
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Marius Kohmann

Detekt-hint – A tool for detecting design
principle violations

Master’s thesis in Computer Science

Supervisor: Hallvard Trætteberg

June 2020

Marius Kohmann

Detekt-hint – A tool for detecting
design principle violations

Master’s thesis in Computer Science
Supervisor: Hallvard Trætteberg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sammendrag

Feil eller unng̊att bruk av designprinsipper i programvareutvikling medfører
vedlikeholdsproblemer og øker utviklingskostnadene. Til n̊a har verktøy for ut-
viklere i liten grad sett etter brudd p̊a designprinsipper, og har heller ikke vært
en del av arbeidsflyten til utviklere. Dette har vært grunnet vanskeligheten av å
detektere brudd p̊a designprinsipper uten å skape støy i utvikligsprosessen. Det-
te studiet tar en innovativ tilnærming til problemet for å se hvordan man kan
lage et verktøy for deteksjon av brudd p̊a designprinsipper som er integrert inn i
arbeidsflyten til utviklere, og som ikke lider av støy. Ved å kombinere teknologi
for kodeanalyse og teknologi for kvalitetssikring av kode utvikles et verktøy for
deteksjon av brudd p̊a designprinsipper med en forskningsmetode som kalles
Design science. Flere iterasjoner av utvikling, testing og evaluering av proto-
typer ble gjennomført og endte med en tidlig versjon av et Minimum Viable
Product (MVP). Dette produktet ble s̊a evaluert internt og gjennom tilbake-
meldinger fra open-source community. Resultatene viser at det å automatisk
legge til kommentarer p̊a Pull Request (PR) for å informere utvikleren om mu-
lige design-problemer vil redusere innvirkningen av falske positiver, og dermed
redusere støyen betraktelig sammenlignet med tidligere metoder. Dette gjør at
man kan utvikle regler for deteksjon av brudd p̊a designprinsipper med lavere
krav til treffsikkerhet enn tidligere. Likevel, vanskeligheten av å detektere brudd
p̊a design-prinsipper skaper s̊a mye falske-positiver at videre utvikling av meka-
nismer for å redusere støy behøves. Med videre forskning p̊a gode heuristikker
for deteksjon av brudd p̊a designprinsipper og implementasjon av nye mekanis-
mer for redusering av støy vil et slikt verktøy potensielt ha stor innvirkning p̊a
videre utvikling av programvare.

Abstract

Absence of correctly applied design principles triggers maintainability problems
in software development and increases development cost. To current date, tools
for developers have to a small extent targeted design principles and have suf-
fered from not being an integrated part of the developers workflow. The reason
being the difficulties in detecting design principle violations without creating
noise in the developer workflow. This study targets this problem and takes an
innovative approach for investigating how one can create a tool for Detection of
Design Principle Violations (DDPV) that is integrated in the developer work-
flow without suffering from noise. By combining technologies for code analysis
and Quality Assurance (QA), a tool for DDPV was developed using the Design
science methodology. Multiple iterations of development, testing and evaluation
of prototypes was carried out and ended with an early version of a Minimum
Viable Product (MVP). The product was then evaluated internally and received
feedback from the open-source community. The results show that using auto-
mated comments on Pull Request (PR) to inform the developer about possible
design issues will reduce the noise from false-positives significantly. This will
enable the development of rules for DDPV with lower requirements on accuracy
than what is traditionally accepted. However, the difficulty of DDPV creates
such big amount of false-positives that further development on mechanisms for
reducing the noise is needed. With continued research on good heuristics for
DDPV and implementation of suggested mechanisms for reduction of noise, a
tool like this this could have big implications on the maintainability of developed
software.

Contents

1 Introduction 5

2 Background 7
2.1 What is maintainable code? . 7
2.2 Achieving maintainable code . 9
2.3 Design principles . 10
2.4 Code analysis . 11
2.5 False-positives and false-negatives 12
2.6 Code review . 13
2.7 Developer workflow . 14
2.8 Prototyping . 15

3 Related work 17

4 Methodology 19
4.1 Goals of the study . 19
4.2 Research methodology . 20
4.3 Problem identification and motivation 21
4.4 Define the objectives of a solution 23
4.5 Design and development . 23
4.6 Demonstration . 24
4.7 Evaluation . 24
4.8 Communication . 25

5 Results 27
5.1 Initial objectives of a solution . 27
5.2 Prototypes and development . 29

2

5.3 Initial prototype . 30
5.4 Vertical prototype . 33
5.5 Horizontal prototype . 36
5.6 Final prototype . 41
5.7 Evaluation of the final prototype 42

5.7.1 External evaluation . 42
5.7.2 Internal evaluation . 44
5.7.3 Evaluation of using comments on PR to reduce impact of

reporting false-positives 47
5.7.4 Overall evaluation . 48
5.7.5 Evaluation of the objectives of a solution 49

5.8 Technical solution . 50
5.8.1 Detekt . 50
5.8.2 Detekt-hint rule set . 51
5.8.3 Danger . 52
5.8.4 GitHub Actions and the execution flow 53

6 Discussion, further work and conclusion 55
6.1 Answering the research question 55
6.2 Impact . 56
6.3 Limitations . 57
6.4 Future work . 59
6.5 Conclusion . 62
6.6 Acknowledgments . 63

A Appendix 69
A.1 Horizontal prototype . 69
A.2 Semi-structured interview schema 73
A.3 Semi-structured interview results 74
A.4 Final prototype . 77

3

4

Chapter 1

Introduction

Writing software that is easy to modify and extend is an important part of soft-
ware engineering. Software that have these attributes (qualities) is often referred
to as maintainable. Non-maintainable software is often a breeding ground for
bugs, refactoring1 tasks and technical debt2. Consequences include increased
development time, inaccurate estimations causing lost deadlines and higher costs
of introducing new developers to the project.

To help developers write code that is maintainable, well defined rules, best
practices and conventions for writing code have been developed. The rules
targets low-level code constructs, only covering small amounts of code. We will,
refer to these as rules.

Less formal design principles that targets the structure or design of code at
an architectural level have also been developed. The design principles are not
formal and is often open for interpretation and subject for debate. Therefore,
correct appliance of the principles often requires reasoning about the business
domain and predicting future changes to the code-base.

Tools for code-analysis have been created to help developers adhere to the
rules. They provide an effective way of detecting problems, and can often auto-
correct or provide solutions to detected problems. The tools are ranging from
separate Command Line Interface (CLI)s, build plugins, native applications, on-

1From Wikipedia: Process of restructuring existing code without changing its external
behavior [9]

2From Wikipedia: Concept in software development that reflects the implied cost of ad-
ditional rework caused by choosing an easy (limited) solution now instead of using a better
approach that would take longer [58].

5

line services, to Integrated Development Environment (IDE)s and IDE plugins.
Based on the use case of the tool, it is integrated into the developer workflow
differently. For example directly to the developer while editing code or as au-
tomated feedback that is part of a code review. The tools and their integration
into the developer workflow have different advantages and disadvantages.

The design principles, on the other hand are mostly informal and have lim-
ited support in tools for code-analysis. According to a prestudy on the current
state on tools for improvement of code quality [38], the tool support for detecting
violations of design principles are limited. The tools suffer from false-positives
that will create an significant amount of noise during development. In addition,
the existing tools are not integrated into the developer workflow, which will
make the design issues appear a long time after they were introduced. Current
approaches for detecting violations of design principles mostly involve manual
code review, which is a time consuming and error-prone process.

Given the limitations in current approaches for detecting violation of design
principles, more research is proposed. The importance of adhering to the design
principles cannot be neglected as the architecture and design of code lay the
foundation for further development. By having tools help us adhere to the
design principles, we can help ensure that correct design decisions are taken
and thus reduce the time required for restructuring badly designed code.

The main goal of the study is to create a tool that help developers adhere
to the design principles, ultimately improving the maintainability of code. By
looking at existing tools, existing methods for Detection of Design Principle Vi-
olations (DDPV), and both advantages and disadvantages of existing developer
workflows, we think it is possible to develop an effective tool for DDPV without
creating significant amounts of noise in the developer workflow.

To help with specific guidelines for development and evaluation of such a
tool, the Design science methodology will be followed.

The outline of the paper is as follows; Chapter 2 gives some background
information and an introduction to the topics maintainable code, code analysis
and developer workflow. Chapter 3 gives some insight in related work in the
area. Chapter 4 presents the goal of the study and the research question. Then
a description of the selected research methodology and the required steps is
provided. 5 presents the results from developing and evaluating the prototypes.
Chapter 6 discusses the results ending with the conclusion of the study.

6

Chapter 2

Background

To see why achieving maintainable code is important, and why a new tool for
detecting design principle violations is needed, some background information
is provided. We will look into what maintainable code is, how we can achieve
it and how code analysis and developer workflow relates to these topics. Note
that parts of sections 2.1 - 2.4 is taken from the authors prestudy on the current
state of tools for code analysis[38], but is modified to fit the contents of this
thesis.

2.1 What is maintainable code?

Software maintainability is a measure of how easy it is to modify and extend
existing software. It is important to notice that keeping the code maintainable
is a quality that needs to be present at all stages of development, and not only
in the traditional ”maintenance” stage of application development.

Software is a product that evolves over time and that continuously needs
fixes, features and updates according to the customer and users needs. To make
the process of developing software product cheaper we need to ensure it meets
certain requirements regarding quality. It may seem counter intuitive, but high
quality software is actually cheaper to produce. You can read more about this
in section 4.3. The software community is highly opinionated and software qual-
ity is measured differently based on (but not limited to) domain, programming
language and business requirements. Therefore, measuring software quality and
creating rules without exceptions is extremely hard. However, interestingly, the

7

ratio of time spent reading (i.e understanding code) versus writing code is well
over 10 to 1 as Robert C. Martin states in [40]. The quality of code can therefore
be measured by the amount of time that is used to understand it. To reduce
the amount of time spent on understanding code, we need to ensure that the
written code is understandable. We need to ensure that it is easy to understand
what the code does and why it does what it does. It should be easy to locate
what needs to change, easy to make changes and easy to ensure that the changes
does not create unwanted side effects.

More formally, developers have defined a set of quality attributes that will
help ensure that the code is of high quality. A commonly accepted collection of
quality attributes include extensibility, modularity, testability, understandabil-
ity, performance, reliability and security. Martin Fowler did a useful distinction
using the terms internal attributes and external attributes [29]. The distinc-
tion is whether the attribute is visible for the user or not. The internal quality
attributes correspond to maintainability, that is our focus.

Following are the definitions of the internal quality attributes with most
importance in this study:

• Extensibility - ”Extensibility is a measure of the ability to extend a system
and the level of effort required to implement the extension. Extensions
can be through the addition of new functionality or through modification
of existing functionality. The principle provides for enhancements without
impairing existing system functions.” [22]

• Modularity - ”Modular programming is a software design technique that
emphasizes separating the functionality of a program into independent,
interchangeable modules, such that each contains everything necessary to
execute only one aspect of the desired functionality.” [42]

• Testability - ”Software testability is the degree to which a software artifact
supports testing in a given test context. If the testability of the software
artifact is high, then finding faults in the system (if it has any) by means
of testing is easier.” [53]

• Understandability - ”Understandability is defined as the attributes of soft-
ware that bear on the users’ (programmer) efforts for recognizing the log-
ical concept and its applicability.” [63]

In the next section we will look into methods of fulfilling these quality at-
tributes.

8

2.2 Achieving maintainable code

To write code that is maintainable a set of concepts, principles and conventions
including; Architectural patterns, design patterns, anti-patterns, design princi-
ples, metrics and best practices is used amongst developers. Some of them are
well defined, and can easily be verified through source code analysis. Others
are more abstract in nature and requires reasoning from the developers and is
harder to verify.

An architectural pattern is a general, reusable solution to a commonly oc-
curring problem in software architecture within a given context [3]. An example
is the Model-View-ViewModel (MVVM)-pattern for mobile development [41].
It is a well defined pattern and correct use or misuse could be verified through
testing tools like ArchUnit [4].

A design pattern is similar to an architectural pattern, but more limited in
scope. An example is the Adapter pattern [2]. Detection of design patterns is
possible through mining [62]. The absence of patterns is harder to detect as the
absence of a design pattern is not clearly defined.

Definitions of architectural anti-patterns and design anti-patterns have also
been made. They are the opposite of architectural-patterns and design-patterns.
In other words ways one should not solve a common problem. They are com-
monly referred to as architecture-smells and design-smells. An example of archi-
tectural anti-pattern is the Cyclic Dependency [8] and could be detected through
dependency analysis. An example of design anti-pattern is the God-Object [25],
and is as stated about design patterns, not easily verifiable. However, metrics
such as a high value of coupling and Lines Of Code (LOC) could imply possible
violations.

Design principles are a set of guidelines that programmers should follow to
avoid bad design. Because the design principles is of most importance in this
study, a more in depth description is provided in section 2.3.

Metrics are measurements of particular characteristics of a program. They
are often used as a tool for determining the code quality. Examples include
cyclomatic complexity and coupling. Coupling is the degree of interdependence
between software modules [14]. Cyclomatic complexity is used to indicate the
complexity of a program [15]. They are calculated using code analysis.

Best practices are informal rules that have been learned over time, or practice
that have become part of the language “culture”. The best practices can in some
ways be equal to the design principles, but are often simpler and more limited
in scope. Even if limited in scope, the range of different best practices is huge.
Best practices includes but is not limited to, code patterns that are probable

9

bugs, styling of code and readability. An example of best-practice in the Java
language could be to use camel case (camelCase) [7] on variable-names, or to not
have empty else-blocks. They are often well defined and are verified using tools
for code static analysis. Tools enforcing best-practices is commonly referred to
as linters.

