each single-source model would
be combined through an average to give a final forecast for the target wind
farm. This strategy would allow each base model to learn more specific patterns
for their source wind farm than the combined dataset strategy. The test and
pruning steps of TL-GTB would allow selection of how much of these wind farm
specific patterns to retain for target wind farm forecasting on a case by case basis.
The final averaging of forecasts helps stabilizing forecasts and potentially helps
improve generalization to new wind farms.

With this strategy, source wind farms can be weighted by making the final forecast
a weighted average of the different single-source models, utilizing the weight of



44CHAPTER 4. FORECASTING AND TRANSFER LEARNING METHODS

the corresponding wind farm.

4.3 Source Weight Generation

While for each new target wind farm a larger set of candidate source wind farms
are available, the similarity to the target wind farm might vary greatly due to for
example different location climates, weather trends and different wind turbines.
We investigated different methods for generating weights for source wind farms,
source wind farms more similar to the target wind farms are given greater weights,
allowing more knowledge to be transferred from more similar wind farms.

4.3.1 Wind Profile Similarity-Based Weights

Inspired by the work of Tasnim et al. [50], described in subsection 3.2.6, we
implement and test a cluster based wind profile similarity estimator for weight
generation. The main advantage of this generation method is that it utilizes
historic wind data alone, without historic production data, to estimate similarity.
Such historic wind data is available from weather data providers. Therefore
weights can be generated based on larger quantities of data, even for completely
new wind farms with little or no available production data. This method however
only generates weights based on wind profile similarity, ignoring other factors that
might affect wind farm similarity, such as physical hardware.

For one source wind farm, the similarity of the source wind farm’s wind profile
to the target wind farm’s wind profile is estimated by comparing clustering of
data points. K-means clustering is used to generate a set of k cluster centers
{c1, c2, ...ck}, and a cluster assignment function:

h(x) = arg min
ca

(e(x, ca))

Where x is a data point and e(x, ca) is the euclidean distance between data point
x and cluster center ca.

Given a set of data X = {x1, x2, ...xn}, we define the cluster counting function
for cluster a as:

Ca(X) =
∑
x∈X

[h(x) = ca]

Which is expressed using Iverson bracket notation, where [P ] is 1 if proposition
P is true and 0 otherwise.



4.3. SOURCE WEIGHT GENERATION 45

Given a set of source data Xs of size ns and a set of training data Xt of size nt
we then define the wind profile difference as the sum of absolute differences in
proportion of the dataset assigned to each cluster for the source dataset and the
training dataset.

d =

k∑
a=1

∣∣∣∣Ca(Xt)

nt
− Ca(Xs)

ns

∣∣∣∣
This difference is then multiplicatively inverted to get the source wind farm
weight:

w =
1

d+ s

Where s is a small, stabilizing constant, in order to ensure that wind farms with
very small differences in wind profiles do not over-dominate other wind farms.
This is particularly important in the case where multiple wind farms close to each
other might use the exact same weather forecasts, to prevent a division by zero
alternatively infinitely high weight for some source wind farms.

This procedure is performed for each of the n source wind farm, to generate a
set of weights {w1, w2, ..., wn}. This set of weights is then normalized in order to
sum to 1, yielding the final set of normalized weights {ŵ1, ŵ2, ..., ŵn} where the
normalized weight for wind farm b is:

ŵb =
wb∑n
i=1 wi

This method of weight generation leaves the number of clusters k and the stability
constant s as tunable parameters.

4.3.2 Single-Source Transfer Performance-Based Weights

We also propose a transfer performance based weighting strategy, in which the
error on the target training set after pruning the TL-GTB model is used to
generate weights. This method allows the transferred knowledge from source
wind farms to directly justify the source weights, encompassing any element of
relevant similarity, such as wind profile and hardware, with an automatically
balanced focus based on forecasting performance.

For each of the n source wind farms, a TL-GTB model is trained through the
first two steps of the training process described in section 4.1, in order to get



46CHAPTER 4. FORECASTING AND TRANSFER LEARNING METHODS

a set of target training set errors {e1, e2, ..., en}. A list of wind farms is then
ordered on these errors from lowest to highest and used to generate a set of
ordinal numbers {o1, o2, ...on}. ok equals the position of the k’th source wind
farm in the aforementioned list, 1 for the best performing source wind farm, and
n for the poorest performing source wind farm. A set of exponentially decaying
weights {w1, w2, ..., wn} is then generated as follows:

wk = dok−1

Where 0 ≤ d ≤ 1 is the exponential decay factor.

These weights are then normalized in order to sum to 1, resulting in the set of
normalized weights {ŵ1, ŵ2, ..., ŵn} where the weight for wind farm k is:

ŵk =
wk∑n
i=1 wi

This weight generation method leaves the exponential decay factor d as a tunable
parameter. Adjusting d allows for adjusting the balance between prioritizing the
best source wind farms, versus utilizing knowledge from many wind farms. In
the extreme case where d = 0, the resulting forecaster would be identical to the
single-source model with the source wind farm selected based on TL-GTB pre-
fine tuning target training error. In the other extreme case where d = 1, this
method would generate equal weights for all source wind farms.

4.4 Multi-Step Forecasting Strategies

It is not only desirable to provide forecasts for a single hour forwards in time,
but also for multiple time steps or forecasting horizons. We explore two different
methods of generating forecasts for multiple time steps forwards in time.

4.4.1 Recursive Model Forecasting

The recursive forecasting method involves generating multiple forecasts with a
single-step forecaster, where the results of the previous forecasts is fed back into
the model as inputs. For time series data this strategy is possible when values
needed for future forecasting for all input variables are known, except the target
variable. In our case, input variables are past production and variables related to
weather forecasts, where these weather forecasts are available for a longer time
into the future. By inserting the single-step production forecast as an assumed
real production, we can move the input window one step forwards and make a



4.4. MULTI-STEP FORECASTING STRATEGIES 47

forecast for the 2-hour horizon. This procedure can be repeated for as long as
the necessary weather forecasts are available.

This method of generating multi-step forecasts is able to utilize past production
features to improve forecasts, also for larger horizons. There is however a risk
of forecasting errors from earlier forecasting steps propagating and accumulating
through later forecasts, resulting in unstable and inaccurate forecasts for large
horizons. Due to the gradual reduction in auto-correlation of wind power pro-
duction as horizons grow, combined with this error accumulation, we expect this
strategy to be more effective at smaller horizons, but perform poorly at larger
horizons.

4.4.2 Productionless Direct Forecasting

Another approach to forecasting for multiple horizons is to create a single model
that is capable of forecasting for any horizon, by excluding past production
features from the models input and only utilizing weather forecasts. Since weather
forecasts are available for a longer time into the future, this allows us to generate
forecasts for any horizon simply by feeding the correct window of weather forecast
data is input to the model.

This multi-step forecast method results in equal forecasting accuracy for every
horizon, at the cost of not being able to utilize past production as a feature. Due
to the relative importance of past production for smaller horizons, we expect this
to be a strategy primarily effective at larger horizons.



48CHAPTER 4. FORECASTING AND TRANSFER LEARNING METHODS



Chapter 5

System functionality and
implementation

The primary artifact of our research is a product in form of a software system.
This chapter will present the features, implementation, platform and architecture
of the system in depth from a technical perspective.

5.1 Requirements

The software system is intended to be sold to other energy producers as a service
that fully automates the process of wind power forecasting. This requires that
the system is competitive against the current providers of similar services. As
discussed in section 3.1 similar services exist, and the product is specifically meant
to compete against AutoML and task specific implementations such as Alpiq [1].
To be competitive the system should ideally have the same or a greater level of
automation then AutoML as a service, but with a performance that is similar to
task specific implementations.

In collaboration with TrønderEnergi we have created a set of requirements that
we think are essential for the system to be competitive. The requirements are
created to describe both the functionality and non-functional requirements of
the system. The requirements for functionality of the system is presented in
subsection 5.1.1, while the non-functional requirements or qualities of the system
are outlined in subsection 5.1.2.

49



50 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

5.1.1 Functional Requirements

To quantify the needed functionality of the software system, a set of functional
requirements has been created using a iterative process. The requirements are
presented in the terms of users and system administrators. A user is considered
to be a customer using the service to make forecasts, while system administrators
are TrønderEnergi’s technical staff. A list of the requirements can be found in
Table 5.1 and Table 5.2. The requirements are organized based on the priority
of the tasks, where tasks with a score over 80 is a must, tasks with a score over
60 is desirable but not critical and tasks with a score under 60 are features that
are not required but can enhance the user experience.

The requirements specify a system that is intended to offer organizations flexi-
bility in terms of user and project access. Users and administrators access the
system using a personal email and password. This has the advantage of making
it easy to both grant and remove access to the system and the email can be
used for communication. A system user is linked to the organization of the users
employee, and can manage projects and accounts linked to their organization.
System administrators have full access to every project, user and organization
in the system, and they are the only ones who can create new organizations. In
addition to the described personal accounts for users and system administrators,
every project also has an access token that can be used by anyone to access
forecasts and project data using a REST API. This access token is created to make
it easy for the users to integrate the service into their systems. The functionally
related to user management is contained in requirements FR1-FR9, FR19-FR22.

The system should also offer a set of tools to validate forecasts and project
data. The requirements specify that the system shall display general project
information, live training progress, view a subset of project data and have graphs
that can be used to validate data and forecast performance. This functionality
is specified in requirement FR10-FR18, FR23-FR24 and is intended to make it
easy for the user to create, view and validate the system forecasts, without any
machine learning knowledge.



5.1. REQUIREMENTS 51

ID Requirement Priority (0-100)

FR1
A system administrator shall be able to create new
organizations.

100

FR5
A user shall belong to one and only one
organization.

100

FR2
A system administrator shall be able to invite users
to join any organization.

95

FR9
A user shall be able to sign in using an email
address and a password.

94

FR22
A user shall be able to get a reset password link
sent to their email.

90

FR8
A user shall have a list of all projects that belongs
to the users organization.

90

FR10
A user shall be able to create a new project, by
uploading training data as a CSV file.

89

FR18
A user shall be able to see all information about a
project in their organization.

88

FR11
A user shall be able to get forecasts up to 48 hours
after the latest reported production.

85

FR16
A user shall be able to get forecasts using a REST
API.

84

FR24
A user shall be able to upload production data
using a REST API.

84

FR6
A user shall be able to invite more users to their
organization.

81

FR19 A user shall be able to change password. 80

FR17
A user shall be able to get feedback while a new
project is being trained.

75

FR12
A user shall be able to view the uploaded project
data both as text and visualized in a chart.

70

FR24
A user shall be able to view the mean average error
of the performed forecasts.

69

FR15
A user shall be able to view weather data for their
project

68

FR14
A user shall be able to view recent system
performance.

67

FR23 A user shall see a plot of future forecasts. 66

FR3
A system administrator shall be able to edit and
delete users from the system

60

Table 5.1: List of functional requirements (1/2)



52 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

ID Requirement Priority (0-100)

FR4
A system administrator shall be able to edit and
delete projects from the system

60

FR21
A user shall be able to remove users from their
organization.

60

FR13
A user shall be able to upload their own forecasts
and compare them to the forecasts of the system

59

FR7
A user shall be able to see all other users in the
organization.

55

FR20
A user shall be able to remove projects from their
organization.

39

Table 5.2: List of functional requirements (2/2)

5.1.2 Non-functional Requirements

To compete with existing solutions the system must be scalable, modifiable,
reliable, performant, easy to use and cheap to operate. As the system is unlikely
to get a lot of customers from the beginning, the system needs to adapt to different
workloads. The system is also likely to experience highly variable traffic, as
forecasts are typical made on a hourly basis and with new customers potentially
requiring multiple projects to be set up simultaneously, model training can require
immense resources. This means the system could see high traffic increases at
specific times. In addition as the power producers rely on the forecasts to sell
their power, it is important that the system is always available, and that down
time is kept to a minimum.

The system is intended to be maintained by the AI department at TrønderEnergi.
Since the AI department mostly consists of data scientists, the system must be
made in such a way, that it requires very little maintenance and uses the tools,
platforms and services they are familiar with. Therefore the system should use
python as the main development language and automate the process of code
delivery using a DevOps process.

If the system produces acceptable results, TrønderEnergi is also considering
extending the system to other production facilities such as hydroelectric plants
or solar plants. It is also possible that they want to change the training process
to accommodate their own models. Therefore extra consideration must be taken
in regard to modifiability of the system. Based on the properties described, a
list of non-functional requirements has been developed and they can be found
in Table 5.3. The requirements are intended to be validated, as such they are
created to be as specific as possible.



5.2. DEPLOYMENT PLATFORM 53

ID Requirement

NFR1
Modifications to the system shall be active in production within 15
minutes.

NFR2
An end user with a internet connection of 100Mbit/s, shall be able to
get a new prediction within 5 seconds.

NFR3
An end user with a internet connection of 100Mbit/s, shall be able to
load any page on the website within 2 seconds.

NFR4
It shall be easy for new users to use the system, a new user shall be
able to setup a project and upload data within 5 minutes.

NFR5
A new project shall be trained and ready to accept forecast requests
within one hour.

NFR6
The system shall automatically scale to accommodate 500 users, with
one user joining every second.

NFR7

The system shall automatically scale to accommodate training of
multiple projects, training of 20 projects started 10 seconds apart
shall not take more time per project then training 10 projects also
started 10 seconds apart.

NFR8

An experienced data scientist from the AI department at
TrønderEnergi shall be able to make a modification to the wind power
model training code without assistance from the original system
developers.

