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Abstract

This report explores how evolutionary computation methods are applied
in the field of structural design optimization with a focus on jacket op-
timization with a genetic algorithm. Jackets are steel towers supporting
offshore installations such as oil platforms and wind turbines. Due to
high costs associated with material, construction, and installation, there
is an interest in decreasing the number, as well as the sizes, of elements in
jacket designs. To this end, company Kværner has developed a system em-
ploying a genetic algorithm to optimize designs. This report explains the
underlying concepts relating to the problem, and explores previous related
studies. The project extends the optimization system by employing the
Non-Dominated Sorting Genetic Algorithm (NSGA-II), and comparing it
to the existing implementation of a genetic algorithm. The new approach
managed to show design improvement, but further work is needed to pro-
duce designs conforming to engineering rules. It has also been found that
the constraint handling method of NSGA-II navigates poorly in the infea-
sible space. Finally, suggestions for future work are discussed.
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Sammendrag

Denne rapporten utforsker hvordan evolusjonær databehandling metoder
blir brukt for strukturell optimalisering, med et fokus p̊a bruk av genetiske
algoritmer til design av jacketer. Jacketer er fagverksplattformer bygget i
st̊al, som brukes som understøtte for oljeplattformer og vindmøller. Høye
kostander av materialet, bygging, og installering, motiverer forsøk p̊a å
redusere størrelsene og antallet av elementer i konstruksjonene. Bedriften
Kværner har utviklet et system som anvender en genetisk algoritme til å
optimalisere designer. Denne rapporten forklarer teorien bak problemet og
gir et sammendrag av relaterte prosjekter. Prosjektet utvider optimalis-
eringssystemet ved å anvende Non-Dominated Sorting Genetic Algorithm
(NSGA-II), og sammenligner den med eksisterende implementasjonen av
den genetiske algoritmen. Den nye strategien klarte å forbedre designer,
men videre arbeid trenges til å produsere konstruksjoner som samsvarer
med designkravene. Det ble ogs̊a oppdaget at begrensningsh̊andtering
mekanismen til NSGA-II fungerer d̊arlig med ugyldige løsninger. Til slutt
presenteres forslag til forbedringer av systemet.
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Chapter 1
Introduction

This chapter introduces the project by giving an overview of the underlying
topics. The method and the problem domain are presented. The project
has been conducted in cooperation with the company Kvaerner, and their
system, which was the basis for the project, is introduced. Finally, the
structure of the report is presented.

1.1 Background

Evolutionary computation is a family of optimization algorithms inspired
by biological processes. The most popular of these is the genetic algorithm
that is based on principles underlying evolution. It has been applied to
a variety of domains, including structural engineering. Given the wide
spread and millennia of history of land structures, much research has been
done regarding the optimization of their designs. On the other hand, off-
shore structures have not been given as much attention, especially being
less palatable due to deployment sites that are far away from population
centers. These two domains vary greatly in their underlying design chal-
lenges. Offshore structures are exposed to waves, wind, corrosion, and
seabed conditions. These issues and more require a great deal of domain
knowledge to ensure the reliability of a structure, whilst at the same time
there is the incentive of reducing the cost of sizeable projects. Thus, a
variety of support structures has been devised to conform to a site’s con-
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ditions in the best way possible. One such type of a structure is a steel
truss support called a jacket, that resembles a transmission line support
tower. An example of a jacket can be seen in Figure 1.1. Jackets are used
as support structures for topsides such as oil and gas platforms, as well as
offshore wind turbines. The dimensions of jackets vary with sea depth and
the size of the topside, with jacket heights varying from tens to hundreds
of meters. Due to the massive amounts of steel, their weight is measured
in thousands of tonnes. By optimizing a jacket design, the amount of
steel can be reduced whilst still ensuring the design requirements given
for an expected structure lifetime. To this end, the company Kvaerner
has developed a system employing a genetic algorithm to optimize jacket
designs.

Figure 1.1: Visualization of a jacket. Adapted from Kling et al.[1].

Kvaerner is a Norwegian company providing engineering, production
and construction (EPC) of projects in the energy sector and heavy in-
dustry. Over the years, Kvaerner has amassed extensive knowledge re-
garding jacket design throughout a multitude of projects 1. With recent
technological advancements within IT, Kvaerner prioritizes digitalization
and innovation to continue improving their services. Among those efforts,

1Kvaerner Jackets Brochure https://www.kvaerner.com/wp-content/uploads/

2019/04/Jackets_lowres-1.pdf

https://www.kvaerner.com/wp-content/uploads/2019/04/Jackets_lowres-1.pdf
https://www.kvaerner.com/wp-content/uploads/2019/04/Jackets_lowres-1.pdf
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an internal research project of automated jacket optimization has been
founded[1]. Code-named L-Alpha, the system parses a jacket design to a
format that can be used by a genetic algorithm to produce variations of
the original design. By automatically using existing analysis software used
by jacket engineers, the new designs are evaluated and put back into the
algorithm for further adjustments based on the analysis results. As the
amount of practical requirements and the knowledge of jacket engineers is
vast, there is still work to be done on ensuring that the generated designs
will conform to the established EPC practices. The novel approach to this
complex problem presents an intriguing avenue for further research.

In this project, a multi-objective alternative to the genetic algorithm,
Non-Dominated Sorting Genetic Algorithm (NSGA-II), was implemented
to compare to the existing system. Chapter 2 presents the theory behind
the genetic algorithm and NSGA, as well as basics of jacket design. Chap-
ter 3 describes how the current system implements a genetic algorithm
for the purpose of jacket design optimization. Chapter 4 summarizes a
selection of works relating to structural optimization using evolutionary
computation. Chapter 5 presents implementation details and test results.
Finally, Chapter 6 discusses the results and draws conclusions in relation
to future work.



Chapter 2
Background and Theory

This chapter explains the theory related to this project. It starts with pre-
senting the genetic algorithm in Section 2.1. It is followed up by defining
multi-objective problems in Section 2.2 and presenting a multi-objective
extension of the genetic algorithm, NSGA, in Section 2.2.1. Finally, basic
information relating to jacket design is given in Section 2.3.

2.1 Genetic Algorithm

The genetic algorithm is a method from the evolutionary computation
family, that is used for optimization problems. It was introduced by John
Holland in 1960s and extended by David Goldberg in 1989 [2]. The algo-
rithm is based on Darwin’s theory of evolution. In the theory, genes of
the most fit individuals spread throughout generations of a species, and
this mechanism is the basis of the genetic algorithm. Thus, in the genetic
algorithm, solutions to computational problems are encoded using param-
eters representing genes. These parameters can be of any type present
in programming, such as integers and strings, but the two most common
types used are bits and real numbers. It is common that a solution rep-
resentation suitable for a genetic algorithm is different from the one used
when solving a problem. Thus, a transformation is needed between the
two forms, which are respectively called the genotype and the phenotype.

When working with a genetic algorithm, various operations may be
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used to focus on either exploration or exploitation. Exploration prioritizes
trying out diverse individuals in the hopes of finding the global optimum
or an interesting area of the search space. Meanwhile, exploitation focuses
on finding good solutions quickly, but this may lead to being stuck in local
optima.

By having a set of candidate solutions, representing a population, the
most fit individuals can be found by comparing them based on how well
they solve a specific problem. Thus, the genetic algorithm can only be
used on problems where it is possible to gauge either the quality of a so-
lution, or how close the solution is to fulfilling certain criteria. The most
fit individuals are then allowed to take part in recombination. Recombi-
nation exchanges the genes of two individuals to produce one or multiple
new solutions. In that case, the individuals being used for crossover are
labeled as parents, and the resulting ones as offspring. Additionally, mu-
tation can be used to adjust the genes of an individual in a random or
guided fashion. After application of the crossover and mutation operators,
the parent and offspring sets are combined. Usually the maximum size of
a population is restricted, so that individuals have to compete with each
other to survive. This is done by sorting the population based on a value
called fitness, representing how well a given individual solves the problem.
By ensuring that a given number of solutions with the highest fitness is
brought further to the next generation, the process is guided towards ex-
ploring solutions within a promising region of the search space. Putting
together the mentioned processes, a pseudocode for a genetic algorithm
can be written as follows.
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Algorithm 1: Genetic algorithm pseudocode

Initialize the population;
Evaluate all members of the population;
while Termination condition not reached do

Select individuals in the population to be parents;
Create new individuals by applying recombination and
mutation operators to the copies of parents;

Evaluate new individuals;
Replace some/all of the individuals in the current population
with the new individuals;

Return the most fit individual

The main parts of the algorithm, marked by bold text in the pseu-
docode, are described below.

