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Abstract
As online media become more prevalent than ever, sentiments towards persons, businesses
and other entities spread throughout the world at an increasingly rapid rate. In context
of Natural Language Processing, Entity-level Sentiment Analysis is the leading approach
to categorize the sentiments expressed towards these entities. Due to the lack of available
data, however, research within the field has been left in a stale environment. Therefore,
in an attempt to augment the task, this Master’s Thesis incorporates Coreference
Resolution – the detection and resolving of mentions that refer to a unique entity in a text.

Current systems for Coreference Resolution merely perform evaluations on a
single, widely used dataset. Consequently, the usability for Coreference Resolution on
other tasks and domains is highly limited. To improve the quality of evaluations, a
unified format has been defined. Several datasets are converted into the same, unified
format, enabling comprehensive evaluations across domains. A developed framework for
Coreference Resolution aims to establish the most generalizable model by evaluating the
domain transferability of four model architectures: a deterministic, rule-based model,
a statistical model and two based on neural networks. The resulting best model is
employed to augment data using an entity-centric segmentation algorithm. A separate
framework for Entity-level Sentiment Analysis is used to predict sentiments in the
augmented data. This framework comprises four isolated machine learning classifiers:
two involving the well established Long Short-Term Memory, an Attention-based neural
network, and finally an implementation of the novel Transformer architecture.

Results show that by augmenting larger texts with the help of Coreference Res-
olution and a segmentation algorithm, models can more accurately predict sentiment
towards entities. These results may prove helpful for systems concerning text analytics,
especially within domains where distinguishing between positive and negative sentiments
is essential, such as for news.
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Sammendrag
Utbredelsen av nettbaserte medier er allerede omfattende og utviklingen skjer raskt.
Denne utviklingen innebærer også at følelsesbetonte oppfatninger, sentimenter, som
omhandler personer, bedrifter og andre entiteter, spres i høyt tempo over hele verden. I
kontekst av naturlig språkprosessering er Entitetsnivå Sentimentanalyse den foretrukne
metoden for å kategorisere hvilke sentimenter som blir uttrykt overfor entiteter. Mangel
på data har imidlertidig ført til begrenset forskningsaktivitet på dette feltet. Ved å endre
tilnærmingen til Entitetsnivå Sentimentanalyse, vil denne masteroppgaven involvere
koreferansebestemmelse – oppgaven å gjenkjenne og koble sammen uttrykk i en tekst
som refererer til en unik entitet.

Nåværende systemer for koreferansebestemmelse utfører kun evalueringer på ett
enkelt datasett, med konsekvens at bruksområdet blir innskrenket. For å forbedre
evalueringskvaliteten, defineres her et enhetlig format. Flere datasett er konvertert til
det samme, enhetlige formatet, som muliggjør omfattende evalueringer på tvers av
domener. Et rammeverk for koreferansebestemmelse er utviklet, med mål om å etablere
en generaliserbar modell ved å teste domeneoverførbarheten til fire modellarkitekturer: en
deterministisk, regelbasert modell, en statistisk modell og to modeller basert på kunstige
nevrale nettverk. Den mest egnede modellen vil brukes til å omgjøre data ved hjelp
av en entitetssentrisk segmenteringsalgoritme. Et separat rammeverk for Entitetsnivå
Sentimentanalyse er brukt til å predikere sentimenter i disse omgjorte dataene. Dette
rammeverket omfatter fire isolerte maskinlæringssystemer: to basert på det veletablerte
Long Short-Term Memory, et basert på hukommelsesmekanismer og et siste på den nyere
Transformer-arkitekturen.

Resultatene viser at ved å omgjøre større tekster ved hjelp av koreferansebestemmelse
og en segmenteringsalgoritme, kan modeller mer nøyaktig utføre sentimentprediksjoner
rettet mot entiteter. Disse resultatene kan komme til nytte for systemer som omhandler
tekstanalyse, særlig innen domener der det er viktig å skille mellom positive og negative
sentimenter, som for eksempel i nyheter.
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1. Introduction
Determining how entities (e.g. persons, businesses, locations) are represented online
is of great use for several applications, such as tracking how a company is portrayed
in the media and retrieving opinionated information on political campaigns and other
events. In order to solve these problems, Sentiment Analysis (SA) – the task of classifying
opinionated text – plays a vital role. In its simplest form, SA provides little detail
on its predictions, as there is no specified target of the opinion. To improve upon
traditional SA, targets – often called named entities – will first have to be recognized,
before obtaining relevant text to compute the targets’ sentiment polarity. This is referred
to as Entity-level Sentiment Analysis (ESA). Current approaches use machine learning
systems to detect scopes containing the required text to represent an entity (Li and Lu,
2017, 2019), disregarding the possible benefits from implementing semantic heuristics,
such as those generated with the help of Coreference Resolution (CR). CR defines the
process of discovering and resolving mentions that refer to the same entity in a document,
a technique that may be used to enrich other high-level tasks of Natural Language
Processing (NLP). In Example 1, the functionality of a CR system is illustrated. The
pronoun “her” refers to “Anna”, “he” to “John”, and “it” to “bike”.

Example 1 Anna(1) bought John(2) a new bike(3). He(2) told her(1) it(3) was great!

While trivial, the example shines light on the versatility of CR. For instance, we can
observe its usefulness in context of SA: “it was great” can be parsed as “the bike was
great”. The former sentence would provide no meaning without resolving the antecedent
of “it”. Despite the observed importance of CR and the major improvements discovered
in recent research, CR models are seldom found to be implemented in state-of-the-art
solutions in other NLP tasks. Moosavi (2020) hypothesizes that the lack of robustness in
CR systems is the culprit – leaving the models unable to generalize well to out-of-domain
data. This may be due to the lack of a standardized format in current CR datasets, as it
hinders researchers to include these datasets in their evaluations. Addressing robustness,
this Master’s Thesis presents a coreference evaluation framework, designed to convert
a selection of datasets into a unified format and perform comprehensive evaluations,
never before published in literature. The evaluation process involves four different CR
models: a deterministic rule-based model, a statistical machine learning model, and two
neural network models. These models are all evaluated thoroughly, with the goal to
discover the most generalizable CR model. The resulting model is employed to augment
larger pieces of text using an adaptable, entity-centric segmentation algorithm, extracting
relevant phrases corresponding to each entity. Finally, a selection of four ESA models
of varying complexity are evaluated using the generated segments of text, leading to
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1. Introduction

improved accuracy on the task of predicting entity-level sentiment. As will be revealed,
neural networks using pre-trained language models perform indisputably better than the
alternatives, both for CR and ESA.

1.1. Background and Motivation
The topic of Entity-level Sentiment Analysis (ESA) was extensively researched in a
preliminary specialization project (Jørgensen, 2019). One research question was defined
as follows: “Given a set of entities in a document, how can sentiment be connected
towards each respective co-referenced entity?”, which sparked interest in the field of
Coreference Resolution (CR) for continued research. No methods uncovered in the
specialization project had discussed the possible benefits of incorporating CR, which was
found to be surprising, given the intuitively idealistic relationship between the two fields
– both aiming at resolving text connected to entities. In recent times, the research of
ESA has been left in a stale environment (Pei et al., 2019), possibly due to the lack of
real world data. Leading state-of-the-art methods still rely on small datasets comprising
online reviews and Twitter posts, providing little use for applications in other domains –
especially those of formal text.

To combat the lack of data, a dataset has been annotated by distant supervi-
sion, based on information obtained from a knowledge graph accessible through a
collaboration with Strise – a text analytics company in Trondheim. The dataset includes
a large variety of online publications, mostly from news sources, across a selection
of higher level topics. Additionally, the knowledge graph contains information on
recognized entities and their respective aliases (e.g. MS for Microsoft) and relations (e.g.
a CEO-relation for Microsoft: Satya Nadella).

1.2. Goals and Research Questions
The overall goal of the Master’s Thesis is defined as follows:

Goal Establish a well-generalized Coreference Resolution model to augment the task of
Entity-level Sentiment Analysis

By evaluating existing Coreference Resolution (CR) models on in- and out-of-domain
data, a desired model architecture may be discovered for generalizable CR. Using this
model, research and discuss its impact on Entity-level Sentiment Analysis (ESA). Below
are a set of research questions related to the process of reaching the goal:

Research question 1 How well do Coreference Resolution models perform when evaluated
on out-of-domain data?

By using a diverse set of models found in literature, evaluate them on a selection of in-
and out-of-domain datasets. Through this process, the most generalizable model may
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be discovered. The generalizability has previously been addressed as a great concern
in order for a model to apply well across other domains of text (Moosavi, 2020), which
results in better applications for other tasks – such as ESA.

Research question 2 Can current datasets for Entity-level Sentiment Analysis be used
as out-of-domain evaluation baselines?

In the specialization project, a severe lack of data for ESA was discovered. Currently, the
datasets by Pontiki et al. (2014) and Dong et al. (2014) are still used for state-of-the-art
models (Rietzler et al., 2020), which only regard the domains of online reviews and
Twitter messages. To aid research in other domains, new datasets must be created.
Without the resources to manually label a sufficiently large in-domain dataset, however,
research whether existing datasets can be used as evaluation baselines. Additionally,
to test these baselines, create a dataset using knowledge graphs and world knowledge
to mimic entity-level sentiment, annotating using Distant Supervision (DS). The ideal
result is to be able to evaluate the DS-annotated dataset on existing ESA datasets. If
this process yields any positive results, more resources can be put into the creation of
automatic, large-scale datasets for ESA – benefiting the field greatly.

Research question 3 Can augmentation of datasets result in improvements using Entity-
level Sentiment Analysis models?

By augmenting datasets using CR, the amount of available labeled data will increase,
while simultaneously contributing to disordering of data – as it will diverge from its
original state. Study the results of transforming data for the ESA task and uncover
possible hindrances or improvements with this novel technique.

1.3. Research Method
An experimental methodology is used, as several experiments are required to pursue
the goal of the Master’s Thesis. The experiments are carried out in a similar manner
as to those found in related literature, with the addition of datasets that have not yet
been evaluated. The approach involves following the traditional evaluation metrics, as
well as incorporating a newer metric by Moosavi and Strube (2016) that addresses the
issue of generalizability in Coreference Resolution (CR). For experiments on Entity-level
Sentiment Analysis (ESA), an in-domain dataset is labeled by Distant Supervision (DS),
using a data-rich knowledge graph. This data is tested and evaluated on existing datasets,
both to verify the integrity of generated data, as well as the capability of existing datasets
as evaluation baselines. Hardware-intensive experiments and evaluations have been run
on the NTNU IDUN computing cluster (Själander et al., 2019).

1.4. Contributions
1. A thorough evaluation of Coreference Resolution models on a variety of datasets
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2. A defined, light, unified format for Coreference Resolution annotation – coined
CorefLite

3. An open-sourced tool to convert Coreference Resolution datasets into CorefLite

4. An approach to create Entity-Level Sentiment Analysis datasets using knowledge
graphs and distant supervision

5. Experiments on the augmentation of data for for Entity-Level Sentiment Analysis
using Coreference Resolution

Openly available systems are summarized below, with URLs to the GitHub repositories
where further code-specific information can be found. Raw data accessed from the
knowledge graph – specifically event texts – can be given upon request.

CorefLite Converter

The CorefLite converter is built into the the CorefLite Evaluation Framework (CL-Eval)
system below. https://github.com/ph10m/CorefLite

Coreference Resolution Evaluation Framework (CL-Eval)

https://github.com/ph10m/ClEval

Entity-level Sentiment Analysis Framework (Elsa-Val)

https://github.com/ph10m/ElsaVal

1.5. Thesis Structure

The thesis contains a total of nine chapters. Below are a list of the respective chapters
and their primary purpose.

1. Introduction
Give the reader an introduction to the purpose and goals of the thesis, as well as
an overview of contributions.

2. Background Theory
Presents background theory closely related to the topics to be covered throughout
the thesis.

3. Related Work
Starting with a customized structured literature review, the basis for selected
literature is documented (with additional material in Appendix A). The rest of
the chapter is dedicated to presenting related work in the field of Coreference
Resolution (CR).
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4. Data
This chapter regards the available datasets for CR and Entity-level Sentiment
Analysis (ESA). An inspection and analysis of the data results in a selection of
relevant datasets to be used further. Additionally, the process of generating a
dataset for ESA with Distant Supervision is documented.

5. Architecture
Here, architectures for developed and used systems are presented. Many visualiza-
tions are included to give the reader a good overview of the higher level functionality
of systems and frameworks used.

6. Coreference Validation
As the first of two experimental chapters, Coreference Validation includes the process
of evaluating CR models and validation of datasets converted to the CorefLite
format, resulting in a defined well-generalized CR model.

7. Entity-level Sentiment Analysis
Experiments conducted on ESA, with and without augmented data using the
previously defined CR model. A baseline for existing data is set up, for accurate
evaluation of the generated dataset from the Data chapter. Additionally, a manually
labeled dataset is evaluated and augmented.

8. Evaluation and Discussion
Contains evaluation of the research questions and goal, as well as discussions on
the topics of CR and ESA.

9. Conclusion and Future Work
The final chapter concludes the work done in this thesis, presents the most worthy
contributions in more detail, and ends with suggestions for future work.
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2. Background Theory
Natural Language Processing (NLP) is the common term used to describe the interaction
between computers and natural languages. The main goal of any NLP system, as stated
in Gambäck et al. (1994), is making computers able to interpret any given utterance in a
natural language. This chapter starts by conveying the very basics of NLP, progressing
towards more specialized topics. Some sections are reused from the specialization project
(Jørgensen, 2019), and these will be clearly identified.

2.1. Introductory Topics for Natural Language Processing
Natural languages are unspecific, flexible, and full of redundancies and ambiguities. If
natural languages were to be handled directly in computer systems, they would quickly
become cumbersome to deal with. In order to simplify the process of analyzing the
languages we speak and write, applying techniques to preprocess and represent text by
other means can be of great help – some of which are covered here. This section (2.1)
has been reused from the specialization project (Jørgensen, 2019), as it still works as a
great foundation for basic understanding of NLP.

2.1.1. Text Preprocessing

Stop Word Removal

Words that frequently appear across a set of documents typically contribute negligible
discriminative value to the given documents, and are commonly removed. For English,
this may be words like “a”, “it”, “the”. Lists of stop words can be found in programming
libraries for text processing, such as Natural Language ToolKit (NLTK)1 (Loper and
Bird, 2002) and spaCy2 (Honnibal and Montani, 2017).

Normalization

Normalization has the purpose of improving predictability and reducing ambiguity -
transforming the text before processing it further. Normalization and related topics are
covered in detail by Mikheev (2000). Examples of text that should be handled can be seen
in Table 2.1. Two common techniques to handle grammatical inflection are stemming and
lemmatization. Stemming is the removal of inflectional endings from words, getting rid
of any affixes. Lemmatization is in essence stemming with dictionary lookup. However,

1https://github.com/nltk/nltk
2https://github.com/explosion/spaCy
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Inflected words ask, asking, asked

Capitalization “I’m on the verge of ...”
“I read it on The Verge”

Repeating letters Looooooooong
Punctuation e.g., U.S.A, really?!
Spacing and grouping “Hong Kong”, “the man”

Table 2.1.: Text to be handled by normalization

Lemmatization am, are, is −→ be

Stemming sensation −→ sensat
owned −→ own

Table 2.2.: Techniques for handling inflection

lemmatization has the goal of reducing a word to its base or dictionary form (known as
its lemma). Examples of lemmatization and stemming can be seen in Table 2.2.

2.1.2. Document Representation

A text, in context of NLP, is often referred to as a document. The representation of a
document considers how textual data is fed into the computer program. Following are a
few possible ways to represent documents, using document D as an example throughout
the Section: “NLP is exciting, and is one of many fields of AI” (D).

Bag-of-words

Bag-of-words represents textual content as a vector with values corresponding to the
total count of each unique word. The total size of the vector will equal the amount of
unique words in the vocabulary. An example with document D:

input: "NLP is exciting, and is one of many fields of AI"
count: [NLP: 1, is: 2, exciting: 1, and: 1, one: 1, of: 2,
many: 1, fields: 1, AI: 1]
output: [1, 2, 1, 1, 1, 2, 1, 1, 1]

N-Grams

Using n-grams, a document is represented in batches of N -tuples. The N describes the
amount of words batched together. Common namings of N -values include unigrams,
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bigrams or trigrams (batches of 1, 2 and 3, respectively). This can help identify relations
between words such as “Sherlock Holmes” (bigram) and “Natural Language Processing”
(trigram) in corpora. The document D has the following representation using a bigram
model:
[(..., NLP), (NLP, is), (is, exciting), (exciting, and), (and,
is), (is, one), (one, of), (of, many), (many, fields), (fields,
of), (of, AI), (AI, ...)]
Furthermore, N-gram models can also be represented as bag-of-words models, in which
unigrams are the counted term.

TF-IDF

TF-IDF, conceived by Spärck Jones (1972), is a well established statistic in the field
of information retrieval (IR), and is used to establish relative importance of terms in
documents in a corpus. TF-IDF is composed of two separate IR techniques, Term-
Frequency (TF) and Inverse Document Frequency (IDF). Term-Frequency refers to the
number of times a term occurs in a document, and Inverse Document Frequency is a
score that adjusts the importance by accounting for how frequent the word is in the
corpus. In short, TF-IDF will not attribute much importance to equally common words
across the corpus.

Annotations and Tagging

Annotations are used to further define the contents of text by including information like
tags, structure and semantics to terms in documents. This is commonly called tagging.
One popular annotation technique is part-of-speech (POS) tagging, which assigns
syntactic functions (grammatical relations) or part of speech to each respective term.
The main idea is to be able to differ between abbreviations and ambiguous terms like
“can”, which can take multiple forms: “can” [verb], “can” [noun], “Can” as in Canada,
“Can”, a Turkish name, “CAN” as in “CAN bus”, a micro-controller communication
system for vehicles.

2.1.3. Language Models

A language model, or a statistical language model, specifies a probability distribution
over sequences of terms, typically on a word-level (Wang and Zhai, 2017). Similar to the
N-gram representation in 2.1.2, the first language models were based on the prediction of
the next N-gram in a text, developed by Katz (1987). An optimal language model will
with confidence predict the next occurring term in a document, based on its previous
observations of terms frequently occurring together.
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2.1.4. Word Embeddings

Word embeddings are used to represent words as vectors, mapped from a multi-dimensional
vector space to a much lower dimension. The contents (or features) of the reduced vector
(the embedding) of a word can include information about its semantics, context and much
more, based on its relation with other words with similar distributions – closely related
to the distributional hypothesis (Harris, 1954). The features of a vector may include
underlying information of the word, such as:
King = [’monarch’: 1, ’man’: 1, ’woman’: 0]
Queen = [’monarch’: 1, ’man’: 0, ’woman’: 1]
A commonly used example is the application of mathematical operators on the features
of word embeddings:

King −Man+Woman = Queen

In order to construct the embeddings, a popular approach is word2vec, developed and
described in detail by Mikolov et al. (2013). More recent embeddings, commonly used
in modern systems are GloVe (Pennington et al., 2014), ELMo representations (Peters
et al., 2018) and BERT embeddings (Devlin et al., 2019).

2.2. Core Topics

These are topics closely related to the rest of the Master’s Thesis. They assume decent
understanding of the previously covered sections. Sections 2.2.1 and 2.2.2 are reused
from the specialization project (Jørgensen, 2019). The rest are new additions.

2.2.1. Named Entity Recognition

Named Entity Recognition (NER) is the task of recognizing entities in a document. An
entity is a product, service, topic, person, organization, issue or event (Liu, 2017). As
with annotations (Section 2.1.2), entities are often tagged with its entity type. Using
the sentence “Mr. Apple, who worked at Apple, ate an apple”, an optimal system will
identify the two entities Apple[PERSON] and Apple[ORGANIZATION], and a POS
tagger (also specified in Section 2.1.2) should identify apple[NOUN]. Two important
aspects of NER for this project are named entity disambiguation and relation extraction,
briefly described below.

Disambiguation

An entity (such as a company or person) may be written about using acronyms or aliases.
The U.S. politician Alexandria Ocasio-Cortez is commonly called “AOC” in the media.
AOC is also the name of a consumer electronics company, and is thus an important
reference to resolve.
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Relation Extraction

Relation extraction is the task of extracting relations between entities in a document.
In the previously used sentence “Mr. Apple, who worked at Apple, ate an apple”,
a relation extraction system should identify that Apple[PERSON] is an employee of
Apple[ORGANIZATION] by the relation works_at or similar.

2.2.2. Sentiment Analysis

Sentiment analysis and opinion mining are generally used to describe the same topic. Liu
(2012) describes it as a multi-faceted problem, to be considered as the computational
study of people’s opinions, appraisals and emotions toward entities, events and their
attributes.

Entity-Level Sentiment Analysis

Entity-level sentiment analysis, first introduced by Moilanen and Pulman (2009), is the
task of classifying sentiment with respect to target entities in a document. Its objective,
according to Liu (2017), is to discover all opinion quintuples (e, a, s, h, t):

e: target entity

a: aspect of e

s: sentiment on aspect a of target e, consisting of the sentiment in a value range to
reflect both orientation and intensity, e.g. (0, 1, ..., 10)

h: holder of the opinion

t: time of expression

Aspect Extraction

An aspect is a feature or an attribute of an entity, such as price for the mention of
whether a product is expensive. Typically, entity targets are explicitly stated (or as a
reference), making for relatively easy extraction. Aspects, however, are implicit, as they
are inferred from the contents of the document. The sentence “My phone takes terrible
photos” is an implicitly negative sentiment on the aspect camera of entity phone.

Negation in Sentiment Analysis

Negation is the process of reversing a classified sentiment score. Negation can be found
in several grammatical forms, such as in affixes (“e.g. impossible”, “non-functional”),
content-words (e.g. “not”, “never”) and function-word (e.g. “eliminated”, “reduced”)
(Choi and Cardie, 2008). Content-word negation and function-word negation may be
considered syntactic negation, in which a set of words are negated by a word or phrase.
For NLP, syntactic negation is of most interest, as the negation modifies the related text
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Figure 2.1.: Venn diagram showing overlapping types of reference resolution

entirely, whereas words negated by affix-negation are implicitly negative. Reitan et al.
(2015) covered negation extensively in the development of a negation classifier.

2.2.3. Coreference Resolution

Coreference resolution aims to identify which phrases or mentions that refer to the same
real-world entity or concept (Rahman and Ng, 2009). “Adam waved to Anna, she waved
back! He asked her to walk with him to school”. Here, multiple references to “Adam”
are present. Referring to an entity often relies on resolving its antecedent – a word or
phrase that is the root ancestor of the reference. References can appear in several shapes
and forms, such as with demonstratives or presuppositions. How the different types of
references relate is illustrated in Figure 2.1.

Anaphora

Anaphora are references that refer back to an entity mentioned earlier in a piece of text
or discourse. Anaphoric expressions can be defined as an intralinguistic terminology
(Sukthanker et al., 2018), as all references are present in the text itself, thus they do not
require world knowledge to resolve.

12



2.2. Core Topics

Cataphora

References to an entity before it is mentioned. “After he was received the phone call,
John ran home”. More complex occurrences of cataphora requires excessive use of
extralinguistic features to resolve.

Split references

Both anaphoric and cataphoric expressions may involve subject pronouns regarding
multiple targets (e.g. they, them). An example with anaphora: “Adam and John had
finished their chores, so they watched TV”. An example with cataphora: “He’s in the
kitchen making them now, if you want cookies”.

Demonstratives

When an entity is not explicitly specified, but referenced through a demonstrative. “He
said he liked this phone much better than that[0] one”. [0] refers to an implicit entity (a
phone).

Definite Pronominals

References using definite pronouns (e.g. his, her, me, you, I) – “Adam was walking up
the stairs when he fell”. Definite pronominal references target a unique entity. Can occur
for both anaphoric and cataphoric references. Early work in reference resolution focused
strictly on the task of pronominal resolution, as that of Hobbs (1978); Roberts (1989).

Presuppositions

References happening in context of indefinite pronouns (e.g. someone, somebody, anyone)
are used within a document – “Almost all the firemen had to help out”. These are
references to an unspecific entity or group of entities. Projection of presuppositions as a
resolution task was first introduced by Van der Sandt (1992).

2.2.4. World Knowledge and Knowledge Bases

World knowledge regards knowledge that seemingly only humans possess. A commonly
used demonstration of the need for world knowledge is the Winograd Schema Challenge
(Levesque et al., 2012) – a test containing sentences in which one or more referential
ambiguities are present, as built upon by the work of Winograd (1972). Considering
Winograd Example 1 and 2, the adjectives big and small completely modify the reference
to “it”. The only solution to this is incorporating knowledge of the two objects “trophy”
and “suitcase”.

Winograd Example 1 The trophy doesn’t fit in the brown suitcase because it’s too big.

Winograd Example 2 The trophy doesn’t fit in the brown suitcase because it’s too small.

13
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A system used to provide world knowledge is often referred to as a “knowledge base” or
“knowledge graph”.

Sources for Knowledge

A few commonly used knowledge bases are Yago (Suchanek et al., 2007), FrameNet (Baker
et al., 1998) and WikiData (Vrandečić and Krötzsch, 2014). These contain extratextual
information, such as what an object is a subclass of (e.g. car is a subclass of vehicle),
who the spouse for a famous politician is and where a company resides. This data can, if
used properly, help resolve references.

2.3. Classification of Natural Language

This section, up until the section on pre-training (p. 20), has been reused from the
specialization project. The reused sections are still deemed relevant for understanding
the classification of Sentiment Analysis (SA). Three types of classification methodologies
will be presented: lexicon-based, supervised learning and pre-training.

2.3.1. Lexicon-Based

Lexicon-based methods do not require any statistical input data, but rely on lexica
consisting of words weighted on sentiment orientation and more (Saif et al., 2016). An
example of such a lexicon is SentiWordNet (Esuli and Sebastiani, 2006). Although lexicon-
based methods require frequent revision by humans to stay up-to-date and relevant, a
costly task, they tend to perform well when applied to different domains due to precise
connections to semantic composition and linguistic features. A great weakness, however, is
that lexicon-based techniques rely on prior sentiment; words have an attributed meaning
before they are placed in context of a sentence.