2.3 Design principles

Design principles, also commonly referred to as programming principles, are a
set of guidelines that programmers should follow to avoid bad design. Violation
of design principles often introduces design issues. The design issues themselves
do not functionally affect the system, but will impact further development neg-
atively. According to Robert C. Martin [39] there are three characteristics of
bad design that the design principles will help reduce:

1. Rigidity - It is hard to change because every change affects too many other
parts of the system.

2. Fragility - When you make a change, unexpected parts of the system break.

3. Immobility - It is hard to reuse in another application because it cannot
be disentangled from the current application.

Having a system with any of these characteristics will drastically slow down
development time, and is therefore important to fix sooner rather than later for
multiple reasons. In section 4.3 we will elaborate more on this.

A common set of design principles that often is referred to is the Single re-
sponsibility, Open–closed, Liskov substitution, Interface segregation, Dependency
inversion (SOLID) principles [54].

• Single Responsibility Principle (SRP) – ”... states that every module
or class should have responsibility over a single part of the functional-
ity provided by the software, and that responsibility should be entirely
encapsulated by the class, module or function.” [51]

• Open-Closed Principle (OCP) – ”... states ”software entities (classes,
modules, functions, etc.) should be open for extension, but closed for
modification”; that is, such an entity can allow its behavior to be ex-
tended without modifying its source code.” [44]

10

• Liskov Substitution Principle (LSP) – ”Objects in a program should be re-
placeable with instances of their subtypes without altering the correctness
of that program.” [36]

• Interface Segregation Principle (ISP) – ”... states that no client should be
forced to depend on methods it does not use.” [28]

• Dependency Inversion Principle (DIP) – ”... states:
A. High-level modules should not depend on low-level modules. Both
should depend on abstractions (e.g. interfaces).
B. Abstractions should not depend on details. Details (concrete imple-
mentations) should depend on abstractions.” [19]

As you can see, the design principles are often abstract and verification
requires knowledge and reasoning about the business domain. For example,
referring to the OCP, how do you know what is going to be changed in the
future, and how are you then going to design for extension? In addition, making
classes closed for all modifications are not possible. And in case of the SRP,
how would you determine what is a single responsibility?

To make matters worse, the design principles may be conflicting. DIP sug-
gests introducing abstractions to decouple software modules, while More Is More
Complex (MIMC) principle and Keep It Simple Stupid (KISS) principles says
that introducing abstractions (e.g interfaces, abstract classes) introduces un-
wanted complexity. The design principles are therefore hard to verify using
code analysis. The manual process of code review is therefore the main arena
for detecting design issues in code.

2.4 Code analysis

We differentiate between two types of code analysis, dynamic code analysis and
static code analysis. Dynamic code analysis is done by analyzing programs being
executed on a processor, while static code analysis is purely based on analysis
of the source code. Within static and dynamic code analysis, we could focus
the analysis on either run-time properties or design time properties.

Since dynamic analysis is based on program execution it has the advantage
of being able to measure the actual Central Processing Unit (CPU), memory
and energy performance, and to target other dynamic aspects of programs.
However, that does not mean that static code analysis is not able to target
performance or dynamic aspects of source code. As seen in table 2.1 there is a

11

Static Analysis Dynamic Analysis

Runtime properties

- Performance
(memory leak etc..)
- Correctness
- Security analysis
...

- Performance
(memory leak etc..)
- Correctness
- Security analysis
...

Design time properties

- Design principles
- Style
- Metrics
...

- Dynamic software
metrics

Table 2.1: A non-exhaustive table of static and dynamic analysis showing their
runtime and design-time properties.

great overlap between static and dynamic code-analysis. Null-pointer analysis
is a form of static code-analysis that targets runtime properties of source code,
without directly executing it.

As we want to improve the source code, we have chosen to focus on static
code analysis with the focus on design time properties. The static analysis is
done by parsing the source code, creating an Abstract Syntax Tree (AST) and
then analyzing it for violations of the aforementioned principles, concepts and
conventions. Some static code analysis tools also provide automatic refactoring
possibilities through transformation of the AST.

Figure 2.1 shows a simple example AST where a static analysis tools could
detect that the expression x == 1 always evaluates to true and that the variable
y is never used. The tool could then suggest that the branching is unnecessary
and that the y variable is removed.

2.5 False-positives and false-negatives

Because good heuristics for DDPV is hard to define, a tool for DDPV, would
not have 100% accuracy. The tool will therefore report violations, that in reality
is not. These are false alarms and we call these false-positives. We generally
would like the rate of false-positives to be as low as possible. A false-negative is
the opposite, when actual violations goes undetected. We generally also want
to keep this rate as low as possible. Together the rate of false-positives and the
rate of false-negatives will determine the accuracy of detection.

12

Figure 2.1: Simple AST of: x=1; if (x == 1) {y = 10;}

Definition of true-positives and true-negatives also exists. They are the coun-
terpart of the above definitions. True-positives are the proportion of actual vio-
lations that are correctly detected. True-negatives are the proportion of actual
non-violations that is not reported. In other words, that violations that does
not exist is not reported.

2.6 Code review

Code review is a manual inspection process of looking through code. It is
currently the most common way of finding design issues in code. Code review
works well if done correctly, but unfortunately it is prone to human error, and
doing thorough reviews are time consuming.

There are many things to consider when doing a code review. Google even
maintains their own list of what to look for in a code review [64]. A few bullet
points is listed below.

• Is the solution following the preferred coding style? Are best practices
concerning design principles followed?

• Is the solution well architected? Is it following the architectural model of
the application? Are all the files in the correct modules?

• Will the changes cause unexpected behavior, and break other parts of the
system?

13

• Is the code understandable? Does all variables, method names, classes
express its intent?

• Is duplicate code introduced? Is this way of solving the problem the way
we prefer it to be in this project?

When dealing with large amounts of changed code it is easy to forget some
of the bullet points above. An article by Gregory Szorc[50], points out that
”Research by Google, Microsoft and others has shown an inverse correlation
with review unit size and defect rate.” This means that the number of false-
negatives (i.e the amount of undetected issues) usually increase as the number of
changed lines in a PR increases. Luckily, tools will be able to help us with some
of the tasks regarding style and best practices. The rest have to be targeted
by manual inspection of the source code. Tools should therefore help us by
automating most tasks, such that the manual review is focused on finding issues
that tools are not able to detect.

By detecting issues during code review design defects will be resolved quicker
because the developer can fix the issue right away. And fixing issues right away,
saves a lot of time.

2.7 Developer workflow

Developers have their own workflows which they find useful, and a tool for code-
analysis needs to fit the workflow to help the developer during development.
There exists a number of places where a tool could be executed in the coding
phases of development. Common examples include:

• While coding (Tool runs continuously as the developer types)

• On building the application

• On commit (When one bulk of changes is done)

• Before QA and code review (Often in a Continous Integration (CI) envi-
ronment)

• Anytime the developer wants to execute the tool

Depending on the use case and the importance of the tool, the tool exe-
cutes in different phases. The compiler (parser) would for example execute its
code-analysis to find syntax errors on every build. Reporting issues as early

14

as possible may generally seem like a good idea, but could distract the devel-
oper from solving the problem at hand. Especially, if the tool itself creates
noise (by introducing false-positives or takes a significant amount of time to
execute) reporting issues early in the development phases would annoy the de-
veloper. Simple and advanced analysis and automatic refactoring options is
often included and continuously executed inside more advanced IDE’s. Exam-
ples include data-flow analysis, dead-code detection, null-pointer-analysis and
automatic transformation of imperative expressions to functional expressions.
These forms of analysis will often help more than annoy the developer by pro-
viding automatic fixes and giving immediate feedback. More resource heavy
analysis include dynamic analysis, that searches to find performance or security
issues. These kinds of tools are typically executed at a later stage, for example
before a code review.

Developers also have their own preferences for workflows and when to execute
and use tools. Making a tool configurable or fit in multiple execution points in
the development process is therefore often appreciated.

2.8 Prototyping

Prototyping is an important activity to get feedback from users as early as
possible, to better understand the problem at hand, and its requirements. Pro-
totypes are often described using the two dimensions, horizontal and vertical.
Horizontal prototypes covers a broad view of the entire system and focuses more
on user interaction with the system, rather than low level details. Vertical pro-
totypes on the other hand focuses on the technical challenges and a small subset
of functionality of the final system. Depending on the precision, or how much
it looks and works like the finished product, it is either a low fidelity or high
fidelity prototype.

In addition to the widely used definitions of vertical and horizontal proto-
types, we would like to further describe the prototypes using the visual, in-
teraction and content dimensions. These dimensions were introduced by Kyle
Murphy in his article about describing prototypes [59]. The five dimensions of
prototype fidelity are therefore visual, interaction, breadth, depth and content.

• The visual dimension describes how much the prototype looks like the
finished product.

• The interaction dimension describes the level of interactivity the prototype
has.

15

• The breadth dimension describes how much of the final products surface
area that is covered.

• The depth dimension describes to what degree the user is constrained at
a given level of breadth.

• The content dimension describes to what degree the content (data) in the
prototype represents the data that will exist in the final product.

By creating prototypes with different focus on the dimensions, one is explor-
ing the problem domain and will learn and understand the requirements of a
solution.

16

Chapter 3

Related work

To the best of my knowledge, a tool that directly targets the detection of vio-
lations of design principles, does not exist. There exists a lot of tools for code
analysis, PMD[49], SonarQube[56] to name two of the most used ones for the
Java language. Most of them support detection of violations of style conven-
tions, best practices and finding possible bugs. However, some tools and linters
include functionality for detecting violations on a small subset of the design
principles. Therefore, developers need to adopt a large suite of tools to only be
able to support detection of a few design principles violations. Also, the tools
are fundamentally different and have different purpose and supports integration
in the development process differently. The tools are ranging from separate
CLIs, native applications, online services, IDEs and IDE plugins. The purpose
also varies. Some are used for project level analysis activities, for finding areas
in the code-base with issues, while other tools are focused at reporting issues at
the time of writing or in the QA process.

This thesis is mainly considering two research areas, code-analysis and code-
review. First, related work on code-analysis regarding detecting design principle
violations will be presented. Then other related work and tools related to code
review will be presented.

PMD [49] is one of many tools that calculates multiple metrics to indirectly
support detecting design issues. Examples of metrics could be LOC, Cyclomatic
Complexity (CC) and Number of Functions (NoF). The principle of High Co-
hesion - Low Coupling is a principle that has support in multiple tools, in
the form of calculating a metric, including but not limited to JArchitect [30] and
CodeMR [11]. JArchitect [30] also includes functionality for visualizing High Co-

17

hesion - Low Coupling using a Dependency Structure Matrix (DSM). Another
example of indirectly detecting design principle violations by using metrics is
JArchitect. JArchitect uses the DSM to find violations of SRP by looking at
how many different types a class uses. Ndepend [43] calculates the Lack of Co-
hesion Of Methods (LCOM) value to find whether the class is cohesive or not,
and therefore possibly breaking SRP.

IntelliJ [26] and [49] has support for detecting violations of the Law of
Demeter (LoD) principle through extensive analysis of the source code.

Detecting similar snippets of code to find violations of the Don’t Repeat
Yourself (DRY) principle is targeted by many tools including, but not limited
to IntelliJ[26], PMD[49] and Code Climate[10]. However, code can violate DRY
without looking similar, and tools that can detect more complicated cases have
not been found.

Other design principles like ISP, OCP and LSP are not targeted at all in
tools, but several articles and forum posts on how one can spot violations have
been found. The principle of Composition over inheritance is tightly related to
the LSP and [12] has been useful in providing automated comments. Articles
about spotting violations of the OCP and ISP principles have also been found,
and has been useful for the process of implementing rules that are not targeted
in the current set of tools [46] [45] [27] [55]. Also, one article in the article series
written by Trisha Gee on ”What to look for in a code review”, targeting the
SOLID principles have been useful [65].

Regarding the process of code review, services like GitHub[23]1 provides use-
ful features and integration with other tools for code review. Especially a tool
called Danger[16] provides the possibility of automating comments on PR’s.
It supports development of plugins to support different kinds of automation.
No tools that support finding design defects have been found, but plugins that
enable such development have been found. Most notable are the plugins that en-
ables automatic commenting on pull requests based on issues found using linters.
Examples include the danger-eslint-plugin[17] and the danger-detekt-plugin[18]
which enables comments on PR’s based on warnings created by eslint[21] and
Detekt[20], respectively.

1From Wikipedia: ”..company that provides hosting for software development version con-
trol using Git”[24]

18

Chapter 4

Methodology

The selected research methodology needs to fit the goal of the study. Therefore,
the goal of the study will first be presented. The selected research methodology
will then be presented together with how it contributes to reaching the goal.
Then, a brief description of the different steps in the research methodology is
provided.

4.1 Goals of the study

There exists a lot of theory and knowledge on how to design and build main-
tainable software. The knowledge is used by the developers when writing code,
and some of the knowledge could be enforced by tools for code analysis. It helps
developers write systems that are maintainable. However, there exists knowl-
edge about design principles that is not used in the current set of tools for code
analysis. Design principles is not targeted with the current set of tools, because
it is shown hard to detect violations of design principles with high accuracy.
High false-positive rates will create noise and disturb the developer.

The main goal is to create a tool that help developers adhere to the design
principles, ultimately improving the maintainability of code. By looking at exist-
ing tools, existing methods for DDPV, and both advantages and disadvantages
of existing developer workflows, we think it is possible to develop an effective
tool for DDPV without creating significant amounts of noise in the developer
workflow. The first sub-goal is therefore to create a set of rules for DDPV. The
rules should be as accurate as possible, but we acknowledge that there will be a

19

certain amount of noise that will be generated. The other sub-goal is to design
a solution for how and where to integrate it in the developer workflow to reduce
noise generated by false-positives. The goals and the sub-goals are summarized
below:

(G1) Create a tool for DDPV to help developers write maintainable code

(G1.1) Create a set of rules for DDPV

(G1.2) Designing a solution for how and where to integrate it in the developer
workflow to reduce noise generated by false-positives.

