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Summary

The potential gains in economical growth, environmental efficiency and hu-
man safety from having autonomous vehicles and vessels are huge, but the
development of such systems have proven to be hard. Since there are no
human to intervene in such systems the importance of cyber security can be
argued to be even larger than for traditional vehicles and vessels. This thesis
proposes and implements a design for a virtual platform that can be used to
test the cyber security of the autonomous systems without needing the phys-
ical hardware to run the autonomous system. The virtual platform does this
by virutalizing the autonomous system and interfaces with a virtual replica
of the vehicle or vessel in a 3D realtime simulation. To asses the viability
and usability of the virtual platform a cyber security penetration test were
performed for a proof-of-concept system for both a vehicle and a vessel.
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De potensielle gevinstene innen økonomisk vekst, miljøeffektivitet og men-
neskelig sikkerhet fra autonome kjøretøy og skip er store, men utivkling av
slike systemer har vist seg å være vanskelig. Siden der ikke er noen mennesker
tilgjengelig til å fysisk gripe inn i slike systemer s̊a kan man argumentere for
at viktigheten av cybersikkerhet er større enn p̊a selv tradisjonelle kjøretøy
og skip. Denne oppgaven foresl̊ar og implementerer et design for en virtuell
platform som kan brukes til å teste cybersikkerhet for autonome systemer
uten å trenge alt av fysisk hardware for å kjøre det autonome systemet. Den
virtuelle platformen oppn̊ar dette ved å virtualisere det autonome systemet
og kommuniserer med en virtuell replika av kjøretøyet eller skipet i en real-
time 3D simulering. For å vurdere hvor godt den virtuelle plaformen fungerer
for å teste cybersikkerhet for et autonomt system s̊a ble en penetrasjonstest
gjennomført p̊a et konseptsystem for b̊ade et kjøretøy og et skip.
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Introduction

Motivation and Problem description

Autonomous vehicles and vessels are on the rise in our society. Autonomous
vehicles are predicted to have huge impact on transportation by reducing ac-
cidents, lower emissions due to saving fuel and optimizing route planning and
saving costs [12]. Autonomous vessels are predicted to have a huge impact
on their respective industry in terms of economical savings and performance
[7]. This means that the incentives for developing autonomous vehicles and
vessels are many and heavy weighing, but doing so and ensuring they are
both functional and secure are not necessarily an easy task. This thesis will
look into whether creating a virtual platform for testing cybersecurity for
autonomous vehicles and vessels is viable, and whether it simplifies the task
of developing and testing autonomous systems before deploying them into
the real world.

Giving good arguments for why cybersecurity is important for autonomous
vehicles and vessels are not particularly hard, there have been many reports
of cybersecurity incidents for normal vehicles in the media. Some where the
vehicle have been taken control of by hackers [14]. This is obviously a very
serious issue and needs a proportional response, and the increased amount
of autonomy and connectivity might increase the issues further and raise the
potential for devastating consequences even more [23]. The risks are high
for autonomous vessels as well, although there might not have been as many
issues reported with them yet as with vehicles there is still potential for
vulnerabilities and has large consequences of an attack [17].
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When taking all these things in consideration, there seems to be a obvi-
ous need for tools that help develop and test the systems that runs on the
autonomous vehicles and vessels. By having a virtual platform to develop
and test such systems, one might simplify the issue of testing the systems for
security vulnerabilities as well as one might reduce cost due to the fact that
one can test the system before even having the physical version of the vehicle
or vessel. The virtual platform will consist of multiple software components
that together comprises the platform. The platform will then include a vir-
tual physical environment where the vehicle or vessel is simulated using the
Unity game engine. This environment will include physics simulations and
the objects will be visualized and rendered to a screen. The other component
will be a virtual replica of the system that controls the vehicle or vessel. The
components of the system in the virtual replica will be connected by a net-
work in more or less the same way as it would in the real system. This virtual
replica of the system will be made using a virtual network and virtualization
in form of Docker containers and virtual machines.

Project Goal and Research Questions

This thesis will look into the viability for a potential virtual platform for
testing cybersecurity for autonomous vehicles and vessels. More specifically
it will look into the development and testing of such a platform. The overar-
ching goal of the platform is to virtualize every part of the the autonomous
systems in way such that the functionality is as similar to the real system as
possible and that security vulnerabilities can be discovered using the plat-
form. From this the following research questions arises:

RQ1: Is it possible to create a virtual platform such that real autonomous
systems can run on virtualized infrastructure controlling a virtual replica of
the autonomous object?

RQ2: How can such a virtual platform be used to test cyber security of
autonomous systems?
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Project scope

A virtual platform like previously described is an ambitious goal for a master
thesis project and hence many restrictions might be necessary due to time
limits and scope. Also due to the COVID-19 pandemic, testing using real
a autonomous vehicle and vessel would be impossible and hence the project
will focus more on the virtual part of the project. There are also many parts
of the system running on the autonomous vehicle or vessel that might be
too hard to fully virtualize and hence needs an alternative solution that is
not identical. In additon, having the same software running in this virtual
platform as some of the real world use cases that will be looked at during
this thesis will not be possible due to added complexity and time constraints.
Hence much of the software will be made for proof-of-concept purposes to
show how the virtual platform can be used for development and testing. The
thesis will look into and argue that if configured correctly, real world software
should be able to run on the virtual platform aswell, although with a bit more
work needed.

Contributions

Research regarding autonomous vehicles and vessels are large scientific fields
and many systems for simulating them has been made. This thesis con-
tributes to the fields by discussing how a virtual platform that connects the
autonomous system and network infrastructure to a virtual replica of the au-
tonomous vehicle or vessel. The following is a link to a Youtube video where
the main concepts for the virtual platform is explained and a penetration
test were performed on a proof-of-concept implementation of an autonomous
vehicle:

https://www.youtube.com/watch?v=unQ1LEtvESU
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Background

Unity

Unity is a game engine developed by Unity Technologies. A game engine
is software that through different modules provide a simulated environment
that includes 3D rendering, input, output, physics simulations and sound,
and which leaves the environment and the objects in it to be controlled
through programming [18]. In this project Unity will be the game engine
that does all the rendering and simulation of the environment, vehicle and
vessels. The reason behind using Unity is the vast amount of resources on-
line for it as well as that Unity is one of the most popular game engines for
independent game developers and are also used in other industries such as
the automotive industry for VR and AR applications [28].

By being able to simulate the vehicle or vessel in a game engine it will
be possible to visually confirm the actions that the vehicle or vessels per-
form are correct. It will also be possible to equip the vehicle or vessel with
sensors such as camera and lidar, which through the 3D rendering engine
in the game engine will provide data similar to the real world. The objects
can also be controlled by software residing outside of the game engine due to
networking. This means that it should be possible to control them through
the same interface as one would with a real vehicle or vessel and the data
that the sensors transfers back to the controlling software would be similar
to what we could see in the real world.
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Trondheim Autoferry simulator

The foundation for the Unity simulator used in this thesis has its origin from
a Experts in Teams project. In that project many of the assets that are
used in the simulator in this thesis were gathered and imported into Unity.
Some of these assets are the Trondheim city model, which were received
from Rambøll Engineering, the autonomous passenger ferry asset and a small
amount of code. Although the Experts in Teams project simulator provided
much of the assets, almost all of the systems and code used in this thesis has
been developed during the course of the thesis project.