NFR9
A software developer shall be able to extend the system to support
other time series related problems, such as forecasting hydroelectric
park production or grid loss, within 100 hours of development.

NFR10

A software developer shall be able to extend the system to support
organizational permissions, such that only a select pool of users can
manager the other users in the organization, this should be achieved
in no more then 10 hours of development time.

NFR11
A cloud engineer shall be able to port the system to a different cloud
provider within 50 hours.

Table 5.3: List of non-functional requirements

5.2 Deployment Platform

The system will be deployed as a set of microservices, therefore the deployment
platform should be designed to deploy many smaller services, without extensive
configuration and at low cost. Since managing physical infrastructure require a
lot of expertise and work, we explored offers from cloud providers. The service
selection was done by evaluating factors such as the preferences of TrønderEnergi,



54 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

scalability, integration with DevOps services, ease of use, platform dependency,
and cost.

TrønderEnergi was already using Microsoft Azure as their cloud provider and
would like this system to do the same. Azure offer many servers that work well
with microservices such as Azure Service Fabric, Azure Functions, Container
Instances, App Service and Azure Kubernetes service (AKS). Table 5.4 list the
Azure services that could be relevant for the project, based on the presented
evaluation factors, excluding cost as it is hard to compare directly. Below each
of the services will be presented and compared.

Functions Container Instance App Services AKS Service Fabric

TrønderEnergi experience X
Scalability X X X X X
Integration with DevOps X X X X
Ease of use X X X
Platform independent X
Community X

Table 5.4: Azure services compatibility

5.2.1 Azure Functions

Azure Functions is a serverless platform that can run event-triggered code without
the need to manage infrastructure [36]. Functions is easy to get started with,
it offer a good integration with Azure DevOps and has automatic scaling. As
part of our specialization project we tested Functions using Docker to perform
forecasts, Functions showed promising results, however it was not able to scale
down to zero instances, meaning that it would always have a container running
in the background accumulating cost. Scaling down to zero instances is however
possible if the application does not use Docker, however that would also make
the application less portable.

5.2.2 Azure Container Instances

Azure Container Instances can be used to run on-demand serverless Docker con-
tainers without the need to manage infrastructure [34]. Azure Container Instance
is similar to Azure Functions, however it is designed to be an easy solution for
deployment of containers and it does not offer the same event framework as
functions does. In fact Container Instances can be used as a compute platform for
both Functions and Azure Kubernetes Service(AKS). It also differs from virtual
machines(VMs) as it does not require provision and it only accumulates cost as
the container is running.



5.2. DEPLOYMENT PLATFORM 55

5.2.3 Azure App Services

Azure App services is designed as a fully managed platform for building and
hosting web apps. App Services is easy to setup and requires little configuration
[35]. It offers functionality such as backup, scaling, certificate management
without the need for third party services. The disadvantage of App services
is that its proprietary to Microsoft, so changing cloud provider is not an option,
it is also designed specifically for web apps, as such it does not offer the same
flexibility for containers as for instance Kubernetes or Service Fabric.

5.2.4 Azure Kubernetes Service (AKS)

Kubernetes is a container orchestration system created for automated deploy-
ment, scaling and managing containerized applications [29]. Kubernetes has
emerged as an industry leader with over 66k stars on GitHub [19] and an active
community. Many of the popular Cloud providers also offer managed Kubernetes
implementations such as Amazon Web Service (AWS), Google cloud Platform
(GCP) and Microsoft Azure. We would argue that it is harder to get started with
Kubernetes then services such as App Service, Container Instances or Functions,
however due to the large community and extensive documentation resolving issues
can often be done with a Google search. Azure Kubernetes Service(AKS) which
is the managed Kubernetes implementation by Azure, offers seamless integration
with other Azure resources such as DevOps, networking and virtual machines.
AKS is also competitive in regard to costs as Azure only charges for the use of
virtual machines and not for the cluster management.

5.2.5 Azure Service Fabric

According to Microsoft [37]; Azure Service Fabric is a distributed system that
makes it easy to package, deploy and manage scalable and reliable microservices.
For our purpose Service Fabric can be compared to Kubernetes as they both offer
much of the same functionalities and both have all the functionality needed for
this project. However Kubernetes is a more popular platform and has a larger
community then Service Fabric and since TrønderEnergi is also using Kubernetes
for other projects, we think it will be easier to find solutions if we have issues
with Kubernetes, than with Service Fabric. Service Fabric would also be much
harder to port to a different cloud platform as neither AWS or GCS offers it as
a service.



56 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

5.2.6 Comparison and choice of service

As part of our specialization project we created a prototype for the system
using Azure Functions for forecasts, Azure App Service for the web interface
and Container Instance for training. This allowed us to utilize the best of every
platform, low cost for on demand training as well as easy setup and management
of the web app and forecast functionality. However this also meant that editing
the system would require knowledge of multiple tools and processes, and it
made it difficult to configure additional containers such as PgBouncer and Redis,
as the services does not have any direct connection. Form a cost perspective
this solution also had an issue when the system was not in use, because Azure
Functions and App Services would run all the time accumulating cost, making
them more expensive then the price of one VM, that would have been the minimal
requirement for Kubernetes. This difference could have been neglected if Function
had been implemented without Docker.

To not overcomplicate the setup and select one platform that best fits the system,
we decided to consider services that were better suited for lager microservice
deployments. For this we considered the best choices to be either Service Fabric
or Kubernetes, as they both are created to manage a lager clusters with many con-
tainers. However for this project we evaluated Kubernetes to better fit our needs,
firstly because TrønderEnergi was already using it, second because of it large
community and third because of its compatibility with other cloud providers. As
a caveat Container Instance can be used to rapidly scale Kubernetes clusters,
such that we can also utilize the best of serverless.

5.3 External Services

This section will present the external services that are used to power or enhance
the functionality of the product. This includes services that are used to run the
project such as Azure Kubernetes Service, but also services to get data such as
Meteomatics.

5.3.1 Azure Kubernetes Service (AKS)

Azure Kubernetes Service (AKS) as explained above is a container orchestration
system for containers, and will be used to deploy the system as a set of Kubernetes
objects. Kubernetes object are persistent entities that are used to represent the
state of the cluster. There are many objects for different purposes but a few
examples that are relevant to the application is Deployments, Pods, Jobs and
Cronjob.



5.3. EXTERNAL SERVICES 57

A Kubernetes cluster can consist of one or more compute instances known as
nodes, a node is a physical compute unit or a virtual machine that serves as
a work unit in the cluster. For AKS the nodes are Azure Virtual Machines,
and alternatively Azure Container Instances. Having more nodes can improve
reliability, since the service can be deployed to multiple nodes at the same time,
so if one node goes down the service does not. Nodes can also be added or removed
from the cluster to scale to a given workload, this is known as horizontal scaling
as presented in the background section.

5.3.2 Azure Database for PostgreSQL

Azure Database for PostgreSQL is a manged PostgreSQL service offered by
Azure. The services comes with features such as automatic backup and scaling.

5.3.3 Azure File storage

Azure file storage is a storage services that enables applications to share the
same storage space. For this project the file storage was used to offer a president
volume share to different Kubernetes containers.

5.3.4 Azure DevOps

Azure DevOps consists of a set of services and tools that provides some of the
fundamental functionality needed to work in a DevOps environment. This include
code repositories, boards, wikis, code and release pipelines, artifacts and test
plans.

5.3.5 Azure Container Registry (ACR)

Azure container Registry is a repository for Docker images similar to Docker Hub.
ACR can store private images and can be connected to Azure DevOps and AKS.
This means it can be used to store images built by Azure build pipeline, before
it is deployed to AKS.

5.3.6 GitHub

GitHub was used to store all repositories related to the project. GitHub offers
free private repositories that can be easily integrated with Azure. GitHub also
offers testing and running of other scripts free of charge using GitHub actions.



58 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

5.3.7 Amazon Simple Email Service

Since Azure do not have a built in email service, it was decided to use Amazon
Simple Email Service as it is competitively priced and we have previous experience
with the service.

5.3.8 Meteomatics

Meteomatics is a provider of weather data that offer both historical data and
future forecasts. This project uses Meteomatics to fetch weather data for all
wind parks that are both used for training and forecasting purposes.

5.4 Implementation

This section will describe how the system was implemented using microservices
and how it utilizes AKS and Azure DevOps. First a decision had to be made in
regard to how such a system could be divided into a set of smaller services. As
the system have three distinct operations; user and project management, model
training and model predictions, it could be a natural way of dividing the system,
that can offer a few advantages.

Firstly a data scientist can work on the training and prediction services without
having to be limited by any design decision made by the developers creating the
user and project management system. This allows them to use their own tools,
repositories, deployment process, test framework, work processes etc.

Secondly theses services can be scaled individually such that that project training
can be scaled without needing to scale the user and project Management Service.
This is particularly useful for applications such as this, since it includes operations
that require extensive resources for short amounts of time.

This section will first describe how each of the three services were implemented,
and the additional microservices that are required to achieve the required func-
tionality. Finally the section will present the tools and processes used for devel-
opment and deployment of the system.

5.4.1 Management Service

The Management Service is intended to provide the external graphical user
interface (GUI) of the system. The service is designed to simplify user and
project management by providing users with an accessible web page that gives
users the tools needed to create and manage users, create new projects, validate
existing projects and compare results with their own forecasts. Figure 5.1 shows



5.4. IMPLEMENTATION 59

the project page from the Management Service to illustrate some of the project
functionality it provides. Appendix A.1 contain a full list of screenshots from the
Management Service to illustrate the full functionality of the system.

Figure 5.1: Screenshot - Management Service - project page

As presented in the functional requirements, system administrators requires full
access to all projects and users. Therefore the Management Service must also be
able to customize the user experience based on the permissions of the authenti-
cated user.

Even though one of the advantages of microservices is the ability to use multiple
languages, the goal of this system is to use python as much as possible, such
that it is easy for the AI department at TrønderEnergi to maintain the system.
To achieve this goal, the application was developed using Django, a feature-rich
python framework that comes with a set of useful tools and features that helps
speed up the process of making dynamic web-pages.

One of these features are the included user and authentication functionality.
It can be highly customized, includes password hashing and salting using the
PBKDF2 algorithm with a SHA256 hash. To optimize the functionally for this
system, only a few changes had to be made; firstly username had to be changed
to email, secondly a relation would have to be made to the organization of the
user, thirdly all the provided authentication web pages, had to be styled to fit
the overall application style.

Security is always important when handling sensitive data, in this case wind farm



60 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

production data and personal employee data. Django has implemented solutions
to some of the most common security risks. Firstly Django’s template language
protects against common attacks such as Cross site scripting (XSS) and Cross site
request forgery (CSRF). Secondly the built in object-relational-mapper (ORM)
protects against SQL injections. Finally Django protects the system against
clickjacking. While having a secure framework is not the entire solution it is a
good start for creating a secure site.

The Django framework introduces a concept known as apps or applications, that
is a python package that provide a set of features, that could be reused in other
projects. For the Management Service we have utilized this concept to create
one application for accounts, that handles any feature that is related to user
and organizational management, and one app that is responsible for project
management. Each of the application uses the Django framework to process
requests and to create or update database rows. This means the Management
Service can easily be modified or scaled in the future by adding or removing
applications.

Part of the job of managing users and projects is to manage the related database
tables. All database elements are defined as python code, and Django uses
a object-relational-mapper (ORM) to map python code to SQL quires. This
has the advantage of making table creation and queries simple to understand
for any python developer. As part of this setup Django uses migrations to
propagating changes made to the database schema. This is an essential feature
for easily updating the database schema, and since the Management Service has
the management responsibility it is the only service that will update any database
schemas related to user or projects.

When a user want to create forecasts for a new wind park, they first have to
create a project. This project creation is done using the Management Service
and involve uploading park information and training data. However the park
also need historical weather data, this data is fetched by the Management Service
using a REST API provided by Meteomatics.

The Management Service is not just one runtime instance but a set of contains
that communicates to enable the functionality described above. The primary
containers needed for the service are tightly coupled and are deployed together.
Scaling is done on a deployment bases and as such all the primary containers are
scaled together. The Management Service consist of the following containers:

Django Web

This is the primary container in the Management Service, it is responsible for
accepting and processing requests form the users. It can accept HTTP requests



5.4. IMPLEMENTATION 61

and WebSocket requests, however due to how Django works HTTP requests are
processed synchronous. Therefore this container uses the Celery container to
offload any operations that requires a lot of time to be completed.

Nginx Reverse Proxy

This container is running Nginx and is used as a web server and reverse proxy.
It serves the user with static content such as images, CSS and JavaScript and
routes all other requests to the Django web container.

Celery Asynchronous Worker

This container is used to perform asynchronous operations using Celery. It is
for instance used for fetching weather data when new projects are created, this
allows the Django web container to send a response to the user and let the process
complete in the background.

Other Containers

When the Training Service is training a new model, it sends updates to the
Management Service. The Management Service needs some functionality to
receive these updates, this is done with a container that continuously watch’s
for updates. This container is responsible for listening to Redis (message broker
explained in section 5.4.4) for updates from the Training Service, if such an
update is received, it updates the database and uses a third-party package known
as Django Channels to update any active WebSockets connections.

5.4.2 Training Service

The Training Service is responsible for creating machine learning models for new
projects and to update existing models with the goal of increasing model accuracy.
The Training Service is not running all the time, but can be invoked to train a
single model. If multiple projects requires training at the same time, one job
is created for each project. The model trained is a TL-GTB model utilizing
the 10 wind farms with shortest geographical distance from the target wind
farm as source wind farms using the ensemble source utilization strategy with
equal weights. This model implementation is based on experiments presented in
chapter 6 with results and justification chapter 7. An example of Training Service
usage is included in Appendix A.2.

