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Abstract

The ever increasing sizes of datasets have allowed deep neural networks to excel
in many difficult tasks. In addition, even bigger models have proven to improve
the performance of deep neural networks. However, the huge amount of data in
combination with bigger models have resulted in the training process becoming
prohibitively computationally expensive for a single worker. As such, the training
process is parallelized across several workers.

Through a literature review, we find that previous work mainly focus on the
model, its hyperparameters and the communication method when scaling to large
number of workers. We also find that there, to the best of our knowledge, does
not exist any study on how the amount of data available to each worker affects
the final accuracy. Thus, in this thesis, we explore the effects of different data
assignment schemes when training deep neural networks using data parallelism.
We find that when training fully synchronous, there is no significant difference in
final accuracy between the amount of data available to each worker. When reduc-
ing the number of communication rounds, however, we find that when the batch
size/learning rate relationship is altered to a certain degree, assigning overlap-
ping data can improve the final accuracy, compared to assigning non-overlapping
data.
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Sammendrag

Den stadig økende størrelsen på datasett har gjort det mulig for dype nevrale
nettverk å utføre mange vanskelige oppgaver. Samtidig har enda større mod-
eller vist seg å forbedre ytelsen til dype nevrale nettverk. Derimot har den
enorme mengden datainnsamling med større modeller ført til at treningen har
blitt uoverkommelig beregningsdyktig for en enkelt arbeider. Som sådan blir
treningen parallellisert over flere arbeidere.

Gjennom et litteraturstudie finner vi at tidligere arbeid hovedsakelig fokuserer
på modellen, dens hyperparametre og kommunikasjonsmetoden når det skaleres
til et stort antall arbeidere. Vi finner også at det, etter vår kunnskap, ikke ek-
sisterer noen undersøkelse av hvordan datamengden tilgjengelig for hver enkelt
arbeider påvirker nøyaktigheten. I denne oppgaven undersøker vi derfor effek-
tene av forskjellige datafordelingstrategier når vi trener dype nevrale nettverk
ved bruk av data parallelisme. Vi finner ingen signifikant forskjell i nøyaktighet
mellom datamengden tilgjengelig for hver enkelt arbeider når vi synkroniserer
i hvert steg. Når vi reduserer antall kommunikasjonsrunder, finner vi imidler-
tid at tildeling av overlappende data kan forbedre nøyaktigheten når partistør-
relse/læringsrate forholdet er forskjøvet til en viss grad, sammenlignet med å
tildele ikke-overlappende data.



iii

Preface

This thesis is the product of work done as part of the subject TDT4900 at Nor-
wegian University of Science and Technology (NTNU) during the spring of 2020.
The thesis is a continuation on the work done during the autumn of 2019 as part
of the subject TDT4501, in which we conducted a literature review in the field
of training deep neural networks using data parallelism.

We would like to thank our supervisor Ole Jakob Mengshoel for his general guid-
ance and follow-up meetings throughout this project. We would also like to
thank our supervisors at Graphcore, Lorenzo Cevolani and Arjun Chandra, for
their guidance regarding the more technical material of the project.

André Håland & Bjørnar Birkeland

Trondheim, June 10, 2020



iv



Contents

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background Theory 5

2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . 5

2.1.2 Training Artificial Neural Networks . . . . . . . . . . . . . . 6

2.1.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . 8

2.2 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Global- and Local Batches . . . . . . . . . . . . . . . . . . . 10

2.2.2 Centralization . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Quantization and Sparsification . . . . . . . . . . . . . . . . 17

v



vi CONTENTS

2.2.5 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.6 Data assignment . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Related Work 21

3.1 Large Scale Data Parallelism . . . . . . . . . . . . . . . . . . . . . 21

3.2 Local SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Codistillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Summary & Motivation . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Methodology 33

4.1 Data assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Households & Neighbourhoods . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Household shards . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Plan of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Experimental process . . . . . . . . . . . . . . . . . . . . . 42

4.3.3 Project scope . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Results & Analysis 45

5.1 E1 - Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 E2 - Fully synchronous training . . . . . . . . . . . . . . . . . . . . 49

5.2.1 E2.1 - Full overlap . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 E2.2 - Varying degrees of overlap . . . . . . . . . . . . . . . 52



CONTENTS vii

5.2.3 E2.3 - Increase global batch size . . . . . . . . . . . . . . . 54

5.3 E3 - Communication reduction . . . . . . . . . . . . . . . . . . . . 56

5.3.1 E3.1 - Local SGD . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 E3.2 - Households . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3 E3.3 - Neighbourhoods . . . . . . . . . . . . . . . . . . . . . 69

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Varying degrees of overlap . . . . . . . . . . . . . . . . . . . 72

5.4.2 Households with overlapping data . . . . . . . . . . . . . . 73

6 Evaluation and Conclusion 75

6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.2 Communication reduction methods . . . . . . . . . . . . . . 78

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 79

Appendices 89

A Household effective batch size 91

B Additional results 93

B.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



viii CONTENTS

B.2 Fully synchronous . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.2.1 Varying degrees of overlap . . . . . . . . . . . . . . . . . . . 94

B.2.2 Fully synchronous training with large batches . . . . . . . . 96

B.3 Communication reduction . . . . . . . . . . . . . . . . . . . . . . . 98

B.3.1 Local SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.3.2 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.3.3 Neighbourhoods . . . . . . . . . . . . . . . . . . . . . . . . 106



List of Figures

2.1 An artificial neuron. It receives an array of inputs, where each
input xi is multiplied with the corresponding weight wi. Then the
weighted inputs are summed with a bias b and the result z is fed
through the activation function f , creating the output y. Some
notable activation functions are ReLU, sigmoid, and tanh, where
ReLU is currently the most popular [11]. . . . . . . . . . . . . . . . 6

2.2 A fully connected artificial neural network. The network consists
of an input layer, a single hidden layer and an output layer. Each
artificial neuron in one layer is connected to every neuron in the
next layer, making the artificial neural network fully connected. . 7

2.3 The convolution operation. Here a single filter of size 3x3 contain-
ing 9 weights is convolved with the input matrix. After this, the
ReLU activation function is applied, resulting in an activation map. 8

2.4 Data parallelism. In a data parallel system, the model is repli-
cated across multiple workers, and each worker use some part of
the dataset to train. In the general case, each worker computes
gradients using a part of their allocated data and shares either the
model parameters or gradients with the other workers to update
the local models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 A parameter server. It contains the global parameters. Work-
ers can push (Figure 2.5a) their new parameters to the parameter
server where they are aggregated, updating the global parame-
ters. The new parameters can then be pulled (Figure 2.5b) by the
workers to update the parameters in each worker’s local model. . . 12

ix



x LIST OF FIGURES

2.6 Tree-AllReduce. In the reduce phase (Figure 2.6a), the aggregated
numbers are sent from the leaf nodes and upwards in the tree until
the root node has received all aggregated numbers. The root node
then calculates the total sum, before it is broadcast down the tree
(Figure 2.6b). Note that even though the illustrations use single
numbers, this operation can be applied to vectors of numbers with
the use element-wise addition. . . . . . . . . . . . . . . . . . . . . . 13

2.7 Ring-AllReduce for 3 workers. The yellow boxes indicate numbers
to be sent in current step. For the first two steps: purple boxes
represents numbers that will be aggregated with a received num-
ber. For the last two steps: blue represents numbers that will be
replaced by a received number . . . . . . . . . . . . . . . . . . . . . 13

2.8 Synchronization. In this figure, the arrows represent local compu-
tation, the blue rectangle represent a global synchronization be-
tween all workers, and the yellow rectangles represent an asyn-
chronous update. Synchronous (Figure 2.8a) and asynchronous
(Figure 2.8b) can be viewed as two extremes, where stale-synchronous
(Figure 2.8c) is somewhere in between. In Figure 2.8c the max
staleness is 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Average of two local minima. Blue dots represent the local minima,
while the red dot represent the average of the minima . . . . . . . 17

2.10 Data assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Hierarchical AllReduce. A square represents a group. Purple
workers are the assigned masters for their respective groups. . . . . 26

3.2 2D-Torus AllReduce. M workers are arranged in a X × Y grid.
The workers reduce-scatter in horizontal direction (red lines), then
AllReduce in vertical direction (blue lines) and lastly AllGather in
horizontal direction. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Codistillation with n groups of K workers. Different groups are
given disjoint data partitions, i.e., D1 ∩ D2 ∩ · · · ∩ Dn = ∅ . . . . . 31



LIST OF FIGURES xi

4.1 A dataset D divided into shards Di, where a shard consists of
multiple samples. In this figure there are 20 data samples in the
dataset divided into 4 shards and each shard contains 5 unique
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Assignment of shards to four workers. Circles represent the work-
ers, and each row represent the dataset. The presence of a shard
at a row represent the assignment to the respective worker. Figure
4.2a shows the assignment of disjoint shards, Figure 4.2b shows
the assignment of full overlapping shards. . . . . . . . . . . . . . . 35

4.3 Different sharding strategies . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Arrangement of workers into households. In this figure there are
a total of 16 workers arranged in 4 households. . . . . . . . . . . . 37

4.5 Arrangement of households into neighbourhoods. Here there are
16 workers, 4 households and 2 neighbourhoods. . . . . . . . . . . 38

4.6 Household shards consisting of worker shards . . . . . . . . . . . . 39

4.7 Example of assignment of household shards when SH < H. Here
we have M = 16, H = 4 and SH = 2 . . . . . . . . . . . . . . . . . 39

4.8 Neighbourhoods with SH = H
NB . Each neighbourhood has access

to the entire dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Experimental scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Baseline experiment with no overlap in data between workers . . . 48

5.2 Mean validation accuracy throughout training for varying number
of workers when assigning full overlapping data . . . . . . . . . . . 50

5.3 Difference in mean validation accuracy between disjoint and full
overlap data assignment. Above zero means disjoint is better, be-
low zero means full overlap is better. . . . . . . . . . . . . . . . . . 51

5.4 Mean final top-1 validation accuracy for the different data assign-
ment schemes. Amount of overlap is quantified by C

M . The filled
areas represents one standard deviation . . . . . . . . . . . . . . . 53



xii LIST OF FIGURES

5.5 Increasing the global batch size with varying amount of data at
each worker. Every experiment are run with 16 workers. The
filled areas represents one standard deviation. . . . . . . . . . . . . 55

5.6 Mean final validation accuracy with different world synchroniza-
tion period training with local SGD. Solid lines (S=M) represent
disjoint data assignment, dashed lines (S=1) represent full overlap
data assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Final validation accuracy for different number of households with
different world synchronization period with constant local batch
size independent ofH and LW . Filled area represents one standard
deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.8 Mean final validation accuracy for different number of households
with different world synchronization periods. Filled area repre-
sents one standard deviation. . . . . . . . . . . . . . . . . . . . . . 61

5.9 Mean final validation accuracy for different number of households
with different world synchronization periods where we scale the
learning rate linearly. Filled area represents one standard deviation. 63

5.10 Mean final validation accuracy for different number of households
and household shards. Local batch size is kept constant at Blocal =
Bglobal

M , with an initial learning rate of 0.1 . . . . . . . . . . . . . . 65

5.11 Mean final validation accuracy for different number of households
and household shards. Local batch size is given by Equation (A.3),
with an initial learning rate of 0.1 . . . . . . . . . . . . . . . . . . . 66

5.12 Mean final validation accuracy for different number of households
and household shards. Local batch is given by Equation (A.3),
and the initial learning rate is scaled linearly with the increase in
local batch size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.13 Households arranged into 2 neighbourhoods. Solid lines show re-
sults where each worker is given a disjoint data shard, and dashed
lines show results where there are full overlap between neighbour-
hoods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.14 Mean test accuracy for different data assignment schemes. Filled
area represents one standard deviation . . . . . . . . . . . . . . . . 72



LIST OF FIGURES xiii

5.15 Mean test accuracy for households with disjoint and overlapping
data where the effective batch size is kept constant at 128 . . . . . 73

A.1 Household parameters with Be = 128 andM = 16, using Equation
(A.3) to find local batch sizes . . . . . . . . . . . . . . . . . . . . . 92

B.1 Results for different data assignment schemes. All results are run
with M = 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.2 Mean validation accuracy throughout training for different data
assignment schemes with varying global batch size . . . . . . . . . 97

B.3 Mean validation accuracy for varying number of workers when
training with local SGD. Each worker is assigned a disjoint data
shard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.4 Mean validation accuracy for varying number of workers training
with local SGD. Every worker is assigned the entire dataset, i.e.,
full overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.5 Mean validation accuracy for varying number of households with
different world synchronization periods. Each household has a
unique household shard. . . . . . . . . . . . . . . . . . . . . . . . . 100

B.6 Mean validation accuracy for varying number of households with
different world synchronization periods. Each household has a
unique household shard. . . . . . . . . . . . . . . . . . . . . . . . . 101

B.7 Mean validation accuracy for varying number of households with
different world synchronization periods. The experiments are run
with target effective batch Beffective = 128 and an initial learning
rate of 0.1. Each household has a unique household shard. . . . . . 102

B.8 Mean validation accuracy for varying number of households with
different world synchronization periods. The experiments are run
with target effective batch Beffective = 128 and an initial learning
rate of 0.1. The data is assigned with overlap between the households.103



xiv LIST OF FIGURES

B.9 Mean validation accuracy for varying number of households with
different world synchronization periods where we keep a constant
effective batch size of 128 and scale the learning rate linearly with
the increase in local batch size. Each household has a unique
household shard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.10 Mean validation accuracy for varying number of households with
different world synchronization periods where we keep a constant
effective batch size of 128 and scale the learning rate linearly with
the increase in local batch size. The data is assigned with overlap
between households. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.11 Mean validation accuracy throughout training for 2 neighbour-
hoods where each household is given a unique household shard,
and thus, there are no overlap between the neighbourhoods . . . . 106

B.12 Mean validation accuracy throughout training for 2 neighbour-
hoods with disjoint data within the neighbourhoods and full over-
lap between the neighbourhoods . . . . . . . . . . . . . . . . . . . . 107



List of Tables

3.1 Overview of large scale data parallel systems using ResNet-50 on
ImageNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Final validation accuracy for 8 households with mean and stan-
dard deviation (std) over 5 runs on the format "(mean ± std)".
Bold number represent the biggest difference in mean between data
assignment schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Resulting p-values from running a two-sample t-test comparing
disjoint (SH=8) to overlapping data assignment (SH ∈ {1, 2})
with numbers from Table 5.1. Bold number represents smallest
p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.1 Top-1 validation accuracy at end of training for different number
of workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.2 Top-1 validation accuracy at end of training for different data as-
signment schemes. For each value of C we have run 5 experiments
with different seeds, and report the results on format "(mean ±
std)". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 Top-1 validation accuracy at end of training for different data as-
signment schemes with varying global batch size. The results are
presented on the format "(mean ± std)" over 5 runs . . . . . . . . 96

xv



xvi LIST OF TABLES



Chapter 1

Introduction

Machine learning and especially deep learning has in recent years excelled at
previously difficult tasks like speech recognition [1], image classification [2] and
language processing [3]. However, with the increasing sizes of training data [4,
p. 18-21], training becomes slower and in some cases infeasible on a single worker.
Similarly, to increase model accuracy, a popular approach is to increase the model
size, slowing down the training further. Lately, there has been a trend in research
where the usage of CPUs for training neural networks has gradually shifted to-
wards parallel accelerators [5], enabling more efficient training. Accelerators have
become increasingly effective, and some manufacturers even create chips specifi-
cally designed for machine learning tasks [6], [7]. However, the massive amount of
compute required to train state-of-the-art models has increased exponentially the
last few years [8], rendering training with a single accelerator in reasonable time
insufficient. Going forward, machine learning is going to require fast training of
massive models in a way that optimizes both the accuracy of the model and the
latency.