Docker

Docker is a virtualization technology developed by Docker Inc. The virtu-
alization concept that Docker uses is called a container [19]. A container is
similar to a virtual machine, but the container virtualizes the operating sys-
tem instead of the hardware, which a virtual machine does. This means that
a container is a complete virtual environment for running applications since
it provides more or less the features that the OS would, such as networking.
Containers also removes the problem of certain applications working properly
on one machine, but does not another, which can cause a lot of issues when
deploying applications [16].

Docker containers have been used increasingly by the security community
for a wide range of use cases. The Open Web Application Security Project
(OWASP) have issued containers with web apps which has vulnerabilities for
educational purposes, one of which are called Railsgoat [22].
All of these facts makes a very good case for using Docker containers to
emulate the system that is running on the vehicle or vessel. For example,
the Kia Niro at the NTNU NAPLab is running a Ubuntu 14.04 Linux kernel
on their IPC (Industrial PC) [21]. This can then be emulated in the virtual
platform by running a Docker container with the same kernel version and
dependencies as the one that is being used by the NAPLab.
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GNS3

GNS3 is a open source computer network emulator and simulator. It pro-
vides functionality for its users to develop network topologies which can run
by using EmulationGNS3 [13]. This emulates real hardware of a network
device e.g a Cisco router as well as running the actual images, such as an
Cisco IOS, that would be running on that device. GNS3 can also simulate
network devices such as switches, here it is not possible to run the actual
OS such as a Cisco IOS but GNS3 simulates the device in question instead
and GNS3 also has a graphical user interface which makes it easier to reason
about the network topology that are being developed or tested [13]. GNS3
has the capability of running docker containers and virtual machines in the
network topology which are really important for this project. GNS3 has a
vast community and marketplace with a range of tools and plugins that are
both free and costs money. All of this combined makes a strong case for me
to use GNS3 as the network virtualization tool.

ROS

ROS (Robot Operating System) is a software framework for creating robot
software and systems. It provides its users with the necessary tools to create
the robot system in an easy and robust way [24]. ROS is widely used in the
Autoferry project where many of the control systems are using ROS.
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Protocol buffers

Protocol buffers is a serialization protocol initially developed by Google. Pro-
tocol buffers aims to solve many of the same issues as XML does, but in a way
that reduces overhead and are serialized in a binary format which results in
smaller amount of data being transmitted and increased performance [6]. In
this project protocol buffers version 3 is being used. The reason for choosing
protocol buffers are many but the most important ones are ease of use, low
overhead and performance as well as it is backed up by Google. Protocol
buffers works by declaring messages, where these messages works as a infor-
mation container where multiple name-value pairs can be declared and each
of the name-value pairs has to be uniquely numbered [6]. The name-value
pairs can include most of the common data types that one would expect in
a programming language as well as it can contain other messages as well [6].
These messages must be described in the .proto file format. When one are
satisfied with the protocol buffer messages in the .proto file one must compile
them using the protocol buffer compiler to gain access to the classes that will
be generated by this compiler. It is these classes that must be used to access
the serialization functionality by the protocol buffers [6].

gRPC

gRPC is a RPC (Remote Procedure Calls) framework that can connect ser-
vices together, often used in a microservice based architecture [4]. The main
idea in gRPC is that of a service which essentially works in a client-server
architecture. In the service one specifies functions which can be called as a
RPC between the client and the server [5]. The service defines an interface
which the server has to implement, and which the client can call with the
parameters described in the service definition [5]. One interface definition
language to use together with gRPC is protocol buffers. The reason for this
is that gRPC can use protocol buffers as its interface definition language for
generating the services and to use it as its serialization protocol [5]. Another
of the main features of gRPC is the ability to run on different environments
and programming languages. In other words, a server that contains a gRPC
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service can be running on entirely different machine and written in another
programming language than the client is. As long as the server and client
fulfills the interface that is defined by the gRPC service they will be able
to communicate [5]. All of the features above are good reasons for choosing
gRPC as a RPC framework for this project since the project will require
multiple environments and servers and clients in different languages to com-
municate with each other with somewhat good performance.

Penetration testing

Penetration testing has many informal synonyms such as ethical hacking,
offensive security, red teaming etc. The commonalities between these de-
scriptions is that it is usually defined as a legal and authorized attempt to
exploit computer systems where the goal is to further increase the security
of the computer systems that are being tested [10]. When performing pene-
tration testing the end result is a list of vulnerabilities that were discovered
during the penetration test and these should be patched [10].

Penetration testing is one of the most common performed security prac-
tices. Although it is one of the best practises used in software security, a
lack of findings from a penetration test does not mean that there exists no
vulnerabilities in the system [3]. A downside of penetration testing in prac-
tice is that it is often just performed at the end of the project which results
in that too little has been done in regards to security testing too late, and
at a time when fixing those vulnerabilities becomes costly [3]. A better ap-
proach is to integrate the penetration testing into the development life-cycle
and hence getting a iterative testing paradigm such that the vulnerabilities
can be tackled when discovered. This will likely increase the security of the
system compared to a single penetration test at the end of the development
life-cycle [3].
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Related work

During the research phase of this thesis no system that is very similar to
what is described here in this thesis have been found. There are as described
in this section many simulators for developing and testing autonomy sys-
tems for vehicles and some which enables these systems to be controlled by
lower level controllers that can be found in real systems. There seems to be
none that takes such a simulator and connects it to a emulated network of
the machines that will run on these systems to perform cyber security eval-
uation. In addition there seems to be no available open source simulators
for autonomous vessels which provides functionaliy on the same level as the
available autonomous car simulators does today.

Autonomous Car Simulators

Multiple simulators for developing, training and testing autonomous cars
have previously been made. There are too many to mention all of them here,
so only those that have influenced this thesis the most will be mentioned
in particular, since some of the ways of doing things in those projects have
heavily influenced the Unity simulator in this thesis.

Carla

Carla is an open-source simulator for autonomous urban driving research.
Carla supports different areas in autonomous driving research such as de-
velopment of the driving system, training for machine learning models and
validation of driving system [9]. Doing research regarding urban autonomous
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driving is difficult due to the real world constraints that it introduces. It is
expensive and takes a lot of time to operate a robotic car in such an envi-
ronment for training purposes, hence doing such research in the real world is
not particularly scalable, and some of the corner cases that are required to
be trained upon might be outright too dangerous to do [9].

Due to the difficulties from doing this research in the real world, Carla is
using simulation to make this research easier and less expensive. It also alle-
viates some of the issues of performing scenarios that would be too dangerous
to do in the real world [9].