Other quality aspects of tools such as performance and usability will not be
considered important, unless it directly contributes to achieving the goals of the
study.

4.2 Research methodology

To reach the goals it will be necessary to have a practical approach where an
innovative product is designed, developed and evaluated. As the goal is to help
developers create more maintainable code, it is also necessary to have a user-
centered approach for evaluating the product. A traditional agile user-centered
design process would be a usual choice for such development. However, for this
study the end product should also provide a general contribution to the research
field of improving maintainability of code. The contribution should include what
is learned in the process, to see if such an approach could be put more work
into and possibly being a new way of helping developers create maintainable
software. The Design science research methodology fits that purpose. It is
presented in (A Design Science Research Methodology for Information Systems
Research) [48].

Design science is a research methodology that focuses on getting knowledge
about a domain through development of innovative artifacts. The methodology
provides specific guidelines for evaluation and iteration in research projects.
The software artifact will be created through a series of iterations that include
the following activities: Problem identification and motivation, definition of
objectives of a solution, design and development, demonstration, evaluation
and communication. Figure 4.1 is taken from Peffers. K [48] and shows the
process of the Design science methodology.

As can be seen in the figure, the activities are not required to be done in
any strict order, but in the order as seen required. For example, at any point in

20

Figure 4.1: The process of the Design science research methodology.

the process, one could take a step back and redefine the objectives of a solution
when new insights into the problem domain is gained. We will elaborate on how
each of the different activities is applied to the study below.

4.3 Problem identification and motivation

As Martin Fowler explains in his article ”Is High Quality Software Worth the
Cost?”[29], the common trade-off between quality and cost does not apply to
software. High quality software is actually cheaper to produce. As Martin
Fowler explains in his article:

“Neglecting internal quality leads to rapid build up of cruft1, which
slows down feature development. Even great teams produces cruft,
but by keeping internal quality high, one is able to keep it under
control. High internal quality keeps cruft to a minimum, allowing a
team to add features with less effort, time, and cost.”

It is visualized in figure 4.2 which is taken from the same article. The rapid
increase in cruft comes from the consequences of neglecting internal quality
attributes. As discussed in section 2.2 an essential part of developing software
with high internal quality software is to follow or adhere to the design principles.
Andy Glover & Matt Archer have written an article with 10 arguments why you

1Cruft is the difference between how the system is, and how it ideally would be.

21

should fix bugs as soon as you find them[1], and the same arguments applies
to design defects. Below is a short summary of the most important arguments
inspired by that article:

Figure 4.2: Visualization of how software evolves over time, and how high/low
internal quality affects development speed and cost.

1. Unfixed design defects may hide other design defects. Fixing the design
defects can solve upcoming problems, that would have been harder to find
at a later point.

2. Building upon badly designed software further complicates and increases
the difficulty of resolving the issues later.

3. Unfixed design defects suggest internal quality is not important. If a
software developer is working on poorly written software, it is likely that
more code of the same style is added, continuing to degrade the system
quality.

4. Unfixed design defects lead to inaccurate estimates. Having design defects
in code will make it hard to modify and extend the current behavior of
the system. New requirements that incur changes to the code-base may
break unexpected parts of the system. The estimation will then be hard
to do.

22

5. Fixing familiar code is easier than unfamiliar code. Developers need time
to get familiar with code, understand what it does and why. Fixing issues
while the developer is in the context of that code will save time.

Therefore, to reduce the cruft, and thereby the cost, we should write code
with high internal quality which includes adhering to design principles.

There are mainly two techniques for detecting violations of design princi-
ples, code-analysis using tools and manual code-review. Some code-analysis
tools offer design principle analysis as mentioned in section 3, but suffer from
limited functionality and not being integrated into the development process.
Therefore, manual code review is the main arena where most design issues are
found. Finding design issues through code review is time-consuming and re-
quires deep understanding of the problem that is being resolved. This process
is prone to errors and overlooking due to human failure. Having a tool that
could help this process would help to reduce the amount of design issues that
will appear in production code, effectively increasing the internal quality and
reducing development time and cost.

The definition of the specific research problem is based on the two sub goals
(G1.1) and (G1.2) of this study. It is as following: How to create a tool for
DDPV that is integrated in the developer workflow without suffering
from noise by false-positives?

4.4 Define the objectives of a solution

The objectives of a solution is initially specified based on the current knowledge
about how the final product should look and be like. The objectives is then
used in the evaluation of the developed prototype or artifact, and further refined
based on the findings in the evaluation. This is a continuous process that will
go on as long as the product is under development. The defined objectives of a
solution, its specifications and refinements can be found in the results chapter.

4.5 Design and development

The design and development phase involves the development multiple proto-
types, with both high and low fidelity. To get feedback on the initial idea as
quickly as possible, and then iterate and adjust the product, it is important to
explore and create multiple prototypes with focus on the different dimensions.
This way, the number of regressions will be reduced. Therefore, to iterate

23

quickly, low fidelity prototypes will be created first, before gradually building
more high fidelity prototypes.

The evaluation of the prototypes, why and how the different prototypes were
developed is presented in the result chapter.

4.6 Demonstration

The next logical step after developing a prototype is to demonstrate and test it.
Depending on the prototype created, different forms of demonstration will be
used. For the low fidelity prototypes, interviews and visual presentations will be
used, while for the higher fidelity prototypes functional testing of the developed
prototypes will be executed.

The most important aspect of demonstrating the prototypes, is to try to
create an environment that is as similar as possible to the environment that
the final product will be used in. This way, the feedback will be as accurate as
possible. This also involves getting users (other developers) to test the proto-
types. The user group that is best suited for being informants and testers are
experienced developers that have knowledge about applying and using design
principles.

A description of the demonstration of each of the prototypes is found in the
result chapter.

4.7 Evaluation

In the evaluation phase we will observe and evaluate how well the developed ar-
tifact solves the objectives of a solution. We will compare the artifact with the
objectives of a solution, and use different techniques for evaluation based on the
type of artifact and at which stage in development we are. Evaluation meth-
ods includes qualitative methods and quantitative methods. The qualitative
methods include feedback gathered from having conversations with experienced
developers and through presentation of prototypes. The quantitative methods
include interest measurement and analysis of rule-invocations executing the final
prototype on different code-bases.

Continuous evaluation of the prototypes and the developed artifacts is im-
portant to continuously adjust the product to the users needs. After each evalu-
ation activity, based on how the artifact compares to the objectives of a solution
it is decided if another iteration is required.

24

The results from the evaluations is presented in the result chapter.

4.8 Communication

The last step of the Design science methodology is to communicate the end
result and the developed knowledge about DDPV. The general contribution
and the developed knowledge of improving the maintainability of code through
DDPV is provided through this thesis. The final artifact is available for use and
further development on GitHub[37].

25

26

Chapter 5

Results

In this chapter we will present the results of executing multiple iterations of
product development, following the Design science methodology. The results of
design and development are 4 different prototypes.

In section 5.1 we present the initial objectives of a solution, before giving a
brief overview of the developed prototypes in section 5.2. The prototypes are
described and evaluated more in detail in sections 5.3, 5.4, 5.5 and 5.6. The
prototypes are presented and evaluated in the order the they were created. For
the final prototype with the name Detekt-hint, we have dedicated a separate
section (5.7) for the evaluation, which was evaluated both internally and exter-
nally using the open-source community. A description of the technical solution
of the final prototype is found in section 5.8.

5.1 Initial objectives of a solution

The objectives of a solution was found during multiple iterations of the Design
science methodology. Before each of the prototypes is presented in the next
sections, we will look into the objectives of a solution that were initially specified.
The initial objectives of a solution were based on the current knowledge about
the domain and how the solution should be engineered to best achieve the goals.

The first objective is that the solution should be able to detect violations
of design principles using static code analysis. As discussed in the background,
static code analysis is best suited for this task as we search to improve the source
code itself, and not dynamic quality aspects of the code. The selection of which

27

principles to support is based on three criteria.

1. Principles that are considered most important (i.e principles that will en-
able rules to detect the most major design issues) should be prioritized.

2. Principles that is not targeted in existing tools should be prioritized.

3. Principles that fits static code analysis should be prioritized.

The second objective is that the solution should be designed to reduce noise
from false identifications. This is based on the knowledge that current tools
suffer from false-positives and that we know that the heuristics for DDPV would
not be 100% accurate. By designing the solution to accept and reduce an amount
of noise, design principles could be targeted.

The third objective is that the tool is configurable to fit team preferences
at rule level. We know that developers and teams have their own preferences,
and to fit different usage, the tool should be configurable. It should be possible
to select which rules to enable, and to add rule-specific configuration for the
different rules.

The fourth objective is that the tool should be based on an existing tool
for code analysis or should be easy to integrate with existing tools. This is
important for two reasons. Firstly, basing the tool on an already existing tool
will drastically reduce the effort required in creating a tool for DDPV because
a framework for code analysis already will be provided. Without doing so, it
would not have been feasible within the scope of this thesis. Secondly, getting
users to adopt a new tool is easier if the effort required in start using the tool
is low. Basing the tool on another popular tool will help getting potential users
and help the ease of adoption.

The initial Objectives of a Solution (OS) is summarized below:

(OS1) It detects violations of design principles through a set of rules using code
analysis.

(OS1.1) Most important design principles prioritized.

(OS1.2) Principles that is not targeted in existing tools should be prioritized.

(OS1.3) Design principles that fits static code analysis prioritized.

(OS2) The solution is designed to reduce eventual noise from false identifications.

(OS3) It is configurable. Selection of rules to enable/disable, and possibilities for
configuration of individual rules.

28

(OS4) It can either be included into existing tools or is easy to integrate with
existing tools.

For the individual rules there were also some specific objectives that need
to be satisfied: The rules needs to be valuable, give feedback which is clear and
understandable and should provide suggestions for solutions.

5.2 Prototypes and development

As stated in the design and development section 4.5 low-fidelity prototypes is
created first, before more functional artifacts are developed. Describing the
exact number of iterations and which iteration steps that were executed dur-
ing development is not possible as one continuously evaluates and adjusts the
product under development. However, seeing the development process in a big
picture we can approximately look at 4 iterations in the Design science method-
ology. A visualization of the general process can be seen in figure 5.1.

Figure 5.1: The general process of development - The iterations in the Design
science methodology.

The 4 iterations were focused on 4 different prototypes, with both low and
high fidelity, focusing on the different dimensions. An illustrative comparison
of the 4 prototypes is presented in figure 5.2. As can be seen on the figure,
the development started with low fidelity prototypes, focusing on the different
dimensions, and ended with the development of a high fidelity prototype. One
can see that most of the dimensions were explored with high fidelity, using
different prototypes. This is a positive sign, since exploration of the different
dimensions is an important part of developing knowledge and understanding
how the finished product should be like.

29

(a) First prototype (b) Second prototype

(c) Third prototype (d) Fourth prototype

Figure 5.2: Comparison of the 4 developed prototypes, showing the dimensions
and their fidelity. The fidelity of each dimension is rated internally by the author
on a scale from 0-3, where 3 is maximum of what can be expected from an early
MVP. The purpose of the comparison is solely to illustrate the different focus
of each of the prototypes.

5.3 Initial prototype

Why and how it was created

An initial low resolution prototype was created first for two reasons. Firstly
to see if there was any interest in a tool for DDPV, and secondly, to start

30

the design process of solving (OS2)1. The initial idea proposed a design where
the tool would report design principle violations by posting comments directly
in the PR. The idea was that by having a tool that is executed just before
code review, it will not cause any disturbance in early stages of development.
Reporting issues in the form of comments on PR, any false-positives would be
easy to ignore and would not require any action to get rid of. This seemed like
a good idea knowing that other tools for static code-analysis requires effort in
suppressing false-positives, either by polluting the code-base with annotations
or adding issues to a blacklist or baseline file. In addition, commenting on PR’s
will only add comments to modified/added files, which will reduce the amount
of warnings that will appear.

The prototype can be seen in figure 5.3. As can be seen in figure 5.2, the
initial prototype is only an image, showing the concept. It will therefore have a
low fidelity on the breadth, depth and interactivity dimensions, but has medium
fidelity on the content and visual dimensions.

Demonstration

The initial prototype was posted on the subreddit of Kotlin[32] and SoftwareArchi-
tecture[52] on Reddit. Additionally, the prototype was presented and discussed
with friends.

Evaluation

The general feedback was that there was an interest in a tool like this, and
that it would solve some of the issues with false-positives. It confirmed that the
initial idea focused on finding a solution to (OS2), should be further looked into.
However, some did still point out that reducing the amount of false-positives
still would be one of the most important focus points. Other suggestions for
improvement included:

• Do not claim that the developer is wrong when there can be a lot of false-
positives, instead present it as it might be a violation of a design principle,
and guide the developer to taking the correct decision.

• Identifications and even false-positives could create useful discussions within
the developer team.

1OS2: The solution is designed to reduce eventual noise from false identifications.

31

Figure 5.3: Screenshot of the initial prototype that was presented on social
media and discussed with friends. It shows the Composition over Inheritance
(COI) rule. The rule suggests the use of composition instead of inheritance,
and helps testing if the classes adheres to the LSP. In this case, the classical
Square - Rectangle problem is presented. Square should not be derived from
Rectangle as it would violate the LSP. Square does not functionally behave like
Rectangle as squares by definition have the same width and height. Rectangle
should have two independent methods for changing its size, but clearly these
methods is not appropriate for the Square.

• Focus on removing the amount of false-positives as much as possible and
making the product configurable to fit different needs.