2.3.2. Supervised Learning

Supervised learning methods consist of two phases: training and prediction. During
training, a machine learning algorithm requires labeled training data, along with a set of
features, in order for it to spot patterns in the input data. The result of this process is a
trained classifier, able to create a prediction on new unlabeled data. An illustration of
the training and prediction process can be seen in Figure 2.2. Supervised learning has its
limitations, one of which is domain dependence. Classifiers trained specifically on data
from news may produce unsatisfactory performance applied to data from other domains
(Aue and Gamon, 2005). Today, however, we see that classifiers can be generalized
across domains with the usage of pre-training and large language models (Radford et al.,
2019), covered in the next section, p. 20. Below are a few approaches to supervised
learning classification, including Support Vector Machines – used in early models for
Sentiment Analysis (SA), Conditional Random Fields – which have been successful in
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Figure 2.2.: The training and prediction phase of supervised machine learning

aiding advanced models with heuristics, as well as a brief introduction to Artificial Neural
Networks and commonly used deep learning architectures.

2.3.2.1. Support Vector Machines

The purpose of a Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is to create
a mapping of the data to a higher dimension, such that it is possible to draw a hyperplane
called the support vector to separate the higher order data points by drawing a support
vector classifier with a goal of maximizing the margin around the separation, resulting in
the best possible split for a classification. Separating data is tricky, as the separation
needs to be transformed by a mathematical function. This transformation is computed
by kernel functions, introduced by Boser et al. (1992), whose primary functionality is
finding support vector classifiers for data as if it were of a higher dimension. Kernel
functions accomplish this by calculating point-wise relationships between all data points,
such as the polynomial kernel, applying pd for a point p and dimension d.

2.3.2.2. Conditional Random Fields

Conditional Random Fields (CRFs), presented in Lafferty et al. (2001) are undirected
graphs used to build probabilistic models for segmenting and labeling sequence data,
largely guided by the fundamental theorem of random fields (Hammersley and Clifford,
1971). CRFs, in the context of Natural Language Processing (NLP), have been used in
several high-performing methods, usually as a stochastic heuristic combined with Neural
Networks (NNs) to create a final classifier.
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Figure 2.3.: A neuron in a neural network

2.3.2.3. Artificial Neural Networks

The functionality of an Artificial Neural Network, commonly referred to as an NN, is
inspired by how our brains work and learn – the biological neural network. In its simplest
form, an NN is composed of an input, a binary classifier called the perceptron, first
introduced by Rosenblatt (1958), and an output. As seen in Figure 2.3, each of the
inputs to the neuron (perceptron) have an assigned weight, where the neuron computes
an aggregation of all its inputs and weights.

Activating neurons An activation function defines how the input data is handled in
a neuron, before passing it on to the next layer in the network – thus defining how the
neuron is activated. Activation functions are often categorized as linear or non-linear –
depending on how they transform the data. Some commonly used activation functions
are the Sigmoid function, hyperbolic tangent (tanh) and the rectified linear unit (ReLU).
Only the Sigmoid function will be referenced in this paper. For the interested reader,
more can be found in Nwankpa et al. (2018) and Goodfellow et al. (2016). The Sigmoid
function has been used extensively since the early days of neural networks, especially
those regarding binary classification (such as sentiment polarity values -1 or 1). It may
also be called the logistic function, due to its definition:

Sigmoid(x) = 1
1 + e−x

= ex

ex + 1
When handling an input x, the Sigmoid function transforms the input to values between
0.0 and 1.0, ensuring the output of a neuron is in a predictable range.

Altering input weights The objective of an NN is to discover optimal statistical
patterns between the inputs and outputs. This is done by altering the input weights
throughout the network as the perceptrons are activated. The altered weights are modified
with respect to a loss function. A loss function determines how the error (difference
between desired output and guessed output) should be calculated. Weights are updated
based on the current error and a learning rate (defining how much the error should
influence the updated weights). To create a network, several neurons are set up in layers,
referred to as hidden layers. Inputs enter the hidden layer, and the activated neurons
pass data along in the network. A simple illustration of an NN is shown in Figure 2.4.
Typically, several hidden layers are used. What has been shown here is commonly

referred to a feedforward neural network, as all the outputs from each neuron are passed
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Figure 2.4.: Feedforward neural network

along to the next layer (seen in Figure 2.5). As shown in the next few sections, the
outputs from each layer can be set up in more complex structures such as those found in
recurrent neural networks.

2.3.2.4. Recurrent Neural Networks

Where the previously covered feedforward neural networks simply pass along the output
of neurons, Recurrent Neural Network (RNN)s pass the output into another layer using
data from the current state of the hidden layer – this enables them to “remember” earlier
learned outcomes, as opposed to starting from scratch at any given point in time. The
new hidden state at a given time t for a function f with parameters W , fW , an old state
ht−1 and input at a given time, xt, can be expressed as

ht = fW (ht−1, xt)

Each step of this procedure is called a cell, which handles this computation and
calculates an output and loss – depending on its configuration. The outputs can be
used to combine the sequence of cell output data for a final classification. RNNs were
developed to address long-term dependencies, but proved to be inefficient for dependencies
stretching far outside the beginning or end of a sequence. It is not feasible to store
numerous previous data points back in time, as this requires enormous amounts of
memory. Moreover, the data passed from each cell becomes cluttered, such that there is
no way to extract old information from the data.

Due to the architecture of RNNs with sequential cells, two problems arise: exploding
gradient and vanishing gradient. The exploding gradient may cause multiplication of
numbers to increase exponentially between each sequence of cells. Vanishing gradients
are essentially describing the same process, except for small numbers, converging to zero
(Hochreiter and Schmidhuber, 1997).
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Figure 2.5.: Multi-layer feedforward neural network

2.3.2.5. Long Short-Term Memory

Long Short-Term Memory (LSTM) was first defined by Hochreiter and Schmidhuber
(1997), a proposed solution to the vanishing gradient problem. As with typical RNNs, an
LSTM NN uses hidden states that it passes along to new cells, along with its cell state,
ct. For each cell, four gates are created to decide whether to erase a cell (forget-gate),
whether to write to a new cell (input-gate), how much to write to a cell (amount-gate) and
how much to reveal from a cell (output-gate). Again, as with RNNs, this implementation
does not solve the issue of long-term dependencies. An attempt to improve LSTM NNs,
especially for text classification, is the Bidirectional LSTM (BiLSTM), where a backward
layer is included in addition to the standard forward layer. This improves attention
towards the end and start of a document, but still fails to provide insights about the
parts in-between.

2.3.2.6. Encoder-Decoder Model

An encoder-decoder model is a two-step process, consisting of an encoder receiving an
input sequence, and a decoder producing an output sequence. In Figure 2.6, a simplified
example for the task of translating “writing a sentence” into Norwegian is shown. Here,
the input sentence is first split into each of its constituent words, then the word vector
of each respective word is processed by a RNN, named the encoder, where the states
are passed on to the next cell in the network (as described in Section 2.3.2.4). The final
encoded hidden state will then be sent through another set of RNNs, named the decoders.
In the decoder, necessary techniques are applied to complete the process of translating
each word (in context of its hidden state). Finally, it returns the output sequence.
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Figure 2.6.: A simplification of an encoder-decoder pattern showing the procedure of
translating “Writing a sentence” into Norwegian

2.3.2.7. The Attention Mechanism

Developed by Vaswani et al. (2017), the attention mechanism is inspired by the encoder-
decoder pattern, consisting of encoder- and decoder layers. An input is passed into the
encoder layer, where each of the encoder outputs is passed into all decoder inputs. Each
of the encoder layers consists of self-attention and a feedforward NN. Self-attention is
the task of assigning which part of a document is related to another part of the same
document. Self-attention is computed using three matrices, Q (queries), K (keys) and
V (values), in addition to the input itself, which consists of an embedding vector for
each term of a document (e.g. word embedding), as well as a positional encoding vector
(storing the position of a term). The position of each relevant segment can thus be passed
along the encoder layer and decoder layer, without the need of any sequential operations
like those found in RNNs, resulting in a fully parallelizable process.

2.3.2.8. Hierarchical Attention Networks

Mirroring the hierarchical structure of documents (paragraphs, sentences, words), a
hierarchical attention network (HAN) considers certain parts of a hierarchy based on
knowledge about the structure of a document. A distinguished feature of HAN models
is that they assign attention weights based on the context-dependence of words and
sentences in documents. The sentence “This soda tastes super good” can be represented
as “[This soda tastes super][good]” (bold part representing word-level attention). Unlike
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the attention mechanism described in Section 2.3.2.7, attention is computed using word
embeddings (see Section 2.1.4) and aggregating the representation of informative segments
that form a document. If a set of unrelated words are combined in a sentence, HAN
models avoid assigning high attention scores to these. The sentence “Piano potato roof”
has seemingly no attentive words (especially due to its lack of composition). The same
goes for subsequent sentences; “My name is” will likely be followed by a name, and not
“door”. The attention towards “door” would therefore be low, while the attention towards
“John” would be higher.

2.3.3. Pre-training

The process of pre-training generally involves training a NN on large-scale, unlabeled text
data (Yang et al., 2019b), creating an unsupervised general purpose Language Model
(LM), covered in Section 2.1.3. The LM is later specialized by fine-tuning it on domain-
specific – or downstream – tasks. Downstream tasks (such as question answering, machine
translation, reading comprehension and summarization) make use of supervised learning
techniques (Radford et al., 2019), thus creating semi-supervised classifiers. For language
understanding tasks, completely generalized LMs have been implemented (Radford et al.,
2019), omitting the use of supervised specialization, relying on detecting the syntagmatic
and paradigmatic associations between words. Two widely used LMs (and also Sesame
Street characters) are ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019).

ELMo

ELMo (Embeddings from Language Models) create word vectors to model complex word
representations. The representations are learned through a bidirectional LM, trained
on a large corpus developed by Chelba et al. (2013). At the time of publishing, the
implementation of ELMo presented state-of-the-art performance on several NLP tasks,
but were later that year outclassed by the introduction of BERT.

BERT

BERT, abbreviated from Bidirectional Encoder Representations from Transformers,
has redefined performance of several fields within Natural Language Processing in the
past year (Radford et al., 2019). Its functionality is dependent on, as the name suggests,
transformers. Keep in mind the following information is aimed to describe BERT on a
high level. An excellent, more in-depth description can be found in the Master’s Thesis
by Steinbakken (2019), in addition to the source papers on Attention (Vaswani et al.,
2017) and BERT (Devlin et al., 2019).
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Figure 2.7.: Example visualization of an output from a BERT model

Transformers Transformers incorporate attention mechanisms (described in Section
2.3.2.7, p. 19), applying self-attention mechanisms and modeling the relationships
between tokens (i.e. words) in sentences without regard for the positional information
of the respective tokens, but keeping track of its direction (Vaswani et al., 2017).
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This differs from the functionality of alternative neural architectures, which often
encode positional information (e.g. bidirectional LSTM). The positional independence
of tokens allow for a greater understanding of language, as ambiguous words are
embedded with their respective context in any sentence – allowing the model to
discern if “run” refers to a marathon or a horse race, depending on its contexts from
other words in the sentence. The final representation of the word “run” contains
attention scores (i.e. self-attention to “run”) for any other word, in relation to
itself. The keen reader may see that this approach will quickly result in large models,
as each token in a text effectively contains a copy of the text itself (represented as vectors).

Using the transformer technique, BERT operates by encoding bidirectional transformers,
i.e. jointly applying self-attention both left and right (Devlin et al., 2019), learning
intricate relationships between tokens in a text. By pre-training BERT on large-scale
text data, requiring access to excessive hardware, the model may be redistributed for
others to use, without the need for additional training. Additionally, the models can be
fine-tuned, as described earlier, and these fine-tuned models may also be distributed
and modified for the convenience of end users. An illustration of BERT in presented
in Figure 2.7, where the different colors indicate attention towards tokens. The [CLS]
token indicates start of classification and the [SEP], or separator, indicates when to
separate between classifications. Note how it deals with unknown words, such as the
“coronavirus”, being split as “corona” and “##virus” and the same for “NTNU”. This
allows the model to map “virus” to any previously seen occurrences of virus in a text.
Observe in the figure how the attention towards nt and ##nu is prominent. This is
the power of pre-training, as it has discovered this pattern between how any unknown
token (e.g. “##nu”) is very plausibly referring to “the university” based on its encoded
directions.

2.3.4. Configuring Machine Learning Classifiers

As a last section on machine learning classifiers, some explanations on the jargon used
when configuring these classifiers is presented.

Hyperparameters A model’s parameters – hyperparameters – refer to any parameter
set before the learning process takes place. The purpose of most parameters is to
enhance the chances of the model learning adequately from the data, avoiding too close
approximations (overfitting) or too loose approximations (underfitting). The latter may
also occur when there is a lack of data necessary to learn intrinsic patterns in the data.
Some common hyperparameters include:

• Epochs
An epoch is the term used to define a single pass of the dataset through the machine
learning model. Several epochs are often required for the model to approach the
global minimum with respect to the loss function. Too few epochs can result in the
model stopping before it has reached the point of convergence.
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• Batch size
The batch size is the number of objects to include in a single batch, where a batch
is a predefined portion of the dataset. A low batch size, e.g. 1, implies that the
model learns from a single text at a time, whereas a larger batch size will cause the
model to learn more complex structures as all the inputs are handled at once. If a
dataset is split into 10 batches, it will consequently require 10 iterations to finish
one epoch of training.

• Learning rate
This parameter changes how much the model learns from its input data. High
learning rates require less epochs to find a solution (although the solution may be
suboptimal), whereas a low learning rate may not be able to find a solution at all.
Thus, a middle ground has to be defined.

• Dropout
A dropout has the functionality of dropping, or ignoring the outputs from a given
number of neurons in a network, typically at random with a defined probability.
A dropout of 1.0 would disregard all outputs, not allowing the model to learn at
all. With a dropout at 0.0, all neurons would be passed along the layers in the
networks, which may in turn cause overfitting.

• L2-regularization
Regularization works by adjusting how the loss function impacts the complexity of
the model. The weights at each neuron are forced to become small – depending on
the value of the L2-regularization – resulting in the model being less likely to latch
on to discovered patterns. This further prevents overfitting.

Overfitting Overfitting happens when the model is too closely fit to the data. If a
model is strictly trained on data from a specific topic, for instance, it may perform poorly
on other, never before seen topics.

2.4. Evaluation Metrics
Throughout the thesis, several evaluation metrics will be mentioned when discussing
performance, as well as in grouped results in tables and by other means. First, general
evaluation metrics for classification (e.g. Sentiment Analysis) are described, before
moving on to more specialized metrics for Coreference Resolution (CR).

2.4.1. Sentiment Analysis

Most commonly used is the F1-score, derived from precision and recall. Another common
evaluation is accuracy, an intuitive score which is the fraction of correct predictions made
out of all predictions. The evaluation metrics make use of true positives (TP ), false
positives (FP ), true negatives (TN) and false negatives (FN) to describe the outcomes
of a prediction, illustrated by the confusion matrix in table 2.3.
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Table 2.3.: Confusion matrix for prediction outcomes

Precision

Proportion of returned items that are relevant:

precision = TP

TP + FP

Recall

Proportion of relevant items that are returned:

recall = TP

TP + FN

F-score

The F-score, is a combination of precision and recall, weighted with a variable β:

Fβ = (1 + β) ∗ precision ∗ recall
β2 ∗ precision+ recall

The F1-score (β = 1) is the harmonic mean of precision and recall.

F1 = (1 + 1) ∗ precision ∗ recall
12 ∗ precision+ recall

= 2 ∗ precision ∗ recall
precision+ recall

This weighted metric is commonly used in text classification, as very precise models (i.e.
high precision) will be penalized by not retrieving a high number of relevant items to
make the prediction on (i.e. recall).
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Figure 2.8.: Data structure holding coreference information for entities

2.4.2. Coreference Resolution

The previous metrics do not apply well to CR, as this task is not a traditional classification
task. The definitions of precision and recall thus require modification to suit the desired
outcome in evaluating references to entities. There are a vast set of metrics available,
but the most commonly used are described below. Before introducing the metrics, it is
favorable to understand the input of how entities and their coreferences are represented
(although the data structures alter between models – a topic that will later be discussed).
The chosen data structure contains a list of lists of tuples. First, the main list contains
the coreference clusters (C). Within C are a list of entities (E1, E2, . . . , Ec, c ∈ C) for
the given cluster, each containing a list of mentions M1,M2, . . . ,Mn, n ∈ Ec, c ∈ C). The
mention lists contain mention tuples with their respective start and end indices, denoted
Ms and Me. This structure is illustrated in Figure 2.8. Furthermore, when referring to
the truth values of test data, the term gold is used, as it is the standard terminology in the
field. For mathematical notations, gold data is denoted G and predictions P , containing
mentions for entity clusters. Consider the text from Example 1 in the Introduction
(Chapter 1): “Anna bought John a bike. He told her it was great!”. The gold mentions
are as follows: [[(0, 0), (8, 8)], [(2, 2), (6, 6)], [(3, 4), (9, 9)]] Translating to [Anna, her],
[John, He], [a bike, it]. This example will be used to illustrate the different metrics.
Additionally, the formulas shown below are based on the study by Moosavi and Strube
(2016) and verified against the metric source papers and implementations by Lee et al.
(2018). All metrics are used for evaluations throughout the experimental sections.
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MUC

Vilain et al. (1995) introduced MUC, the very first CR metric, used for evaluation in
the Message Understanding Conference (Grishman and Sundheim, 1996). MUC only
considers the difference between coreference links against the gold entities – in other
words, calculating the number of changes required to recreate the gold mentions from
the predictions, much alike the functionality of Levenshtein distance (Levenshtein, 1966).
Recall is computed by iterating over the correct mentions in the predictions for each
entity, computing its intersection with the gold mentions, using a function partition
(Equation 2.1), partitioning the input clusters that intersect.

partition(x, y) = {x|x ∈ X&x ∈ y 6= ∅} (2.1)

RecallMUC(P,G) =
∑
g∈G

|g| − |partition(g, P )|
|g| − 1 (2.2)

Precision is calculated by simply swapping the inputs P and G. This simplistic comparison
leaves it unable to differentiate between singleton mentions and references between entities.
Thus, the evaluation scores will still be high if all coreference links are merged into one
single entity, as illustrated below. Observe how the predictions are all in one list [Anna,
her, John, He, a bike, it]:
Predicted: [((0, 0), (8, 8), (2, 2), (6, 6), (3, 4), (9, 9))]
Gold: [((0, 0), (8, 8)), ((2, 2), (6, 6)), ((3, 4), (9, 9))]
Running metric: muc
Precision: 0.6
Recall: 1.0
F1 score: 0.7499999999999999

B-CUBED

B3 (Bagga and Baldwin, 1998) addressed some issues of MUC, by introducing mention-
based metrics – a metric that computes the recall and precision from individual entity
mentions, rather than as a whole, before averaging for the final scores.

RecallB3(P,G) =
∑
eg∈G

∑
ep∈P

|eg∩ep|2
|eg |∑

eg∈G |eg|
(2.3)

As with MUC, precision is computed by swapping the inputs.

CEAF

Luo (2005) developed the CEAF metric to address issues with previous metrics. A
predicted entity should only map to one gold entity. A similarity is computed between
the predictions and gold data, where the task is to find a one-to-one mapping using the
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Hungarian Algorithm (Kuhn, 1955). Its formulas are unnecessarily complex to justify
listing here, and a detailed description is found in Moosavi and Strube (2016). Its
main takeaway is the one-to-one mapping, penalizing the addition of wrongly identified
coreference clusters, illustrated with the addition of [Anna, John] as a cluster:

Predicted: [((0, 0), (2, 2)), ((0, 0), (8, 8)), ((2, 2), (6, 6)
), ((3, 4), (9, 9))]

Gold: [((0, 0), (8, 8)), ((2, 2), (6, 6)), ((3, 4), (9, 9))]

Running metric: b_cubed
Precision: 0.875
Recall: 1.0
F1 score: 0.9333333333333333
-----------------------------------
Running metric: ceaf
Precision: 0.75
Recall: 1.0
F1 score: 0.8571428571428571

Observe how the CEAF score is lower than that of B-CUBED after this incorrect
prediction.

CoNLL-2012

The CoNLL metric has been used in almost all work done on CR since the CoNLL-2012
shared task (Pradhan et al., 2012). It is quite simply an average of MUC, B3 and CEAF,
smoothing out the shortcomings of each one. Unless specified otherwise, the F1 scores

LEA

Moosavi and Strube (2016) discussed issues with the evaluation scheme of the CoNLL-
2012 shared task and its metrics, and proposed the LEA – Link-based Entity-Aware
– metric. It considers how well each entity is resolved, by computing the fraction of
correctly predicted coreference links. Thus, the more links, the higher an entity is scored.
This metric is intended to be used where the importance of entities should be evaluated.
The authors further suggest modifying the importance score (Equation 2.4) based on
domain-specific needs.

importance(e) = |e| (2.4)

link(e) = |ementions| ×
|ementions| − 1

2 (2.5)

resolution-score(eg) =
∑
ep∈P

link(eg ∩ ep)
link(eg)

(2.6)
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The evaluation of entities is illustrated in the following equation (2.7). The more complex
equations for recall and precision provide little needed information to convey here, and
can be found in Moosavi and Strube (2016).∑

ep∈P (importance(ep)× resolution-score(ep))∑
eg∈G importance(eg)

(2.7)

2.5. Tools

This section is dedicated to providing a brief description of tools, frameworks and libraries
used in the implementation of experiments.

2.5.1. GraphQL

GraphQL is a query language for application programming interfaces, developed by
Facebook. In this thesis, it is used to specify data from the Strise Knowledge Graph.
GraphQL allows for customizable data retrieval description, specifically made for graphs,
as the name indicates. More can be read in the analysis of the language by Hartig (2017).

2.5.2. Python and Related Tools

Below are some tools used in relation to the Python programming language.

Pandas

Pandas is a data analysis tool for Python (McKinney et al., 2011), allowing efficient
creation of large objects with several built-in methods for manipulating data.

Numpy

A package for Python to perform efficient computing. Heavily used in a vast majority
of modern machine learning systems. It will be mentioned throughout the Architecture
Chapter (Section 5), more specifically the array functionality – N-dimensional objects
optimized for fast calculations.

NLTK

NLTK, the Natural Language ToolKit (Loper and Bird, 2002), is a tookit providing
access to tools like tokenization and dependency tree visualization, as well as high-level
interfaces to semantic parsing, machine translation and sentiment analysis.
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spaCy

spaCy (Honnibal and Montani, 2017) is an open-source library for a plethora of NLP
tasks. It supports high-level APIs for (world’s fastest) dependency parser (Choi et al.,
2015), tokenization, Named Entity Recognition (NER) and more. It allows for modules
to be built on top of its system, creating custom pipelines.

NeuralCoref

NeuralCoref is a system developed for solving CR by Hugging Face3, a company providing
open-source tools for several tasks in NLP. It supports integration with spaCy, which will
be utilized to build an efficient pipeline for evaluating coreferences. The system is based
on the algorithms by Clark and Manning (2016a), and further modified for efficiency.

PyTorch

PyTorch (Paszke et al., 2019) is a library for enabling development of Deep Learning
applications in Python. It is the main library for models regarding sentiment classification
in this thesis.

Jupyter Notebook

Jupyter provides a notebook service, which allows to efficiently split Python code into
individual blocks of code, storing the blocks in memory. Moreover, it allows for modules
to be applied, supporting advanced graphics, plots and HTML views.

3https://huggingface.co/
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3. Related Work
This chapter contains methodologies and compelling approaches used to carry out
experiments for the rest of the thesis. A structured, domain oriented literature review is
first presented, followed by a categorized listing of related work based on the results in
later sections.

3.1. Literature Review
The goal of the literature review is to obtain sufficient knowledge within the field of
Coreference Resolution (CR) and discover high-performing, intriguing models, with focus
on the reproducibility of results. The review was initially guided by findings made in
the specialization project (Jørgensen, 2019), wherein several fields of Natural Language
Processing (NLP), e.g. CR, were researched in an extended topic prestudy. Furthermore,
state-of-the-art methods used across many NLP tasks were studied, such as BERT (Devlin
et al., 2019), a language model based on pre-training (covered in Section 2.3.3). Starting
the specified study of CR, a domain oriented review protocol is defined (Section 3.1.1),
including the selection and quality assessment of research. Finally, an overview of studied
literature is presented, followed by some brief remarks.

3.1.1. Domain Oriented Review Protocol

Initiating the search for publications, terms related to the topic must be defined. Due
to the extensive review completed in the specialization project, in which part of the
research goal was to “get a clear view of the state-of-the-art techniques in the field of
Natural Language Processing (NLP)”, several key terms in the topic of CR were already

Topic Returned search results
Coreference resolution 13,500
Named entity recognition 149,000
Mention detection 221,000
Entity linking 309,000
Sentiment analysis 714,000
Machine translation 1,420,000

Table 3.1.: Number of returned search results (from the years 2010–2020) on Google
Scholar for several related topics
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Group 1
Main topic

Group 2
Specialized terms

Group 3
Linguistic terms

Group 4
External data

Term 1 Coreference resolution Entity Anaphora Knowledge base
Term 2 Co-reference resolution Entity-level Anaphoric Knowledge bases
Term 3 - Span Cataphora Knowledge-base
Term 4 - Spans Cataphoric Knowledge driven
Term 5 - Span-level Antecedent Knowledge-driven
Term 6 - - Coreferring -

Table 3.2.: Terms used for the literature review

discovered. Continued, a broad online search was conducted in order to find terms to
be used in the literature review. An enormous gap between the amount of published
research of CR versus other areas in NLP was quickly discovered, as shown in table 3.1.
The final terms (Table 3.2) were used to create a boolean search query for Google

Scholar with the following scheme:

Group = Term1 OR Term2 OR ... OR TermN
Query = Group1 AND Group2 AND ... AND GroupN

Due to query length restrictions of 255 characters per search, the four groups could not
be combined into one single query, and were thus split on the least essential terms into
the following two queries:

Query 1 (Q1)

("coreference resolution" OR "co-reference resolution")
AND
("entity" OR "entity-level" OR "span" OR "spans" OR "span-level")
AND
("knowledge base" OR "knowledge bases" OR "knowledge-base"
OR "knowledge driven" OR "knowledge-driven")

Query 2 (Q2)

("coreference resolution" OR "co-reference resolution")
AND
("entity" OR "entity-level" OR "span" OR "spans" OR "span-level")
AND
("anaphora" OR "anaphoric" OR "cataphora" OR "cataphoric"
OR "antecedent" OR "coreferring")

3.1.2. Restricting the Search Scope

Before applying the two queries to conduct a search on Google Scholar, a vital decision
had to be made – restricting the search within a given time frame. Guided by NLP-
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progress1, an open-source project by Sebastian Ruder, a Deepmind2 research scientist,
it was found that the performance of recent CR systems drastically increased in the
past two years. This, combined with findings from the specialization project, resulted in
selecting the time frame 2018–2020 to acquire the most up-to-date and relevant research.
Additionally, it was decided to keep a total of 30 publications after filtering on inclusion
criteria. This decision was motivated by previous experiences with literature reviews,
as publications of high quality often refer to other relevant publications – drastically
increasing the amount of material for the entire review.

