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Abstract

Identifying good hyperparameters for machine learning models is an impor-
tant task. So important, in fact, that an entire field is dedicated to this very
task—this field is called hyperparameter optimization. There are many hy-
perparameter optimization algorithms, such as grid search, random search and
evolutionary algorithms, to name a few. This thesis examines a combination
of two algorithms—these algorithms being Bayesian optimization and Hyper-
band. The thesis shows how Gaussian process-based Bayesian optimization and
Hyperband can be combined through Bayesian sampling, and tests a new com-
bination of these methods based on previous work. The experimental results
indicate that the combined approach should not be preferred over vanilla Hy-
perband, but reasons as to why this might be the case and ideas for future work
are presented.



Sammendrag

Å identifisere gode hyperparametre for maskinlæringsmodeller er en viktig opp-
gave. Denne oppgaven er s̊apass viktig at den har inspirert et eget felt, nemlig
hyperparameteroptimering. Det finnes mange hyperparameteroptimeringsalgo-
ritmer, som nettsøk, tilfeldig søk og evolusjonære algoritmer, bare for å nevne
noen. I denne masteroppgaven undersøkes kombinasjonen av to ulike hyperpa-
rameteroptimeringsalgoritmer – Bayesisk optimering og Hyperband. Oppgaven
viser hvordan Bayesisk optimering basert p̊a Gaussiske prosesser og Hyperband
kan kombineres gjennom Bayesisk sampling, og tester en ny kombinasjon av
disse basert p̊a tidligere arbeid gjennom eksperimenter. De eksperimentelle re-
sultatene tilsier at kombinasjonen av metodene ikke er å foretrekke over vanlig
Hyperband, men mulige grunner for dette skisseres, og mulige endringer for
fremtidig arbeid foresl̊as.
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Chapter 1

Introduction

1.1 Motivation and Goal

Machine learning as an area of research has gained tremendous traction in the
recent years. Machine learning algorithms take as input a set of data D =
{xi, yi}ni=1 and a set of hyperparameters θ, and attempt to produce mappings
f : X → Y such that f(xi) ≈ yi—these mappings are referred to as models.
As an example of a machine learning problem, each feature xi could be an
English word, and each label yi could be a boolean that indicates whether the
corresponding word is a noun. The task of the machine learning algorithm is
then to produce a model that can differentiate words that are nouns from words
that are not nouns. In this example of a machine learning problem, since each
label yi is discrete-valued, the problem is referred to as a classification problem;
in the case that each label yi is real-valued, the problem is referred to as a
regression problem.

Crucial to the quality of the model produced by any machine learning algo-
rithm is the quality, diversity and size of the available data pool, but also the
setting of the hyperparameters θ. It is the search for these hyperparameters,
an area of research referred to as hyperparamter optimization, that this thesis is
concerned with. To gauge the quality of a particular configuration of hyperpa-
rameters, it is customary to split the data into two sets of data, referred to as
the training data set and the test data set. The machine learning algorithm is
then ran to produce a model from the training data set and the hyperparameter
configuration selected. Once the model is produced, the average loss of the
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model is calculated in light of the test data set—the lower the loss, the better
the hyperparameter configuration. The data set is split in this manner to avoid
the problem of data set bias—the average loss of the model over the training
data set is a poor measure of generalization ability, since the model is biased
towards that particular data set.

One of the most unsophisticated ways to search through the space of hyper-
parameters is to perform a grid search. In a grid search, the hyperparameter sub-
domain of interest, typically a hypercube, is partitioned into a multi-dimensional
grid. Each point of intersection in the grid defines a hyperparameter configu-
ration to try, and the point with the lowest average loss is returned as the
best hyperparameter configuration. Simple to implement and understand, grid
search is a popular choice among machine learning practitioners, but as noted
by J. Bergstra and Bengio (2012), random search is often a much better choice.
Random search works by simply picking each hyperparameter at random from
an appropriate prior probability distribution. The reason random search seems
to outperform grid search is because many of the hyperparameters are unim-
portant. In a grid search, the hyperparameters are searched in a dependent
manner—for each value of an unimportant hyperparameter, every combination
of the remaining hyperparameters is tried. In a random search, the hyperpa-
rameters are searched in an independent manner, thus avoiding the problem of
unimportant hyperparameters.

Training models and calculating average test losses are extremely time-
consuming procedures. A hyperparameter optimization framework that at-
tempts to minimize the number of these procedure calls is Bayesian optimization
(Shahriari et al. 2015), which can be used to optimize noisy black-box functions
f(x). The way Bayesian optimization works is that it maintains a surrogate
of f—a popular choice for this surrogate is the Gaussian Process (Rasmussen
2003). This surrogate models the posterior of f given x, p(f | x), and is often
orders-of-magnitude less expensive to evaluate than f itself. In each iteration
of a Bayesian optimization procedure, an acquisition function, which depends
on the surrogate, is used to propose the next point xnext to evaluate f . This
new pair (xnext, f(xnext)), along with the entire evaluation history of f , is then
used to update the surrogate. This Propose-Evaluate-Update cycle, shown in
Figure 1.1, is then repeated until the computational budget is exhausted, or a
satisfactory point x∗ is found. In the case of hyperparameter optimization, the
function f to optimize is the average test loss of the model, and each point x
corresponds to a hyperparameter configuration.

Orthogonal to the Bayesian approach is an algorithm known as Hyperband
(Li et al. 2017). Hyperband works by iteratively providing more and more

2



Propose point to
evaluate using

acquisition function

Evaluate function to
optimize at proposed

point

Update surrogate
using evaluation

history

Figure 1.1: The Propose-Evaluate-Update cycle of the Bayesian optimization
framework.

resources to hyperparameter configurations that seem promising. A resource
could for instance be the number of epochs to train an artificial neural network.
It uses random search to sample hyperparameter configurations, and has been
shown empirically to provide significant speedups over both random search and
Bayesian optimization.

Since Bayesian optimization and Hyperband are two orthogonal approaches—
orthogonal in the sense that they approach the same problem differently—why
not try to combine them? This question leads to the goal of this thesis: To
determine whether Hyperband could be improved by combining it
with Bayesian Optimization. Falkner, Klein, and Hutter (2018) combine
Hyperband and Bayesian Optimizatio in an algorithm they dub BOHB—this
algorithm utilizes a surrogate known as TPE. Motivated by this fact, and the
fact that Gaussian Processes are the most common surrogates, I want to use a
Gaussian Process as surrogate in my thesis.

Combining Hyperband with Bayesian optimization using a Gaussian process
as surrogate is not a new idea. Bertrand et al. (2017) combine Hyperband
with Bayesian optimization using a Gaussian process surrogate, but their work
has a few flaws. First of all, as the authors themselves state, their method
lacks an explicit notion of resource that Hyperband uses, and how to exploit
it. Secondly, they only performed a single experiment, which is not enough to
draw any statistically significant conclusions.
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1.2 Research Questions

To reach the goal of the thesis, which is to determine whether Hyperband can be
improved by combining it with Gaussian process-based Bayesian optimization,
there are a few questions that naturally arise. The most obvious of which is
probably how, as in how can the two approaches be combined? And after the
fact, how can the methods be compared? Assuming that there is one optimal
hyperparameter configuration θ̂ with corresponding loss L̂, the methods can be
compared by observing how fast they approach L̂. The method that approaches
L̂ the quickest is deemed superior. Since L̂ is generally not known a priori,
we can only compare the results produced by each method side by side. The
preceding questions and observations lead to the following research questions:

• RQ1: How can Hyperband and Gaussian Process-based Bayesian Opti-
mization be combined into Bayesian Hyperband?

• RQ2: Does Bayesian Hyperband improve minimum error convergence
rate compared to standard Hyperband?

1.3 Contributions

The main contribution of this thesis is the presentation and empirical evaluation
of the method in chapter 5 that is inspired by Falkner, Klein, and Hutter (2018)
and Bertrand et al. (2017).

1.4 Thesis Structure

The thesis is separated into two segments that have different purposes. The first
segment, consisting of chapters 2, 3 and 4, presents the background theory nec-
essary to understand the thesis. The second segment, consisting of chapters 5,
6 and 7, presents and empirically evaluates a method that combines Hyperband
and Gaussian process-based Bayesian optimization.

Chapter 2 presents the machine learning algorithms known as Support Vec-
tor Machines, Artificial Neural Networks and Convolutional Neural Networks;
chapter 3 presents Bayesian optimization with a focus on the Gaussian process as
surrogate; chapter 4 presents the hyperparameter optimization algorithm known
as Hyperband; chapter 5 presents a method that attempts to combine Gaussian
process-based Bayesian optimization with Hyperband; chapter 6 shows some
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experiments that compare the hybrid approach with standard Hyperband; and
finally, chapter 7 addresses the research questions posed in section 1.2.
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Chapter 2

Machine Learning
Algorithms

This section aims to provide conceptual explanations of the machine learning
algorithms used in chapter 6. Consequently, many details will be omitted. Ref-
erences to appropriate articles will be given where applicable.