This feedback was only based on discussions with friends and a handful of
comments in the forum threads, together with a fair amount of upvotes on
Reddit. In both Reddit subforums, the post received an amount of upvotes that

32

made the post ”top this week” in under 12 hours. However, the actual value of
this may be limited. Read more about this in the discussion.

For being a low resolution prototype that was created within a couple of
hours, it was successful.

5.4 Vertical prototype

Why and how it was created

The initial prototype proposed more work into creating a tool for detecting de-
sign principle violations, and using automated comments during code-review to
reduce the amount of noise from false-positives. Normally, a horizontal proto-
type is built first, with the intention of getting an idea of which features that
needs to be implemented and the priority of those. In this case a vertical proto-
type, exploring and solving the technical challenges was built first. It was built
before a horizontal prototype for three reasons:

1. The prioritization is somewhat known up front. Being a product focusing
on detection of design principle violations, it is quite natural that the
product should prioritize principles that are not covered by other tools
and that the most significant principles are considered first.

2. Too see if building a tool for DDPV is a feasible task within the scope of
a master thesis.

3. Developers tend to be more interested in technical solutions that is work-
ing than non-interactive prototypes. Getting feedback on the following
horizontal prototype would be easier if actual solutions to technical prob-
lems could be presented.

Before building the prototype an in depth investigation of different ap-
proaches was done. The tool would ideally support multiple languages, but
to limit the scope and because of interest and knowledge about Kotlin and its
ecosystem, it was selected as the language subject for analysis. Several tools
and frameworks was considered to use as the fundament for a tool, including
Ktlint[33] and Code Climate[10], but Detekt[20] was chosen as the best platform
to build on because it was made extensible, and plugins for Detekt was already
existing for the automated PR tool[18], Danger[16]. Therefore, Detekt looked
as a promising alternative for fulfillment of the objectives of a solution described
in 5.1. However, a prototype needed to be built to confirm that assumption.

33

Being an executable jar file, the prototype cannot be presented in this report.
However, the end results of executing it looks much like the initial prototype,
the only difference being that it posts comments on actual PR’s. As can be seen
in figure 5.2 the visual, breadth and content dimensions have similar fidelity as
the initial prototype. Being a vertical prototype, it has higher fidelity on the
depth and interaction dimensions.

Demonstration

The prototype was mainly demonstrated and continuously evaluated during
development to the author. It was also partly presented to the participants at
the presentation that were held for Javabin Trondheim.

Evaluation

Evaluation of the vertical prototype is based on the objectives of a solution. An
evaluation looking at each of the objectives is presented below.

(OS1) Using Detekt as a platform, we are able to write DDPV-rules by analysis
of the Kotlin AST by using the Detekt rule framework and the Jetbrains
Program Structure Interface (PSI). Using the Detekt Application Program
Interface (API) was a highly manageable task due to good documentation.
However, the analysis itself using the Jetbrains PSI API was shown to be
more difficult and time consuming. Not only is it hard to create accurate
heuristics for DDPV, but it involves programming in a complex environ-
ment with a huge API with lack of documentation. In addition, creating
rules for programming languages involves handling a lot of edge-cases that
can take time to cover. Writing test cases for all the different scenarios
ensured the proper handling of edge-cases. As development progressed the
API got more manageable and looking into other platforms or solutions
for analysis were therefore not considered. However, this new knowledge
about the difficulties of rule-development proposed a refinement of (OS1).
The adjusted objective was then as following:

(OS1): The tool should support a limited set of rules using static code
analysis.

Because of being a vertical prototype that only supported 1 rule any eval-
uation of the actual usefulness of the rule were not considered. This was
decided to be the focus of the horizontal prototype.

34

(OS2) By having a Danger integration, violations reported by the tool can be
commented on pull requests, exactly as proposed in the initial prototype.
The noise will therefore be significantly reduced. Code context referring
to actual constructs in code can also be provided to ease the process of
deciding whether an invocation is a true or false-positive. The amount
and impact of false-positives can then be held to a minimum. This design
will facilitate further development that will reduce the noise from false-
positives.

(OS3) The Detekt framework provides configuration options for rules through
the use of a configuration file. The rules can therefore be configured to
fit the developer or teams best. The configuration file can contain custom
configuration of individual rules, (e.g threshold values for rules, and files
excluded from analysis). This facilitates fine grained tuning of each rule.

(OS4) The tool is easy to use with Detekt, as the developed rules for DDPV is
a Detekt rule set. However, to use the rule-set with Danger to support
comments on PR, an integration that requires a lot of additional setup and
configuration is needed. This is not an optimal solution, and approaches
looking to improve this should be considered.

On the plus side, all the tools and plugins that are used are open-source,
making it possible for everyone to adopt the tool.

As a plus, even not being an objective of a solution, Detekt provides pos-
sibility for configuration to fit mainly two developer workflows. It can either
be executed directly whenever the developer wants to using the CLI or Gradle
task, or it can be executed before code-review using the Danger integration.

In general, it was a successful prototype that solves many of the objectives of
a solution. It was a proof of concept and laid the foundations to further devel-
opment. The main takeaways from evaluating the prototype was as following:

• Detekt is a good platform for building such a tool and enables fulfillment
of most objectives for a solution.

• Running the tool on own and others code is a good way of finding possible
bugs and false-positives.

• Further development should focus on a small set of the most important
rules, because they can take a long time to implement. And further eval-
uations of the tool need to address the usefulness of the developed rules.

35

5.5 Horizontal prototype

Why and how it was created

The vertical prototype showed that a limited number of rules have to be sup-
ported. That raised the question of which rules to implement and how they
should support the developer in taking correct design decisions. The horizontal
prototype tried to answer this question. By looking through a lot of princi-
ples, we tried to determine which rules that would be useful, and based on the
feedback from the initial prototype, we wrote the comments in a way that were
providing guidance instead of claiming changes because of violations. Since the
SOLID principles is considered by many to be the most important set of design
principles, and not targeted with other tools, the focus was put on those. We
also wanted to test out if a visual representation of violations of design princi-
ples is preferred or significantly better than a textual representation. Figure 5.5
shows this visual representation. The process ended by creating the horizontal
prototype that included the rules that had the most value.

The horizontal prototype was built by creating sample PR’s in a sample
repository on GitHub, and then commenting on the PR’s with a bot user. Ex-
ample images from the prototype is presented in figure 5.4 and figure 5.5. The
rest of the prototype can be seen in appendix A.1. Compared to the other pro-
totypes in figure 5.2, this prototype is having a focus on the visuals, content
and breadth dimension, while having a low depth and is non-interactive.

Demonstration

Initially, to get structured feedback on the prototype, it was planned to present
the prototype to a group of people using a semi structured interview. To get
informants to the semi-structured interview, a presentation for approximately
20 participants at Javabin2 Trondheim was held. Search for informants also
included asking companies with Kotlin developers, including Bekk and Netlight,
but with limited success. 6 participants signed up for joining the semi-structured
interview, but we were only able to get in touch with 2 of them to actually
join the semi structured interview. The interview followed the semi-structured
interview schema that can be found in the appendix A.2.

Due to the outbreak of Corona Virus Disease 2019 (COVID-19), physical
meetings could not be arranged, and further complicated the issue of contacting

2A user group for persons interested in software development on the Java and Java Virtual
Machine (JVM) platform, and related technologies.

36

and speaking with other developers directly. We were then forced to find other
ways of reaching out to people to gather feedback. The prototype were shown
in multiple slack channels for work, the official Kotlin channel and various other
channels.

37

Figure 5.4: Screenshot of the horizontal prototype showing the ISP rule. It
has detected an empty method, which is a sign of violating the ISP. In this
case the EconomicPrinter implements methods from AllInOnePrinter which
it does not need. A solution would be to define separate interfaces for each of
the responsibilities (e.g Printable, Faxable, Scanable) and let the concrete
implementations of printers implement the interfaces they need.

38

Figure 5.5: Screenshot of the horizontal prototype showing the LCOM rule,
with a visual representation of the lack of cohesion. The figure shows which
fields that are referenced from each of the methods in the class. In this case
all the methods of the class references their own separate field. This indicates
that each of the methods and corresponding fields have separate responsibilities
within the class. This would therefore be an indication of violating the SRP.

Evaluation

The horizontal prototype searched to answer the rule-specific objectives of a
solution: If the rules would be useful, and if the comments are clear and under-
standable, and if they provide good suggestions for solutions to detected design
issues.

In the semi structured interview, each rule were presented and discussed. In
summary the evaluation of each of the rules was:

• COI - Useful rule, but may be impacted by too many false-positives and
false-negatives. Should possibly contain configuration options to exclude
certain classes from analysis.

• OCP - Could be useful, but should further specify whether it is explicit

39

type checking or enum switching which has triggered the invocation in the
comment.

• ISP - Could be a useful rule, but should possibly handle Kotlin ”TODO’S”
specially, or would else cause some false-positives.

• LCOM - Possibly useful. It was found out that visual representation
of violations was showing useful, especially when including refactoring
hints or suggestion for solutions. However, an approach generating images
with refactoring hints would have much higher implementation costs than
providing the same information using a textual representation. It should
therefore not have first priority. More rules should be prioritized instead.

As general feedback, the rules were understandable and provided clear sug-
gestions for solutions. However, it was suggested that reported violations should
include even more context of the code (referring to actual constructs in the code)
to ease the process of deciding if a detection is a true- or false-positive or to sug-
gest fixes to the detected design issues. This resulted in a refinement of (OS2).

(OS2) The solution is designed to reduce eventual noise from false identifica-
tions. In addition, the comments should include code context to ease the process
of deciding if it is a true- or false-positive, or for suggesting fixes to design issues.

There was also a concern related to too few rules implemented, and that
the tool would give limited value because of too few true-positives reported.
Participants also mentioned that using comments in the PR makes it easy to
ignore eventual false-positives. 1 participant were more concerned about false-
positives than the other.

Feedback on the prototype received through other channels than the semi-
structured interview included much of the same as for the initial prototype.
People like the project, and are generally positive. However, few suggestions for
improvements of the developed rules or other design principles to support was
received. Other features not directly related to design principles were proposed,
and is written about in section 6.4.

The schema used for the semi-structured interview, the participants feedback
and images of the prototype can be found in the appendix (A.1, A.2, A.3).

40

5.6 Final prototype

Why and how it was created

The final prototype is a continuation of the work done on the vertical prototype,
supplemented with the findings from the initial and horizontal prototype. One
can consider this an early MVP. A more technical description of the final pro-
totype and the implemented rules is found in section 5.8. It can be beneficial to
read that section first to get a better understanding of the developed solution.

Because the earlier prototypes gave limited amounts of feedback on the ac-
tual value of a tool for DDPV, it was decided that the next step was to de-
velop a functional prototype that would detect actual design issues in code,
and present the findings using comments on PR. Considering (OS1) and (OS2)
the most important for answering the research question, the focus was put on
those. Firstly, the prototype targeted OS1, by creating a set of rules for DDPV,
using the feedback from earlier prototypes. Secondly, the prototype targeted
(OS2), by continuing the work on designing the solution to reduce the noise
from false-identifications. However, due to the outbreak of COVID-19, to facil-
itate evaluation from the open-source community, a focus on (OS4), creating a
solution for easy integration into open-source projects needed to be prioritized.
This unfortunately resulted in less focus on (OS1) and (OS2), due to unexpected
integration problems, further explained in the next section. Therefore, having
limited development time, not all of the received feedback received in earlier
prototypes could be addressed in the final prototype.

The final prototype consists of the same rules as the horizontal prototype,
COI, ISP, LCOM and OCP. Images of the final prototype can be found in A.4.

Demonstration

Through a workshop, where participants analyze their own Kotlin code the fi-
nal prototype was supposed to be evaluated. However, a new approach for
evaluating the prototype had to be considered due to COVID-19 limiting the
possibilities of meeting with other people. It was decided to focus on two types
of evaluation. Evaluations based on feedback from the open-source community,
and from internal analysis and testing. The evaluation from the open-source
community is based on feedback gathered after having implemented the final
prototype as part of the build pipeline in multiple open-source repositories on
GitHub. It was created PR’s and opened issues in multiple repositories includ-
ing, Detekt[20], leakcanary[35], javalin[31], tachiyomi[57] and Tusky[61]. It was

41

merged for testing and used in the Javalin and Detekt repository. Unfortunately,
after merging a limitation with the GitHub action API appeared. Detekt-hint
did not receive write access to pull-requests to the destination repository when
the build pipeline is running on the forked repository. Unfortunately, pull re-
quests from forks is the ’de facto’ way of collaborating on open-source projects
on GitHub. This leaved the Detekt-hint integration almost unusable with no
alternative solutions possible within the scope of this thesis. Possible solutions
is presented in section 6.4. Despite this limitation, it was merged for testing
in the Detekt repository. The limitation made the tool only usable by mem-
bers of the Detekt repository, and not contributors working on their separate
forks. Using comments on PR as a mechanism to reduce the impact of reporting
false-positives could therefore only be somewhat evaluated.

The evaluation will therefore be limited to feedback from a small number
of comments created on PR’s, discussions with programmers from the open-
source community and internal evaluation. The internal evaluation was based
on running Detekt-hint on both known and unknown repositories measuring the
amount of rule invocations and doing analysis of the actual value given by the
rules.

5.7 Evaluation of the final prototype

The evaluation is divided into 5 sections. The first two sections will evaluate the
tool based on the source of the feedback. Section 5.7.1 contains the evaluation
from the open-source community, while section 5.7.2 focuses on the internal
evaluation. Section 5.7.3 will evaluate the use of comments on PR to reduce the
impact of false-positives. Section 5.7.4 will consider all the previous evaluations
and evaluate the tool as a whole. Section 5.7.5 will for the sake of completeness
consider each of the defined OS, and reference to the the other evaluations
mentioned above. In case the OS is not evaluated thoroughly in above sections
it will be evaluated there.