The primary purpose of the Training Service is to train new models, however
it also has other responsibilities. As part of the training process the Training
Service conduct a performance test. The performance test creates forecasts for a



62 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

set of test data, which is held out from model training. These forecasts are saved
to the shared database and are used by the Management Service to visualize the
forecasting accuracy to the customer.

The Training Service is heavily data reliant, and it communicates with the
postgreSQL database created by the Management Service. Since multiple services
needs access to the same database, we created a private python library known
as Forecasting as a Service(FaaS) database manager that simplifies database
operations by adding a layer of abstraction. This means that in most cases
when there are changes to the database, only the library needs update and not
each individual service.

When a new model is being trained, information about the training progress is
sent to the Management Service. The information includes how much of the
training is completed and a message to let the user know how far training has
come. This information is sent using the publish-subscribe pattern with Redis
as the message broker. This solution was selected to decrease the number of
dependencies and the number of point-to-point communications in the system,
as this would help reduce technical debt according to de Toledo et al. [11].

5.4.3 Inference Service

The primary functionality of the Inference Service is a REST API that is de-
signed to be accessed by other systems. The main purpose of the API is to
collect production data and to make production forecasts, but it also offer other
information. To create new forecasts the Inference Service uses the model trained
by the Training Service. The service is accessed using the project URL and a
unique access token for each project, that can be acquired from the Management
Service. An example of Inference Service usage is included in Appendix A.3.

For the Inference Service to be able to make forecasts it needs production data.
This data will be uploaded to the Inference Service using its REST API. To
ensure quality forecasts the customer should upload production data as often
as possible, ideally once an hour. This would typically be implemented in the
system of the customer as a scheduled job.

When the Inference Service is used to perform system forecasts, the user can
choose between getting a single forecasts or multiple forecasts. A user may request
a forecast for a single date by setting the date query string, as long as the date
is within 48 hours after the latest reported forecast. If the user does not specify
a date, the user will be given forecasts for the full 48 hours window.

To speed up the development process of the Inference Service a web framework
had to be selected. Unlike the Management Service, this framework should not



5.4. IMPLEMENTATION 63

have features such as administration centers or advanced authentication systems.
The framework should be primarily made for REST APIs, be easy to use, and
should be easy to customize. A framework that fit the requirements well was
FastAPI. FastAPI was selected for the Inference Service as it offer just what is
needed, and not much more.

The secondary objective of the Inference Service is to perform forecasts that
will be used by the Management Service to visualize model performance. These
forecasts are scheduled every hour and forecasts are performed for the next 48
hours from the last reported production. This is to ensure that the Management
Service still receive forecasts, even if the park did not report production for a few
hours.

Just like the Training Service, the Inference Service also communicates with the
shared database using our private database manager library. The database access
is used for features such as validating the access token, fetching project data and
updating the project with the newest predictions.

5.4.4 Other Services/System utilities

In addition to the three main services the system also consists of many smaller
units that are essential to deliver the required functionality. Each of these smaller
services will be presented below with their relation the the main services.

PostgreSQL Database

The PostgreSQL database acts as a shared data storage for all the services.
The database stores data about users, organizations and projects, including
production data. The database is managed by Azure to minimize configuration,
and take advantage of the included features such as backup.

Shared File Storage

The system uses Azure File Storage to store the models trained by the Training
Service. Both the Inference Service and the Training Service have direct access to
the storage, such that new models are available to the Inference Service instantly.

PgBouncer

PgBouncer is a connection pool that is used to connect one or more clients to
the same database using only one connection. PgBouncer was added for two
reasons. Firstly because Azure Database for PostgreSQL has a long and highly
unpredictable connection time; one second is not uncommon, making the request



64 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

time problematic for services that are directly used by the end user. Secondly
PgBouncer was added to ensure performance as the application scale.

Redis

Redis is an in memory key-value database that can be used as a cache and message
broker. For this project it is used as a message broker for the Training Service and
the Management Service. In addition it is also used internally in Management
Service as part of Django-channels to enable asynchronously websockets in a
distributed system.

Nginx ingress and Cert Manager

In Kubernetes an ingress is a Kubernetes object that can manage HTTP and
HTTPS connections to services inside a Kubernetes cluster. An ingress requires
an ingress controller, for this project we selected Nginx due to its large commu-
nity and ease of use. The ingress was then configure to direct requests to the
Management Service and the Inference Service. To enable HTTPS the domains
for each service also requires a valid transport layer security (TLS) certificate,
this was accomplished using Cert Manager that automatically configures TLS
certificates using Let’s Encrypt.

Weather Fetching

In addition to the historical weather data that is required for training, all projects
also requires updated forecasts on a daily basic. Therefore we have created a
Cronjob that fetches weather forecasts from Meteomatics once a day.

5.4.5 Developing and Deploying the System

This section will first explain how the system utilizes Docker and Kubernetes
to develop and deploy the system. Secondly this section will discuss how the
system take advantage of GitHub and Azure DevOps to automate the process of
deploying changes to AKS.

Local Development

Kubernetes can offer a lot of useful features in a production environment, however
its extensive feature set can also make local development difficult. The system
will leverage Docker due to it popularity and compatibility with Kubernetes and
other cloud products. For local development the system will use docker-compose,
a tool created by Docker to setup and run multi-container Docker applications.
This allows developers to easily run the application locally without the overhead



5.4. IMPLEMENTATION 65

of using Kubernetes. Each service will have its own docker-compose file, with all
the containers needed for that service, also including applications such as Redis or
PostgreSQL. This configuration allows each service to be developed in isolation.

Deployment to Kubernetes

As presented in subsection 5.3.1 resources are deployed to Kubernetes in the
form of different objects. The web services for both the Management Service and
the Inference Service are deployed as Kubernetes Deployments. A Kubernetes
Deployment uses a ReplicaSet to scale one or more pods. A pod is a Kubernetes
object that can consist of one or more containers that will run on the same
machine, at the same time. Pods are therefore ideal for containers that have
a high level of cohesion, such that they can be scaled together. For instance
the primary containers of the Management Service are deployed as one pod.
In addition to the Deployment object, the presented services are also using an
object known as Service, it allows the deployments to be accessible from other
Kubernetes services.

To automatically scale the Management Service and the Inference Service the
system utilizes the Kubernetes object known as HorizontalPodAutoscaler. It
tracks the average CPU utilization of each of the services, and scales the number
of replicas up or down based on the desired CPU usage for each container.

Kubernetes also comes with a Secret object that is used by the system to store
credentials, such as database credentials, Meteomatics credentials and the TLS
certificates. Theses secrets can be injected into any container that requires them.

For tasks that are intended to run until they are completed, Kubernetes offer the
Task object, it is used by the Training Service. The processes that are deployed
periodical on a schedule uses the Cronjob object, they can run one or more Tasks
given a schedule.

Code Repositories and CI/CD

All code created for the project is hosted on GitHub. To make the three main
services easy to maintain individually, each service has it own private repository.
In addition we have created a repository for the FaaS database manager and one
for the configuration of the other smaller services. Figure 5.2 shows the GitHub
repository for the Management Service, it includes a link to the service, a list of
topics, a quick setup guide and a set of badges to see the current status of build,
deployment and testing.



66 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

Figure 5.2: Github repository for Management Service

Before any code can be merged into the master branch of the Management
Service, the automated tests must pass, with a coverage of at least 80%. This is
done using GitHub Actions, currently it is only used by the Management Service,
but it can also be added to the other service as they become more complex and
manual testing is no longer sufficient.

After the code of any repository is merged to the master branch, it will automat-
ically trigger the Azure build pipeline. It is responsible for building the Docker
images required for the repository and/or package the provided Helm charts.
Helm charts are responsible for configure how the services will be deployed to
Kubernetes. In the case of the FaaS database manager the build pipeline is
responsible for publishing the code to Azure Artifacts, so that it can be installed
by other services using pip. After the build is finished it will trigger the release
pipeline that will deploy the service to Kubernetes.



5.5. ARCHITECTURE 67

5.5 Architecture

The system architecture will be presented using the 4 + 1 architecture view
model created by Kruchten [26]. The 4 + 1 architecture view model uses multiple
concurrent views, to separately address the needs of various stakeholders such as
the end user, developers, system engineers and project managers. Figure 5.3
illustrates the relation between the views.

Figure 5.3: Illustration of 4 + 1 architecture view model from Dekker [12]

5.5.1 Logical View

The logical view is primarily designed to present the system in form of its
functional requirements. The view is intended to support the interests of the
end-user. For this system it is achieved by a set of views that illustrates the
system functionality based on the system services presented above. A common
way of presenting the logical view is by using UML class diagrams, however in
this case it is not sufficient for covering the functionality of the system as multiple
parts of the system are created as python functions and not classes. The logical
view will therefore be presented with a custom diagram that present an overview
of the system functionality.



68 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

Figure 5.4: Logical view - system

Figure 5.4 illustrates the three primary services of the system, and how they
communicate. As presented in section 5.4, both the Inference Service and the
Management Service can be accessed by the end-user over the internet. The
Training Service can only be accessed by the Management Service using Redis as
a message broker. All services got the same access to the database, but while the
Training Service and Inference Service is using a shared library (FaaS database
manager), the Management Service got direct access using the Django ORM.

Management Service

Figure 5.5 illustrates the Management Service in terms of its primary function-
ality, it is divided into two applications; Projects and Accounts. Each of the
applications was created using the same architecture patterns, but with the goal
of implementing a specific feature set. The accounts application is responsible for
all features that are related to user and company management, while the project
application is responsible for all aspects of project management.



5.5. ARCHITECTURE 69

Figure 5.5: Logical view - Management Service

Figure 5.5 presents four concepts for each app; views, templates, models and
admin. These concepts represent the standard workflow for a web application
in Django. The view and template are used to process and return a response in
form of a web page for a given request, the model is responsible for business logic
and storage, and the admin represents the customization that can be done to the
automatically generated admin user interface. This workflow is an architecture
pattern known as model-view-controller (MVC), however due to the names in the
Django specific implementation, it is commonly refereed to as model-template-
view (MTV)[13]. This is because the model part of MTV is equivalent to the
model in MVC, however the combination of the view and template in MTV are
closely related to the view in MVC, as they are responsible for the presentation
of data. The controller of the MVC pattern can be compared to the framework
itself, as it is responsible for requesting the appropriate view.

Training Service

The Training Service is responsible for training new models, validate model
performance, save the model to a shared storage, inform the Management Service
of training progress and to update the database with test results. Figure 5.6
illustrates how the Training Service is organized in order to have these features.
The training module is responsible for training and evaluating the model, it uses
the provided utilities to notify the Management Service on training progress and



70 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

to save the trained model, in addition it uses the FaaS database manager to get
project data and to save tests results.

Figure 5.6: Logical view - Training Service

Inference Service

Much like the Management Service, the Inference Service design is also influenced
by the underlying web framework. The Inference Service utilizes FastAPI to
create a REST API that use JavaScript Object Notation(JSON). Figure 5.7 shows
the primary elements of the Inference Service, responsible for processing requests
form the user and perform forecasts. The figure includes a module called ”Project
Router”, it contains all the functions used to process requests from the user. It
uses the Inference module, for requests that is related to forecasts. The figure
illustrates that both the Inference module and the ”Project Router” uses the
FaaS database manager. The Inference module uses the database manager to get
project data, while the ”Project Router” uses the database manager to validate
access tokens, get project meta data, and to get project data, all depending on
the user request. Finally the ”Request/Response Types” module includes a set
of classes, that specifies the format for requests and response to the API itself.

Figure 5.7: Logical view - Inference Service



5.5. ARCHITECTURE 71

Entity-relationship model (ER)

The goal of the system is to provide energy producers with accurate production
forecasts using machine learning. This is an application that is very reliant on
data, and therefore we have also included a entity-relationship (ER) model to
show how the system stores data. The model can be seen in Figure 5.8. The ER
diagram shows the relationship between the entities of the system. It illustrates
how a company can have many users and projects, and that a project can have
many project data instance. A single project data instance stores data for a
single date, and as the forecasts are improved with larger data sets, each project
should ideally have as many project data instances as possible.

Figure 5.8: Entity-relationship model (ER)

5.5.2 Development View

The development view is concerned with the software organization of the system,
and is intended to support software developers. This view will be presented
using a UML package diagram for each service, that will also include the package
artifacts and primary script files. The concepts presented in the logical view
should be relatable to the primary packages.



72 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

Management Service

The package diagram for the Management Service can be seen in Figure 5.9, due
to the size of the diagram, the figures for accounts, projects and JavaScript(js) are
created as separate figures. Accounts can be seen in figure Figure 5.10, projects
in Figure 5.11 and js (JavaScript) can be seen in Figure 5.12.

Figure 5.9 covers the overall structure of the Management Service and is highly
influenced by the Django framework. The root package contains an app package
with the functionally explained in the logical view, a set of configuration files,
a package with assets that contains the JavaScript, a static folder that contains
files to be served directly by the Nginx webserver, a set of root templates used
by the apps, a test folder for tests, a test data folder that is used to hold data
used for development and a util folder used for utilities.