Carla is built upon the game engine Unreal Engine 4, which provides
real-time 3D rendering, physics and other systems that are useful for simu-
lation [9]. Carla uses a client-server architecture in their simulation system.
The server interfaces with the client and exposes an application program-
ming interface to the agents running in the simulation on the server, and
functionality that the application programming interface exposes are many
where some of the most important ones are command controls of an agent
vehicle, such as steering, braking and acceleration [9].

Microsoft AirSim

AirSim is a simulator made by Microsoft Research and is built on Unreal
engine and is able to support multiple types of vehicles and different types
of hardware platforms and software protocols [27]. The AirSim architecture
is modular where some of the core components are models to simulate the
physical world such as a environment model and a vehicle model, a physics
engine to model the physics of the vehicle and environment models and inter-
face layers for clients and vehicle firmware [27]. A typical setup for an aerial
vehicle in AirSim is to have some flight controller firmware which takes input
from the simulated environment and vehicle and produce output that con-
trols the vehicle [27].
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Methodology

System architecture

The system architecture of the virtual platform are intended to be general
in its design. This means that the overarching design of the system does
not change whether it is a vehicle or a vessel that are being simulated. The
internal details of how the vehicle or vessel works will of course vary, both
between vehicle and vessel and between vehicle to vehicle and vessel to vessel.
The architecture of the system will consist of three different modules, which
can be seen in figure 7.1 is a Unity simulation module, a network module
and an alternative external module.

The system will always consist of the Unity and the network module. This
is because those two modules comprises the internal systems on board the
vehicle or the vessel. The external module is not necessary for the virtual
platform to simulate some of the behaviour of the object, but in systems
where e.g. a remote control centre is involved, then such an external module
can be a virtual replica of that. This system architecture is very simplified
and its main purpose is to illustrate how the different modules are connected
to each other. The external module can communicate with components in
the network module, where such a component usually is some device. In
the cases in this thesis, these components will usually be routers, switches
and virtual machines or docker containers. With this architecture a program
running in the external module can communicate with some program running
in the network module. Depending on the function of the programs, the
program running in the network module can then communicate with the
Unity module. Again, depending on the functionality of the program running

20



Figure 7.1: System Architecture

in the network module it can read and/or alter state in the Unity module.
A simple concrete example of this workflow is the scenario of remote control
software running as a program in the external module. This remote control
program can issue a command to the network module, commanding the vessel
or vehicle to perform an action, e.g. accelerate forward. In this scenario, the
external module are oblivious to the Unity module, which is exactly what is
wanted. By having the external module not know about the Unity module
the external module must focus on interfacing with the network module as
it would on a real system. The vessel or vehicle controller program running
in the network module then receives the command from the remote control
program. The controller program then interprets the command and issues a
similar command to the Unity module, in a somewhat similar fashion as it
would issue a command to the underlying system on a vehicle or vessel. The
main purpose here is not that the Unity simulation internally works exactly
as the underlying sensors and actuators of the real vehicle or vessel, but that
its behaviour is more or less the same. This means that when the vehicle
or vessel in the Unity module receives a command to accelerate forwards, it
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does just that. Depending on what the controller program in the network
module expects to know about the state of the vehicle or vessel, those values
will be returned from the Unity module. Such values can be the position,
orientation, velocity, angular velocity etc. of the vehicle or vessel. It can also
be sensory output from e.g. a optical camera.

The Unity simulation is running and controlling the virtual environment
that the vehicle or vessel will be simulated in, an example can be seen in figure
7.2 which shows the autonomous ferry in the Autoferry project positioned at
Ravnkloa in the canal in Trondheim. The ferry model is designed by Petter
Mustvedt.

Figure 7.2: Unity AutoFerry
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Interfacing with the Unity simulation

Much like the Carla simulator is designed using a client-server architecture
[9], the system architecture for the virtual platform in this thesis is also using
a client-server architecture. More specifically, gRPC and protocol buffers are
used for communicating between clients running in the network module and
services running on a server in the Unity module. Using gRPC and proto-
col buffers makes it easy to define the interface that the client and server
communicates over, and it is also programming language agnostic, hence the
services and server running in the Unity module will be written in C#, and
the clients can be written in any language that is supported by gRPC and
protocol buffers. This is a really nice feature to have since some clients might
be developed in Python for rapid prototyping and others that requires more
low level control can be implemented in e.g. C++. Due to time constraints
of the thesis and that the system being developed is a prototype, most of the
clients that will be used here is going to be written in Python.

Knowing how the clients and services communicate are important for
understanding how the virtual platform works, especially it is important to
think about how the interfaces between the clients in the network module
and the services in the Unity module should be designed. This is important
since the overarching goal is to develop an interface that provides the same
functionality and behaviour as the simulated vehicle or vessel should have
in reality. In the best case the interface should be designed in a way such
that swapping out the Unity module with the interfaces to the real vehicle or
vessel should be painless. This should be possible since the software running
in the network module can be more or less exactly the same as it would in
reality. This part is essential to keep the virtualization of the system on the
vehicle or vessel at a level such that meaningful development and testing can
be done on it. If the system that is being developed or tested in the virtual
platform is highly different from the its real counterpart, the testing might
have no purpose since the results from it might not tell us anything about
the state of the real system and its security vulnerabilities.

The ability to control the vehicle or vessel and get sensory input can be
important for an autonomy system. This makes these two functions good
targets to implement for the virtual replicas since these functionalities can
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be found both in autonomous vehicles and vessels. Having a real controller
or sensor software running in the network module for a autonomous vehicle
or vessel during this thesis project will not be possible due to the amount of
complexity added, time constraints and issue of working from home due to
the Covid-19 pandemic.

This means that both the controller and sensor software implementations
in this project will be made as a proof-of-concept and not something that
actually runs on a real autonomous vehicle or vessel. Although the imple-
mentations will be poof-of-concept, there should be no restrictions on the
possibility of swapping these out with real versions later since it will be run-
ning in virtual machines and docker containers. Although this will not be
the ideal situation as described earlier, but this will go a long way of shown
what the virtual platform is capable of.

The implementation details of the services and client will also vary de-
pending on the use case, a client controller for a vehicle will not necessarily
have the same interface as a vessel and hence needs a custom interface spec-
ified for its use case. But the contrary might also be true, e.g. for the sensor
data service, since the interface for streaming camera data might be identical
whether it is a vehicle or a vessel.

There are primarily two types of functionality that will be focused on
during this project. The first one being the functionality to control the
vehicle or vessel in the simulated environment. This means that it should
be possible to issue commands to the simulated vehicle or vessel so that it
is able to accelerate, steer and brake. The second one is the functionality of
providing sensory output, specifically output from a optical camera rendering
the simulated 3D world and sending that back to the client requesting it in
the network module. A very simple architecture that would implement these
two functional requirements are shown in figure 7.3. In this figure one can
see the controller and sensor client is implemented in the Network module
and is connected to a controller and sensory service in the Unity module
respectively. Since the client and the service are implemented using the
same protobuf and gRPC source files they will be able to communicate using
a specified interface from the service definition of the protobuf file.
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Figure 7.3: Unity module interfacing with network module
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The general idea of how these two services works will be quite similar, but
the implementation details will vary quite a bit. The controller service will
be implemented as a unary rpc, which means that a single controller message
will arrive at the server, then depending on which rpc function the message
is the appropriate action will be taken. There are many ways a controller can
be implemented in this way, one example would be to have a single rpc for
driving forward, backward and steering. Another would be to have a single
rpc function for every case and then parse the message sent and control the
vehicle or vessel depending on the parsed information.