5.7.1 External evaluation

The external evaluation is based on creating issues (tickets) (with requests to
create an integration with Detekt-hint) or PR’s (actual integrations of Detekt-
hint) on Github. Below we will describe the feedback received in the process of
discussing and integrating Detekt-hint into open-source repositories on GitHub.

The maintainer of the Javalin repository was positive for an integration

42

testing out the tool. It lead to the PR containing the integration, to be merged.
It was then the GitHub Token limitation was discovered, which caused the PR
to be reverted short time after. Any feedback from running the tool on the
Javalin repository was therefore not received.

Despite the limitations with the GitHub token, it was merged and used
in the Detekt repository. The tool was executed on a couple of PR’s created
by the maintainer of the Detekt repository. The feedback pointed out a too
high level of noise, as well as suggestions for improving the comments and new
mechanisms for reducing the noise. Some functional limitations and bugs were
also discovered. In general, the feedback proposed that the tool was a too early
prototype for being used without further development.

Having created an issue asking to integrate Detekt-hint on the Leakcanary
project, one contributor was interested in testing out the tool on a separate fork.
The owner of the repository shortly after wrote that he was more conservative
than most when it comes to checks, and did not accept any false-positives. The
tool were therefore not considered for integration.

The maintainer of Tusky[61] ran the tool on the code-base using the CLI
and did not find the tool particularly useful, and were generally concerned that
the tool would generate too much noise. Further communication with the main-
tainer of Tusky revealed that they currently did not have any linter set up for
their build pipeline, and that a tool discovering possible bugs and crashes would
be prioritized first. Later, a tool looking for design principle violations could be
looked into.

The maintainer of openhab-android[47] read through a report from Detekt-
hint finding issues on their master branch. He was also of the impression that
the tool was generating too many false-positives. However, he noted that read-
ing through the report, he found some issues that should be fixed. He especially
mentioned an invocation of the OCP rule and wondered how the code should
be modified to adhere to the OCP. We then explained and came up with a
solution on what changes needed to be done. Then, a third contributor to the
project mentioned that our solution may solve the problem with not adhering to
OCP, but would introduce another problem - not separating the model from the
presentation. Therefore, in this case one had to consider a trade-off between
adhering to the OCP or keeping the model separated from the presentation.
In this case, an agreement on model and presentation separation was consid-
ered more important. One could therefore consider this OCP-rule invocation a
false-positive. However, there were three positive outcomes of this discussion.
Firstly, the false-positive spawned a new architectural design discussion, which
contributed to the observation of another design issue in the system. Secondly,

43

the discussion contributed to knowledge sharing and learning for the involved
participants. Thirdly, this discussion was useful for the continued development
of Detekt-hint, since model and presentation separation was not considered a
conflicting principle with the OCP. The false-positives could therefore lead to
new insights that can be utilized for developing more accurate rules.

Generally, it seems like the tool generates too many false-positives, making
most people concerned that the tool would generate too much noise. However,
due to the limitations with the integration most of the received feedback was
based on running the tool on the code-base using the CLI. This is not how the
tool is supposed to work, and will give the impression that the tool generates
more noise than it actually will for three reasons. First, using the CLI will de-
feat Detekt-hint’s purpose since it does not make use of the GitHub integration.
Secondly, running the tool directly on the code-base without spending time
configuring it, may increase the rate of invocations. Thirdly, reading through
a report generated by the CLI, the rules that generates most of the noise may
”destroy” the impression of the tool, making the more accurate rules less sig-
nificant.

More testing of actual integrations of Detekt-hint should have been done
to give better insights in the value of the tool. However, the results from the
evaluation of the tool using the open-source community are quite clear. More
development on reducing the noise is needed, together with a focus on resolving
the discovered bugs and limitations.

5.7.2 Internal evaluation

Rule invocations

Six popular open-source projects including three Android apps were selected
to evaluate the results of running Detekt-hint on the code-base, using the CLI.
The rationale for selecting Android apps were that the author have some insights
in the architecture of Android systems, and therefore true design issues could
easier be verified. The other three open-source projects are the projects were
the Detekt-hint integration has been discussed or opened PR to.

Following is a description of the open-source Kotlin projects that were se-
lected for analysis: Detekt is a linter which Detekt-hint is an plugin to. Ktor
is an asynchronous web framework for Kotlin. Tachiyomi is an open-source
manga reader for Android. Iosched is an Android app from google, that is
supposed to show best practices in Android development. It is believed that
this app is well architecturally well designed and does not contain much de-

44

sign issues. Tusky is an Android client for the microblogging server Mastodon.
Javalin is a Java and Kotlin web framework.

The analysis were run with all rules enabled, default configuration and with
a LCOM threshold of 0.8. To be able to compare the results from analyzing
repositories for violation of design principles, any effort in specific configuration
of individual rules were not done. This may result with a slightly higher rate
of invocations. For example Detekt will get a higher rate of invocations for the
COI because it consists of a high number of rules, that all inherits from a base
Rule class. Configuring the rule to ignoring the Rule class from this rule would
have lowered the amount of invocations significantly. The results from running
Detekt-hint on the aforementioned repositories is presented in the chart below.
It is important to notice that even the high number of invocations it will not
reflect the actual number of comments that will appear on a PR. Comments on
PR will only appear on the added or modified files.

Figure 5.6: Number of rule invocations per 1000 Logical Lines Of Code (LLOC)
for each rule, running Detekt-hint using the CLI on different repositories.

Evaluation of rules

Building on the invocations presented in the above chart, the accuracy of the tool
is based on the rate of false-positives combined with the rate of false-negatives.
Unfortunately, due to the nature of design principles, it is hard to know if the
invocations are true or false-positives, and if there is any false-negatives with-
out extensive knowledge about the code-base and the domain. The following

45

evaluation of the importance and the accuracy of the rules are therefore based
on simple inspections of the reported issues, without any extensive insight. The
importance and accuracy of the rules is therefore rated using only three lev-
els, low, medium and high. Note that the evaluation of the rules is based on
the accuracy and importance of the rules alone, and is not considering other
functional limitations that exist in the tool. Therefore, a rule itself may be
considered useful, even if it is not in the current state of the tool.

• COI: Its importance is considered high as misusing inheritance will lead
to a design with lower flexibility. The rate of false-positives is high due
to reporting all occurrences of inheritance that is not from third party
packages. The impact of reporting a false-positive is low due to good
comments that describes the inheritance relationship and the public API
of the superclass. Together with a medium rate of false-negatives caused
by not reporting issues with inheritance from third party packages, the
rule has low accuracy. With an average rate of 6.23 invocations per 1000
LLOC, and most invocations turning out to be false-positives, the rule has
room for improvement.

• ISP: Its importance is considered high as adhering to it will help us reduce
the side effects in the application and help us adhere to the SRP. The im-
pact of reporting a false-positive is low. The rate of false-positives is low.
The amount of false-negatives is high since this principle can be broken by
adding new methods to interfaces, without creating empty implementa-
tions or implementations that only throws exceptions. This gives the rule
a medium accuracy. With an average rate of 2.32 invocations per 1000
LLOC, and most invocations being true-positives, the rule is considered
useful.

• OCP: Its importance is considered high as it will help prevent ”Shotgun
surgery”, altering a lot of code inside multiple classes/modules when mod-
ifying functionality. The impact of reporting a false-positive is considered
low as determining whether new classes or enum entries would be intro-
duced should be simple with some insight into the domain. The rate of
false-positives is medium, and the rate of false-negatives is medium as this
principle can be violated without introducing switching on enums/classes.
This is giving the rule a medium accuracy. With an average rate of 1.51
invocations per 1000 LLOC the rule is considered useful.

• LCOM: Its importance is considered medium. Due to the need of finding

46

out what is causing the cohesion to be low, the impact of reporting a false-
positive is medium. Because it is controlled by the threshold value there
are no false-positives and false-negatives giving the rule a high accuracy.
However, the calculation of the LCOM value got room for improvement,
due to edge cases that makes classes appear non-cohesive when they in
reality are cohesive. For example it is observed that sub-classes overrid-
ing properties and methods in the parent class will get a high value of
LCOM because inside the subclass, the properties are not referenced di-
rectly. With an average rate of 3.09 invocations per 1000 LLOC, the rule
is considered somewhat useful, but needs further tuning and improvement
on suggesting refactoring suggestions.

5.7.3 Evaluation of using comments on PR to reduce im-
pact of reporting false-positives

In general, automatically adding comments to PR’s works as a good way of
exposing possible design flaws late in the development process. With informa-
tive comments that is having references to the code, possible false-positives are
sorted out in a matter of seconds, and easily closed with the ”resolve conversa-
tion” option. Invocation of most rules ends with informative comments, with
the exception of the LCOM rule that only presents the LCOM value. However,
giving a lot of context and suggestion for solutions may not always be necessary,
especially after getting known with the tool. Ways of providing short succinct
comments while still having the possibility of reading more about possible solu-
tions should be looked into.

Compared to traditional linters, that would need suppression or baseline files
to ignore false-positives, Detekt-hint requires no change in the source code. A
false-positive requires no other further actions than pressing ”resolve conversa-
tion” or simply ignoring the comment.

Another interesting insight is that if determining whether the reported issue
is a true or false-positive takes more than a few seconds it is likely that the
developer did not consider the design principle during development. In that
case the comment serves as a reminder and would be good for learning purposes
that is constructive for further development. On the other hand, knowing that
repetitive manual inspection is prone to human-failure, too many false-positives
will make the developers skip the comments.

Unfortunately, the integration using comments on PR is not problem free.
Due to a limitation in Danger, the real rate of invocations per PR is higher
than what was presented in section 5.7.2. This is because all design issues

47

found within a modified or added file will be added as comments to the pr,
including design issues that is from lines in the analyzed file that is not present
in the diff. This needs to be resolved to reduce the rate of invocations to what
is presented in figure 5.6.

5.7.4 Overall evaluation

Using the numbers from the analysis of rule invocations in section 5.7.2, a pull
request with 500 modified LLOC, having four rules enabled, with no specific
configuration, will on average generate 6.6 comments on each PR. This is not
an awful lot, but considering only 4 rules, with the possibility of adding many
more, it is considered too much and would lead to developers ignoring the com-
ments. The results from the external evaluation in the open-source community
confirms this. The way we see it there are mainly 4 problems with the current
implementation that needs to be resolved for the tool to be useful. They are
essentially refinements to (OS1), (OS2) and (OS3).

The first three of the problems is related to what we would like to define as
”mechanisms for reducing noise”. They are mechanisms that is supporting the
lack of accuracy of the developed rules.

1. The final artifact should only trigger comments on changed lines of code.
Currently all design issues found within a file will be added as comments
to the PR, including design issues that is from lines in the file that does
not appear changed in the PR. Only changed lines of code should get com-
ments. Due to a limitation in Danger this was not possible to implement
for this prototype.

2. Detekt-hint reports the same design issues for the same files when non-
functional changes are committed. For example changes related to for-
matting or renaming will trigger rule-invocations, while the semantics are
unchanged. A mechanism that only would trigger comments on PR if the
semantics are changed would have reduced the amount of noise.

3. No fine grained configuration of the rules. Currently, the configuration
options for each of the rules are limited and does only include an option
to exclude files from analysis. For example for the OCP and COI rule
one could have created a configuration option to exclude a list of classes
from analysis. This would however put a big strain on developers to
spend a lot of time fine tuning the configuration. By introducing a way
of providing configuration to the bot, the effort required for fine-tuned

48

configuration will be much lower. The tool would then get configured
over time. For example by replying to the bot or clicking pre-made reply-
options this task of configuration could be semi-automated. This way we
would reduce the total rate of false-positives. Analysis on the COI rule on
the Detekt repository, suggests that ignoring the superclass Rule (always
allowing subclassing this class) one can remove 140 out of 291 invocations.
For OCP and ISP similar possibilities exist, and would further reduce the
number of invocations. However, one needs to ensure that such capabilities
are not misused to silence Detekt-hint, defeating the tools purpose.

4. Inaccurate rules. Most rules should be improved with better heuristics for
DDPV to reduce the amount of false-invocations.

All in all, even with the limitations that made integration and testing using
the open-source community difficult, the final prototype was successful. It re-
vealed many existing problems, bugs and limitations that have given insights in
what needs to be resolved in future prototypes.

5.7.5 Evaluation of the objectives of a solution

The final prototype being an early functional prototype, can be evaluated against
all of the OS presented in section 4.4. The evaluation of all the objectives for
the final prototype is mainly covered in the above sections (5.7.1, 5.7.2, 5.7.3
and 5.7.4). For the sake of completeness, and to make sure that each OS is
evaluated, we will look at each OS, and reference to the evaluation presented
above.

(OS1) Building on the evaluation of (OS1) presented in section 5.4, the final
prototype contains 4 rules. The SOLID principles were considered the
most widely known and used. Therefore, four rules adapted to support
the detection of SRP, LSP, OCP and ISP violations were created. An
evaluation of the specific rules is presented in section 5.7.2, and feedback
on the rules from the open-source community is targeted in section 5.7.1.

(OS2) The evaluation of how good the design is for reducing the noise from
false-positives is based on the mechanisms that support the rules with
low accuracy. See section 5.7.3 for evaluation of using comments on PR
to reduce noise, and section 5.7.4 for reading about more measures that
could have been taken to support the rules with low accuracy.

49

(OS3) The tool is configurable at the rule level, and can be enabled/disabled
individually. There is also an option to exclude a list of files from analysis
using a globing pattern. As described in 5.7.2, more rule-specific con-
figuration options should be introduced to further reduce the amount of
noise. In addition to being configurable at the rule level, the tool can also
be executed using the CLI, making it fit other developer workflows.