The files contained in the root package are all concerned with configuration
of the framework. The ASGI (Asynchronous Server Gateway Interface) file is
used to communicate with the web server forwarding requests to the Django
framework. By default Django uses WSGI (Web Server Gateway Interface),
however as the project adapted WebSockets it required an interface with support
for asynchronous operations and the system changed from WSGI to ASGI.

The url.py file in the root package is used for routing, it is responsible for routing
all requests to its appropriate view, module or app. In Django it is common to
have multiple url.py files, one root and one for each app. Therefore both accounts
and projects have their own urls.py. The routing.py file has a similar purpose
and is used for routing WebSocket connections. Finally the settings file is used to
configure the application, this includes aspects such as configuring the database,
Redis, environment, templates, apps, third-party modules, middleware, allowed
hosts etc.

Figure 5.9 also contains a util folder that holds utilities that can be used by mul-
tiple apps. Currently it contains a utility for communicating with Meteomatics
and the training manager file that uses a manager from the training manager
package to start a new training job. The training manager was designed this way
to support more then one platform.

In addition to the accounts and projects apps that will be covered below, the
Management Service also has a third app, celery worker. It only contains the
configuration used by the Celery, and is created as an independent app to follow
best practices.



5.5. ARCHITECTURE 73

Figure 5.9: Development view - Management Service

Figure 5.10 shows the package diagram for the accounts app, the package provides
functionality that is concerned with user and company management. The logical
view introduced concepts such as models, views and templates, they can be seen
as packages in the diagram. The templates are based on inheritance and most
of the templates extends the base with nav.html or base.html template from the
root template package. The templates in the registration package are used to
overwrite the default Django functionality and are concerned with authentication
process. The diagram also includes a package for tests, and one for migrations.
The migration package holds migrations files generated by Django, the migration
files are responsible for updating the database schema when a change is made to
a model.

The accounts app also contains a set of files that are common in most Django
applications. The admin file is used to configure the built in administration
panel, it is used to specify what data is included and how it is displayed. The
apps file is used to register the package as a Django app (part of the framework



74 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

configuration), the url.py files extends the url.py file in the root package, the
form.py is used to validate user input and the activate user email.py file is specific
to the accounts application and it sends a welcome email to a given user.

Figure 5.10: Development view - Management Service - accounts application

Figure 5.11 shows the package diagram for the project app, the package provides
functionality that is concerned with project management. The organization of the
package and files are similar to accounts, however the project app also contains
a few other features.

The package contains a decorator.py file that is used to create custom decorators
to be used by view functions. A decorator is used to alter the functionality of a
function, without changing the source code of the function. One common usage
for decorators in Django is to modify the access to resources, in this case this
could for instance be to only allow employees from a given company to access a
project.

The package also contains a task.py file, which is used to define functions that



5.5. ARCHITECTURE 75

should be ran by Celery. So far it only contains one file that uses the Meteomatics
util to fetch weather data.

The channels package contains the code that is used for WebSockets. The
routing.py package specifies the paths, just like urls.py for HTTP requests. The
consumers process the requests and can be compared to the view functions for
HTTP requests.

In addition to the default model behavior, the project app also includes a manager
package, that is used to create custom Managers for Models. In Django a manager
is the interface that provides database query operations. Because the Django
ORM does not provide functionality for all possible SQL quires, a new manager
can extend the functionality of the base model manager. In this case this was
done to implement a custom bulk update or insert methods for project data.



76 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

Figure 5.11: Development view - Management Service - project application

The project also features several dynamic web elements, such as buttons, modals
and graphs; to power this functionality the project uses JavaScript. The JavaScript
files are directly related to the templates containing HTML and are imported
using the script tag. Figure 5.12 show the structure of the JavaScript files,
dependencies and packages. The majority of the JavaScript is used on the project
page, the project page uses all the files in the project package as well as index.js
and navbar.js. It would be inefficient to load all those nine files individually,



5.5. ARCHITECTURE 77

therefore the project uses Webpack to bundle the JavaScript before it is served to
the user. The bundling is triggered as part of the deployment of the Management
Service, and the finished bundles are served by Nginx web server. In development
Webpack run in its own container, continuously watching for changes, such that
a change to a file will automatically trigger a rebundle.

Figure 5.12: Development view - Management Service - JavaScript

Training Service

Figure 5.13 shows the package diagram for the Training Service. The two files
in the root package are responsible for configuration the service. The training
package is responsible for training, it consists of a training.py module, responsible
for the model training pipeline, using the tl catboost.py module, which imple-
ments the TL-GTB method, and feature map.json, which defines the features
used by the model. The training packages use the utility package to handle generic
operations such as notifying the Management Service and saving files/models.



78 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

Figure 5.13: Development view - Training Service

Inference Service

Figure 5.14 shows the package diagram for the Inference Service. Similar to the
Training Service it has two files in the root package that are used for configuring
the service. The constant file includes global variables such as logging level and
the path to the folder holding the project models. The main app is used to initiate
FastApi and configure it to the specifications of the project. The utils package
contains one file that is used to make forecasts for all projects, it is used for the
Cronjob that performs forecasts for all project every hour. The inference package
is responsible for performing forecasts. The project.py file in the router package
is responsible for processing requests form the user. Finally the project.py in the
request types are used to specify the format of requests and responses from the
API.



5.5. ARCHITECTURE 79

Figure 5.14: Development view - Inference Service

Forecasting as a Service Database Manager

The FaaS database manager is divided into three parts; the connector.py that
is responsible for connecting to the database, the files in the models package
that are responsible for building quires and the manage.py that is responsible for
binding them together. All the models inherit from the abstract model.py as it
contains a set of generic SQL methods such as get and update. The files that
uses the abstract model such as projects.py contains the table name and fields of
the project table and any custom methods used for that table.

Figure 5.15: Development view - FaaS database manager



80 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

5.5.3 Process View

The process view is concerned with the dynamic parts of the system, how services
communicates and the runtime behavior of the system. The goal of the process
view is take into account some of the non-functional requirements. This section
will present the request flow for the web services as well as a sequence diagram
covering the process of training a new project.

Figure 5.16 illustrates how the Management Service processes a request from a
web browser. First the request is sent to the Nginx instance acting as a web
server and a reverse proxy. If the browser requests a file such as images, CSS or
JavaScript the asset is returned directly by the Nginx instance. However, if the
request is for any other resource, the request is forwarded to the Django applica-
tion. Daphane is an Asynchronous Server Gateway Interface (ASGI) server and is
responsible for running the Django application. The request is then processed by
Django Channels, that determines the type of the request (HTTP/WebSocket).
If the request is using WebSockets it is routed to a WebSocketConsumer based on
the request URL. The WebSocketConsumer then communicates with the client
using strings that are interpreted as JSON.

The request can also be using HTTP, if so the request will be processed using the
normal Django request flow. The request is first sent to the request middleware.
In Django, middleware is essentially a set of functions that are hooked into the
request/response flow. The figure shows the basic hooks, however other hooks
also exists. A majority of the default middleware is concerned with security, but
it also does other things such as adding the user object to the request.

After the request is processed by the middleware it is routed to the appropriate
view function based on the URL. The view is responsible for processing the
request made by the user, it uses data from the models, possibly some utilities,
and renders the content using a template. The response is finally processed by
the response middleware and sent back to the client.



5.5. ARCHITECTURE 81

Figure 5.16: Process view - Management Service

Figure 5.17 illustrates a similar request to the Inference Service. As the Inference
Service is not using static assets, HTML or authentication, the request flow is
simpler than for the Management Service. For the Inference Service the request



82 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

is directly forwarded to the Uvicorn ASGI server. The Management Service
uses different ASGI servers, as the frameworks had different recommendations.
However it should be possible to use the same WSGU server for both. Just
like the Management Service, the Inference Service also has middleware, in this
case it is only used for cross-origin resource sharing (CORS). CORS is used to
allow browsers to access the API from other domains, in this case the domain
of the Management Service. The request is then forwarded to a specific router
function based on the URL. The function will process the request and use the
FaaS database manager to acquire or update any data.

Figure 5.17: Process view - Inference Service

Figure 5.18 is a sequence diagram that outline the internal process of creating a



5.5. ARCHITECTURE 83

new project. The figure illustrates the four containers that contribute to the
creation of a new project. The creation starts as soon as the Management
Service Web container have received the necessarily data from the client. The
Management Service Web container will then create a new project and save the
project data, before sending a request to the Celery container to start fetching the
required weather data. When the weather data is acquired, the Celery container
will initiate a new training job. The training will start; and as it progresses, it will
send regular updates to the Management Service. Theses updates are received
by the Train Subscription, that will forward them to the Web container, that is
responsible for communication with the client. It is important to note that the
system can have multiple instances of the Management Service Web and Celery
(They are in the same pod), and that a new Training Service job is created for
each project that is trained. However there are only one Train Subscription, that
will map the messages received to the communication layer provided by Django
channels/Redux.

Figure 5.18: Process view - create project



84 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

5.5.4 Physical View

The physical view is concerned with the physical hardware and its mapping to
software components. The physical view is intended to show the system from
a systems engineer point of view. As this system is reliant on third party
services, the physical view will be presented as the software components and
their mappings to third party services, in particular Azure services.

Figure 5.19 illustrates the services used to build and deploy code and how they
relate. Firstly changes made to the code base are pushed/merged to the master
branch on GitHub. The event triggers Azure to build the required images, and
pushes them to Azure Container Registry. The Build pipeline then triggers the
release pipeline that will install the provided helm charts using Tiller, Tiller is the
Helm server running in the Kubernetes cluster that is responsible for installing
new charts. This is done by downloading the images created in the build step
from Azure Container Registry and public images from Docker Hub (Nginx, Redis
etc). Kubernetes will then start the new resources before finally terminating the
old versions.

Figure 5.19: Physical view - DevOps

Figure 5.20 visualizes the infrastructure that is needed for the runtime operations
of the system. The figure shows how the system is accessible from the internet
using the Management Service and the Inference Service. When a request is
sent to the cluster it is sent to the Nginx ingress, that is exposed to the internet
through the Azure Load Balancer. The ingress will then route the request to the
appropriate service, based on the domain name. The ingress is also responsible
for encrypting the connection to the client using HTTPS, this is done by using
a TLS certifcate that is acquired by Cert Manager, this process was described
in section 5.4.4. The request can then be processed by the django-web-service in



5.5. ARCHITECTURE 85

the Management Service or the only container in Inference Service. The services
communicates using the shared PosgresSQL database, Redis or the shared file
storage as can be seen in the figure. All connections to the database are done
using the Pgbouncer services to reduce latency.

In addition to the resources that are directly responsible for processing user
requests. The cluster also contains the Training Service that is initialized by
the Management Service, and can run one or more jobs at any time. As well as
cronjobs running at a set interval.

Figure 5.20: Physical view - runtime

5.5.5 Scenarios

The scenarios are the plus one of the model, they are intended to show a more
high level abstraction of the functional requirements. We have implemented the
scenarios in form of a user case diagram. Figure 5.21 show the two actors of the
system; the customer and the administrator and what features they require.



86 CHAPTER 5. SYSTEM FUNCTIONALITY AND IMPLEMENTATION

Figure 5.21: Use case diagram



Chapter 6

Experiments

This chapter will present the experiments that were conducted to ensure the
desired system functionality and quality. The first section will introduce the
experiments created to verify and optimize performance for the systems wind
power production forecasts. The second section will focus more broadly on system
functionality and quality, and will presents the experiments intended to validate
the system requirements presented in section 5.1.

6.1 Transfer Learning Experiments

In order to verify and optimize forecasting performance for new system users, we
conducted several experiments with transfer learning on wind power data. The
focus of these experiments were to explore the different forecasting methods de-
scribed in chapter 4. In this section, subsection 6.1.1 to subsection 6.1.5 describes
the experimental setup common for all these experiments, while subsection 6.1.6
describes the aims and unique setup for each experiment.

6.1.1 GEFCOM2014 Wind Power Dataset

The Global Energy Forecasting Competition 2014 (GEFCOM2014) was a time
series forecasting competition for a range of energy related forecasting problems,
including a wind power forecasting track. The competition findings and data has
been published by Hong et al. [21].

The dataset consists of 700 days of hourly power production data and weather
forecasts for ten wind farms. The only information given about the wind farm

87



88 CHAPTER 6. EXPERIMENTS

location is that they are located in the same region of the globe, and the power
production data has been min-max scaled to anonymize the wind farms.

We choose to use this public wind power dataset for our experiments as they
contain data for more wind farms than what TrønderEnergi manages, allowing
more extensive testing for transfer learning. The dataset also allows for better
reproducibility through being a public dataset, where as TrønderEnergi’s wind
power data are proprietary.

6.1.2 Data Preprocessing and Feature Engineering

In order to ensure successful transfer, the production data for each wind farm
needs to be scaled on a per-wind farm basis. This would be achieved by dividing
production by the wind farms max production, however for the GEFCOM2014
data this scaling has already been done.

In our work we choose to not focus on experimenting with feature engineering,
but rather opt to use a feature set previously used by TrønderEnergi for their
non-transfer wind power forecasting. We use the following feature set for all
experiments.

Ft = {pt−5:t−1, pδt−5:t−1, wst−5:t+3, ws
δ
t−2:t+2, wdt−2:t+2, wd

δ
t−2:t+2}

Where Ft is the feature set used for predicting wind power at timestep t, pt is
the power at timestep t, wst is the wind speed forecast at timestep t and wdt is
the wind direction forecast at timestep t. The colon subscript notation specifies
a range of timestep values pa:b = {pa, pa+1, ..., pb} where a < b. The superscript
δ specifies a differenced value pδt = pt − pt−1.