3.1.3. Selection of Studies

For retrieved publications, each was respectively asserted by two inclusion criteria (IC).
These mainly regard the title, abstract and results of a publication, and are merely binary
assertions to decide whether to continue studying a given publication or not.

IC1 Is Coreference Resolution the main topic of the research?

IC2 Are relevant results presented?

When inspecting the results throughout this inclusion process, 13 publications
were kept from Q1 (Appendix A.1) and 17 from Q2 (Appendix A.2), yielding 30
publications to be further processed by the quality assessment.

3.1.4. Quality Assessment

A set of quality criteria (QC) were specially crafted for this thesis, to properly attribute
scores and rank retrieved publications:

QC1 Is the goal of the research clearly stated, including its relation to coreference?

QC2 Are the results based on available datasets?

QC3 Are the results compared to other relevant research?

QC4 Is the experimental setup reproducible, with public code?

QC5 Is external data, such as knowledge bases, considered in the research?

QC6 Is the proposed solution showing state-of-the-art performance?

1http://nlpprogress.com/
2https://deepmind.com/
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3.1.5. Review Workflow

A publication received up to 1 point for each QC if answered, 0.5 for partial answers and
0 otherwise. For a publication to be included in the final review library (Appendix A,
Table A.5), it must score at least 4 out of 6 available points. The evaluation process was
completed by the following workflow:

1. (QC1) Consider the title and read abstract

2. (QC1, QC2) Read introduction

3. (QC2) Search for datasets used

4. (QC3, QC6) Consider the results, check for similarities in other papers

5. (QC4, QC5) Skim through experimental setup and conclusion, look for available
code and other means of reproducibility

The attributed scores are shown in Appendix A, Tables A.2 (Q1) and A.4 (Q2), in
which the ID column is linked to the previous tables. The publications passing the
quality assessment were gathered in a final review library (Appendix A, Table A.5). The
continued review process was then bisected:

1. Get an overview of the field: read reviews and surveys

2. Delve into deeper details: study of remaining publications

3.1.6. Results

Sukthanker et al. (2018) and Stylianou and Vlahavas (2019) provide a good overview of
CR, comparing a plethora of models and their evolution from simple rule-based design up
to and including the current state-of-the-art neural architectures. The following sections
present findings from the literature review, describing algorithms for the CR task, using
world knowledge for CR and applications to Sentiment Analysis (SA).
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Factor Type Initial Weight
Sentence recency 100
Subject emphasis 80
Existential emphasis 70
Accusative emphasis 50
Indirect object and oblique complement emphasis 40
Head noun emphasis 80
Non-adverbial emphasis 50

Table 3.3.: Salience Factor Types as defined by Lappin and Leass (1994)

3.2. Algorithms for Coreference Resolution

Algorithms used to handle CR are divided into rule-based and supervised approaches.
Historically, the CR task has required some form of hand-crafted rules (Sukthanker et al.,
2018), containing carefully extracted syntactic and semantic features. Which features,
however, is an on-going discussion (Bengtson and Roth, 2008; Moosavi and Strube, 2017).
Below, a brief explanation of the most used algorithms are described.

3.2.1. Rule-based Algorithms

The very first documented approach to a CR related task, namely pronoun resolution, was
developed by Hobbs (1978). Hobb’s naïve algorithm describes a traversal of parse trees
of sentences in a left-to-right manner using breadth-first searches to find an antecedent
for pronouns. Lappin and Leass (1994) developed an algorithm that implemented a
look-back search for sentences, removing mention candidates that did not semantically
or syntactically agree. Furthermore, they defined a set of salience factor types with
respective weights to extract the remaining candidates, shown in Table 3.3.
Fast-forward to modern times, Stanford CoreNLP (Manning et al., 2014a), an NLP

toolkit, is widely used for several NLP tasks. Its coreference models include a deterministic,
rule-based system implemented by Lee et al. (2013), with later additions of statistical
and neural models by Clark and Manning (2015) and Clark and Manning (2016a). The
rule-based system makes use of a multi-pass sieve for CR. A simplified description of the
sieve-based architecture (Lee et al., 2013) can be found in Table 3.4. The modularity of the
system allows for simple integration of other techniques. Lee et al. (2013) conclude with
shallow knowledge of semantics and discourse to be the main cause of errors. Additional
approaches to other rule-based algorithms are thoroughly covered by Sukthanker et al.
(2018). A common problem with most rule-based algorithms is that references in natural
languages are largely disordered, and thus cannot be completely solved in a left-to-right
manner, or any sequential manner, in fact, but should rather be handled as a hierarchical
problem. This is where, among several issues, supervised algorithms may excel.
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Sieve Description
Input Raw input data
Mention detection Discover entities, pronouns, and so forth

Speaker identification
Match words like “my”, “mine”, based on the speaker.
The speaker can be inferred by connected entities and
pronouns, largely based on the part-of-speech

String match Match exact strings, like “NTNU” can safely be matched
with a later occurrence of “NTNU”

Precise constructs Match syntactic constructs, often grouped relations.
For instance, “her best friend”

Strict head match A total of three sieves, denoted A, B, C in the publication.
These match the root antecedent of previous matches

Proper head noun match
Looks for certain constraints on head matches before
resolving head match candidates, such as location
and numeric matches.

Relaxed head match Matches part of words, such as “University” to
“Norwegian University of Science and Technology”

Pronoun match Implementations of agreement constraints to enforce
validity of number, gender, animacy, and so forth

Post processing Corpus-specific post processing techniques.
Was only implemented for the OntoNotes dataset

Table 3.4.: Sieve-based architecture for the deterministic model by Lee et al. (2013)

3.2.2. Supervised Algorithms

Some of the earlier learning-based models made use of decision trees (Aone and Bennett,
1995; Soon et al., 2001) and the bayesian rule (Ge et al., 1998). These were popularized
at the time due to the work on tagged corpora like the MUC-6 (Grishman and Sundheim,
1996). Although supervised methods have in recent years remained superior over
rule-based, Zeldes and Zhang (2016) show that supervised models are weaker when
evaluated on intricate linguistic phenomena within coreference and mention-border
definitions. This is due to the fact that a single dataset will never be sufficient for a
model to learn all nuances within a language from, as one cannot feasibly represent
ever-changing natural languages in a compact selection of data.

Supervised approaches may be separated into three categories:

• Mention-pairs

• Entity-mentions

• Ranking models
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3.2.2.1. Mention-pair models

Mention-pair models have the goal of classifying whether pairs of noun phrases (NPs)
are coreferent, as stated in the previously mentioned work by Aone and Bennett (1995).
Sukthanker et al. (2018) split the algorithmic design of mention-pair models into:

1. Instance creation between two NPs

2. Training a classifier on the instances

3. Generating NP partitions by clustering

Early work on mention-pair algorithms, such as the right-to-left clustering by Ng and
Cardie (2002), has been used (although slightly modified) in modern models (Lee et al.,
2017). One major flaw of the mention-pair modeling scheme is that transitive relations do
not uphold if there exists misclassifications in one of the relations. This is illustrated by the
following example: given an entity E with the following NPs as references: S = {A,B,C}.
A mention-pair model will attempt to link the NPs in the set S to E . The following
behavior is ideal (note the right-to-left ordering):

(C → B) ∧ (B → A) ∧ (A→ E) =⇒ ∀x ∈ S : x→ E

If, however, any link in the set is unresolved, such as (B 6→ A), the outcome is:

(C → B) ∧ (B 6→ A) ∧ (A→ E) =⇒ A→ E

Thus, the first two links are missing due to one missing reference. This problem will only
become more severe in longer chains of mention-pair links.

3.2.2.2. Entity-mention models

Given a singular entity, entity-mention models attempt to classify whether NPs are
coreferent with previously established clusters of entities and coreferences, as opposed
to a single antecedent. Defining cluster-level features to aid in the creation of datasets
proved extremely difficult in earlier models (Sukthanker et al., 2018), although later
made accessible by neural models. However, the entity-mention modeling approach had
proven to be subpar compared to mention-pair algorithms.

3.2.2.3. Ranking models

With modern machine learning approaches, previous outcomes from binary models (such
as the mention-pair) were modified to a regression problem, determining how good a
given antecedent was in comparison to other antecedents for any given reference. In fact,
Hobb’s algorithm (Hobbs, 1978) could be seen as a ranking model, as given phrases were
passed down a sieve of constraints in order to find the highest ranked antecedent. Ranking
models by Björkelund and Farkas (2012) and Durrett and Klein (2013) excelled in the
shared task CoNLL-2011 (Pradhan et al., 2011) and the successive CoNLL-2012 (Pradhan
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et al., 2012). Although ranking models seemed to perform well, the introduction of deep
learning models seemed to better capture the complex structure of CR, as evident by the
performance of Clark and Manning (2016a), surpassing all scores for the CoNLL-2012 task
(Pradhan et al., 2012) at the time. Further performance on the CoNLL-2012 task will be
documented throughout the next section on more advanced models, when exploring deep
learning and Neural Network (NN)s. At the time of closing the shared task3, the models
by Fernandes et al. (2012) and Björkelund and Farkas (2012) excelled. Table 3.5 shows
their respective CoNNL F1 scores.

Author CoNLL-2012 F1 Score
Fernandes et al. (2012) 63.37
Björkelund and Farkas (2012) 61.24

Table 3.5.: Two top performing models at the closing of the CoNLL-2012 shared task.

3.2.3. Deep Learning and Neural Networks

Due to the meticulous work required to create and update features by hand (e.g. those
found in rule-based models), being able to circumvent this task is more efficient (with
respect to manual labor) and possibly less prone to human errors. Deep learning models
for NLP and CR were severely enhanced by using word embeddings such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington et al., 2014), techniques that represent
words as vectors with several features, according to their semantic properties. Up until
2015, there was little work to be found on deep learning and neural architectures for the
CR task. The earliest NN based models developed by Wiseman et al. (2015), Wiseman
et al. (2016), Clark and Manning (2016b) and Clark and Manning (2016a) slightly beat
the previous best ranking models (see Table 3.5). These models handled specialized
subtasks such as anaphoricity detection and antecedent ranking (Wiseman et al., 2015),
as well as learning global information from entity clusters without predefining cluster
features (stated as a previous issue in Section 3.2.2.2) (Wiseman et al., 2016). Clark and
Manning (2016b) trained a model to distinguish clusters of related mentions, as well as
testing the benefits of hand-engineered features implemented in the final model, where
the observations are listed in Table 3.6. The features in this model diverge somewhat
from those originally used by Lappin and Leass (1994), and combining these, or doing
a feature-importance search on a broader set of features could have its merits. In
Clark and Manning (2016a), the first high-performing reinforcement learning model was
implemented, optimizing a mention-ranking model for common evaluation metrics. This
approach eliminates the need for tedious hyperparameter optimization.

Lee et al. (2017) introduced the first end-to-end CR model, outperforming all previous
models at the time, discovering that hand-labeled features are not necessarily required in
order to further improve neural models for CR. The high-level functionality of the model

3http://conll.cemantix.org/2012/
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Feature Impact on F1 score
Mention 1.27
Document genre 0.25
Distance 2.42
Speaker 1.26
String matching 2.07
Total 7.27

Table 3.6.: Hand-engineered feature contribution by Clark and Manning (2016b)

is to jointly learn spans correlating to entity mentions and how to cluster the mentions.
The same authors later published a higher-order CR system (Lee et al., 2018), utilizing
the antecedent distribution output from a span-ranking architecture as an attention
mechanism. The attention mechanism continuously refined the span representations. This
system was developed as previous models (Clark and Manning, 2016a; Lee et al., 2017)
were prone to predict globally inconsistent features, as only local contexts were modeled.
The model is built upon that of Lee et al. (2017) with ELMo representations (Peters
et al., 2018), hyperparameter tuning, course-to-fine and second-order inference – each
step slightly increasing the overall performance. Subramanian and Roth (2019) found
generalization issues in the Lee et al. (2018) model and aimed at improving the training of
neural CR systems. Generalization issues in the commonly used datasets have previously
been addressed by Moosavi and Strube (2018) – further examined in Moosavi (2020). By
retraining the model by Lee et al. (2018) with adversarial training, Subramanian and
Roth (2019) further improved the scores on the CoNLL-2012 task and GAP dataset. Fei
et al. (2019) developed a goal-directed end-to-end reinforcement learning model, once
again built upon the model by Lee et al. (2018) and slightly improved its performance.

3.2.4. Pre-training

Another cluster-centric approach by Kantor and Globerson (2019) built upon the cluster-
level features enabled by NNs, as presented in Wiseman et al. (2016). The model makes
use of BERT embeddings (Devlin et al., 2019) to achieve an F1 score improvement
of 3.6 percent points on the CoNLL-2012 task. The approach focuses on entity-level
information, as they saw issues with previous work mostly depending on pairwise scoring
of entity mentions (Kantor and Globerson, 2019) – missing global entity information. The
underlying hypothesis of the implementation is that “each entity should be represented
via the sum of its corresponding mention representations” (Kantor and Globerson, 2019).

Joshi et al. (2019b) also experimented with the usage of BERT for the CR task. By
modifying the model proposed by Lee et al. (2018) and replacing the ELMo representations
with BERT transformers, they achieved slight improvements over the model by Kantor
and Globerson (2019). Another, later, model by the same authors implements span
prediction with BERT (Joshi et al., 2019a). SpanBERT, like BERT, is not a specific
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implementation for the CR task, but rather a language model that may be fine-tuned
on downstream tasks (among those, CR). The main difference between the BERT and
SpanBERT models is that BERT randomly masks tokens of text, whereas SpanBERT
masks spans of text. The length of the span is randomly selected from a geometric
distribution (ranging from 1 to 10), and experiments show that this approach forces the
model to better learn textual properties. Finally, Wu et al. (2019) state some concerns
with previous implementations of CR models (Lee et al., 2017, 2018; Zhang et al., 2018;
Kantor and Globerson, 2019), in which all text spans in a document are considered
potential mentions, and the goal is to attribute an antecedent for the mentions. When
these models attempt to connect a mention with an antecedent in a span, they may
wrongfully miss certain mentions (as no models are perfect). This leaves out possible
mentions in a text span, which will never be processed further. By reformulating the CR
task as a Machine Reading Comprehension (MRC) query-based task, Wu et al. (2019)
reduce the effect of undetected mentions in the mention-detection phase of a CR system.
Additionally, when handling CR as a query-based task, new datasets in the domain of
question-answering can be used, possibly increasing generalization of the models. Their
model utilizes SpanBERT (Joshi et al., 2019a), and has the current highest evaluated
performance on the CoNNL-2012 task, with an F1 score of 83.1.

The results from all the models mentioned throughout this chapter on the CoNLL-2012
task are presented in Section 3.5.

3.3. Incorporating World Knowledge

The need for world knowledge in CR has been known since the nineties (Sukthanker et al.,
2018), but little research has been done on the field. Rahman and Ng (2011) implemented
world knowledge in a CR system, using external sources for external data, e.g. YAGO and
FrameNet. Evaluating on the OntoNotes dataset, it resulted in improvements of up to
4.1 percent points over a baseline model. Uryupina et al. (2011) made use of both YAGO
and Wikipedia data with around 2 percent points improvements over a baseline model.
These results definitely show that making use of knowledge bases is of interest, although
the results are minor. Zhang et al. (2019) successfully incorporated world knowledge in a
pronoun-specific CR model, and is the first work to do so for deep learning models. This
model is based around an attention mechanism to correctly deduce which knowledge to
use in a given context, as first discussed (but not implemented) by Lee et al. (2017). As
the proposed solution is specialized towards pronouns, it is thus compared to a baseline
with other similar benchmarks (third personal and possessive pronouns). Their model
resulted in substantial improvements over Lee et al. (2018), Clark and Manning (2016a)
and Clark and Manning (2015) on the same benchmarks.
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Author English CoNLL-2012 F1 Score
Wiseman et al. (2015) 63.39
Wiseman et al. (2016) 64.21
Clark and Manning (2016b) 65.29
Clark and Manning (2016a) 65.73
Lee et al. (2017) 68.80
Lee et al. (2018) 73.00
Fei et al. (2019) 73.80
Subramanian and Roth (2019) 74.70
Kantor and Globerson (2019) 76.61
Joshi et al. (2019b) 76.90
Joshi et al. (2019a) 79.60
Wu et al. (2019) 83.10

Table 3.7.: Neural Network models for the CoNLL-2012 shared task.

3.4. Applying Coreference Resolution to Sentiment
Analysis

SA is one of the most popular studies within Natural Language Processing (Liu, 2017),
and it is thus surprising to observe the absence of research done on the implementation of
CR for SA. A brief study by Nicolov et al. (2008) presented great improvements with CR
as an additional layer in the SA pipeline. The study, however, only took local findings
into account, due to the lack of commonly distributed baselines at the time. The results
can thus not be reproduced. Jakob and Gurevych (2010) speculated that opinion target
extraction may benefit by implementing anaphora resolution with an extended version of
the CogNIAC algorithm (Baldwin, 1997). The evaluated F1-measures did not see any
notable gains, however, as false positives hindered the recall of the actual opinionated
documents. Sentiment scopes, a key issue within SA (Liu, 2012), were researched in detail
by Li and Lu (2017, 2019) in order to determine a sentiment scope for entities (much
alike the process to discover mention candidates for CR). However, CR as a heuristic
was completely disregarded in these studies, which resulted in sentiment scopes being
generated on a lesser percent of the actual opinionated text. With the introduction of
generalized CR models, the issues faced by Jakob and Gurevych (2010) may be resolved.

3.5. Recap and Remarks

Table 3.7 shows the averaged F1 score on the English dataset of the CoNLL-2012 task
for publications mentioned throughout the chapter, in chronological order. From the
material covered in Sections 3.2 and 3.3, there are a few notes to make on the work done
with coreference resolution to date.
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3.5.1. Large Neural Architectures and Computing Power

Most recent state-of-the-art models have included implementations of NNs and pre-
trained embeddings such as BERT or ELMo (see Background Section 2.3.3 for details
on ELMo/BERT). The current best-performing model by Wu et al. (2019) involves a
ground-breaking observation regarding the transformation of the CR task to a query-
based MRC task. However, the model’s complexity is evident (due to its extra layers and
datasets involved), taking longer to train compared to other related models – which are
already extremely hardware-intensive. Furthermore, the results presented by Wu et al.
(2019) are (in its current state4) impossible to validate, as core pieces of the evaluation
code is strictly missing from the open sourced code-base. Regardless of its validity, the
MRC transformation needs to see more research in its implementation before continued
as a de facto standard in the field of CR. The SpanBERT model (Joshi et al., 2019a) has
so far shown the best results with a typical CR approach, detecting mentions and latent
spans in which the references to an entity resides. Both SpanBERT and the original
implementation by Lee et al. (2018) are likely to be involved in the path to develop newer
models due to their great performance, although they require access to high-performing
hardware, mostly limited to research institutions.

3.5.2. Identifying a Good Coreference Model

Features for resolving coreferences (some of which are found in Tables 3.3 and 3.6)
continue to fade away, as newer research rely exclusively on neural architectures to detect
the intrinsic features of text. An example of this is the SpanBERT model (Joshi et al.,
2019a), which is completely isolated from linguistic features or entity information when
masking and predicting spans. The model performs better when randomly sampling
spans, as discussed in an episode of the Data Skeptic podcast5 with Omer Levy (one of
six authors). As much as it is interesting to understand specifically why the performance
improves when altering it, for the purpose of this thesis, a good model has been defined
as one that performs well across several domains of evaluations. Whether this is to
be the most complex model, or a rule-based one will be uncovered throughout the
experimentation chapters.

4https://github.com/ShannonAI/CorefQA/issues/15
5https://podtail.com/en/podcast/data-skeptic/spanbert/ timestamp: 16m20s-17m
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4. Data
This chapter covers the data to be used for the experiments throughout the rest of the
thesis. Existing datasets for Coreference Resolution (CR) and Entity-level Sentiment
Analysis (ESA) are covered Section 4.1 and 4.2. An analysis of the data is found in
Section 4.3 and the chosen datasets are listed in Section 4.4. Finally, addressing the issues
on existing data for ESA, a dataset has been created using the Strise Knowledge Graph
and annotated by Distant Supervision (DS). This process is thoroughly documented in
Section 4.5.

4.1. Datasets for Coreference Resolution

As the desired data genre for consideration in this thesis primarily regards news, available
datasets are thus divided into in-domain (including news-like text) and out-of-domain
(all other sources). Findings in Zeldes (2017) show that different genres or topics may
correlate with different patterns of coreference types. By separating genres in a model,
testing on domain-specific data, this may be confirmed.

4.1.1. In-domain

In-domain datasets are defined as those that have some correlation with news articles
and other online documents, filings, and so on. Only two discovered datasets contain a
subset of news-related data: OntoNotes and GUM.

OntoNotes

The CoNLL-2012 Shared Task: Modeling Multilingual Unrestricted Coreference in Onto-
Notes (Pradhan et al., 2012) provided a large corpus, labeled in three languages: English,
Chinese and Arabic. The dataset contains masked mentions that must be predicted based
on their related entity. The dataset is based around telephone conversations, newswire,
newsgroups, broadcast news, broadcast conversation, weblogs. By extracting the data
related to newswire, newsgroups and broadcast news, this is considered in-domain. This
dataset kick-started the field of modern CR, and works as the basis for nearly all models
since its conception – thus it is necessary to include for evaluation. The format used, as
adopted from Pradhan et al. (2011), is coined CoNLL. Ratio of in-domain to total items:
922/3493 ≈ 26%.
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GUM

The Georgetown University Multilayer Corpus (GUM) contains English coreference
annotated texts from several sources. Topics covered are interviews, news, travel guides,
how-to guides, academic writing, biographies, fiction and online forum discussions.
Relevant topics marked in boldface. This is by far the most recent dataset, which
launched its 6.0 version in March 20201. The corpus is, unfortunately, quite small. Its
current version contains 130 documents in total, 21 of those news-related. In spite of this,
its well-documented approach and annotation quality makes it a valuable addition for
evaluation datasets. Its format is similar to that of CoNLL, but requires extensive parsing
to be converted for comparisons. Ratio of in-domain to total items: 21/130 ≈ 16%.

4.1.2. Out-of-domain

These are datasets that do not necessarily have any relation to news, media and other
online official documents. However, using out-of-domain data to evaluate may produce
valuable information on the model’s robustness and performance.

ARRAU

The Anaphora Resolution and Underspecification corpus (Poesio and Artstein, 2008),
further explained in Poesio et al. (2018), does not necessarily provide complete coreference
labeling, but as seen in Figure 2.1, anaphora resolution is part of coreference – thus a
possible addition to a system focusing on the different aspects of coreference.

Character Identification

Chen and Choi (2016) published a character identification dataset based on the TV show
Friends, with annotated transcriptions relating to characters in the show. While speech
is outside the scope of this thesis, it could be used for other applications of coreference –
if not to only evaluate their generalizability.

GAP Coreference Dataset

GAP, Gender Ambiguous Pronouns, is a gender-balanced dataset by Webster et al. (2018)
with pairs of ambiguous pronouns and antecedent names. This dataset was involved in a
shared task2 and several great models were developed for the resolution of pronouns and
antecedents. The dataset and task of the GAP dataset, however, rely on already masked
references, not the detection of coreference scopes. Thus, it is not included for the main
experiments of this thesis.

1https://github.com/amir-zeldes/gum/releases
2https://www.kaggle.com/c/gendered-pronoun-resolution
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4.2. Datasets for Entity-level Sentiment

LitBank

LitBank is a relatively small, but detailed corpus of 100 literary works in the fiction
genre, provided by Bamman et al. (2020). The coreferences are related to the named
entity categories of people, facilities, locations, geo-political entities, organizations and
vehicles. All named entities are of relevance for the ultimate goal of applying coreference
to the real-world news domain – which makes it valuable to achieve notable evaluation
scores for this dataset. The format follows the CoNLL standard with slight modifications
– requiring manual intervention.

ParCor

ParCor (A Parallel Pronoun-Coreference Corpus) is a parallel English-German pronoun-
coreference corpus based on transcriptions from TED Talks and EU Bookshop documents
(Guillou et al., 2014). While the labeled parallel texts are irrelevant for this task, it may
see further use in multilingual approaches for coreference.

PreCo

PreCo (Preschool Vocabulary for Coreference Resolution) Chen et al. (2018), is a rather
large dataset, comprising 38,000 documents and 12.4 million words – 10 times larger
than OntoNotes. The annotated texts use simple vocabulary, matching that of English-
speaking preschoolers. The authors present experiments allowing for more efficient error
analysis than that of OntoNotes. Its format is slightly different than the standardized
CoNLL-format, which requires it to be manually translated in order to perform evaluations.
However, the amount of data makes this desirable to use for experiments.

WikiCoref

WikiCoref (Ghaddar and Langlais, 2016) is a corpus with annotated coreference on
English Wikipedia articles. With a tiny amount of annotated documents (n = 30), it
may be used to further build upon out-of-domain evaluation data. Its format is unlike
any previously covered dataset (XML), and its relatively small size makes it tough to
justify converting it to a supported format. Additionally, this dataset has been evaluated
in great detail by Moosavi (2020) on several models mentioned throughout related work
(Section 3.2).

4.2. Datasets for Entity-level Sentiment

Throughout the literature review in the specialization project (Jørgensen, 2019), several
datasets were discovered. Although Sentiment Analysis (SA) is a popular research topic
in NLP, datasets for ESA are scarce (Sukthanker et al., 2018). In fact, there are currently
no available datasets for the desired task of this thesis, wherein targets of the expressions
are isolated entities, residing in longer documents. Existing datasets tend to focus on
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the aspects of entities, being implicit properties of an entity (such as “screen” for the
entity “phone”), as well as annotating targets mostly on a sentence-level basis, not on
paragraphs or longer texts. Performing analysis of the datasets (Section 4.3.3), it can be
observed that this data is not well suited for coreference augmentation, and motivates
the need for a new dataset for this task.

4.2.1. SemEval

SemEval, the International Workshop on Semantic Evaluation, has published open
competitions – called shared tasks – since 1998, in a diverse set of Natural Language
Processing (NLP) topics. A total of three shared tasks from 2014 and 2017 were considered,
where certain subtasks related to the classification of targeted sentiment can be found.

SemEval 2014 – Task 4

The subtask of Aspect Term Polarity by Pontiki et al. (2014) aims to predict the sentiment
polarity of a specific aspect in a set of reviews for Laptops and Restaurants (550 total
documents), obtained from Yelp and Amazon. The Laptop and Restaurant reviews are
separate datasets.