2.1 Support Vector Machines

Support Vector Machines (or SVMs for short) are, in their simplest form, binary
linear classifiers. An SVM performs classification by constructing a hyperplane
~w · ~x− b = 0 where ~w is the normal vector, and each point ~x is assigned a class
depending on which side of the hyperplane it is located.

This subsection explains SVMs to some level of detail, but for a more thor-
ough description, consult the article by Cortes and Vapnik (1995).

2.1.1 Hard-margin

Imagine now that we are given a set of n linearly separable training points
( ~x1, y1), ..., ( ~xn, yn), where ~xi ∈ Rd, yi ∈ {−1, 1}, and we wish to train an
SVM on these data points. The goal of the SVM is to construct a hyperplane
~w ·~x−b = 0 that cleanly separates the training data into two regions, each region
containing all the points that belong to either class. Since the data is linearly
separable, there are infinitely many such hyperplanes to choose from. SVMs
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have an additional constraint, namely that the distance from the hyperplane to
the closest point belonging to either class is maximized.

To find the hyperplane that maximizes the distance to the closest point
of either class, the maximum margin hyperplane, we can construct one de-
cision boundary for each class, and maximize the distance between the two
boundaries—the hyperplane of interest will then be right in the middle. See
section 2.1.1 for a visual depiction. We define the first boundary as ~w·~x−b = 1—
any point on or above this boundary is classified as a 1. We define the second
boundary as ~w ·~x−b = −1—any point on or below this boundary is classified as
a −1. The hyperplane right in the middle between the two boundaries is then
~w · ~x− b = 0, and the objective is to maximize the distance between the bound-
aries. This distance can be shown to be 2

||~w|| , so the problem can be stated as

minimizing ||~w||. Additionally, since the training data should respect the bound-
aries, the objective is constrained by ~w · ~xi− b ≥ 1 if yi = 1 or ~w · ~xi− b ≤ −1 if
yi = −1 for each training point. Note that only the points that lie on their re-
spective boundaries determine the width of the margin—these points are called
support vectors. Rewriting the constraints in a neater form, the optimization
problem becomes minimize 2

||~w|| subject to yi(~w · ~xi− b) ≥ 1 ∀ i ∈ {1, ..., n}.
The ~w and b that solve this problem determine the classifier sgn(~w · ~x− b).

2.1.2 Soft-margin

What do we do if the training data isn’t linearly separable? One solution is
to alter the optimization problem. First, let’s introduce the hinge loss function
max(0, 1−yi(~w · ~xi−b)). If the constraint for the ith training point as defined in
section 2.1.1 is satisfied, then the value of this function is 0. If the constraint is
not satisfied however, the value of the function is greater than 0, and increases
as xi moves further away from the correct region. Incorporating the hinge loss
function, the new optimization problem becomes minimize[

1

n

n∑
i=1

max(0, 1− yi(~w · ~xi − b))
]

+ λ||w||2. (2.1)

In eq. (2.1), λ is a user-defined parameter that controls the trade-off between
misclassification and the width of the margin. As limλ→∞, only the width of the
margin is emphasized, but as limλ→0, the method essentially turns into the one
described in section 2.1.1. The choice of λ can greatly impact the generalization
ability of the resulting classifier, and should therefore be tuned carefully.
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x1

x2
~w
· ~x
−
b =

1

~w
· ~x
−
b =

0

~w
· ~x
−
b =
−1

2||~w||

Figure 2.1: A depiction of how a hard-margin SVM finds the maximum-margin
hyperplane. The red points belong to class 1, while the blue points belong
to class −1. The width of the margin is maximized while ensuring that the
data points respect their boundaries. The maximum-margin hyperplane is the
hyperplane midway between the two boundaries (the dashed lines in the figure).

2.1.3 Kernel Trick

Nothing stops us from mapping each input ~xi to a higher-dimensional space
to deal with data sets that are not linearly separable. With such a mapping
φ(~x), we could simply find the right hyperplane in the transformed space. Un-
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fortunately, such transformations are often hard to describe explicitly. Luckily,
there is a solution, which is often referred to as the kernel trick in the literature.
Instead of having explicit knowledge of φ(~x), we only need a kernel function
k(~xi, ~xj) = φ(~xi) · φ(~xj) to construct the classifier in the higher-dimensional
space. Thus, we only need to know the dot product between φ(~xi) and φ(~xj).
Several kernels have been proposed, and one of the most popular ones is the
Radial Basis Function (RBF) kernel, which is defined as

k(~xi, ~xj) = exp
(
− γ||~xi − ~xj ||), (2.2)

where γ is a free parameter.

2.1.4 Multi-label Classification

The simplest strategy to perform multi-label classification with SVMs is called
one-versus-all. In this scheme, if there are N classes, N separate SVMs are
trained on the data. Each SVM is assigned a class, and learns to classify in-
stances as belonging to that class or not. To combine the N SVMs on a new
instance, the SVM with the largest output on that instance assigns the class.

Another strategy is one-versus-one. In this scheme, N(N−1)
2 SVMs are

trained, one for each pair of labels. To classify a new instance, each SVM
votes on which class it is. The class with the most votes is the assigned class.
While the training time of this approach scales quadratically with the number of
labels, it is still the most popular one, and is used in libraries such as Scikit-learn
(Pedregosa et al. 2011).
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2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs, also referred to as simply neural networks)
are biologically inspired, layered structures mainly used for supervised learning
(Goodfellow, Bengio, and Courville 2016). Abstractly, ANNs accept an input
x = (x1, x2, ..., xm) and produce an output y = (y1, y2, ..., yn)—in other words,
an ANN is simply a mapping f : Rm → Rn. Concretely, these mappings are
imposed by the interplay between the building blocks of the ANN, of which
neurons and weights are the most fundamental.

Figure 2.2 shows a simple neural network containing six neurons distributed
across three layers. The neural network in the figure has two input neurons in
its input layer (neuron 0 and 1), each receiving its own input, and two output
neurons in its output layer (neuron 4 and 5), each outputting a single value.
Layers between the input and output layers of a neural network are referred
to as hidden layers. The neural network in the figure contains a single hidden
layer consisting of neuron 2 and 3. Note that the neurons in each layer receive
inputs from all neurons in the previous layer as indicated by the directed edges,
barring the input layer; this kind of connectivity is a feature of neural networks.

0

1

2

3

4

5

x1

x2

y1

y2

Figure 2.2: A sample neural network with one hidden layer.

When an input x is presented to a neural network, the neurons of the network
fire in turn, layer by layer, to produce a final output y. Each neuron j receives
a signal from every neuron i in the preceeding layer that is weighted by some
weight wij , and the output of neuron j is defined as

oj = φ

(∑
wijoi

)
, (2.3)

where φ(x) is an activation function, oi is the output from neuron i, and wij
is the weight between neuron i and j. The activation function determines the
strength of a neuron’s signal, and aims to add non-linearity to the neural net-
work. There are many different activation functions, and there is usually a single
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activation function associated with each layer. A popular choice of activation
function for the hidden layers is the Rectified Linear Unit (ReLU) (Nair and
G. E. Hinton 2010)

φ(x) = max(0, x), (2.4)

which is depicted in fig. 2.3, and a popular choice for the output layer in case of
classification is Softmax (Bishop 2006), where the output of neuron k is defined
to be

ok =
exp(ink)∑m
i=1 exp(ini)

, (2.5)

where ink is the weighted sum of inputs to neuron k and m is the number of
neurons in the layer.

4 2 0 2 4
x

0

1

2

3

4

5

(x
)

ReLU activation

Figure 2.3: The ReLU activation function.

Sometimes we may wish to translate the activation function along the x-axis.
This can be done adding a bias term, so that the output of neuron j becomes

oj = φ

([∑
wijoi

]
+ bj

)
, (2.6)

where bj is the bias associated with neuron j. The bias term can be thought of
as a neuron that outputs 1 with weight bj .
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2.2.1 Tuning the Weights

Suppose we have a pool of training data consisting of input-output pairs of the
form (x, t). How should the weights of an arbitrary neural network be set to
best fit the data? We first need a way to measure how well the network fits the
data. This is where the loss function comes in. The loss function L takes as
input the target value t = (t1, ..., tn) and the value y = (y1, ..., yn) computed
by the network, and returns a real number. The lower the number returned by
L, the better the predicted value y approximates the target t. A common loss
function for regression problems is the mean squared error, which is defined as

L(y, t) =
1

n

n∑
i=1

(yi − ti)2, (2.7)

where n is the number of components in y and t. A common loss function for
classification problems is the logarithmic loss, defined to be

L(y, t) =

n∑
i=1

ti log(yi), (2.8)

where it is assumed that ti = 1 if the associated input x belongs to class i and
0 otherwise.