For the sensor service the image data can be streamed back to the client.
Packing all the image data into one single rpc message might not be the best
idea. Luckily gRPC has support for streaming and it is quite simple to define
and implement. The main idea behind the sensor service is to capture images
from a camera running inside the Unity simulation and then stream it over
to the sensor client. This client can do operations on the image depending
on the goal of the client.

There is a subtle but important issue with the services interacting with
the Unity simulation objects and environment. This is a bit more complicated
than it might initially seems since the service server runs on its own thread.
The reason why this is a bit complicated is because Unity is very strict about
accessing its resources and enforces a threading model where its resources can
only be updated through the main execution thread running in Unity [25].
Figure 7.4 illustrates how this problem is tackled in this project. The service
that needs to update or read some state from resources in Unity has to do it
through the Unity main execution thread.
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Figure 7.4: Threading model

This is done by having a ThreadManager game object running on the
Unity main thread which contains a list of C# actions to be executed on the
main thread. A action here is a function that is passed as a parameter and
can be run by the function or object that the action is passed to. This action
is then executed on the main thread on the next main thread update and
removed from the list of actions to be executed. In addition to this there is
bit more work needed to make sure that this works correctly, such as locking
the list of actions when adding an actions to ensure that only one thread
can add an action at a time. In addition to this, some kind of signaling is
required to tell the server thread that the action that is to be executed on
the main thread actually has been executed. This is especially important
when the service depends on a result of the action to be executed. This is
done by having a ManualSignalEvent which waits for the a signal to be set
from the main thread. This means that the service rpc execution will block
until the action is finished executing on the main thread. The action itself
does not return any result, but it can capture variables in the server context
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and hence these variables can contain the result from a query on the state
of game objects running in the simulation. An example of this would be
querying the position, velocity and orientation of the vehicle or vessel in the
Unity simulation.

Sensor Streaming

Since the sensor streaming service and client is going to be equal for both
the vehicle and the vessel, this section will describe how it works for both
of them. From figure 7.3 one can see that the sensor streaming client will
be running in the network module and the sensor streaming service will be
running in the Unity module. As described earlier the sensor streaming ser-
vice will in fact run on a gRPC server with its own thread in the Unity
module and the client will be implemented in Python and run in a docker
container in the network module. To begin explaining the sensor streaming
service it is important to describe the service definition and interface which
is defined in the protobuf file. The sensor streaming service which in the
actual implementation is simplified as Sensordata, has only one rpc function
defined which can be seen in listing 1. This rpc function takes in a Sensor-
dataRequest and returns a stream SensordataResponse, this syntax makes
protobuf and gRPC understand that the underlying data in the response
is supposed to be streamed instead of transfered as one large message. The
SensordataRequest is very simple, and as it is now it does not serve any other
purpose than fulfilling the requirement for having a request in the rpc. The
field operation which is a string is there as a placeholder for future enhance-
ments to the streaming service, where a certain operation may be performed
on the image in the Unity module before it is streamed over to the client.
The sensordataResponse on the other hand has two fields that are used and
are very straight forward. The field data is the sensor image bytes that will
be streamed over, and the dataLength is the length of the image in bytes.
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service Sensordata {

rpc StreamSensordata(SensordataRequest)

returns (stream SensordataResponse) {}

}

message SensordataRequest {

string operation = 1;

}

message SensordataResponse {

bytes data = 1;

int32 dataLength = 2;

}

Listing 1: Sensor streaming service

Listing 1 is just the definition of the service which will be used to generate
source code files for the service implementation in the Unity module and for
the client implementation in the network module. The Unity module captures
the frame using an asynchronous callback function which is then set to a local
variable in the Sensordata service implementation. This makes sure that for
just reading the sensor data every frame a call using the ThreadManager
as described in figure 7.4 is not required, which helps on the performance.
The sensor script in the Unity module supports multiple sensors on the same
vehicle or vessel and separates them using a different port number. In figure
7.5 an example of an architecture which implements and support multiple
sensors, in the case of this thesis all the sensors will be optical cameras, but
this architecture can support other sensors as well, there have been testing
done of infrared and lidar sensors in the Autoferry Gemini Simulation project
that runs at NTNU, but it is not quite ready to be used in a case like this
thesis yet.
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Figure 7.5: Multiple Sensors Architecture

The bottleneck in the architecture shown in figure 7.5 is the serialization of
the sensor data in the Unity module and the de-serialization of the same data
at the client side in the Network module. As a proof of concept for this thesis
a sensordata streaming client using Python has been developed. The client
is implemented using Pygame which is a collection of python modules that
makes developing games and multimedia applications easier and accessible
through Python [1]. This was used to reduce the time and complexity of
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creating the client. To show that the multiple sensors architecture is feasible
the streaming sensor client has been implemented to include streams from
four different cameras as seen in figure 7.6 for a vehicle and in figure 7.7 for a
vessel. This shows that the cameras can stream at the same time, although
with not great frame-rate for this simple client. It also shows that the sensors
can be placed in suitable position depending on the need for the vehicle or
vessel. In figure 7.6 there is a camera position as a dash cam, one camera
that is at the top of the vehicle turned backwards and one camera by each
of the front wheel archs. For the vessel in figure 7.7 there is four cameras
placed at the top of the Autoferry, and each of the cameras is pointing in
one of the four sides of the vessel.

Figure 7.6: Vehicle Multiple Sensors
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Figure 7.7: Vessel Multiple Sensors

To show that a streaming client can be implemented in different lan-
guages and hence is language agnostic a streaming sensor client was also im-
plemented in the programming language Rust which can be seen in 7.8. This
client can only stream one camera but uses OpenGL to render the streamed
image to a texture which is then shown on the screen. When building a
optimized build for the Rust streaming client this is able to run between 30
to 60 frames per second on the laptop computer used for this thesis.
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Figure 7.8: Sensor Streaming Client in Rust

Autonomous vehicle implementation

Architecture

In this section the real architecture for the autonomous vehicle belonging to
the NAPLab (NTNU Autonomous Perception Laboratory) will be presented
and it will be shown how the virtual platform system architecture can adapt
and implement at least parts of the autonomous vehicle architecture. In
figure 7.9 the architecture for the Kia Niro blonging to the NAPLab are
shown [20].