1.1 Background and Motivation

Parallelization is a natural approach to speed up the training process. Among the
popular methods for parallelizing deep neural networks are model parallelism and
data parallelism [9]. With model parallelism, the work is divided by the model
layers. This means that each worker will have a subset of the entire model,

1



2 CHAPTER 1. INTRODUCTION

where training is accomplished by passing layer activations between the workers.
This is beneficial whenever the model is too large to fit in memory of a single
worker. Data parallelism, on the other hand, splits the work by splitting the
data between the workers, where each worker has a copy of the entire model.
The workers update their local models by regularly synchronizing updates.

There are two main challenges when training deep neural networks using data
parallelism: (1) maintaining accuracy when the global batch size increases as an
effect of scaling the number of workers, and (2) overcoming the communication
bottleneck that occurs with a large number of workers. We see that a reoccur-
ring theme in the literature for dealing with these challenges is to adjust the
hyperparameters of the model when increasing the batch size, modifying parts
of the model and improving the communication method to overcome the com-
munication bottleneck. At the same time, we see that most work assign the
data disjointly (i.e., no overlap) between the workers with no explicit statement
of how this impact the performance. Also, to the best of our knowledge, there
does not exists any study of how assigning data in different ways between the
workers impact the performance of training deep neural networks using data par-
allelism. We see this concept as interesting because it can be applied to data
parallel supervised learning in general. Therefore, if an effect of overlapping data
is observed with regards to model accuracy using a specific machine learning
architecture and dataset, then the same effect might occur using other machine
learning architectures and datasets as well.

1.2 Goals and Research Questions

We see the presented motivation in Section 1.1 as an opportunity to explore the
effects of different data assignment schemes, which give rise to our research goal:

Goal Explore different data assignment schemes and the effects of them when
training deep neural networks using data parallelism

The specifics of different data assignment schemes will be presented in Section
4.1. Further, to reach our research goal, we have created three research questions,
seen below. We refer to Section 2.2.7 for a more detailed discussion on how to
evaluate the performance of a data parallel system.

Research question 1 (RQ1) In terms of performance, what are the effects of
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assigning the data in different ways between the workers?

Research question 2 (RQ2) Can overlapping data make the system more re-
silient to communication reduction? If so, in what circumstances?

Research question 3 (RQ3) What is the optimal way to assign data between
workers?

1.3 Research Method

The work in this thesis is a continuation of a literature review performed as part of
the subject TDT4501 - Computer Science, Specialization Project in the autumn
of 2019. The main findings, as has been mentioned previously in this chapter, lead
us to the derivation of a research goal and a set of research questions. To address
the goal, most of the work in this thesis will be experimental and analytical work.
We will use a known deep neural network architecture to establish a baseline, and
further use the workload (architecture, dataset, optimizer and hyperparameters)
in this baseline with minor modifications to address our goal. The typical process
will be to conduct experiments, analyse them, and design new experiments based
on the analysis. Since our research goal is to explore a certain subfield within
machine learning, and the fact that machine learning is an empirical field of study,
we see this as the natural choice of research method.

1.4 Thesis Structure

This rest of this report are structured as follows:

• Chapter 2 presents necessary background theory for the rest of this report.
This includes a brief description of deep learning, as well as a more in depth
look at using data parallelism for training deep neural networks.

• Chapter 3 takes a look on work that is related to this project.

• Chapter 4 presents a high-level description of the main concepts experi-
mented with in this project. This chapter also presents the scope of the
project and a description of how we conduct experiments.
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• Chapter 5 presents the results for experiments conducted in this project.
Every experiment will be presented together with a specific goal, the method
and data used, as well as a discussion of the results.

• Chapter 6 concludes this project by evaluating the key results, and an-
swering the research questions stated in Section 1.2. This chapter will also
include a discussion of limitations in this work, leading to suggestions for
future work.

Note that Chapter 1, Chapter 2 and Chapter 3 are based on but revised from
chapters in the specialization project [10].



Chapter 2

Background Theory

In this chapter we will provide sufficient background theory to understand how
data parallelism can be used to speed up the training of a deep neural network
(DNN). We will first see a typical construction of a DNN, as well as a common
method for training them. Then, we will describe how a typical data parallel
training process is performed. This includes a look at main design features and
how they impact performance and runtime.

2.1 Deep Learning

In this section we will see what constitutes the main building blocks of an artificial
neural network (ANN), and how these building blocks, when arranged in multiple
layers, forms a DNN. We will also see how training these networks can be seen as
an optimization problem. At last, we will describe a special kind of ANN, called
convolutional neural network (CNN), which is commonly used to extract features
from data with spatial information.

2.1.1 Artificial Neural Networks

An ANN is a network of artificial neurons normally organized in layers. Figure
2.1 illustrates an artificial neuron. The output of one layer becomes the input

5
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Figure 2.1: An artificial neuron. It receives an array of inputs, where each input
xi is multiplied with the corresponding weight wi. Then the weighted inputs are
summed with a bias b and the result z is fed through the activation function f ,
creating the output y. Some notable activation functions are ReLU, sigmoid, and
tanh, where ReLU is currently the most popular [11].

of the next layer, where the first layer, the input layer, consists of the input
data. This system creates a function when passing through the layers, known
as the forward propagation function [4, p. 200]. When all units in one layer is
connected to every unit in the next layer, the layers are fully connected. Figure
2.2 displays a network where every layer is fully connected. Between the input
layer and the last layer, the output layer, there may be one or several layers called
hidden layers. Modern ANNs typically have several hidden layers, and empirical
results show that deeper networks generalize better [4, p. 194-200]. The popular
terms "deep neural network", or "deep learning" refers to ANNs that have several
hidden layers.

2.1.2 Training Artificial Neural Networks

When training an ANN, the weights and biases, called parameters, are adjusted
in a way such that the forward propagation function approximates a goal func-
tion. This task is an optimization problem, as we want to find the parameters
w that minimize the distance between the goal function and the ANN. When we
have a set of data samples with the corresponding goal output, this set can be
used for training by applying our ANN to each data sample and calculating the
distance between the prediction made by our ANN and the goal output using
a loss function. This process is described as supervised learning, and can be
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Figure 2.2: A fully connected artificial neural network. The network consists of
an input layer, a single hidden layer and an output layer. Each artificial neuron
in one layer is connected to every neuron in the next layer, making the artificial
neural network fully connected.

described by

min
w∈Rd

L(w) where L(w) def
=

1

n

n∑
i=1

Li(w). (2.1)

The loss function L(w) is the approximated distance between the goal function
and the function achieved with our ANN with current parameters w. This loss
is found by calculating the mean loss of each data sample in a dataset with
n data samples. Some examples of loss functions used with ANNs are mean
squared error for use in regression, and cross-entropy for classification. The
optimization problem can be approached in several ways, including: first-order
optimization, second-order optimization, or search using evolutionary algorithms,
where the popular way of optimizing is first-order optimization using a variant of
gradient descent. Gradient descent iteratively adjusts the parameters w in order
to minimize a loss function. In each iteration the adjustment is proportional to
the gradient of the loss function with respect to the parameters at the current
iteration t. This gradient is often calculated using the backpropagation algorithm
[12]. In addition, the adjustment is scaled by a learning rate η. This equation is
given by

wt+1 = wt − η∇L(wt), (2.2)

where ∇L(wt) is the gradient of the loss function. Computing the gradient of
the loss function for the whole dataset for each parameter adjustment can be
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prohibitively computationally expensive. One way to tackle this problem is to use
stochastic gradient descent (SGD) [13], where instead of computing the gradient
based on the whole dataset, it is approximated using a randomly selected subset
b of the dataset. This technique is also known as mini-batch stochastic gradient
descent. The equation for this variant is given by

wt+1 = wt − η∇Lb(wt) where ∇Lb(wt) =
1

b

b∑
i=1

∇Li(wt). (2.3)

Here, ∇Lb(wt) is the gradient of the loss function with respect to the parameters
w at time t, calculated using a batch with b samples. Other notable variations of
SGD include momentum [12], RMSProp [14], Adam [15] and LAMB [16].

2.1.3 Convolutional Neural Networks

The CNN [17] is similar to the ANN described in Section 2.1.1, as they are
composed of neurons structured in layers, and can still be trained using SGD.
Some notable differences between an ANN using fully-connected layers and a
CNN are the usage of convolutional layers and pooling layers. In a convolutional
layer, neurons are structured as a set of filters. When it is applied to a black and
white image, the image is represented as a 2D matrix. This matrix is convolved
with each filter in the layer, creating a separate matrix for each filter. Then an
activation function is applied to each of these matrices, typically ReLU, resulting
in a set of activation maps; the activation volume. This operation is shown in
Figure 2.3. The number of activation maps that make up the activation volume is
referred to as its depth. In subsequent convolutional layers, the entire activation

Figure 2.3: The convolution operation. Here a single filter of size 3x3 containing
9 weights is convolved with the input matrix. After this, the ReLU activation
function is applied, resulting in an activation map.

volume is convolved with each filter, creating only one activation map for each
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filter. In between a sequence of convolutional layers it is common to use a pooling
layer. Pooling layers reduce the dimensions of an activation map by combining
neighbouring values into single values. This is done for each activation map in
the volume, and as such, the depth of the activation volume is not affected. The
most popular way of combining these values is to use max-pooling, in which only
the highest value is kept. Despite often being referred to as a layer, the pooling
layer does not have any parameters that requires training.

CNNs perform particularly well on image processing [2] and other natural signals.
This is due to a few aspects. First, the convolutional layer use local connections
that take advantage of the spatial information found in images. Second, the
convolutional layers use shared weights. This is helpful as it decreases the number
of parameters that needs to be trained, and weights that are able to detect certain
patterns in one part of an image can be used to find the same pattern in different
areas in an image [11]. Third, by reducing the activation dimensions, the pooling
layer introduces invariance to translation to the network, as the output of the
layer is less dependent of the exact position of a feature [4, p. 335-339]. In
addition, by reducing the size of the activation map, this layer also reduces the
amount of compute required in subsequent layers.

2.2 Data Parallelism

In this section we will describe the parallelization strategy in which the work is
split across the data dimension, namely data parallelism [9]. For M workers, this
parallelization strategy can be illustrated as seen in Figure 2.4. One of the advan-
tages of data parallelism is that it is model agnostic, meaning that it is applicable
to any machine learning architecture. Since the workers in a data parallel sys-
tem must synchronize their computed gradients or parameters with each other,
data parallelism is especially beneficial for models with high compute and fewer
parameters (e.g., CNNs) [18]. When scaling to multiple workers, however, there
are mainly two challenges with data parallelism. The first challenge is related to
the runtime of the system. When the communication-to-computation ratio gets
large, the desired speedup of parallel training is degraded. This can happen for
instance when the total number of workers increases or when the size of the model
parameters increases. The second challenge is related to the performance of the
system. As the global batch size often increases with the number of workers, the
model is vulnerable to the generalization gap [19] (see Section 2.2.1). For the rest
of this section, we will describe some design features for a data parallel system
and how they impact runtime and performance.
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Figure 2.4: Data parallelism. In a data parallel system, the model is replicated
across multiple workers, and each worker use some part of the dataset to train. In
the general case, each worker computes gradients using a part of their allocated
data and shares either the model parameters or gradients with the other workers
to update the local models.

2.2.1 Global- and Local Batches

Data parallel training of DNNs is typically done by defining a global batch with
size B, and letting every worker compute the gradient for a local batch with size
b = B/M . When adding workers to the system, one could either increase the
global batch size or decrease the local batch size (or a combination of both). With
today’s highly parallel hardware, it is desirable to use a large enough b to utilize
the computational resources at every worker. However, when using large batches,
DNNs tend to converge to sharp minimizers of the training function which leads to
the generalization gap [19], meaning it performs worse on unseen data (typically
on a held-out test set) than the training data. For models that incorporate Batch
Normalization (BatchNorm) [20], we also see a drop in accuracy when the local
batch size gets too small.1 Wu et al. [21] note that this can be explained by
the inaccurate batch statistics estimation, and show that when training ResNet-

1Exactly how small will depend on the dataset.
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50 [22] on ImageNet [23], the accuracy starts to drop when the local batch size
falls below 16. They further propose Group Normalization as a solution to this
problem. With Group Normalization, the channels are divided into groups, where
the mean and variance for each group are used for normalization. Due to its
independence on the batch dimension, Group Normalization does not suffer with
small local batch sizes.

2.2.2 Centralization

A central data parallel system consists of a centralized server, often referred to
as a parameter server [9], [24].2 The parameter server contains the global pa-
rameter, and communicates with all workers to update this parameter. A typical
workflow consist of the workers pushing calculated gradients/parameters to the
parameter server, the parameter server updating the global parameter, followed
by the workers pulling the newest parameters. The push and pull operations for
a synchronous (see Section 2.2.3) parameter server are illustrated in Figure 2.5a
and 2.5b, respectively. The push operation consists of M workers calculating the
local gradients ∇L1(wt),∇L2(wt), . . . ,∇LM (wt) at time t and sending them to
the parameter server. After the parameter server has received the gradients from
all of the workers, it updates the global parameter

wt+1 = wt − η
1

M

M∑
i=1

∇Li(wt), (2.4)

where η is the learning rate. In the pull operation, every worker pulls down
this new global parameter. Parameter servers can also be used to implement
asynchronous systems (see Section 2.2.3): after a worker has sent its local gradi-
ent/parameter, the parameter server immediately updates the global parameter
and sends it to the worker. As we will see in Section 2.2.3, this will result in
staleness.