What we want to do is to find a weight-vector w that minimizes the average
loss across the data set, i.e. Lavg = 1

m

∑m
i=1 L(yi, ti), where m is the number of

training examples. Note that if we denote the output of the network for an input
xj as f(xj), then L(yj , tj) = L(f(xj), tj), and so the loss at a single example is
a function of the weights wij of the network. To find the minimizer w, gradient
descent is usually performed. Gradient descent is an iterative procedure, and
in each iteration i the weight-vector is updated according to the rule wi+1 =
wi−η ·∇Lavg(wi), where ∇ denotes the gradient operator and η is the learning
rate whose task is to control the size of the weight updates. Finding the gradient
∇Lavg(w) is done using the backpropagation algorithm (Hecht-Nielsen 1992).

Usually, the training data is split into batches that are much smaller than
the whole data set; this speeds up the process considerably since the batches
usually approximate the gradient of the average loss well. One step of batch
gradient descent is referred to as an iteration, and a pass over the whole data
set is referred to as an epoch. A popular algorithm is stochastic gradient descent
(Bottou 2010) where each batch is populated with training examples at random
without replacement.
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2.2.2 Avoiding Overfitting

Dropout (Srivastava et al. 2014) is a very powerful technique to avoid training
data bias (overfitting). The idea is that a fraction ρ of the neurons in a particular
layer are inactivated at training time by setting them to 0. This technique
has proven to provide major improvements compared to other regularization
techniques.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) apply convolution, non-linear activation
(such as ReLU) and pooling in sequence in an attempt to extract meaningful
features from spatial data such as images. Each of these operations can be
regarded as a distinct layer of the CNN that transforms the data upstream.
The fundamental building blocks of the CNN, convolution and pooling layers,
are presented here. For a thorough walkthrough of CNNs, consult the book by
Goodfellow, Bengio, and Courville (2016).

2.3.1 The Convolution Layer

Convolution in CNNs is done by sliding a filter or kernel across an input, e.g.
a pixel map of a black-and-white image as illustrated in fig. 2.4. Imagine that
the filter in fig. 2.5 is placed on top of the image so that the top-left corner of
the filter is on top of the top-left corner of the image. The numbers that lie on
top of one another is simply multiplied together, and then summed to produce
a single value. The filter is then shifted by the stride length, and the calculation
is re-done for a different area of the image. This shifting is repeated until the
entire top row of the image has been convolved. When the entire top row of the
image has been convolved, the kernel is instead shifted downwards by the stride
length, and the next row is convolved in the same fashion. Figure 2.6 shows the
result of applying the kernel in fig. 2.5 with a stride length of 1 to the input in
fig. 2.4.

2.3.2 The Pooling Layer

Pooling is usually done after convolution and non-linear activation (such as
applying ReLU to the output of a convolution) to reduce dimensionality. A
popular type of pooling is max pooling, where a fixed-size portion of the input
is in focus, and the maximum element of this portion is the representative.
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1 1 0

1 0 0

0 1 1

Figure 2.4: Sample input to convolution layer representing a 3 × 3 black-and-
white image.

1

1

0

0

Figure 2.5: Sample 2× 2 convolution filter.

0

0

1

2

Figure 2.6: Result of applying the filter in fig. 2.5 with a stride of 1 to the input
in fig. 2.4.

Consider the input in shown in fig. 2.7. We want to apply max pooling with a
2 × 2 window and a stride length of two. We first consider the four elements
in the top-left corner. To find the output of the pooling map corresponding to
this area of the input, we simply compute max(9,−3, 5, 3) = 9. We then slide
the pooling window two elements to the right to find the next output, which is
max(−5, 8, 1, 16) = 16. The window behaves in the same manner as the filter
in a convolution, but instead of summing element-wise products, we report the
maximum element. The result of performing max pooling with a 2× 2 window
and a stride length of two on the input in fig. 2.7 is shown in fig. 2.8.
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5 3 1

7 6 3

-2 1 1

8-5-39

8

-4

16

Figure 2.7: Sample 4× 4 input to a max pooling layer.
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Figure 2.8: Result of performing max pooling to the input in fig. 2.7.
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Chapter 3

Bayesian Optimization

Bayesian Optimization (BO) is a sequential design strategy for global minimiza-
tion of noisy and expensive black-box functions f . Since f is noisy, it cannot be
evaluated directly—a point x can be queried to obtain f(x) ∼ m+ ε where m is
the mean function value at x and ε is a noise term drawn from some distribution
that may depend on x.

The BO strategy has two constituent parts: the surrogate and the acquisition
function. The surrogate serves to mimic f by modeling p(f | x), i.e. the
posterior of the function value given x, and is usually orders of magnitude
cheaper to evaluate than querying f itself. The acquisition function is a heuristic
that utilizes the surrogate to determine which point x to query f next.

Any BO design could be described as an iterative procedure where in itera-
tion t the evaluation history of f , {(x1, y1), ..., (xt−1, yt−1)}, is used to update
the surrogate. The updated surrogate is then used by the acquisition function
to determine which point to query f next. The general procedure is formalized
in algorithm 1.

The goal of this section is to explain one of the most widely used surrogates,
the Gaussian process; to present some of the most popular acquisition functions
associated with this surrogate; and to demonstrate how Gaussian processes can
be used to optimize hyperparameters of a machine learning model. As such,
this section is structured as follows: section 3.1 deals with Gaussian processes
in detail, section 3.2 deals with associated acquisition functions, and section 3.3
demonstrates how to use Gaussian processes to optimize the parameters of an
SVM.
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Algorithm 1 General BO strategy.

Input: Function f to optimize

1: D ← ∅
2: while within computational budget do
3: Update surrogate model using D
4: Obtain point x∗ that maximizes the acquisition function
5: Query f at x∗ to obtain y∗

6: D ← D ∪ (x∗, y∗)
7: end while

3.1 Gaussian Processes

The formulae and derivations presented in section 3.1 are borrowed from Ras-
mussen (2003) and Rasmussen and Williams (2006).

Multivariate Gaussian distributions are distributions over vectors. In a stan-
dard multivariate Gaussian distribution, the stochastic variable of interest X
is a k-dimensional vector, and 1 ≤ i ≤ k indexes the ith variable of X. The
distribution of X can be fully specified by a mean vector µ and a covariance
matrix Σ.

Gaussian processes (GPs), on the other hand, are distributions over func-
tions. Whereas a multivariate Gaussian distribution is specified by a mean
vector µ and covariance matrix Σ, a GP is fully specified by its mean function
m(x) and covariance (or kernel) function k(x,x′), and if f is distributed as a
GP with mean function m and covariance function k, we write f ∼ GP(m, k).
Another difference of the GP is the way it is indexed. In a multivariate Gaussian
distribution, the positions in the stochastic vector index the individual variables.
In a GP, it is the argument x that plays the role of index—for every argument
x, there is a corresponding stochastic variable f(x).

Let’s take a look at a practical example. Suppose we are given the mean

function m(x) = 0 and the covariance function k(x,x′) = exp
(
− |x−x

′|2
2

)
, and

we wish to sample function values for x ∈ {2, 4, 6}. The mean vector is then
µ = [0, 0, 0], and the covariance matrix is a 3 × 3 matrix where entry (i, j) is
k(xi,xj). Note that the choice of order of the x-values does not matter. If we
order the x-values by magnitude, the entry in the second row and third column

is k(4, 6) = exp
(
− |4−6|

2

2

)
= exp

(
− 2
)
, and the entire covariance matrix is
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k(2, 2) k(2, 4) k(2, 6)
k(4, 2) k(4, 4) k(4, 6)
k(6, 2) k(6, 4) k(6, 6)

 =

 0 exp
(
− 2
)

exp
(
− 8
)

exp
(
− 2
)

0 exp
(
− 2
)

exp
(
− 8
)

exp
(
− 2
)

0

 . (3.1)

The mean vector and covariance matrix specify a standard multivariate Gaus-
sian distribution. Consequently, the function values at the points specified can
be sampled using standard sampling techniques.

3.1.1 Updating the Prior

If we obtain information about the stochastic function f in terms of a train-
ing vector of evaluations f at known points xi, we can update the mean and
covariance functions to reflect the acquired information.

Imagine now that we’re interested in calculating the posterior distribution
of some test evaluations f∗ at inputs xj given training function evaluations f
at inputs xi, i.e. we’re interested in calculating f∗|f .

Recall that if x and y follow a joint Gaussian distribution, i.e.[
x
y

]
∼ N

([
a
b

]
,

[
A C
CT B

])
, (3.2)

then the posterior x|y can be calculated as

x|y ∼ N (a+ CB−1(y − b), A− CB−1CT). (3.3)

Furthermore, since by design[
f
f∗

]
∼ N

([
µ
µ∗

]
,

[
Σ Σ∗

ΣT
∗ Σ∗∗

])
, (3.4)

where Σ denotes the training set covariances, Σ∗ the training-test set covariances
and Σ∗∗ the test set covariances, it follows directly from equation 3.3 that

f∗|f ∼ N (µ∗ + ΣT
∗Σ−1(f − µ),Σ∗∗ − ΣT

∗Σ−1Σ∗). (3.5)

From equation 3.5 it follows that the mean and covariance functions of the
Gaussian process f conditioned on observational data D = (X,y) where X is
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a vector of training inputs and y a vector of corresponding training function
values is given by

f |D ∼ GP(mD, kD),

mD(x) = m(x) + Σ(X,x)TΣ−1(y − µ)

kD(x,x′) = k(x,x′)− Σ(X,x)TΣ−1Σ(X,x′).