SemEval 2017 – Task 4

Rosenthal et al. (2017) released three datasets of varying topics of Twitter data, intended
to be used for the subtask Sentiment Analysis in Twitter. One of the three datasets are
labeled with negative/neutral/positive sentiment polarities, the other two with binary
positive/negative. Thus, only the former is selected for possible evaluation.

SemEval 2017 – Task 5

For the subtask Fine-Grained Sentiment Analysis on Financial Microblogs and News,
Cortis et al. (2017) provided a dataset of annotated news headlines. In the dataset, stock
symbols and company names are labeled with sentiment scores in the range [−1, 1] –
which must be translated into other datasets’ ternary labeling of −1, 0, 1, or kept as-is for
fine-grained annotation tasks. Data sources include Yahoo Finance and other websites.

4.2.2. ACL-14

Dong et al. (2014) released a dataset for target-dependent classification of Twitter data.
The annotation scheme here has been adopted for all evaluations of sentiment further
in this thesis, minimizing extraneous notation. The scheme is line-based, in batches of
three: text, target, sentiment, where the sentiment is labeled negative, neutral and
positive as -1, 0, 1, respectively. The scheme is illustrated on the next page. Note that
$T$ indicates a masked target to predict.
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did SomeCompany steal the code for a $T$ application?
ArbitraryOperatingSystem
0
stoked on the new $T$ game!
ArbitraryGameDeveloper
1
...

4.2.3. SentiHood

Saeidi et al. (2016) released a dataset containing conversations on urban neighborhoods
from online forums. The annotation style closely matches the desired input data from
real-world applications, illustrated in Table 4.1. The labels are restricted to binary
sentiment, and the data is consequently not of interest for this thesis. However, this type
of data may be relevant for more fine-grained aspect applications.

Sentence Labels
Hampstead area, more expensive but a
better quality of living than in Tufnell Park

(Hampstead, price, Negative)
(Hampstead, live, Positive)

Table 4.1.: SentiHood annotation scheme

4.3. Dataset Inspection and Analysis

By inspecting the data to be used for further modeling, a better understanding of the
models’ faults and feats may be obtained. For the CR datasets, four were deemed
necessary to include (as determined throughout Section 4.1) before proceeding with
the analysis. The four datasets had to be manually processed and translated into a
unified format beforehand. For Entity-Level Sentiment, all listed datasets were included
to perform a more in-depth analysis, as sentiment analysis datasets require minimal
overhead to include (in contrast to the CR data). This analysis was also motivated by the
suggestions of Sukthanker et al. (2018) for more exhaustive evaluations of SA datasets –
before continuing with application of CR.

4.3.1. Unification of Coreference Data

For a better overview of the most promising datasets (OntoNotes, GUM, LitBank and
PreCo), an analysis of their content is presented. Firstmost, the four datasets all follow
a different annotation scheme, illustrated in Table 4.3, which has to be converted into a
unified format. The reason for previous lack of cross-domain evaluation might be due
to this specific task of unification being a necessary first step – which is also supported
by the claims on non-CoNLL corpora by Moosavi (2020). The recency and in-depth
examination of coreference found in Moosavi (2020) indicates that there are, in fact, no
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Source Format File size (MB) Removal actions

Pradhan et al. (2012)
.parse, .prop,
.sense, .coref,
.names, .lemma

803/55/100
958 total -

Pradhan et al. (2012) .conll 188/24/25
237 total Merging of multiple files into .conll

Lee et al. (2018) .jsonline 45.4/5.9/5.6
56.9 total POS-tags, lemmas, word sense

This work .coreflite 12.3/1.6/1.5
15.4 total Speaker info, constituents, entity metadata

Table 4.2.: OntoNotes 5.0 dataset processing steps. File size is separated into
train/dev/test and total size

Dataset File format Coreference format
Minimized OntoNotes jsonline [Mstoken, Metoken]
GUM conll chain of {entitytype+ iterated index}
LitBank conll chain of {iterated index}
PreCo jsonline [sentence index,Mssubtoken, Mesubtoken]

Table 4.3.: The four used datasets for CR and their file format as well as coreference
annotation format. Me/Me denotes a mention with its start and end indices.
subtoken denotes a sentence-level (local) token, where token is a global token.

current cross-corpora evaluations of extent in any other literature. While the datasets
have similarities (e.g. the CoNLL format), minor intricacies cause incompatibility when
parsing. To combat this, a new, simple, unified format is defined, based around the
minimization process of the OntoNotes dataset (Pradhan et al., 2012) by Lee et al.
(2018)3. The format is coined “CorefLite” (a lightweight coreference format). Table
4.2 illustrates the transition of the OntoNotes dataset and its file size from its original
format to CorefLite. The same process for the remaining datasets can be found in Table
4.4. Note that the reduced file size is not the goal for the format, but rather to reduce
all four datasets into the same format, with the exact same input fields (tokens and
clusters). The extent of the reduction is rather an indication of how much extraneous
data is contained within these datasets. The CorefLite structure is shown below, where
the specific coreference clusters format is described in Background, p. 25.

{
doc_key: # document identifier,
tokens: # list of all tokens,
clusters: # coreference clusters

}, { ... }

3https://github.com/kentonl/e2e-coref/blob/master/minimize.py
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4.3. Dataset Inspection and Analysis

Dataset Initial size (MB) Coreflite size (MB)
GUM 1.7 1.3
LitBank 12.6 2.0
PreCo 154.2 146.5

Table 4.4.: The remaining datasets and their parsed file size

Dataset N Lavg Lmin Lmax Ctotal Cavg/doc

OntoNotes (dev) 343 475.52 33 2314 4545 13.25
GUM 130 872.11 165 1866 4401 33.85
LitBank 100 2105.32 1999 3419 4975 49.75
PreCo (dev) 500 332.38 50 966 31793 63.59

Table 4.5.: Overview of coreference dataset features, sampled on subsets with similar
sizes. N denotes the total number of documents, L denotes the document
length, C denotes coreference links.

Dataset N Lavg Lmin Lmax Ctotal Cavg/doc

SemEval 2014 – Task 4 7694 93.68 8 470 2207 0.29
SemEval 2017 – Task 4 2872 104.13 26 144 1060 0.37
SemEval 2017 – Task 5 1156 56.54 25 112 48 0.04
ACL-14 6940 89.17 10 161 2214 0.32
SentiHood 4333 77.48 7 564 658 0.15

Table 4.6.: Entity-level sentiment dataset features. N denotes the total number of
documents, L denotes the document length, C denotes coreference links
generated with NeuralCoref.

4.3.2. Coreference Dataset Analysis

The analysis process, dependent on the creation of the unified format, involve fairly simple
categorization of the data involved in each dataset, to use as a baseline for future datasets.
In Table 4.5 an overview of the four chosen datasets can be found. For OntoNotes
and PreCo, smaller subsets of the data was used, with similar file sizes of the smaller
datasets GUM and LitBank. Observe the number of Ctotal and Cavg/doc, as these will be
calculated for the same analysis of entity-level sentiment data in next section. Further,
the PreCo dataset has a much higher occurrence of coreference links with a lower average
document length. Handling this type of data might be troublesome for models trained
strictly on the data in OntoNotes. A visualization of the relationship between coreference
links and document length can be found in Appendix C. Further analysis will occur
throughout the Preliminary Experiments chapter on CR (Chapter 7).
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4.3.3. Restrictions of Entity-Level Sentiment Data

The document length is crucial in order to resolve coreferences. Thus, the document
length of each dataset is compared, together with the number of detected coreference links.
Detailed plots from this analysis can be found in Appendix B. Presented in Table 4.6 is an
overview of the analysis. For the datasets SemEval 2014 – Task 4, SemEval2017 – Task
4 and ACL-14 there are approximately one coreference cluster in every three documents,
using the NeuralCoref CR model. Further, the sentiment polarity distribution was
looked at, illustrated in Figure 4.1. None of the available datasets were balanced (i.e.
having an approximately even distribution between its classes), which might result in
issues for evaluating the news domain. There are currently no available datasets that
show distributions on sentiment for full news texts, so there is currently no way of
verifying whether this data is representative across domains. Continuing based on this
analysis, the datasets ACL-14 and SemEval 2014 – Task 4 provide the most distributed
sentiment, as well as a fair amount of coreference links.

4.4. Selected Datasets
The final datasets used for both topics are listed in Tables 4.7 and 4.8.

Dataset Relevant topics Size (#documents)
OntoNotes Partly 3,493
GUM Partly 130
LitBank No 100
PreCo Unknown 38,000

Table 4.7.: Selected datasets for Coreference Resolution

Dataset Data type Size (#documents)
ACL-14 Twitter data 6,940
SemEval 2014 – Task 4 Online reviews 7,694

Table 4.8.: Selected datasets for Entity-Level Sentiment Analysis

50



4.4. Selected Datasets

Figure 4.1.: Sentiment polarity distribution for five datasets, with the labels −1 (negative),
0 (neutral) and 1 (positive).

51



4. Data

4.5. Dataset Creation with Distant Supervision and World
Knowledge

The discussed issues with available datasets for ESA are too great to ignore. To address
these, a dataset has been created using the knowledge graph at Strise, to jointly access
news texts, official documents and more, while adding to this data with entity information
and world knowledge. The process is largely based around a 4-step pipeline, described in
detail in the coming sections.

1. Gathering data

2. Parsing data

3. Distant supervision labeling

4. Data analysis and verification

4.5.1. Gathering Data

At the very start of the pipeline comes the decision on what metadata to use. This
includes topics from WikiData (which are interconnected to the Strise Knowledge Graph)
as well as what timeframe to gather data from. An event is the selected term to refer to
any news article or document obtained from the Strise Knowledge Graph. The selected
topics are rather arbitrary, and focused on grouping distinguishable topics that may be
evaluated separately. The time frame (2018–2020) was selected to gather recent data.

1. Iterate the four defined topics: (tech [technology/science], business [finance/eco-
nomics], politics and sports)

2. Iterate years (2018, 2019, 2020)

3. Iterate quarters (Q1, Q2, Q3, Q4)

4. Gather the same amount of events (400) for each quarter

This process resulted in 1600 events per year, 3600 in total (one quarter for 2020). Two
final datasets were created. One in which the data from 2020 was set aside as evaluation
data (400 events), and the other considered all data, to be split programmatically
(documented in the Experimentation chapter).

4.5.2. Parsing Data

The parsing step accesses the gathered data, structuring it in a machine readable format
(CSV). In the process, entities are filtered on their inherent properties, based on its
features found in the knowledge graph. The knowledge graph contains intricate details,
to low levels such as the mass and CPU of a smartphone – hence the need for filtering.
The filtering process starts by addressing the relations of entities, as seen in Table 4.9.
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These can be understood by asking the question “Can the relation for an entity X be
used to refer to X in the scope of an event?”. Although vague, the goal is to generate
possible candidates for referring to a given entity – treating them as one and thus more
data for the entity.

Disambiguation and Pseudo-References The set of relations is the result of
massive trial and error. Omitting filtering completely yields entities such as “4, stop,
point, week, month”, which are deemed irrelevant. This process is highly empirical and
revolves around inspecting the data for an acceptable outcome, making sure to include
wanted entities and simultaneously discern between ambiguities (e.g. “apple” [fruit] and
“Apple” [company]). Although the process requires manual, meticulous work, it allows for
extremely customized data retrieval, which may apply well for other tasks. For instance,
one may only obtain information on the CEOs of companies, and thus making way for
analyses like “How are CEOs represented in the news?” and so forth – the possibilities
here are endless! Moving on, to illustrate the reconciliation process, a text is given as an
example (from sciencebusiness4), where the entity NTNU is in focus. The NTNU entity
is linked to WikiData ID Q314536, which enables the system to provide references from
the knowledge graph (as seen in Table 4.10). Reconciling the entity with the obtained
references, all references are updated as the entity itself (generating pseudo-references),
finally marked as $T$ (target).

NTNU researchers recently figured out a whole new method for testing people
for the coronavirus. The university is now producing tests on a continuous
basis, under the auspices of the Norwegian Directorate of Health.

Parsed:

$T$ researchers recently figured out a whole new method for testing people
for the coronavirus. $T$ is now producing tests on a continuous basis, under
the auspices of the Norwegian Directorate of Health.

Error Handling Incorrect masking may occur when handling certain prefixes, suffixes
and plural forms (e.g. “$T$-esque” and “$T$’s”). This was handled by applying post-
processing techniques to the tokens, merging them as one: Google-esque −→ $T$-esque
−→ $T$. Another issue was inter-entity masking (e.g. regarding Trondheim as NTNU ).
A workaround was established by doing an initial pass through all data and obtaining a
list of unique entities – a lookup-dictionary. This way, the relation Trondheim will not
be attributed to NTNU if Trondheim exists in the lookup-dictionary.

4https://sciencebusiness.net/network-updates/ntnu-establishes-factory-
produce-coronavirus-tests
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Defined Category Accepted Relations
person_relations [occupation, profession, position_held, spouse]
business_relations [topic_itpc, owner_of, leader, chief_executive_officer,

headquarters_location, parent_organization, industry, in-
vestor]

location_relations [capital, country, continent, executive_body, head_of_-
government, head_of_state, location, located_in_the_-
administrative_territorial_entity]

product_relations [inception, manufacturer, developer, discoverer_or_in-
ventor, designed_by, founded_by]

arts_relations [composer, director, distributor, genre, producer, produc-
tion_company]

other_relations [creator, owned_by, used_by, parent_concept, sport]

Table 4.9.: Entity relations for filtering

Field Data
ID Q314536
Name NTNU (Norges teknisk-naturvitenskapelige universitet)
Description University in Trondheim, Norway

Aliases

- Norges teknisk-naturvitenskapelige universitet
- NTNU (Norges teknisk-naturvitenskapelige universitet)
- Norges Teknisk-Naturvitenskapelige Universitet
- NTNU
- Norwegian University of Science and Technology

Member of - Top International Managers in Engineering
- European University Association

Country Norway
County Trøndelag
Rector Gunnar Bovim
Instance of University
Located in Trondheim

Table 4.10.: Entity information on NTNU from the Strise Knowledge Graph. Note that
Gunnar Bovim is currently not the Rector. The information is incorrect –
but only for a given time frame. This sheds light on the importance of the
time aspect for these tasks. If the related article is dated before August 2019,
it is certainly the correct information.

54



4.5. Dataset Creation with Distant Supervision and World Knowledge

Storing Entity Segments Using the masked entity data, segments were split and
stored (along with the necessary entity information) in a CSV format with the following
structure: {text_id, entity_id, name, description, segment, references}. The data at
this step includes segments with masked entities, in addition to permutations occurring
where another reference to the entity is found within the same segment – producing a
new masked object.

4.5.3. Distant Supervision Labeling

All segments with their masked entities were passed through a 2-step sentiment model.
The models consist of Vader (Hutto and Gilbert, 2014), a lexicon and rule-based classifier,
and DistilBERT (Sanh et al., 2019), a BERT-based model pre-trained on binary sentiment
data. The labeling process is defined as follows, simulating a ternary classifier:

1. Label neutral texts by verifying the outcome of Vader. Return neutral and its
respective score (ranging [0− 1]).

2. If not neutral, classify with DistilBERT. Return positive/negative and its respective
score.

Vader – Empirical Definition of Neutrality

Vader provides two scores for verifying neutral texts: polarity score and compound score.
The compound score is crucial for determining neutrality, as it sums the valence scores,
that is the affective quality of a word – good/bad. A document may commonly be
misclassified as neutral if the negative and positive words cancel out, but its valence
score would thus be high. As suggested by Hutto and Gilbert (2014), the threshold was
evaluated and set to 0.12 (diverging from the default 0.05) as, during manual inspection,
news-related data frequently include high-valence words, even if the conveyed sentiment
is neutral.

DistilBERT SST-2 – Efficient Binary Classification

DistilBERT (Sanh et al., 2019) is a lightweight BERT-based model, pre-trained on SST-2
– the Stanford Sentiment Treebank (Socher et al., 2013) – which is how distant supervision
comes into play. The model retains 97% of the original BERT performance, while its
size is reduced by 40%. Its accuracy on the SST-2 task is 92.7%, with the current
state-of-the-art T5-11B model with 97.1% (Raffel et al., 2019). The latter model is much,
much larger (116× the size), and would severely impact the efficiency of the labeling
process. Another light model is ALBERT (Lan et al., 2019). However, the ALBERT
model of similar size to DistilBERT (60M vs 66M parameters) reports an accuracy
of 92.4%. The largest ALBERT model (xxlarge, 235M parameters) shows a score of
95.2%, but again, is much less efficient than DistilBERT. The fine-tuning configuration of
DistilBERT can be seen in Appendix H. Additionally, the DistilBERT model is available
through a high-level API through the Transformers library (Wolf et al., 2019), allowing
for convenient integration into systems.
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Figure 4.2.: Sentiment polarity distribution by topic in the generated dataset, with the
labels −1 (negative), 0 (neutral) and 1 (positive).

4.5.4. Data Analysis and Verification

As briefly noted earlier (Section 4.3.3), it is desirable to obtain a balanced dataset with
respect to the outcome of the labeling process. From the automatic labeling, after long-
going manual tuning, the dataset upheld a fair balance between positive and negative –
with fewer neutral classifications. Empirically evaluating the extremes of each label was
necessary to detect unwanted entities and wrongly classified documents. After evaluation,
if the results were unsatisfactory, the process had to start over with the parsing of data.
A summary of the final sentiment distribution can be found in Figure 4.2 and 4.3.
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Figure 4.3.: Sentiment polarity distribution for the entire generated dataset (combined
topics).
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5. Architecture
This chapter presents architectures for several systems used in order to run experiments
(chapters 6 and 7). Firstly, to provide an overview of the chapter, the connections
between the systems developed throughout the thesis are illustrated. Following this,
the architecture regarding data handling and format unification of existing datasets
is described. Continuing, architectures implementing existing Entity-level Sentiment
Analysis (ESA) and Coreference Resolution (CR) models for evaluation are documented,
using the output of the aforementioned unification process. Lastly, the chapter is
concluded with the architecture for the generated dataset.

5.1. An Overview
To better visualize how the forthcoming systems and architectures are connected, an
architectural description can be found in Figure 5.1. To clarify further illustrations, the
topics CR, ESA and systems regarding Strise, will follow the color schemes in the figure –
blue, red and yellow respectively. White indicates processing not conforming to a specific
topic. Anything relating to the final model will be marked green.

5.2. CL-Eval – Evaluation Framework for Coreference
Resolution

This section is dedicated to the developed evaluation framework, used to evaluate selected
in- and out-of-domain datasets for CR. The name CL-Eval is shorthand for CorefLite-
Evaluation, based on the defined unified format for CR datasets. Its architecture is shown
in Figure 5.2.

5.2.1. CorefLite – a Unified Format for Coreference Resolution

As presented in the Data Section (4.3.1), the CorefLite (or .coreflite) format was defined
to unify selected datasets as one format, enabling ease of evaluation and analysis. The
architecture is mainly based around the parsing of datasets to extract data in a desired
format, described in 4.3.1, and shown below for simplicity:

{ doc_key: # document identifier,
tokens: # list of all tokenized words,
clusters: # coreference clusters

}, { ... }
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Architectual Description

Coreference 
Resolution

Entity-Level 
Sentiment Analysis

Strise Knowledge 
Graph

CL-Eval 
Evaluation 
Framework

M odel 
Setup

Dataset 
Parsing

Coreference 
M odel 

Evaluation

Error 
AnalysisVisualization

M odel 
Setup

Elsa-Val 
Evaluation 
Framework

Dataset 
Parsing

Sentiment 
M odel 

Evaluation

Distant 
Supervision 

Dataset

Select best 
performing 

model

Processing

Figure 5.1.: Architectural description
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Figure 5.2.: CL-Eval Framework Architecture
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The four datasets required different parsing in order to unify the formats. The process
for each dataset is briefly described below:

OntoNotes

As discussed throughout Chapter 4, the OntoNotes has already seen major parsing
through the minimization process of Lee et al. (2018). Conversion of the dataset was
done in three steps:

1. Flatten sentences to obtain the segmented tokens

2. Extract coreference clusters

3. Correct unwanted tokens that are badly handled by most models

PreCo

PreCo defines its coreference clusters in triples (sentence index, mention start, mention
end). This had to be converted to a tuple of (mention start, mention end), thus the
following steps were required:

1. Update respective mentions with the number of previous tokens seen throughout
the text, at a specific sentence index

2. Correct mention indices after removing newlines and other invalid tokens

GUM

Both the GUM and LitBank datasets had separate files for each document, in CoNLL
format. The CoNLL format was handled as lists, where the coreference index had to be
manually parsed. To illustrate the annotation scheme, observe the following snippet1:

12 University (organization-7
13 of _
14 Portsmouth (place-8
15 ,_
16 United (place-9
17 Kingdom organization-7)place-8)place-9)
18 Andrew (person-10
19 Beresford person-10)
..
155 UK (place-9)

1Full document available at https://github.com/amir-zeldes/gum/blob/master/coref/
conll/GUM_academic_art.conll
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5.2. CL-Eval – Evaluation Framework for Coreference Resolution

The grouped notation on line 17 indicates that the spans “University of Portsmouth,
United Kingdom”, “Portsmouth, United Kingdom” and “United Kingdom” are mentions.
The coreferences (as seen on the last line) are annotated by referring to the antecedent
mention label. In order to convert this to the coreflite format, the following steps were
required:

1. Reformatting of the coreference texts

2. Extraction of singular token mentions, not split over several lines (e.g. (person-89 ))

3. Handle and merge open-ended references, as can be observed on line 12 – 18 in the
example above

4. Convert from a dictionary of {entity: mention indices} to a list of [mention start,
mention end]

Parsing the example, the resulting output would be [[12, 17]], [[14, 17]], [[16, 17], [155,
155]], [[18, 19]]. Note that both mentions of “United Kingdom” occur in the same
inter-entity cluster.

LitBank

Largely similar to that of GUM, with slight annotation and format changes, as can be
seen below2:

24_o_pioneers_brat 0 28 the _ _ _ _ _ _ _ _ (13
24_o_pioneers_brat 0 29 north _ _ _ _ _ _ _ _
24_o_pioneers_brat 0 30 end _ _ _ _ _ _ _ _
24_o_pioneers_brat 0 31 of _ _ _ _ _ _ _ _
24_o_pioneers_brat 0 32 the _ _ _ _ _ _ _ _ (1
24_o_pioneers_brat 0 33 town _ _ _ _ _ _ _ _ 1)|13)
24_o_pioneers_brat 0 34 to _ _ _ _ _ _ _ _
24_o_pioneers_brat 0 35 the _ _ _ _ _ _ _ _ (14
24_o_pioneers_brat 0 36 lumber _ _ _ _ _ _ _ _
24_o_pioneers_brat 0 37 yard _ _ _ _ _ _ _ _ 14)

The parsing approach was nearly identical to GUM, aside from data pre-processing.

5.2.2. Batch Prediction and Evaluation

As all datasets are now in an identical format, they can be processed through the different
models set up. An evaluator has been developed for this purpose, processing data and
computing the predicted clusters, evaluating them with the scoring metrics defined in
Background (p. 25), MUC, B-CUBED, CEAF and LEA.

2Full document available at https://github.com/dbamman/litbank/blob/master/coref/
conll/11_alices_adventures_in_wonderland_brat.conll
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5. Architecture

5.2.3. Visualization Module

The visualization module is based on a tiny open-sourced project3, including a visualization
module with wrappers for various coreference outputs. The module was modified to
support all models and outputs necessary for experiments to be conducted. It is designed
to run within any Jupyter notebook, and its functions are built into the CL-Eval
framework for quick overview of distinguishable entities and their coreferences. The
architecture is built around the tokens and clusters resulting from a CR model – used to
generate unique spans of highlighted text throughout the document.

5.3. Coreference Models

The models set up in the next sections are used to further evaluate existing datasets
with the CorefLite format. There are in total four models used. The selection of each
model and so forth is described in detail in the Preliminary Experiments (Chapter 6).
For completeness, the models are shown in their context to the larger architecture here,
and they go by the names: CoreNLP Deterministic, CoreNLP Statistical, NeuralCoref
and SpanBERT. The NeuralCoref model had to be worked with in detail to get set
up properly, and thus this will be discussed below. The remaining models, CoreNLP
Deterministic (Lee et al., 2013) and Statistical (Clark and Manning, 2015), as well as
SpanBERT (Joshi et al., 2019a), are all used as described in their respective publications.

NeuralCoref + spaCy

The NeuralCoref model, heavily based around the work by Clark and Manning (2016a),
has been set up as two models. The first is built from its source code, trained and
evaluated on the OntoNotes dataset. The evaluation scores are not presented by the
authors of the model, and will be evaluated in the chapter on Coreference Validation,
Section 6.3.2. The other model is a high-level API exposed through local installation of
the pre-trained model, integrating with spaCy’s pipeline.

3https://github.com/sattree/gpr_pub
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Figure 5.3.: NeuralCoref Training Architecture

First Model – Training Setup

This is the model provided by Hugging Face, with slight modifications to support the
IDUN computing cluster. The training of the model runs two feed-forward neural
networks, one which outputs the chance of any mention being an antecedent of another
mention, the other outputs the change of a mention having no antecedent. The network
is passed through three steps, as seen in Figure 5.3.

1. Mention pair loss At first, mention pair loss (`) is calculated using a Sigmoid
layer (σ) followed by a binary cross entropy loss. N denotes the batch size, w are the
weights.

`(x, y) = −
N∑
n=1

wn [yn · log σ(xn) + (1− yn) · log(1− σ(xn))]
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2. Top pair loss The second phase calculates the top pairs (both for true and
mistaken predictions), by first ensuring all inputs reside in a predictable range, using a
clamped-sigmoid function (Eq. 5.1) with a defined min and max.

clamped-sigmoid(x) =


min, if σ(xi) 6 min
σ(xi), if max 6 σ(xi) 6 max
max, if σ(xi) > max

(5.1)

s = clamped-sigmoid(inputs)

toptrue = max

(
log
(
σ(s)

))

topmistake = min

(
log
(
1− σ(s)

))

3. Ranking loss Finally, a rescaling loss (R) is calculated, following the Reward
Rescaling approach by Clark and Manning (2016a). A are all possible antecedents
containing mentions, T is the subset of true antecedents. s are the scores resulted from
the clamped-sigmoid function (Eq. 5.1).