In a decentralized system there is no central server. This means that the work-
ers must communicate with each other to achieve a shared global parameter.
MapReduce [25] is a popular distributed data processing model, but it has been
observed that it is not well suited for iterative problems as often found in machine
learning [26]. Moreover, a common approach to achieve a global parameter with
decentralized data parallelism is by aggregating the local gradients with the use
of high-performance communication interfaces, such as Message Passing Interface
(MPI) [27]. The most common MPI operation used in decentralized data parallel

2Does not have to be a single machine. Can for instance be a sharded server [9].
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(a) Push operation (b) Pull operation

Figure 2.5: A parameter server. It contains the global parameters. Workers can
push (Figure 2.5a) their new parameters to the parameter server where they are
aggregated, updating the global parameters. The new parameters can then be
pulled (Figure 2.5b) by the workers to update the parameters in each worker’s
local model.

systems is AllReduce: every worker i starts with a local gradient ∇Li(wt), and
ends up with the sum of all local gradients across all workers. This sum can then
be divided by the number of workers M to get the average gradient

∇L(wt) =
1

M

M∑
i=1

∇Li(wt). (2.5)

The AllReduce operation can for instance be implemented in a tree structure as
illustrated in Figure 2.6. Another AllReduce variant is the Ring-AllReduce [28]
shown in Figure 2.7. Here, a vector of numbers is split intoM chunks. As seen in
the figure, since there are three workers, the vector is split into three parts.3 The
chunks are sent through the ring until every worker contains one chunk that is
summed across all workers (Figure 2.7b and 2.7c). For example, in Figure 2.7d,
worker m1 has the complete sum of index 1, m2 of index 2 and m3 of index 0.
With M workers, this phase requires M − 1 steps. When this phase is complete,
the sums are broadcast around the ring to ensure that every worker contains the
complete sum for all chunks (Figure 2.7d and 2.7e). This phase also requires
M − 1 steps, resulting in a total of 2(M − 1) steps for the entire procedure.

3As with Tree-AllReduce, the chunks will in most cases contain more than a single number,
and hence, a element-wise addition will be used instead of scalar addition.
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(a) Reduce (b) Broadcast

Figure 2.6: Tree-AllReduce. In the reduce phase (Figure 2.6a), the aggregated
numbers are sent from the leaf nodes and upwards in the tree until the root node
has received all aggregated numbers. The root node then calculates the total
sum, before it is broadcast down the tree (Figure 2.6b). Note that even though
the illustrations use single numbers, this operation can be applied to vectors of
numbers with the use element-wise addition.

(a) Initial (b) Reduce phase: 1st step (c) Reduce phase: 2nd step

(d) Broadcast phase: 1st
step

(e) Broadcast phase: 2nd
step (f) Final

Figure 2.7: Ring-AllReduce for 3 workers. The yellow boxes indicate numbers to
be sent in current step. For the first two steps: purple boxes represents numbers
that will be aggregated with a received number. For the last two steps: blue
represents numbers that will be replaced by a received number
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2.2.3 Synchronization

Another design choice for a data parallel system is its level of synchronization.
In a fully synchronous system the workers must wait for every other worker to
finish their local computations so that the calculated parameters or gradients
can be exchanged, as shown in Figure 2.8a. In such a system, the up-to-date
parameters are observed by everyone, which we refer to as a consistent model. In
a fully asynchronous system, on the other hand, the workers can continue their
computations independently of other workers process, leading to an inconsistent
model. This is shown in Figure 2.8b. A data parallel system can also be some-
where in between these two extremes. For instance, the system may only allow
the slowest worker be a maximum amount of steps behind the fastest worker.
This approach is referred to as stale-synchronous parallelism [29] and is shown in
Figure 2.8c. This figure shows that the workers can do asynchronous updates un-
til the max staleness (which in the figure is 2) is reached. The system must then
wait for all workers to finish its local computation before a global synchronization
is performed.

With a fully synchronous system, the straggler problem [30] is introduced. This
happens as a result of a small amount of the workers taking longer to finish a
given task. The majority of the workers must then wait for the slowest worker
before they can continue with the next task, resulting in low utilization. In an
asynchronous system, the model parameters can be updated without any syn-
chronization, solving the straggler problem. However, this means that a worker
can be computing with outdated parameters. The gradients calculated with the
outdated parameters are called stale gradients, and its staleness is defined as
the number of updates that have happened to the global parameters since start
of computation at the local worker [31]. More formally, a worker i at time t
has a copy of the parameters wτi with τ ≤ t, where t − τ is the staleness of m.
Performance is shown to degrade as staleness increases [31].

When doing synchronous data parallelism, the local parameters [32], [33] or the
computed local gradients [9] must be averaged between all workers to obtain a
consistent model. We will refer to these two cases as parameter averaging and
gradient averaging, respectively. In the case of gradient averaging in a centralized
system, the workers send their gradients directly to the parameter server, followed
by the parameter server aggregating all gradients and then using it to update the
global parameter (described by Equation (2.4) and illustrated in Figure 2.5).
The other alternative for a centralized system is for every worker to use their
gradients to update their local parameters and then send these newly calculated
parameters to the parameter server. The parameter server can then average all
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(a) Synchronous data parallelism (b) Asynchronous data parallelism

(c) Stale-synchronous data parallelism

Figure 2.8: Synchronization. In this figure, the arrows represent local computa-
tion, the blue rectangle represent a global synchronization between all workers,
and the yellow rectangles represent an asynchronous update. Synchronous (Fig-
ure 2.8a) and asynchronous (Figure 2.8b) can be viewed as two extremes, where
stale-synchronous (Figure 2.8c) is somewhere in between. In Figure 2.8c the max
staleness is 2.

the local parameters to obtain a new global parameter.

One also has to consider the frequency of the synchronization. Averaging the
gradients after every batch has been calculated is referred to as mini-batch aver-
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aging [34].4 With the assumption that every worker has disjoint partitions of the
dataset (see Section 4.1), mini-batch averaging is conceptually similar to training
on a single worker. Another approach is to allow every worker optimize the objec-
tive function locally, and then average all parameters at the end of optimization.
This approach is referred to as one-shot averaging [35], [36]. A middle ground of
one-shot averaging and mini-batch averaging is local SGD [37], [38]. With local
SGD, each worker runs independently for a certain amount of iterations before
the parameters are averaged between the workers. A variant to local SGD is to
have more frequent averaging at the initial phase of training [34]. Previous work
on local SGD will be further studied in Chapter 3.

The effects of the synchronization frequency is twofold. Naturally, the frequency
has an impact on the communication in the system. More frequent synchro-
nization result in more communication, thus decreasing the computation-to-
communication ratio. On the other hand, less frequent synchronization could
negatively impact the model performance. For certain non-convex problems (such
as DNNs), Zhang et al. [34] illustrate that one-shot averaging can negatively im-
pact the accuracy. The intuition is that workers could end up converging to
different local minima with the average of the minima not being a minimum.
This is illustrated for a single-value parameter w in Figure 2.9 where the x-axis
consist of the parameter and the y-axis is the loss value with this parameter. They
further show that more frequent averaging can be used to regain the accuracy,
and conclude that one-shot averaging is not suitable for non-convex problems.

There also exist some methods that extends direct parameter averaging. One of
them is elastic averaging [39], an averaging method where the workers use an elas-
tic force based on a global parameter stored at a parameter server to update their
local parameters. This enables the workers to perform more exploration without
fluctuating too much from the global parameter. The global parameter is up-
dated as a moving average of the parameters computed by the workers. Another
method, called gossip averaging [40], allows the amount of information exchanged
between the workers to be tuned. After updating local parameters, each worker
draws a random Bernoulli variable with expectancy p that decides whether the
worker will share its information with another uniformly drawn worker. This
implies that at each round, every worker will send their parameters at most once,
but can receive parameters from several others. Higher p results in the workers
having more similar weights, but on the other hand requires more communication.
A lower p means less communication, but could result in the workers diverging.

4Note that gradient averaging only makes sense in the case of mini-batch averaging.
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Figure 2.9: Average of two local minima. Blue dots represent the local minima,
while the red dot represent the average of the minima

2.2.4 Quantization and Sparsification

Since large scale distributed systems are often limited by a communication bot-
tleneck, it is desirable to reduce the communication. This can for instance be
accomplished by limiting the frequency of synchronization, as described in Section
2.2.3. Researchers has also studied other methods to reduce communication. Giv-
ing the gradient a lower precision with gradient quantization is one such method.
By sending the quantization errors from one gradient quantiziation of one batch
to the next batch and adding it to the gradient before quantization, Seide et al.
[41] was able to quantize the gradients to 1-bit per value with nearly no loss in
accuracy in their experiments. Quantized Stochasitc Gradient Descent [42] allow
users to trade of accuracy and runtime by adjusting the precision of the quantiza-
tion. Another method for reducing communication is by limiting which parts of
the gradient that are communicated with gradient sparsification. Heuristics are
often used to decide which parts should be sent. For instance, Strom [43] uses a
threshold in which only the gradient elements larger than the specified threshold
will be communicated. With gradient dropping [44], a dropping rate R is used
to drop the R% smallest gradient elements by absolute value. Common for these
two sparsification methods is the local accumulation of gradient elements that
were not included in the communicated gradient. When the accumulated gradi-
ent elements gets larger than the threshold or in the (1 − R)% biggest gradient
elements, they will be communicated.
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2.2.5 Sampling

When using SGD to train a neural network, there are essentially two strategies for
sampling the data. The first strategy, called with-replacement, picks data samples
from the entire dataset at random and computes the gradient which is used to
update the parameters. The samples are then placed back into the dataset and
the process is repeated. The other strategy is called without-replacement : all
data samples are put into a pool, and whenever a data sample has been used
to update the parameters, this data sample is removed from the pool. When all
samples in the pool has been processed, an epoch is completed. The number of
iterations in an epoch is N/B where N is the number of data samples in the
dataset and B is the batch size.5 When an epoch is completed, all samples are
put back into the pool and the process is repeated.

There are, however, variants [45] of without-replacement that should be dis-
cussed. These variants are concerned with whether or not the dataset is shuffled
before it is put into the pool before an epoch. One approach is to shuffle the
dataset only before the first epoch and then go through the samples in the same
sequence for every epoch. Another approach is to shuffle the dataset before ev-
ery epoch. This implies that the batches will, with very high probability when
B � N , contain different samples in every epoch. When it comes to distributed
SGD, there are even more variants [46] to without-replacement. Since the data
is assigned between multiple workers, the data can be shuffled either locally or
globally. With local shuffling, the workers only shuffle their locally assigned data,
while with global shuffling, the entire dataset is shuffled before it is redistributed
to the workers.

2.2.6 Data assignment

A less discussed part of data parallelism is how to assign the data between the
workers. For practical reasons, common practice [9], [32], [47]–[49] is to divide
the total size of the dataset N on the amount of workers M and assign each
worker a N/M partition with no overlap between the partitions. This assignment
scheme is illustrated in Figure 2.10a. It is, however, to the best of our knowledge,
not clear what the effect of this partitioning scheme has on the final accuracy
of the model. An alternative assignment scheme could for instance be to give
overlapping partitions of the dataset, as illustrated in Figure 2.10b. Different

5In the case of N mod B 6= 0, the last iteration typically uses a smaller batch size to
complete the epoch.
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ways of assigning overlapping data will be presented in Section 4.1.

(a) Disjoint data shards, i.e., Di ∩ Dj = ∅
for all (i, j) ∈ D where i 6= j

(b) Overlapping data shards with red sec-
tions indicating an overlap. Note that even
though the figure illustrates overlap be-
tween two adjacent data shards, the over-
lap can be between multiple shards

Figure 2.10: Data assignment

2.2.7 Evaluation

There are mainly two measurements under consideration when evaluating a data
parallel system. First of all, we want to achieve a good performance measure. By
performance, we mean the accuracy on a test or valdiation set. The exact metric
used (e.g., top-1 validation/test accuracy, top-5 validation/test accuracy, etc.)
will depend on the model-dataset combination, and what is most commonly used
in the literature. For instance, as we will see in Section 3.1, for ResNet-50 [22]
trained on ImageNet [23], the commonly used metric is top-1 accuracy. Second,
we are concerned with the runtime of the system. This can for example be wall-
clock time to finish a fixed amount of epochs or number of iterations to reach
a target accuracy. It should be noted that wall-clock time is, however, highly
dependent on the hardware, making it harder to compare results across different
work. Another metric to evaluate the runtime is the amount of FLOPs. This is
dependent on the model, dataset and number of iterations, but independent of
the hardware.
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Chapter 3

Related Work

In this chapter we will look at three ways of applying data parallelism to train
DNNs. We will first look at previous work on large scale data parallelism, in which
the general focus is on modifying parts of the model, its hyperparameters or the
communication method when scaling up to a large number of workers. Next, we
will look at some recent studies of local SGD. Local SGD is when workers do not
synchronize for every iteration, but instead update their model locally and only
periodically synchronize between each other. Finally, we will see how distillation
[50] can be used to scale data parallelism by assigning the data to different groups
with a method called codistillation [51].

3.1 Large Scale Data Parallelism

In this section we will look at work that has successfully scaled data parallel
systems to a large number of workers. Asynchronous methods have historically
been popular [9], but the trend in state-of-the-art systems is to use synchronous
SGD due to its preferable time to convergence and validation accuracy when
scaling to many workers [31]. All of the presented work is evaluated using ResNet-
50 [22] on ImageNet [23], a dataset consisting of 1.28 million training images
and 50,000 validation images split across 1,000 classes. Table 3.1 serves as an
overview, and the rest of this section will introduce the main contributions of
the different work. Note that wall-clock time in the table is the time to train 90
epochs unless specified otherwise in the respective paragraphs below.
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Main contributions Workers Batch
size

Top-1
Vali-
dation
accuracy

Time

Linear scaling rule & learning
rate warmup phase (Goyal et al.,
2017)

256 Tesla
P100

8k 76.3% 60 min

Dynamically increase batch size
(Smith et al., 2017)

TPU
v2 (128
chips)

8k→16k 76.1% 30 min

Final collapse & collapsed en-
semble learning rate schedule
(Codreanu et al., 2017)

512 10k 76.4% 82 min

512 16k 76.26% 74 min
1024 32k 75.31% 42 min
1536 48k 74.6% 28 min
Intel
Knights
Landing
(KNL)
nodes

RMSprop warmup, Slow-start
learning rate schedule & Batch
Normalization without moving
averages (Akiba et al., 2017)

1024
Tesla
P100
GPUs

32k 74.9% 15 min

Layer-wise adaptive rate scaling
(You et al., 2017), (You et al.,
2018)

2048
KNL
nodes

32k 75.4% 20 min

32k 74.9% 14 min
Mixed-precision training with
LARS & hybrid AllReduce, (Jia
et al., 2018)

2048
Tesla
P40

64k 75.8% 6.6 min

Distributed Batch Normaliza-
tion, 2D AllRedcue & input
pipeline optimization (Ying et
al., 2018)

TPU v3
(1024
chips)

32k 76.3% 2.2 min

64k 75.2% 1.8 min
Batch-size control, label
smoothing & 2D-Torus AllRe-
duce (Mikami et al., 2018)

3456
Tesla
V100

54k 75.29% 2 min

Table 3.1: Overview of large scale data parallel systems using ResNet-50 on
ImageNet.
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Linear Scaling Rule & Learning Rate Warmup Phase Goyal et al. [52]
introduce a linear scaling rule in which the learning rate scales linearly with the
batch size. The logic behind this rule is that if the batch size is increased by k
while keeping the amount of epochs fixed, there are k fewer weight updates. Thus,
it seems natural to take k bigger steps when updating the weights. Applying this
technique without any other additional techniques, however, resulted in some
instability at the initial phase of training. To overcome this, a learning rate
warmup phase was proposed in which the learning rate is gradually increased
until it reaches the target. Using these two techniques they are able to scale
up to a batch size of 8k with ResNet-50 on ImageNet while maintaining 76.3%
validation accuracy. With 256 Tesla P100 GPUs, this is accomplished in 60
minutes.