(3.6)

Here, Σ(X,x) is a vector of covariances between every training case and x, Σ
is the covariance matrix for X and µ = [m(x1), ...,m(xn)]T.

3.1.2 Kernel Functions

All the kernels described here can be found in Rasmussen and Williams (2006).
The simplest kernel is the constant kernel, which is simply defined as

kC(x,x′) = C. (3.7)

Sometimes the stochastic function f may have additional variance with itself,
in which case the white Gaussian noise kernel can be used, which is defined as

kGN(x,x′) = σ2δi,i′ , (3.8)

where δi,i′ is the Kronecker-delta, which is related to the inputs xi. It is equal
to 1 when i = i′ for the inputs xi, and 0 otherwise. This means that although xi
and xj may be different cases with the same value for the input, the covariance
between the cases will be 0.

A popular choice of kernel is the squared exponential kernel, which is defined
as

kSE(x,x′) = exp

(
− d2

2l2

)
. (3.9)

Here, d = |x−x′|, and l is the length scale. The length scale controls how close
points have to be to influence each other significantly. As l increases, the value
of the kernel approaches 1, and as l decreases, the value of the kernel approaches
0. In other words, the larger the length scale, the further away points can be
while still influencing each other.

kSE(x,x′) = exp

(
− r2

2

)
(3.10)

where r =
√∑n

i=1

(xi−x′
i

li

)2
.
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The most widely used kernel is perhaps the Matérn kernel, which is defined
as

kMatern(x,x′) =
21−ν

Γ(ν)

(√2νd

l

)ν
Kν .

(√2νd

l

)
(3.11)

Here, Kν is the modified Bessel function, d and l are defined identically as for
the exponential kernel, and ν is a user-specified parameter which controls the
smoothness of the functions sampled. In Rasmussen and Williams (2006) it is
argued that perhaps the best values for ν for machine learning are 3

2 and 5
2 ,

because smaller or larger values impose functions that are either too rough or
too smooth. For these values of ν, the kernel expressions simplify to

kν=3/2(d) =

(
1 +

√
3d

l

)
exp

(
−
√

3d

l

)
, (3.12)

and

kν=5/2(d) =

(
1 +

√
5d

l
+

5d2

3l2

)
exp

(
−
√

5d

l

)
. (3.13)

For the squared exponential and the Matérn kernel, it possible to let each in-
dividual dimension of x have its own length scale, in which case every occurence

of d
l is replaced with r =

√∑n
i=1

(xi−x′
i

li

)2
.

The squared exponential kernel and the Matérn kernel, or compositions built
on them, are the most frequently used kernels. The samples generated from
GPs using these kernels are very different on a qualitative level, however. This
is illustrated in fig. 3.1. The plots in fig. 3.1a, fig. 3.1b and fig. 3.1c show GP
samples generated at inputs x ∈ [−5, 5] for different kernels and zero mean. Note
the difference in smoothness of the curves connecting the samples. The curve in
fig. 3.1a, corresponding to the Squared Exponential kernel, is very smooth, while
the curve in fig. 3.1b, corresponding to the Matérn kernel with ν = 1.5, is very
rough. The curve in fig. 3.1c, corresponding to the Matérn kernel with ν = 2.5,
falls somewhere inbetween the two others in terms of smoothness. Note that
larger values of ν for the Matérn kernel correspond to smoother curves. Thus,
if we have some knowledge about the smoothness of a function we’re trying to
model with a GP, we can incorporate this knowledge by choosing the kernel we
think mimics the smoothness of the function.

3.1.3 A Quick Note on Non-stationarity

All the kernels presented here are non-stationary—they are invariant to trans-
lations in the input space, i.e. k(x+ r,x′ + r) = k(x,x′) for arbitrary r. This
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Matérn kernel (ν = 2.5) and zero mean.
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less jagged than for the Matérn kernel with
ν = 1.5, but not as smooth as for the
Squared Exponential kernel.

Figure 3.1: Samples generated at different values of x from GPs using different
kernels. The length scale l was set to 1 for each kernel, and the mean function
was 0 for all GPs.

21



means that functions that vary significantly across length scales—e.g. a function
that peaks sharply around some points and is relatively smooth elsewhere—are
difficult to model with a GP with such kernels. One solution to this problem
is to model the function in a transformed input space using an appropriate bi-
jective transformation. Finding an appropriate transformation is difficult how-
ever, but a popular choice is the logarithmic transformation, where the desired
dimensions of each input x to the GP are transformed to their respective log-
arithms. In Snoek, Swersky, et al. (2014), the authors propose a methodology
for automatically learning a wide family of transformations using the cumula-
tive Beta distribution function. Specifically, they alter the kernel function to be
k(w(x), w(x′)), where

wd(xd) =

∫ xd

0

uαd−1(1− u)βd−1

B(αd, βd)
du. (3.14)

In eq. (3.14), αd and βd are free parameters, and B(αd, βd) is a normalization
constant. Their approach sees large improvements compared to methods that
do not transform the input space of the GP, but the benefit of their method
compared to a simple prior transformation (such as the log transformation)
remains unclear. .

3.1.4 Fitting Hyperparameters

You may have noted that GPs have hyperparameters of their own, defined by
the choice of kernel and mean function. How do we choose the hyperparameters
θ of the GP that best explain observational data? The simplest way to fit the
hyperparameters θ of a GP to observational data D = (X,y) is to maximize L =
log p(y|X, θ), which is the logarithm of the likelihood. Since the observational
data is Gaussian, L has an analytic expression (Rasmussen 2003), namely

L = −1

2
log |Σ| − 1

2
(y − µ)TΣ−1(y − µ)− n

2
log(2π), (3.15)

where Σ is a covariance matrix derived from applying the kernel to X, µ are
the predicted means for the inputs, and n = dim(x). This expression can then
be optimized using methods such as gradient descent.

3.2 Common Acquisition Functions

The goal of the acquisition function is to balance exploration versus exploitation
in the hyperparameter search. Regions of the hyperparameter space that seem
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promising should be prioritized over regions that seem less promising, but there
shouldn’t be large, unexplored regions either.

The formulae of the acquisition functions presented in section 3.2 concern
GP surrogates. As notational convention, we let µ(x) and σ(x) denote the
predicted mean and standard deviation of an arbitrary GP, respectively.

3.2.1 Probability of Improvement

Probability of Improvement (PI) (Kushner 1964) computes the probability that
the input evaluated is an improvement over the current best input, and it can
be expressed as

αPI(x) = Φ(γ(x)), γ(x) =
f(xbest)− µn(x)

σn(x)
, (3.16)

where Φ(·) is the cumulative density function of the standard normal distribu-
tion. PI is often criticized for being overly exploitative.

3.2.2 Expected Improvement

Expected Improvement (EI) (Mockus, Tiesis, and Zilinskas 1978) computes the
expected improvement of the input x with respect to the current best input
xbest. It can be expressed as

αEI(x) = σn(x)(γ(x)Φ(γ(x)) +N (γ(x); 0, 1)), (3.17)

where N (γ(x); 0, 1)) is the standard normal density function evaluated at γ(x).
EI is regarded as well-balanced and robust when it comes to exploitation versus
exploration.

3.3 A Practical Example: Optimizing a Single
SVM Hyperparameter

To demonstrate how BO can be used to optimize the hyperparameters of a
machine learning model, we will be optimizing a single hyperparameter for a
one-vs-one SVM, γ, as defined in section 2.1.3 on the digits dataset from Scikit-
learn (Pedregosa et al. 2011). We’ll be using the Python libraries Scikit-learn
(Pedregosa et al. 2011), SciPy (Virtanen et al. 2020) and NumPy (Oliphant 2006).

The acquisition function we’ll be using is EI (eq. (3.17)), which in Python
can be written as:
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from s c ipy . s t a t s import norm

def e i ( gp , incumbent , x ) :
mean , std = gp . p r ed i c t ( [ x ] , r e t u rn s td=True )
gamma = ( incumbent − mean [ 0 ] ) / std [ 0 ]
f = std [ 0 ] ∗ ( gamma∗norm . cd f (gamma) + norm . pdf (gamma) )
return f

The function ei has three arguments: gp, an object of the class
sklearn.gaussian process.GaussianProcessRegressor; incumbent, a scalar
value that corresponds to f(xbest) in eq. (3.17); and x, a variable that corre-
sponds to the hyperparameters we are trying to optimize, which in our case is
just γ.