(OS4) The final prototype can be added do any project on GitHub using GitHub
Workflows, and only requires two files for being set up. This includes
one configuration file for configuration of the tool, and one workflow file
that will load and execute the developed GitHub Action. This is a major
improvement of what was done in the vertical prototype. The tool is
therefore easy to adopt, and to run as part of CI.

5.8 Technical solution

To better understand the developed tool, its strength and weaknesses, implica-
tions and limitations a technical description of the tool is provided. Following
is a description of the different components, ending with a description of how
the different components interact to provide the ending result.

5.8.1 Detekt

Detekt is a static analysis tool for Kotlin. Detekt is comprised of a set of rules for
analysis of Kotlin source code. Part of Detekt is also the Detekt-api, which gives
access to a framework for creating rules, configuring rules, and for analyzing the
source code. Under the hood it gives us access to IntelliJ PSI for code analysis.
The PSI is built on top of the AST provided by the Kotlin compiler, and enables
modification, querying and navigation of the underlying AST. Detekt is made
extensible, and plugins (new rule-sets) can easily be added. It is easily invoked
using the CLI interface.

Figure 5.7 shows a simplified example PSI that Detekt-hint would use to
find violations of ISP. The analysis would simply look in the PSI for classes
that implement interfaces, and see if the overridden methods of that interface
are empty or only throws exceptions.

When Detekt is executed, it looks at all the rule-sets (and the configuration
of them) and does analysis of the source code. When issues are found, the file
and line number is noted, together with the comment to be added, and added
to a report, which is the final output of the program.

50

Figure 5.7: Simplified version of a sample PSI showing a sign of violating the
ISP.

5.8.2 Detekt-hint rule set

The Detekt-hint rule set is a plugin to Detekt, and contains the implemented
rules for DDPV. The final artifact consists of four rules. The rules are described
briefly below.

• COI (Liskov substitution). It promotes the use of composition instead of
inheritance, since composition often allows for more flexible design [13].
The rule will fire when inheritance is introduced, and help test for Liskov
substitution, as presented in [12]. The rule will not fire if you derive from

51

a class that exists in a third party package. This will reduce the amount
of invocations significantly since some frameworks or libraries forces the
use of inheritance.

• Lack of Cohesion Of Methods (LCOM). It promotes creating classes with
high cohesion. The rule will detect low cohesion through a calculated
metric. Low cohesion is often a sign of SRP violation, and will prevent
”Shotgun surgery” [34]. LCOM for a class will range between 0 and 1,
with 0 being totally cohesive and 1 being totally non-cohesive. The metric
is calculated using this definition taken from [34]: ”For each property in
the class, you count the methods that reference it, and then you add all
of those up across all properties. You then divide that by the count of
methods times the count of properties, and you subtract the result from
one”.

• Interface Segregation Principle (ISP). It helps with reducing side-effects
in the application and helps us adhere to the SRP [27]. The rule looks for
classes that implement methods it does not need, either by finding empty
methods or methods that only throws exceptions.

• Open-Closed-Principle (OCP). Promotes the use of abstractions to ex-
tend the functionality instead of modifying existing code to implement
new behavior. This will help to reduce unwanted behavior (bugs), and
prevent ”Shotgun surgery” in existing code when new behavior or fea-
tures are added. Violations of this principle is often spotted with long
if/else chains, switching or by using abstract classes, but is checking for
concrete implementations to control flow[55]. The rule will look for checks
of concrete implementations and switching on enums inside Kotlin when

constructs. Kotlin when constructs is the more powerful equivalent of
Java’s switch statement.

5.8.3 Danger

Danger is a system which is created for the purpose of automatically adding
comments to PR’s. It provides an easy to use API for extracting the required
information from Git, and provides methods for commenting on PR’s, using
a bot. It is executed in the CI environment on every commit to PR’s that is
created. It will therefore remove the comments when the issues are resolved, to
reflect the current state of the PR.

52

Figure 5.8: The overall execution flow and the components of the developed
solution.

5.8.4 GitHub Actions and the execution flow

GitHub Actions is a tool created by GitHub for automating software workflows,
including CI/Continous Delivery (CD). A custom GitHub Action workflow is
created for Detekt-hint. When a PR is created or updated this workflow will
executes the Detekt-CLI together with the Detekt-hint rule set. This will gen-
erate the report containing all the comments to be added on the PR. Danger is
then executed and picks up the report with the comments to be added. It will
then add a comment on the PR for every comment in the file. A diagram of
how everything interacts can be seen in figure 5.8.

53

54

Chapter 6

Discussion, further work
and conclusion

In this chapter we will answer the research questions and give our interpreta-
tions, before discussing the impact of our work, its limitations and some rec-
ommendations for future research and development. The chapter ends with a
conclusion of the study.

6.1 Answering the research question

The research question was as following: How to create a tool for DDPV
that is integrated in the developer workflow without suffering from
noise by false-positives? The results tell us that by extending a tool for static
code analysis, and integrating it with another tool adding comments on PR -
a tool for DDPV can be created. The two identified requirements with utmost
importance when developing a tool for DDPV is as following. First, it needs to
have as accurate rules as possible for DDPV. This requires extensive insight into
design principles and the architecture and design of software systems. Secondly,
for supporting the rules, the integration adding comments to the PR needs
additional features and mechanisms for reducing the impact and the amount
of false-invocations. Depending on the success of implementing the additional
features and mechanisms mentioned in section 5.7.4, the implemented rules for
DDPV may fit or not into the developed solution. The rules with high or
medium accuracy, will most probably suit the approach commenting directly

55

on PR’s. For the rules where the amount of noise cannot be reduced to an
acceptable amount, another less obtrusive approach is suggested in section 6.4.

Most developed rules were created to support the detection of indications
that a design principle was violated. One may therefore question if DDPV was
actually achieved. The rules did not target the design principles directly due to
lack of accurate heuristics. Even when targeting indications of design principle
violations, the rate of false-positives was high. This brings up the question if
creating a successful tool for directly targeting violations of design principles is
feasible. It is unsure if we ever will be able to develop accurate heuristics for
directly detecting violations of design principles. That however, does not mean
that tools should not support indirect detection of design principle violations.
With the developed tool we show that indirect detection of design principle
violations is possible, and could be useful.

6.2 Impact

At current state, the direct impact of the tool are minor. It serves as a proof
of concept of a tool that is able to detect some indications of violation of de-
sign principles, and that handles the reporting of false-positives in a new way.
However, the development of the tool lead to the identification of two central
requirements for creating a tool for DDPV. The identification of these require-
ments would be useful for further development. By solving the most major
limitations, the tool can be useful in teams consisting of developers not famil-
iar with the design principles. As seen in the evaluation, it may contribute to
design discussions and learning within the team.

With continued development, adding more rules, improving the accuracy
of the rules and implementing more mechanisms for reduction of noise, the
tool could potentially have a big impact on the development of maintainable
software. It could contribute to an increase in internal quality of developed
software, reducing time and development cost. This new approach automatically
adding comments to the PR, could enable the development of rules for code-
analysis with lower accuracy than what is traditionally accepted. This is not
limited to design principles, but may also include the development of rules in
other domains. For example for the detection of architectural and design-anti
patterns.

56

6.3 Limitations

At current state the tool have its limitations. A description of what the results
cannot tell us is, and what have limited the results is important to include. By
knowing the limitations of the project, one can more accurately decide whether
the results are satisfying given the prerequisites, and whether the results could
have been better with other prerequisites.

Functional limitations

First, a solution to the limitation related to GitHub permissions needs to be
resolved. This is a purely functional requirement that needs to be resolved
for the tool to be fully integrated into open-source workflows. This limita-
tion severely impacted the evaluation-phase and made the integration of the
final prototype (which is the key innovative product) untestable by contributors
forking the repositories. This limitation were discovered too late, and multiple
attempts at possible solutions did not lead to any solutions. Ideally, the in-
tegration problems should have been discovered in the process of creating the
vertical prototype. Because of this limitation, the tool was mostly evaluated by
inspection of generated reports analyzing the code-base, giving the impression
that the false-positive rate was much higher than would have been reflected in
actual PR’s. The results from this evaluation are therefore not as convincing
and conclusive as they should have been.

Secondly as previously mentioned, feedback from experienced developers in
the open-source community indicated problems related to the tool generating
too much noise. The internal evaluation, looking at the number of invocations
and analysis of the individual rules supports this finding. Because of this focus
on false-positives, the positive impact of the true-positives has received little
focus in the evaluation.

Limitations of the evaluation

During all the phases of development, many attempts at gathering informants
have been done. It has been hard to find experienced developers in Kotlin, that
have both the time and will to assist, without getting any benefits. Attempts in-
clude advertisements on social media, creating back-links to the GitHub project
in multiple GitHub repositories, presenting prototypes at developer meetings,
speaking with different companies doing Kotlin development and circulating re-
quests to colleagues in various channels and in open-source communities. The

57

lack of informants have impacted the evaluation and the development of the
tool. Given the high requirements for insights into design principles, and the
development of heuristics for detecting the violation of them, the lack of infor-
mants have affected the quality of developed rules and the evaluation of them.
Also, evaluation activities that were initially planned (workshop) could not be
completed. The evaluation of the prototypes were therefore mainly based on a
few peoples input and perspective, and is therefore a big limitation. The evalu-
ations were also mostly informal, and spawned good discussions about DDPV.
However, more formal and structured evaluations would have been a good ad-
dition to get more quantitative results which could complement the informal
evaluation.

Limitation of author and methodical choices

There were some limitations related to the knowledge of the author, and the
methodical choices that were taken during development. As the author only
have limited experience on design principles and had limited amount of resources
to get insights into heuristics for DDPV from informants, the results may be
showing a rule set with a lower accuracy than what would have been possible.
Also, the development phase included a trade-off between focusing on creating
enough rules for the tool to provide any value and the accuracy and features for
reducing noise. Creating a set of rules became more important, due to a belief
that it would be hard to evaluate the tool having only a single rule. In retrospect,
spending more effort on experimenting with features reducing generated noise,
instead of implementing multiple rules, would have been beneficial for reaching
the aims of the research. Also, in hindsight it appeared that the author had an
assumption that the more important the rule or design principle is, a higher rate
of noise could be tolerated. The results from the evaluation show that this rate
of accepted noise was lower than what was initially expected by the author. This
may also have contributed to a focus on implementing rules instead of focusing
on experimenting on new features for reducing the noise.

Another limitation was that the early prototypes was focused around the
idea of automatically adding comments to pull-requests. The challenge regard-
ing false-positives were presented, but any numbers on its accuracy were not
available at that point and may have given the impression that the tool would
be more accurate than it actually was. This may have given false-expectations,
making many people overly positive to such a tool. Especially targeting the hor-
izontal prototype, more of its width and content dimensions should have been
prototyped to better demonstrate the impact of false-positives. It should have

58

included samples that demonstrates the false-positives as well as true-positives.
Then, a more realistic view of the tool would have been presented.

6.4 Future work

As presented above, for the tool to provide any value there are some further
research and development that is needed. We will present a list of possible
research, features and enhancements that we consider the most important for
the success of this tool.

• False-positives and false-negatives are the two biggest opponents of creat-
ing a successful tool. Therefore more research on accurate heuristics for
DDPV is suggested. An approach looking into combining data-sources e.g
git history and/or dynamic-software metrics in addition to static analysis
of source code, could give more accurate results.

• Case study testing the tool, looking for patterns in use over time and
receiving structured and rule-specific feedback. Possible effects on team
design decisions and discussions.

Development possibilities

There are mainly two ways of continuing the work on the tool, either by improv-
ing the current functionality or by extending it with new functionality. First,
some possible solutions to the GitHub Actions limitation is presented. Then,
some enhancements and possible new features are presented.

Possible solutions to GitHub Actions limitations

To understand the limitation that was found one needs to understand how PR’s
works across forks on GitHub. Forking is the process of creating a copy of
another repository to enable independent development on it. When creating a
fork we will define (A) as the original repository, and (B) as the forked repos-
itory which is copy of (A). When a user have their own fork (B) of another
repository (A), build pipelines caused by pull requests to the (A) runs on the
forked repository (B). Because secrets/tokens (needed to use the GitHub API)
private to a repository (A) are not available to forks (B), one needs to use the
GITHUB TOKEN provided by GitHub for authentication against the GitHub
API. Unfortunately, this token has limited permissions[6]. It does not have

59

write access to pull requests against (A) when running on a forked repository.
Pull requests against (A) when running on the forked repository (B) will there-
fore not be able to write comments on the PR. Detekt-hint will therefore not
be executed for contributors of (A), working on their separate forks. Possible
solutions to this limitation are:

• A work around using a cron job that runs on the PR destination repository.
A demo is provided by Yuri Astrakhan [5].

• Create an integration working with another CI provider like Travis or
CircleCI.

• A GitHub app that could be installed on the repository. This would
require a backend service and could be a good solution going forward and
extending the tool with the more involved features presented below.

Enhancement & new features

The usefulness of the tool has mainly been evaluated on the basis of its accuracy.
In addition to accuracy, there are other properties that also might be important
for a tool to succeed, and that could be improved and enhanced.

• The transparency of the tool. If we know how the tool works, we may
tolerate its faults. By opening up the internals of the tool, not treating
the tool as a ”magic black box”, more noise or faults could be accepted.

• The obtrusiveness of the tool. For the inaccurate rules or design principles
that is hard to detect a new approach that makes the developer in control
is suggested. For example for the COI rule, which is considered the most
inaccurate, the IDE could show the hints when hovering over class-names.
This is sketched in figure 6.1. This way, the user can get hints on possible
design principle violations when the user wants it, making the user in
control of when the comments should appear. Such a tool will be less
obtrusive.