This architecture would replace the network module in the virtual plat-
form system architecture. This is a concrete architecture of a real system so
it obviously has a lot more details and complexity than the abstract network
module previously described, but one can still think of all of these compo-
nents shown in figure 7.9 as internal components of the network module. The
architecture shown in figure 7.9 includes a couple of components that are not
necessary to take into consideration for the virtual platform system, such as
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Figure 7.9: Autonomous Vehicle Architecture [20]

12V battery and GNS antenna. There are also parts of this architecture that
will not be possible to emulate in a good way in this thesis project due to
the amount of complexity it would add. Specifically the CAN controller and
the components which are connected to it. From the figure 7.9 one can see
that a Radar component and a Drive-by-wire module are connected to the
CAN controller. These components are too complex for the proof-of-concept
work that are being done in this thesis, although these components should
be possible to emulate e.g. the CAN bus could potentially be replaced by a
SocketCAN solution. However, this thesis project will not look into how to
virtualize these components and will focus on virtualizing the industrial pc
and the router shown in figure 7.9 and how software running on the industrial
pc can interface with a vehicle in the Unity simulation. The Apple iPad Pro
will not be properly virtualized in this architecture either, but for testing
purposes it might introduce potential vulnerabilities since it is connected to
the same router as the industrial pc.
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When performing testing another device will be introduced into the same
network to see if it can cause malicious actions. The LIDAR in this architec-
ture can be thought of as a sensor running in the Unity simulation and will
be interfacing with the industrial pc using gRPC. As described earlier the
network module in the architecture will be implemented using GNS3. Fig-
ure 7.10 shows a simple implementation of the Ethernet part of the vehicle
architecture shown in figure 7.9. In figure 7.10 the vehicle controller docker
container is replacing the industrial pc in figure 7.9. The router and the
switch in the GNS3 implementation in figure 7.10 is replacing the 4G router
in figure 7.9. This is an easy way to add switching capabilities in a lightweight
manner. The router shown as R1 in figure 7.10 is a Cisco C7200 router and
the OS and software that runs on the Cisco router is being emulated. The
cloud symbol shown figure 7.10 is used to bridge the GNS3 network with the
network adapter on the host machine, meaning that the vehicle controller
docker container is able to communicate with processes running on the host
OS, which in this case is Windows 10. Here the host machine and OS means
the actual physical machine and the OS that is running on it. Both GNS3
and Unity will be running on the host machine. Connection between the
GNS3 network and the host OS is needed since the vehicle controller needs
to connect to the gRPC server running in the Unity process on the host OS.
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Figure 7.10: GNS3 vehicle network implementation

As mentioned earlier, the Unity module runs as a Unity process on the
host OS. The Unity module contains all of the simulated environment and
objects. In this thesis the simulated environment is the city of Trondheim,
both for the vehicle and the autoferry. Figure 7.11 shows a vehicle on a road
in the centre of Trondheim. The vehicle 3D model used in this thesis project
is a free model from the free vehicle tools asset released by Unity Technolo-
gies which can be found on the Unity Assets Store. The free vehicle tools
asset also included scripts for handling the vehicle and these scripts has been
slightly modified to work with the vehicle controller service implementation.
This simplified the development of creating scripts that makes the vehicle
handle somewhat realistic and takes care of the rotation and movement of
the wheels on the vehicle.
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Figure 7.11: Vehicle in Trondheim

Vehicle controller implementation

As seen in figure 7.10 the vehicle controller is implemented as a node in the
network, specifically it will run as a docker container. Running the vehicle
controller in a docker container was chosen here because it is lightweight
and ensures that the client software will run on any system that supports
Docker. A virtual machine could also have been used, but is a lot more
resource intensive and is not required for the proof-of-concept system that
is being developed in this project. A virtual machine could be necessary if
a more realistic environment is needed since it will emulate all parts of the
operating system it is virtualizing. In listing 2 a Dockerfile for the vehicle
controller docker container is shown.
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# Version 0.0.1

From ubuntu:18.04

MAINTAINER Thomas Skarshaug "thomskar@stud.ntnu.no"

ADD clients/ /opt/application/vehiclecontroller/

# Python dependencies

RUN apt-get update; apt-get install -y python3; apt-get install -y python3-pip

RUN pip3 install grpcio; pip3 install grpcio-tools

RUN pip3 install Pillow

# Tools

RUN apt-get install -y net-tools

RUN apt-get install -y iputils-ping

RUN apt-get install -y vim

RUN echo 'Finished building'

Listing 2: Vehicle controller Dockerfile

On the first line the version number of the vehicle controller container is
shown, this is set as 0.0.1 since it is the first release of the container. On
the next line the base image that the vehicle controller container is based
upon is defined, in this case it is ubuntu:18.04. This Ubuntu version was
chosen because it was the version that worked best with the grpc tools re-
quired for the controller client written in Python. The Kia Niro residing at
NAPLab is actually running Ubuntu 14.04 [21] which means that the ver-
sion of the OS in the vehicle controller and the industrial pc in the real Kia
Niro not the same. This is not ideal, but in the case of the proof-of-concept
work that is being done in this project and the fact that not that many of
OS specific features will be tested it was a good compromise for getting the
grpc tools for python to properly work. On line three the maintainer of the
container is listed with name and email address. On line four in listing 2
the source code for the client is added and will be located at the path /op-
t/application/vehiclecontroller in the docker container. The next lines of the
Dockerfile is installing tools that is required for the client as well as tools that
is nice for debugging such as networking tools and a text editor. The last
line writes to the terminal telling it that building of the docker image is done.
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To understand how the vehicle controller works a look at the vehicle con-
troller interface definition and service and client implementation is required.
Listing 3 shows the service definiton and interface that is defined in the
protobuf file for the vehicle controller.

service VehicleController {

rpc DriveForward(DriveRequest) returns (DriveResponse) {}

rpc DriveBackward(DriveRequest) returns (DriveResponse) {}

rpc Steer(DriveRequest) returns (DriveResponse) {}

rpc Idle(DriveRequest) returns (DriveResponse) {}

rpc Brake(DriveRequest) returns (DriveResponse) {}

}

message DriveRequest {

float torque = 1;

float angle = 2;

float brakeTorque = 3;

}

message DriveResponse {

bool success = 1;

}

Listing 3: Vehicle controller interface definition

The service has five rpc definitions. All of them send and receive the
same type of request and response. The reason for splitting the functionality
into separate rpcs is to keep avoid having one large rpc implementation in
the Unity module where the service is implemented. This might add some
more code, but each rpc function has only one type of driving functionality
it must implement. The DriveRequest message shown in listing 3 has three
fields: torque, angle and brakeTorque. The torque is the amount of torque
that is passed to a script from the vehicle tools asset which is free from the
Unity assets store and this script is called WheelDrive. In the case of this
thesis project the torque for driving forward will be set as the maxTorque
of the WheelDrive script. For driving in reverse the torque field will be set
as -1.0 and multiplied with the maxTorque, hence making the vehicle drive
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in reverse. One can see that driving forwards and backwards is represented
with their own rpc definition. The third rpc definition in listing 3 is steer,
the use of this rpc on the client will set the angle field to either -1.0 or 1.0
depending on it will turn left or right. The idle rpc is there just to set every
value of the DriveRequest to zero on the client, meaning that the car will
not have any torque, steering or braking and just be idle. The last rpc brake
is meant to do exactly what it sounds like. The brake implementation in
the Unity module will take the brakeTorque value given and the WheelDrive
script will then brake the vehicle with that amount.