Since this is a BO procedure, we want to locate the point that maximizes
the EI in every iteration. Thus, the EI has to be optimized. This can be
accomplished using scipy.optimize.dual annealing (or any other optimizer,
the choice here is arbitrary):

from s c ipy . opt imize import dua l annea l ing

def e i o p t ( gp , incumbent , bounds ) :
return dua l annea l ing (lambda x : −e i ( gp , incumbent , x ) ,
bounds ) . x

Note that since dual annealing is a minimizer, we have to optimize the EI.
The arguments gp and incumbent are defined as they are for ei. The argument
bounds is a list of tuples that indicate valid ranges for each dimension of x.
We’ll be setting the bounds for γ to [(10−5, 105)], which in log space is [−5, 5].

Now to the actual optimization. We want to minimize the test error rate
of our SVM classifier using BO. The kernel we’ll be using is kν=5/2 + kGN.
Additionally, since γ is allowed to vary over several orders of magnitudde, we’ll
be modeling γ in log space for the GP:

from s k l e a rn . g au s s i an p r o c e s s import Gauss ianProcessRegressor
from s k l e a rn . g au s s i an p r o c e s s . k e r n e l s import Matern , WhiteKernel
from s k l e a rn . svm import SVC
from s k l e a rn . da ta s e t s import l o a d d i g i t s
from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

X, y = l o a d d i g i t s ( return X y=True )
X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y )
n i t e r = 20
param hist = [ ]
e r r o r h i s t = [ ]
m i n e r r o r h i s t = [ ]
bounds = [(−5 , 5 ) ]
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incumbent = 1
# can ’ t ge t worse than 100% error ra t e
for i in range ( n i t e r ) :

k e rne l = Matern (nu=2.5) + WhiteKernel ( )
gp = Gauss ianProcessRegressor ( k e rne l=kerne l ,
normal i ze y=True )
i f param hist :

gp . f i t ( param hist , e r r o r h i s t )
# since GP models in l o g space , remember to transform back
gamma = 10∗∗ e i o p t ( gp , incumbent , bounds ) [ 0 ]
svm = SVC(gamma=gamma)
svm . f i t ( X train , y t r a i n )
e r r o r = 1 − svm . s co r e ( X test , y t e s t )
incumbent = min( incumbent , e r r o r )
# we ’ re modeling the parameter in l o g space
param hist . append ( [ np . log10 (gamma ) ] )
e r r o r h i s t . append ( e r r o r )
m i n e r r o r h i s t . append ( incumbent )

In each iteration of the BO procedure above, the incumbent is used along with
a GP fit on the previous (γ, test error)-pairs to find the point that maximizes
the EI. The code follows the procedure outlined in algorithm 1. We can plot
the minimum test error as a function of the iterations and EI as a function of
log(γ) using Matplotlib (Hunter 2007):

import matp lo t l i b . pyplot as p l t
import os

s aved i r = ” I l l u s t r a t i o n s ”
p l t . p l o t (range (1 , n i t e r +1) , m i n e r r o r h i s t )
p l t . x l ab e l ( ” I t e r a t i o n number” )
p l t . y l ab e l ( ”Minimum t e s t e r r o r ” )
p l t . g r i d (b=True )
p l t . s a v e f i g ( os . path . j o i n ( saved i r , ” e r ro r−vs−i t e r a t i o n . pdf ” ) )

p l t . f i g u r e ( )
gammas = np . l i n s p a c e (−5 , 5 , 100)
ei of gammas = [ e i ( gp , incumbent , [ gamma ] ) for gamma in gammas ]
p l t . p l o t (gammas , e i of gammas )
p l t . x l ab e l ( r ” $ log (\gamma) $” )
p l t . y l ab e l ( ”Expected Improvement” )
p l t . g r i d (b=True )
p l t . s a v e f i g ( os . path . j o i n ( saved i r , ” expected improvement . pdf ” ) )

The results from this particular run can be seen in fig. 3.2a and fig. 3.2b. We
see that the method quickly converges to an error rate that is very close to 0,
and that the expected improvement is very small in magnitude, which means
that the expected gains are small. That makes sense, since an error rate below
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0 is impossible.
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Figure 3.2: The plots obtained from running the code outlined in section 3.3.
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Chapter 4

Hyperband

Hyperband (HB) (Li et al. 2017) is an algorithm for hyperparameter opti-
mization, and has been shown to be capable of providing orders-of-magnitude
speedups over competing methods such as random search or BO. The algorithm
works by means of adaptive resource allocation. What that means, essentially,
is that configurations that are observed to perform poorly relative to other con-
figurations are discarded. Configurations that perform well are allocated more
resources. This cycle of discarding and allocating more resources is repeated
until the pre-defined maximum possible resource is allocated to each configu-
ration. Thus, the way Hyperband approaches hyperparameter optimization is
essentially intelligently allocating resources so that the number of possible con-
figurations to test is maximized while still preserving a preferential structure
between the individual configurations. Hyperband is based on another algo-
rithm which is called SuccessiveHalving; this algorithm will be presented next.

4.1 SuccessiveHalving

The idea behind SuccessiveHalving (Jamieson and Talwalkar 2016) is pretty
simple. Given n hyperparameter configurations and a resource budget B, allo-
cate each of the n configurations B

n resources each, train them, compute each
configuration’s performance on the test data, and discard the worst half as dic-
tated by the performance metric. Repeat this process, each time doubling the
resource allocated to each configuration until one configuration remains as the
winner.
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The problem with SuccessiveHalving is that n is an input to the algorithm.
With a pre-defined finite budget B (such as the number of epochs to train neural
networks for a given batch size), Bn resources are allocated to each configuration
on average (Li et al. 2017). It is not clear beforehand whether a large ratio of
B
n , i.e. fewer configurations with a larger budget per configuration, should be
preferred over a small ratio, i.e. more configurations with a smaller budget per
configuration. A smaller ratio would allow for more configurations to be tested,
but with the potential drawback of it being possible that good configurations
are hard to differentiate from bad configurations since sufficient resources had
not been allocated, consequently ending up with a worse final configuration than
if we had chosen a smaller ratio for B

n . Hyperband proposes a solution to this
problem.

4.2 Description of Hyperband

Hyperband, shown in algorithm 2, takes two inputs: R, the maximum resource
that can be allocated to any configuration, and η, a discarding factor associated
with SuccessiveHalving. Hyperband approaches the ”Bn ratio problem” through
considering multiple values of n for a fixed budget B. For each value of n,
there is an associated value r that dictates the minimum resource that can be
allocated to a single configuration. Hyperband essentially performs a geometric
search through possible values of n, each time increasing n by approximately a
factor η.

For each fixed (n, r)-pair, SuccessiveHalving is performed for n hyperparam-
eter configurations sampled at random, but instead of keeping the best half of
the configurations, 1

η are kept, and the resource to allocate to each configuration
is increased by a factor η instead of 2. Each such round of SuccessiveHalving is
also referred to as a bracket, and is designed to use approximately B resources.
Thus, Hyperband is a solution to the ”Bn ratio problem” at only smax + 1 times
the cost that SuccessiveHalving is.
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Algorithm 2 The Hyperband algorithm.

Input: R, η

1: smax ← blogη(R)c
2: B ← (smax + 1)R
3: for s ∈ {smax, smax − 1, ..., 0} do
4: n← dBR

ηs

s+1e
5: r ← Rη−s

6: T ← get random configurations(n)
7: for i ∈ {0, 1, ..., s} do
8: ni ← bnη−ic
9: ri ← rηi

10: L← {run then return val loss(x, ri) : x ∈ X}
11: T ← top k(T, L, bni/ηc)
12: end for
13: end for
14: return hyperparameter configuration with smallest intermediate loss seen

so far

Hyperband invokes a couple of subroutines, and they are:

• get random configurations(n): A method that returns n i.i.d. hyperpa-
rameter configurations from any underlying probability distribution.

• run then return val loss(x, r): A method that trains configuration x on r
resources and returns the validation loss. Note that it doesn’t necessarily
have to be the validation loss that is returned. Any scoring metric where a
lower value is preferred over a larger one can be used, such as the validation
error.

• top k(T , L, k): A method that takes as input a list of configurations T and
their validation losses L and returns the k best-performing configurations.

4.3 Setting the Parameters

The maximum resource R influences the number of brackets in Hyperband,
since the number of brackets is smax + 1 and smax = logη(R). The value of R
also influences the number of configurations n in the most aggressive bracket
of Hyperband, which is when s = smax. The larger R is, the larger n will
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be. Sometimes, we may want to limit the number of configurations to nmax
in the most aggressive bracket of Hyperband to avoid overhead associated with
training and testing models. In that case, the alteration of the algorithm is very
simple. Simply set smax = blogη(nmax)c, and everything else remains the same
as before.

The parameter η controls the proportion of configurations to discard in every
iteration of SuccessiveHalving. According to Li et al. (2017), the choice of η
does not matter all that much, but Euler’s number e = 2.718... is shown to be
theoretically optimal. The authors suggest leaving η at either 3 or 4.