R =
N∑
i=1

max
a∈A(mi)

∆(a,mi)
(

1 + sm(a,mi)− max
t∈T (mi)

sm(t,mi)
)

(5.2)

To efficiently perform calculations on the vast amount of data to be extracted
from coreference data, the model parses input data into a set of Numpy arrays,
calculating features, labels, pair lengths and so forth. A full list can be seen in Appendix
??. This preprocessing step, however, comes at a cost: the (.conll) size of OntoNotes,
237 MB, results in 8600 MB of Numpy array files. This might become an issue for larger
datasets. Hyperparameters used are listed in Appendix D.1.
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Figure 5.4.: NeuralCoref + spaCy high-level architecture

Second Model – High-level API model with spaCy

Due to the seamless integration with spaCy, the pre-trained NeuralCoref model may
be directly added to the spaCy nlp pipeline for document handling. This process is
illustrated in Figure 5.4. With spaCy’s fast dependency parser (Choi et al., 2015), and
the API to the pre-trained NeuralCoref model, this architecture is efficient when used to
parse large batches of data, and is used for the initial detection of coreference clusters
in the the early stages of this thesis. Further documentation on the nlp pipeline can be
found at spaCy’s website4.

Hyperparameters Various hyperparameters are exposed to the user when integrating
NeuralCoref into spaCy. Relevant hyperparameters are described in Table 5.1. See the
documentation5 for more details.

4https://spacy.io/usage/processing-pipelines/
5https://github.com/huggingface/neuralcoref#parameters
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Parameter Description
greedyness Strictness of the algorithm for determining coreference links

(the higher value, the more links)
max_dist Number of mentions to look back for considering antecedents
max_dist_match Distance between a coreference link to be attributed between

two mentions
conv_dict A dictionary to help the algorithm with resolutions for data it

has not yet seen or been sufficiently trained on. Adding {Covid-
19: [“virus”, “pandemic”]} will assist in resolving mentions
including “it”, “the virus”, and so on.

Table 5.1.: A selection of hyperparamters for NeuralCoref

5.4. Elsa-Val – Evaluation Framework for Entity-Level
Sentiment Analysis

The evaluation framework developed to set up and evaluate models, coined Elsa-Val,
contains separate systems to handle the discovered datasets, as well as training models
on this data. The overall architecture can be seen in Figure 5.5. The models are based
on the original implementations in a system called ABSA-PyTorch6 by Youwei Song7.
The system’s architecture has been slightly modified to easily evaluate several models in
batches, as well as to run on the latest updated technologies. The modified framework is
found on GitHub8.

Model Selection The models selected for evaluations are based on a range of years since
development, as well as in increasing complexity. This was done to investigate whether the
newer models – performing well on available datasets – would scale consistently with new
data, or if an older model architecture could prove its worth. The models implemented are
a Long Short-Term Memory (LSTM), originally defined by Hochreiter and Schmidhuber
(1997), TD-LSTM – Target-Dependent LSTM (Tang et al., 2016), CABASC – Content
Attention Model for Aspect Based Sentiment Analysis (Liu et al., 2018) and LCF BERT –
Local Context Focus Mechanisms with BERT (Zeng et al., 2019). The first model, LSTM,
was selected as it is considered the foundation for several later models. TD-LSTM was
developed to aim the LSTM towards target-dependent classification by implementing a
bidirectional LSTM. The CABASC model further attempted to improve these models
by incorporating attention mechanisms (Vaswani et al., 2017). The final LCF BERT
model was selected as it is currently holding state-of-the-art performance on the chosen
datasets. All experiments with these models are found in Chapter 7.

6https://github.com/songyouwei/ABSA-PyTorch
7Youwei Song is an avid researcher on Entity-level and Targeted Sentiment Analysis, having taken part

of multiple systems achieving state-of-the-art performance (Song et al., 2019; Yang et al., 2019a)
8https://github.com/ph10m/ElsaVal
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Figure 5.5.: Elsa-Val Architecture.
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5.4.1. Annotation Tool

In the very beginning of the thesis, an extremely customizable annotation tool was
created, directly interfacing with Pandas Dataframes (see Background, p. 28) – thus the
tool is named PandAnnotator. The tool was made to initially label a large quantity of
data for ESA, before refocusing the thesis towards CR. The data structure for sentiment
was later moved from Dataframes to the .litesent format, allowing manual annotation
directly on the data itself. However, there are plenty of usages for annotating directly on
a Dataframe – irrespective of the topic – and thus the project has been open-sourced9.
A screenshot of the Annotation tool is found in Appendix F, illustrating the sentiment
towards an entity with a backdrop color (green, yellow and red for positive, neutral and
negative), while providing additional information from the Dataframes.

5.4.2. Entity-centric Segmentation Algorithm

A vital part of augmenting the data is done through segmentation of the data based
on the outputs from a CR model, as produced by using CL-Eval. The surrounding
architecture for the algorithm is visualized in Figure 5.6. There are mainly 6 steps
involved to create segments:

1. Generate coreference clusters from a text using a CR model

2. Iterate clusters, look for antecedents matching the target entity in its mentions. If
a match is found, mark the given cluster as valid.

3. Iterate all valid cluster mentions, mask it as $T$ and modify the tokens inline (e.g.
“the university” to “$T$”)

4. Re-tokenize the final masked tokens as sentences

5. Generate segments by iterating sentences and add each sentence if it contains a
masked entity

6. Repeat the previous step until the next mask is within a given distance away from
the previous mask (and the segment contains at least one mask) until the next
sentence contains another mask.

5.5. Generated Dataset
The architecture for the 4-step pipeline described in Section 4.5 can seen in Figure
5.7. The system can be found incorporated into the Entity-level Sentiment Analysis
Framework (Elsa-Val) on GitHub10.

9https://github.com/ph10m/PandAnnotator
10https://github.com/ph10m/ElsaVal/tree/master/Distant%20Supervision
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5.5. Generated Dataset
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Figure 5.6.: Entity-centric Segmentation Algorithm using the CorefLite Evaluation Frame-
work (CL-Eval).
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6. Coreference Validation
Experiments in this thesis, along with their respective results, are divided into two parts:
Coreference Validation (this chapter) and Entity-level Sentiment Analysis (Chapter 7).
This chapter lays the necessary foundation for further experiments, involving validation
and evaluation of models and modified Coreference Resolution (CR) datasets. First, the
setup used for all experiments is presented in Section 6.1, followed by the experimental
plan in Section 6.2 which covers the rest of the chapter. Note that both experimental
chapters include an experimental plan, set up in such a way that experiments aimed to
answer research questions are not mixed between the chapters.

6.1. Experimental Setup

Data used for experiments can be found in the Data chapter, Section 4.4 (page 50).
Common for both experimental chapters is the hardware used. Experiments requiring
extensive hardware resources were run on the IDUN cluster (Själander et al., 2019)
utilizing Dell PowerEdge R630, R730 and R740 servers. Other experiments, typically
requiring prototyping, visualization and efficient revision, were run on a personal computer.
All hardware can be found in Table 6.1.

Server/Type Processor Cores (threads) Memory [GB] GPUs

Dell PE R630
2x
Intel Xeon
E5-2630 v2

6 (12) 128 None

Dell PE R730
2x
Intel Xeon
E5-2560 v4

12 (24) 128
2x
Nvidia Tesla P100
16GB VRAM

Dell PE R740
2x
Intel Xeon
Gold 6132

14 (28) 768
2x
Nvidia Tesla V100
16GB VRAM

Personal Computer
1x
Intel i7
7700K

4 (8) 16
1x
Nvidia GTX 1080
8GB VRAM

Table 6.1.: Hardware used to run experiments
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6.2. Experimental Plan

For this chapter, the experimental plan is primarily guided by Research Question 1:
“How well do Coreference Resolution models perform when evaluated on out-of-domain
data?”. The goal to evaluate out-of-domain performance requires setting up models, as
well as preparing data, spanning a total of three steps:

1. Reproducibility of Coreference Resolution Models

Set up a selection of CR models and evaluate their reproducibility. This is done to
continue on with the rest of the thesis knowing that the models produce expected results.
This is presented in Section 6.3.

2. CorefLite Dataset Validation

The resulting CorefLite datasets, covered in Section 4.3.1 (page 47), may be error-prone
due to the varying amount of parsing needed in the conversion from the original dataset
to the CorefLite format. The converted datasets must be evaluated using the prepared
CR models, verifying the integrity of each respective dataset. This process is documented
in Section 6.4.

3. Evaluation of Coreference Data

With the models and datasets verified, evaluate each models’ performance on the indi-
vidual datasets, as well as testing the efficiency and other caveats of the models. This
must be performed on both out-of-domain and in-domain data, determining model gen-
eralizability and news-domain applicability. Results are found in Sections 6.5 and 6.6,
which are all original work in this thesis.

6.3. Reproducibility of Coreference Resolution Models

The very first computational experiments conducted on CR included setting up a selection
of models discovered in the literature review, to verify their claimed results on the
OntoNotes dataset. The heavily distributed e2e-coref model (Lee et al., 2018), SpanBERT
model (Joshi et al., 2019a), CorefQA (Wu et al., 2019) and NeuralCoref1 were prepared.
As described in Section 3.2.4, the CorefQA model was missing several required files for
setup – as noted by several users on GitHub2 – and was thus discarded. Moving on
with the three other models, some modifications to the core packages of the systems
were needed in order to run the models on the IDUN computing cluster – which is
strictly a requirement, as all these models require access to excessive computing power.
Furthermore, the OntoNotes dataset used for reproducing results is in fact the CorefLite

1No paper available, but heavily based around the model by Clark and Manning (2016a)
2https://github.com/ShannonAI/CorefQA/issues/15
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6.3. Reproducibility of Coreference Resolution Models

converted OntoNotes. This allows to check for validity for this specific dataset conversion,
while simultaneously validating models.

MUC B-CUBED CEAF CoNNL
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

e2e-coref
Reported 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0

e2e-coref
Reproduced 81.40 79.52 80.45 72.16 69.39 70.75 68.15 67.21 67.68 72.96

SpanBERT
Reported 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6

SpanBERT
Reproduced 84.50 82.45 83.46 77.06 75.51 76.27 74.65 72.40 73.51 77.75

SpanBERT
Pre-trained 81.86 81.55 81.71 73.63 73.64 73.64 71.15 71.13 71.14 76.12

Table 6.2.: Reported and reproduced results using the models e2e-coref (Lee et al., 2018)
and SpanBERT (Joshi et al., 2019a)

6.3.1. End-to-End Coreference and SpanBERT

The popular e2e-coref model by Lee et al. (2018), described in detail in Section 8.2.3 (page
103), has been used as a foundation for several models covered in the literature review.
Among these models, the most promising variation is the SpanBERT model (Joshi et al.,
2019a). The authors behind e2e-coref were the first to implement a much needed pruning
algorithm for the OntoNotes dataset, minimizing unnecessarily large files containing
extraneous information for the CR task – which sparked the idea for further minimizing
of other datasets for this thesis. Although e2e-coref was considered state-of-the-art at the
time of publishing, SpanBERT has improved upon it in every aspect. This has mainly
been accomplished by incorporating BERT embeddings (Devlin et al., 2019) modified
with span masking (as opposed to single token masking in traditional BERT variations) –
outperforming previously used ELMo representations (Peters et al., 2018). The authors
of SpanBERT show to a CoNLL F1 score of 79.6, whereas e2e-coref scores 73.0. While
the results for SpanBERT could not be entirely reproduced using the provided evaluation
scripts, the differences might be due to varying model sizes and possible issues with the
reported configurations. The results are, however, quite similar, and indicate that the
reported results are legitimate (albeit with other configurations). Regardless, it is of little
importance to reach the exact reproduced results, as the performance on non-OntoNotes
datasets are far more relevant to answer the research questions. The official results for
both e2e-coref and SpanBERT, along with the reproduced evaluations and recalculated
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scores from the implementation of a pre-trained SpanBERT model3 are found in Table 6.2.
Due to the vast performance gain from SpanBERT, in addition to it being built directly
upon e2e-coref, further evaluations will not be completed using e2e-coref. Furthermore,
the team behind AllenNLP (Gardner et al., 2018) developed a Python interface for the
pre-trained release of SpanBERT, making it tough to justify developing a custom system
to interface with the older e2e-coref model. Model-specific configurations can be found in
Appendix E.

MUC B-CUBED CEAF CoNNL
Deep-Coref/
NeuralCoref Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

Reported
Deep-Coref 73.64 65.62 69.40 67.48 56.94 61.76 62.46 58.60 60.47 63.88

Computed
NeuralCoref 82.08 61.36 70.22 74.13 46.60 57.23 60.11 47.52 53.10 60.18

Pre-trained
NeuralCoref 71.88 44.86 55.24 64.61 34.21 44.74 55.59 42.56 48.21 49.40

Table 6.3.: Reported results by Clark and Manning (2016a), computed results using an
implemented and trained NeuralCoref model as well as a pre-trained variation.

6.3.2. NeuralCoref

Contrary to the previous models, no official results are reported on NeuralCoref as of yet,
aside from the improvement of ranking loss when compared to the Deep-Coref model4.
In Table 6.3 are the official results on the Deep-Coref model (Clark and Manning, 2016a),
alongside the calculated results by training the NeuralCoref model on the OntoNotes
dataset, and lastly the results by using a pre-trained release, available through a Python
interface5. The pre-trained release of the NeuralCoref model seems to be ineffective,
especially given that the trained model and pre-trained release should perform similarly –
if not identically. To investigate this, hyperparameters were modified using the official
API for the pre-trained model. The experiment yielded minuscule improvements, never
enabling the model to surpass F1 scores of 0.49 in eighteen passes of the testing dataset
(see Appendix D.3). This is unfortunate, as there is currently no way to load a trained
model into the NeuralCoref Python interface, without rewriting the entire model to
support the CorefLite format. Going by the initial lackluster results, completely rewriting
the model was deemed unreasonable for this thesis, and is thus left for future work. The
pre-trained model, albeit its apparent weaknesses, provides an extremely fast calculation

3https://github.com/facebookresearch/SpanBERT#pre-trained-models
4https://github.com/huggingface/neuralcoref/blob/master/neuralcoref/train/
training.md#some-details-on-the-training

5https://github.com/huggingface/neuralcoref/releases/tag/v4.0.0

76

https://github.com/facebookresearch/SpanBERT#pre-trained-models
https://github.com/huggingface/neuralcoref/blob/master/neuralcoref/train/training.md#some-details-on-the-training
https://github.com/huggingface/neuralcoref/blob/master/neuralcoref/train/training.md#some-details-on-the-training
https://github.com/huggingface/neuralcoref/releases/tag/v4.0.0


6.4. CorefLite Dataset Validation

of coreference clusters, with the possibility of integrating world knowledge through
hyperparameters. For these reasons, the pre-trained model will be included in further
experiments.

MUC B-CUBED CEAF CoNNL
CoreNLP Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1
Reported
Deterministic - - - - - - - - - 49.50

Deterministic 54.86 59.78 57.21 45.98 46.39 46.18 38.26 51.01 43.72 49.04
Reported
Statistical - - - - - - - - - 56.20

Statistical 70.79 63.08 66.71 59.47 47.83 53.02 52.06 46.16 48.93 56.22

Table 6.4.: Verifying results using the Deterministic and Statistical models by Lee et al.
(2013) and Clark and Manning (2015) on the OntoNotes dataset.

6.3.3. Deterministic and Statistical Models

With the neural results completed, similar evaluations were conducted on the highly
regarded deterministic and statistical models by Lee et al. (2013) and Clark and Manning
(2015). These are both implemented into the Stanford CoreNLP library (Manning et al.,
2014b), and were accessed through Stanford’s new Stanza framework (Qi et al., 2020).
The importance of evaluating on non-neural models has been established earlier, with
Moosavi (2020) stating that larger neural models may perform on-par with rule-based
models for out-of-domain evaluation. Moosavi (2020) did not evaluate on more than one
smaller dataset (WikiCoref, see Section 4.1.2) – motivating the need to verify with the
prepared CorefLite datasets. The CoreNLP Deterministic model (Lee et al., 2013) has
been documented in Section 3.2.1, along with a description of its sieve-based architecture
(see Table 3.4, page 36). The deterministic model has a reported CoNLL-2012 F1 score
of 49.5, and the statistical model 56.2, found on the Stanford NLP Group website6.
Reported and calculated scores on the OntoNotes dataset can be found in Table 6.4,
verifying the official results.

6.4. CorefLite Dataset Validation

The datasets OntoNotes, GUM, PreCo and LitBank had to be converted into a unified
format, as thoroughly described in Section 4.3.1 (page 47). The conversion proved to
be a lengthy process, as there was no other option than to visualize the outcome and
inspect individual errors in the resulting clusters. Luckily, whether a document was
error-prone or not was easy to determine, as the final evaluation metrics – when using

6https://stanfordnlp.github.io/CoreNLP/coref.html
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Input data CoreNLP NeuralCoref SpanBERT
you you you you
’ve ’ve ’ ’
done done ve ve
what what done done
you you what what
could could you you
n’t n’t could could
- - n’t n’t

Table 6.5.: The tokenized sentence of “You’ve done what you couldn’t” being processed
differently across the used models. CoreNLP includes both the Deterministic
and Statistical model.

wrongly parsed data – would often produce scores nearing nil7. Whenever this occurred,
the parsing algorithms had to be revisited and revised. The most frequently occurring
errors regarded differences in token indices. Observe how the contraction you’ve gets
tokenized differently using the evaluated models in Table 6.5. This quickly becomes an
issue if a mention cluster includes you’ve, tokenized as [you, ’ve], while the model predicts
the span to occur over [you, ’, ve]. The offset will modify all forthcoming clusters, and
propagate wrong mention indices throughout the document, resulting in highly incorrect
mention clusters. The solution was an algorithm executing the following actions:

1. Find indexes where a mismatch between input and output tokens occurs

2. For each mismatched index, if the predicted mention’s start/end index are above
the given mismatched index, reduce the start/end index by 1

Besides the issues with contractions, the algorithm also handles tokenization issues with
hyphens and punctuation – or any diverging tokenization techniques. After thorough
testing, the algorithm was added as an action in the prediction pipeline of the CorefLite
Evaluation Framework (CL-Eval), and the framework was now ready, allowing for
verification of the parsing process. As a last note, some datasets discard singleton
mentions – that is mentions not occurring anywhere else, and can thus not be regarded
as coreferences. For the CorefLite datasets, no mentions have been filtered (i.e. both
singleton and coreferenced mentions are kept), but CL-Eval rather allows for the inclusion
of singleton mention as an optional parameter, set by the user. Unless specified, singleton
mentions are not included in the following results.

7The initial CorefLite-version of the PreCo dataset resulted in CoNNL F1 scores between 0.008 and
0.040 using varying models
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GUM document
candidates Precision Recall F1

Reported (unidentified) 0.6363 0.3835 0.4786
GUM_news_defector 0.6760 0.3857 0.4700
GUM_news_imprisoned 0.6676 0.3693 0.4631

Table 6.6.: Identifying document candidates for verification of the CorefLife-formatted
GUM dataset.

MUC B-CUBED CEAF CoNNL
GUM Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1
Reported 57.25 35.22 43.61 50.53 25.64 34.02 39.03 33.18 35.87 37.83
Replicated 52.06 35.65 42.32 45.24 23.67 31.08 34.27 31.59 32.87 35.42

Table 6.7.: Reported results on the GUM dataset by Zeldes and Zhang (2016), as well as
replicated CorefLite results with the CoreNLP Deterministic Model

6.4.1. OntoNotes

As the OntoNotes dataset had already been converted to a similar format through the
minimzation process of Lee et al. (2018), only extraneous information was altered. The
modified CorefLite OntoNotes was used for all evaluations throughout the initial sections
of this chapter, and indicate validity.

6.4.2. GUM

In current literature, only the official paper for the GUM dataset (Zeldes, 2017) and a
CR model by the same authors (Zeldes and Zhang, 2016) have published scores on the
dataset. The former publication only evaluates one single document (1 out of 120 total),
without providing information on evaluation metrics used. Going by an assumption of the
undefined metric being the commonly used CoNNL-F1 score, an experiment to identify
the unknown evaluated document was conducted. The findings are illustrated in Table
6.6, where two identified candidates show similarities to the published document, and
might indicate correlation between the original and parsed dataset. Addressing the latter
publication (Zeldes and Zhang, 2016), the GUM dataset was evaluated using the CoreNLP
Deterministic model. However, at the time of publishing – June 16, 2016 – the dataset
was in an earlier stage. The oldest available data today is dated August 18, 20168, and
thus, experiments cannot be completely replicated. Nevertheless, results using the August
2016 version (2.1.1) are presented in Table 6.7. Observe that reproduced results are lower
than the originally published results, which might indicate dissimilarities between the

8https://github.com/amir-zeldes/gum/releases?after=V3.0.0
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6. Coreference Validation

datasets. However, due to arguable resemblance of the metrics, the conversion process of
GUM was deemed valid.

6.4.3. PreCo and LitBank

Neither the PreCo (Chen et al., 2018) nor LitBank (Bamman et al., 2020) datasets have
been evaluated by any distributed CR models in discovered literature. As LitBank is
rather new, the lack of evaluation is not too surprising. However, the PreCo dataset
has been around since 2018, and has still not seen CR evaluations – which is strictly
its intended purpose. A possible reason for this may be the unconventional annotation
scheme. The CorefLite conversion process, however, was deemed successful upon visual
inspection – and thus paves the way for further experimentation alongside the other
datasets. Only one available publication shows comparisons of OntoNotes, LitBank
and PreCo – from the authors of LitBank themselves. A baseline was set using an
undocumented BiLSTM-CRF model (Bamman et al., 2020), originally intended for
Named Entity Recognition (NER)9. The model was trained on the LitBank dataset,
and further evaluated on the test subsets of OntoNotes, PreCo and LitBank, restricting
results to the F1 scores. The final results are shown in Table 6.8, and indicate strong
performance on the OntoNotes and PreCo datasets if the model is trained on LitBank
alone.

LitBank Model
Datasets:

MUC
F1

B-CUBED
F1

CEAF
F1

CoNLL
Avg F1

OntoNotes 57.7 81.2 49.7 62.9
PreCo 63.5 84.2 55.1 67.6
LitBank 62.7 84.3 57.3 68.1

Table 6.8.: Reported results on LitBank and Preco using an undocumented model

A recap The models used for evaluation are CoreNLP deterministic, CoreNLP stat-
istical, NeuralCoref (pre-trained) and SpanBERT (pre-trained). These models are each
evaluated on the parsed CorefLite datasets of OntoNotes, GUM, LitBank and PreCo. To
further assess domain-specific data, the OntoNotes and GUM datasets, both containing
topic identifiers, were modified to split evaluations into the two categories out-of-domain
and and in-domain:

• Out-of-domain: OntoNotes (no news), GUM (no news), LitBank, Preco

• In-domain: GUM (news only), OntoNotes (news only)
9For more information on these technologies, see pages 18 for Bidirectional Long Short-Term Memory

(LSTM), 15 for Conditional Random Field (CRF) and 10 for NER
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Note that although the OntoNotes dataset has been stripped of news related data for
the out-of-domain category, the NeuralCoref and SpanBERT models are trained on the
OntoNotes training set. Some overlap between the train and test set of OntoNotes has
been identified (Moosavi, 2020), and thus the metrics on these models are expected to be
somewhat biased. Regardless, this data has been included for comprehensive evaluations.
Due to the vast number of metrics calculated in the forthcoming experiments, tables
from here on are restricted the F1 scores of MUC, B-CUBED and CEAF, including the
average of those – the CoNNL F1, and lastly, the LEA metric (Moosavi and Strube,
2016), designed to overcome robustness issues of CR. The LEA metric will be focused for
discussions regarding each model and its performance. The complete evaluation data, all
metrics included, resides in Appendix G. Highlighted scores indicate the highest value
for each metric column. From here on, all results are original work.

6.5. Out-of-Domain Evaluation
Followed are all evaluations in the out-of-domain category. Paying attention to the
LEA metric, it seems to penalize low recall – which makes sense when reflecting on
the metric’s intended purpose: prioritizing the importance of entities and correctness
of attributed coreference links (see Background Section 2.4.2, page 27). Observe in the
coming tables how the NeuralCoref model consistently discovers more coreference clusters
than the CoreNLP Deterministic model, but also fails to associate them with the correct
antecedent, resulting in lower recall. The final F1 LEA score reflects the real-world
application for this, that being correctly linked coreferences to antecedents, hence it
scores the CoreNLP Deterministic model higher than NeuralCoref on all four datasets.

OntoNotes (no news)

In Table 6.9, the results on the modified OntoNotes dataset are shown. As expected,
SpanBERT, being trained for this specific dataset, shows the best results. Furthermore,
all models perform slightly better on the news-stripped variation, compared to the full
size OntoNotes dataset.

GUM (no news)

Moving on to the GUM dataset, things get more interesting in Table 6.10. Although
SpanBERT performs better for all metrics, the relative difference between the models is
much smaller than for the previous evaluation. Regardless, the SpanBERT model still
excels at achieving higher recall scores than its competing models, strengthening its final
F1 scores. However, for all models, performance has taken a big hit when compared to the
OntoNotes dataset. The GUM dataset consists of web-scraped documents with a diverse
vocabulary, and experiments indicate that this diversity may reduce a model’s capability
for consistently detecting clusters. Furthermore, the effectiveness of neural models
(i.e. NeuralCoref and SpanBERT) quickly deteriorate on out-of-domain evaluations, as
hypothesized by Moosavi (2020). The SpanBERT model performance dropped 38.8%
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Dataset
OntoNotes
No news

MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 59.46 47.37 44.17 50.33 42.54 41.28 41.90

CoreNLP
Statistical 68.66 54.10 49.31 57.36 55.49 45.36 49.92

NeuralCoref 56.30 45.55 49.17 50.34 60.81 31.52 41.52
SpanBERT 83.51 74.91 73.94 77.45 72.50 72.68 72.59

Table 6.9.: Out-of-domain F1 evaluations + LEA metric on OntoNotes with news docu-
ments stripped.

Dataset
GUM
No news

MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 48.00 35.41 35.43 39.61 43.66 22.70 29.87

CoreNLP
Statistical 56.29 39.21 32.69 42.73 63.00 24.52 35.30

NeuralCoref 39.52 25.27 26.64 30.48 63.06 13.16 26.64
SpanBERT 59.00 47.66 41.73 49.46 69.79 32.59 44.44

Table 6.10.: Out-of-domain F1 evaluations + LEA metric on GUM with news documents
stripped.

and the NeuralCoref 35.8% from the OntoNotes evaluation, whereas the deterministic
and statistical models dropped 28.7% and 29.3% respectively.