In listing 4 the service implementation of the vehicle controller is shown,
implementation is written in C# and is in the Unity module of the system
architecture. The implementation of all of the rpc functions would be too
long and repetitive, but including one of them and explaining the main ideas
is important to understand how the system works in the Unity module. The
function shown in listing 4 is the implementation of the DriveForward rpc
which can also be seen in listing 3. This function is overridden since the class
that implements the rpc functions inherits a base class for the service which
is generated by gRPC. The return value of the rpc is a Task of type DriveRe-
sponse, and the parameters given to the rpc function is a DriveRequest and a
ServerCallContext. For the sake of simplicity the functions of the Task and
ServercallContext will not be looked at in detail. These are requirements
for the gRPC implementation and will be essentially abstracted away, which
will be more clearly seen in the client implementation. The rpc function is
also marked as async, this is done so that the parts of the function can be
executed asynchronously until the await keyword at the end of the function
is specified. This rpc function implementation shows with code the service
side of figure 7.4.
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public override async Task<DriveResponse> DriveForward(

DriveRequest request, ServerCallContext context)

{

ManualResetEvent signalEvent = new ManualResetEvent(false);

// Adds an action to the list of actions on the ThreadManager

// which will be executed on the next Unity main thread update.

ThreadManager.ExecuteOnMainThread(() =>

{

_wheelDrive.torque = _wheelDrive.maxTorque;

_wheelDrive.angle = request.Angle * _wheelDrive.maxAngle;

_wheelDrive.handBrake = request.BrakeTorque;

// Need to set signal event such that it won't block forever.

signalEvent.Set();

});

// Wait for the event to be triggered from the action.

signaling that the action is finished

signalEvent.WaitOne();

signalEvent.Close();

return await Task.FromResult(new DriveResponse

{

Success = true

});

}

Listing 4: Vehicle controller service implementation

As described in the section where the ThreadManager were explained,
the ManualResetEvent here is required to ensure that the rpc function does
not return before the action that is added to the ThreadManager is executed
and the values that is required from it is set. In the case of the DriveForward
rpc function no state is required to be read from resources on the Unity main
thread. When the ManualResetEvent is signaled from the action executed
on the Unity main thread then it is closed and it can return a Task of type
DriveResponse where the boolean field success of the DriveResponse is set to
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true. Inside the action to be executed the a local variable of a WheelDrive
script object gets modified depending on the values specified from the client.
The client is the one that decides which values should be set for ”torque”,
”angle” and ”handBrake”.

In listing 5 the core functionality of the vehicle controller client is shown.
The functionality is very simple, the command variable stores a string and
then a infinite loop is created by using while True. Listing 5 shows what is
meant by that the client decides the values for torque, angle and brakeTorque
depending on the user input. At the beginning of each iteration of the while
loop, input from the user is stored in the command variable. The variable
is then compared to the strings ”w”, ”a”, ”s”, ”d”, ” ” and ”x”. The way
to control the vehicle follows a standard that is found in many video games
where ”w” moves one forward, ”s” moves one backward, ”a” moves one to
the left and ”d” moves one to the right. When matched on any of these the
corresponding vehicle controller rpc function is called. The next comparison
is for the idle rpc function which sets torque, angle and brakeTorque to 0.0
and the last command checks if the command matches ”x” and sets the
brakeTorque to 30000.0 in the Brake rpc function call. The number 30000.0
here is just a value that has been found to work well for braking so that it
feels and looks somewhat realistic. For a real implementation of a vehicle
these values should come from some kind of analysis of the properties of
the vehicle instead, but for the prototype that is implemented here this was
deemed too complex.
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command = ""

while True:

command = input()

if command == "w":

success = vehiclecontroller_stub.DriveForward(vehiclecontroller_pb2

.DriveRequest(torque=1.0, angle = 0.0, brakeTorque = 0.0))

elif command == "a":

success = vehiclecontroller_stub.Steer(vehiclecontroller_pb2

.DriveRequest(torque = 0.0, angle = -1.0, brakeTorque = 0.0))

elif command == "s":

success = vehiclecontroller_stub.DriveBackward(vehiclecontroller_pb2

.DriveRequest(torque=-1.0, angle = 0.0, brakeTorque = 0.0))

elif command == "d":

success = vehiclecontroller_stub.Steer(vehiclecontroller_pb2

.DriveRequest(torque = 0.0, angle = 1.0, brakeTorque = 0.0))

elif command == " ":

success = vehiclecontroller_stub.Idle(vehiclecontroller_pb2

.DriveRequest(torque = 0.0, angle = 0.0, brakeTorque = 0.0))

elif command == "x":

success = vehiclecontroller_stub.Brake(vehiclecontroller_pb2

.DriveRequest(torque = 0.0, angle = 0.0, brakeTorque = 30000.0))

Listing 5: Vehicle controller client implementation
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When the client program is run the user has to supply the input through
the console and press enter for each command. This is not an ideal setup, but
it works good for the proof-of-concept controller that is used here. Figure
7.12 shows how a series of input to the controller through the console looks.
The controller shown here is running in a docker container and would start
accelerate forward, steer left, then steer right, start reversing, put the vehicle
in idle and brake. In reality few people would start reversing a car that is
already moving, but this is no problem in the Unity simulation which is not
very realistic in that regard.

Figure 7.12: Vehicle controller console

To show that the docker container is also capable to stream sensor data
from the Unity module, a small sensor snapshot client has been implemented,
this client streams one whole image from a camera sensor and then saves it
as a bitmap. Due to the fact that showing graphics is a bit involved for
docker containers only the file with in the directory will be shown. The
sensor snapshot client will be shown in its entirety since it so short and since
there is not going to be an actual figure that shows the image graphically
from the docker container provided. Listing 6 shows the implementation of
the sensor snapshot client. It takes two arguments: IP address and port
number, the IP address will be the IP address of the host machine which the
Unity module runs on, and the port number will be the port number for the
sensordata service which streams the image. The image will be saved as a
bitmap with the name test.bmp.
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from __future__ import print_function

import grpc

from sensordata import sensordata_pb2

from sensordata import sensordata_pb2_grpc

import PIL.Image as image

import PIL.ImageOps as imageops

import sys

if __name__ == '__main__':

# Default port number if not overwritten by argument

port = '50060'

if len(sys.argv) == 1:

sys.exit("No IP argument given, quitting...")

elif len(sys.argv) == 2:

ip = sys.argv[1]

print("One argument given, IP: ", ip)

elif len(sys.argv) == 3:

ip = sys.argv[1]

port = sys.argv[2]

print("Two arguments given, IP: ", ip, " port: ", port)

channel = grpc.insecure_channel(ip + ':' + port)

stub = sensordata_pb2_grpc.SensordataStub(channel)

for imgChunk in stub.StreamSensordata(sensordata_pb2

.SensordataRequest(operation="streaming")):

img = image.frombytes("RGB",(800, 450), imgChunk.data, 'raw')

img_flip = imageops.flip(img)

img_flip.save("test.bmp")

Listing 6: Sensor snapshot implementation
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The figure 7.13 shows the execution of the sensor snapshot client and then
lists the contents in the folder, where test.bmp can be seen.