4.4 Choosing Probability Distributions

In practice, any probability distribution can be used to sample hyperparame-
ter configurations in Hyperband. Not all probability distributions are equal,
though. For instance, when sampling a hyperparameter that may range over
many orders of magnitude, it may make more sense to sample the parame-
ter from a distribution where the logarithm of the parameter is uniformly dis-
tributed, rather than the parameter itself being uniformly distributed. This
would ensure that on average, when sampling that parameter, every order of
magnitude is represented in equal number, instead of smaller orders of magni-
tude being dominated by larger ones.

One point where Hyperband could be improved is by dynamically updating
the probability distribution configurations are drawn from. Regions of the pa-
rameter space that perform poorly should have lower density than regions with
promising parameters. On the other hand, regions that are unexplored should
not lose density.
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Chapter 5

Combining Approaches

5.1 Previous Work

Combining Hyperband and Bayesian optimization has been attempted in the
past. This section summarizes, to the best of my knowledge, everything that
has been done in the field on this particular matter.

Bertrand et al. (2017) propose a hybrid approach that uses Bayesian opti-
mization for model selection. The configuration selection in the first bracket
of their method is done with a uniform prior, but all subsequent selections are
done with Bayesian optimization utilizing a surrogate trained on all evaluations
performed so far. Their surrogate is a Gaussian process with the squared ex-
ponential kernel. They use the expected improvement acquisition function for
configuration selection, but with a novel twist. Bayesian optimization is sequen-
tial in nature, so instead they normalize the expected improvement values to
produce a probability distribution. They then sample the next point to evaluate
from this probability distribution.

Unfortunately, no statistically significant conclusions can be drawn from
their study, as their experiment was ran only once. They also made some
questionable choices in my opinion, such as using the squared exponential kernel
instead of the Matérn kernel. Furthermore, the article in question glosses over
many details, and it’s hard to extract exactly how their method is implemented.

J. Wang, Xu, and X. Wang (2018) propose a hybrid approach outlined in
algorithm 3. In algorithm 3, α is the acquisition function. As can be observed,
random search is simply replaced with Bayesian optimization. As Bayesian sur-
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rogate they use the Tree-structured Parzen Estimator proposed by J. S. Bergstra
et al. (2011). They observe that their combined approach can perform better
than both Hyperband and Bayesian optimization on their own, especially on
problems that are complex. Their approach is simple to understand and imple-
ment, but one weakness of their method is that they don’t utilize all the data
available from previous experiments for every value of s. For every value of s,
the Bayesian optimization procedure is restarted from ground zero. Intuitively,
one should use all the information that is available, so this must be thought of
as a weakness of their method.

Algorithm 3 Method proposed by J. Wang, Xu, and X. Wang (2018).

Input: R, η

1: smax ← blogη(R)c
2: B ← (smax + 1)R
3: for s ∈ {smax, smax − 1, ..., 0} do
4: n← dBR

ηs

s+1e
5: r ← Rη−s

6: for i ∈ {0, 1, ..., s} do
7: ni ← bnη−ic
8: ri ← rηi

9: if i = 0 then
10: X ← ∅
11: D0 ← ∅
12: for t ∈ {1, 2, ..., ni} do
13: xt+1 ← argmaxxα(x|Dt)
14: f(xt+1)← run then return val loss(x, ri)
15: X ← X ∪ {xt+1}
16: Dt+1 ← Dt ∪ {(xt+1, f(xt+1))}
17: Update probabilistic surrogate model using Dt+1

18: end for
19: else
20: F ← {run then return val loss(x, ri) : x ∈ X}
21: X ← top k(X,F, bni/ηc)
22: end if
23: end for
24: end for
25: return hyperparameter configuration with lowest loss
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Falkner, Klein, and Hutter (2018) propose a hybrid approach that replaces
the random samples of regular Hyperband with the approach outlined in algo-
rithm 4. The algorithm uses the observational data D = {(x1, y1), ..., (xn, yn)},
i.e. previous configuration-score pairs, to construct a distribution from kernel
density estimators (KDEs) that can be queried for subsequent configurations.
The algorithm relies on eq. (5.1) and eq. (5.2). In eq. (5.1), α = min(y1, ..., yn).
In eq. (5.2), Nb,l and Nb,g are the number of best and worst configurations
respectively used to model l(x) and g(x), respectively.

Algorithm 4 refers to a quantity l′(x), which is simply the same KDE as
for l(x), where each bandwidth is multiplied with a factor bw to encourage
exploration near promising configurations.

Their method performs strongly on several popular benchmarks compared
to regular Hyperband, and seems to be insensitive to the choice of hyperparam-
eters. A weakness of their method in my opinion is the fact that they ignore the
data collected with a budget that is less than the current budget considered.

l(x) = p(y < α|x, D)

g(x) = p(y > α|x, D)
(5.1)

Nb,l = max(Nmin, q ·Nb)
Nb,g = max(Nmin, Nb −Nb,l)

(5.2)
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Algorithm 4 The sampling method as proposed by Falkner, Klein, and Hutter
(2018).

Input: Observations D, fraction of random runs ρ, percentile q, number of
samples Ns, minimum number of points Nmin to build a model (default Nmin =
#hyperparameters + 1), and bandwith factor bw
Output: Next configuration to evaluate

1: if rand(0, 1) < ρ then
2: return random configuration
3: end if
4: b← arg max{Db : |Db| ≥ Nmin + 2}
5: if b = ∅ then
6: return random configuration
7: end if
8: fit KDEs according to eq. (5.1) and eq. (5.2)
9: draw Ns samples according to l′(x) (see text)

10: return sample that maximizes l(x)/g(x)

5.2 Proposed Method

The general proposed method is reminiscent of the one presented by Bertrand
et al. (2017), but with minor implementational differences. These differences
will be explicitly pointed out. Note that Bertrand et al. (2017) used a GP as
surrogate—both Falkner, Klein, and Hutter (2018) and J. Wang, Xu, and X.
Wang (2018) utilized variations of TPE as presented by J. S. Bergstra et al.
(2011).

The pseudo code for the general proposed method can be seen in algorithm 5.
The idea is to update the sampling distribution as experimental results become
available, and to utilize all the data that is available. In the first bracket of
the algorithm, Nmin configurations are sampled at random, whereas Bertrand
et al. (2017) sampled all the configurations at random in the first bracket. These
Nmin configurations are trained and scored. The remaining n−Nmin configura-
tions are obtained using the method get bayesian configurations(X, y, n).
The method get bayesian configurations(X, y, n) takes as input the pre-
vious configurations and their associated budgets X, their losses y and the
number of configurations to sample n. It is imperative that the budget for each
configuration is included in X, since the budget explains variability for similar
configurations trained on different budgets. Internally, the method should fit a
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GP—the premise of the thesis is, after all, to use a GP as surrogate—on (X, y),
and use some pre-defined acquisition function to sample hyperparameter con-
figurations. I think what Bertrand et al. (2017) did is a good idea, i.e. using
the normalized acquisition function to sample configurations. Sampling config-
urations in this manner liberates the BO procedure from training and testing
sequentially, promoting parallelism.

The reason for sampling Nmin configurations at random in the first bracket
is that BO tends to perform poorly in the beginning when there is little data—
the decisions of the strategy will be rather arbitrary and uninformed. In that
case, an informed prior is probably a better idea. However, when the first Nmin
configurations and their associated scores become available, the configurations
proposed by the Bayesian method will hopefully be well-informed. I propose a
default value of d + 1 for Nmin, just as Falkner, Klein, and Hutter (2018) did,
where d is the number of hyperparameters. If d + 1 < R, which it is in most
cases, the Bayesian sampler will come sooner into effect than for the algorithm
proposed by Bertrand et al. (2017), which hopefully leads to comparatively
faster convergence.
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Algorithm 5 Proposed method to combine Hyperband and Bayesian optimiza-
tion.

Input: R, η, Nmin

1: smax ← blogη(R)c
2: B ← (smax + 1)R
3: X ← ∅
4: y ← ∅
5: for s ∈ {smax, smax − 1, ..., 0} do
6: n← dBR

ηs

s+1e
7: r ← Rη−s

8: if s = smax then
9: Tr ← get random configurations(Nmin)

10: Lr ← {run then return val loss(tr, r) : tr ∈ Tr}
11: X ← X ∪ {(tr, r) : tr ∈ Tr}
12: y ← y ∪ Lr
13: T ← get bayesian configurations(X, y, n−Nmin)
14: else
15: T ← get bayesian configurations(X, y, n)
16: end if
17: for i ∈ {0, 1, ..., s} do
18: ni ← bnη−ic
19: ri ← rηi

20: L← {run then return val loss(t, ri) : t ∈ T}
21: X ← X ∪ {(t, ri) : t ∈ T}
22: y ← y ∪ L
23: if s = smax and i = 0 then
24: T ← Tr ∪ T
25: L← Lr ∪ L
26: end if
27: T ← top k(T, L, bni/ηc)
28: end for
29: end for
30: return hyperparameter configuration with lowest loss
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5.3 Implementational Details

The language used to implement the approach outlined in algorithm 5 was
Python. The implementational details of some of the methods used will be
presented and discussed here. Note that the code does not necessarily reflect
algorithm 5 perfectly, but it follows the general idea.