Increase Batch Size During Training Smith et al. [53] demonstrate that
increasing the batch size can have same impacts on the validation accuracy as
decaying the learning rate has.1 They show that one can increase the batch size
using constant learning rate until B ∼ N/10, after which they start decaying the
learning rate. Here, B is the global batch size and N is the size of the dataset.
By increasing the batch size while keeping the number of epochs fixed, they also
reduce the total amount of parameter updates. This is shown in an experiment
conducted with Wide ResNet [61] on CIFAR-10 [62] where the decaying learning
rate and increasing batch size reaches the same validation, but increasing batch
size does so in fewer parameter updates. They also show that this applies for dif-
ferent optimizers such as plain SGD, SGD with momentum, Nesterov momentum
and Adam. In an experiment where they train the first 30 epochs with batch size
8k and the last 60 epochs with 16k, they are able to train ResNet-50 on ImageNet
with a 128-chip TPU v2 in 30 minutes without loosing accuracy. They compare
this with another experiment in which they double the initial learning rate and
use a constant batch size of 16k for the entire training. In this experiment, they
loose 1.1 percentage points in validation accuracy.

Final Collapse & Collapsed Ensemble Learning Rate Schedule Based
on experiments similar to those performed by Goyal et al. [52], Codreanu et al.
[54] also noticed that the validation accuracy starts decreasing when the batch
size exceeds 8k. They find that one of the reasons for this is a too large weight
decay, particularly in the first phase of training when the learning rate is large.
By using a smaller initial weight decay, as well as dynamically decreasing it until
the last phase of training in which it is increased again, they are able to improve

1They do, however, note that this only apply when B � N .
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the validation accuracy. They also implement a final collapse for the learning
rate. The learning rate is decayed linearly until the last phase of training, in
which it is decayed with a power of 2. This happens at the same time as they
increase the weight decay. Using these two techniques, they are able to achieve a
validation accuracy of 76.6% with batch size 8k. They also show that increasing
the batch size to 16k only reduces the validation accuracy by 0.34 percentage
points.

A more complex learning rate schedule, called collapsed ensemble learning rate
schedule, is also introduced by Codreanu et al. With this schedule, the training
is split into cycles. In their experiments, the first cycle starts after 45 epochs
in which the learning rate goes from linearly decaying to a power-2 polynomial
decay. After a few epochs, the learning rate is linearly increased by a factor of
3 for a couple of epochs. This cycle of polynomial decay followed by a linear
increase is then repeated 4 more times. They also create snapshot ensembles
called collapsed ensembles at the end of every polynomial decay in each of the
cycles. Training for 120 epochs, they ensemble 5 models and achieve a validation
accuracy of 77.5%. Stopping at 75 epochs, they achieved a single-model accuracy
of 76.5%.

RMSprop Warmup, Slow-start Learning Rate Schedule & Batch Nor-
malization without Moving Averages Akiba et al. [55] found that the early
optimization difficulty when training could be addressed by starting the training
using RMSprop, and then gradually transitioning to SGD with momentum. They
do this by defining a custom update rule

wt = wt−1 + η4t, (3.1)

where

4t = µ14t−1 −
(
αSGD +

αRMSprop√
mt + ε

)
∇L(wt),

mt = µ2mt−1 + (1− µ2)∇L(wt)2.

The momentum term 4t allows for adjusting the balance between SGD with
momentum and RMSprop through αSGD and αRMSprop. For instance, with
αRMSprop = 0 and αSGD = 1, the update is only using SGD with momentum.
The hyperparameters µ1 and µ2 determines the amount of momentum. In their
experiments they use a function similar to the exponential linear unit (ELU)
activation function to slowly transition from RMSprop to SGD with momentum.
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By using this update rule, in combination with a slightly modified learning rate
schedule of the one described by Goyal et al. [52] and performing BatchNorm
without moving averages, they are able to train ResNet-50 on ImageNet in 15
minutes, achieving a top-1 validation accuracy of 74.9%.

Layer-wise Adaptive Rate Scaling You et al. [56] observed that if, for some
layer, the learning rate is large compared to the ratio between the L2-norm of
weights ||w|| and update ||∇L(wt)||, the training can become unstable. Motivated
by this, they introduce Layer-wise Adaptive Rate Scaling (LARS), a technique
which uses separate local learning rates for every layer. The local learning rates
for layer l is then defined as

ηl = λ× ||wl||
||∇L(wl)||

, (3.2)

where λ < 1 is a "trust" coefficient to control the magnitude of the update.2
Using LARS, they are able to scale ResNet-50 to a batch size of 32k with only a
small loss in accuracy (-0.7%). To confirm that LARS can be used to scale to a
large number of workers, You et al. [57] trained ResNet-50 on ImageNet with 2048
KNLs and finished 90 epochs in 20 minutes with a validation accuracy of 75.4%.
When stopping after 64 epochs, they achieved 74.9% accuracy in 14 minutes. In
these experiments they also adopted the learning rate warmup scheme [52].

Mixed-precision Training with LARS & Hybrid AllReduce Jia et al.
[58] use a couple of techniques to scale up to 2048 workers. First of all, they use
mixed-precision training with LARS. This is done as follows: (1) perform for-
ward and backward pass using 16-bit floating points (16FP), (2) cast the weights
and gradients to single-precision format (32FP), (3) apply LARS on 32FP, then
(4) cast back to 16FP. They show that training ResNet-50 on ImageNet with a
batch size of 64k when using LARS with mixed-precision achieves 76.2% accu-
racy, compared to 73.2% without LARS. Second, they optimize the communica-
tion method. They note that when scaling to a large amount of workers, Ring-
AllReduce fails to utilize the full network bandwidth as the data is split into M
chunks (see Section 2.2.2). They address this problem with two strategies. With
tensor fusion, they pack multiple small tensors together before AllReduce. This
ensures better bandwidth utilization, and thus also higher throughput. Since the
higher throughput increases the latency, they also implement a hiearchical AllRe-
duce where the workers are split into groups with one master each, as shown in

2You et al. uses λ to denote learning rate and η to denote the LARS coefficient, but we will
use opposite notation for consistency with the rest of this report.
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Figure 3.1. In the first phase (Figure 3.1a), each group performs a local reduce,
and the master temporarily stores the result. Then, in phase 2 (Figure 3.1b),
the masters from each group do a Ring-AllReduce to share their results. At last
(Figure 3.1c), the masters share the final result to the workers of their respective
groups. With k groups, this algorithm reduces the running steps from 2(M − 1)
to 4(k − 1) + 2(Mk − 1). They note that this algorithm is best suited for small
tensor sizes (e.g., weights in a convolutional layer), and does not perform as well
for large tensor sizes (e.g., weights in a fully-connected layer). To have good
performance in both cases, they design a hybrid AllReduce in which they can
switch between Ring-AllReduce and Hierachical AllReduce based on the size of
the tensor.

(a) Intra-group reduce (b) Inter-group AllReduce (c) Intra-group broadcast

Figure 3.1: Hierarchical AllReduce. A square represents a group. Purple workers
are the assigned masters for their respective groups.

Distributed Batch Normalization, 2D AllReduce & Input Pipeline Op-
timization To overcome the issue with small local batch size when using Batch
Norm (see Section 2.2.1), Ying et al. [59] design a distributed batch normalization
algorithm in which the mean and variance of a batch are computed across a small
subset of the workers. To further facilitate scaling, they optimize the commu-
nication method by extending the traditional 1D Ring-AllReduce to a 2D mesh
algorithm in which the reductions is computed in two phases, one per dimension.
They show that, on a 256 chip TPU v2, the 2D mesh algorithm is faster than
1D. They also note that enabling torus links provides even better performance
by approximately halving the distributed sum time compared to the traditional
1D AllReduce when using 256 TPU v2 chips.3 At last, they optimize the in-
put pipeline. This includes enabling more efficient access patterns to the data,

3Naturally, this only works on hardware that has this ability. In their experiments in which
the different communication methods were tested, they used a full TPU v2 Pod which has the
ability to enable torus links.
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prefetching the next batch during computing of current batch, more efficient de-
coding of datasets (e.g., only decoding the part of an image that will be used
after data augmentation methods such as cropping), and parallelizing the input
pipeline across several CPU threads.4

Using all of the above described methods in addition to previously introduced
methods such as LARS, mixed-precision, linear learning rate scaling, learning rate
warm-up phase and learning rate decay scheduling, they are able to train ResNet-
50 on ImageNet with batch size 32k and 64k in 2.2 and 1.8 min, respectively. The
32k run achieves a validation accuracy of 76.3%, while the 64k run achieves 75.2%.

Batch-size Control, Label smoothing & 2D-Torus AllReduce Mikami et
al. [60] address the generalization gap when training with large mini-batches with
two main techniques. First, they implement a batch size scheduling similar to the
one proposed by Smith et al. [53], i.e., they dynamically increase the batch size
during training. Second, they regularize the model with a technique called label
smoothing [63] where the probability value of a true label is decreased and the
probability of a false label is increased. Finally, they address the communication
overhead by using a 2D-Torus topology where theX ·Y =M workers are arranged
in a X × Y grid as shown in Figure 3.2. Compared to standard Ring-AllReduce
which uses 2(M − 1) steps, 2D-Torus AllReduce only use 2(X − 1) steps. The
complete AllReduce algorithm is then implemented as follows:

1. Reduce-scatter in horizontal direction

2. AllReduce in vertical direction

3. AllGather in horizontal direction

They show that in an experiment with 4096 Tesla V100 GPUs, using a dynamic
batch-size 34k → 119k, they achieve a 75.23% validation accuracy with ResNet-
50 on ImageNet in 129 seconds. Their best achievement, however, was achieved
without batch size control. With a constant batch size of 54k, they achieve a
75.29% validation accuracy in 122 seconds with 3456 Tesla V100 GPUs.

4When training on a single worker, the entire ImageNet dataset of 1.28 million images does
not fit into memory, and must be read from disk during training. With a large amount of
workers, however, the data partitions get smaller and are more likely to fit into local memory.
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Figure 3.2: 2D-Torus AllReduce. M workers are arranged in a X × Y grid.
The workers reduce-scatter in horizontal direction (red lines), then AllReduce in
vertical direction (blue lines) and lastly AllGather in horizontal direction.

3.2 Local SGD

In this section we look at some of the recent progress regarding local SGD. One
common reason to use local SGD is to address the communication overhead that
synchronous data parallel training incurs. There is a trade-off however, as naively
doing so will negatively impact model accuracy. With local SGD, each worker
runs independently and updates its local model parameters for a certain amount
of steps before the parameters are synchronized between the workers at a world
synchronization period LW . This concept is also described in the perspective of
different synchronization strategies in Section 2.2.3.

Post-local SGD & Hierarchical Local SGD Lin et al. [38] introduce Post-
local SGD, a two-phased training setup, where the training is synchronous in the
first phase, and local SGD is used in the second phase, with 8 local steps between
synchronizations. With this setup they were able to retain the baseline accuracy
while significantly decreasing the communication overhead in the second phase.
They also show that increasing the batch size decreases accuracy, despite linearly
scaling the learning rate and employing a learning rate gradual warm-up scheme.
Their baseline achieved an accuracy of 93%, and using a 4 times larger batch size
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achieved 89%, while using local SGD instead with 4 local steps resulted in 92%.
As such they propose to use local SGD instead of increasing batch size.

Lin et al. [38] also describe Hierarchical local SGD, which is a way local SGD can
be used in each level in a hierarchy of devices. Typically hardware is organized
as layers in a hierarchy, like accelerators in a node, nodes in a rack and rack in
a data-center. Each of these layers has different communication bandwidth. For
example the communication between accelerators and a CPU is faster than the
network between nodes. Hierarchical local SGD takes advantage of this hierachy
by synchronizing the workers within a node at one period, and synchronizing
between all nodes at a lower period. In one of their experiments they simulated
using many devices by artificially delaying the global synchronization, showing a
drastic runtime improvement when employing this setup.

Adaptive synchronization period Wang et al. [64] explores the error-runtime
trade-off related to local SGD, and also introduces AdaComm, an adaptive com-
munication strategy. Based on their analysis of the error-runtime trade-off, they
propose an expression of the optimal communication period. AdaComm, the
scheme they developed, starts the training with local model updates for a long
period between each synchronization, and over the course of the training lin-
early decreases the period between synchronizations. Their experiments with
this scheme achieved up to a 3x improvement in runtime without degrading the
accuracy compared to a synchronous baseline.

3.3 Codistillation

Distillation [50] is the process of transferring the knowledge of either an ensemble
[65] or a large regularized model (teacher model), to a smaller, distilled model
(student model). This is typically done in two phases: first training the teacher,
followed by training the student model using the soft targets generated by the
teacher.5 The soft targets are a smoothed probability distribution obtained by
adding a temperature T to the softmax function in the last layer of a DNN,
in which a higher temperature leads to a smoother distribution. The softmax
function with temperature is given by

qi =
exp (zi/T )∑
j exp (zj/T )

, (3.3)

5One could also incorporate the hard target to the training of the student model. In this
case, the objective function containing the hard labels would typically get a lower weight.
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where T is the temperature, qi is the probability for class i and zi is the ith
element of the input vector to the softmax function. With the use of soft targets
instead of hard targets (one-hot targets from the dataset), the student model
tries to learn the generalization from the teacher.

Using distillation as a backbone, Anil et al. propose Codistillation [51], an online
distillation method that trains n copies of a model in parallel. Codistillation
differs from standard distillation in three primary ways: (1) every trained model
uses the same architecture, (2) the distillation is performed during training be-
fore any of the models has converged, and (3) every model acts as both teacher
and student. Since the distillation happens during training, the two phases in
standard distillation are merged together into a single phase. Each worker is
given a disjoint partition of the dataset which it uses to train a local model for a
set amount of iterations before the workers start occasionally sharing their model
parameters with their neighbours. From here on out, every worker use the latest
received model parameters wj as teacher models when training. This is done by
adding a distillation loss ψ to the update of student i’s parameters wit at iteration
t. Using the same notation as in (2.2), the expanded update rule is given by

wit+1 = wit − η∇

L(wit,x) + ψ

 1

|NB|
∑
j∈NB

L(wj),x), pred(wit,x)

 , (3.4)

where x is the input sample(s), NB is the set of neighbours for the student, wj
is the parameters of teacher model j and pred(wit,x) is the prediction made on
x by the student model. The distillation loss ψ can for instance be the cross
entropy error where the inputs are the student prediction and the soft targets
generated by the teacher models. Note that the teacher predictions will be stale
if the parameters is not exchanged after every update. Anil et al., however,
contemplate that stale predictions has less impact on model quality than stale
gradients.