6.1.3 Validation Strategy

In our experiments we use each wind farm as a simulated target wind farm in
turn, with the other nine wind farms acting as potential source wind farms. The
average performance across all ten target wind farms is then reported as the final
performance.

The testing of each individual target wind farm utilizes a small set of training
data from the target wind farm, and a large set of training data from the source
wind farms. The model is then tested on a larger set of target data. We use the
Mean Absolute Error (MAE) error metric for our experiments. While the target
training set has to be small, to simulate a wind farm with little available data, the
test set can be large in order to give a more accurate performance measurement.
Due to the expected correlation between data from different wind farms, it is



6.1. TRANSFER LEARNING EXPERIMENTS 89

important to not have an overlap between source training data and target test
data to prevent data leakage. The source training data therefore only consists of
data from before the target test set.

Due to the use of a small training set for the target wind farm, a greater variance
in performance depending on the content of this training set can be expected
compared to standard machine learning with a larger training set. We therefore
choose to use a sliding window validation strategy, in which the windows of
training and test data only partially covers the full dataset. Multiple passes
are then performed, in which a model is trained and tested. After each pass,
the windows are slid forwards in time, allowing a new set of data to act as the
training set. The test set error is averaged across all passes, and reported as the
final error. Figure Figure 6.1 illustrates the sliding window validation strategy.

Figure 6.1: Diagram showing the sliding window validation strategy

The total number of data points covered by the validation strategy is given by
the formula:

dtotal = max(dstr, dttr) + dtte + (npass − 1) · dshift

Where dstr is the size of the source training set, dttr is the size of the target
training set, dtte is the size of the target test set, npass is the number of passes
and dshift is the number of data points that the windows are shifted after each
pass.



90 CHAPTER 6. EXPERIMENTS

For our experiments on the GEFCOM2014 datasets, which consists of a total of
16,800 data points, we chose the following parameters for the validation:

dstr := 8400

dttr := 600

dtte := 1800

npass := 12

dshift := 600

This utilizes a source training window of size equal to half the total dataset,
allowing the second half of the data to be used for testing. The size of the target
train set is 600 data points, corresponding to 25 days of known data for the
target wind farm. The total number of data points covered with these parameters
matches the total GEFCOM2014 data set size of 16,800 data points.

6.1.4 Baselines

In order evaluate the effectiveness of transfer learning, we compare the perfor-
mance of different models to two baseline models. A naive baseline, which simply
uses the last known wind power production as its prediction, and a GTB model
trained only on the target training data, not utilizing any transfer learning.

6.1.5 GTB and TL-GTB Implementation and Parameters

Our implementation of the TL-GTB method described in section 4.1 is built
on the CatBoost Python library [9], which provides all the functionality needed
for training, slicing and refining GTB ensembles. The CatBoost library comes
with automatic selection or well generalizing defaults for all parameters, and
claims that it is generally able to achieve great results with default parameters
as one of its main features. We therefore run CatBoost training with mostly
default parameters, but we set the loss function to our error metric, MAE, and
we set the tree depth to 3, which is based on TrønderEnergi’s previous practices
and results for wind power forecasting. The GTB baseline model is trained for
1000 iterations, while the TL-GTB model is first trained on source data for 1000
iterations, and then refined on target data for 100 iterations.

6.1.6 Experiments

We performed five different experiments, labeled TL-Exp. 1 to TL-Exp. 5. This
subsection describes the goal and setup unique to each of these experiments. The
result of each experiment will be presented in section 7.1.



6.1. TRANSFER LEARNING EXPERIMENTS 91

TL-Exp. 1: TL-GTB and Source Utilization Effectiveness

This experiment tests the effectiveness of the TL-GTB method, in combination
with the three source utilization strategies: single-source transfer, combined-
source transfer and transfer ensemble, described in section 4.2. No weighting
strategy is employed in this experiment, with equal weighting being given to each
source for the two multi-source strategies. The performance of these methods are
with each other and the two baseline methods.

TL-Exp. 2: Wind Profile Based Weight Generation and Optimal
Cluster Count

This experiment tests the clustering-based wind profile similarity weight genera-
tion method described in subsection 4.3.1 This method leaves the cluster count
k as a tunable parameter. In order to optimize this weighting strategy we tested
a range of cluster counts between 2 clusters and 100 clusters. We tested the
resulting performance of using these weights for a weighted TL-GTB transfer
ensemble. We set the stability constant s to 0.05 for this test, and target wind
farm data in the source training window was used for the weight generation.

TL-Exp. 3: Performance Based Weight Generation and Optimal De-
cay Factor

This experiment tests the performance based weight generation method described
in subsection 4.3.2. This method leaves the exponential decay constant d as a
tunable parameter, for which we test 101 values ranging from 0 to 1 at a resolution
of 0.01. The generated weights are tested on a TL-GTB transfer ensemble model.

TL-Exp. 4: Multi-Step Forecasting Strategies

This experiment tests the effectiveness of the recursive and the productionless,
direct forecasting strategies for multi-step forecasting described in section 4.4.
The direct model uses the same features for wind speed and wind direction
forecasts as described in subsection 6.1.2, but excludes the wind power features.
Both the recursive model and the direct model strategies are tested for TL-GTB
transfer ensemble models with equal weights and transferless GTB models. We
test and compare these models and multi-step forecasting strategies to the naive
baseline for forecasting horizons ranging from 1 to 48 hours.

TL-Exp. 5: Forecasting Performance for Varying Target Data Sizes

This experiment tests the development of forecasting performance as the set of
available target training data grows. We compare a TL-GTB transfer ensemble



92 CHAPTER 6. EXPERIMENTS

model with equal weights to the naive baseline and the transferless GTB baseline.
We test performance for values of the target training set size dttr ranging from
100 to 8400.

6.2 System Experiments

This section will cover the experiments used to test the requirements of the
system. The purpose of the experiments are to verify if the system has the
desired features and qualities. All tests were carried out on the production
ready system, to simulate real word usage. When the tests was conducted the
system was using a minimum of three nodes, which is the minimum recommended
configuration for a Kubernetes cluster in production [30]. However for most of
the development period and after delivery the system will be using only one
node to save costs. The nodes are implemented using Azure Virtual Machines,
and each node has a capacity of 2 vCPUs and 7 GiB of memory. A list of the
functional requirements can be seen in Table 5.1 and Table 5.2, while a list of
the non-functional requirements can be seen in Table 5.3.

6.2.1 Functional Requirements

Each individual requirement was tested to ensure that the system has the in-
tended functionality. The system was also presented to TrønderEnergi, to ensure
that the system was created to their specifications.

6.2.2 Non-functional Requirements

The non-functional requirements had to be tested using different tools and pro-
cesses. The experiments performed for NFR1-NFR5 were based on the following
metrics and environments.

• NFR1 was tested using the build time and deploy metrics gathered by
Azure DevOps.

• NFR2 was tested using the DevTools in a Chromium based web browser,
with a internet connection of 100 Mbit/s.

• NFR3 was tested using the DevTools in a Chromium based web browser,
with a internet connection of 100 Mbit/s.

• NFR4 was tested on a end-user without any machine learning knowledge.

• NFR5 was tested by creating a new project and taking the time before the
project reached the status ”Ready to forecast”.



6.2. SYSTEM EXPERIMENTS 93

The remaining requirements (NFR6-NFR11) required a more specific explanation
and experiments for each requirement is presented below.

Scalability of the Entire System (NFR6)

The experiment conducted to test NFR6 was performed using the python load
test framework Locust [31]. Locust is a open source framework that can simulate
up to millions of concurrent users [31]. For each of the users, Locust can be used
to define a set of tasks that will be chosen at random. Each task perform one or
more HTTP requests and has a weight, such that some tasks can be ran more
often then others. For NFR6, Locust was configured to use up to 500 users, where
5 users joined every second. In addition every user would select a task randomly
after 10-20 seconds. All pages were weighted equally, except for the request to
create a new project, which was given a weight of one hundredth of the other
tasks. This behavior was chosen to simulate how we think real users would use
the site. As an example we do not think a user will create a new projects very
often.

Scalability of Training (NFR7)

The experiment conducted to test NFR7, utilized Locust, the same python test
framework used for NFR6. However for this test, Locust was configure for one
task only; initialize training. The test will be conducted in two parts, first the
system will be set up to train 10 projects made 10 seconds apart. The first test
was concluded when all the projects had the state ”Ready to forecast”. Before
the second test was conducted, the system was given time to scale down to its
initial configuration. For the second test the system was set to train 20 projects,
made 10 seconds apart, with the same complete condition. Finally the time used
by the tests were compared based on the total training time.

Modifiability of the System (NFR8-NFR11)

NFR8-NFR11 are requirements that represent system changes that could be
required for the system to stay competitive. That is, they are concerned with the
modifiability of the system. The problem with these requirements are that they
require the changes to be implemented to get an accurate test result, and some
even require special expertise. Performing the actual changes are time consuming
and outside the scope of our this project. There exists methods for validating
the modifiability of systems, such as Bengtsson et al. [3], however these methods
are not a prefect match for our system. Instead we have taken inspiration from
Bengtsson et al. [3], and adapted them to our requirements. To evaluate NFR8-
NFR11 we would have to estimate the time needed to make the changes for



94 CHAPTER 6. EXPERIMENTS

each requirement. This estimate was based on the software architecture and the
precises change that would have to be made to the system. This was achieved by
presenting an implementation strategy for each requirement. Finally the strategy
was evaluated against the requirement.



Chapter 7

Results and Discussion

This chapter presents and discusses the results of the experiments described
in chapter 6. section 7.1 presents the results of the experiments on transfer
learning, while section 7.2 presents the result of the experiments testing the
system requirements.

7.1 Transfer Learning Results

This section presents the results the transfer learning experiments described in
subsection 6.1.6. Subsection 7.1.1 to subsection 7.1.5 presents the result of each
of the five experiments in turn, while subsection 7.1.6 summarizes and discusses
these results.

95



96 CHAPTER 7. RESULTS AND DISCUSSION

7.1.1 TL-Exp. 1: TL-GTB and Source Utilization Effec-
tiveness

Naive Baseline GTB Baseline
Single-Source

TL-GTB (Best)
Combined-Source

TL-GTB
Ensemble
TL-GTB

Wind Farm 1 0.0628 0.0726 0.0680 0.0670 0.0663
Wind Farm 2 0.0546 0.0630 0.0566 0.0557 0.0553
Wind Farm 3 0.0640 0.0660 0.0620 0.0615 0.0603
Wind Farm 4 0.0735 0.0813 0.0755 0.0752 0.0733
Wind Farm 5 0.0694 0.0708 0.0675 0.0660 0.0654
Wind Farm 6 0.0701 0.0736 0.0688 0.0682 0.0669
Wind Farm 7 0.0606 0.0660 0.0612 0.0603 0.0595
Wind Farm 8 0.0662 0.0783 0.0697 0.0686 0.0685
Wind Farm 9 0.0668 0.0727 0.0681 0.0675 0.0661
Wind Farm 10 0.0750 0.0759 0.0712 0.0707 0.0699

Mean 0.0663 0.0720 0.0668 0.0661 0.0652

Table 7.1: The mean absolute error for TL-GTB with each source utilization
strategy compared to baselines for each target wind farm. Lowest error is marked
as bold.

Table 7.1 shows the test error achieved by each of the tested methods on each
target wind farm. For the sake of conserving space, only the error of best
performing single-source TL-GTB model is presented for each wind farm. These
results show a notable reduction in error from using transfer learning compared
to the transferless GTB model, with the ensemble transfer strategy consistently
performing the best out of the three source utilization strategies.

While ensemble TL-GTB outperformed the naive baseline for most target wind
farms and on average, it performed poorer than the naive baseline on wind farm
1, 2 and 8. It is however important to note that where as the performance of
ensemble TL-GTB improves with more training data, the naive baseline perfor-
mance remains fixed. TL-Exp. 5 explores this relationship in greater detail.



7.1. TRANSFER LEARNING RESULTS 97

7.1.2 TL-Exp. 2: Wind Profile Based Weight Generation
and Optimal Cluster Count

(a) Average error. (b) Error deviation from equal weights for each wind
farm.

Figure 7.1: Plot of Mean Absolute Error for different cluster counts c.

Figure 7.1 shows the developing error over increasing cluster counts for the
cluster-based wind profile similarity weight generation method. The best average
performance was achieved with 11 clusters, resulting in an average error of
0.065222, which is slightly worse than the average error achieved by the previously
tested equal weight strategy, which is 0.06516. Both this difference and the
increase in error from higher cluster counts is far too small to hold particular
significance.

It is interesting to note how different cluster count impacted different wind
farms, with a greater variation early on, then different converging behaviours
as cluster count increases. While the error steadily increases for some wind farms
as cluster count grows, other wind farms see stable performance or even very
slight improvements with increasing cluster counts.



98 CHAPTER 7. RESULTS AND DISCUSSION

7.1.3 TL-Exp. 3: Performance Based Weight Generation
and Optimal Decay Factor

(a) Average error. (b) Error deviation from equal weights for each
wind farm.

Figure 7.2: Plot of Mean Absolute Error for different exponential decay factors
d.

Figure 7.2 shows the developing error over increasing exponential decay factor d
for the performance-based weighting strategy. A value of d = 0 corresponds to
a single-source utilization strategy, while d = 1 corresponds to an equal weight
strategy. The best average performance is achieved with the value of d being
0.88, resulting in an average error of 0.06512, a very slight improvement from the
average error achieved by equal weights, which is 0.06516. This improvement in
error is however too small to be of particular significance.