The method random sample(config spec) takes as input a configuration
specification that is assumed to be a dictionary, and it is the method that is
responsible for generating random configurations in algorithm 5:

import random

def random sample ( c on f i g s p e c ) :
c on f i g = {}
for param spec in c on f i g s p e c :

lower bound , upper bound = param spec [ ”bounds” ]
pname = param spec [ ”name” ]
p s ca l e = param spec [ ” s c a l e ” ] ; ptype = param spec [ ” type” ]
i f ptype == ” in t ” and ps ca l e == ”uniform” :

c on f i g [ pname ] = random . randint ( lower bound ,
upper bound )

e l i f ptype == ” in t ” and ps ca l e == ” log ” :
c on f i g [ pname ] = int (round( l og un i f o rm ( lower bound ,
upper bound ) ) )

e l i f ptype == ” f l o a t ” and ps ca l e == ”uniform” :
c on f i g [ pname ] = uniform ( lower bound , upper bound )

e l i f ptype == ” f l o a t ” and ps ca l e == ” log ” :
c on f i g [ pname ] = log un i f o rm ( lower bound , upper bound )

return c on f i g

def uniform ( lower , upper ) :
return lower + ( upper − lower )∗ random . random ( )

def l og un i f o rm ( lower , upper ) :
return 10∗∗ uniform ( lower , upper )

The dictionary should contain the keys name, scale, type and bounds. An
example of a valid hyperparameter configuration is:

{
”name” : ”gamma” ,
” s c a l e ” : ” l og ” ,
” type” : ” f l o a t ”
”bounds” : (−10 , 10) ,

}
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The key name is associated with the name of the hyperparameter, scale is
either log or uniform which dictates whether the parameter is drawn from a
log-uniform or uniform distribution respectively, type tells the method whether
the parameter is an integer or a floating point number, and bounds is a tuple
to indicate the legal range of the parameter. The method returns a hyper-
parameter configuration that conforms to the specification. The method also
utilizes helper methods uniform() and log uniform() that returns a uniformly
or log uniformly distributed sample, respectively.

The method bayesian samples(X gpr, y gpr, log R, bounds, n samples,

n steps mcmc) is responsible for generating samples in a Bayesian way. It is
defined as follows:

from s k l e a rn . g au s s i an p r o c e s s import Gauss ianProcessRegressor
from s k l e a rn . g au s s i an p r o c e s s . k e r n e l s import (Matern ,
ConstantKernel , WhiteKernel )

def bayes ian samples (X gpr , y gpr , log R , bounds ,
n samples , n steps mcmc=10∗∗5):

l s = [ 1 for in X gpr [ 0 ] ]
k e rne l = Matern (nu=2.5 , l e n g t h s c a l e=l s ) ∗ ConstantKernel ( )
k e rne l += WhiteKernel ( )
gp = Gauss ianProcessRegressor ( k e rne l=kerne l , normal i ze y=True )
gp . f i t ( X gpr , y gpr )
f = lambda x : e i ( gp , min( y gpr ) , np . append (x , log R ) )
return s l i c e s amp l e r ( n steps mcmc , f , bounds )[− n samples : ]

The method takes as input the previous hyperparameter configurations with
their used budgets X gpr, the configuration losses y, log R which is the logarithm
of the maximum budget, the bounds of the hyperparameters bounds, the number
of samples n samples and n steps mcmc, a parameter we’ll come back to in
a bit. The method fits a GP using the GP-related classes from Scikit-learn
(Pedregosa et al. 2011) on X gpr and y. The fitting is accomplished under
the hood through the approach outlined in section 3.1.1 and section 3.1.4. The
kernel of choice is the Matérn kernel with ν = 2.5 times a constant as popularized
by Snoek, Larochelle, and Adams (2012) added together with a white Gaussian
noise kernel to account for auto-variance. This choice of kernel is in contrast to
the squared exponential kernel used by Bertrand et al. (2017). This GP is used
to construct a function that returns the expected improvement with the budget
fixed at the maximum. I presume that the loss will exhibit non-stationarity in
the budget dimension, and hence the budgets are assumed to be represented
logarithmically for reasons described in section 3.1.3; the maximum budget is
expected to be log-transformed as well. To my understanding, Bertrand et al.
(2017) allowed the budgets to vary, but in my opinion, the budget should be
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fixed; we’re not interested in sampling configurations that have high probability
because of uncertainty associated with the budget—we’re controlling the budget
in each bracket. It’s fixed at the maximum to try to extrapolate to the final
loss. The function that computes the expected improvement is then used as a
probability distribution to sample probable configurations. To produce samples
from this distribution, I opted to use slice sampling (Neal 2003) because it is
simple to implement, and requires minimal tuning compared to other methods
such as Metropolis-Hastings (Chib and Greenberg 1995). The parameter n -

steps mcmc controls how many such samples are produced. The reason we
can’t just use n samples as the number of samples produced by slice sampling
is that there is usually a burn-in period of such methods, where the samples
have not yet migrated to a high-probability region. My Python implementation
of multivariate slice sampling is provided below. The implementation utilizes
NumPy (Oliphant 2006).

import numpy as np

def s l i c e s amp l e r (n , f , bounds ) :
def hyperrect sample ( hr ) :

x = [ ]
for ( l , r ) in hr :

x . append (np . random . uniform ( l , r ) )
return x

# f ind f i r s t po in t where f > 0
x = hyperrect sample ( bounds )
while f ( x ) <= 0 :

x = hyperrect sample ( bounds )

samples = [ x ]
for i in range (n−1):

hr = [ [ l , r ] for ( l , r ) in bounds ]
# de f ine the s l i c e
y = np . random . uniform (0 , f ( samples [ −1 ] ) )
x = hyperrect sample ( hr )
while f ( x ) <= y :

for i in range ( len ( x ) ) :
i f x [ i ] < samples [ −1 ] [ i ] :

hr [ i ] [ 0 ] = x [ i ]
else :

hr [ i ] [ 1 ] = x [ i ]
x = hyperrect sample ( hr )

samples . append (x )
return samples

To achieve parallelism, I use Python’s built-in library multiprocessing. In
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each bracket of Hyperband, the list of configurations are trained and tested in
parallel with the specified number of workers.
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Chapter 6

Results and Analysis

6.1 Experimental Setup

The experiments were run on the NTNU IDUN computing cluster (Själander
et al. 2019). The cluster has more than 70 nodes and 90 GPGPUs. Each
node contains two Intel Xeon cores, at least 128 GB of main memory, and is
connected to an Infiniband network. Half of the nodes are equipped with two or
more Nvidia Tesla P100 or V100 GPGPUs. Idun’s storage is provided by two
storage arrays and a Lustre parallel distributed file system.

Each run of each method had ten CPU cores (corresponding to ten workers in
parallel) and 40 GB of RAM available, unless stated otherwise. The objective to
minimize for all methods was the error rate of the machine learning model. The
confidence intervals were obtained through bootstrapping (Efron and Tibshirani
1986).

In this chapter, I will denote the combined method as described in chapter 5
as ”Bayesian HB”, and the standard Hyperband algorithm from chapter 4 as
”Random HB”. In all runs of Bayesian HB, 100000 samples were computed
by the internal slice sampler; this choice was arbitrary, but chosen large in an
attempt to diminish the effects of burn-in. This number may be large, but the
time it takes to sample is many orders of magnitude smaller than the time it
takes to train and test models in general.
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6.2 Support Vector Machines

For this particular experiment, SVMs were trained on the MNIST training
dataset (LeCun, Cortes, and Burges 2010), which are 28 × 28 greyscale im-
ages. The SVC class from Scikit-learn (Pedregosa et al. 2011) was used, which
builds the classifier in a one-versus-one fashion to train and test the SVMs.
The hyperparameters to optimize were C and gamma—C corresponding to λ in
section 2.1.2, and gamma corresponding to γ in the RBF kernel described in sec-
tion 2.1.3. The parameters were allowed to range between 10−10 and 1010, iden-
tically as done by Falkner, Klein, and Hutter (2018). For the experiments using
Random HB, the parameters were drawn from log-uniform distributions. For
Bayesian HB, the parameters were modeled in log space by the GP as described
in section 3.1.3. The resource R used was the number of available training data
points (R = 60000), nmax was set to 243, and η was set to 3. This allowed for
6 brackets. Both the training dataset and the testing dataset were transformed
by applying a StandardScaler object from Scikit-learn (Pedregosa et al. 2011)
fitted on the training dataset; this ensures that each feature has zero mean and
unit variance. For each method, ten experiments were performed. The results
obtained are summarized in fig. 6.1a, fig. 6.1b and fig. 6.1c. Bayesian HB starts
off worse in the beginning, but rapidly improves. Random HB may appear to
converge slightly faster on average than Bayesian HB, but since the mean of
Bayesian HB lies within the confidence interval of Random HB after Random
HB has converged, we cannot say that Random HB truly converges faster.
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Figure 6.1: Experimental results from training SVMs on the MNIST dataset.