Initialization

The starting point of a genetic algorithm is the initial population. It
can be created by assigning random values to the genes, or by using one
or multiple promising candidate solutions. If the number of the input
individuals is lower than the required size of the population, it can be filled
up with new individuals. These can be created through the crossover and
mutation operators, or by adjusting the gene values of an input individual
through a probability distribution.

Evaluation

Every individual is evaluated by applying it to the problem to be solved. If
working with a genotype different from the phenotype, the transformation
has to take place first. Evaluation tells us how well an individual solves
the problem. For example, when finding the shortest path in a graph,
we are interested in the length of a proposed path. This information is
represented by a fitness value, that is used in the following step.
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Selection

Selection is the process of picking individuals from the population that
will be used for producing offspring. Choosing the parents in a reasonable
way is important for convergence of a genetic algorithm. There are many
ways in which selection can be done. Thierens and Goldberg (1994) [3]
analyze four such schemes, two of which will be summarized here to pro-
vide an example. Proportionate selection, also commonly called roulette
wheel, picks parents with a probability proportionate to their fitness. The
probability Pi of picking individual i with fitness fi and population size
N can be written as:

Pi =
fi∑N

n=1 fn
. (2.1)

An often used alternative is tournament selection. Given a tournament
size K, K individuals are chosen, and the one with the best fitness becomes
a parent. This is done with replacement until a desired number of parents
is picked.

After selecting a sufficient number of parents, they are used to produce
offspring using the recombination and mutation operators. The implemen-
tation of these varies greatly depending on the modality of the genotype,
and how much domain knowledge can be exploited.

Recombination

Recombination takes in two parents and produces offspring that have a
combination of genes of the parents. Eiben (2003) [4] presents multiple
possible implementations of the operator grouped by modality. A simple
example for binary genes is one-point crossover. It operates on a string
of bits, by choosing a random point around which bits will be exchanged
across parents. The first part of the string is taken from one parent,
and the second part taken from the other parent. Another combination
is produced by switching which parent the first part of the string comes
from, as shown in Figure 2.1. By using multiple crossover points, we can
implement the N-point crossover. An example of recombination working
on floating-point numbers is interpolation, where a child is produced by
setting some or all gene values to the average of the gene values of the
parents. Domain knowledge can be applied to recombination operators by
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exploiting the local structure of the problem. For example, when finding
the shortest path in a graph, a promising subpath can be copied to another
solution in an attempt to find a better global solution.

Figure 2.1: Visualization of the binary one point crossover.

Mutation

Mutation operates on a single individual by stochastically adjusting gene
values. As opposed to recombination, which mostly serves to propagate
existing features throughout generations, mutation increases diversity by
introducing new features. For binary genes, the simplest mutation is the
bit flip that changes one value from 0 to 1 or vice versa. This can be done
for any number of bits. A large number of bits flipped increases diversity,
but at the same time may likely produce offspring that are way worse due
to diverging from previously found valuable substructures. For floating-
point numbers, mutation may either assign a random value within a given
range to a gene or adjust it by a specified increment. Like recombina-
tion, mutation may be guided by domain knowledge. In the path finding
example, one may replace an edge with one that has lower cost.

Replacement

Population replacement, also called reinsertion, is the process of putting
together the next generation of the population, which is to be used as
input to selection in the next iteration. Eiben [4] categorizes replacement
schemes as either age-based or fitness-based. Age-based schemes prioritize
survival of the offspring, whilst fitness-based prioritize the best individu-
als from the combined set of offspring and parents. Whilst fitness-based
schemes make the genetic algorithm converge faster, we run into the risk
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of plateauing too soon. A combined scheme may be used to ensure the
survival of just one or more fittest individual as a compromise.

Termination

A genetic algorithm may be run for a given number generations, until a
solution of a given quality is produced, or until no improvement is ob-
served. Given the stochasticity of the algorithm, there is no guarantee
that it will converge. Usually it is sufficient to return the fittest individual
found during the run, as the fitness value should clearly represent how
good a solution is. In many cases this may not be easily achievable, due
to the complexity of the problem and conflicting objectives.

2.2 Multi-objective Optimization (MOO)

Many real life optimization problems are not straightforward enough to be
able to compare their solutions based on a single value. The evolutionary
computation family includes various algorithms that take multiple objec-
tives into consideration. Multi-objective problems are defined in Definition
2.2.1. Definitions in this section are taken from Zavala et al. (2014) [5].
In the definition, x∗ denotes an encoding of a solution, and f(x) the ob-
jectives. It is assumed, without loss of generality, that all the objective
functions are to be minimized.

Definition 2.2.1. (Multi-objective Problem) Find a vector x∗ = [x∗1,
x∗2, . . . , x

∗
n] which satisfies the m inequality constraints gi(x) ≥ 0, i =

1, 2, . . . , m, the p equality constraints hi(x) = 0, i = 1, 2, . . . , p, and
minimizes the vector function f(x) = [f1(x), f2(x), . . . , fk(x)]T , where
x = [x1, x2, . . . , xn]T is the vector of decision variables.

When working with a genetic algorithm, one may implement weighted-
sum fitness, where each objective is multiplied by a specified weight and
summed together to give a single fitness value. Whilst seemingly simple,
this approach introduces the need of finding weights that sufficiently rep-
resent the trade-offs between the objectives. Additionally, the algorithm
will approach a single solution representing the best know combination
of objectives for the given weights, which may not be satisfactory when
working with competing objectives.
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An alternative approach is to find a set of solutions, where each solution
has a combination of objective values that is strictly better than that of
any solution not in the set. This concept is called Pareto optimality, as
defined in Definition 2.2.2. The feasible region Ω includes all solutions
that satisfy the constraints mentioned in Definition 2.2.1.

Definition 2.2.2. (Pareto Optimality) Given a feasible region Ω, a point
x∗ ∈ Ω is Pareto Optimal if for every x ∈ Ω and I = {1, 2, . . . , k} either
∀i∈I(fi(x) = fi(x

∗)) or there is at least one i ∈ I such that fi(x) > fi(x
∗).

Following that, we can define the operator 4, that is used to check for
dominance between two solutions. Domination means that one solution
has a strictly better combination of objective values than the other solu-
tion. This means that the dominating solution has at least one objective
value that is better, and the rest of the values is better or equal. This is
defined in Definition 2.2.3.

Definition 2.2.3. (Pareto Dominance) A vector u = (u1, . . . , uk) is said
to dominate v = (vi, . . . , vk) (denoted bu u 4 v) if and only if u is
partially less than v, i.e., ∀i ∈ {1, . . . , k}: ui ≤ vi∧∃i ∈ {1, . . . , k} : ui <
vi.

To give an example of dominance, let’s take the data from Table 2.1
for the cost and travel time of three flights. When comparing flights A
and B, we can see that the cost of B is better, whilst the flight time of
A is better, which means that they do not dominate each other. This
is also true for A and C, where C is cheaper, and A is shorter. When
comparing B and C, we can see that their flight times are the same, but
C is cheaper. Thus, C dominates B, as when comparing only the cost and
time properties, C is strictly better.