Anil et al. further argue that codistillation can be used to speed up the training
by dividing M workers into n groups of K workers where each group is given a
disjoint partition of the dataset, as illustrated by Figure 3.3. This means that
the groups will train independent models, where the gradients for a model are
communicated within a group (synchronous data parallelism with mini-batch av-
eraging, see Section 2.2.3) and the model parameters are exchanged occasionally
between the groups. In their experiments, they use two groups of 128 workers
(n = 2 and K = 128) which they base on previous experiments showing that
synchronous data parallelism with mini-batch averaging has diminishing returns
in terms of runtime when exceeding 128 workers. Thus, instead of using the extra
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workers to train the same model, they decrease training time by assigning dis-
joint parts of the dataset to groups which train different models. For the groups
to learn from each others data, they occasionally exchange model parameters to
update the teacher models.6 They further show that by assigning the same data
to both groups (i.e., full overlap), the accuracy is degraded compared to when
the data is assigned with no overlap.

Even though codistillation requires a forward pass on the teacher models, they
note that this computation can be overlapped with the forward pass of the student
model.7 With this setup, they are able to achieve the baseline (128 worker syn-
chronous data parallelism with mini-batch averaging) validation error in 2x fewer
steps. They also show that by training longer, codistillation with two groups is
able to reach a better final validation error.

Figure 3.3: Codistillation with n groups of K workers. Different groups are given
disjoint data partitions, i.e., D1 ∩ D2 ∩ · · · ∩ Dn = ∅

6Anil et al. only experimented with two groups, but they suggest that if scaled to more than
two groups, the groups might benefit from being arranged in a sparse topology (e.g., a ring)
instead of a fully connected graph, as very dense topologies might lead to the models becoming
too similar.

7Note that this can be another motivating factor for using sparse topologies to connect the
groups when using several groups.
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3.4 Summary & Motivation

In this chapter we have seen three ways of training DNNs using data parallelism.
In Section 3.1, we see that the focus is on modifying the model, its hyperparame-
ters or optimizing the communication method When scaling to a large number of
workers. We have also seen some techniques that allows for increasing the batch
size without loosing significant performance ( e.g., the linear scaling rule, learning
rate warmup phase and LARS). Further, in Section 3.2 we have seen that local
SGD can be used to reduce the number of communication rounds. Techniques for
handling the loss in performance when reducing the communication rounds have
also been presented. At last, we have seen in Section 3.3 how different groups of
workers train independent models on their local data, and through exchanging
teacher models, the information from separate parts of the dataset are shared
between the groups. Here, we see an explicit statement of how assigning the data
in different ways between two groups impact the performance. However, this
only applies when training using codistillation, and not data parallelism with ei-
ther gradient or parameter averaging (see Section 2.2.3). This lack of any study
on how assigning the data in different ways impact the performance will be the
motivating factor for the work in this project.

It should also be noted that we will use some of the presented techniques in this
chapter to further expand upon initial experiments, enabling deeper analyses for
some of the experiments. More specifically, we will use the linear scaling rule and
learning rate warmup scheme to alter the learning rate. We will also experiment
with local SGD in which we study how assigning the workers different amount of
data impacts the performance. This study will also be expanded upon in which
we will use the concept of hierarchical local SGD to further apply different data
assignment schemes when reducing the number of communication rounds (as we
will see in Chapter 4, and more specifically Section 4.2, we will refer to this
concept as households and neighbourhoods).



Chapter 4

Methodology

In this chapter we will describe the main concepts that will be experimented
with in Chapter 5. This includes a look at different ways of assigning data
between multiple workers with varying degrees of overlap. We will also use the
concept of hierarchical local SGD [38] to describe a communication reduction
method in which the workers are grouped into what we refer to as households
and neighbourhoods. At last, we will conclude this chapter with a description of
how we conduct experiments with focus on the experimental process and scope
of the project.

4.1 Data assignment

When utilizing data parallel training (see Section 2.2), a dataset is typically
distributed evenly between a set of workers with no overlap of data between
them. Here we propose an approach where some workers may or may not share
a portion of the dataset. In other words it causes a non-zero intersection of data
samples between certain workers. We refer to this concept as overlap of data
between workers.

Before we describe different ways of assigning the data to the workers, we will
look at how the dataset is split into shards and samples: after shuffling the
dataset, we divide the dataset D into S shards, where one shard consists of j
data samples. Each sample s is associated with input data x and target label y,

33
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and is referred to as s = (x, y).1 Formally, we have D = {D1,D2, . . . ,DS} where
Di = {si,1, si,2, . . . , si,j} for all i. An example of data assignment is shown in
Figure 4.1. In standard distributed data parallel training using M workers, we
will create S =M shards, and assign each worker a unique shard. This situation
is illustrated in Figure 4.2a. At the other end of the spectrum, one could assign
all shards to all workers, which would result in full overlap between the workers,
as illustrated in Figure 4.2b.

Figure 4.1: A dataset D divided into shards Di, where a shard consists of multiple
samples. In this figure there are 20 data samples in the dataset divided into 4
shards and each shard contains 5 unique samples.

One way to quantify the amount of overlap is to look at how many times each
data sample is assigned. We refer to this quantity as number of copies C of every
data sample, where 1 ≤ C ≤ M . We see that for C = 1, we have disjoint data
assignment (Figure 4.2a), while for C =M , we have full overlap data assignment
(Figure 4.2b). When 1 < C < M , there are several ways to assign the data. For
our experiments we have used the following:

• Coarse sharding: With this strategy, we create 1 < S < M overlap-
ping shards, where worker Mi gets shard Sj = i mod S. This sharding
scheme results in groups of MS workers having equal data (which, naturally,
is also the number of copies C). Figure 4.3a illustrates an example of coarse
sharding where S = 2 and M = 4.

1Here we assume supervised learning.
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(a) No overlap (b) Full overlap

Figure 4.2: Assignment of shards to four workers. Circles represent the workers,
and each row represent the dataset. The presence of a shard at a row represent
the assignment to the respective worker. Figure 4.2a shows the assignment of
disjoint shards, Figure 4.2b shows the assignment of full overlapping shards.

• Medium-coarse sharding: With this strategy we first define a number of
copies C. Next, the dataset is split into M shards. Worker Mi then gets C
shards; Si, S(i+1) mod M , . . . , S(i+C−1) mod M . With this sharding scheme,
2C − 1 workers will have intersecting data, but no workers will have equal
data. Figure 4.3b illustrates an example of medium-coarse sharding where
C = 2 and M = 4.

• Fine-grained sample assignment: With this strategy we assign samples
rather than shards. This is accomplished by defining a number of copies
1 < C < M , where every sample in the dataset is assigned to C workers
with the aim of having intersection between allM workers when all samples
are assigned. With N total samples in the dataset, each worker gets a total
of C·NM samples. Figure 4.3c illustrates an example of fine-grained sharding
where C = 2, N = 20 and M = 4.

The main difference between these three data assignment schemes is the resulting
intersection of data between workers. We can see that with coarse and medium-
coarse sharding, there will be zero intersection between some of the workers.
With fine-grained sample assignment, on the other hand, we can assign samples
in such a way that makes sure that all workers have intersecting data.
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(a) Coarse (b) Medium-coarse

(c) Fine-grained

Figure 4.3: Different sharding strategies
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4.2 Households & Neighbourhoods

Instead of synchronizing between all workers at every iteration (or local SGD with
LW > 1, see Section 3.2), we can divide the workers into H < M households, and
alternate between synchronizing within households (household synchronization)
and between households (world synchronization). This alternation of synchro-
nization is accomplished by setting a household synchronization period LH and
a world synchronization period LW , where LH 6= LW (typically with LH < LW ).
Figure 4.4 illustrates an example of household arrangement.

Figure 4.4: Arrangement of workers into households. In this figure there are a
total of 16 workers arranged in 4 households.

We can also add another level of grouping by dividing households into NB < H
neighbourhoods and setting a neighbourhood synchronization period LN , with
LN 6= LH 6= LW (typically also with LH < LN < LW ). Figure 4.5 illustrates an
example of neighbourhood arrangement.
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Figure 4.5: Arrangement of households into neighbourhoods. Here there are 16
workers, 4 households and 2 neighbourhoods.

4.2.1 Household shards

The straightforward way to assign data when arranging the workers into house-
holds and neighbourhoods is to give each worker a unique shard of the dataset
(i.e., no overlap, see Figure 4.2a). This results in each household having 1

H of
the dataset. We refer to the data assigned to a household as a household shard,
and to remove ambiguity we refer to shards at a worker level for worker shards,
as illustrated in Figure 4.6. We see that if we set the number of household shards
SH equal to the number of households H, we have disjoint household shards. If
SH < H, on the other hand, we have overlapping household shards.

An example of overlapping household shards is seen in Figure 4.7, where we
have M=16, H=4 and SH=2. We see that H

SH
= 4

2 = 2 households have equal
data.2 Another example of assigning overlapping household shards is to create
one neighbourhood for each copy of the dataset. Figure 4.8 shows an example
with the same data assignment as in Figure 4.7a, but with one neighbourhood

2When we have equal data at different households we give unique initialization seeds to the
households to ensure that they do not process the same batches.
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per copy of the dataset.

Figure 4.6: Household shards consisting of worker shards

(a) Assignment of household shards (b) Two household shards

Figure 4.7: Example of assignment of household shards when SH < H. Here we
have M = 16, H = 4 and SH = 2
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Figure 4.8: Neighbourhoods with SH = H
NB . Each neighbourhood has access to

the entire dataset
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4.3 Plan of the Experiments

This section will introduce necessary information about how the experiments in
Chapter 5 are conducted. This includes a look at the technology used, both
software frameworks and the utilized hardware, as well as how we design and run
our experiments.

4.3.1 Technology

When selecting a distributed deep learning framework, we value flexibility over
speed and scalability for three main reasons:

1. We are not directly concerned with the runtime in terms of seconds, but
rather the total number of epochs (that is, the total number of samples
processed)

2. The scope of this project will limited to 16 workers, thus limiting the need
for high scalability

3. The observation that frameworks that prioritize speed and scalability often
comes with a limitation on flexibility, leaving out the possibility to control
how the data is assigned

Thus, we will use Ray [66], a flexible framework for designing and running par-
allel and distributed applications in Python. Ray can express both task-parallel
and actor-based computations. Tasks are used to dynamically load balance sim-
ulations, process large inputs and state spaces, and recover from failures. Actors
enable stateful computations, such as model training. For our experiments, we
will utilize the actor abstraction in combination with Tensorflow [67] to represent
model replicas.

All experiments conducted in this project are run on the NTNU IDUN computing
cluster [68]. The cluster has more than 70 nodes and 90 GPGPUs. Each node
contains two Intel Xeon cores, at least 128 GB of main memory, and is connected
to an Infiniband network. Half of the nodes are equipped with two or more Nvidia
Tesla P100 or V100 GPGPUs. Idun’s storage is provided by two storage arrays
and a Lustre parallel distributed file system.
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4.3.2 Experimental process

As stated in Section 1.3, this project will use an experimental and analytical
research method. The process will be a standard scientific experimental process.
More specifically, the process will consist of first stating a couple of hypotheses,
followed by implementing the required concepts to test these hypotheses, running
experiments, and at last analysing the results. The analysis will possibly lead to
new hypothesis, and thus, the process is then repeated to address the research
goal and research questions of this thesis.3 It should also be noted that we split
dataset into a train/validation split, and run each experiment with 5 different
seeds in which we will use the mean top-1 validation accuracy for analysis, in
addition to the standard deviation when conducting statistical hypothesis tests.4
For the results we find most interesting and relevant for the key message of this
thesis, we will run the model on the test set to ensure that the analysis performed
on the validation set also accounts for the test set.

4.3.3 Project scope

We limit the scope of this project to the use of one DNN architecture and dataset.
More specifically, for all experiments, we train ResNet-20 [22] on CIFAR-10 [62].
We use the workload described by He et al. [22] (specific details are elaborated on
in Experiment E1), and turn the focus to different data assignment schemes in
combination with different degrees of synchronization. Thus, most exploration of
hyperparameters will be with regards to these two concepts (i.e., data assignment
and degrees of synchronization). However, for some experiments, we alter a
couple of model hyperparameters to get a broader view and multiple comparisons
to enable deeper analyses. More specifically, we will make some alterations to the
batch size and the learning rate, while keeping all other model hyperparameters
constant. The scope and focus of this project are summarized in Figure 4.9
where red boxes represent what we keep constant throughout all experiments,
green boxes represent the main exploration, and blue boxes represent what we
explore to a certain degree (mainly in combination with either data assignment
or communication reduction).

Even though one of the key motivating factors of parallelizing the training of
DNNs is to improve the runtime, we are mainly concerned with the performance

3Note that not all steps are necessarily repeated. For instance, a concept is only implemented
once, and then experimented in combination with other concepts.

4The seed impact the initialization of the neural network weights as well as the shuffling of
the dataset.
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Figure 4.9: Experimental scope

in this project. As discussed in Section 2.2.7, with performance we refer to
the final accuracy of the model. More specifically, we are concerned with the
mean final top-1 validation accuracy over 5 runs given a constant number of
processed data samples. We will, however, reduce the number of communication
rounds, and thus also improve the runtime, but are mainly concerned with how
different data assignment schemes impact the performance in combination with
the reduction of communication rounds.
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Chapter 5

Results & Analysis

In this chapter, we will analyse and discuss the experiments that has been con-
ducted to address the research goal of this thesis (see Section 1.2). We will first
present the baseline experiment in E1. Here, the training is fully synchronous,
and the workers are assigned disjoint data shards. We keep experimenting with
fully synchronous data parallelism in E2 where we explore different degrees of
overlap between the workers. This experimental section presents three experi-
ments:

• E2.1: Compares the difference between assigning full overlap and disjoint
data.

• E2.2: Compares three data assignment schemes where the amount of data
and intersection of data between workers differ.

• E2.3: Explores how increasing the batch size with varying degrees of over-
lap impact the accuracy.

At last, in E3, we will look at different ways of reducing the number of communi-
cation rounds with the focus on how the assignment of different amount of data
impact the accuracy. The experiments in this section are structured as follows:

• E3.1: Compares disjoint and full overlap data assignment when reducing
then number of communication rounds by using local SGD.

45
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• E3.2.1: Divides the workers into households where each household is given
a disjoint household shard. All model hyperparameters are the same as in
the baseline experiment.

• E3.2.2: Divides the workers into households where each household is given
a disjoint household shard. The effective batch size is kept constant.

• E3.2.3: Divides the workers into households where each household is given
a disjoint household shard. Both the effective batch size and batch size/learning
rate relationship are kept constant.

• E3.2.4: Compares disjoint and overlapping data between households in
combination with three different batch size and learning rate combinations.

• E3.3: Compares the assignment of disjoint and full overlapping data be-
tween two neighbourhoods.