LitBank

The LitBank dataset is vastly different from the other datasets, as documents are much
longer – requiring high versatility for a CR model to succeed. As discussed in the
Introduction (page 2), long-range dependencies are difficult to resolve. Table 6.11 shows
the performance for all models. Observe that all F1 scores are higher for LitBank (with
longer documents in formal language) than for the GUM corpus (comprising shorter
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Dataset
LitBank MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 60.76 37.88 23.61 40.75 37.84 32.42 34.92

CoreNLP
Statistical 69.94 41.28 28.66 46.63 49.36 31.87 38.73

NeuralCoref 55.86 31.32 30.24 39.14 53.14 19.55 28.59
SpanBERT 75.53 59.19 42.06 58.92 55.41 59.92 57.58

Table 6.11.: Out-of-domain F1 evaluations + LEA metric on the LitBank dataset.

documents with a diverse vocabulary), indicating that all models favor predictable
vocabulary over document length. Regardless, SpanBERT produces the best scores for
LitBank. The inclusion of BERT embeddings, being pre-trained on a large corpora of
text, allows the SpanBERT model to better handle complex semantic structures, giving
it a clear advantage over competing non-BERT models. Its CoNNL-F1 score of 58.92
is still lower than what the authors of LitBank reported (Bamman et al., 2020) with a
model trained on LitBank and evaluating on its test set – reaching 68.1 (see Table 6.8).
However, the model trained on LitBank performs far worse on the OntoNotes dataset –
62.9, where SpanBERT reaches 79.6 in the official publication (Joshi et al., 2019a).

PreCo

PreCo, as described in the Data chapter (p. 45), uses a vocabulary aimed at English
speaking preschoolers. This might be the reason for why non-SpanBERT models perform
better on PreCo than for LitBank and GUM. Continuing analyzing the LEA F1 metric,
observe how the gap between the SpanBERT model and the CoreNLP models is reduced
on non-OntoNotes datasets – being completely out-of-domain with respect to the training
data for SpanBERT. This is illustrated by the relative performance of models in Table
6.13. The NeuralCoref model performs around 50 to 60 percent of the SpanBERT model,
while the CoreNLP statistical model shows up to 88% performance of the SpanBERT
model on the PreCo dataset and 79% on the GUM dataset. These results are surprising,
as the GUM and PreCo datasets contain vastly different data. Hence, the statistical
model proves to be a great alternative for out-of-domain texts – although outperformed
in these experiments, leaving SpanBERT the definitive best model for generalized CR.
Note that the PreCo dev dataset is used, in order to evaluate similarly sized datasets for
all presented results.
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Dataset
PreCo MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 55.22 45.57 44.76 48.52 51.12 33.69 40.61

CoreNLP
Statistical 62.61 50.41 46.05 53.02 63.93 36.51 46.48

NeuralCoref 46.53 37.00 41.20 41.57 63.43 22.42 33.13
SpanBERT 64.09 55.71 53.82 57.87 70.05 42.48 52.89

Table 6.12.: Out-of-domain F1 evaluations + LEA metric on the PreCo dev dataset.

LEA F1
Relative score

OntoNotes
no news

GUM
no news LitBank PreCo

CoreNLP
Deterministic 57.7% 67.2% 60.6% 76.8%

CoreNLP
Statistical 68.8% 79.4% 67.3% 87.9%

Neuralcoref 57.2% 60.0% 49.7% 62.6%
SpanBert 100% 100% 100% 100%

Table 6.13.: Performance of models on out-of-domain data, relative to SpanBERT on the
LEA F1 metric.

6.6. In-domain Evaluation

Extracting news data from the compatible OntoNotes and GUM datasets was done to
identify differences in the evaluations when compared to the out-of-domain datasets.
The relatively high out-of-domain performance of the CoreNLP Statistical model was
previously highlighted. However, for the news domain, this model seems to have reduced
performance. Furthermore, the news subsets receive lower scores for nearly all models.
Additional evaluations on unmodified OntoNotes and GUM datasets are placed in
Appendix G.3.

OntoNotes (news)

The OntoNotes in-domain news subset sees much lower scores than its out-of-domain
counterpart, as can be observed in Table 6.14. The performance drop, with respect to
the LEA F1 score, is drawn attention to in Table 6.15. The neural models, specifically
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6.6. In-domain Evaluation

Dataset
OntoNotes
News Subset

MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 49.20 42.17 42.45 44.61 34.71 37.84 36.21

CoreNLP
Statistical 58.86 48.95 47.80 51.87 54.47 36.92 44.01

NeuralCoref 51.32 41.86 45.31 46.16 56.74 27.34 36.90
SpanBERT 74.91 69.15 70.35 71.47 66.39 65.65 66.02

Table 6.14.: In-domain F1 evaluations + LEA metric a news subset of OntoNotes.

LEA F1
score

OntoNotes
out-of-domain

OntoNotes
in-domain

Performance drop
(rounded percentage)

CoreNLP
Deterministic 41.90 36.21 14%

CoreNLP
Statistical 49.92 44.01 12%

Neuralcoref 41.52 36.90 11%
SpanBert 72.59 66.02 9%

Table 6.15.: Performance drop between in- and out-of-domain variations of OntoNotes.

SpanBERT, show the least negative impact, in addition to outscoring all other models
previously documented in the out-of-domain evaluations.

GUM (news)

GUM has shown to be the most difficult dataset for models to perform well on, and
this is even more so the case for the news domain, as illustrated in Table 6.16. Note
how the deterministic model is the only model performing better on this domain, in fact
outperforming the statistical model for both CoNNL-F1 and LEA F1. The increase in
performance is denoted in the table as −7%.
NeuralCoref continues to produce poor results. As for the OntoNotes dataset, per-

formance drop is presented in Table 6.17. These numbers differ greatly, and may be a
testimony to the varying vocabulary found in the GUM dataset, causing unpredictable
results. SpanBERT shows similar results for both variations.
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Dataset
GUM
News Subset

MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 47.21 37.56 38.10 40.96 44.02 25.16 32.02

CoreNLP
Statistical 47.85 35.21 36.11 39.72 56.88 21.03 30.70

NeuralCoref 37.01 25.41 30.00 30.81 50.64 13.41 21.20
SpanBERT 57.10 47.93 45.57 50.20 60.29 34.75 44.09

Table 6.16.: In-domain F1 evaluations + LEA metric a news subset of GUM

LEA F1
score

GUM
out-of-domain

GUM
in-domain

Performance drop
(rounded percentage)

CoreNLP
Deterministic 29.87 32.02 -7%

CoreNLP
Statistical 35.30 30.70 13%

Neuralcoref 26.64 21.20 20%
SpanBert 44.44 44.09 1%

Table 6.17.: Performance drop between in- and out-of-domain variations of GUM
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LEA F1
Score

OntoNotes
In-domain

OntoNotes
Out-of-domain

GUM
In-domain

GUM
Out-of-domain

CoreNLP
Deterministic 36.21 41.90 32.02 29.87

CoreNLP
Statistical 44.01 49.92 30.70 35.30

NeuralCoref 36.90 41.52 21.20 26.64
SpanBERT 66.02 72.59 44.09 44.44

Table 6.18.: Compared LEA F1 scores on both variations of the OntoNotes and GUM
datasets

LEA F1 CoreNLP
Deterministic

CoreNLP
Statistical NeuralCoref SpanBERT

OntoNotes (original) 40.61 48.69 40.50 71.14
GUM 29.87 (73.6%) 35.30 (72.5%) 26.64 (65.8%) 44.44 (62.5%)
LitBank 34.92 (86.0%) 38.73 (79.5%) 28.59 (70.6%) 57.58 (80.9%)
PreCo 40.61 (100%) 46.48 (95.5%) 33.13 (81.8%) 52.89 (74.3%)
Average
out-of-domain
performance

86.5% 82.5% 72.7% 72.6%

Table 6.19.: Final out-of-domain evaluation table. Percentages indicate the score relative
to the OntoNotes (original)

Final Remarks
Reaching the end of domain-specific evaluation, a brief summary is presented in Table
6.18, comparing the two variations of the OntoNotes and GUM datasets. Initial hopes
were that the deterministic and statistical model would be able to shine by their rule-based
definitions of coreference, enabling higher scores on generally difficult datasets like GUM.
This was, on the other hand, not the case, and SpanBERT is left undefeated across all
evaluations. Table 6.19 shows the final performance of out-of-domain datasets, relative to
the OntoNotes test set. It becomes clear that neural models struggle to a higher degree
than the deterministic and statistical models for out-of-domain performance.
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7. Entity-level Sentiment
Analysis

As the previous chapter concluded, the SpanBERT model was considered the best fit
for generalized Coreference Resolution (CR). Experiments in this chapter will utilize
SpanBERT to augment datasets for Entity-level Sentiment Analysis (ESA), investigating
the impact of CR on this type of data. In a similar fashion to the experiments on
Coreference Validation (Chapter 6), another experimental plan is presented below –
directed by the so far unattended research questions. Hardware used to conduct the
coming experiments is the very same as for the previous experiments (Table 6.1 (p. 73).

7.1. Experimental Plan

The individual steps contained within this plan take part in resolving the two remaining
research questions:

Research question 2 Can current datasets for Entity-level Sentiment Analysis be used
as out-of-domain evaluation baselines?

Research question 3 Can augmentation of datasets result in improvements using Entity-
level Sentiment Analysis models?

1. Baselines and Coreference Augmentation

Establish a baseline on existing datasets for ESA in order to have legitimate results for
future comparisons of models. Moreover, augment these datasets with CR and study the
results. Documented in Section 7.2.

2. Evaluate Generated Data

With the generated dataset from the Distant Supervision (DS) process, employ CR
to augment the data and perform evaluations using models for ESA. Furthermore,
compare the results to the previously established baselines and utilize existing datasets
in experiments. These evaluations are found in Section 7.3, and aim to resolve research
questions 2 and partly 3.
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3. Manual Annotation

To achieve realistic results – and to further clarify research question 3 – manually annotate
a selection of articles extracted from Strise evaluation data. By training a model on
available data, evaluate using the manually annotated data. This may help for robust
testing of possible use-cases for CR. Findings on manual annotation reside in Section 7.4.

7.2. Baselines and Initial Coreference Augmentation

Before establishing baselines, the Entity-level Sentiment Analysis Framework (Elsa-Val)
had to be set up for evaluating several models and datasets. The datasets used are
SemEval 2014 – Task 4 (Pontiki et al., 2014) and ACL-14 (Dong et al., 2014), as chosen
in the Data chapter, p. 50. The SemEval 2014 task includes two datasets, containing
laptop and restaurant reviews. The ACL-14 dataset contains Twitter data. Therefore,
the names Laptop, Restaurant and Twitter will be used when referring to the separate
datasets. Continuing, the selected models (described in detail in the Architecture of
Elsa-Val, from p. 68) are an LSTM, Target-Dependent LSTM (TD-LSTM), Content
Attention (CABASC) and Local Context Focus with BERT (LCF-BERT).

Selecting Hyperparameters

Hyperparameters drastically affect the results of a machine learning model, and are often
tuned by extensive testing – commonly referred to as a hyperparameter optimization.
This process was not deemed necessary for this thesis, however, as the main goal is to
study the impact of augmenting input data with Coreference Resolution (CR), rather
than finding the best possible scores for Entity-level Sentiment Analysis (ESA) in general.
Therefore, the selection of hyperparameters was guided by recommended values found in
the models’ publications. A primary divergence from default parameters was on the LCF
BERT model, initially using 16 as its batch size, but this was reduced to 12 in order
to complete experiments on all hardware available. See more on batch sizes and other
hyperparameters in Background, p. 22. Furthermore, an experiment was conducted to
tune down the necessary number of epochs required, to find a balance between satisfactory
results and time efficiency. These first tests allowed 20 epochs for the LSTM, TD-LSTM
and CABASC models, and – as the authors claim that the model generally converges
within three epochs (Zeng et al., 2019) – 5 for LCF BERT. Table 7.1 shows the computed
epochs for reaching convergence with respect to the F1 metric. Based on these results, as
well as adding model-dependent computational time as a factor (LSTM being the fastest,
LCF BERT the slowest), the final hyperparameters were set, defined in Table 7.2.

A Note on Epochs

If a model converges on epoch 3 out of 20, this may indicate 1) that the model overfits
to the training data from this point, or 2) that the model simply cannot find patterns
in the data, resulting in the best model occurring at an arbitrary epoch. Ideally, the
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Model LSTM TD-LSTM CABASC LCF BERT
Max epochs 20 20 20 5
Laptop 14 13 4 3
Restaurant 11 8 7 3
Twitter 7 6 17 2

Table 7.1.: Number of epochs required to reach the best F1 scores on the test set for each
model on existing datasets.

Model Dropout L2-regularization Batch size Learning rate Epochs
LSTM 0.2 0.01 3 0.001 20
TD LSTM 0.2 0.01 3 0.001 15
CABASC 0.1 0.01 5 0.001 10
LCF BERT 0 0.0001 12 0.00002 5

Table 7.2.: Entity-level Sentiment Analysis Hyperparameters

LSTM TD-LSTM CABASC LCF BERT Avg F1
Diff (%)Acc F1 Acc F1 Acc F1 Acc F1

Laptop 67.87 63.22 67.08 61.22 67.87 61.89 76.96 72.91
+ CR 70.69 66.06 67.87 61.91 69.75 64.12 76.49 70.68 + 3%
Restaurant 77.05 65.05 75.71 66.55 75.80 64.82 83.30 74.63
+ CR 74.82 63.43 74.91 62.08 76.07 63.93 84.02 76.20 - 2%
Twitter 67.20 65.33 69.51 65.91 64.02 61.68 73.55 72.15
+ CR 67.77 65.72 67.20 66.03 65.17 63.26 70.95 69.39 - 0.25 %

Table 7.3.: Baselines for select models with and without CR augmentation. For each
dataset, boldface items indicate the highest score for each metric.

best model should occur towards the end of the number of epochs – meaning that longer
training produces better results, indicating that certain semantic and syntactic patterns
have been detected, corresponding to the labeled sentiment polarity. This is far from the
case. Aside from a few instances, no real correlation between number of epochs and the
best performing models was found. This will be further tested in the coming sections.

Preliminary Results

In Table 7.3 are the results from evaluating the aforementioned datasets and models.
Boldfaced numbers indicate whether the augmented data (denoted as +CR) or the
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original data scored the highest for each metric. These first results are reminiscent of the
evaluation of CR models in the previous chapter – that being the BERT model excelling,
producing higher scores than its competitors. Somewhat surprising are the high values
for the LSTM implementation. Basic LSTM models are often left out for evaluations in
newer publications (Liu et al., 2018; Rietzler et al., 2020; Zeng et al., 2019), although
the LSTM model outscores both the TD-LSTM and CABASC models in several cases.
The TD-LSTM model was only officially evaluated on the Twitter dataset (Tang et al.,
2016), which is the only dataset it performs better on than the model it was developed to
improve, namely the LSTM. What is less surprising, however, is the lack of impact from
CR. As previously discussed, these datasets contain short documents, making it less likely
to discover coreference links within them, and thus the theoretical maximum gain from a
CR model is low to begin with1. Upon closer inspection, the CR augmentation added an
additional 7.5% of documents for the Laptop dataset and 5.5% for the Restaurant dataset.
These two percent points may be the factor causing the average F1 score difference of
5% when applying CR. With these baselines on official datasets established, the same
procedure may begin for the generated dataset.

7.3. Evaluation of Generated Data

The generated dataset annotated by Distant Supervision (DS), thoroughly documented in
the Data chapter (pp. 52-56), contains more than 47,000 documents (after segmenting full-
text events) evenly distributed over the topics Technology, Sports, Politics and Business.
This dataset, following the same process as above, was evaluated using the models within
Elsa-Val. Two separate splits were set up, allowing more detailed evaluations. More
information on the splits can be found in Table 7.4.

Train/test split The data was split in an approximate 9:1 ratio. This was accomplished
by first batching the segments on the ID corresponding to the source text, then assigning
a random selection of 10% of the unique IDs to the test set. This approach ensures that
no overlapping data occurs between the two sets. Stratifying on the sentiment scores
with this approach is troublesome, as one ID has a varying number of segments within
it. The random selection, however, consistently produced the desired distribution of
sentiment scores for the segments.

Time split As emphasized by Liu (2017), the time aspect of sentiment analysis is
important, as language evolves over time (e.g. by lexicalization). This is especially
reflected in news-like data. Unique for 2020, with the Corona pandemic affecting all
aspects of online media – no matter the topic – results are expected to be lower than for
the initial train/test split. To examine this time-specific phenomenon, the training set
included data from 2018–2019, and all data from 2020 was included in a separate test set.

1More information on the data and analyses can be found in the Data chapter, p. 50
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Training data
#segments

Test data
#segments

Training data
file size [MB]

Test data
file size [MB]

All data 43116 4151 19 1.9
2018-2019 40734 6584 18 3

Table 7.4.: The two dataset splits used for experimentation with Distant Supervision.

LSTM TD-LSTM CABASC LCF BERT Avg. F1
Diff (%)Acc F1 Acc F1 Acc F1 Acc F1

DS
all data 67.67 62.80 62.64 59.72 65.31 55.83 76.44 74.58

+ CR 67.14 61.86 65.24 57.52 66.01 56.86 73.86 70.45 - 2.5%
DS
2018-2019 64.09 59.97 62.65 55.88 62.32 52.38 74.23 71.73

+ CR 63.65 59.82 59.34 55.34 61.88 51.48 71.80 69.33 - 1.7%

Table 7.5.: Model performance on the generated dataset, with and without CR augment-
ation.

In Table 7.5 are the experiments on the generated dataset. There is an evident
drop in performance when evaluating older data (2018–2019) on newer data (2020),
confirming the need for time-relevant data for Sentiment Analysis (SA) and other
Natural Language Processing (NLP) applications.

7.3.1. Revisiting Hyperparameters

Before continuing evaluating additional data, the hyperparameters set earlier were
revisited. Focusing on the number of epochs, they were once again evaluated in an
experiment to check for early convergence, with the goal to reduce computational time.
Observe in Table 7.6 how the number of epochs vary greatly between the datasets –
although the previously set maximum number of epochs seems to fit the results nicely.
The number of epochs for the LSTM model could arguably be lowered, but due to its
short computational run time, it was left as-is. Unfortunately, with the current setup
for CR, few positive results are observed. The earlier hypothesis on the augmentation
causing increased entropy within the data, fracturing the original documents, might have
proven to be correct. Disregarding the lack of positive impact from CR, however, model
performance is rather high. The allegedly good results may not be too surprising, though,
given that another sentiment analysis model has in fact labeled all this data, and the
respective models used in Elsa-Val may have managed to spot patterns in the labeling
process itself. These results are not complete, as they do not represent data rooted in
any established truth. To accomplish a proper evaluation scheme, existing datasets will
be used.
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#Epochs
Best F1 score LSTM TD-LSTM CABASC LCF BERT

Max epochs 20 15 10 5
Laptop 14 13 4 2
+ CR 11 13 3 1
Restaurant 11 8 7 5
+ CR 12 13 6 5
Twitter 7 6 5 2
+ CR 15 11 7 5
DS all data 12 8 7 1
+ CR 11 14 7 1
DS 2018-2019 6 12 4 2
+ CR 12 2 10 2

Table 7.6.: Number of epochs required to reach the best F1 scores on the test set for each
model on original and augmented datasets.

7.3.2. Existing Data as Evaluation Baselines

As previous results merely indicate that augmentation with CR has negative results on
the generated dataset, it is necessary to evaluate on other, real world data. For this,
existing data previously used (Laptop, Restaurant and Twitter) will be set as baselines,
before evaluating on the respective training and test sets (i.e. all available data). This
experiment will not only allow for an applicability test of the generated dataset, but will
also reveal whether existing data as test sets, although completely out-of-domain, can give
any meaningful results using the involved ESA models. Presented in Table 7.7 are the
final results, indicating that there is in fact some use for performing these out-of-domain
evaluations. The Twitter dataset show to be largely incompatible with the labeled data.
However, pay attention to the rows where DS is evaluated on the Laptop and Restaurant
testing datasets, diverging only 15 and 17 percent from its original score. The F1 scores
of 61.41 for the Laptop dataset and 63.15 for Restaurant, are both similar to what the
LSTM, TD-LSTM and Cabasc models reported on their associated training datasets (i.e.
all humanly labeled data), as previously seen in Table 7.3. This dictates that the DS
approach has somewhat managed to mimic the behavior of properly annotated datasets –
which will be tested further in the next section.
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LCF BERT F1 difference,
original dataAcc F1

Laptop train
Laptop test 76.96 72.91

DS
Laptop test 64.58 61.41 -15.77%

DS
Laptop train 65.08 59.15 -18.87%

Restaurant train
Restaurant test 84.02 76.20

DS
Restaurant test 73.12 63.15 -17.13%

DS
Restaurant train 66.49 58.92 -22.67%

Twitter train
Twitter test 73.55 72.15

DS
Twitter test 43.35 43.32 -39.96%

DS
Twitter train 42.65 42.66 -40.87%

Table 7.7.: Accuracy and F1 scores for the LCF BERT model when using existing datasets
for entity-level sentiment analysis as evaluation baselines for out-of-domain
data. The notation in the rows for the leftmost column shows two stacked
datasets, with the training set on top, and testing set below.
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7.4. Manually Labeled Data

From the selection of evaluation data (see Section 4.5.1, p. 52), articles were extracted,
then manually annotated with entities and their respective sentiment. This was done
in collaboration with an employee at Strise – Alf Jonassen, to verify the labels by
inter-annotator agreement. The process required meticulous work, as isolating meaning
towards different targets within a text proved to be far more difficult than first imagined.
It is no surprise that the machine learning models struggle with the very same distinction
on longer documents. The labeling process was approached as follows:

1. Extract articles
2. Select only articles with text lengths between 800 to 2000 characters to uphold

some consistency in the data
3. Sample 25 articles from each topic (100 total)
4. Evaluate each article separately, selecting (if possible) two unique entities within

the same text, preferring them to be of differing sentiment polarity
5. Agree on the expressed sentiment polarity towards each entity
6. Add one copy of the text for each entity, masking it as $T$ (target) and append its

polarity.

For continued results, only the LCF BERT model is used. Although it is the larger
model, it generally produces better results in less time than any of the other models, as
quickly discovered throughout extensive experiments. Moreover, it outperforms the other
models by a large margin, making it the obvious choice for narrowing down the model
selection scope.

LCF BERT CR F1
Diff (%)Acc F1

Distant Supervision (all data) 47.46 43.43
+ CR 47.46 43.81 + 0.0087%

Table 7.8.: Initial results by training on the generated dataset, testing on the Gold dataset

7.4.1. Initial Results

After processing the first 30 articles, resulting in 59 labeled documents with differing
entities, the first experiments were conducted. In Table 7.8 are the inital results when
evaluating the generated dataset on the manually annotated dataset (hereafter referred
to as Gold), with and without CR augmentation. The results were disappointing, both in
terms of evaluation performance and with regards to the impact of CR. The poor results,
however, sparked an idea of revising parts of the augmentation hypothesis.
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Best model
5 epochs

Laptop Restaurant Twitter
Distant

Supervision
(train/test split)

Acc F1 Acc F1 Acc F1 Acc F1
Original
Train/Test 76.96 72.91 83.30 74.63 73.55 72.15 76.44 74.58

CR Train
Original Test 76.49 70.68 84.02 76.20 70.95 69.39 73.86 70.45

Original Train
CR Test 77.26 73.04 83.46 76.04 73.45 72.22 71.12 67.87

Table 7.9.: Different combinations of augmenting train and test data for the existing
datasets, as well as the distant supervision dataset.

Best model
5 epochs

Laptop Restaurant Twitter
Acc F1 STD Acc F1 STD Acc F1 STD

Gold 40.68 32.78 3.75 49.15 44.06 5.08 38.98 25.78 4.13
+ CR 44.23 43.11 2.20 53.85 51.36 4.22 36.54 31.41 6.06
CR Impact
(rounded %) + 8% + 24% - 71% + 9% + 14% - 20% - 7% + 18% + 33 %

Table 7.10.: Evaluations on Gold data using existing Entity-level Sentiment Analysis
datasets as training data. STD is the standard deviation of the computed
F1 scores over the five epochs. A low number is desired, as it implies lower
variance in the predictions.

7.4.2. Revising the Augmentation Approach

From the initial results, the generated dataset has proved to be of little use for additional
evaluations on the Gold dataset. Therefore, instead of augmenting the training data –
causing apparent inconsistencies – the test data was instead considered for augmentation.
The first experiments using augmented test sets (Table 7.9) were initially discarded, as
there was seemingly nothing to extract from the results. However, this occurred before
considering reusing the existing datasets (Laptop, Restaurant and Twitter) as training
data for other experiments, where the manually annotated dataset was augmented and
used as a test set. With this approach, all data would be labeled by humans, hence the
results would become more legitimate. The results in Table 7.10 show that the augmented
test set receives far higher scores than in its original non-augmented state, with much less
variance in the data (as represented by the STD column). The improvements using the
Laptop and Restaurant datasets are rather high, while the Twitter dataset is evidently
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Best model
5 epochs

Laptop ∪ Restaurant
Acc F1 STD

Gold 44.07 35.33 4.55
+ CR 51.44 50.23 3.46
CR Impact
(rounded %) + 14% + 30% - 32%

Table 7.11.: Evaluations on the Gold dataset using the combined data from SemEval
2014 – Task 4 (Pontiki et al., 2014)

less useful for this task (further confirming earlier discussions on the text length being
vital). The Laptop and Restaurant datasets show the best scores. For a final experiment,
these were joined, combining both their individual training and testing datasets to study
the possible outcome on the Gold dataset. This is shown in Table 7.11. The results
are promising, and also indicate that the Restaurants dataset was the most appropriate
data source for the current data residing in the Gold dataset – when comparing the
previous results (Table 7.10) to the combined dataset (Table 7.11). Nevertheless, both
the Restaurant and the combined dataset outperform the generated dataset substantially,
which was quite surprising – indicating that carefully labeled data (albeit out-of-domain)
far outperforms massive amounts of automatically labeled data for these specific tests.
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8. Evaluation and Discussion
Having presented experiments and results, there are several standing questions to be
settled. Starting with the research questions, each will be answered in turn, before a final
evaluation of the main goal for the thesis. Followed are some thoughts and discussion on
the fields of Entity-level Sentiment Analysis (ESA) and Coreference Resolution (CR),
before a final discussion on the generated dataset.

8.1. Evaluating Research Questions and the Main Goal
Below are the three defined research questions, followed by the overall goal for the thesis.

Research question 1 How well do Coreference Resolution models perform when evaluated
on out-of-domain data?

This question eventually became the very basis for the thesis, requiring much more
attention than initially presumed. Nevertheless, it turned out to be the most rewarding
one to answer at that, laying foundations for future research in the field of CR through
the work published on out-of-domain evaluations and conversion of datasets.