As can be seen in Figure 7.1(b) a value of d lower than 1 does not yield the best
performance for every wind farm. Some wind farms have a strictly decreasing
error as d increases, while others reach a minimum error at a lower value for d.



7.1. TRANSFER LEARNING RESULTS 99

7.1.4 TL-Exp. 4: Multi-Step Forecasting Strategies

Figure 7.3: Plot of mean absolute error over horizons from 1 to 48.

Figure 7.4: Plot of mean absolute error over horizons from 5 to 48, excluding
naive baseline.

Figure 7.3 shows the forecasting error from 1 to 48 hour horizons for both the
recursive and direct forecasting strategies using TL-GTB and transferless GTB,
compared to the naive baseline. Figure 7.4 shows the error from 5 to 48 horizons
and excludes the naive baseline for improved distinguishability.

The direct models maintains a fixed error across all horizons. The recursive
models errors starts low and increases over the first few horizons, but flattens out.
The naive baseline flattens out towards the 24th horizon, but starts increasing
again after the 24 hour horizon. This is presumably caused by a daily seasonality
in wind power production.



100 CHAPTER 7. RESULTS AND DISCUSSION

While the recursive TL-GTB model only outperforms the naive baseline slightly
for short horizons, the error of the naive baseline increases significantly faster
and for significantly longer than the recursive model. The recursive model out-
performs the direct TL-GTB model for the first 7 horizons, after which the direct
model performs slightly better. After approximately 18 horizons, the recursive
TL-GTB model error reaches convergence at a MAE of 0.1266, approximately
0.5% higher than the direct TL-GTB models MAE of 0.1260.

When comparing the ensemble TL-GTB models with the transferless GTB mod-
els, TL-GTB performs consistently better across all horizons. It is interesting to
note that the difference in performance between the recursive and direct models
for transferless GTB is significantly greater than for TL-GTB. For transferless
GTB the recursive model only outperforms the direct model for 5 horizons.
Where as the error of the recursive TL-GTB converges after approximately 18
horizons, the error of the recursive, transferless GTB model keeps raising in later
horizons.

7.1.5 TL-Exp. 5: Forecasting Performance for Varying
Target Data Sizes

Figure 7.5: Plot of mean absolute error over increasing target training data.

Figure 7.5 shows the single-step forecasting error of ensemble TL-GTB compared
to transferless GTB and naive baseline for target training set sizes ranging from
100 to 8400 datapoints. Particularly for smaller target training set sizes, en-
semble TL-GTB significantly outperforms transferless GTB, but the difference
in performance between these two gradually decreases as target training data
increases. Ensemble TL-GTB still outperforms transferless GTB for the largest
tested training set size of 8400 datapoints, or 350 days of data, with an MAE of



7.1. TRANSFER LEARNING RESULTS 101

0.06019 compared to transferless GTB’s MAE of 0.06104. Ensemble TL-GTB
bypasses the performance of the naive baseline for single-step forecasts at a target
training set size of 500 and higher. The transferless GTB model outperforms the
naive baseline at 1500 datapoints and higher.

7.1.6 Summary and Discussion

These experiments show that the TL-GTB method using the ensemble source
utilization strategy consistently improves prediction performance compared to
not using transfer learning, and allows for particularly very large improvements
for wind farms with little available data. TL-Exp. 2 and TL-Exp. 3 shows
that our two tested weighting strategies fails to yield significant improvements
in forecasting accuracy. While TL-Exp. 5 shows that the naive baseline still
outperforms ensemble TL-GTB for very small target training set sizes on single-
step forecasting, TL-Exp. 4 also shows that the error of the baseline increases sig-
nificantly faster over horizons. We therefore expect that ensemble TL-GTB will
outperform the naive baseline for longer horizon even with very small amounts
of data, however we lack experiments to confirm this.

Based on these results, the model we implemented in out forecasting system
is an ensemble TL-GTB model with equal weights, using the recursive multi-
step forecasting strategy to provide forecasts from 1 to 48 hour horizons. While
TL-Exp. 4 shows that a productionless direct model slightly outperforms the
recursive model for higher horizon, we choose not to utilize such a model for
higher horizons for two reasons. Firstly having to train a productionless model in
addition to a model utilizing production features would double the system train-
ing time. Secondly, the error from the recursive model is propagated forwards
through horizons, with only a small expected shift in error per horizon. This
results in a smooth and realistic looking forecast. For a direct model however,
the error is not propagated forwards, but regenerated for each horizon. Using
a direct model to create forecasts could result in rapid changes between greatly
overestimating one horizon, then greatly underestimating the next, creating a
more jagged and unrealistic looking forecast. While this method might have a
slightly lower forecasting error, it could easily seem like a significantly poorer
forecast to the inexperienced end user. These two reasons, combined with the
accuracy gain being fairly small, made us opt for only using a single, recursive
model.



102 CHAPTER 7. RESULTS AND DISCUSSION

7.2 System Results

This section presents and discusses the results of the system experiments pre-
sented in section 6.2. The experiments were created to validate the features and
qualities of the system.

7.2.1 Functional Requirements

Each of the requirements presented in Table 5.1 and Table 5.2 were imple-
mented into the system. All of the requirements was validated with success.
TrønderEnergi was also given a demonstration of the final product, and they
were satisfied with the result.

7.2.2 Non-functional Requirements

To validate that the system had the desired system qualities each of the non-
functional requirements presented in Table 5.3 was validated based on the setup
described in subsection 6.2.2. Many of the non-functional requirements could be
tested directly with little configuration, and the results from those experiments
are outlined in Table 7.2. However some of the experiments, particularly those
related to modifiability and scalability, requires a more in depth discussion and
explanation. These experiments are presented in their own sections below.

ID Test result

NFR1
Each of the services are normally deployed to production within 5
minutes.

NFR2
After having performed 10 predictions without a set date, the average
response time was 4.6 seconds.

NFR3
Most pages loads under 500ms, however the project pages averaged
at 1.9 seconds over 10 attempts.

NFR4
With the premise of the user having the park information and training
data in front of them, it took our one test user 1 minute 1 seconds to
complete the park setup.

NFR5
The weather data acquisition and training took 2 minute and 45
seconds for a test park with 16.8k rows.

Table 7.2: The result of the non-functional requirements experiments



7.2. SYSTEM RESULTS 103

Scalability of the Entire System (NFR6)

NFR6 is concerned with the systems ability to scale to accommodate increased
user volume. The system was able to serve 500 concurrent users without any
issues. During the test Locust performed a total of 3902 requests, including 4
new project requests with an average response time of 295ms seconds during the
two minutes 10 seconds long test. Figure 7.6 shows the graphs created by Locust
to illustrate how the user load increased with time. While the tests were being
executed the Management Service was scaled from three replicas to five replicas,
to handle the increasing load. This tests illustrate that the system is able to scale
to accommodate peeks in system usage.

Scalability of Training (NFR7)

NFR7 is concerned with the systems ability to scale, such that it can train
multiple models at the same time. The first test trained 10 parks in 11 minutes
45 seconds, while the second test trained 20 parks in 15 minutes 5 seconds. For
both tests one park was added every 10 seconds, meaning that the last test should
use 1 minute 40 seconds more then the first. However in our test, the second test
used 3 minutes 20 seconds more then the first test. This means that the second
test was not able to train the parks as quickly as the first test.

During the tests, we monitored the number of nodes, and for the first test it
scaled the cluster to four nodes, adding one from the default configuration. For
the second test it scaled the cluster to seven nodes, adding four nodes. The
difference in the number of new nodes, is important to the overall time, as the
adding of a single node can take minutes. As such we think it is likely that the
time needed to add a new node, is the reason for the longer training time.

Even tough the result did not reach the requirement, it clearly shows that the
system is able to scale to accommodate increased demand. A possible solution
to achieve the desired result, is to use Azure Container Instance instead of Azure
Virtual Machines for Kubernetes nodes. The cluster used for this test did not
have access to Container Instances, as such we will leave such a configuration for
future work.



104 CHAPTER 7. RESULTS AND DISCUSSION

F
igu

re
7.6:

G
rap

h
s

u
sed

to
v
isu

a
lize

th
e

lo
a
d

fo
r

N
F

R
6
.



7.2. SYSTEM RESULTS 105

Modifiability of the System (NFR8)

NFR8 is directly related to the modifiability of the system, and the following steps
have been taken to ensure that a data scientist is able to modify the training used
for wind power forecasting.

• The functionality related to wind power project training is created as its
own module; the Training Service.

• The code used for the Training Service is hosted in its own GitHub reposi-
tory.

• The deployment process is automated using CI/CD. The Training Service
can be changed without needing any knowledge of how the system is de-
ployed and without any need for manual labor.

• The Training Service comes with a README, that includes the steps
needed to get started.

• The usage of docker-compose means that no manual configuration is re-
quired to run the Training Service locally, and since it is running in Docker
its behavior is independent of the operating system of the user.

• TrønderEnergi can leverage the comprehensive documentation of the Train-
ing Service presented in chapter 5.

• The Training Service is using python, the same language used by data
scientists at TrønderEnergi.

Some of theses properties can be directly related to the architecture modifiability
tactics described in chapter 2. Since the training module is only responsible for
training wind power forecasting models, this increases the cohesion and keeps the
module size small. The Training Service is minimizing the connection to other
services, and connections are only using a few standardized interfaces (Redis, file
storage and the share PostgreSQL database), this reduces coupling and technical
debt. Even though these steps are not a guarantee that the training module is
easy to modify, the steps taken should make it easier for TrønderEnergi to modify
the training progress used for wind power forecasting.

Modifiability of the System (NFR9)

NFR8 is concerned with upgrading the system to support multiple time series
related tasks. The system is designed such that it should be possible to facilitate
for other time series related problems, than just wind power forecasting. An
implementation of a new problem type could be achieved with the following
steps.



106 CHAPTER 7. RESULTS AND DISCUSSION

1. The current training process is implemented as an independent service.
This means that new training processes can be added as independent ser-
vices as well. The Management Service would then deploy different Kuber-
netes Jobs based on the project type.

2. The project table could be extended to support multiple project types by
adding a type field and any other metadata information to the project
table, as well a corresponding data table for each type. This would be
implemented by adding a new Django model for the data table, and by
editing the existing projects model

3. The user interface would have to be updated on the main project page, the
create project page and the project page. These pages would have to be
modified to show information specific to each project type.

4. The Cronjobs for fetching weather and making forecasts would have to be
updated to support multiple projects, their behavior should depend on the
project type.

5. Inference Service would have to be updated to support forecasts made by
the new training service.

Assuming that the new time series problem utilized the same project page layout
as for wind power forecasting, we estimate that a project type could be imple-
mented in about 70 hours, excluding the time needed to created the training
module. This includes 25 hours to fix the user interface, 30 hours to configure
the Management Service for the new training module including tests, 10 hours to
update the Inference Service and 5 hours to configure CI/CD for the new training
module. This is well within the 100 hours requirement. However this estimate
could differ based on the data that should be displayed, and whether or not the
new project has meta data that is very different from the current meta data.

Modifiability of the System (NFR10)

NFR10 is concerned with extending the system to support organizational per-
missions for users. This functionality is intended to limit users ability to invite
and delete users, such that only a select group of users with elevated permissions
would have this access. The easiest implementation of this feature, would be to
add a boolean field is organizational admin to the user model. This field should
be checked when the user tries to invite or delete a user. This features would
also require extensive testing as it is vital to the security of the application.
We estimate that it would take about 2 hours to implement the functionality
and another 2 to tests it, as such it should be possible to archive within 10
hours. For a more advance permission system, it might be feasible to add specific



7.2. SYSTEM RESULTS 107

organizational permissions to each user, however this is out of the scope of this
requirements.

Modifiability of the System (NFR11)

NFR11 is concerned with platform lock-in, and the ability to change cloud provider.
Since the system is using Kubernetes, it can be ported to any of the major cloud
platforms without any modifications to the compute platform. There are however
a few aspects of the system that would have to be changed. Firstly the CI/CD
pipelines in Azure DevOps would have to be move to a similar service on the new
platform. Secondly the current azure file storage would have to be moved to a
similar service. Thirdly the PostgreSQL database would have to be transferred to
a new PostgreSQL database on the new platform. We estimate that this process
should be achievable within 30 hours, well within the 50 hour limit.



108 CHAPTER 7. RESULTS AND DISCUSSION



Chapter 8

Evaluation and Future Work

In this chapter we will evaluate the system implementation in regard to our
hypothesis and research questions presented in the introduction. Based on the
findings we will make suggestions for future work.

8.1 Evaluation

The purpose of our research was to identify if an automatic system for wind power
forecasting could be designed as a competitive alternative to task specific imple-
mentations and AutoML. In collaboration with TrønderEnergi we concluded that
such a service would have to be easier to use than task specific implementations
and achieve better forecasts then AutoML. The service could have an additional
competitive advantage if we could leverage the collected data in the system to
improve forecasts for all wind farms, particular wind farms with little available
data. If such a system could be implemented, it should also be easy to modify
such that it could evolve to a larger time series based forecasting system. To
achieve this goal, we proposed the following hypothesis:

HYP: An automatic, scalable machine learning service can be developed
for wind power production forecasting for wind farms with little
available data.

To enable the verification of this hypothesis, three research questions were de-
fined.

109



110 CHAPTER 8. EVALUATION AND FUTURE WORK

RQ1: How can transfer learning be applied to improve wind power
forecasting performance?