To conclude this chapter, we will find the test accuracy for the experiments
we consider most significant for the research goal of this thesis. The purpose
of the test accuracy is to ensure that the analyses performed with respect to
the validation accuracy throughout the experiments are also valid for the test
set. Also note that for the majority of the experiments in this chapter we show
summary plots that contains the mean final validation accuracy. We refer the
reader to Appendix B for plots with mean validation accuracy plotted throughout
training.
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5.1 E1 - Baseline

Goal The goal of this experiment is to establish a baseline that can be used
for comparison for all other experimental results. As stated in Section 2.2.6, the
common way to assign data is with no overlap. Thus, the baseline experiment will
use this data assignment scheme. The DNN architecture and hyperparameters
are based on the setup described by He et al. [22].

Method & Data We train ResNet-20 with BatchNorm for 64k iterations (182
epochs) on CIFAR-10 with varying number of workers M . The data is split into
a 45k/5k train/validation split, and assigned with no overlap between workers
(see Figure 4.2a). We use global batch size Bglobal = 128. For the runs with
M > 1, we keep the global batch size constant, and set Blocal =

Bglobal

M . We use
SGD with momentum [69] as optimizer. The momentum coefficient is set to 0.9.
The weights are initialized as described by He et al. [70] with a weight decay of
0.0001. The learning rate is set to 0.1 at start of training, and is divided by 10
at 32k and 48k iterations (50% and 75% of the training process, respectively).

In order to reduce overfitting, we use data augmentation; an image is padded
with 4 pixels on each side, a 32x32 random crop is sampled from this, and the
crop may be horizontally flipped with a probability of 50%. In addition, the pixel
values are normalized and the mean is subtracted.

Results & Discussion The results from this experiment are plotted in Fig-
ure 5.1. As described in Section 2.2.1, training DNNs using data parallelism is
vulnerable to large global batch sizes and, when using BatchNorm, small local
batch sizes. We have kept the global batch size constant, and decreased the lo-
cal batch size when increasing the number of workers. With M=16, we have
Blocal =

128
16 = 8, but as we can see from the results in Figure 5.1 the effects in

terms of performance when scaling from 1 to 16 workers is negligible.

Experiments [21] conducted by Wu et al. shows that when training ResNet-50
on ImageNet with local batch sizes smaller than 16, the accuracy starts to drop.
Even though we have a smaller local batch size than 16 in this experiment, we
hypothesize that the simplicity of the CIFAR10 dataset compared to ImageNet
enables the use of smaller local batch sizes. We further hypothesize that the
accuracy could start dropping if the number of workers are increased beyond 16.
However, since exploring the effects of small local batch sizes is not the focus of
our work, in combination with budgeting for other experiments, we leave this for
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Figure 5.1: Baseline experiment with no overlap in data between workers

future work.
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5.2 E2 - Fully synchronous training

In this experimental section we will explore the effects of assigning different de-
grees of overlapping data when training fully synchronous (see Section 2.2.3). We
will also explore the effects of increasing the global batch size when varying the
amount of overlap between the workers. The overall goal of these experiments is
to investigate RQ1. That is, we want to find out the effects in terms of accuracy
when assigning the data in different ways between the workers.

5.2.1 E2.1 - Full overlap

Goal The goal of this experiment is to explore whether there is any difference
in final accuracy between the two extremes of assigning data, namely disjoint and
full overlap (see Figure 4.2 in Section 4.1).

Method & Data We assign all data samples to all workers. If we used same
number of epochs as when assigning disjoint shards, it would result in processing
C times as many data samples (see Section 4.1 for an explanation of how C
quantifies the amount of overlap). Also note that the term epoch is hard to
interpret when assigning overlapping data. Thus, we use the term overlap epoch.
An overlap epoch is completed when a worker has processed all its N ·CM local data
samples. At that point, the entire system has processed a total of N ·C samples.
To process approximately the same total number of samples as with disjoint data
assignment, we set a target epoch count Etarget and divide by the number of
copies C to get the total number of overlap epochs Eoverlap =

Etarget

C . Note that
the number of target epochs will not always be divisible by the number of copies,
that is, Etarget mod C 6= 0. We could run the last overlap epoch until we have
processed a total of N ·Etarget samples, but this can result in some samples being
processed more than others. Therefore we ceil the number of overlap epochs, as
it ensures that every sample is processed equally many times. When we do this
we get

⌈
Etarget

C

⌉
· C effective epochs. The number of effective epochs represents

how many times each data sample is processed.

When we train using disjoint data assignment we validate the model once after
every epoch. However overlapping data causes a higher number of iterations per
epoch, which would result in validating less frequently. So instead we validate
every d N

Bglobal
e iteration regardless of the number of iterations per epoch.
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Results & Discussion The mean validation accuracy throughout training
when assigning full overlap data assignment is shown in Figure 5.2. Figure 5.3
shows the difference between disjoint data assignment and full overlap, where
above zero means that the disjoint is better, and below zero means that full
overlap is better. Also note that this comparison only applies up until the last
iteration of the baseline experiment (i.e., at iteration d N

Bglobal
e ·Etarget). We are

more concerned with the final accuracy, and as the plot shows, there is no signif-
icant difference between full overlap and disjoint data assignment at the end of
training.
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Figure 5.2: Mean validation accuracy throughout training for varying number of
workers when assigning full overlapping data
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Figure 5.3: Difference in mean validation accuracy between disjoint and full
overlap data assignment. Above zero means disjoint is better, below zero means
full overlap is better.
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5.2.2 E2.2 - Varying degrees of overlap

Goal The goal of this experiment is to explore how varying degrees of overlap
between multiple workers affect the accuracy when training fully synchronous.
We want to find out whether there is a trade-off between the degree of overlap
and the accuracy in which there are two main points of interest (see Section 4.1):
(1) the amount of data available to each worker and (2) the degree of intersecting
data between the workers.

Method & Data We experiment with three different data assignment schemes
(see Section 4.1 for a detailed explanation of the schemes):

1. Coarse sharding : We divide the dataset into S < M shards and assign
overlapping shards (see Figure 4.3a for a specific example with M = 4 and
S = 2). We run with M = 16, and experiment with S ∈ {2, 4, 8}. The
number of copies C are given by C = M

S

2. Medium-coarse sharding : We give each worker C shards (see Figure 4.3b
for a specific example with M = 4 and C = 2). We run with M = 16, and
experiment with C ∈ {2, 4, 8}.

3. Fine-grained sample assignment : We define a number of copies C and assign
each worker N ·C

M samples in such a way that all workers have intersecting
data (see Figure 4.3c for a specific example with M = 4 and C = 2).
For this experiment, we have assigned the samples to get approximately
equal intersection between all pairs of workers (i.e., variance of intersection
approximately equal to 0). We run with M = 16, and experiment with
C ∈ {2, 4, 6, 8, 10, 12, 14}.

When assigning overlapping data, we run Eoverlap =
⌈
Etarget

C

⌉
overlap epochs, as

described in Experiment E2.1.

Results & Discussion The plot in Figure 5.4 shows a summary of the three
different data assignment strategies where the x-axis quantifies the amount of
overlap with C

M . This quantification means that a value of 1 means full overlap,
and a value of 1

M means disjoint data assignment. Instead of plotting the vali-
dation accuracy throughout training, we only plot the final validation accuracy.
The plot shows that there is no significant difference between the different strate-
gies, nor between the amount of overlap. Individual plots for the different data



5.2. E2 - FULLY SYNCHRONOUS TRAINING 53

assignment schemes with the validation accuracy plotted every 352 iteration (the
number of iterations in an epoch when assigning disjoint data) can be seen in
Figure B.1 in Appendix B.2.1.
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Figure 5.4: Mean final top-1 validation accuracy for the different data assignment
schemes. Amount of overlap is quantified by C

M . The filled areas represents one
standard deviation
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5.2.3 E2.3 - Increase global batch size

Goal As described in Section 2.2.1, DNNs when trained using data parallelism
are vulnerable to large global batches, in general, and small local batches when
using BatchNorm. The goal of this experiment is to explore whether increasing
the data available to each worker makes the model more resilient to an increase
in global batch size independently of the learning rate (and thus, altering the
batch size/learning rate relationship) when training fully synchronous.

Method & Data We experiment with global batch sizes Bglobal ∈ {128, 256,
512, 1024, 2048, 4096}. All experiments are run with 16 workers (M = 16), and
for each global batch size, we have three separate variations of data assignment:

1. Disjoint data: we assign disjoint data shards.

2. Full overlap: we assign all data to all workers, resulting in C = 16 and
C
M = 1.

3. Coarse sharding : we assign 2 shards using the coarse sharding scheme,
resulting in C = 8 and C

M = 0.5.

For the runs with overlapping data, we ceil the number of overlap epochs to
ensure that each data sample is processed equally many times, as discussed in
Experiment E2.1.

Results & Discussion The results from this experiment are plotted in Figure
5.5 where the x-axis shows the global batch size. As expected, when increasing
the global batch size, the accuracy degrades. In the figure, we see no observable
difference for the different data assignment schemes up until global batch size
2048. At global batch size 4096, however, we see some difference: full overlap
data assignment reaches a mean final validation accuracy 0.43 p.p. better than
2 shards (i.e., C = 8, with coarse sharding), and 0.83 p.p. better than disjoint
data assignment. We do, however, observe rather large standard deviations (see
Table B.3 in Appendix B.2.2). To further study the difference of 0.83 p.p. be-
tween disjoint and full overlap, we conduct a two-sample one-tailed t-test with
significance level α < 0.05, and hypotheses:

• H0H0H0: There is no difference in final validation accuracy with Bglobal = 4096
when assigning overlapping data compared to full overlap data assignment.
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• H1H1H1: Assigning full overlapping data is better than assigning disjoint data
when Bglobal = 4096.

We find a p-value of 0.059 > 0.05, and thus, we fail to reject the null hypothesis.
We do, however, notice that the p-value is close to the significance level, and
argue that doing more than 5 runs could change the outcome of this significance
test. We leave this for future work.
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Figure 5.5: Increasing the global batch size with varying amount of data at each
worker. Every experiment are run with 16 workers. The filled areas represents
one standard deviation.
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5.3 E3 - Communication reduction

In this section we experiment with communication reduction methods. More
specifically, we experiment with local SGD, households and neighbourhoods (see
Section 3.2 and Section 4.2). For the experiments in this section, we still study the
general question of how different data assignment schemes impact the accuracy,
namely RQ1. Since we reduce the number of communication rounds, we are also
concerned with RQ2: we want to find out whether overlapping data can improve
the accuracy compared to disjoint data assignment when reducing the number of
communication rounds.

5.3.1 E3.1 - Local SGD

Goal As mentioned in Section 2.2.3, the model accuracy is negatively impacted
when reducing the synchronization frequency. The goal of this experiment is to
investigate the effects of assigning disjoint and full overlapping data when training
when reducing the synchronization frequency by training with local SGD. As a
part of this investigation, we want to find out whether increasing the amount of
data available to each worker reduces the degradation in accuracy when reducing
the number of communication rounds.

Method & Data We train with 2, 4, 8 and 16 workers, and use world syn-
chronization periods LW ∈ {2, 4, 8, . . . , 128}. For each combination of LW and
M , we run two different experiments with the only difference being how the data
is assigned: disjoint and full overlap. For the experiment were we assign overlap-
ping data, we must find the number of overlap epochs. With full overlap, we have
C =M , and thus, we do Eoverlap =

Etarget

M overlap epochs (with Etarget = 182).
When Etarget mod M 6= 0, we ceil the result to ensure that every data sample
is processed equally many times, as discussed in Experiment E2.1.

Results & Discussion The results for this experiment are plotted in Fig-
ure 5.6. The results from assigning disjoint data are plotted as solid lines, and
the result from assigning full overlapping data between the workers are plotted
as dashed lines. As expected (see Section 2.2.3), the accuracy drops when we
increase the world synchronization period. We also observe that this drop in ac-
curacy gets larger as we increase the number of workers. We are, however, more
concerned with the difference between the two data assignment schemes. As the
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plot shows, there is no significant difference between the two data assignment
schemes.
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Figure 5.6: Mean final validation accuracy with different world synchronization
period training with local SGD. Solid lines (S=M) represent disjoint data as-
signment, dashed lines (S=1) represent full overlap data assignment
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5.3.2 E3.2 - Households

This section will present multiple experiments in which we explore the effects of
dividing workers into households (see Section 4.2). In the first three experiments
we assign disjoint household shards and explore three different ways of comparing
households by altering some model hyperparameters. In the last experiment, we
do the same alteration to the model hyperparameters, while also increasing the
amount of data available to each household.

E3.2.1 - Constant local batch size

Goal The goal of this experiment is to explore the use of households with dis-
joint household shards (i.e., SH = H, see Section 4.2.1), and how different world
synchronization periods impact the accuracy while keeping all model hyperpa-
rameters from the baseline experiment fixed.

Method & Data We use the same parameters for the model as in the baseline
experiment. Three different number of households are tried, H ∈ {2, 4, 8}, and
the number of workers are kept fixed at 16 (M = 16). We set SH=H, which
means that each household will get a unique household shard. For each value
of H, we run with world synchronization periods LW ∈ {2, 4, 8, . . . , 128}. All
experiments are run with household synchronization period of 1. To ensure syn-
chronized parameters between all households, we do not validate at the end of
an epoch if the number of iterations per epoch is not divisible by the world syn-
chronization period. Instead, we run some extra iterations into the next epoch
and validate at the first world synchronization in the next epoch.

Results & Discussion The results in Figure 5.7 show the mean final valida-
tion for different number of households and world synchronization periods. For 2
households, we can see that the validation accuracy does not suffer from increas-
ing the world synchronization period up until 128. In fact, the validation accuracy
for LW = 128 at the end of training is better than the baseline. However, this
difference (around 0.25 p.p.) is too small to be of any significance, and we could
expect a more similar accuracy with more than 5 runs. When we increase the
number of households, we see a more clear drop in the final validation accuracy.
More specifically, we see that the decrease in final validation accuracy with 4 and
8 households compared to the baseline is 0.75 and 1.5 p.p., respectively.
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One aspect of this comparison between different number of households is that we
keep the number of iterations constant independent of the number of households
and the world synchronization period. This means that as we increase the number
of households while keeping the world synchronization period fixed, we do the
same total number of world synchronizations. On the other hand the effective
batch size is not the same for different values of H and LW (see Appendix A and
Equation (A.2)).
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Figure 5.7: Final validation accuracy for different number of households with
different world synchronization period with constant local batch size independent
of H and LW . Filled area represents one standard deviation.
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E3.2.2 - Constant effective batch size

Goal As stated in Experiment E3.2.1, the effective batch size is not constant
for different number of households and world synchronization periods when we
keep the local batch size constant. The goal of this experiment is to expand
upon Experiment E3.2.1 to enable further analysis. The expansion is done by
comparing the validation accuracy for different number of households when we
keep the effective batch size constant.