Results show that CR models take an excessive hit when faced with out-of-domain
data. The SpanBERT model (Joshi et al., 2019a) proved to be the most generalizable
CR model to out-of-domain datasets, but still has a long way to go. For instance,
performance dropped as much as 37% from the reported scores on the OntoNotes dataset
when evaluated on the GUM dataset. The undefeated performance of SpanBERT,
however, is of little surprise, as variations of BERT models have excelled in a vast
majority of Natural Language Processing (NLP) tasks in the past year (Radford et al.,
2019), and CR seems to be no exception. With the random masking of spans, SpanBERT
has proved to be effective in identifying the inherent semantic and syntactical prop-
erties contained within these spans of text – and is clearly a successful modeling approach.

But what is implied by the performance of a model? This is somewhat hard to
define. Performance of a CR model depends on so much more than just numbers, and
is rather based on the specific desired outcome for a system – heavily dependent on
empirical evaluation. Specific tasks can involve only resolving coreferences for companies,
certain topics and predetermined persons. Modeling this in advance is frankly impossible,
and thus the presented evaluations are only a guideline for how the selected four models
perform on the tested data. If predictability is desired across different data sources, the
deterministic model by (Lee et al., 2013) is perhaps preferable, achieving the lowest
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variance in the predictions on out-of-domain dataset evaluations (p. 87). As concluded,
however, for general-purpose data, SpanBERT is the best choice.

Research question 2 Can current datasets for Entity-level Sentiment Analysis be used
as out-of-domain evaluation baselines?

As briefly discussed in Section 7.3.2 (p. 94), results on out-of-domain baselines show
that the existing Laptop and Restaurant datasets could be used for evaluations on the
dataset annotated by Distant Supervision (DS). This is an important finding, as it
enables automated approaches to use existing annotated data to verify the performance
generated datasets, thus the development of datasets can be altered according to the
evaluated results. Alteration must be approached with care, however, as tuning the
DS techniques to give optimal results on out-of-domain data, may ultimately result in
abysmal performance on data for the desired application. As originally presented in Table
7.7 (p. 95), results on the training sets are considerably lower than for the tests. This
indicates that larger amounts of out-of-domain data (i.e. training sets) will eventually
reduce the final scores. An idea to handle this is presented in Future Work, Section 9.3.2,
with an example of a metric to include this difference between training/test sets as a
heuristic for evaluation purposes.

Research question 3 Can augmentation of datasets result in improvements using Entity-
level Sentiment Analysis models?

Final results do not give a clear understanding of the benefits of dataset augmentation.
The initial approach of augmenting training data to give the models more input to
learn from proved to be inefficient, causing increased entropy in the data in most cases,
negatively impacting the involvement of CR. Although the Laptop dataset saw an
average increase of 3% by augmenting its training data, the LCF BERT model on the
same dataset gave undesired outcomes. This indicates that the process was not robust,
nor reliable.

To further study the task, it was attacked from another angle by augmenting
test data – hypothesizing that models would be able to better predict segments of data,
rather than the full texts. This approach, using the Laptop and Restaurant datasets as
training data, yielded significant improvement of accuracy and F1 scores when testing on
the gold dataset – also reducing the standard deviation of the produced results. Four
confusion matrices are presented, including the recently discussed data – trained on LCF
BERT. Figure 8.1 represents the last results found in the experiments chapter (p. 98),
along with the baselines for the original Laptop and Restaurant datasets, merely as a
visual reference guide for desired results in a 3× 3 confusion matrix. The labels positive,
neutral and negative are represented by , and , respectively. A perfect classification
would show red values along the diagonal, leaving everything else white. Orange vales
indicate a majority of correct predictions, moving down through yellow, and white finally
indicates zero correct predictions. The CR augmentation shows improvement, enabling
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Figure 8.1.: Confusion matrix for Gold evaluation dataset and coreference augmentation.
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Figure 8.2.: Confusion matrix for Restaurant and Laptop baselines

the ESA model to predict true positive values at a much higher rate (increased by 60
percent points). However, values for true negatives and true neutral are marginally
worse, losing 7 and 5 percent points. Irrespective, the final F1 score is much greater for
CR – with higher overall precision and recall of correctly classified documents – and thus
the entity-centric segmentation algorithm turned out to be valuable when applied to test
data. Finally, addressing the research goal:

Goal Establish a well-generalized Coreference Resolution model to augment the task of
Entity-level Sentiment Analysis

A well-generalized CR model has been established, evaluated on a great variety of data.
As discussed earlier, SpanBERT is one of many models based on the work by Lee et al.
(2018). It could be argued that other models with a similar foundation would produce
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similar results to the SpanBERT evaluations – which cannot be verified without additional
testing on the specific models. The reasoning behind selecting SpanBERT, however, is
due to its performance on the OntoNotes dataset being substantially greater than for its
preceding models (see Table 3.7, p. 41). From the studies conducted, not to mention the
indisputable performance gains from BERT models in recent times, it can be stated with
confidence that SpanBERT is the model of choice for domain-independent, generalized CR.

Assessing the latter part of the goal, the augmentation of ESA has turned out
to be somewhat vague, as discussed above for Research Question 3. The end result,
after revising the hypothesis, was discovered quite late – leaving few resources left for
augmentation of additional test data. Furthermore, note that augmenting the test data
may not be a worthy approach for some applications, such as those regarding shared
tasks and other competitions, as discovered through the manipulation of this data in
previous experiments (Table 7.9, p. 97). The interest for this thesis lies in researching
real world applications, especially involving longer articles. For instance, if a new
document arrives into a system, it should be able to manipulate it as much as needed in
order to produce the best results for applying in-depth text analysis. Results show that
augmentation of previously unseen data has been effective, motivating further research
in the fields of ESA and CR as a joint system.

8.2. Discussion

The two first sections concern the task of Entity-level Sentiment Analysis (ESA), followed
by a discussion on the constraints of Coreference Resolution (CR) and use cases for
generating datasets.

8.2.1. Spotting Patterns in Overlapping Data

From the presented results on ESA through various experiments, it can be tough to
discern between good and bad values, as plenty of them are found in similar ranges
(often occurring between 60-70). Regardless, LCF BERT consistently performed better
than the other models, but why? One underlying reason is the BERT implementation
and the transformer architecture.

Initially caused by a mishap, data was generated in such a way that an overlap
existed between the segments found in training and testing data. This resulted in the
testing data containing similar language to that found in training data, and in some
cases the very same text, only with different entities masked as the unknown entity to be
classified ($T$). Consequently, some of the overlapping texts would be written by the
very same author. When evaluated using the previously set hyperparameters (p. 93),
results showed that the LCF BERT model was reaching exceptionally high accuracy
and F1 scores. To further investigate how much of the overlapped data the models
were able to learn from, the number of epochs was set to 20 for LSTM, TD-LSTM and
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CABASC, and 15 for LCF BERT. This was a quite extensive experiment (in terms of
computational time), but returned interesting results – presented in Table 8.1. Note
how LCF BERT did not reach convergence before it was stopped at 15 epochs for both
datasets. The model has clearly been able to detect a pattern between the noise of
masked entities, whereas the other models still struggle with this task, producing similar
(and in some cases worse) results compared to the non-overlapping data (Table 7.5, p.
93). Concluding, the results do not represent any real world translatable applications,
but are an example of the importance of non-overlapping data, as well as illustrating the
remarkable effectiveness of pre-trained language models.

LSTM TD-LSTM CABASC LCF BERT
Acc F1 Epoch Acc F1 Epoch Acc F1 Epoch Acc F1 Epoch

Overlap
Train/Test 67.92 62.82 4/20 64.39 60.57 7/20 62.27 52.96 20/20 98.82 98.87 15/15

+ CR 65.97 55.64 16/20 64.20 54.72 11/20 62.74 52.19 19/20 98.74 98.64 15/15

Table 8.1.: Overlapping data and scores on different models, alongside the number of
epochs needed to produce the best model. The boldface is added to emphasize
the extremely high values for the LCF BERT model.

8.2.2. Issues with Current Annotation and Modeling Schemes

Current models are set up to handle the entities or aspects within a text individually.
This is the biggest flaw uncovered, regarding efficiency of both the data annotation
structure and modeling approach. Models have to process the same input N times for N
entities occurring in the text in current systems – a number which can quickly increase
along with the text length. Caching could resolve some problems, but is hardly an elegant
solution, as the texts contained in the datasets are still multiplied for each entity. The
transformer architecture, however, as described in Background (p. 21), could be utilized
to handle multiple entities as input. Some thoughts on proper usage of transformers are
presented in Future Work, Section 9.3.1, diverging from that found in existing BERT
solutions (Rietzler et al., 2020; Zeng et al., 2019).

8.2.3. Re-implementation and Code Butchering

The model by Lee et al. (2018) has clearly seen great traction in the development of
recent CR models. It has served as the backbone of the models proposed by Subramanian
and Roth (2019), Fei et al. (2019), Joshi et al. (2019b), Joshi et al. (2019a), Wu et al.
(2019) and Zhang et al. (2019) and will likely see heavy usage in coming research. A quite
severe problem with the indisputable re-implementation of other systems has resulted in
irreproducible and inconsistent code for the aforementioned models – i.e. butchering of
the source code. In the process of determining the quality and legibility of published code,
several similar files were found, with tiny changes between them. At first glance, this
may not seem like a problem, but as systems become open source, some of the code-bases
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may see updates over time, as valiant contributors handle bugs, tune parameters and
make other improvements to the systems. In an example where six other models (such
as those above) rely on code published by a seventh, e.g. the model by Lee et al. (2018),
and any of the seven systems change its code, there are six outdated code-bases – some
of which may be the new source for forthcoming research. For this reason, it is with
great importance for future researchers to improve their coding guidelines, updating
licenses and documentation, as well to utilize symbolic links to reused code. In such a
way, coming systems may be reused with a clear understanding of where any given file
was first conceived, avoiding further mishaps.

8.2.4. Unleashing Coreference Resolution

The end result of this thesis, being the augmentation of documents, has primarily regarded
the three ESA datasets, comprising online reviews and Twitter posts, a generated dataset
on news items as well as a manually labeled dataset on the same type of data. Throughout
the Data chapter, the correlation between text length corresponding to the number of CR
clusters was discussed, concluding with CR having the most prominent effect on longer
documents. It can, therefore, be argued that CR is well suited for the news domain.
However, there is a constraint on how a CR model can prove its worth when aimed at
augmenting predetermined entities.

Constraints of Predetermined Classification After the experiments on CR were
conducted, the observed value of CR was clearly held back by the constraints of the
data for ESA. CR models can detect additional details of the input, not labeled within
any dataset for ESA, which leaves the model constrained to look for coreferences to the
target entity already defined (in order to improve the chances of correct predictions) –
which is the case for this thesis. This is impossible to circumvent when aiming to produce
numerical results, but the possible use case for CR expands far outside the limits of
predetermined annotations and datasets.

A Real World Application Intuitive and observed value of a system is hard to
present scientifically, as there is no way to report the findings outside visualizations.
By looking up an arbitrary article (original source from TechCrunch1), the difference
between constrained and non-constrained CR is tremendous – illustrated in Figures 8.3
and 8.4. The text may be illegible, but the important part is that each unique entity is
represented by the same color. By utilizing unconstrained CR, the real world application
for augmenting ESA becomes much more attainable. Such a wide range of augmentation
requires extensive rewriting of current systems, and is left for Future Work in Section
9.3.4.

1https://techcrunch.com/2020/05/11/elon-musk-restarts-tesla-factory-in-
defiance-of-county-orders/
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Figure 8.3.: An example of when a Coreference Resolution model is constrained to an
entity.
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Figure 8.4.: An example of when a Coreference Resolution model is unconstrained.
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8.2.5. The Generated Dataset

Early in the research phase, the value of a generated dataset was perhaps overestimated.
The leading hypothesis at the time was that a massive dataset would, in good faith,
return significant results for both CR and ESA. Looking back, this train of thought was
rather naïve. Although the dataset did produce somewhat passable results for the ESA
task (p. 95), the end result left much to be desired. The novelty of the procedure must
be emphasized a little, though. By including aliases and relations from the knowledge
graph, a large set of additional information about each entity was easily available. A
key factor was the selection of which relations to include. This was a heavily iterative,
error-prone and time-consuming process, and an optimal solution can never truly be
found (without a preset specification of the desired results). The final dataset had to be
selected purely on visual inspection from a random selection of the data, as manually
inspecting over 47,000 texts for every change in the system is effectively impossible. Thus,
the definition-of-done was simply set as good enough. Having said that, this approach
has turned out to include far too many uncertainties to soundly base future development
on. Its use case for text mining tasks may very well be valid, especially the incorporation
of world knowledge – as suggested by Ferreira Cruz et al. (2020), but not so much for
automatic annotation.
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9. Conclusion and Future Work
Wrapping up the thesis, a conclusion is presented, followed by contributions and sugges-
tions for future work. This has been an exciting journey, leaving behind a high interest
to keep studying the fields in the coming years.

9.1. Conclusion

This thesis has presented two larger experimental chapters, with the goals of 1) defining
a generalized Coreference Resolution (CR) model, and 2) evaluating Entity-level
Sentiment Analysis (ESA) models with and without augmentation by CR. Extensive
evaluation has proven to be essential in order to determine robust and generalized
models for CR, as results on one domain do not necessarily translate well to another. To
rectify the lack of thorough evaluations in current literature, three other datasets have
been converted to a unified format, enabling evaluations on a much broader level than
previously possible. Experiments show that a model based on pre-training and Neural
Networks (NNs) produces the best results on the tested datasets – defining the most
desirable model for augmentation tasks. However, the performance of NN-based models
quickly diminishes when evaluated on previously unseen data, with an average reduction
of 27%. The deterministic model, on the other hand, maintained similar performance on
all data, motivating further research into stronger deterministic models.

The most pressing issues for ESA also regard datasets. Datasets for ESA are
scarce – especially for the news domain. In an attempt to improve upon this, a dataset
has been generated using real-world articles with a novel technique involving world
knowledge and annotation by Distant Supervision (DS). Evaluation of the generated
dataset shows that already existing datasets, although out-of-domain, may be used as
evaluation baselines – enabling efficient verification of data quality for future datasets.

Through an expansive set of experiments on the two main topics, it has been
shown that CR can be used to augment the task of ESA. This was done by entity-centric
segmentation of longer texts, using resulting coreference links from a CR model. These
findings may aid the analysis of data from media outlets and other sources to a greater
extent, by attributing sentiment polarity towards entities with higher accuracy. With
a refined implementation, this could lead to a detailed view of how the many entities
are represented in mass media today. Finally, official sources for datasets have shown
interest in the applications for the unified format presented in this thesis, and integration
will be initiated in the near future.
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9.2. Contributions

There are a few contributions worth mentioning, expanding upon the brief list found in
the introduction.

A Unified Format

The defined CorefLite format was largely based on previous work by Lee et al. (2018),
converting the OntoNotes dataset from the rather complex CoNLL format to a much
more convenient JSON-like format. The CorefLite took this one step further, reducing
the format to the common denominator between all available datasets – words and
coreference clusters. As shown in this thesis, the three datasets GUM, LitBank and
PreCo have been successfully converted to this format, and the official sources for the
GUM dataset (Zeldes, 2017) have accepted the format for future integration1. At this
time, the two other sources for datasets have yet to respond. The conversion system can
be found on GitHub2.

Comprehensive Evaluations

Based on the literature review conducted, as well as all other publications read throughout
this thesis, a set of CR models have been extensively tested on a larger selection of
datasets from varying domains – for the very first time – with help from the CorefLite
formatted datasets. This allows for future researchers to gain detailed insights into
the models they may be aiming to develop, as well as for research into the creation
and updating of datasets for the task. The commonly used OntoNotes dataset has
shown its weaknesses, especially when models are trained on OntoNotes and tested on
out-of-domain text. These findings motivate the integration of the CorefLite format as
input data for future models to be trained on.

Definition of a Good Coreference Model

Closely related to the previous contribution, a well-generalized CR model has been
established – namely SpanBERT (Joshi et al., 2019a). Current literature also places
SpanBERT as one of the best performing models, but these results are merely based
on evaluations on the OntoNotes dataset. SpanBERT performs well across all datasets
tested in this thesis, and can thus be confidently used as a baseline for coming models.

Augmentation with Coreference Resolution

Although the final results are not the most definite, there has been found a positive impact
by handling previously unseen data using CR, followed by segmenting the input text
on detected entities. This process somewhat alleviates the need for handling long-term

1https://github.com/amir-zeldes/gum/pull/58
2https://github.com/ph10m/CorefLite
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dependencies, and benefits downstream tasks like ESA to tackle individual segments
better than the original data.

9.3. Future Work

As the final portion of this thesis, a selection of topics to consider for future work are
presented. The two first sections are dedicated to Entity-level Sentiment Analysis (ESA),
while the rest regards Coreference Resolution (CR).

9.3.1. Handling Multiple Targets with Attention

The current ill-defined strategy for ESA is worrying from a research perspective. Current
work splits the focal point between implicit aspects (Zeng et al., 2019) and explicit
entities (Li and Lu, 2019), while both rely on the very same data. This is an undeniable
hindrance for further development. The field has, possibly for this reason, no agreed upon
methodology as of yet – which was the very basis for attempting to approach it from
another angle, through the augmentation of data. For future research into the field – with
or without augmentation – there is a merit to employing attention mechanisms (Vaswani
et al., 2017) at a much broader level than previously done. Attention mechanisms
ultimately hold information for each token in the input data, and can thus handle
multiple entities at once with a proper modeling scheme. This simplifies the current
approach, which processes the same text numerous times, once for each occurring entity.
Regardless of the approach, the current systems are considered to be both ineffective and
inefficient. Hopefully, newer research into attention and specialized models for extracting
targeted sentiment can resolve this current diversion happening for ESA research.

9.3.2. Metrics for Out-of-domain Evaluation of Sentiment Analysis

For further development of out-of-domain datasets, evaluating on existing datasets has
proved a worthy approach. Thus, evaluating with all available data – both training and
testing sets – may be desirable. As results in this thesis show, it is desirable to achieve
similar performance on both sets in order to create a generalized model. Thus, by using
the differences of the predictions for the train and test sets as a heuristic, a metric may be
defined by incorporating their respective scores, penalizing large differences. An example
of such a metric could be defined as:

metric = min
F1∈{train,test}

−
((

log(∆d) + 0.0001
)
· max
F1∈{train,test}

)
∆d = |F1train − F1test|

The addition of 0.0001 is to circumvent the undefined value of log(0), thus the score
would be the same as the test score for a perfect evaluation. The ∆ for the Laptop
dataset is small (∆d = 2.26), which results in a score of 59.15− log(2.26) · 61.41 = 37.40.
The ∆ is somewhat bigger for the Restaurant dataset (∆d = 4.23). Observe how this
affects the defined metric: 58.92− log(4.23) · 63.15 = 19.37. A metric of this kind will
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help distinguish the models performing great on one set, but worse on another of the
same data type – promoting well balanced models.

9.3.3. Defining Coreference Entity Importance with Metrics

For the better part of this thesis, the LEA metric has been used, specifically the F1
score. This was based on the work by Moosavi and Strube (2016), attempting to adjust
the scores to how important an entity is for a given text. As stated when introducing
the metric (p. 27), the importance function may be altered according to the desired
outcome. This could unfortunately not be prioritized within the scope of this thesis. The
importance function is per now defined as default, using the sum of coreference links for
an entity as the importance:

importance(e) = |e| (9.1)

However, further improvement of the equation could involve knowledge graphs. Much
alike the process for creating the dataset with the Strise Knowledge Graph, external
knowledge graphs can be used (e.g. WikiData) to populate an entity importance score
with its number of found relations within an input text. If an article mentions Satya
Nadella (the Microsoft CEO) once, and then continues mentioning Microsoft ten times,
the importance score for Satya Nadella would still be 1. If the importance score is
updated to include relations, such as the sum of all its found relations, his assigned
importance score would be 11 – which better resembles how a human would intuitively
attribute importance (although somewhat naively). A possible implementation is given
in Equation 9.2.

importance(e) = |e|+ |mention(r) ∀r ∈ Re| Re = relations for entity e (9.2)

9.3.4. An Unconstrained Solution

The already developed system can be slightly modified to support general augmentation,
rather than entity-constrained, by reworking the segmentation algorithm. Future systems
– although probably not research-focused systems – may benefit from performing a wide
analysis of the input data to the model, creating segments for any entity found, as opposed
to one single predefined entity. Instead of looking for antecedents for the predefined target,
all targets can be passed as input, creating unique segments in an iterative manner. The
defined parameters may be modified to avoid a large quantity of segments, however, as
some initial examples produced up to hundreds of segments for a single article. Whether
this is desired or not must be tested further.

9.3.5. Rectifying Coreference Links with Gradient Boosting

While a good CR model may detect a set of clusters, it cannot always decide between
two similar candidates. An intriguing approach was discovered while researching the
GAP dataset (Webster et al., 2018), by generating features for the input coreference
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data, using a gradient boosting classifier to determine which coreference link is correct
for a span of text – provided two or more links. Using textual features, such as those
mentioned earlier in Related Work (from p. 35), a gradient boosting approach may help
in resolving difficult coreference clusters. A brief experiment on the GAP dataset was
conducted using the CatBoost library (Dorogush et al., 2018), achieving higher scores
in 30 seconds of training than a selection of hardware-intensive CR models (Clark and
Manning, 2015; Wiseman et al., 2016; Lee et al., 2017). Later results fine-tuned BERT
models to improve the task (Attree, 2019; Ionita et al., 2019). The results are shown
in Table 9.1. The downside of employing a BERT model to complete this task is the
computational time required. This process is enabled after the initial coreference links
have been detected. By adding several BERT models in an ensemble, the system quickly
becomes too slow to be useful in real-time applications. Regardless, for future systems
(avoiding the ensemble of models), the technique of deciding between two coreference link
candidates can be implemented before the final prediction step of a CR system, possibly
providing additional robustness.

Model Overall F1 Score
Clark and Manning (2015) 55.0
Wiseman et al. (2016) 64.2
Lee et al. (2017) 64.7
CatBoost 74.7
Ionita et al. (2019) 90.0
Attree (2019) 91.1

Table 9.1.: A selection of models versus the gradient boosting approach using CatBoost
on the GAP dataset.

9.3.6. A New, Simpler, Rule-based Model

To further test if rule-based models can perform similarly to deep learning models when
exposed to unseen, out-of-domain data, a broader selection of rule-based models should
be set up. Results in this thesis show that the rule-based implementation has the least
variation of predictions between the evaluated domains of data, but the results were still
not optimal. Some suggestions could be to base the model on the features discussed in
Hobbs (1978), Lappin and Leass (1994), Lee et al. (2013), Durrett and Klein (2013),
Clark and Manning (2015) and Clark and Manning (2016b).

9.3.7. Reworking Models to Train on CorefLite Data

Current models do not support training using the CorefLite formatted data. The models
used may be reworked to support the format by reducing the information used in datasets,
or by appending empty data fields to the files, in order to mimic the currently used
datasets. The former suggestion is preferred. For instance, SpanBERT uses all the
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metadata available in the OntoNotes dataset. By reducing the functions to only consider
tokens and clusters, the model can be trained on the three other converted datasets in
this thesis. An example of metadata used is speakers and genre. For the interested reader,
wanting to take on this work (for SpanBERT specifically), it would involve modifying the
independent.py file, tracing the changes from the function get_predictions_and_loss3.

9.3.8. Knowledge Graphs and World Knowledge

The incorporation of world knowledge to improve CR has been studied in-depth by Zhang
et al. (2019), and deserves more attention in future research. A similar model to that
of Zhang et al. (2019), altered with work done on relation extraction as described in
Trisedya et al. (2019), serve as an intriguing approach for future models on this topic.
As for existing models, NeuralCoref supports the addition of conversion dictionaries
(conv_dict for short), allowing to feed the model with knowledge, clarifying information
on previously unknown entities. For instance, by adding {“ABC”: “company”} gives the
model the ability to link references such as “the company” to the entity “ABC”. This could
additionally be incorporated in a rule-based model, as a custom conversion dictionary
can be populated by simply doing look-ups in a knowledge graph. This knowledge-based
information can be utilized as a heuristic in determining between coreference links, in
a similar manner to how the gradient boosting technique does the same with textual
features.

9.3.9. Specification of References in Datasets

As noted by Sukthanker et al. (2018), CR datasets tend to miss certain specifications
of what type of resolution they aim at by using a given dataset. Certain references
are rare and do not necessarily make sense to be used in the training process of some
models. If the desired system will never see the references that are contained within the
training dataset, unused references would lead to noise in the data, and possibly cause
worse predictions. Therefore, by specifying types of resolution, better models may be
developed for specific purposes. Two lists, added in Appendix I.1 and I.2, are composed
of constraints and interpretation rules to be considering when handling reference types
such as indefinite noun phrases (NPs), definite NPs, demonstratives and several cases of
anaphora and cataphora. This may be helpful for future creation of datasets, and the
specification of references.

9.3.10. Cross-lingual Coreference Resolution

Ferreira Cruz et al. (2020) discusses cross-lingual aspects of coreference resolution. The
findings motivate the following requirements to set up a cross-lingual model:

• A BERT model for a specific language. A Norwegian model was released in March,
20204

3https://github.com/mandarjoshi90/coref/blob/master/independent.py#L249
4https://github.com/botxo/nordic_bert
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• Computing power to fine-tune this with span prediction, e.g. SpanBERT (Joshi
et al., 2019a)

• Access to a language-specific generalized language model like those provided by
spaCy5 (Honnibal and Montani, 2017)

• Identifier models to detect part-of-speech (POS) tags, entities and additional textual
information. Many of these tasks can also be performed by spaCy

Although this helps many of the preliminary tasks in order to create a CR model, the
corpora available for training is still required. A possible suggestion is to use word vectors
for a specific language, and thus align the word vectors with similar words from another
language (e.g. English). This is feasible as the representation of words are very similar
across languages. This has been studied in-depth by Schuster et al. (2019).

9.3.11. Cross-event Coreference Resolution

As opposed to handling coreference in a local context, as has been the case for this thesis,
the inclusion of cross-event CR requires the identification of references to certain events.
For instance, take the presidential election in 2016. References to this event can be
mentioned in newer texts. By creating a system to efficiently hold information across
events, the entities “Trump” and “Hillary” can be referenced to the event itself, and thus
referenced to texts mentioning the very same event, giving a much richer representation
of entities in a global context.

5https://spacy.io/usage/models
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Appendices
A. Literature Review Tables
In the following subsections are the tables referred to in the Literature Review (Section
3.1).

A.1. Query Q1

Initially gathered material using query Q1 is found in Table A.1, where the result of the
quality assessment can be found in Table A.2

A.2. Query Q2

Initially gathered material using query Q2 is found in Table A.3, where the result of the
quality assessment can be found in Table A.4.

A.3. Final Review Library

The final review library is shown in Table A.5.