We have shown through several experiments that the use of transfer learning
with gradient tree boosting gives notable improvement in wind power production
forecasting for a wide range of target data set sizes and forecasting horizons.
These results are based on testing on 10 different open wind farm datasets,
using a sliding window validation method, achieving a high degree of statistical
significance in the result.

While we show that use of transfer learning can be a significant benefit for wind
power forecasting, we have only tested transfer learning for gradient tree boosting.
Other alternative approaches to transfer learning, for example neural network
based approaches, might prove even more successful.

RQ2: How can a system be designed to automate the use of transfer
learning for wind power forecasting?

We have demonstrated such a system through experimental development, yielding
a functional, fully automatic system for wind power forecasting, which imple-
ments a transfer learning based machine learning model. The machine learning
method has been designed based on a standard configuration of parameters and
features, supporting the training of new models for new wind farms without any
wind farm specific adjustments or overhead.

This automatic system does however pose some risks, which have not been
sufficiently investigated. subsection 3.3.1 describes the technical debt cost of
increasing data dependencies, and how unstable data dependencies might result
in unexpected behavior of machine learning models. As the number of wind farms
in our system grows, more and more candidate source wind farms are available for
training models for new target wind farms. While this can be a valuable resource
for improved forecasting performance, it also comes at the cost of growing data
dependencies for models. In order to prevent training time for new wind farms to
increase as more wind farms are added to the system, we limited the set of source
wind farms to the 10 wind farms with shortest geographical distance to the new
target wind farm. This approach does however mean that as time goes on, the set
of selected source wind farms for existing wind farms in the system can change,
having potentially unpredictable and undesirable effects on model performance.
Due to not having wind power data for sufficiently many wind farms and the
geographical location of wind farms from the GEFCOM2014 wind power dataset
being unknown, we have not been able to conduct a thorough analysis of these
effects.



8.1. EVALUATION 111

RQ3: How can a system for wind power production forecasting
utilizing transfer learning be designed to support modifiability and
scalability?

Several steps have been taken to design a system that is highly modifiable and
scalable. For modifiability this includes using a microservice architecture, re-
duction of technical debt, a high degree of automation and using platforms and
programming languages familiar to TrønderEnergi. The use of microservices
divides the system into small independent services with high cohesion and low
coupling, in line with many of the architecture tactics for modifiability. During
the entire development process, reducing technical debt was critical, and in
particular architecture technical debt. To the best of our ability we tried to create
robust generic solutions that would make it easier to change the services later.
This includes using Redis, PostgreSQL and file storage as the only communication
channel for all services, creating a common database manager library to be used
for communication with the database and utilizing common libraries for our
machine learning module. The automation of testing using GitHub Actions and
deploying applications using Azure DevOps means that any developer can update
the platform without any knowledge of how the system is deployed. Finally the
services are made specific to support TrønderEnergi as they already use Python
and Kubernetes for their own projects, thus minimizing the training needed to
understand the system.

In addition to the general decisions we made to support modifiability, we also
created a set of experiments to test the non-functional requirements related to
modifiability(NFR8-NFR11). These experiments tests how easy it is to make
certain changes to the system, and the experiments are intended to support the
changes that we estimate are likely to occrue. Based on the experiments the
system should be able to support the future needs of TrønderEnergi, but they
are only estimates. The true modifiability of the system will not be established
before the changes are actually implemented, however we are confident that the
design decisions we made should positively impact the modifiability of the system.

Steps has also been taken to ensure the scalability of the system. The primary fac-
tors include the use of small services, container orchestration and cloud services.
Small services allows us to scale each service individually, for better resource
utilization. The container orchestration tool, in our case Kubernetes allows us to
automatically vertically scale the services based on demand and finally the use
of cloud services gives the system the ability to add computer resources almost
instantly.

To quantify the exact performance metrics we wanted for the system we created



112 CHAPTER 8. EVALUATION AND FUTURE WORK

NFR6 and NFR7. By setting up experiments utilizing Locust we were able to
confirm that the system could scale to accommodate up to 500 concurrent users
and that training multiple models would not significantly affect training time.
We are satisfied with the scalability of the system, however there is room for
improvement. We will therefore suggest researching other compute units as part
of future work.

Based on the work conducted to answer the research questions, we have created a
scalable system that automates the process of performing wind power forecasts,
even for wind farms with little available data. In conclusion this verifies our
hypothesis.

8.2 Future Work

The conducted research has shown that it is possible to create an automatic wind
power forecasting system, that support minimal data. As part of this process we
found aspects of our research that requires further work. This section will present
these problems.

While our tested method of transfer learning, TL-GTB, gave notable improve-
ments in forecasting accuracy compared to transferless GTB, there exists many
other approaches to transfer learning. Other methods, such as neural network
pre-training and refinement, should be tested and compared to TL-GTB.

While we investigated the effectiveness of TL-GTB on multi-step prediction and
the effectiveness of TL-GTB on single-step prediction for varying target training
data sizes, we never combined the two. Our results would indicate that for very
small quantities of target training data, the naive baseline would outperform
TL-GTB for very short horizons, but not for longer horizons. This relationship
should be confirmed and investigated further.

Investigating the effect of different feature engineerings on the effectiveness of
transfer learning is also relevant for further research. Some feature preprocessing
that might not prove effective for transferless learning, might help improving
similarity between features across sources and help generalization and transfer-
ability of learned knowledge. The only such pre-processing we perform is min-max
normalizing the production of each wind farm independently of each other.

While we tested the impact of varying amounts of target data, we did not conduct
any experiments on varying quantities of source data. The impact of both varying
number of source wind farms and varying quantities of data for each source wind
farm should be investigated. Particularly given that source wind farms with
significantly less data than the other available source wind farms might hurt the



8.2. FUTURE WORK 113

effectiveness of transfer learning, and should be excluded.

We employ a source pre-selection strategy of using the 10 candidate source wind
farms with shortest geographical distance to the target wind farm as source wind
farms. The effect of this and other computationally efficient source pre-selection
strategies, for example data quantity, should be investigated.

For our research we deployed the system to a scalable Kubernetes cluster that
utilized general purpose virtual machines with 2 vCPUs and 7 GiB of memory. To
further improve training time and training capability other compute units should
also be tested. This includes testing GPU virtual machines to reduce training
time and potentially use Azure Container Instances to evade provisioning.

Further procedures and tests should be researched and implemented to ensure the
stability of the system in production. Some steps towards a reliable system has
been implemented, such as using a Kubernetes cluster with minimum 3 nodes,
logging in all services, and automated testing for the Management Service. In
particular additional steps should be taken to ensure the reliability of the Training
Service, for instance by calculating a tests score based on the process presented
in subsection 3.3.2.

Currently the system will only train a new model when a new project is created
or if the user triggers a retrain. As such the system is not leveraging the full
potential of its gowning database. For the system to fully automatically make
use of this data, research must be conducted to find how often its beneficial to
retrain the models.

A primary factor related to the modifiability of the system, is the possibility of
expanding the system to support other time series related problems. However,
research must be conducted into the business feasibility of offering predictions for
other time series related problems. In addition research should be conducted into
the possibility of using transfer learning cross-domain for time series problems, to
identify if the system can leverage data from a multi purpose time series service.



114 CHAPTER 8. EVALUATION AND FUTURE WORK



Bibliography

[1] Alpiq (2020). Renewable energy management services. https://www.alpiq.
com/energy-solutions/renewable-energy-management/renewable-

energy-management-services. Accessed: 2020-05-28.

[2] Bass, L., Clements, P., and Kazman, R. (2003). Software architecture in
practice. Addison-Wesley Professional.

[3] Bengtsson, P., Lassing, N., Bosch, J., and van Vliet, H. (2004). Architecture-
level modifiability analysis (alma). Journal of Systems and Software, 69(1-
2):129–147.

[4] Bondi, A. B. (2000). Characteristics of scalability and their impact on
performance. In Proceedings of the 2nd international workshop on Software
and performance, pages 195–203.

[5] Breck, E., Cai, S., Nielsen, E., Salib, M., and Sculley, D. (2017). The ml
test score: A rubric for ml production readiness and technical debt reduction.
In 2017 IEEE International Conference on Big Data (Big Data), pages 1123–
1132. IEEE.

[6] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E.,
MacCormack, A., Nord, R., Ozkaya, I., et al. (2010). Managing technical
debt in software-reliant systems. In Proceedings of the FSE/SDP workshop on
Future of software engineering research, pages 47–52. ACM.

[7] Cai, L., Gu, J., Ma, J., and Jin, Z. (2019). Probabilistic wind power
forecasting approach via instance-based transfer learning embedded gradient
boosting decision trees. Energies, 12(1):159.

[8] Caruana, R. (1997). Multitask learning. Mach. Learn., 28(1):41–75.

[9] CatBoost (2020). Catboost - open-source gradient boosting library. https:

//catboost.ai/. Accessed: 2020-06-07.

115

https://www.alpiq.com/energy-solutions/renewable-energy-management/renewable-energy-management-services
https://www.alpiq.com/energy-solutions/renewable-energy-management/renewable-energy-management-services
https://www.alpiq.com/energy-solutions/renewable-energy-management/renewable-energy-management-services
https://catboost.ai/
https://catboost.ai/


116 BIBLIOGRAPHY

[10] Conwx (2020). Accurate power forecasts now! https://conwx.com.
Accessed: 2020-06-07.

[11] de Toledo, S. S., Martini, A., Przybyszewska, A., and Sjøberg, D. I. (2019).
Architectural technical debt in microservices: A case study in a large company.
In 2019 IEEE/ACM International Conference on Technical Debt (TechDebt),
pages 78–87. IEEE.

[12] Dekker, M. D. (2016). 4 + 1 architectural view model. https://

commons.wikimedia.org/wiki/File:4+1_Architectural_View_Model.svg.
Accessed: 2020-05-12.

[13] Django (2019). Documentation. https://docs.djangoproject.com/en/3.
0/faq/general/. Accessed: 2020-04-24.

[14] Docker (2019). Docker. https://www.docker.com.

[15] Dorogush, A. V., Ershov, V., and Gulin, A. (2018). Catboost: gradient
boosting with categorical features support. CoRR, abs/1810.11363.

[16] Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. (2016). Devops. Ieee
Software, 33(3):94–100.

[17] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M.,
and Hutter, F. (2019). Auto-sklearn: Efficient and robust automated machine
learning. In Automated Machine Learning, pages 113–134. Springer.

[18] Foley, A. M., Leahy, P. G., Marvuglia, A., and McKeogh, E. J. (2012).
Current methods and advances in forecasting of wind power generation.
Renewable Energy, 37(1):1–8.

[19] GitHub (2020). Kubernetes. https://github.com/kubernetes/

kubernetes. Accessed: 2020-05-28.

[20] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9:1735–80.

[21] Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., and Hyndman,
R. J. (2016). Probabilistic energy forecasting: Global energy forecasting
competition 2014 and beyond. International Journal of Forecasting, 32(3):896
– 913.

[22] Hu, Q., Zhang, R., and Zhou, Y. (2016). Transfer learning for short-term
wind speed prediction with deep neural networks. Renewable Energy, 85:83 –
95.

https://conwx.com
https://commons.wikimedia.org/wiki/File:4+1_Architectural_View_Model.svg
https://commons.wikimedia.org/wiki/File:4+1_Architectural_View_Model.svg
https://docs.djangoproject.com/en/3.0/faq/general/
https://docs.djangoproject.com/en/3.0/faq/general/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes


BIBLIOGRAPHY 117

[23] Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated machine
learning-methods, systems, challenges.

[24] Hyndman, R. and Athanasopoulos, G. (2018). Forecasting: principles and
practice. OTexts.

[25] ISO/IEC 25010 (2011). ISO/IEC 25010:2011, systems and software
engineering — systems and software quality requirements and evaluation
(square) — system and software quality models.

[26] Kruchten, P. (1995). The 4+1 view model of architecture. IEEE Softw.,
12(6):42–50.

[27] Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Technical debt: From
metaphor to theory and practice. Ieee software, 29(6):18–21.

[28] Kruchten, P., Nord, R. L., Ozkaya, I., and Falessi, D. (2013). Technical
debt: Towards a crisper definition report on the 4th international workshop on
managing technical debt. SIGSOFT Softw. Eng. Notes, 38(5):51–54.

[29] Kubernetes (2020a). Production-grade container orchestration. https://

kubernetes.io. Accessed: 2020-05-27.

[30] Kubernetes (2020b). Using minikube to create a cluster. https:

//kubernetes.io/docs/tutorials/kubernetes-basics/create-

cluster/cluster-intro/. Accessed: 2020-06-04.

[31] Locust (2020). An open source load testing tool. https://locust.io.
Accessed: 2020-06-04.

[32] Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2018). The m4
competition: Results, findings, conclusion and way forward. International
Journal of Forecasting, 34(4):802 – 808.

[33] Mell, P., Grance, T., et al. (2011). The nist definition of cloud computing.

[34] Microsoft (2019). What is azure container instances? https:

//docs.microsoft.com/en-us/azure/container-instances/container-

instances-overview. Accessed: 2020-05-28.

[35] Microsoft (2020a). App service overview. https://docs.microsoft.com/

en-us/azure/app-service/overview. Accessed: 2020-05-28.

[36] Microsoft (2020b). An introduction to azure functions. https://docs.

microsoft.com/en-us/azure/azure-functions/functions-overview. Ac-
cessed: 2020-05-28.

https://kubernetes.io
https://kubernetes.io
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://locust.io
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-overview
https://docs.microsoft.com/en-us/azure/app-service/overview
https://docs.microsoft.com/en-us/azure/app-service/overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview


118 BIBLIOGRAPHY

[37] Microsoft (2020c). Overview of azure service fabric. https:

//docs.microsoft.com/en-us/azure/service-fabric/service-fabric-

overview. Accessed: 2020-05-28.