Method & Data We use the same parameters as in Experiment E3.2.1, but
instead of dividing the global batch size by the number of workers to find the
local batch sizes (i.e., Blocal =

Bglobal

M ), we set the target effective batch size to
128, and find new local batch sizes by using Equation (A.3). As seen in Figure
A.1 in the Appendix, this leads to an increase in the local batch size which results
in fewer iterations per epoch. Since we keep the total number of epochs fixed,
the total number of iterations is not the same as in the baseline experiment. We
keep the same LR schedule, but since the total number of iterations is changed,
we do not decrease the LR at 32k and 48k iterations, but instead at 50% and
75% of total iterations, which will vary depending on H and LW . We also see
that for H = 4 with LW = 128, and H = 8 with LW = 64 and LW = 128, we get
larger world synchronization periods than the number of iterations per epoch.
Thus, we do not validate every epoch, but instead only validate at every world
synchronization to ensure synchronized parameters at validation.1

Results & Discussion The mean final validation accuracies are plotted in
Figure 5.8, where the filled area around each line represents one standard devia-
tion. We can see that there are a larger drop in accuracy between the different
number of households compared to what we saw in Experiment E3.2.1 where
we kept the local batch size constant. There are, however, a couple of factors
that make the comparison between different number of households and world
synchronization periods suboptimal: (1) since we have increased the local batch
and kept the number of epochs fixed, we have fewer total iterations, which (2)
also results in fewer total world synchronizations.2 We also see a similar pattern

1There are ways to still validate at the same interval as with the baseline experiment.
However, this would mean validating with different model parameters. One could for instance
shard the validation data disjointly between the households, and validate with different model
parameters at the end of every epoch.

2For example, with H = 8 and LW = 128, we have Blocal = 61 which leads to a total of
d N
M·Blocal

e · E = d 45000
16·61 e · 182 = 8554 total iterations. This results in a total of d 8554

128
e = 67
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in how the local batch increases with the world synchronization period (Figure
A.1a in Appendix A) and the final validation accuracy decreases with the world
synchronization period (Figure B.8). This similar pattern could imply that the
increased local batch with its side-effects (fewer total iterations and world syn-
chronizations) is a factor in the decreasing validation accuracy. It should also be
noted that increasing the local batch size as a function of H and LW results in
a different batch size/learning rate relationship, something we hypothesize can
impact the accuracy. This altered batch size/learning rate relationship motivates
Experiment E3.2.3.
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Figure 5.8: Mean final validation accuracy for different number of households
with different world synchronization periods. Filled area represents one standard
deviation.

world synchronizations, which is approximately 7.5 times less than in the experiment with
constant local batch size with same H and LW .
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E3.2.3 - Constant effective batch size with linearly scaled learning rate

Goal As we saw in Experiment E3.2.2, when using Equation (A.3) to increase
the local batch size and at the same time keeping the initial learning rate constant,
the batch size/learning rate relationship is altered. We want this relationship to
be constant and equal to what was used in the baseline experiment. The goal
of this experiment is thus to further explore the effect of dividing workers into
households with disjoint data where both the effective batch size and the batch
size/learning rate relationship is constant. This is achieved by using Equation
(A.3) to find local batch sizes in addition to applying the linear scaling rule [52].

Method & Data We use the same parameters as in Experiment E3.2.2, except
for the initial learning rate: Based on the new local batch size from using Equation
(A.3) with Beffective = 128, we scale the learning rate linearly with the increase
in batch size. In the baseline the local batch size was

Blocal =
Bglobal
M

were Bglobal was set to 128. In this experiment we set the local batch size to

Blocal =
Beffective · LW ·H
M(H + LW − 1)

,

and we see an increase in local batch size

Beffective · LW ·H
128 · (H + LW − 1)

.

For this experiment we keep the effective batch size constant at Beffective = 128.
Thus we end up with scaling the initial learning rate by

LW ·H
H + LW − 1

As explained by Goyal et al. [52], applying the linear scaling rule without any
other techniques typically results in early optimization difficulties. Thus, we also
apply their proposed learning rate warmup period of 5 epochs where we gradually
increase the learning rate from 0.1 to the target scaled learning rate to overcome
this issue. Even though we change the initial learning rate, we keep the same
learning rate schedule, which means that we divide the learning rate by 10 at
50% and 75% of training.
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Results & Discussion The mean final validation accuracies for this experi-
ment are plotted in Figure 5.9. Comparing this plot to the result plotted in Figure
5.8 from Experiment E3.2.2, we can see a general improvement in accuracy. This
could indicate that the altered relationship between batch size and learning rate
in Experiment E3.2.2 resulted in some degradation in accuracy. With the as-
sumption that scaling the learning rate fixes this degradation in accuracy, we can
argue that the remaining degradation (compared to Experiment E3.2.1 where we
keep the local batch size constant independent of H and LW ) is a result of fewer
total number of iterations and world synchronizations, as well as the decreased
iteration-to-sync ratio TE

LW
, when increasing the local batch size.
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Figure 5.9: Mean final validation accuracy for different number of households
with different world synchronization periods where we scale the learning rate
linearly. Filled area represents one standard deviation.
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E3.2.4 - Overlapping data between households

Goal The goal of this experiment is to explore the effects of overlapping data
between households (i.e., SH < H, see Section 4.2.1) in combination with differ-
ent batch/size learning rate relationships. We want to find out whether assigning
overlapping data when using any of these batch size/learning rate combinations
can improve the accuracy compared to disjoint data assignment.

Method & Data We divide 16 workers into 2, 4 and 8 households. We further
set the number of household shards SH < H (i.e., overlapping household shards,
see Figure 4.7 for an example where H=4 and SH=2). For H=2 we have SH=1,
for H=4 and H=8 we have SH ∈ {1, 2}. For each of the previous combinations
of H and SH , we run with world synchronization periods LW ∈ {2, 4, 8, . . . , 128}.
All of these combinations of H, SH and LW are run with three combinations of
local batch size and learning rate:

1. We keep the local batch size constant with Blocal = 8 with an initial learning
rate of 0.1 (as in Experiment E3.2.1)

2. We find the local batch size using Equation (A.3) with Beffective = 128,
with an initial learning rate of 0.1 (as in Experiment E3.2.2)

3. We find the local batch size using Equation (A.3) with Beffective = 128,
and scale the initial learning rate linearly (as in Experiment E3.2.3)

Since we have overlapping data between the households, we must find the number
of overlap epochs. We first find the number of copies of each data sample with
C = H

SH
. The number of overlap epochs is then given by Eoverlap = dEtarget

C e
where Etarget is the target number of epochs. The reason it is ceiled is to ensure
that each data sample is processed equally many times.

Results & Discussion The results of the three combinations of local batch
size and learning rate listed above are plotted in Figure 5.10, Figure 5.11 and
Figure 5.12. For easier comparison to the results where we assign disjoint data
(Experiment E3.2.1, Experiment E3.2.2 and E3.2.3), we plot these results with
solid lines, while plotting the results for overlapping data with striped and dashed
lines.

From Figure 5.10 we can see that there is practically no difference between over-
lapping household shards and disjoint household shards when we keep the local
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Figure 5.10: Mean final validation accuracy for different number of households
and household shards. Local batch size is kept constant at Blocal =

Bglobal

M , with
an initial learning rate of 0.1

batch size constant. When we increase the local batch to reach an effective batch
size of 128 while keeping the initial learning rate at 0.1, we can see that overlap-
ping household shards can improve the accuracy when the world synchronization
period gets large. From Figure 5.11, we can see that this improvement is most
significant for H = 8 and LW > 16. To further study this difference, we list the
numbers for these results in Table 5.1 on the format "(mean ± std)". As the
table shows, the biggest difference in mean validation accuracy is obtained for
LW=64, between SH=8 and SH=2. We do, however, observe some difference in
standard deviation between the different combinations of LW and SH . To inves-
tigate the significance of the differences, we run a two-sample one-tailed t-test
with significance level α < 0.05, and hypotheses:

• H0H0H0: Overlapping data between households has no effect compared to dis-
joint data assignment.

• H1H1H1: Overlapping data between households is better, with regards to final
validation accuracy, than disjoint data assignment.
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Figure 5.11: Mean final validation accuracy for different number of households
and household shards. Local batch size is given by Equation (A.3), with an initial
learning rate of 0.1

We find that all comparisons between disjoint (i.e., SH=8) and overlapping data
(i.e., SH ∈ {1, 2}) where H = 8 and LW > 16 results in a p-value < 0.05. Thus,
we reject the null hypothesis for these world synchronization periods (see Table
5.2 for the specific p-values for these world synchronization periods). For H=8,
we further find a p-value < 0.05 when LW = 16 and SH=2 (but not for SH=1).
We also find a p-value < 0.05 for H = 4 with LW = 128, both with SH=1 and
SH=2.

Looking at the results plotted in Figure 5.12 in which we scale the learning
rate linearly with the increase in local batch size when using Equation (A.3),
we see that there is no longer any significant difference in mean final validation
accuracy when assigning overlapping household shards, compared to disjoint data
assignment.3 The biggest difference in validation accuracy between disjoint and

3However, as discussed in Experiment 5.3.2, there is a general improvement in valida-
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LWLWLW

SHSHSH 8 2 1

32 (88.29 ± 0.51) (89.26 ± 0.42) (89.27 ± 0.15)
64 (87.77 ± 0.72) (88.95 ± 0.21) (88.64 ± 0.38)
128 (87.26 ± 0.31) (88.29 ± 0.13) (88.08 ± 0.30)

Table 5.1: Final validation accuracy for 8 households with mean and standard
deviation (std) over 5 runs on the format "(mean ± std)". Bold number represent
the biggest difference in mean between data assignment schemes

LWLWLW

SHSHSH 2 1

32 0.014 0.007
64 0.0113 0.0375
128 0.001 0.0065

Table 5.2: Resulting p-values from running a two-sample t-test comparing disjoint
(SH=8) to overlapping data assignment (SH ∈ {1, 2}) with numbers from Table
5.1. Bold number represents smallest p-value

overlapping data is observed for H=8 with LW=128, where we see a difference
of 0.57 p.p. between SH=8 and SH=2. Running a two-sample one-tailed t-test
with the same significance level and hypotheses described earlier in this section,
we get a p-value of 0.09 > 0.05, failing to reject the null hypothesis.

To reiterate our results, we find that the experiment where the effective batch
size is kept constant while the learning rate is not scaled based on the increase
in batch size results in an improvement in final validation accuracy when assign-
ing overlapping data between households compared to disjoint data assignment.
For the two remaining combinations of batch size and learning rate, we see no
significant difference between overlap and disjoint data assignment.

Finding conclusive answers to some of the results from these experiments is hard.
The act of arranging workers into households and reducing the communication
during training is not alone the cause of the difference in accuracy. In addition,
our results also show that using households and increasing the batch size when
the initial learning rate is scaled with this increase does not lead to this difference
either. Further, the difference is not solely caused by the altered relationship be-
tween batch size and learning rate, as it did not appear in Experiment E2.3. All

tion accuracy for both disjoint and overlapping data compared to Experiment E3.2.2 with
Beffective=128 where we keep the initial learning rate at 0.1.
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Figure 5.12: Mean final validation accuracy for different number of households
and household shards. Local batch is given by Equation (A.3), and the initial
learning rate is scaled linearly with the increase in local batch size

these experiments that were conducted that did not see this difference in accu-
racy between disjoint and overlapping data greatly limits the number of possible
explanations for the observed difference. Since we only observe the difference
at large H and LW , which results in larger local batch when using Equation
(A.3), we argue that the batch size/learning rate relationship must be altered to
a certain degree before overlapping data has an effect. Even though a specific
combination of hyperparameters resulted in a difference in accuracy between dis-
joint and overlapping data, there may not exist a general rule as to what kind of
hyperparameter combinations will result in such a difference. As a side note, the
value of these results is also somewhat limited by the fact that the experiment
that had this difference showed the largest degradation of accuracy out of all our
experiments, at worst falling below 88%.
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5.3.3 E3.3 - Neighbourhoods

Goal The goal of this experiment is to explore whether there is any difference of
assigning overlapping data between neighbourhood compared to assigning fully
disjoint data.

Method & Data We divide 16 workers (M = 16) into 4 and 8 households
(H = 4 and H = 8). We further divide these households into 2 neighbourhoods
(NB = 2) and set the household synchronization period LH = 1. We experiment
with two different neighbourhood synchronization periods, LN = 2 and LN = 4.
For LN = 2, we run with world synchronization periods LW ∈ {4, 8, 16, . . . , 128},
and for LN = 4 we run with LW ∈ {8, 16, 32, . . . , 128}. The data is assigned in
two different ways:

• Disjoint : All workers are given a disjoint shard, and thus, there are no
overlap between neither households nor neighbourhoods

• Full overlap between neighbourhoods: We assign overlapping household shards
in such a way that each neighbourhood will have one copy of each household
shard (an example where H=4, NB=2 and SH = 2 is shown in Figure 4.8).
Specifically, we set SH = H

NB and assign the household shards in such way
that there are no overlap within a neighbourhood, but full overlap between
neighbourhoods

For the experiment with overlapping data, we set the number of overlap epochs
Eoverlap = dEtarget

C e. Since we have full overlap between neighbourhoods, but dis-
joint data within each neighbourhood we have C = NB. Thus, we do Eoverlap =
d 1822 e = 91 overlap epochs.

Results & Discussion The mean final validation accuracy for different combi-
nations of H, LN and LW for this experiment are plotted in Figure 5.13. We plot
neighbourhoods with disjoint data as solid lines and neighborhoods with overlap-
ping data as dashed lines. The main observation is that there is no significant
difference between disjoint and overlapping data between neighbourhoods. We
further observe that the results for both H=4 (Figure 5.13a) and H=8 (Figure
5.13b) are very similar, with no significant difference when comparing pairs of
LN and LW . Next, we will look at a couple of points that we observe for both
H=4 and H=8.
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• There is no significant difference between the two neighbourhood synchro-
nization periods: We observe that this is especially the case for larger world
synchronization periods.

• The model is quite resilient against an increase in world synchronization
period : That is, we observe no significant difference between the smallest
and largest world synchronization periods.



5.3. E3 - COMMUNICATION REDUCTION 71

0 20 40 60 80 100 120
World synchronization period

87

88

89

90

91

92
M

ea
n 

fin
al

 v
al

id
at

io
n 

ac
cu

ra
cy

LN = 2, SH = H
LN = 2, SH = H/NB
LN = 4, SH = H
LN = 4, SH = H/NB

(a) 4 households in 2 neighbourhoods
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(b) 8 households in 2 neighbourhoods

Figure 5.13: Households arranged into 2 neighbourhoods. Solid lines show results
where each worker is given a disjoint data shard, and dashed lines show results
where there are full overlap between neighbourhoods.
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5.4 Summary

In this section, for the results that we consider most significant for the key message
of this thesis, we will run the model on the test set to either confirm or reject
that the validation set is representative for the test set.