B. Sentiment Dataset Analysis
Figures B.1, B.2, B.3, B.4 and B.5 contain a more detailed view of the document length
distribution discussed in Section 4.2.
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ID Title Author(s)
Q1_01 Sanaphor++: Combining Deep

Neural Networks with Semantics for
Coreference Resolution

Plu et al. (2018)

Q1_02 Revisiting Joint Modeling of Cross-
document Entity and Event Corefer-
ence Resolution

Barhom et al. (2019)

Q1_03 SpanBERT: Improving Pre-training
by Representing and Predicting
Spans

Joshi et al. (2019a)

Q1_04 Evaluation of Named Entity Corefer-
ence

Agarwal et al. (2019)

Q1_05 Character Identification on Multi-
party Dialogues Using Mention-Pair
Coreference Resolution

Ambrošic and Dugonjic

Q1_06 Neural Relation Extraction for Know-
ledge Base Enrichment

Trisedya et al. (2019)

Q1_07 Aspects of Coherence for Entity Ana-
lysis

Heinzerling (2019)

Q1_08 Incorporating Context and External
Knowledge for Pronoun Coreference
Resolution

Zhang et al. (2019)

Q1_09 Coreference Resolution: Toward End-
to-End and Cross-Lingual Systems

Ferreira Cruz et al. (2020)

Q1_10 Survey on Coreference Resolution,
Relation and Event Extraction

Verma and Bhattacharyya (2018)

Q1_11 Applying Coreference Resolution for
Usage in Dialog Systems

Rolih (2018)

Q1_12 Distributed Representation of Entity
Mentions Within and Across Multiple
Text Documents

Keshtkaran et al. (2019)

Q1_13 Event Coreference Resolution: A Sur-
vey of Two Decades of Research

Lu and Ng (2018)

Table A.1.: Retrieved publications for query Q1
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B. Sentiment Dataset Analysis

ID QC1 QC2 QC3 QC4 QC5 QC6 Score
Q1_01 1 0.5 0 0 1 1 3.5
Q1_02 0.5 1 0 1 0 0.5 3
Q1_03 1 1 1 1 0 1 5
Q1_04 1 1 1 0 0 1 4
Q1_05 0.5 0.5 0.5 1 0 0 2.5
Q1_06 0.5 1 0.5 1 1 0.5 4.5
Q1_07 0.5 0 0.5 0 0 0 1
Q1_08 1 1 1 1 1 1 6
Q1_09 1 1 1 0 1 1 5
Q1_10 1 0 0 N/A N/A N/A 1
Q1_11 1 0 0 0 0 0 1
Q1_12 1 0 0 0 0 0 1
Q1_13 1 1 1 0 1 0 4

Table A.2.: Results for query Q1. Publications with a quality assessment score ≥ 4
marked as green.
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ID Title Author(s)
Q2_01 Higher-order Coreference Resolution

with Coarse-to-fine Inference
Lee et al. (2018)

Q2_02 Anaphora and Coreference Resolu-
tion: A Review

Sukthanker et al. (2018)

Q2_03 Entity-Centric Joint Modeling of Ja-
panese Coreference Resolution and
Predicate Argument Structure Ana-
lysis

Shibata and Kurohashi (2018)

Q2_04 Neural Coreference Resolution with
Deep Biaffine Attention by Joint
Mention Detection and Mention Clus-
tering

Zhang et al. (2018)

Q2_05 End-to-end Deep Reinforcement
Learning Based Coreference Resolu-
tion

Fei et al. (2019)

Q2_06 Coreference Resolution with Entity
Equalization

Kantor and Globerson (2019)

Q2_07 BERT for Coreference Resolution:
Baselines and Analysis

Joshi et al. (2019b)

Q2_08 Gender Balanced Coreference Resol-
ution

Tan and Zhao (2019)

Q2_09 Coreference Resolution as Query-
based Span Prediction

Wu et al. (2019)

Q2_10 Coreference Resolution for Ana-
phoric Pronouns in Texts on Medical
Products

Krawczuk and Ferenc (2018)

Q2_11 A Study on Improving End-to-End
Neural Coreference Resolution

Gu et al. (2018)

Q2_12 Anaphora resolution with the AR-
RAU corpus

Poesio et al. (2018)

Q2_13 Robustness in Coreference Resolution Moosavi (2020)
Q2_14 A Neural Entity Coreference Resolu-

tion Review
Stylianou and Vlahavas (2019)

Q2_15 Improving Generalization in Core-
ference Resolution via Adversarial
Training

Subramanian and Roth (2019)

Q2_16 The referential reader: A recurrent
entity network for anaphora resolu-
tion

Liu et al. (2019)

Q2_17 Ellipsis and Coreference Resolution
as Question Answering

Aralikatte et al. (2019)

Table A.3.: Retrieved publications for query Q2
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ID QC1 QC2 QC3 QC4 QC5 QC6 Score
Q2_01 1 1 1 1 1 1 6
Q2_02 1 1 1 N/A N/A N/A 3+
Q2_03 1 0 0 0 0 0 1
Q2_04 1 1 1 0 0 1 4
Q2_05 1 1 1 0 0 1 4
Q2_06 1 1 0.5 1 0 1 4.5
Q2_07 1 1 1 1 0 0.5 4.5-
Q2_08 1 0.5 0.5 0.5 0 0 2.5
Q2_09 1 1 1 1 0.5 1 5.5
Q2_10 1 0.5 0 0 0 0 1.5
Q2_11 1 1 1 0 0 0.5 3.5
Q2_12 0.5 1 0.5 0 0 1 3
Q2_13 1 1 1 0.5 1 0.5 5
Q2_14 1 1 1 N/A N/A N/A 3+
Q2_15 1 1 0.5 1 0.5 0 4
Q2_16 1 1 1 1 0 1 5
Q2_17 1 1 0.5 0 0.5 0 3

Table A.4.: Results for query Q2. Publications with a quality assessment score ≥ 4
marked as green. + indicates overridden importance as certain assessments
were not applicable (in this case, larger reviews). - indicates an outdated
version of an already included publication, thus being superseded by the
newest version (ID Q2_07 is superseded by ID Q1_03).
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ID Title Author(s) Score
Q1_08 Incorporating Context and External Know-

ledge for Pronoun Coreference Resolution
Zhang et al. (2019) 6

Q2_01 Higher-order Coreference Resolution with
Coarse-to-fine Inference

Lee et al. (2018) 6

Q2_09 Coreference Resolution as Query-based
Span Prediction

Wu et al. (2019) 5.5

Q1_03 SpanBERT: Improving Pre-training by Rep-
resenting and Predicting Spans

Joshi et al. (2019a) 5

Q1_09 Coreference Resolution: Toward End-to-
End and Cross-Lingual Systems

Ferreira Cruz et al.
(2020)

5

Q2_13 Robustness in Coreference Resolution Moosavi (2020) 5
Q2_16 The referential reader: A recurrent entity

network for anaphora resolution
Liu et al. (2019) 5

Q1_06 Neural Relation Extraction for Knowledge
Base Enrichment

Trisedya et al. (2019) 4.5

Q2_06 Coreference Resolution with Entity Equal-
ization

Kantor and Glober-
son (2019)

4.5

Q1_04 Evaluation of Named Entity Coreference Agarwal et al. (2019) 4
Q1_13 Event Coreference Resolution: A Survey of

Two Decades of Research
Lu and Ng (2018) 4

Q2_04 Neural Coreference Resolution with Deep
Biaffine Attention by Joint Mention Detec-
tion and Mention Clustering

Zhang et al. (2018) 4

Q2_05 End-to-end Deep Reinforcement Learning
Based Coreference Resolution

Fei et al. (2019) 4

Q2_15 Improving Generalization in Coreference
Resolution via Adversarial Training

Subramanian and
Roth (2019)

4

Q2_02 Anaphora and Coreference Resolution: A
Review

Sukthanker et al.
(2018)

3

Q2_14 A Neural Entity Coreference Resolution Re-
view

Stylianou and Vla-
havas (2019)

3

Table A.5.: Final review libary from queries Q1 and Q2, sorted by quality assessment
score.
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B. Sentiment Dataset Analysis

Figure B.1.: Density distribution of document length for SemEval 2014, Task 4

Figure B.2.: Density distribution of document length for SemEval 2017, Task 4
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Figure B.3.: Density distribution of document length for SemEval 2017, Task 5

Figure B.4.: Density distribution of document length for ACL-14
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C. Coreference Dataset Analysis

Figure B.5.: Density distribution of document length for SentiHood

C. Coreference Dataset Analysis
The plots in Figures C.1, C.2, C.3 and C.4 illustrate the correlation between document
length and coreference links, by the regression line (with a highlighted confidence interval
of 95%) in the scatter plots. The curves for document length and coreference links are a
result of a kernel density estimation with a Scott estimate (SCOTT, 1979). The results
for LitBank (Figure C.3) are unique, as the dataset primarily has longer documents (but
of similar length), all with varying number of annotated coreference links.
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Figure C.1.: Pairwise plot of document length and coreference links for the Ontonotes
(dev) dataset.
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C. Coreference Dataset Analysis

Figure C.2.: Pairwise plot of document length and coreference links for the GUM dataset.
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Figure C.3.: Pairwise plot of document length and coreference links for the LitBank
dataset. Note that the similarly sized documents (clustering around n =
2100) greatly differ in number of coreference links.
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C. Coreference Dataset Analysis

Figure C.4.: Pairwise plot of document length and coreference links for the PreCo (dev)
dataset.
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D. NeuralCoref

This part of the Appendix considers the formatting and hyperparameters of the Neural-
Coref model.

D.1. Numpy Array Formatting

parsed_ontonotes/
train

numpy
conll_tokens.bin
doc.bin
locations.bin
mentions_features.npy
mentions_labels.npy
mentions_pairs_length.npy
mentions_pairs_start_index.npy
mentions_spans.npy
mentions_words.npy
pairs_ant_index.npy
pairs_features.npy
pairs_labels.npy
spacy_lookup.bin
static_word_embeddings.npy
static_word_vocabulary.txt
tuned_word_embeddings.npy
tuned_word_vocabulary.txt

train.english.v4_gold_conll
dev

...
test

...

D.2. Hyperparameters

Hyperparameters for NeuralCoref found in Table D.1.

D.3. Testing Greedyness

Effect of changing greedyness on the OntoNotes test set are found in Table D.2.
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E. Model Configurations for Coreference Resolution

Parameter Value Description
batchsize 20000 Number of mention pairs to be processed in one batch
numworkers 8 Number of workers to load batches
costfn 0.8 Cost of a false new
costfl 0.4 Cost of a false link
costwl 1.0 Cost of a wrong link
h1 1000 Hidden units on first layer
h2 500 Hidden units on second layer
h3 500 Hidden units on third layer
all_pairs_epoch 200 Epochs for mention pairs pre-training
top_pairs_epoch 200 Epochs for top-pairs pre-training
ranking_epoch 200 Epochs for ranking training
all_pairs_lr 2e-4 Mention pairs learning rate
top_pairs_l2 2e-4 Top pairs learning rate
ranking_lr 2e-6 Ranking learning rate
all_pairs_l2 1e-6 Mention pairs l2 regularization
top_pairs_l2 1e-5 Top pairs l2 regularization
ranking_l2 1e-5 Ranking training l2 regularization
patience 3 Epochs before considering decrease in evaluation metric
min_lr 2e-8 Minimum learning rate
on_eval_decrease next_stage What to do when evaluation metric decreases
lazy 1 Lazy loading of numpy files

Table D.1.: Hyperparameters for the NeuralCoref Training Process

E. Model Configurations for Coreference Resolution
For e2e-coref and SpanBERT, the configuration files (both named experiments.conf ) were
used as default from their respective official sources, as seen listed below. The files can
also be found in provided code. The only changes made were to direct the data sources
toward the correct local dataset destination on the IDUN cluster.

• e2e-coref: https://github.com/kentonl/e2e-coref/blob/master/
experiments.conf

• SpanBERT: https://github.com/mandarjoshi90/coref/blob/
master/experiments.conf

Additionally, to enable training on the cluster, some kernel files had to be modified to
remove unsupported libraries on the cluster. The source file can be found at https://
github.com/mandarjoshi90/coref/blob/master/setup_all.sh. The last
line was changed from
g++ -std=c++11 -shared coref_kernels.cc -o coref_kernels.so -

fPIC ${TF_CFLAGS[@]} ${TF_LFLAGS[@]} -O2 -
D_GLIBCXX_USE_CXX11_ABI=0
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Greedyness
NeuralCoref
Pre-trained

CoNLL F1
OntoNotes test set

0.51 0.493389
0.511 0.493349
0.512 0.493149
0.513 0.493460
0.514 0.493759
0.515 0.494050
0.516 0.493991
0.517 0.493720
0.518 0.494006
0.519 0.494415
0.520 0.494371
0.521 0.494301
0.522 0.494890
0.524 0.495060
0.525 0.495241
0.526 0.495170
0.527 0.494885
0.528 0.494863

Table D.2.: NeuralCoref Greedyness Parameter and the respective CoNLL F1 scores on
the OntoNotes Test Set

to

g++ -std=c++11 -shared coref_kernels.cc -o coref_kernels.so -
fPIC ${TF_CFLAGS[@]} \${TF_LFLAGS[@]} -O2

The training process on the cluster for both e2e-coref and SpanBERT are compared in
Figure E.1. The x-axis represents iterations. The e2e-coref was left training for 96 hours
(never exits unless manually enforced), and the SpanBERT model ran for approximately
8 hours.

F. Annotation Tool

A screenshot of the developed annotation tool can be seen in Figure F.1. The full system
is available at https://github.com/ph10m/PandAnnotator.
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G. Evaluation Tables

Figure E.1.: SpanBERT (orange line) and e2e-coref (blue line) and iteration steps on the
IDUN Cluster.

G. Evaluation Tables

G.1. Out-of-Domain

Full out-of-domain results for OntoNotes, GUM, LitBank and PreCo are in Tables G.1,
G.2, G.3 and G.4.

G.2. In-domain

Full evaluation results for OntoNotes (news) are in Table G.5 and GUM (news) in Table
G.6.

G.3. Unmodified Datasets

Unmodified dataset evaluations (continuing from Chapter 6) are in Tables G.7 and G.8.
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Figure F.1.: The Pandas Dataframe Annotation Tool
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D
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M
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41.08
47.90

50.19
27.69

35.69
38.46

33.49
35.81

43.70
23.02

30.16
39.80

C
oreN

LP
Statistical

76.22
43.33

55.25
67.01

27.21
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47.80
25.41

33.18
62.23

24.07
34.71

42.38

N
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73.10

26.77
39.19

67.00
15.59

25.30
45.92

19.26
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61.18
13.19

21.70
30.54

SpanBERT
79.56

46.56
58.74

72.37
35.59

47.71
59.65

32.78
42.31

68.40
32.87

44.41
49.59
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D
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33.69
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48.52

C
oreN
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Statistical

76.14
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68.09

40.02
50.41

56.01
39.09

46.05
63.93

36.51
46.48

53.02

N
euralC

oref
74.24

33.88
46.53

68.50
25.34

37.00
55.82

32.65
41.20

63.43
22.42

33.13
41.57

SpanBERT
79.47

53.70
64.09

72.99
45.05

55.71
63.80

46.54
53.82

70.05
42.48

52.89
57.87
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G. Evaluation Tables

Dataset
OntoNotes MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 57.21 46.18 43.72 49.04 40.69 50.52 40.61

CoreNLP
Statistical 66.71 53.02 48.93 56.22 55.29 43.49 48.69

NeuralCoref 55.24 44.74 48.21 49.40 59.91 30.59 40.50
SpanBERT 81.71 73.64 73.01 76.12 71.15 71.13 71.14

Table G.7.: F1 evaluations + LEA metric on the full OntoNotes test dataset

Dataset
GUM MUC B-CUBED CEAF CoNLL LEA

F1 F1 F1 F1 Prec. Rec. F1
CoreNLP
Deterministic 47.90 35.69 35.81 39.80 43.70 23.02 30.16

CoreNLP
Statistical 55.25 38.70 33.18 42.38 62.23 24.07 34.71

NeuralCoref 39.19 25.30 27.14 30.54 61.18 13.19 21.70
SpanBERT 58.74 47.71 42.31 49.59 68.40 32.87 44.41

Table G.8.: F1 evaluations + LEA metric on the full GUM dataset
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H. DistilBERT SST-2 Configuration

Parameter Value
activation gelu
architectures [ "DistilBertForSequenceClassification" ]
attention_dropout 0.1
dim 768
dropout 0.1
finetuning_task "sst-2"
hidden_dim 3072
id2label { "0": "NEGATIVE", "1": "POSITIVE" }
initializer_range 0.02
label2id { "NEGATIVE": 0, "POSITIVE": 1 }
max_position_embeddings 512
model_type "distilbert"
n_heads 12
n_layers 6
output_past true
pad_token_id 0
qa_dropout 0.1
seq_classif_dropout 0.2
sinusoidal_pos_embds false
tie_weights_ true
vocab_size 30522

Table H.1.: DistilBERT fine-tuning configuration

I. Future Work – Rule-based Models
The two appendices found here contain some constraints and pronoun interpretation
preferences to consider for future rule-based models.

I.1. Constraints for References

In order to determine references, a number of constraints need to be considered. Many of
these are inspired from the excellent lecture slides from Columbia University1 and Stanford
University2 with Christopher Manning, the author behind several models referred to in
this thesis.

1http://www1.cs.columbia.edu/~kathy/NLP/ClassSlides/Slides09/Class19-
Pronouns/myref.pdf

2https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1162/handouts/
cs224n-lecture10-coreference.pdf
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I. Future Work – Rule-based Models

Number agreement

• John’s parents like opera. John hates it (opera)

• John’s parents like opera. John hates them (parents)

Person/case agreement

• Nominative: I, we, you, he, she, they

• Accusative: me,us,you,him,her,them

• Genitive: my,our,your,his,her,their

“George and Edward brought bread and cheese. They shared them.”

Gender agreement

• Charlie has a Porche. He/it/she is attractive

Syntactic constraints

This is closely related to binding (in linguistics), also called the binding theory.

• John bought himself a new Volvo. (himself = john)

• John bought him a new Volvo. (him = NOT john)

Discontinuous sets

Mentions across different sentences.

• John and Anna bought a boat.

• ...

• They were happy with it!

Selectional restrictions with knowledge

• John left his plane in the hangar.

“He had flown it from Memphis this morning”. “It” can refer to both the plane and the
hangar. Can only fly a plane (from external knowledge), thus the plane is resolved as the
correct reference.

I.2. Pronoun Interpretation Preferences

Recency

• John bought a new boat. Bill bought a bigger one. Mary likes to sail it.
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Grammatical role

• X went to the dealership with Y. He bought a car

• Y went to the dealership with X. He bought a car

• X and Y went to the dealership. He bought a car

Repeated mention

• John needed a car to go to his new job

• He decided that he wanted something sporty

• Bill went to the dealership with him. He bought a Toyota. (He = John)

Parallel constructions

• John told him (other) he should get over with his (john) obsession with cars

• verb semantics/thematic roles

• John rang Bill. He’d lost the directions he needed

• John shouted at Bill. He’d lost his phone

Pragmatics

• John bought a book for Anna, and so did Bill.

J. Attached Code
In the delivered code, Tollef-Jorgensen-code.zip, three folders can be found: IDUN Cluster,
Local and OPEN_SOURCE_PROJECTS. A file, INSTRUCTIONS.md is located in the
root directory, with brief instructions. The IDUN Cluster folder contains all files used on
the cluster (Själander et al., 2019), in addition to the slurm jobs to run each experiment.
The Local folder holds all files used in development on a personal computer, whereas
the final systems are found in the OPEN_SOURCE_PROJECTS folder. README.md
markdown files are within each of the relevant open source projects. Note that almost all
systems rely on both licensed datasets and produced data from the Strise Knowledge
Graph.

J.1. Datasets

The OntoNotes dataset can not be redistributed, and must be accessed by logging in with
an authorized account3. The PreCo dataset can be downloaded by filling in a form on

3https://catalog.ldc.upenn.edu/LDC2013T19
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J. Attached Code

their website4. The GUM dataset5 and LitBank dataset6 are available on their respective
GitHub repositories. To retrieve the Strise data, access must be granted. Data can also
be downloaded by using a temporarily valid authorization key which can be provided on
request. This key must be added in the following file:
Tollef-Jorgensen-code\OPEN_SOURCE_PROJECTS\ElsaVal\Distant

Supervision\GraphQL Downloader\config.py

If the data is downloaded, each of the steps, 1 through 4 must be completed, run in the
respective Jupyter Notebooks located in
Tollef-Jorgensen-code\OPEN_SOURCE_PROJECTS\ElsaVal\Distant

Supervision\Strise Data Steps

J.2. Coreference Evaluations

Experiments with most evaluations computed in this thesis reside in the following file:
Tollef-Jorgensen-code\OPEN_SOURCE_PROJECTS\ClEval\

CorefLiteEvaluation.ipynb

This relies on downloading and installing the necessary models SpanBERT7, NeuralCoref8
and CoreNLP9. Instructions are given in the respective folders.

Before evaluations, the datasets must be converted to the coreflite format. This
can be done in
Tollef-Jorgensen-code\OPEN_SOURCE_PROJECTS\ClEval\CorefLite\

Dataset Converters

After updating the correct path to the original datasets.

J.3. Entity-level Sentiment Analysis

With properly formatted datasets, placed in the following folder:
Tollef-Jorgensen-code\OPEN_SOURCE_PROJECTS\ElsaVal\Models and

Classification\datasets

Experiments can be run by calling the train.py file, with arguments found in the helper-
s/argparser.py file. By calling the train.py file without arguments, the default setup will
be run. Examples can be found in the .bat files contained in the Models and Classification
folder. Any more assistance can be given on request. The open sourced systems are
published on GitHub, and links can be found in the Introduction, p. 3. Thanks for
reading!

4https://preschool-lab.github.io/PreCo/
5https://github.com/amir-zeldes/gum
6https://github.com/dbamman/litbank
7https://github.com/facebookresearch/SpanBERT
8https://github.com/huggingface/neuralcoref
9https://stanfordnlp.github.io/CoreNLP/

163

https://preschool-lab.github.io/PreCo/
https://github.com/amir-zeldes/gum
https://github.com/dbamman/litbank
https://github.com/facebookresearch/SpanBERT
https://github.com/huggingface/neuralcoref
https://stanfordnlp.github.io/CoreNLP/


Tollef Em
il Jørgensen

In a Sentim
ental M

ood

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Tollef Emil Jørgensen

In a Sentimental Mood

Augmenting Entity-level Sentiment Analysis with
Coreference Resolution

Master’s thesis in Computer Science

Supervisor: Björn Gambäck

June 2020


	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Introductory Topics for Natural Language Processing
	Text Preprocessing
	Document Representation
	Language Models
	Word Embeddings

	Core Topics
	Named Entity Recognition
	Sentiment Analysis
	Coreference Resolution
	World Knowledge and Knowledge Bases

	Classification of Natural Language
	Lexicon-Based
	Supervised Learning
	Pre-training
	Configuring Machine Learning Classifiers

	Evaluation Metrics
	Sentiment Analysis
	Coreference Resolution

	Tools
	GraphQL
	Python and Related Tools


	Related Work
	Literature Review
	Domain Oriented Review Protocol
	Restricting the Search Scope
	Selection of Studies
	Quality Assessment
	Review Workflow
	Results

	Algorithms for Coreference Resolution
	Rule-based Algorithms
	Supervised Algorithms
	Deep Learning and Neural Networks
	Pre-training

	Incorporating World Knowledge
	Applying Coreference Resolution to Sentiment Analysis
	Recap and Remarks
	Large Neural Architectures and Computing Power
	Identifying a Good Coreference Model


	Data
	Datasets for Coreference Resolution
	In-domain
	Out-of-domain

	Datasets for Entity-level Sentiment
	SemEval
	ACL-14
	SentiHood

	Dataset Inspection and Analysis
	Unification of Coreference Data
	Coreference Dataset Analysis
	Restrictions of Entity-Level Sentiment Data

	Selected Datasets
	Dataset Creation with Distant Supervision and World Knowledge
	Gathering Data
	Parsing Data
	Distant Supervision Labeling
	Data Analysis and Verification


	Architecture
	An Overview
	CL-Eval – Evaluation Framework for Coreference Resolution
	CorefLite – a Unified Format for Coreference Resolution
	Batch Prediction and Evaluation
	Visualization Module

	Coreference Models
	Elsa-Val – Evaluation Framework for Entity-Level Sentiment Analysis
	Annotation Tool
	Entity-centric Segmentation Algorithm

	Generated Dataset

	Coreference Validation
	Experimental Setup
	Experimental Plan
	Reproducibility of Coreference Resolution Models
	End-to-End Coreference and SpanBERT
	NeuralCoref
	Deterministic and Statistical Models

	CorefLite Dataset Validation
	OntoNotes
	GUM
	PreCo and LitBank

	Out-of-Domain Evaluation
	In-domain Evaluation

	Entity-level Sentiment Analysis
	Experimental Plan
	Baselines and Initial Coreference Augmentation
	Evaluation of Generated Data
	Revisiting Hyperparameters
	Existing Data as Evaluation Baselines

	Manually Labeled Data
	Initial Results
	Revising the Augmentation Approach


	Evaluation and Discussion
	Evaluating Research Questions and the Main Goal
	Discussion
	Spotting Patterns in Overlapping Data
	Issues with Current Annotation and Modeling Schemes
	Re-implementation and Code Butchering
	Unleashing Coreference Resolution
	The Generated Dataset


	Conclusion and Future Work
	Conclusion
	Contributions
	Future Work
	Handling Multiple Targets with Attention
	Metrics for Out-of-domain Evaluation of Sentiment Analysis
	Defining Coreference Entity Importance with Metrics
	An Unconstrained Solution
	Rectifying Coreference Links with Gradient Boosting
	A New, Simpler, Rule-based Model
	Reworking Models to Train on CorefLite Data
	Knowledge Graphs and World Knowledge
	Specification of References in Datasets
	Cross-lingual Coreference Resolution
	Cross-event Coreference Resolution


	Bibliography
	Appendices
	Literature Review Tables
	Query Q1
	Query Q2
	Final Review Library

	Sentiment Dataset Analysis
	Coreference Dataset Analysis
	NeuralCoref
	Numpy Array Formatting
	Hyperparameters
	Testing Greedyness

	Model Configurations for Coreference Resolution
	Annotation Tool
	Evaluation Tables
	Out-of-Domain
	In-domain
	Unmodified Datasets

	DistilBERT SST-2 Configuration
	Future Work – Rule-based Models
	Constraints for References
	Pronoun Interpretation Preferences

	Attached Code
	Datasets
	Coreference Evaluations
	Entity-level Sentiment Analysis