One obvious entry point of enhancing the current tool is to enhance the
existing rule set, either by enhancing existing rules, or implementing new rules.
Some enhancements to the existing rules have been presented in the evaluation
of the rules in section 5.7.2. Following are some new rules and enhancements
that were considered during development. It was a focus on finding rules that

60

Figure 6.1: Hovering over the class will present hints on inaccurate rules in an
unobtrusive way, directly in the IDE. Shifts the focus from bot-invocation to
user invocation.

were not targeted in other tools. To the best of the authors knowledge, the
below rules is not found in other tools.

• Improving the comments that is posted on the PR, giving more in depth
suggestions or alternative code changes. Refactoring suggestions and rea-
soning for required changes.

• Command/Query separation principle applied to methods. To promote
using methods that either has side effects, or that returns values - not
both.

• Notify whenever a new enum is created. Misuse of enums is a common
design issue.

Another entry point for enhancing the tool, which is considered more impor-
tant is introducing new mechanisms for reducing the amount of noise. A list of
enhancements that is considered the most important was presented in section
5.7.4.

As new enhancements and mechanisms for reducing the noise is introduced
the existing rules needs to be reconsidered. For many of the rules a trade-off
between rate of false-positives and the rate of false-negatives have been done
in favor of the false-positives. This trade-off must be considered together with
the mechanisms for reduction of noise. For example for the ISP rule, the rate
of false-positives have been limited by only invoking the rule when empty or
methods that only throws exceptions is found. However, this principle can also
be broken by adding a method to an interface (interface pollution), without
creating any empty implementations. To reduce the rate of false-negatives to
zero, one could have invoked the rule every time a new method was added to
any interface. This however, would drastically increase the number of false-
positives. A decision on reducing the rate of false-positives by only looking for

61

empty methods or methods that only throws exceptions was therefore made.
However, with new mechanisms for reducing the noise, such trade-offs should
be reconsidered.

As a last note, the tool is not limited to just targeting design principles.
Rules can be created to support the detection of architectural and design-anti
patterns, anti-idiomatic code, or violations of best practices. Another direction
for the tool could be as a semi-smart ”checklist”, reminding developers of double
checking aspects of source code that is easily forgotten. For example adding PR
comments whenever a new file is added or a file is moved, ensuring proper file
organization. Or adding comments to ensure that the author of the PR left the
code-base cleaner than the developer found it - following the Boy Scout Rule
[60].

6.5 Conclusion

This research aimed to answer how one can create a tool for DDPV that is
integrated in the developer workflow without suffering from the noise by false-
positives. By following the Design science methodology, multiple iterations of
product development was carried out, and resulted in multiple prototypes and
a early MVP, using comments on PR’s to report possible design issues. The
MVP was evaluated internally and using the open-source community.

The results show that using automated comments on PR to inform the de-
veloper about possible design issues will reduce the noise from false-positives
significantly. This will enable the development of rules for DDPV with lower
requirements on accuracy than what is traditionally accepted. However, the dif-
ficulty of DDPV creates such big amount of false-positives that further develop-
ment on mechanisms for reducing the noise, and research on accurate heuristics
for DDPV is needed.

Initially, it was assumed that increasing the importance of the executed
analysis would increase the tolerance for noise. This research shows that the
importance of executed analysis will not increase the tolerance for noise drasti-
cally. Therefore, when developing a tool for DDPV the reduction of noise is of
greatest importance.

To better understand the implications of a tool for DDPV, continued re-
search on accurate heuristics and development of supporting mechanisms for
reducing the amount of noise is suggested. If successful, a new category of tools
supporting the development of maintainable code is possible. This new cate-
gory of tools, will not only be able to target design principles, but also support

62

the development of rules in other domains where 100% accuracy could not be
achieved. Examples include higher level analysis, including architectural and
design anti-patterns detection, or lower level analysis supporting best practices.

6.6 Acknowledgments

I would firstly like to thank my supervisor, associate professor Hallvard Træt-
teberg for his expert advice and dedication during the development and the
writing of this masters thesis. Especially, his advice and insights on the topics
of academical writing and software development has been useful, together with
his efforts in helping out with getting in touch with possible informants.

Thanks to JavaBin Trondheim and the participants that were present and
gave feedback during the presentation of the prototype. Also, thanks to the
participants of the semi-structured interview and the contributors of the open-
source projects where Detekt-hint was integrated and tested. Lastly, i would
like to thank Eirik Vale Aase for his dedication and for being an active sparring
partner during the development of this masters thesis.

63

Bibliography

[1] Glover A. and Archer M. Ten Reasons Why You Fix Bugs As Soon As You
Find Them. (Accessed on 03/18/2020). url: https://www.ministryoftesting.
com/dojo/lessons/ten-reasons-why-you-fix-bugs-as-soon-as-

you-find-them.

[2] Adapter pattern - Wikipedia. (Accessed on 6/10/2020). url: https://en.
wikipedia.org/wiki/Adapter_pattern.

[3] Architectural pattern - Wikipedia. (Accessed on 06/09/2020). url: https:
//en.wikipedia.org/wiki/Architectural_pattern.

[4] ArchUnit. (Accessed on 6/10/2020). url: https://www.archunit.org/.

[5] Y. Astrakhan. Github Actions Workaround. (Accessed on 05/11/2020).
url: https://github.com/nyurik/auto_pr_comments_from_forks.

[6] Authenticating with the GITHUB TOKEN. (Accessed on 06/10/2020).
url: https://help.github.com/en/actions/configuring- and-

managing-workflows/authenticating-with-the-github_token.

[7] Camel case - Wikipedia. (Accessed on 6/10/2020). url: https://en.

wikipedia.org/wiki/Camel_case.

[8] Circular dependency - Wikipedia. (Accessed on 6/10/2020). url: https:
//en.wikipedia.org/wiki/Circular_dependency.

[9] Code refactoring - Wikipedia. (Accessed on 6/10/2020). url: https://
en.wikipedia.org/wiki/Code_refactoring.

[10] CodeClimate. (Accessed on 03/18/2020). url: https://codeclimate.
com/quality/.

[11] CodeMR. (Accessed on 03/03/2020). url: https://www.codemr.co.uk/
features/.

64

https://www.ministryoftesting.com/dojo/lessons/ten-reasons-why-you-fix-bugs-as-soon-as-you-find-them
https://www.ministryoftesting.com/dojo/lessons/ten-reasons-why-you-fix-bugs-as-soon-as-you-find-them
https://www.ministryoftesting.com/dojo/lessons/ten-reasons-why-you-fix-bugs-as-soon-as-you-find-them
https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://www.archunit.org/
https://github.com/nyurik/auto_pr_comments_from_forks
https://help.github.com/en/actions/configuring-and-managing-workflows/authenticating-with-the-github_token
https://help.github.com/en/actions/configuring-and-managing-workflows/authenticating-with-the-github_token
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Code_refactoring
https://codeclimate.com/quality/
https://codeclimate.com/quality/
https://www.codemr.co.uk/features/
https://www.codemr.co.uk/features/

[12] Composition over inheritance - StackOverflow. (Accessed on 03/20/2020).
url: https://stackoverflow.com/questions/49002/prefer-composition-
over-inheritance.

[13] Composition over inheritance - Wikipedia. (Accessed on 06/07/2020). url:
https://en.wikipedia.org/wiki/Composition_over_inheritance.

[14] Coupling - Wikipedia. (Accessed on 6/10/2020). url: https://en.wikipedia.
org/wiki/Coupling_(computer_programming).

[15] Cyclomatic complexity - Wikipedia. (Accessed on 6/10/2020). url: https:
//en.wikipedia.org/wiki/Cyclomatic_complexity.

[16] Danger. (Accessed on 03/18/2020). url: https://danger.systems/

ruby/.

[17] danger-eslint. (Accessed on 03/18/2020). url: https://github.com/

leonhartX/danger-eslint.

[18] danger-kotlin detekt. (Accessed on 03/18/2020). url: https://github.
com/NFesquet/danger- kotlin_detekt/tree/master/lib/kotlin_

detekt.

[19] Dependency inversion principle - Wikipedia. (Accessed on 02/26/2020).
url: https : / / en . wikipedia . org / wiki / Dependency _ inversion _

principle.

[20] Detekt. (Accessed on 04/30/2020). url: https://github.com/detekt/
detekt.

[21] ESLint. (Accessed on 03/18/2020). url: https://eslint.org/.

[22] Extensibility - Wikipedia. (Accessed on 6/10/2020). url: https://en.
wikipedia.org/wiki/Extensibility.

[23] GitHub. (Accessed on 03/18/2020). url: https://github.com/.

[24] GitHub - Wikipedia. (Accessed on 03/18/2020). url: https://en.wikipedia.
org/wiki/GitHub.

[25] God object - Wikipedia. (Accessed on 6/10/2020). url: https://en.

wikipedia.org/wiki/God_object.

[26] IntelliJ IDEA. (Accessed on 03/03/2020). url: https://www.jetbrains.
com/idea/.

[27] Interface Segregation Principle - Violations. (Accessed on 06/02/2020).
url: https://reflectoring.io/interface-segregation-principle/.

65

https://stackoverflow.com/questions/49002/prefer-composition-over-inheritance
https://stackoverflow.com/questions/49002/prefer-composition-over-inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://danger.systems/ruby/
https://danger.systems/ruby/
https://github.com/leonhartX/danger-eslint
https://github.com/leonhartX/danger-eslint
https://github.com/NFesquet/danger-kotlin_detekt/tree/master/lib/kotlin_detekt
https://github.com/NFesquet/danger-kotlin_detekt/tree/master/lib/kotlin_detekt
https://github.com/NFesquet/danger-kotlin_detekt/tree/master/lib/kotlin_detekt
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://github.com/detekt/detekt
https://github.com/detekt/detekt
https://eslint.org/
https://en.wikipedia.org/wiki/Extensibility
https://en.wikipedia.org/wiki/Extensibility
https://github.com/
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/God_object
https://en.wikipedia.org/wiki/God_object
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://reflectoring.io/interface-segregation-principle/

[28] Interface segregation principle - Wikipedia. (Accessed on 02/26/2020).
url: https://en.wikipedia.org/wiki/Interface_segregation_

principle.

[29] Is High Quality Software Worth the Cost? (Accessed on 04/02/2020). url:
https://martinfowler.com/articles/is-quality-worth-cost.html.

[30] JArchitect. (Accessed on 03/03/2020). url: https://www.jarchitect.
com.

[31] Javalin. (Accessed on 04/30/2020). url: https://github.com/tipsy/
javalin.

[32] Kotlin subforum on Reddit. (Accessed on 03/11/2020). url: https://
www.reddit.com/r/Kotlin/.

[33] Ktlint. (Accessed on 03/26/2020). url: https://github.com/pinterest/
ktlint.

[34] Lack of Cohesion of Methods. (Accessed on 06/07/2020). url: https:

//blog.ndepend.com/lack-of-cohesion-methods/.

[35] LeakCanary. (Accessed on 04/30/2020). url: https://github.com/

square/leakcanary.

[36] Liskov substitution principle - Wikipedia. (Accessed on 02/26/2020). url:
https://en.wikipedia.org/wiki/Liskov_substitution_principle.

[37] Kohmann M. Detekt-hint - Github. (Accessed on 03/02/2020). url: https:
//github.com/Mkohm/detekt-hint.

[38] Kohmann M. Tools for improvement of code quality - A systematic review.
2019. url: https://github.com/Mkohm/detekt-hint/blob/master/
report/Tools_for_improvement_of_code_quality%20(5).pdf.

[39] Robert C. Martin. Agile Software Development: Principles, Patterns, and
Practices. 2008. url: https://www.amazon.co.uk/Software-Development-
Principles-Patterns-Practices/dp/0132760584.

[40] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. 2008. url: https://www.amazon.com/Clean-Code-Handbook-
Software-Craftsmanship-ebook/dp/B001GSTOAM.

[41] Model-view-viewmodel - Wikipedia. (Accessed on 6/10/2020). url: https:
//en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel.

[42] Modular programming - Wikipedia. (Accessed on 6/10/2020). url: https:
//en.wikipedia.org/wiki/Modular_programming.

66

https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://martinfowler.com/articles/is-quality-worth-cost.html
https://www.jarchitect.com
https://www.jarchitect.com
https://github.com/tipsy/javalin
https://github.com/tipsy/javalin
https://www.reddit.com/r/Kotlin/
https://www.reddit.com/r/Kotlin/
https://github.com/pinterest/ktlint
https://github.com/pinterest/ktlint
https://blog.ndepend.com/lack-of-cohesion-methods/
https://blog.ndepend.com/lack-of-cohesion-methods/
https://github.com/square/leakcanary
https://github.com/square/leakcanary
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://github.com/Mkohm/detekt-hint
https://github.com/Mkohm/detekt-hint
https://github.com/Mkohm/detekt-hint/blob/master/report/Tools_for_improvement_of_code_quality%20(5).pdf
https://github.com/Mkohm/detekt-hint/blob/master/report/Tools_for_improvement_of_code_quality%20(5).pdf
https://www.amazon.co.uk/Software-Development-Principles-Patterns-Practices/dp/0132760584
https://www.amazon.co.uk/Software-Development-Principles-Patterns-Practices/dp/0132760584
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship-ebook/dp/B001GSTOAM
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship-ebook/dp/B001GSTOAM
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Modular_programming

[43] NDepend. (Accessed on 03/03/2020). url: https://www.ndepend.com/.

[44] Open–closed principle - Wikipedia. (Accessed on 02/26/2020). url: https:
/ / en . wikipedia . org / wiki / Open % 5C % E2 % 5C % 80 % 5C % 93closed _

principle.