Flight Cost Time
A 1000$ 1:00h
B 900$ 2:00h
C 500$ 2:00h

Table 2.1: Data for a simple multi-objective problem.
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When picking a flight amongst these three options, we can readily
disregard B. This leaves us with two non-dominated options: A and C.
Together, they constitute the Pareto optimal set, which is defined as the
set including all non-dominated feasible solutions as per Definition 2.2.4.
Furthermore, the objective values of Pareto optimal solutions make up the
Pareto front, as per Definition 2.2.5.

Definition 2.2.4. (Pareto Optimal Set) For a given MOP f(x), the Pareto
optimal set is defined as P∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) 4 f(x)}.

Definition 2.2.5. (Pareto Front) For a given MOP f(x) and its Pareto
optimal set P∗, the Pareto front is defined as PF∗ = {f(x)|x ∈ P∗}.

2.2.1 NSGA-II

One of the most popular multi-objective algorithms from the evolution-
ary computation family is the non-dominated sorting genetic algorithm
(NSGA) introduced by Srinivas and Deb in 1995[6]. Because it is based
on the genetic algorithm, NSGA is relatively straightforward to implement
when working with a preexisting genetic algorithm. NSGA concerns itself
mostly with the reinsertion step, whilst also the selection and evaluation
need to be adjusted to take multiple objectives into consideration. In this
section, NSGA-II, an improved version of the algorithm, will be presented
based on Deb et al. (2002) [7]. The algorithms and figures presented in
this section are adapted from that article. The advantage of using NSGA-
II comes from the lack of need of a sharing parameter found in other
MOO algorithms, and its O(MN2) running time, where M is the number
of objectives and N the number of individuals.

The NSGA-II reinsertion procedure is show in Algorithm 2. It com-
bines the parent and offspring population into one set, that is then di-
vided into consecutive non-dominated fronts by the fast non-dominated
sort shown in Algorithm 3. Then, the next population is filled up with
the fronts until the next front would not fit in full. At that point, the last
front to be added into the population is sorted using the crowded compar-
ison operator ≺n. The operator compares two individuals based on their
ranks, which denote which front they are in, and the crowding distance
computed by Algorithm 4. The operator is formalized in Definition 2.2.6.
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Algorithm 2: NSGA-II Reinsertion

// combine parent and offspring population

Rt = Pt ∪Qt;
// F = (F1, F2, . . .) all non-dominated fronts of Rt

F = fast-non-dominated-sort(Rt);
Pt+1 = ∅;
i = 1;
// while the parent population is not filled

while |Pt+1|+ |Fi ≤ N do
crowding-distance-assignment(Fi);
// include the ith non-dominated front

// in the parent population

Pt+1 = Pt+1 ∪ Fi;
// check the next front for inclusion

i = i + 1;

// sort in descending order using ≺n

Sort(Fi,≺n);
// choose the first (N − |Pt+1|) elements of Fi

Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)];

Definition 2.2.6. (Partial order) Given individuals i and j, i ≺n j if
irank < jrank ∨ (irank = jrank ∧ idistance > jdistance).

The partial order is similar to the Pareto dominance operator 4 from
Definition 2.2.3, but it also includes crowding distance, which ensures an
even spread of individuals across the last front with regards to every ob-
jective. The domination operator itself is used in the fast non-dominated
sort shown below in Algorithm 3.
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Algorithm 3: Fast non-dominated sort on population P

forall p ∈ P do
Sp = ∅;
np = 0;
forall q ∈ P do

// If p dominates q
if p 4 q then

// Add q to the set of solutions

// dominated by p
Sp = Sp ∪ {q};

else if q 4 p then
// Increment the domination counter of p
np = np + 1;

if np = 0 then
// p belongs to the first front

prank = 1;
F1 = F1 ∪ {p};

// Initialize the front counter

i = 1;
while Fi 6= ∅ do

// Q is used to store members of the next front

Q = ∅;
forall p ∈ Fi do

forall q ∈ Sp do
nq = nq − 1;
if nq = 0 then

// q belongs to the next front

qrank = i + 1;
Q = Q ∪ {q};

i = i + 1;
Fi = Q;

The fast non-dominated sort splits the combined parent and offspring
population P into a set of non-dominated fronts F . It does so by first
finding all the non-dominated solutions by doubly iterating the total pop-
ulation P and adding them to the first front Fi, whilst the dominated



Background and Theory 14

solutions are added to each individual’s domination set Sp and their dom-
ination counters np are incremented. Then the fronts are consecutively
iterated to reduce the domination counter of individuals not yet added to
the next front and add them if the counter reaches zero. This is the most
computationally expensive part of the algorithm, which caps the overall
complexity at O(MN2). This was an improvement over the original NSGA
with a complexity of O(MN3).

Algorithm 4: Crowding distance assignment on a non-
dominated set I
// number of solutions in I
l = |I|;
// initialize distance

forall i ∈ I do
idistance = 0;

forall objectives m do
// sort using each objective value

I = sort(I,m);
// make boundary points always selected

I[1]distance = I[l]distance =∞;
// for all other points

for i = 2 to (l − 1) do
I[i]distance =
I[i]distance + (I[i + 1].m− I[i− 1].m)/(fmax

m − fmin
m );

In addition to fast sorting, NSGA-II offers diversity preservation through
crowding distance computed by Algorithm 4. Crowding distance aims to
present a measure that can be used by the partial order operator to pick
out individuals which are diverse, on the assumption that a large dif-
ference in objective values corresponds to a significant difference in the
genetic makeup between individuals. It is computed by sorting a front on
each objective. After each sort, the distance of individuals at the edges is
set to infinity. For the rest, the normalized difference of M neighboring
individuals’ objective values is added to the crowding distance. The dis-
tance corresponds to the sum edge length of a cuboid delimited by the M
neighbors as shown in Figure 2.2 for two objectives.
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Figure 2.2: Cuboid representing the crowding distance found for an indi-
vidual i, where f1 and f2 are objective functions.

The overall NSGA-II reinsertion process can be simply presented as in
Figure 2.3.

Figure 2.3: Reinsertion process of NSGA-II. When adding individuals
from F3, the ones with the highest crowding distance survive.

The article also proposes a constraint handling scheme. This is done by
replacing domination with constrained-domination, as shown in Definition
2.2.7.

Definition 2.2.7. (Constrained-domination) A solution i is said to
constrained-dominate a solution j, if any of the following is true.
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1. Solution i is feasible and solution j is not.

2. Solutions i and j are both infeasible, but solution i has a smaller
overall constraint violation.

3. Solutions i and j are feasible and solution i dominates solution j.

In addition to reinsertion, a different selection mechanism is needed
to take multiple objectives into consideration. In the NSGA-II article, an
adjusted tournament selection operator is used. It works the same way
as presented in Section 2.1, except fitness comparison is replaced with the
partial order operator from Definition 2.2.6.

2.3 Jacket design

Figure 2.4: Drawing of the UpWind reference jacket with element labels.
Adapted from Chew et al. (2013)[8].

Jackets are steel structures used as support for offshore oil and gas
installations, as well as wind turbines. They are similar to truss towers
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used for land constructions, such as transmission line supports. Jackets
are made up of tubular beams connected in a pattern that is able to sup-
port a topside. For oil and gas installations, examples of topsides include
drilling platforms, production platforms, living quarters, and heliports[9].
A public reference jacket, called UpWind, that has been used in multiple
studies to analyze the optimization potential of jackets, is shown in Figure
2.4 [10]. The jacket is designed to support a wind turbine, and the jacket’s
height is 70 meters from the seabed to the bottom of the wind turbine.

The main parameter driving jacket design is the number of legs. Some
wind turbine supports can be constructed with only three legs, whilst
more demanding topsides may require four or more legs. Beams that
constitute a leg are called chords, meaning that they are outer members
of the structure, deciding its shape, and receiving in other components.
The incoming beams are called braces. The elements are connected by
joints reinforced by cans as shown in Figure 2.5. The endpoints of a brace
going into a can are called stubs. Jackets are fastened to the seabed by
piles that extend deep below the seabed.