5.4.1 Varying degrees of overlap

The results from running Experiment E2.2 are plotted in Figure 5.14 with the
y-axis showing the test accuracy at end of training. We observe that there is
no significant difference between the test accuracy and the validation accuracy
(Figure 5.4).
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Figure 5.14: Mean test accuracy for different data assignment schemes. Filled
area represents one standard deviation
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5.4.2 Households with overlapping data

The results from running the batch size/learning rate combination (2) described
in Experiment E3.2.4 are plotted training in Figure 5.15 with test accuracy at
end of training. Here, we also find that there is no significant difference between
the test accuracy and the validation accuracy (Figure 5.11).
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Figure 5.15: Mean test accuracy for households with disjoint and overlapping
data where the effective batch size is kept constant at 128
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Chapter 6

Evaluation and Conclusion

In this thesis we have conducted multiple experiments were we trained a convo-
lutional neural network using data parallelism. The overall goal of the work has
been to explore the effects of different data assignment schemes in terms of final
accuracy. We have experimented with both fully synchronous systems, as well
as methods that reduce the number of communicating rounds. In this chapter,
we will conclude the thesis by evaluating and discussing the main findings of the
work presented in the previous chapters. This includes a discussion where we
will address the research questions stated in Chapter 1. We will also discuss the
limitations of this work which will motivate possible directions for future work.

6.1 Evaluation

With fully synchronous data parallel training we find that there is no difference
in terms of final accuracy between giving every worker access to all data and
giving each worker a unique part of the dataset. When assigning data some-
where in between these two extremes, we also find that there is no difference in
final accuracy regardless of the amount of data available to each worker. This
finding applies for three different data assignment schemes where the intersection
of data between there workers differ. Further, we have explored the effects of
assigning varying amount of data to each worker when we reduce the number of
communicating rounds. Here, we find that in certain circumstances, overlapping
data can improve the final accuracy compared to disjoint data. Specifically, this

75
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improvement is found when dividing workers into households and the local batch
size is increased without changing the learning rate, leading to an altered batch
size/learning rate relationship. However, since we only see this improvement for
larger local batch sizes, we assert that the relationship must be altered to a certain
degree for there to be any improvement with overlapping data. In a different ex-
periment, we show that assigning overlapping data has no significant effect when
we train synchronously with an altered batch size/learning rate relationship. We
therefore argue that the improvement stems from the combination of reduced
communication rounds and an altered batch size/learning rate relationship.

To sum up, we will answer the research questions stated in Section 1.2. For
convenience, we will repeat the questions in this section, starting with RQ1:

RQ1 In terms of performance, what are the effects of assigning the data in dif-
ferent ways between the workers?

Most of the results generated in this project support the fact that there is no
difference in performance between different data assignment schemes. As men-
tioned in the previous paragraph we find one exception in which this is not the
case. This exception is found when reducing the number communication rounds
while altering the batch size/learning rate relationship to a certain degree. This
specific scenario also helps us answer RQ2:

RQ2 Can overlapping data make the system more resilient to communication
reduction? If so, in what circumstances?

We find that overlapping data in many cases does not make the model more
resilient to communication reduction. However we did find one scenario where
it had a significant improvement over disjoint assignment. The specifics of this
scenario are briefly mentioned in the previous paragraph, and are fully elaborated
on in Experiment 3.2.4]. Finally, we will address RQ3:

RQ3 What is the optimal way to assign data between workers?

When it comes to fully synchronous data parallel training, we observe no differ-
ence in final accuracy between any of the strategies that assign overlapping data.
For these reasons, we think it is reasonable to view the optimal strategy from a
practical standpoint, but finding the most practical strategy is outside the scope

sec:overlapping-household-shards-experiment#[.E
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of this project. When it comes to evaluating an optimal way of assigning data
when reducing the number of communication rounds, we also find no significant
difference between disjoint and overlapping data assignment in most scenarios,
therefore we again make the claim that the most optimal way to assign data
should be seen from a practical standpoint. We do, however, see that assigning
overlapping data is better than disjoint data whenever the batch size/learning
rate relationship is altered to a certain degree in combination with significant
reduction in communication. Thus, we argue that overlapping data can be the
optimal way of assigning data in this specific scenario. We finally note that this
is based on the findings in this work, and may not apply for other workloads and
communication methods.

6.2 Contributions

The work done in this thesis has given three main findings:

• When reducing the number of communication rounds, assigning overlapping
data can improve accuracy compared to disjoint data assignment when the
batch size/learning rate relationship is altered to a certain degree.

• There is no difference in final accuracy with regards to neither the amount
of data, nor the degree intersection of data between workers when training
is fully synchronous.

• In many cases assigning overlapping data has no impact on final accuracy,
even when reducing the amount of communication between workers during
training.

6.3 Discussion

In this section we will discuss what we consider as the most notable limitations
of this work. The discussion will serve as potential directions for future work,
which will be pointed out in Section 6.4.
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6.3.1 Workload

For the experiments conducted in this thesis, we have set the scope at a cer-
tain workload, i.e., neural network architecture, dataset, hyperparameters and
optimizer, and we have conducted multiple experiments with focus on data as-
signment schemes with this specific workload. We have, however, altered some of
the hyperparameters to get a broader view and a wider range of comparisons for
some of the methods. It should be noted that there might be other alterations to
the workload that could lead to new and interesting results. Below, we list some
possible alterations to the workload:

• Architecture and data: We have experimented with a specific convolu-
tional neural network architecture, trained on spatial data (more specifi-
cally, images with three channels). An interesting direction of study would
be to explore other deep learning architectures and types of data. For in-
stance, recurrent models trained on time series data, with focus on different
data assignment schemes, could be an interesting research direction.

• Optimizer: All experiments conducted in this project used SGD with a
momentum coefficient of 0.9. Since we found a significant difference between
disjoint and overlapping data in the specific scenario in which the batch
size/learning rate relationship was altered when reducing the number of
communication rounds, experiments conducted with an adaptive learning
rate optimizer (e.g., RMSProp or Adam) could provide more results to
further investigate this scenario.

• Hyperparameters: For the majority of our experiments, we have kept all
hyperparameters constant with the only alteration being data assignment
scheme. In the experiments in which did alter some hyperparameters, we
only altered the batch size and learning rate. We note that there are other
hyperparameters that could be changed, e.g., weight decay, momentum
coefficient and learning rate schedule.1

6.3.2 Communication reduction methods

Most of the experiments on communication reduction methods conducted in this
project used the concept of households, where we conducted multiple experiments

1If the optimizer is changed, there are potentially other hyperparameters than the momen-
tum coefficient.
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with alterations to batch size and learning rate to get more comparisons and a
broader view. For local SGD and neighbourhoods, we have not conducted the
same extensive amount of experiments. We hypothesize that some of the findings
for households could also hold for local SGD and neighbourhoods due to the sim-
ilar nature of these communication reduction methods. We also note that for the
communication reduction methods experimented with in this project, we have
only experimented with varying degrees of overlap, and have not been concerned
with the intersection of data between workers/households/neighbourhoods. Even
though the different data assignment schemes described in Section 4.1 showed no
difference in terms of final accuracy when training fully synchronous, a possi-
ble extension for future research would thus be to apply these schemes to achieve
varying degrees of intersection between workers/households/neighbourhoods when
reducing communication. At last, we note that communication reduction when
training deep neural networks with data parallelism is a large field and we have
have focused on a specific method, namely reducing the number of workers in-
volved in a synchronization as well as reducing the total number of synchro-
nizations. Other types of communication reduction methods might yield other
interesting results when exploring different kinds of data assignment schemes.2

6.4 Future Work

Based on the discussed limitations of this work in Section 6.3, we consider the
following as the most notable future work:

• Apply different data assignment schemes to other neural network architec-
tures and data types.

• Further explore the altered relationship between batch size and learning
rate by for instance using an adaptive learning rate optimizer, as well as
exploring the effects of other hyperparameters in combination of assigning
overlapping data.

2One example would be to do gradient quantization and sparsification (see Section 2.2.4).
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Appendix A

Household effective batch size

The standard way of calculating local batch sizes in distributed environments is
by dividing the global batch size Bg by the number of workers M , given by

Bl =
Bg
M
. (A.1)

When decreasing the synchronization frequency, we observe that the effective
batch size is not equal to the global batch size. By effective batch size, we mean
the average number of samples that are synchronized at one iteration from the
viewpoint of one worker. When using households with household synchronization
period of 1, we define the effective batch size Be as

Be =
Bh · (LW − 1) +Bh ·H

LW
, (A.2)

where Bh is the household batch size (that is, the number of samples involved
in a household synchronization), H is the number of households, and LW is the
world synchronization period. The first term in the numerator, Bh · (LW − 1), is
the number of samples involved in all household synchronizations before a world
synchronization. The second term in the numerator, Bh · H, is the number of
samples involved in a world synchronization. This is divided by the total number
of iterations involved in a world synchronization to get the effective batch size.
The equation can further be simplified to

Be =
Bh(H + LW − 1)

LW
,
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and if we set Bh = Bl·M
H , where Bl is the local batch size and M is the number

of workers, we have

Be =
Bl ·M(H + LW − 1)

H · LW
.

We can then solve for Bl

Bl =
Be · LW ·H

M(H + LW − 1)
. (A.3)

With this formula, we can insert a target effective batch size and get local batch
sizes to reach this target effective batch size. As seen in Figure A.1a, the local
batch sizes are larger than when using the default local batch size calculation
given by Equation (A.1), which results in Bl = 8 when Bg = 128 and M = 16.
Since the local batch size is bigger when using households, we have fewer iterations
per epoch, as shown by the plot in Figure A.1b.
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Figure A.1: Household parameters with Be = 128 and M = 16, using Equation
(A.3) to find local batch sizes



Appendix B

Additional results

B.1 Baseline

M Mean ± stdMean ± stdMean ± std
1 91.16 ± 0.27
2 91.31 ± 0.22
4 91.36 ± 0.23
8 91.43 ± 0.28
16 91.52 ± 0.11

Table B.1: Top-1 validation accuracy at end of training for different number of
workers
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B.2 Fully synchronous

B.2.1 Varying degrees of overlap
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(a) Coarse sharding
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(b) Medium-coarse sharding
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(c) Fine-grained sample assignment

Figure B.1: Results for different data assignment schemes. All results are run
with M = 16
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C Coarse Medium-coarse Fine-grained
2 (91.42 ± 0.24) (91.76 ± 0.23) (91.40 ± 0.21)
4 (91.70 ± 0.12) (91.45 ± 0.46) (91.77 ± 0.31)
6 (91.26 ± 0.20)
8 (91.36 ± 0.32) (91.41 ± 0.34) (91.34 ± 0.15)
10 (91.52 ± 0.23)
12 (91.42 ± 0.23)
14 (91.40 ± 0.33)

Table B.2: Top-1 validation accuracy at end of training for different data assign-
ment schemes. For each value of C we have run 5 experiments with different
seeds, and report the results on format "(mean ± std)".
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B.2.2 Fully synchronous training with large batches

BglobalBglobalBglobal Disjoint C/M=0.5 Full overlap
128 (91.52 ± 0.11) (91.36 ± 0.32) (91.44 ± 0.20)
256 (91.16 ± 0.37) (91.09 ± 0.55) (91.03 ± 0.41)
512 (90.01 ± 0.44) (90.05 ± 0.24) (89.97 ± 0.43)
1024 (88.76 ± 0.40) (88.84 ± 0.45) (88.64 ± 0.16)
2048 (86.79 ± 0.57) (86.68 ± 0.77) (86.62 ± 0.56)
4096 (83.60 ± 0.63) (84.03 ± 0.64) (84.44 ± 0.71)

Table B.3: Top-1 validation accuracy at end of training for different data assign-
ment schemes with varying global batch size. The results are presented on the
format "(mean ± std)" over 5 runs
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(a) Disjoint data assignment
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Figure B.2: Mean validation accuracy throughout training for different data as-
signment schemes with varying global batch size
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B.3 Communication reduction

B.3.1 Local SGD
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(c) 8 workers
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Figure B.3: Mean validation accuracy for varying number of workers when train-
ing with local SGD. Each worker is assigned a disjoint data shard.
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(a) 2 workers
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(b) 4 workers
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(c) 8 workers
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Figure B.4: Mean validation accuracy for varying number of workers training
with local SGD. Every worker is assigned the entire dataset, i.e., full overlap
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B.3.2 Households

Constant local batch size
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(a) 2 households
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(b) 4 households
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Figure B.5: Mean validation accuracy for varying number of households with
different world synchronization periods. Each household has a unique household
shard.
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(a) 2 households with 1 household shard
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(b) 4 households with 1 household shard
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(c) 8 households with 1 household shard
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(d) 4 households with 2 household shard
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(e) 8 households with 2 household shard

Figure B.6: Mean validation accuracy for varying number of households with
different world synchronization periods. Each household has a unique household
shard.
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Constant effective batch size
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(a) 2 households
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(b) 4 households
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(c) 8 households

Figure B.7: Mean validation accuracy for varying number of households with
different world synchronization periods. The experiments are run with target
effective batch Beffective = 128 and an initial learning rate of 0.1. Each household
has a unique household shard.
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(a) 2 households with 1 household shard
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(b) 4 households with 1 household shard
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(c) 8 households with 1 household shard
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(d) 4 households with 2 household shards
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(e) 8 households with 2 household shards

Figure B.8: Mean validation accuracy for varying number of households with
different world synchronization periods. The experiments are run with target
effective batch Beffective = 128 and an initial learning rate of 0.1. The data is
assigned with overlap between the households.
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Constant effective batch size with linearly scaled learning rate
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(a) 2 households
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(b) 4 households
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(c) 8 households

Figure B.9: Mean validation accuracy for varying number of households with
different world synchronization periods where we keep a constant effective batch
size of 128 and scale the learning rate linearly with the increase in local batch
size. Each household has a unique household shard.
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(a) 2 households with 1 household shard
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(b) 4 households with 1 household shard
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(c) 8 households with 1 household shard
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(d) 4 households with 2 household shard
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(e) 8 households with 2 household shard

Figure B.10: Mean validation accuracy for varying number of households with
different world synchronization periods where we keep a constant effective batch
size of 128 and scale the learning rate linearly with the increase in local batch
size. The data is assigned with overlap between households.



106 APPENDIX B. ADDITIONAL RESULTS

B.3.3 Neighbourhoods

0 25 50 75 100 125 150 175
Epochs

0

10

20

30

40

50

60

70

80

90

M
ea

n 
va

lid
at

io
n 

ac
cu

ra
cy

LW=4
LW=8
LW=16
LW=32
LW=64
LW=128

(a) 4 households with neighbourhood syn-
chronization period 2
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(b) 4 households with neighbourhood syn-
chronization period 4
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(c) 8 households with neighbourhood syn-
chronization period 2
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(d) 8 households with neighbourhood syn-
chronization period 4

Figure B.11: Mean validation accuracy throughout training for 2 neighbourhoods
where each household is given a unique household shard, and thus, there are no
overlap between the neighbourhoods
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(a) 4 households with neighbourhood syn-
chronization period 2
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(b) 4 households with neighbourhood syn-
chronization period 4
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(c) 8 households with neighbourhood syn-
chronization period 2
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(d) 8 households with neighbourhood syn-
chronization period 4

Figure B.12: Mean validation accuracy throughout training for 2 neighbourhoods
with disjoint data within the neighbourhoods and full overlap between the neigh-
bourhoods