[45] Open/Clased Principle - Violations. (Accessed on 06/02/2020). url: https:
//code.tutsplus.com/tutorials/solid-part-2-the-openclosed-

principle--net-36600.

[46] Open/Closed Principle - Violations. (Accessed on 06/02/2020). url: https:
//devonblog.com/software- development/solid- violations- in-

the-wild-the-open-closed-principle/.

[47] OpenHAB. (Accessed on 05/13/2020). url: https://github.com/openhab/
openhab-android.

[48] Ken Peffers et al. “A Design Science Research Methodology for Infor-
mation Systems Research”. In: J. of Management Information Systems
24 (2007), pp. 45–77. url: https : / / doi . org / 10 . 2753 / MIS0742 -

1222240302.

[49] PMD. (Accessed on 03/18/2020). url: https://pmd.github.io/.

[50] Problems with Pull Requests and How to Fix Them. (Accessed on 06/08/2020).
url: https://gregoryszorc.com/blog/2020/01/07/problems-with-
pull-requests-and-how-to-fix-them/.

[51] Single responsibility principle - Wikipedia. (Accessed on 02/26/2020). url:
https://en.wikipedia.org/wiki/Single_responsibility_principle.

[52] Software Architecture subforum on Reddit. (Accessed on 03/11/2020). url:
https://www.reddit.com/r/softwarearchitecture/.

[53] Software Testability - Wikipedia. (Accessed on 6/10/2020). url: https:
//en.wikipedia.org/wiki/Software_testability.

[54] SOLID - Wikipedia. (Accessed on 6/10/2020). url: https://en.wikipedia.
org/wiki/SOLID.

[55] SOLID Principles: The Open/Closed Principle. (Accessed on 06/07/2020).
url: https://www.engineerspock.com/2017/09/04/the-openclosed-
principle/.

[56] SonarQube. (Accessed on 6/10/2020). url: https://www.sonarqube.
org/.

[57] Tachiyomi. (Accessed on 04/30/2020). url: https : / / github . com /

inorichi/tachiyomi.

67

https://www.ndepend.com/
https://en.wikipedia.org/wiki/Open%5C%E2%5C%80%5C%93closed_principle
https://en.wikipedia.org/wiki/Open%5C%E2%5C%80%5C%93closed_principle
https://en.wikipedia.org/wiki/Open%5C%E2%5C%80%5C%93closed_principle
https://code.tutsplus.com/tutorials/solid-part-2-the-openclosed-principle--net-36600
https://code.tutsplus.com/tutorials/solid-part-2-the-openclosed-principle--net-36600
https://code.tutsplus.com/tutorials/solid-part-2-the-openclosed-principle--net-36600
https://devonblog.com/software-development/solid-violations-in-the-wild-the-open-closed-principle/
https://devonblog.com/software-development/solid-violations-in-the-wild-the-open-closed-principle/
https://devonblog.com/software-development/solid-violations-in-the-wild-the-open-closed-principle/
https://github.com/openhab/openhab-android
https://github.com/openhab/openhab-android
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://pmd.github.io/
https://gregoryszorc.com/blog/2020/01/07/problems-with-pull-requests-and-how-to-fix-them/
https://gregoryszorc.com/blog/2020/01/07/problems-with-pull-requests-and-how-to-fix-them/
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://www.reddit.com/r/softwarearchitecture/
https://en.wikipedia.org/wiki/Software_testability
https://en.wikipedia.org/wiki/Software_testability
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://www.engineerspock.com/2017/09/04/the-openclosed-principle/
https://www.engineerspock.com/2017/09/04/the-openclosed-principle/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://github.com/inorichi/tachiyomi
https://github.com/inorichi/tachiyomi

[58] Technical debt - Wikipedia. (Accessed on 6/10/2020). url: https://en.
wikipedia.org/wiki/Technical_debt.

[59] The 5 Dimensions of Prototype Fidelity. (Accessed on 05/11/2020). url:
https://modus.medium.com/prototype-fidelity-its-more-than-

high-and-low-4dedb4cb1a0.

[60] The Boy Scout Rule. (Accessed on 05/21/2020). url: https://medium.
com/@biratkirat/step-8-the-boy-scout-rule-robert-c-martin-

uncle-bob-9ac839778385.

[61] Tusky. (Accessed on 04/30/2020). url: https://github.com/tuskyapp/
Tusky.

[62] T. Umut and B. Feza. A graph mining approach for detecting identical
design structures in object-oriented design models. 2014. url: https://
doi.org/10.1016/j.scico.2013.09.015.

[63] Understandability for Reuse. (Accessed on 6/10/2020). url: http://www.
arisa.se/compendium/node39.html.

[64] What to look for in a code review. (Accessed on 06/02/2020). url: https:
//google.github.io/eng- practices/review/reviewer/looking-

for.html.

[65] What to look for in a Code Review: SOLID Principles. (Accessed on
06/07/2020). url: https://blog.jetbrains.com/upsource/2015/

08/31/what-to-look-for-in-a-code-review-solid-principles-2/.

68

https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://modus.medium.com/prototype-fidelity-its-more-than-high-and-low-4dedb4cb1a0
https://modus.medium.com/prototype-fidelity-its-more-than-high-and-low-4dedb4cb1a0
https://medium.com/@biratkirat/step-8-the-boy-scout-rule-robert-c-martin-uncle-bob-9ac839778385
https://medium.com/@biratkirat/step-8-the-boy-scout-rule-robert-c-martin-uncle-bob-9ac839778385
https://medium.com/@biratkirat/step-8-the-boy-scout-rule-robert-c-martin-uncle-bob-9ac839778385
https://github.com/tuskyapp/Tusky
https://github.com/tuskyapp/Tusky
https://doi.org/10.1016/j.scico.2013.09.015
https://doi.org/10.1016/j.scico.2013.09.015
http://www.arisa.se/compendium/node39.html
http://www.arisa.se/compendium/node39.html
https://google.github.io/eng-practices/review/reviewer/looking-for.html
https://google.github.io/eng-practices/review/reviewer/looking-for.html
https://google.github.io/eng-practices/review/reviewer/looking-for.html
https://blog.jetbrains.com/upsource/2015/08/31/what-to-look-for-in-a-code-review-solid-principles-2/
https://blog.jetbrains.com/upsource/2015/08/31/what-to-look-for-in-a-code-review-solid-principles-2/

Appendix A

Appendix

A.1 Horizontal prototype

Figure A.1: Screenshot of the horizontal prototype showing the ISP rule. It
has detected an empty method, which is a sign of violating the ISP. In this
case the EconomicPrinter implements methods from AllInOnePrinter which
it does not need. A solution would be to define separate interfaces for each of
the responsibilities (e.g Printable, Faxable, Scanable) and let the concrete
implementations of printers implement the interfaces they need.

69

Figure A.2: Screenshot of the horizontal prototype showing the LCOM rule,
with a visual representation of the lack of cohesion. The figure shows which
fields that are referenced from each of the methods in the class. In this case
all the methods of the class references their own separate field. This indicates
that each of the methods and corresponding fields have separate responsibilities
within the class. This would therefore be an indication of violating the SRP.

70

Figure A.3: Screenshot of the horizontal prototype that shows the OCP rule,
using a simple program for drawing shapes. In this case the rule detected check-
ing of concrete implementations to control flow. The rule suggests creating an
abstraction for Rectangle, Circle (e.g an interface Shape with a draw method
that all Rectangle and Cirle should implement) such that eventual new shapes
added to the program would not need to modify existing code.

71

Figure A.4: Screenshot of the horizontal prototype that shows the COI rule. The
rule suggests the use of composition instead of inheritance, and helps testing
if the classes adheres to the LSP. In this case, the classical Square - Rectangle
problem is presented. Square should not be derived from Rectangle as it
would violate the LSP. Square does not functionally behave like Rectangle as
squares by definition have the same width and height. Rectangle should have
two independent methods for changing its size, but clearly these methods is not
appropriate for the Square.

72

A.2 Semi-structured interview schema

Participant number:

What is the number of the participant.

Background:

What is the participants background. Experience with software architecture?
Knows and uses design principles? Experience with Kotlin?

Presentation of rules - For each rule

1. Present the rule.

2. Make sure the participant understands the importance of the rule.

3. When will the rule give a warning?

4. When will the rule incorrectly give a warning? Will it report false-positives
too often? Suggestions on how to reduce the amount?

5. How much context is needed? Shorter or longer comments? Should in-
clude suggestions on possible solutions? Is the comment understandable?
Something missing?

Other

- When reviewing code, what do you think is tedious, and could it be automated?
- Are there any rules/principles missing?

73

A.3 Semi-structured interview results

Participant number: 1
Background: Studies computer science at Norwegian University of Science and
Technology (NTNU) with a specialization in computers and systems software.
Has experience with developing apps for iOS and web and back-end develop-
ment. Interested in Software Architecture and writing software of high quality.
Experience with design principles: Some

COI: Could be useful, but potentially have too many false positives. For test-
ing the participant often creates Mock objects that inherits from the class he
wants to Mock, and then overrides methods. The participant think there is too
few cases where this rule will be useful. Suggestions: Reduce the amount of
positives by disabling checks for classes with names; Mock. User could specify
which class names or a pattern to ignore. Should revisit sentence number two
about composition, it could be misleading.

LCOM1: Very useful because calculating such a value is’nt something you do
while coding. Positive that you can change the threshold of the rule. Sugges-
tion: Which fields and methods could i extract? A comment that suggests a
solution.

LCOM2 (With refactoring visualization): Look more at further analysis to find
out what can be extracted. Look into dependencies between function calls as
well. Diagram looks cool, but does not give any more value than some plain
text explaining what can be extracted.

OCP: Somewhat useful. Should have a more specific comment saying if you are
doing enum switching or instanceOf checking.

ISP: Could be useful. Suggestion to count number of usages of calls in the in-
terface to see which method calls that is not used by any of the classes that
implement the interface.

74

Other: Tools for detecting complicated expressions that can be extracted out as
a separate method with a descriptive name. Blocks of code should be extracted
out as separate methods so that lines of code that belongs together has its own
scope.

75

Participant number: 2
Background: Works as a software developer for Netlight, 2 years of profes-
sional developer experience. Experienced with Kotlin development and with
architecture and design of software systems.
Experience with design principles: Yes

COI: Positive about the rule, but is concerned about not showing warnings
when deriving from third party libraries. This is a case where one also should
think about using composition instead of inheritance. Suggests to remove this
logic, and instead provide configuration options for packages that should not be
reported as violations when derived from.

LCOM: Nothing special.

OCP: Useful for both instance of checking and enum switching. Enums in Kotlin
are powerful, so switching on them is in many cases not needed and polymor-
phism is used instead.

ISP: Could be useful. May need to handle TODO’s specially.

Other: In general positive to the tool, and think it has potential. Good that
it is easy to ignore warnings, with just a click. It needs more rules before
considering using it. For example including detection of Java anti-patterns and
ensuring that Kotlin code is idiomatic. For example static methods and places
where data-classes could be used. The tool could be used as ”training wheels” in
a team, where one gradually could disable more rules to not create unnecessary
noise in the development.

76

A.4 Final prototype

Figure A.5: Screenshot of the final prototype that shows the COI rule. The
rule suggests the use of composition instead of inheritance, and helps testing
if the classes adheres to the LSP. In this case, the classical Square - Rectangle
problem is presented. Square should not be derived from Rectangle as it
would violate the LSP. Square does not functionally behave like Rectangle as
squares by definition have the same width and height. Rectangle should have
two independent methods for changing its size, but clearly these methods is not
appropriate for the Square.

77

Figure A.6: Screenshot of the final prototype that shows the OCP rule, using
a simple program for drawing shapes. In this case the rule detected checking
of concrete implementations to control flow. The rule suggests creating an
abstraction for Rectangle, Circle (e.g an interface Shape with a draw method
that all Rectangle and Cirle should implement) such that eventual new shapes
added to the program would not need to modify existing code.

78

Figure A.7: Screenshot of the final prototype showing the LCOM rule. This
is an indication of violating the SRP, due to low cohesion in the class. In this
case, each of the methods reference their own field, telling us that there is no
relationship between the different methods, and that they don’t need to exist
in the same class.

79

Figure A.8: Screenshot of the final prototype showing the ISP rule. It has
detected an empty method, which is a sign of violating the ISP. In this case
the EconomicPrinter implements methods from AllInOnePrinter which it
does not need. A solution would be to define separate interfaces for each of
the responsibilities (e.g Printable, Faxable, Scanable) and let the concrete
implementations of printers implement the interfaces they need.

80

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Marius Kohmann

Detekt-hint – A tool for detecting design
principle violations

Master’s thesis in Computer Science

Supervisor: Hallvard Trætteberg

June 2020

	Introduction
	Background
	What is maintainable code?
	Achieving maintainable code
	Design principles
	Code analysis
	False-positives and false-negatives
	Code review
	Developer workflow
	Prototyping

	Related work
	Methodology
	Goals of the study
	Research methodology
	Problem identification and motivation
	Define the objectives of a solution
	Design and development
	Demonstration
	Evaluation
	Communication

	Results
	Initial objectives of a solution
	Prototypes and development
	Initial prototype
	Vertical prototype
	Horizontal prototype
	Final prototype
	Evaluation of the final prototype
	External evaluation
	Internal evaluation
	Evaluation of using comments on PR to reduce impact of reporting false-positives
	Overall evaluation
	Evaluation of the objectives of a solution

	Technical solution
	Detekt
	Detekt-hint rule set
	Danger
	GitHub Actions and the execution flow

	Discussion, further work and conclusion
	Answering the research question
	Impact
	Limitations
	Future work
	Conclusion
	Acknowledgments

	Appendix
	Horizontal prototype
	Semi-structured interview schema
	Semi-structured interview results
	Final prototype