Figure 2.5: A diagram showing a can and its proximate elements [11].

Figure 2.6 shows the different jacket design topics and exemplifies how
jacket elements are grouped together. Elevations are horizontal groups
and the number of elevations is a main design driving parameter together
with the number of legs. Rows are vertical groups, and as shown in the
lower-right corner of Figure 2.6, there can be multiple rows.
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Figure 2.6: Jacket design topics [12].

Jacket design is a subfield of structural design, which concerns itself
with the strength, rigidity, and stability of structures. Kicinger et al.
(2005) [13] outline three domains of structural optimization, which are
topology, shaping, and sizing. These are exemplified in Figure 2.7. When
simplifying a structure to a graph, topology optimization decides the num-
ber of nodes and connections between them, corresponding to joints and
beams in a jacket. Shaping decides the angles between elements and their
lengths, and sizing adjusts the diameters and thicknesses of elements.
Jackets are mostly constructed from tubular steel beams akin to pipes.
Figure 2.8 presents a cross section of such an element and shows a dif-
ference between the outer and inner diameter. The majority of a jacket’s
construction cost comes from the cost of steel. There is also a significant
cost dependent on welding, which is influenced by the angles at which the
elements are connected together[14].

Jackets need to endure environmental conditions present at the de-
ployment site, as well as fulfill structural design requirements. Thus, the
design process is influenced by factors such as wind, waves, seabed con-
ditions, and seismic activity. Multiple analyses are performed to ensure
that a design fulfills requirements, including static, fatigue, installation,
and transportation.
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Figure 2.7: Discrete topology, shape, and sizing optimization domains [13].

Inner diameter

Thickness

Outer diameter

Figure 2.8: Cross section of a pipe with parameter labels. Two parameters
are sufficient to fully describe the cross section.
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2.3.1 Limit State Design

This subsection has been reused from the specialization project pre-
ceding this thesis [15].

Limit state design is a structural engineering method where a design
is tested against a set of potential loads to check whether a structure ful-
fills the design criteria, such as structural integrity and durability[16][17].
Loads are categorized into dead loads, which are constant over time, such
as originating from the weight of the structure, and dynamic loads that
include waves and winds. In addition to operational extremes, offshore
structures need estimated loads for transit and installation. A limit state
is a condition where a criterion is no longer fulfilled, and thus expresses
a possibility of failure. Safety margins between highest likely loads and
weakest resistances have to be ensured so that they are large enough to
tolerate fatigue damage. Two kinds of limit states are particularly rele-
vant: ultimate (ULS) and fatigue (FLS). ULS design limits the stress that
materials experience to conform to strength and stability demands. FLS
design is concerned with simulating aerodynamic and hydrodynamic loads
and extrapolating for the required lifetime of a structure. The analyses
can be used to find the utilization of elements, value of which is below 1
if a particular element is expected to endure the predicted loads. Addi-
tionally, structures may be designed while optimizing for stiffness, which
describes the rigidity of a structure. Stiffness corresponds to the ability of
resisting deformation and deflection when force is applied. Alternatively,
it may be represented as compliance, which is the inverse of stiffness.



Chapter 3
Current system

The company Kvaerner has developed a system that uses a genetic al-
gorithm to optimize jacket designs. It was written in C# and the .Net
framework. A diagram of the modules and flow is shown in Figure 3.1.
Following that is a description of the relevant parts of the system.

3.1 Initial design and representation

The input to the system is a jacket design produced by the engineers. The
design is a set of JavaScript files describing the geometry of the jacket and
the environmental conditions of the deployment site. The files are in the
format used by DNV GL’s Sesam software package1. The software is used
by both the engineers and the system to evaluate the designs.

The geometry of a design is described by a few main numerical param-
eters like elevation heights, and foot and head dimensions that decide the
overall shape of a jacket. After objects representing legs are created, hor-
izontal braces are added at the elevation heights. Subsequently a bracing
pattern is formed by adding members in positions relative to the elements
already created. The design files include a list of possible pipe sizes to
choose from, and every member is given a specific pipe size. The system

1DNV GL Sesam for fixed structures https://www.dnvgl.com/services/offshore-
and-marine-structural-engineering-sesam-for-fixed-structures-1096

https://www.dnvgl.com/services/offshore-and-marine-structural-engineering-sesam-for-fixed-structures-1096
https://www.dnvgl.com/services/offshore-and-marine-structural-engineering-sesam-for-fixed-structures-1096
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Figure 3.1: A diagram of Kvaerner’s system.

parses the geometry of the initial design to create a list of elements and
a graph describing its connections. Given that a 3D model of a jacket
is created procedurally, it is not possible to easily adjust the positions
of individual members. A list of genes specifies how the genetic algo-
rithm should adjust the main numerical parameters within given ranges,
as shown in Listing 3.1. Additionally, the list of elements can be used to
create genes that adjust the pipe sizes of each element. These genes are
restricted by gene profiles, which decide which properties can be adjusted
within a given range and precision. An example of a gene profile is shown
in Listing 3.2.
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1 GeneDef; GeneUnits; GeneType; GeneRange; Accuracy;

2 Width_B_X; m; Uniform; 16 37; 1;

3 H10; m; Uniform; 8 12; 0.5;

4 Width_B_Y; m; Uniform; 24 40; 1;

5 H15; m; Uniform; -17 -12; 0.5;

Listing 3.1: An example gene list in a csv format for two elevation heights
and two base widths.

1 new GeneProfile{

2 Ceiling = 1.5,

3 Floor = 0.5,

4 Precision = 0.01,

5 SetType = "Beam",

6 NamePrefix = "Diameter"}

Listing 3.2: An example gene profile for the diameter property of a beam
element with given range and precision.

Thus, the genes of an individual consist of the main parameters spec-
ified by a gene list, as well as diameters and thicknesses of individual
members. As shown in Listings 3.1 and 3.2, a discrete real-valued repre-
sentation is used. Each gene has an ID that shows whether two genes from
two different individuals relate to the same structural element, which is
needed for the computation of diversity and recombination.

3.2 Population initialization

The initial population is created by cloning the individual created from
the input design and adjusting every gene by a normal distribution. New
individuals are created in this way until the population is filled to a given
maximum size. As shown in the system diagram in Figure 3.1, the initial
population goes straight to the evaluation, so that individuals are given
meaningful fitness values before going to selection. The reinsertion used
on the initial population does not affect it, as at that point the number of
individuals is equal to the maximum population size.
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3.3 Genetic algorithm loop

Once the population is initialized, the algorithm enters a loop that may be
run for a given number of generations or until timeout. The loop proceeds
in the same way as for the classic genetic algorithm in Algorithm 1 in
Section 2.1. After every iteration, the individuals and their evaluation
reports are saved in a database for later retrieval.

3.4 Selection

The system implements multiple selection schemes, including tournament,
roulette wheel, and ranked selection. Ranked selection is implemented by
first adding the individual with the best fitness to the parents list. Then,
individuals are added consecutively to the parents list without replacement
based on a diversity measure. The diversity measure returns an individual
with the highest score, that is computed by dividing a diversity score
by fitness. The diversity score is computed by summing the absolute
difference between each gene value of an individual and the respective
gene value of the individual with the best fitness. Computation of diversity
score is exemplified in Table 3.1. Ranked selection was used to produce
the results presented in Chapter 5. The operator is based on AlSukker et
al. (2010) [18].

Gene ID Best Individual Candidate Individual Absolute difference

1 1.2 0.5 0.7
2 0.7 0.8 0.1
3 1.3 1.4 0.1
4 0.9 1.1 0.2

Diversity score: 1.1

Table 3.1: Example of how diversity score is computed in ranked selection.