[38] Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., and Talagala,
T. S. (2020). Fforma: Feature-based forecast model averaging. International
Journal of Forecasting, 36(1):86 – 92. M4 Competition.

[39] Mouat, A. (2015). Using Docker: Developing and Deploying Software with
Containers. ” O’Reilly Media, Inc.”.

[40] Newman, S. (2015). Building microservices: designing fine-grained systems.
” O’Reilly Media, Inc.”.

[41] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10):1345–1359.

[42] Powel (2020). Software for sustainable growth. https://www.powel.no.
Accessed: 2020-05-28.

[43] Pérez, A., Moltó, G., Caballer, M., and Calatrava, A. (2018). Serverless
computing for container-based architectures. Future Generation Computer
Systems, 83:50 – 59.

[44] Qureshi, A. S. and Khan, A. (2019). Adaptive transfer learning in deep
neural networks: Wind power prediction using knowledge transfer from region
to region and between different task domains. Computational Intelligence,
35(4):1088–1112.

[45] Qureshi, A. S., Khan, A., Zameer, A., and Usman, A. (2017). Wind
power prediction using deep neural network based meta regression and transfer
learning. Applied Soft Computing, 58:742 – 755.

[46] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern
Approach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition.

[47] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D.,
Chaudhary, V., and Young, M. (2014). Machine learning: The high interest
credit card of technical debt.

[48] Slawek Smyl, Jai Ranganathan, A. P. (2018). M4 forecasting competition:
Introducing a new hybrid es-rnn model. https://eng.uber.com/m4-

forecasting-competition/. Accessed: 2020-06-07.

[49] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A
survey on deep transfer learning. CoRR, abs/1808.01974.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://www.powel.no
https://eng.uber.com/m4-forecasting-competition/
https://eng.uber.com/m4-forecasting-competition/


BIBLIOGRAPHY 119

[50] Tasnim, S., Rahman, A., Oo, A. M. T., and Haque, M. E. (2018). Wind
power prediction in new stations based on knowledge of existing stations: A
cluster based multi source domain adaptation approach. Knowledge-Based
Systems, 145:15 – 24.

[51] Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep
domain confusion: Maximizing for domain invariance. CoRR, abs/1412.3474.

[52] WindSim (2019). Power forecasting. http://www.windsim.com/power-

forecasting.aspx. Accessed: 2020-05-27.

http://www.windsim.com/power-forecasting.aspx
http://www.windsim.com/power-forecasting.aspx


120 BIBLIOGRAPHY



Appendix

A Application Screenshots

This section contains a set of screenshots from the system. The screenshots are
intended to show how the functionality was implemented. The screenshots are
divided into sections based on three main services.

A.1 Management Service

The management service is the largest service, responsible for project and user
management. The screenshots are divided into authentication, list of projects
that highlights the features of the project list, creation of new projects, the
project page and administration.

Authentication

Figure 9.1 shows the login screen. A user is required to enter their email and
password to authenticate. If the user for any reason have forgotten their pass-
word, an email can be sent to their email to reset it. This is done by clicking
the forgot password link, the user will then be redirected to the screen shown
in Figure 9.2. On submission the user will be presented with the view seen in
Figure 9.3. If the email exists in the system a email similar to Figure 9.4 will be
sent to the user’s email.

121



122 BIBLIOGRAPHY

Figure 9.1: Screenshot - login

Figure 9.2: Screenshot - forgot password page



A. APPLICATION SCREENSHOTS 123

Figure 9.3: Screenshot - reset password confirmation

Figure 9.4: Screenshot - reset password email

List of projects

Figure 9.5 show the screen the user will be presented with after login. The page
contain a list of the projects owned by the organization of the user. The user got
full access to delete, view and create new projects. If the user press the delete



124 BIBLIOGRAPHY

button, the user will be greeted with a confirmation modal as seen in Figure 9.6.
New projects can be created using the button located on the top right in the
main container.

Figure 9.5: Screenshot - main page/list of projects

Figure 9.6: Screenshot - delete project



A. APPLICATION SCREENSHOTS 125

Create new project

When pressing the ”create new project” button the user will be redirected to
the screen shown on Figure 9.7. It shows the fields that are required to setup a
new projects, with placeholders to help the user use the correct format. When
filled out, as shown in Figure 9.8, the user may press the submit button, such
that training can start. The user will then be shown a loading screen as can
be seen in Figure 9.9. As soon as the project is created and the model data is
uploaded the user will be redirected to the screen seen in Figure 9.10. The user
will then be updated on the progress on left side of the screen. The information
will update automatically and includes many steps, Figure 9.11 and Figure 9.12
are examples of such steps. Finally when the training is completed, the user will
be shown Figure 9.13.

Figure 9.7: Screenshot - create new project



126 BIBLIOGRAPHY

Figure 9.8: Screenshot - create new project - including content

Figure 9.9: Screenshot - uploading training data and creating project



A. APPLICATION SCREENSHOTS 127

Figure 9.10: Screenshot - project acquiring weather data

Figure 9.11: Screenshot - starting training



128 BIBLIOGRAPHY

Figure 9.12: Screenshot - example of training step

Figure 9.13: Screenshot - training completed, ready to forecast

Project page

This section will cover the project page, and specifically the features that it
provides. Figure 9.14 shows the project page with park information, graph data
and the first 1000 rows of the project data. The park name is located on the



A. APPLICATION SCREENSHOTS 129

upper left side, just right of the park name there are three buttons. The first
button is used to access the project settings as shown in figure Figure 9.15. The
second button is a link to the Inference Service and the third button enables users
to make forecasts using the Inference Service as shown in figure Figure 9.16.

The graph on the right side of the screen has four modes and a setting feature.
The settings feature can be used to set the current resolution and date range of
the graph, as long as it is not in recent/future forecasts mode. Figure 9.17 shows
the view when the settings button is pressed. Figure 9.18 show how a specific
data and resolution can be set, and Figure 9.19 shows the result. Figure 9.20,
Figure 9.21, Figure 9.22 and Figure 9.23 show the four available graph modes.

Figure 9.14: Screenshot - project page



130 BIBLIOGRAPHY

Figure 9.15: Screenshot - project settings

Figure 9.16: Screenshot - make forecast



A. APPLICATION SCREENSHOTS 131

Figure 9.17: Screenshot - graph settings

Figure 9.18: Screenshot - graph settings close



132 BIBLIOGRAPHY

Figure 9.19: Screenshot - graph after setting date

Figure 9.20: Screenshot - all data graph



A. APPLICATION SCREENSHOTS 133

Figure 9.21: Screenshot - test performance graph

Figure 9.22: Screenshot - recent forecast graph



134 BIBLIOGRAPHY

Figure 9.23: Screenshot - future forecast graph

User management

This section will introduce the user management tools available to authenticated
users of the system. When pressing the user tab, the user will be presented with
the screen shown in Figure 9.24. The screen lists all the users in the authenticated
user’s organization, with the option of viewing detailed information or deleting
users. The detailed view can be seen in Figure 9.25. If the user press the delete
button a modal will be shown, just like for projects. A authenticated user also
have the capability to invite new users, in such a case the user will receive a
welcome email with a link to set a new password. This form can be seen in
Figure 9.26.

In addition to viewing details about other users, the authenticated user can also
view his/hers own information. This functionality is seen in Figure 9.27. If the
user choose to set a new password, the user will be shown the form in Figure 9.28.



A. APPLICATION SCREENSHOTS 135

Figure 9.24: Screenshot - list of users

Figure 9.25: Screenshot - view detailed user information



136 BIBLIOGRAPHY

Figure 9.26: Screenshot - create new user

Figure 9.27: Screenshot - profile for currently signed in user



A. APPLICATION SCREENSHOTS 137

Figure 9.28: Screenshot - change password page

Administration

The administration site is only available to system administrators, and can be
used to manage all aspects of the user and project functionality. Figure 9.29
shows the main administration page, it contains a list of the available models;
users, companies, projects and project data. For each of them the administrator
will be presented with a list as shown in Figure 9.30. If the administrator wish
to edit a single entry it can be selected and the administrator will see a screen
such as Figure 9.31.



138 BIBLIOGRAPHY

Figure 9.29: Screenshot - overview of administration

Figure 9.30: Screenshot - admin - List of projects



A. APPLICATION SCREENSHOTS 139

Name:

Slug:

Company: TrønderEnergi  

Longitude:

Latitude:

Max production:

Status:

Training progress:

Training progress
message:

Model:

SAVEDelete

Valsneset vindpark

valsneset-vindpark

General

9,629051

63,819557

11,5

Training

Ready to forecast

100

Training completed

Is model created

Has weather data

Currently: data/models/15.catboost  Clear

Change: Ingen fil valgtVelg fil

Save and add another  Save and continue editing

Management Service Administration WELCOME, PÅL CHRISTIAN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home › Projects › Projects › Valsneset vindpark

Change project HISTORY

Figure 9.31: Screenshot - admin - Change project

A.2 Training Service

The Training Service does not have a GUI, however Figure 9.32 shows the final
command line output of a single training.



140 BIBLIOGRAPHY

Figure 9.32: Screenshot - Training result

A.3 Inference Service

The Inference Service comes with a list of available endpoints, as seen in Fig-
ure 9.33. Figure 9.34 shows an example of how the web interface can be used to
access the endpoint and Figure 9.35 shows how the same data was accessed using
the URL in a standard internet browser. As the Inference Service is primary
intended to be accessed by systems, the figure are only examples of how it can
be used.



A. APPLICATION SCREENSHOTS 141

Figure 9.33: Screenshot - Inference Service main page



142 BIBLIOGRAPHY

Figure 9.34: Screenshot - project data using web interface

Figure 9.35: Screenshot - project data using URL



 P.C. Iversen, H
. Thorstensen

Autom
atic W

ind Pow
er Forecasting as a Service

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Pål Christian Glenna Iversen
Håkon Thorstensen

Automatic Wind Power
Forecasting as a Service

Master’s thesis in Computer Science

Supervisor: Odd Erik Gundersen

June 2020


	Abbreviations
	Introduction
	Background Theory
	Time Series Forecasting
	Statistical Approaches
	Machine Learning Approaches
	Hybrid Approaches

	Machine Learning Methods
	Artificial Neural Networks
	Decision Trees
	K-means Clustering

	Transfer Learning
	Formal Definition and Setting

	Practices and Techniques in Software Engineering
	Microservices
	DevOps
	Cloud Computing
	Container Technologies
	Technical Debt


	Related Work
	Current Commercial Competition
	Time Series Forecasting and Transfer Learning
	The M4 Competition
	Deep Transfer Learning
	Wind Power Forecasting: Multi-Task Neural Network
	Wind Power Forecasting: DNN Ensemble Meta-regression
	Wind Power Forecasting: Instance-based Transfer  Learning with Gradient Boosting Decision Trees
	Wind Power Forecasting: Cluster-based Predictor Weighting

	Software Engineering for Machine Learning
	Technical Debt
	Machine Learning Production Readiness and Technical Debt Reduction

	Software Architecture
	Architectural Technical Debt in Microservices
	Serverless Computing for Container-based Architectures

	Summary

	Forecasting and Transfer Learning Methods
	Transfer Learning for Gradient Tree Boosting
	Source Utilization Strategies
	Single-Source Transfer
	Combined-Source Transfer
	Transfer Ensemble

	Source Weight Generation
	Wind Profile Similarity-Based Weights
	Single-Source Transfer Performance-Based Weights

	Multi-Step Forecasting Strategies
	Recursive Model Forecasting
	Productionless Direct Forecasting


	System functionality and implementation
	Requirements
	Functional Requirements
	Non-functional Requirements

	Deployment Platform
	Azure Functions
	Azure Container Instances
	Azure App Services
	Azure Kubernetes Service (AKS)
	Azure Service Fabric
	Comparison and choice of service

	External Services
	Azure Kubernetes Service (AKS)
	Azure Database for PostgreSQL
	Azure File storage
	Azure DevOps
	Azure Container Registry (ACR)
	GitHub
	Amazon Simple Email Service
	Meteomatics

	Implementation
	Management Service
	Training Service
	Inference Service
	Other Services/System utilities
	Developing and Deploying the System

	Architecture
	Logical View
	Development View
	Process View
	Physical View
	Scenarios


	Experiments
	Transfer Learning Experiments
	GEFCOM2014 Wind Power Dataset
	Data Preprocessing and Feature Engineering
	Validation Strategy
	Baselines
	GTB and TL-GTB Implementation and Parameters
	Experiments

	System Experiments
	Functional Requirements
	Non-functional Requirements


	Results and Discussion
	Transfer Learning Results
	TL-Exp. 1: TL-GTB and Source Utilization Effectiveness
	TL-Exp. 2: Wind Profile Based Weight Generation and Optimal Cluster Count
	TL-Exp. 3: Performance Based Weight Generation and Optimal Decay Factor
	TL-Exp. 4: Multi-Step Forecasting Strategies
	TL-Exp. 5: Forecasting Performance for Varying Target Data Sizes
	Summary and Discussion

	System Results
	Functional Requirements
	Non-functional Requirements


	Evaluation and Future Work
	Evaluation
	Future Work

	Bibliography
	Appendix
	Application Screenshots
	Management Service
	Training Service
	Inference Service