Figure 7.13: Vehicle sensor snapshot

Autonomous vessel implementation

Since the Autonomous vehicle implementation section described many of the
core ideas this section will not describe those in the same detail. Figure
7.14 shows a GNS3 implementation of the proposed architecture for an au-
tonomous passenger ship from an unpublished paper by Amro A., Gkioulos
V. and Katsikas S. [2]. This architecture has a much higher level of com-
plexity compared to the vehicle. The main idea behind the architecture is to
have redundancy in the network so that if one of the routers or switches fails
then there is still connection between the different components in the net-
work [2]. The architecture also uses VLANs (Virtual Local Area Networks)
to separate the different systems on the ship into separate networks, this is to
ensure that components on one of the VLANs cannot directly communicate
with components on the other VLAN [2], but this functionality is not fully
implemented for this project. One can see these two VLANs on the right
side of figure 7.14, where the machinery network and navigation network are
separated.
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Figure 7.14: Autoferry GNS3 Implementation

Figure 7.14 also shows how the external module from figure 7.1, the vir-
tual platform system architecture figure, can be connected to the network
module in an GNS3 implementation. The external module can be thought of
as the network on the left side of figure 7.14 and is connected to the network
module through the GNS3 cloud symbol. Further there are two parts of the
network that is labeled as MainASC and BackupASC where ASC here stands
for Autonomous Ship Controller.

The idea in this section is to extend the GNS3 implementation shown
in figure 7.14 and replace the hosts for the MainASC and BackupASC with
a vesselcontroller docker container. Then a bridged connection to the host
machine will be made in the machinery VLAN and one of the vesselcontroller
containers will try to connect to the vessel controller service in the Unity
module. This GNS3 network implementation are very resource intensive and
since this thesis project is being done on a laptop with only 8GB of RAM,
not all of the components in the network will be run at the same time. Figure
7.15 shows how the network will look when the network the hosts in the Main
ASC and Backup ASC are replaced with vessel controller docker container,
and the host in the machinery network is replaced with a Ubuntu VM.
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Figure 7.15: Autoferry Replaced Network

During the implementation of the network module of the autonomous
vessel a hard problem appeared that meant that the way the network were
implemented for the vehicle did not work properly for the autonomous pas-
senger ferry network. The layer 3 Etherswitcher shown in figure 7.15 can
only route to defined networks, this means that a GNS3 cloud bridge in the
machinery network to the host machine is not as easily done as for the vehi-
cle. As a solution for this the idea of running the Unity module in a Ubuntu
VM were considered, but also that presented some serious issues. Building
the Unity simulation as a Linux application was not straight forward and a
lot of issue with the graphics APIs appeared, and due to the time constraints
on the thesis project and that the project was behind schedule due to the
Covid-19 pandemic the decision to run the vessel controller in a simplified
network module to show that it works was made. The vessel controllers in
the MainASC and BackupASC were able to ping to the Ubuntu VM in the
machinery network, so the only step left would be to either get the Unity
simulation run properly in the Ubuntu VM or somehow be able to bridge
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from the machinery network to the host machine. In figure 7.16 one can see
the really simplified network module for the Autoferry, which resembles the
vehicle network, as described the only purpose for this is to show that vessel
controller is able to control the Autoferry and to be able to perform a test
that is similar to the one done for the vehicle.

Figure 7.16: Simplified Autoferry Network

Listing 7 shows the vessel controller service. It is similar to the way the
vehicle controller service were implemented, except that it has other names
for the requests and the response and it includes two more rpcs for rotating.
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service VesselController {

rpc Forward(ControlRequest) returns (ControlResponse) {}

rpc Backward(ControlRequest) returns (ControlResponse) {}

rpc Portside(ControlRequest) returns (ControlResponse) {}

rpc Starboard(ControlRequest) returns (ControlResponse) {}

rpc Idle(ControlRequest) returns (ControlResponse) {}

rpc RotateClockwise(ControlRequest) returns (ControlResponse) {}

rpc RotateCounterClockwise(ControlRequest) returns (ControlResponse) {}

}

message ControlRequest {

float throttle = 1;

}

message ControlResponse {

bool success = 1;

}

Listing 7: Vessel Controller Service

Listing 8 shows a Python client implementation of the vessel controller
service. The vessel can be controlled in a very similar manner to the vehicle,
the main difference is the addition of input ”e” and ”q” will rotate the vessel
clockwise and counter clockwise. One can also see that the throttle argument
given to the ControlRequest is 1.0 which is max throttle for each of the rpcs,
this is a simplification and
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command = ""

while True:

command = input()

if command == "w":

success = vesselcontroller_stub

.Forward(vesselcontroller_pb2

.ControlRequest(throttle=1.0))

elif command == "a":

success = vesselcontroller_stub

.Portside(vesselcontroller_pb2

.ControlRequest(throttle=1.0))

elif command == "s":

success = vesselcontroller_stub

.Backward(vesselcontroller_pb2

.ControlRequest(throttle=1.0))

elif command == "d":

success = vesselcontroller_stub

.Starboard(vesselcontroller_pb2

.ControlRequest(throttle=1.0))

elif command == "e":

success = vesselcontroller_stub

.RotateClockwise(vesselcontroller_pb2

.ControlRequest(throttle=1.0))

elif command == "q":

success = vesselcontroller_stub

.RotateCounterClockwise(vesselcontroller_pb2

.ControlRequest(throttle=1.0))

elif command == " ":

success = vesselcontroller_stub

.Idle(vesselcontroller_pb2

.ControlRequest(throttle=1.0))

elif command == "quit":

break

Listing 8: Vessel Controller Client Implementation

The implementation of the sensor snaphot client would be identical and
hence is not necessary to include in this section aswell.
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Assesment of the Platform

An information security assessment can be divided into at least three phases
which are planning, execution and post execution [26]. The planning phase
is used to gather information for the execution part of the assessment this is
usually information about the assets of the system that is being assessed and
which threats it has [26]. In the execution phase the vulnerabilities of the
system that is assessed are discovered and the vulnerabilities are potentially
validated by exploiting them [26]. In the post execution phase an analysis of
the vulnerabilities is performed and its goal is to discover the causes behind
the vulnerabilities and how these can be mitigated [26].

In this project the method of information security assessment will be
testing, in particular penetration testing. The penetration testing will make
the assumption that some host on the network is compromised and hence
malicious. It will also be assumed that the malicious host has access to
tools that are common in penetration testing and in hacking generally. The
penetration testing will follow the three main phases described initially in
this section and will emulate the role of an attacker. The first phase will
be information gathering where the attacker has to get an idea of which
environment he is in and gather as much information about the other hosts
on the network as possible. In the execution phase the attacker will try to
exploit the vulnerabilities that might be found. Finally in the post execution
phase a proposal for how to mitigate the vulnerabilities that were found might
be given. A penetration test for the architectures for both the autonomous
vehicle and vessel will be performed.