3.5 Recombination

Selection returns a list of parents that is used by recombination to produce
offspring. Parents are taken in order in pairs from the list to exchange
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their genes and produce two offspring. The scheme that was used in this
project is called crossover uniform interpolation. For each pair of genes
across two individuals relating to the same structural element, the scheme
can perform two operations with given probabilities. The first operation
switches around the gene values. The second one interpolates the values
by assigning new values to the genes of both individuals taken from a
uniform distribution with the two original values as endpoints. This is
exemplified in Listing 3.3. The values are automatically brought to the
precision determined by the gene profile.

1 maxValue = Max(gene1.Value , gene2.Value );

2 minValue = Min(gene1.Value , gene2.Value );

3 gene1.Value = minValue +

4 (maxValue - minValue) * Random.Double ();

5 gene2.Value = minValue +

6 (maxValue - minValue) * Random.Double ();

Listing 3.3: A function assigning random gene values from a uniform
distribution. Random.Double() returns a real number between 0 and 1.

3.6 Mutation

The system implements multiple mutation schemes, and the ones used in
this project were create beam, dispose beam, and uniform adaptive mu-
tation. The create beam mutation adds new elements to the structure
by either utilizing existing joints or creating new joints for the beam to
connect to. The genes of the new beam are randomized. Conversely, the
dispose beam mutation removes an existing element at random. These two
operations carry out topology optimization. Uniform adaptive mutation
adjusts gene values by a given step percentage and with a given proba-
bility. The step percentage gives a step value based on the gene profile
for the type of the element being adjusted. Additionally, the probability
of performing that mutation is adjusted in every iteration of the genetic
algorithm loop. If no improvement in the best individual has been ob-
served in the previous generation, the probability of mutation is increased
by a given increase rate. If improvement has been observed, the proba-
bility is lowered. Maximum and minimum possible values of probability
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are given to limit the range within which it can be adjusted. Given that
this mutator adjusts the genes relating to the diameters and thicknesses
of elements, as well as the main parameters, it constitutes shaping and
sizing optimization.

3.7 Evaluation

Once offspring has been created, it needs to be transformed to its pheno-
type form to be used as input to evaluation. As mentioned in Section 3.1,
the initial design is in a format used by the Sesam software package that
evaluates designs. To evaluate individuals created by the genetic algo-
rithm, the gene values are applied to a copy of the initial design to adjust
the element sizes and main parameters. Additionally, the structure list
is scanned to apply the creation and disposal of beams. Once the design
files are prepared, they are uploaded to virtual machines in the Azure2

cloud that are running Sesam software. This is done due to the fact that
evaluation is the most computationally demanding part of the system, and
employing virtual machines enables running evaluations in parallel.

The current system has the capacity to perform ULS and FLS analyses,
briefly described in Section 2.3.1, based on the load cases present in the de-
sign files. Only ULS has been used in this project. The analyses produce
a report for each individual that includes the inherent physical proper-
ties of each element, their utilizations, and angles between the elements.
Since the genotype includes parameters influencing multiple elements at
the same time, the information obtained from the evaluation is not readily
available in the genotype. The report is used to compute the objectives
that go into the fitness function presented in Listing 3.4.

1 double fitness = TotalWeight * JacketWeightCost

2 + TotalUtilizationFactor

3 + UtilizationTargetDeviationSum

4 + WeldWeight * WeldingWeightCost

5 + FitnessLambda * (WajacPenalty

6 + AngleViolations * AngleDeviationSum

7 + UtilizationViolations * UtilizationDeviationSum

2Azure cloud https://azure.microsoft.com/en-us/overview/what-is-azure/

https://azure.microsoft.com/en-us/overview/what-is-azure/
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8 + PileViolations * PileDeviationSum );

Listing 3.4: Fitness computation

Each objective present in Listing 3.4 is briefly explained in Table 3.2.
Some objectives are multiplied by a deviation sum, which expresses how
much the resulting values differ from desired ranges. The terms in the
parentheses are penalties, and they are multiplied by a fitness lambda,
that expresses how heavily the penalties should be weighted in relation to
the other factors. What has been omitted from Listing 3.4 is that every
summand is multiplied by its respective lambda, representing the weight
of each objective. Thus it is an example of a weighted-sum approach of
combining multiple objectives.

Variable Description

Total Weight Sum weight of each individual element. It is multi-
plied by a cost that approximates the cost of steel.

Total Utilization
Factor

Sum of each element’s utilization.

Utilization Target
Deviation Sum

Sum of each element’s absolute difference from a
specified target utilization. Target is usually be-
tween 0.85− 0.95 as a safety margin.

Weld Weight A measure describing the complexity and the cost
of welding elements together. It is computed based
on the area between connected elements, and then
multiplied by an estimated cost.

Wajac3Penalty Equal to 1 if Wajac failed. Wajac consists of hydro-
static, hydrodynamic, and wave fatigue analyses.

Angle Violations Number of angles between elements that are not
within required ranges.

Utilization Viola-
tions

Number of elements with utilization above 1.

Pile Violations Number of piles that experience forces outside of a
required range.

Table 3.2: An overview of the variables used for fitness computation.

3Sesam Wajac analysis https://www.dnvgl.com/services/hydrostatic-and-

https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
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3.8 Reinsertion

The fitness computed in the evaluation stage is used during reinsertion to
decide which individuals of the combined parent and offspring set are taken
into the next generation. The system employs a simple reinsertion scheme
that sorts the individuals by ascending fitness values and lets the first
half survive. This scheme is completely elitist and there is no duplicate
removal, so the population may lose diversity over time. Once reinsertion
is complete, the genetic algorithm loop continues with the next genera-
tion starting with the selection stage, unless the termination criterion is
fulfilled.

hydrodynamic-analysis-wajac-2244

https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244
https://www.dnvgl.com/services/hydrostatic-and-hydrodynamic-analysis-wajac-2244


Chapter 4
Related Systems

This chapter has been reused from the specialization project pre-
ceding this thesis [15].

This chapter presents some of the work related to jacket optimization,
as well as on similar applications of evolutionary computation for struc-
tural design. Table 4.1 outlines the systems that are described below.

4.1 Jacket optimization

Multiple studies have been performed on the topic of jacket optimization
for offshore wind turbines (OWT). Some work has been done on evolution-
ary computation methods, as summarized here, but much of the literature
is based on gradient methods. There is no consensus on which methodol-
ogy is preferred. The EC methods offer navigation of a poorly understood
search space, but recent efforts have made gradient methods more feasible,
whilst offering reduced computational time. Due to the apparent lack of
literature relating to EC jacket optimization for oil platforms, the focus
in this section will be on OWT supports.
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System Algorithm Objective Domains Structure

Pasamontes 2014 GA Mass Size, shape
JacketSchafhirt 2014 GA Mass Size

Martens 2015 GA
Cost (material, painting,
welding)

Size,
topology

Häfele 2016 PSO (ALPSO)
Cost (material, production,
coating, transition piece,
transport and installation)

Size, shape,
topology

Kunakote and
Bureerat 2011

PAES, PBIL,
NSGA-II, SPEA2,
MPSO

Mass, eigenfrequency,
structural compliance

Topology Emergent

Noilublao and
Bureerat 2011

PBIL, SPEA2,
MOSA

Mass, compliance,
frequency analysis
parameters

Size, shape,
topology

Truss
tower

Table 4.1: Overview of the systems described in this chapter.

4.1.1 Genetic algorithm for shape and sizing optimization

Pasamontes et al. (2014) used a genetic algorithm to optimize the mass
of the OC4 jacket, with 16 binary genes for the thicknesses and diameters
of the elements, as well as 3 genes for the bay heights[19]. This resulted
in diameters ranges of 800-2048mm and 400-2448mm, and thicknesses of
40-104mm and 10-74mm, for legs and braces respectively. Similarly, the
heights varied by ±8192mm from the positions of the original design. The
optimization of bay heights was reported as belonging to the topology
domain, yet according to Kicinger’s classification it fits the shaping cate-
gory, due to not changing the number of joints or beams[13]. The effect
of varying the bay heights can be seen in figure 4.1.