6.3 Artificial Neural Networks

For these experiments, ANNs were trained on the MNIST dataset. The data
was preprocessed by ensuring that each feature lied in the range [0, 1]. The
hyperparameters to tune was the learning rate for stochastic gradient descent,
the batch size, the number of hidden layers, the dropout for all hidden layers,
and the size of all hidden layers. The hyperparameters and their bounds are
summarized in fig. 6.1.

For the random configuration samples, the integer-valued parameters and
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the dropout rate were drawn from uniform distributions. The learning rate was
drawn from a log-uniform distribution. The learning rate was log-transformed
inside Bayesian HB as described in section 3.1.3, and to obtain integer-valued
parameters for the Bayesian method, these parameters were simply rounded to
the closest integer.

For these experiments, R was set to 81 epochs of stochastic gradient descent,
and η was set to 3. The results from running both Bayesian HB and Random
HB twenty times can be seen in fig. 6.2. Bayesian HB starts off much worse on
average, but rapidly closes the gap. Both methods converge to the same value.

Hyperparameter Type Bounds
Learning rate Float [10−6, 10−2]
Dropout rate Float [0, 0.5]

Batch size Integer [23, 28]
# hidden layers Integer [1, 5]
Hidden layer size Integer [24, 28

Table 6.1: Hyperparameters to optimize for the ANN experiments.
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Figure 6.2: Experimental results obtained from training ANNs on the MNIST
dataset. Twenty runs of both Bayesian HB and Random HB were performed.

6.4 Convolutional Neural Networks

In this experiment, the parameters of a CNN were optimized; the CNNs were
trained on the CIFAR10 dataset (Krizhevsky, G. Hinton, et al. 2009). The
dataset was preprocessed to ensure that each feature was in the range [0, 1].
Details of the parameters and the architecture of the CNN can be found in
appendix A. The CNNs were trained on a single Nvidia Tesla P100 GPU. The
models were not trained in parallel, because I could not manage to make the
experiments run in parallel within my time constraints. The experiment is still
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meaningful, however, since the only difference now is that the models aren’t
trained in parallel.

For these experiments, R was set to 81 epochs of stochastic gradient descent,
and η was set to 3. The results of running both Bayesian HB and Random HB
twenty times can be seen in fig. 6.3. As can be seen in fig. 6.3a, the convergence
curves of both methods closely resemble one another, although neither method
seems to have converged. A definite winner cannot be extrapolated from the
data produced by the experiment, since the terminal mean of each method lies
within the other’s confidence interval.
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Figure 6.3: Experimental results obtained from training CNNs on the CIFAR10
dataset. Twenty runs of both Bayesian HB and Random HB were performed.
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Chapter 7

Conclusions and Future
Work

The goal of this thesis was to determine whether Hyperband could be improved
by incorporating GP-based Bayesian optimization. To reach that goal, the
research questions in section 1.2 were constructed. The solution proposed to
RQ1 is the method proposed in chapter 5. This is only one of a very large
number of ways to combine the two methods, however. The probability of this
proposed solution being the optimal is quite low, due to the sheer size of the
space of possible solutions.

As for RQ2: Based on the results obtained in chapter 6, the combination
of Bayesian optimization and Hyperband proposed in chapter 5 is not better or
worse than vanilla Hyperband when rating methods by convergence rate. No
method can be identified as having a better or worse convergence rate in any of
the experiments.

There could be several reasons why the combined approach does not offer
improvements over its vanilla counterpart. One possibility is that the search
spaces considered here are too simple—if the search space isn’t that complicated,
i.e. locating good configurations is easy, then perhaps the combined method
is never really leveraged since a good configuration could be located early by
the random sampler. An idea for future work could then be to evaluate more
complex search spaces.

Another possibility could be the fact that the combined method does not
handle integral parameters in a manner that is sophisticated enough—integral
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parameters are simply rounded to the closest integer by the Bayesian sampler
of the combined method. A suggestion for handling integral parameters is the
method proposed by Garrido-Merchán and Hernández-Lobato (2017).

Parameters that were assumed to introduce non-stationarity in the loss func-
tion were simply optimized in log space. This transformation is not necessarily
correct for all kinds of parameters, so leveraging a more sophisticated method
such as the one proposed by Snoek, Swersky, et al. (2014) would be an interest-
ing idea for future work.

Finally, a reason that the combined approach does not perform so well could
be caused by the fact that the method has parameters of its own, such as
the number of slice (MCMC) samples and Nmin. An analysis of the effect of
these parameters was not performed in this thesis, but is a natural next step in
evaluating the combined method’s merit.

For the practitioner, I would suggest not bothering with the method pro-
posed here. The implementation is much more complicated than just sampling
at random, adds overhead, and does not provide any benefits in terms of con-
figuration quality or speed. Random sampling also allows for flexible priors,
leveraging a priori knowledge in a simple fashion.
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Appendix A

Details of CNN Experiment

The architecture and parameters of the CNN experiment is best understood by
inspecting the actual code. The implementation of the CNN class is built upon
Keras (Chollet et al. 2015):

import keras
from keras . models import Sequent i a l
from keras . l a y e r s import Dense , Dropout , Act ivat ion , F lat ten
from keras . l a y e r s import Conv2D , MaxPooling2D
from keras . op t im i z e r s import SGD

class CNN:
def i n i t ( s e l f , l e a r n i n g r a t e=None , f 1=None , f 2=None ,
f 3=None , f 4=None , drop1=None , drop2=None , drop3=None ,
d en s e un i t s=None , max iter=None ) :

model = Sequent i a l ( )
model . add (Conv2D( f1 , (3 , 3 ) , padding=’ same ’ ,

input shape=x t r a i n . shape [ 1 : ] ) )
model . add ( Act ivat ion ( ’ r e l u ’ ) )
model . add (Conv2D( f2 , (3 , 3 ) ) )
model . add ( Act ivat ion ( ’ r e l u ’ ) )
model . add (MaxPooling2D ( p o o l s i z e =(2 , 2 ) ) )
model . add (Dropout ( drop1 ) )

model . add (Conv2D( f3 , (3 , 3 ) , padding=’ same ’ ) )
model . add ( Act ivat ion ( ’ r e l u ’ ) )
model . add (Conv2D( f4 , (3 , 3 ) ) )
model . add ( Act ivat ion ( ’ r e l u ’ ) )
model . add (MaxPooling2D ( p o o l s i z e =(2 , 2 ) ) )
model . add (Dropout ( drop2 ) )
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model . add ( Flat ten ( ) )
model . add (Dense ( den s e un i t s ) )
model . add ( Act ivat ion ( ’ r e l u ’ ) )
model . add (Dropout ( drop3 ) )
model . add (Dense ( 10 ) )
model . add ( Act ivat ion ( ’ softmax ’ ) )

model . compile ( l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,
opt imize r=SGD( l r=l e a r n i n g r a t e ) ,
met r i c s =[ ’ accuracy ’ ] )

s e l f . model = model

s e l f . epochs = max iter
print ( s e l f . epochs )

def f i t ( s e l f , x t ra in , y t r a i n ) :
s e l f . model . f i t ( x t ra in , y t ra in , b a t ch s i z e =256 ,
epochs=s e l f . epochs , verbose=0)

def s c o r e ( s e l f , x t e s t , y t e s t ) :
mode l score = s e l f . model . eva luate ( x t e s t ,
y t e s t , verbose =0) [1 ]
keras . backend . c l e a r s e s s i o n ( )
return mode l score

The code explicitly states the architecture of CNN. There are nine parameters
that are optimized; max iter is controlled by Hyperband. The parameters are
fully specified by the config spec:

c on f i g s p e c = [
{

”name” : ” f1 ” ,
” type ” : ” i n t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 2∗∗3 , 2∗∗7 ]

} ,
{

”name” : ” f2 ” ,
” type ” : ” i n t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 2∗∗3 , 2∗∗7 ]

} ,
{

”name” : ” f3 ” ,
” type ” : ” i n t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 2∗∗3 , 2∗∗7 ]
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} ,
{

”name” : ” f4 ” ,
” type ” : ” i n t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 2∗∗3 , 2∗∗7 ]

} ,
{

”name” : ”drop1” ,
” type” : ” f l o a t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 0 , 0 . 5 ]

} ,
{

”name” : ”drop2” ,
” type” : ” f l o a t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 0 , 0 . 5 ]

} ,
{

”name” : ”drop3” ,
” type” : ” f l o a t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 0 , 0 . 5 ]

} ,
{

”name” : ” l e a r n i n g r a t e ” ,
” type ” : ” f l o a t ” ,
” s c a l e ” : ” l og ” ,
”bounds” : [−7 , −1]

} ,
{

”name” : ” den s e un i t s ” ,
” type ” : ” i n t ” ,
” s c a l e ” : ”uniform” ,
”bounds” : [ 2∗∗3 , 2∗∗9 ]

}
]

In the experiment, the integral parameters were rounded to the closest inte-
ger by the Bayesian sampler.
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