The initial population was generated randomly by setting the gene
values within the given ranges using a uniform distribution, as well as
being subject to validity constraints. The system was tested with pop-
ulation sizes of 15 and 30. ULS and FLS analyses were performed to
calculate whether the reliability constraints were fulfilled, and the designs
that passed had their scaled fitness calculated based on mass. Individuals
were chosen for reproduction by roulette wheel selection, and the next
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Figure 4.1: Jacket shaping with varying bay heights. Taken from Pasa-
montes et al. (2014)[19].

generation was picked through elitism by picking the fittest individuals
from both the parents and the children. Every 10th generation, immi-
gration was performed by introducing new randomly generated designs to
increase the diversity of the population. The operators used were multi-
point crossover and bit flipping mutator. The mutator had a 0.05 proba-
bility, that was increased by 0.01 if no change in best fitness was observed
for 20 generations. The termination condition was reaching 300 genera-
tions. For the single load case used, the results amounted to around 30%
reduction in mass, regardless of whether shaping optimization was used.
A particular problem relating to the binary representation was pointed
out, where thresholds for gene values emerged that made navigating the
search space difficult.

4.1.2 Extending the genetic algorithm

Schafhirt et al. (2014) extended the work of Pasamontes, but only for the
thickness and diameter parameters [20]. The number of iterations until
convergence was reduced to one third through multiple improvements. Re-
analysis was introduced by using mutators on promising designs without
repeating the time-domain analysis, and instead approximating the per-
formance based on parent’s results. Additionally, fitness precalculation
was employed to check whether the fitness of an offspring was higher than
the lowest fitness in the current population. Individuals that did not pass
the check, were not analyzed and instead discarded to save time. Further-
more, similarity checks were performed bit by bit to discard overly similar
offspring. Regarding further work, the authors propose that instead of, or
in addition to, the mass, the fitness calculation may be based on stiffness,
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eigenfrequencies, or damage capacity. It was also discussed that designs
optimized based only on static loads may express superfluous redundancy
due to large safety margins.

4.1.3 Topology optimization based on a ground structure

Martens et al. (2015) used a genetic algorithm to optimize both the topol-
ogy and sizing of an OWT jacket [21][22]. The starting point of the process
was a ground structure with fully connected and symmetric faces, hollow
middle, and a fixed number of joints. The genes consisted of diameters
and thicknesses of members. Shaping optimization was not performed, as
the relative positions of joints were not adjusted. This can be especially
seen in the fact that as opposed to the OC4 jacket, the legs of the tested
design were not at an incline, and the system had no way of arriving at
such a solution.

Figure 4.2: Example progress of the optimization process of Martens’
system. Taken from Martens et al. (2015)[21].

The initial population was generated randomly based on user-specified
gene constraints, as well as a probability to remove members from the
ground structure. Fitness was calculated with the material and instal-



Related Systems 33

lation cost, approximating the efforts of cutting, welding, and painting.
Furthermore, the genetic algorithm operators were implemented similarly
to those of Pasamontes’ system. An adaptive mutation rate was employed
by measuring the diversity of the population based on the number of un-
equal genes between the best and the worst individuals. A test was run
for 100 generations that took 24 hours to complete. Some designs re-
sulting from the test can be seen in figure 4.2. Manual optimization was
performed on a fixed topology for comparison, and it resulted in slightly
better fitness of the final design.

4.1.4 Modelling the jacket search space and particle swarm
optimization

Häfele et al. (2016) performed extensive modelling of the jacket design
search space and employed a particle swarm optimization algorithm. The
focus was on representing the problem in a way that did not restrict how
the resulting solutions may be formed. Thus, the parameters consisted
of lengths, diameters, thicknesses, foot and head radii, number of legs,
number of bays, and whether mud braces are used. An example of a
resulting jacket can be seen in figure 4.3.

The faces seem to be restricted to an X-brace per bay, and thus the
system did not allow other nodes than X-joints between the legs, unlike
the system of Martens. The fitness consisted of the sum costs of material,
production, coating, transition piece, transport and installation. Addi-
tionally, there was a constraint on whether the lifetime of all joints is above
the design lifetime, as well as whether the utilization ratios are below 1.
Thus, the problem was formulated as single objective with constraints,
and a variant of PSO called Augmented Lagrangian Particle Swarm Op-
timization was employed to be able to handle the constraints. A test was
run for the OC4 reference jacket. The computation took 47 days, and
the resulting three-legged jacket can be seen in figure 4.4. The cost was
calculated to be 2.36 million e , compared to the supposed 2.91 million e
cost of the best four-legged design.
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Figure 4.3: An example jacket from
Häfele’s system together with the
design driving parameters. Taken
from Häfele et al. (2016)[23].

Figure 4.4: Häfele’s test result
jacket. Taken from Häfele et al.
(2016)[23].

4.2 Structural optimization

Evolutionary computation methods are popular in structural design, and
thus there are multiple works describing their applications. Kicinger et
al. (2005) have summarized the most prominent systems of the field that
have been developed since the 1970s[13]. The majority of the systems
employ genetic algorithms, whilst some use other EAs such as genetic
programming or evolution strategy. Additionally, the comparison includes
optimization domains, researched structure, representation, type of fitness
calculation and objectives, as well as constraints. The study also discusses
the potential of structure generation by EC methods, and issues regarding
representation and constraint handling. Furthermore, the multi-objective
nature of structural design problems is described, whilst noting the lack
of sufficient research regarding it. Addressing this in a more recent paper,
Zavala et al. (2014) have performed a survey of various works applying
multi-objective optimization to structural design problems[5]. The survey
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collected over 50 references and classified them based on multiple crite-
ria, such as algorithm used, kind of structure, and optimization domain.
Methods from the evolutionary algorithm family were pinpointed as the
most popular, with NSGA-II being studied most often. At the same time
a wide variety of related solvers was mentioned. The study also discusses
the issue of floating-point versus binary encoding and proposes additional
research on the use of differential evolution for the former. Some of the
relevant systems applying EC for structural design are presented below.

4.2.1 Evaluation of multi-objective EC methods for a grid-
based structure

Kunakote and Bureerat (2011) performed an evaluation of four multi-
objective evolutionary algorithms with regards to topology optimization,
with structural compliance, natural frequency, and mass as objectives[24].
These algorithms were: Pareto archive evolution strategy (PAES), population-
based incremental learning (PBIL), non-dominated sorting genetic algo-
rithm (NSGA-II), strength Pareto evolutionary algorithm (SPEA2), and
multi-objective particle swarm optimization (MPSO). Furthermore, NSGA
and SPEA were tested for various parameters for both the binary and
real value encodings. PAES and PBIL used binary, and MPSO used real
valued encodings. Instead of optimizing for a specific structure, four en-
vironments were modelled based on a grid with specific criteria, and thus
the search space could allow for an arbitrary structure. The evaluation
was based on hyper-volumes and generational distances of the generated
Pareto fronts. Hyper-volume is an indicator of a front’s advancement and
extent through the calculation of the volume between each individual and
a reference point. A generational distance of a front is measured in rela-
tion to an approximate true Pareto front based on the minimal distances
between individuals across the two fronts. These indicators describe the
optimality of the resulting front, as well as its diversity. Overall, PBIL
scored highest based on these measures, with PAES in second. The re-
sulting structures were compared to ones produced by a gradient-based
method, and a significant inferiority of the former was noticed. Regard-
less, the use of EC methods was said to be advantageous due to their
robustness when met with search spaces of structural design problems.
The study also reported that parameter configurations with higher muta-
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tion probability, rather than crossover, performed better for NSGA and
SPEA.

4.2.2 Multi-objective optimization of a truss tower

Noilublao and Bureerat (2011) compared the performance of PBIL, SPEA2,
and archived multi-objective simulated annealing (AMOSA) when opti-
mizing the topology, shape, and sizing of a truss tower with regards to
five objectives[25]. The tower was 50 meters high with 10 to 20 levels,
similar to jacket bays, that had four identical faces per level. Varying the
number of levels constituted topology optimization. Ten design variables
controlled the shape of the tower regardless of the number of levels, by ma-
nipulating the heights and widths of the levels. Lastly, each level consisted
of 16 elements, cross-sections of which were adjusted by six parameters per
level. The cross-sections could have five different values, where one of the
values corresponded to removing the elements. Examples of the resulting
towers are shown in figure 4.5. The optimization of the three domains

Figure 4.5: Six towers from a final Pareto front. Towers further to the
left are optimized for compliance, whilst the ones further to the right are
optimized for mass. Adapted from Noilublao and Bureerat (2011)[25].

was performed simultaneously, and it is argued that this produces better
results than sequential optimization. The evaluation was split into four
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bi-objective problems, with mass being present in every problem. The
first problem included compliance, while the three others included objec-
tives related to frequency analysis. The evaluation metrics consisted of
averages and standard deviations of hyper-volumes and generational dis-
tances computed over 10 runs per problem. Based on these metrics, PBIL
turned out to be the most effective for the compliance problem. For the
three others, PBIL produced more extended fronts, whilst the fronts of
SPEA2 advanced more. The runs were performed with a population size
of 200 and lasted for 300 generations. The computation took between
30 to 360 minutes per run based on the problem, with AMOSA having
strictly lowest computation time.



Chapter 5
Implementation and results

This project extended the current system presented in Chapter 3 with
the possibility of employing NSGA-II (Section 2.2.1) for the jacket design
problem. Section 5.1 explains how NSGA was implemented along with
other changes. Results from the original GA and the newly implemented
NSGA are presented in Section 5.2.

5.1 Implementation

As described in Section 2.2.1, NSGA shares most of its functionality with
the genetic algorithm presented in Algorithm 1. The mutation and recom-
bination operators that were already present were reused. Evaluation was
adjusted to utilize multiple objectives. A multi-objective tournament was
implemented as selection. Reinsertion was implemented according to Al-
gorithm 2, including the constrained-domination operator from Definition
2.2.7.

5.1.1 Evaluation

Two objectives were chosen to be optimized by NSGA. The first one was
the sum of total weight and weld weight, which were grouped together
due to being closely correlated. The second objective was the total uti-
lization factor. The two objectives are competing, as lower utilization is
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obtained by using more steel, thus giving a larger safety margin. This in
turn increases the total weight of the design. The two objectives were to
be minimized. Angle, utilization and pile violations, as well as the Wajac
penalty were used as constraints. Their sum was used as constraint vio-
lation per Definition 2.2.7, and if the sum was equal to 0, a solution was
deemed feasible.

Additionally, the Azure cloud solution was replaced with OneCom-
pute1, that was developed by DNV GL, the company responsible for
Sesam. Close integration of the evaluation software with the cloud so-
lution allowed for more reliable execution. The switch improved the anal-
ysis time, allowed running more evaluations in parallel, and diminished
the number of failed evaluations to an insignificant amount.

5.1.2 Selection

The pseudocode for the implemented multi-objective tournament selec-
tion is shown in Algorithm 5. The tournament size was set to 3. The
value of the tournament size is a trade-off between exploration is exploita-
tion. With lower values, it is more likely for worse solutions to reproduce.
With higher values, the better solutions are prioritized, but the number
of possible unique pairings is lower. The operator takes in the previously
generated population and picks a number of competitors equal to the tour-
nament size. The competitors are compared against each other using the
partial order operator. This picks the individual with the best rank, and
if ranks are equal, it picks the one with the largest crowding distance. The
best individual amongst competitors is added to the set of parents. Given
that the recombination operator that comes after selection picks parents in
pairs from the set, pairs of duplicates are avoided by temporarily removing
the last tournament winner from the set of candidates for the next itera-
tion. Other than that, picking of parents is done with replacement, unlike
the selection mechanism described in Section 3.4 of the current system.

1OneCompute About https://devpeuwwa01platonecomputedocumentation.

azurewebsites.net/docs/v3.0/

https://devpeuwwa01platonecomputedocumentation.azurewebsites.net/docs/v3.0/
https://devpeuwwa01platonecomputedocumentation.azurewebsites.net/docs/v3.0/
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Algorithm 5: Multi-objective tournament selection

candidates = population;
tournament size = 3;
parents = {};
i = 0;
while ‖parents‖ < ‖population‖ do

competitors = pick tournament size individuals at random
from candidates;

forall c1 in competitors do
c1.wins = 0;
forall c2 in competitors do

if c1 4 c2 then
c1.wins = c1.wins + 1;

add competitor with the most wins to parents;
if i mod 2 = 0 then

remove winner from candidates;
else

add previously removed winner back to candidates;
i = i + 1;

return parents;

5.1.3 Reinsertion

Reinsertion was implemented by closely following Algorithm 2 of the
NSGA-II reinsertion scheme. Early tests have shown that some duplicate
solutions end up in the population. Reinsertion was adjusted to remove
individuals that had combinations of objective values that were equal to
those of other individuals. Thus after every reinsertion, a population was
obtained where every individual had a unique combination of objective
values.
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5.2 Results

This section summarizes the tests that have been done to evaluate the
performance of NSGA-II for the jacket design problem, as well as compare
it to the performance of the original genetic algorithm.

5.2.1 Test setup

The starting point of the tests was a design of the Valhall Flank West2

jacket. A non-final version of the design was used, as to leave room for
the algorithm to find optimization potential. The initially used version
did not fulfill all the constraints mentioned in Section 3.7. Early tests
of NSGA-II have shown that the constraint handling method struggles
to navigate in the infeasible space. To mitigate this, the original genetic
algorithm was used to produce a feasible design that was used in the tests
presented in Section 5.2.2. A diagram of the Valhall Flank West jacket is
shown in Figure 5.1.

Parameter Value 1 Value 2

Mutation probability per element 0.005 0.005

Step percentage 0.1 0.6

Probability ceiling 0.5 0.5

Probability floor 0.005 0.0005

Probability increase rate 0.1 0.05

Probability decrease rate 0.2 0.1

Table 5.1: Parameter for the two uniform adaptive mutations.

Six test runs were performed: three for GA and three for NSGA-
II. Each test was run with 50 individuals and for 150 generations. The
mutation and recombination operators described in Chapter 3 were used.
Two versions of uniform adaptive mutation were used concurrently during
each test run, and their parameter values are summarized in Table 5.1.
The most significant difference in parameter values is that one of the

2Valhall Flank West press release https://www.akerbp.com/en/valhall-flank-

west-successfully-installed/

https://www.akerbp.com/en/valhall-flank-west-successfully-installed/
https://www.akerbp.com/en/valhall-flank-west-successfully-installed/
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mutations adjusts the gene values by a step percentage of 0.1, whilst the
other one by 0.6.

Operator Probability for Probability Per which object

Crossover Application 1.0 Individual

Crossover Gene switch 0.5 Element

Crossover Gene interpolation 0.1 Element

Dispose beam
mutation

Beam disposal 0.025 Individual

Create beam
mutation

Beam creation 0.0025 Individual

Create beam
mutation

Joint creation 0.8 Individual

Table 5.2: Probabilities for the operators used, except for uniform adaptive
mutation.

The probabilities for the rest of the operators is summarized in Table
5.2. The crossover probability was 1, which meant that every offspring was
produced by crossover. The per-individual probability of beam creation
and disposal means that every child has the given chance of being adjusted
once by the operator. For example, an individual has a single chance of
0.025 to have one of its elements removed at random. The probability for
joint creation comes into play only after an individual has been picked for
the beam creation operation.
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Figure 5.1: A visualization of a design of the Valhall Flank West jacket
generated using the Sesam software.
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5.2.2 Tests

This section presents the data obtained from the tests. Conclusions based
on the results will be presented later in Section 6.1. All the tests were
run with the same initial conditions, and the differences between the be-
haviour comes from the stochasticity of the algorithms. Table 5.3 lists
all the presented test runs together with their computation time and in-
formation about individuals with best fitness. The GA tests produces
individuals with better objectives values, but they were deemed infeasible
due to utilization violations. The NSGA solution were feasible, but with
significantly worse objective values. The values given in the tables in this
section are rounded to the closest integer.

Test Time
(hh:mm)

Best
fitness

Total + weld
weight

Total uti-
lization

Generation
produced

GA1 12:20 3948 3173 765 140

GA2 11:40 3920 3164 745 138

GA3 11:00 3860 3119 734 137

NSGA1 12:40 4257 3502 754 148

NSGA2 13:00 4176 3440 735 134

NSGA3 12:00 4248 3484 763 129

Table 5.3: Overview of the tests performed, together with the individual
with best fitness from each run.

Name Fitness Total + weld
weight

Total utilization Generation
produced

NSGA1 W 4258 3502 756 147

NSGA1 U 4315 3567 747 109

NSGA2 W 4175 3440 735 134

NSGA2 U 4250 3524 725 147

NSGA3 W 4249 3484 765 97

NSGA3 U 4285 3529 756 139

Table 5.4: Individuals from the endpoints of the final fronts of NSGA tests
with either minimized weight (W) or utilization (U).
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Table 5.4 shows the individuals from the final fronts of the NSGA tests.
This means that they have the lowest values of the respective objectives.
When comparing with Table 5.3, it can be seen that NSGA2-W has the
same values as the one with the best fitness from the NSGA2 test.

Figure 5.3 shows every individual in the objective space for every test
with outliers removed for large values of both objectives. The outliers
were removed at the third percentile of largest weight values and fifth
percentile of largest utilization values. The color scheme presented in
Figure 5.2 was used to color-code individuals based on which generation
they entered the population. The individuals were plotted in such a way
that if an individual from a later generation occupies the same space as
another individual, the color of the earlier generation is shown on top.
Crosses represent infeasible individuals, whilst dots represent the feasible
ones. It can be seen that due to the strict constraint handling method
of NSGA, infeasible individuals are only found in the early generations.
Every test has shown a large spread of solutions in the early generations.
GA can be seen converging more strongly towards single solutions, whilst
NSGA shows a larger spread in the final generations compared to GA.

Figure 5.4 shows the last generation of every test. It shows that the
GA1 and GA3 tests converged to a single solution, whilst GA2 ended up
with two solutions. Meanwhile, as duplicate removal was implemented
for NSGA, NSGA1 and NSGA2 show a single final front, whilst NSGA3
shows three fronts.

Figure 5.2: Color scheme used for groups of generations in Figure 5.3.
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(a) GA1 (b) NSGA1

(c) GA2 (d) NSGA2

(e) GA3 (f) NSGA3

Figure 5.3: Graphs in the objective space over every individual from all
generations for every test except outliers.
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(a) GA1 (b) NSGA1

(c) GA2 (d) NSGA2

(e) GA3 (f) NSGA3

Figure 5.4: Graphs in the objective space over the last generation from
every test.
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Conclusion

6.1 Discussion

The tests have shown drastic differences between the behaviour of GA
and NSGA due to multiple reasons. The main factor was constraint han-
dling. GA added penalty values for the broken constraints, which were low
enough to deem infeasible solutions with lower weights to be better than
feasible solutions. NSGA used the constraint handling method presented
in Definition 2.2.7, which always prefers feasible solutions. As mentioned
in Section 5.2.1, this scheme made it near impossible to navigate in the
infeasible space. The explanation for that is that the constraint handling
scheme approximates a weighted sum fitness approach with weights equal
to 1. Another significant difference was that NSGA was adjusted by im-
plementing duplicate removal, and thus the population always contained
50 individuals that differed at least slightly. Meanwhile, GA ended up
with one or two unique individuals in their final populations. On the one
hand this increases exploitation by producing more offspring of the best
individual, but diversity suffers.

Preliminary smaller tests have been done throughout the project to
gauge the behavior of the implemented NSGA. Originally, the two objec-
tives used were total weight and weld weight, whilst utilization was barely
used as a constraint, but this was deemed to produce little variation in
individuals. A test was also performed with every term from the fitness
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function in Listing 3.4 as an objective, but it produced too many infeasible
individuals for any meaningful advancement. Utilization was once used as
an objective to be maximized whilst keeping the per-element utilization
below 1, as it is a common guideline during the jacket design process, but
this also led to poor front advancement.

The test-improve approach could have been continued to produce bet-
ter results. A meeting held late during the project with a jacket engineer,
that had previously used the system, led to a conclusion that the system
requires fundamental changes to make its use practical. Despite working
closely with the analysis results from the Sesam software, and implement-
ing multiple design constraints, it has been found that there are many
more rules used during the design process that decide the feasibility of a
jacket. As such, the focus has shifted towards other changes to the system,
as described in the section below.

6.2 Future work

The most important issue to work on is the consideration of constraints
that influence the design process. Whilst many rules are already imple-
mented in the system, the list is vast and requires complete support in the
system to produce useful designs. As the topic of jacket design is complex
and requirements differ between projects, it is difficult to map out all the
rules. A few examples of design constraints include [12]:

• Leg can diameter must equal diameter of leg above.

• Inside diameter for cans on braces must match inside diameter of
braces.

• Bottom leg sections must widen to increase buoyancy.

• Legs should be splayed

• Braces coming into a leg should be separated by 100 mm.

• Brace diameter must be less than 0.95 * leg diameter.

An alternative approach would be to shift the focus of the system from
optimizing complete designs to adapting it for use during the early stages
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of projects. At that point, simplified designs are studied to decide the
rough topology of a jacket. This would mean that significantly fewer
constraints would have to be considered.

Another shortfall is that the system implements only a subset of anal-
yses performed during jacket design. Examples of the missing analyses
include transportation, launch, and accidental limit state. It is important
to perform every analysis after making changes to a design, as adjustments
aimed at improving one aspect of a design might decrease its performance
with regards to other measures. Adding more analyses would increase the
running time of tests considerably, but there is still room for improvement
with regards to how evaluation is done. The OneCompute cloud solution
employed during this project fared better than the previous Azure one,
and it might be possible to optimize its use to reduce the current running
time by up to 50%. This would make it more feasible to perform multiple
analyses.

One way to possibly improve the behavior of NSGA would be to imple-
ment a hybrid approach which could use the GA to find feasible solutions
that feed into the NSGA. For example, by having two populations, one
for GA and one for NSGA, their efforts could be combined by having a
common reinsertion step that lets the individuals with best fitness into
the GA population, and feasible individuals with good objective values
into NSGA. As it might be possible that minor constraint violations are
not significantly detrimental to a design, the constraint handling method
of NSGA could be made less strict by marking individuals with constraint
violation below certain level as feasible.

Besides the changes mentioned above, a possible improvement would
be to adjust the genotype to extend the search space. Currently, as men-
tioned in Chapter 3, the topology and shaping optimization relies on de-
signs having parameters that influence these domains. An example of such
a parameter is the base width which determines the angles of legs, and
consequently the lengths of horizontal beams. This is a tight coupling
between the genotype and phenotype representation. Removing this cou-
pling would require a method that could produce a design based on the
genotype, instead of appending overrides to existing design files. Addition-
ally, dependencies between structural elements would have to be modelled
appropriately in the system, so that adjustment of any gene would pro-



Conclusion 51

duce a valid structure. These mechanisms would make it possible to allow
for designs that differ to a larger degree from the original design. On the
other hand, it would put more pressure on ensuring that a solution adheres
to design constraints.

In general, the system could benefit from employing more domain
knowledge. Parameters are currently adjusted in a random fashion. By
analyzing the evaluation results in depth by element, it might be possible
use mutators in a guided way to adjust parameters towards beneficial val-
ues. An example would be to increase the size of elements with utilization
violations. Correctness of such procedures would have to be ensured by
expert knowledge.
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