The penetration test for both the vehicle and the vessel will be following
more or less the same pattern and will be using many of the same tools. In
the planning phase where the information gathering will be performed tools
such as Netdiscover, Nmap, Wireshark and Ettercap will be used.
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The goal for the penetration test of the vehicle and vessel is not to perform
a very thorough test and discover every possible vulnerability in the system,
but rather show how the virtual platform can be used to perform such tests.

Autonomous vehicle penetration test

For the penetration testing the assumption that a host on the network is
malicious will be made, and hence this testing will have the internal network
of the vehicle accessible. With the malicious host in the network module
of the vehicle the network the malicious host must be added to the GNS3
implementation of the network module. Figure 8.1 shows the GNS3 imple-
mentation of the network with an malicious host where the attacker will work
from. The only difference from figure 7.10 is the skull on the left side of the
network. When arguing how this would have looked like in the real world, one
can imagine that the Apple iPad from the Kia Niro architecture in figure 7.9
could have been compromised and that malicious software could have been
installed on it to carry out attacks on other hosts on the same network. In
the case for this penetration test the skull will be a virtual machine running
Kali Linux. Kali linux is a open source Debian based Linux distribution that
comes with many tools for penetration testing, data forensics and more [15].
This makes Kali Linux a good choice to quickly get ready to perform the
testing. Even though it is unlikely that a compromised host on the network
would be running Kali Linux or some other OS that contains many tools for
hacking, it is not unlikely that an attacker that has compromised the host
will be able to install the tools needed to perform further attacks.
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Figure 8.1: Attacker network GNS3 implementation
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To emulate the attacker one must imagine what the attacker would do in
the situation in question. Assuming that the attacker is not satisfied with
just compromising the compromised host and wants to affect other hosts on
the network aswell, a logical first step is to figure out which other hosts are
on the network. In this penetration test Netdiscover will be used to achieve
this. Netdiscover is a ARP (Address Resolution Protocol) reconnaissance
tool which can be used both on wireless and switched networks to discover
hosts connected to the network [11]. To be able to launch the netdiscover
command and discover the other hosts on the network, the attacker needs to
know which subnet it is on, which can be done through the ”ip a” command.
In figure 8.2 the result from the ”ip a” command is shown.

Figure 8.2: IP configuration attacker

The results from the command run in 8.2 shows two ethernet interfaces,
the eth1 is the one that will be used for this penetration test since it is the
one that has an ip address and is connected to the vehicle network. From
the results one can also see that the attacker is on the subnet 192.168.1.0/24,
which means that this is the the subnet that the attacker should perform
netdiscover on. In figure 8.3 the result of the command ”netdiscover -i eth1
-r 192.168.1.0/24 -p” is shown. The -i specifis which ethernet interface it
shall do the discovery on, this is needed since the default would be eth0 and
that would yield no results and hence an attacker should be able to figure
that out. The -r of the command specifies the range of ip address of the
subnet it should scan, namely the last eight bits of the subnetmask meaning
that it will scan in the range from 192.168.1.1 - 192.168.1.255. The -p is
means that is should be passive, which means that it does not actively send
any ARP requests to discover other hosts on the network. This is suitable for
an attacker that does not want to be discovered, but with using the passive
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mode the scan might has to go on for a while to find all the other hosts on
the network.

Figure 8.3: Vehicle network netdiscover

From the results of the figure 8.3 one can see that three hosts on the net-
work were discovered, which are 192.168.1.1, 192.168.106 and 192.168.1.125.
The address 192.168.1.1 is the local router for the host machine where this
penetration test were performed, it is safe to assume that the attacker would
know this aswell. In the purpose of clarity the other two ip addresses will
be explained aswell, but it is important to keep in mind that the attacker
would not outright know which host is which from the ip addresses alone.
The address 192.168.1.106 is the ip address of the host machine where the
Unity module is running. The address 192.168.1.125 is the vehicle controller
docker container.

The next step in the information gathering process is for the attacker to
figure out more about each of the hosts discovered through the netdiscover
process. A common tool for scanning ports on hosts are nmap, and in figure
8.4 the result from the nmap scan is shown. The -p argument of the command
specifies the port range which should be scanned, for this scan is it every port
of the machine hence the 1-65535. The -sS argument specifies that the scan
shall be stealthy which is meaningful for an attacker since an attacker most
likely wants to remain hidden. The -T4 argument means that the scan will
be run at speed level 4, where 1 is the lowest and 5 is the highest. The -oG
argument means that the output from the scan will be written to a file, which
is nice to keep since the scan usually takes a while. From the results of the
host machine nmap scan shown in figure 8.4 one can see that multiple ports
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are open and some of the names that is specified shows that the host machine
is indeed running Windows OS. Again for clarity this test will focus on the
two ports that are relevant for the thesis project. An actual attacker would
of course try to find vulnerabilities for all of the open ports which have been
discovered by the scan. The ports that are relevant here is the port 50070
which is a sensordata service port and 50080 which is the vehicle controller
service port. The other ports are ports that are used for other programs on
the host machine.

Figure 8.4: Host machine nmap scan

Before continuing on the information gathering process regarding the host
machine, a nmap scan of the vehicle controller container will be performed.
In figure 8.5 the results of the nmap scan of the vehicle controller container
is shown, and one can see that no ports are open on the vehicle controller
container. This makes sense since only the vehicle controller client is running
and hence no ports are needed to be declared open.

Figure 8.5: Vehicle controller container nmap scan
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The next logical step would be to try to listen to some of the messages
flowing through the network, especially an attacker would be interested to
listen and intercept on the other hosts as well as the communication to and
from the compromised host. The problem with this however is that all of the
hosts on the network are connected through ethernet and hence only unicast
messages are being used. This means that a message from the host machine
will go directly through the switch to the vehicle controller container and
hence the attacker Kali machine will not be able to listen on that network
traffic without some form of intervention. This is where Ettercap will come
into play in this penetration test because Ettercap is capable of performing
ARP spoofing attacks. To understand how the ARP spoofing attack works
one must know the essential parts of how ARP works. In ARP there are two
types of messages, a request and a reply, the request is sent to a known IP
address with the goal of retrieving the MAC address of the host that has the
specified IP address [8]. The reply then contains the MAC address of the
host that has the IP address which the request were sent to and the problem
with ARP is that a reply can be sent to a host without having a request sent
in the first place [8]. Since a reply can be sent without needing a request in
the first place, one can imagine that a malicious actor can tell two different
hosts on the network, let’s say host A and host B that the attacker IP address
has the MAC address of the other host, this is called ARP cache poisoning
since it wrongly updates the ARP cache table of the other hosts [8]. The
resulting effect of the ARP spoofing attack is that the when host A wants
to send a network packet to host B, it will go to the attacker host instead,
and the same can be applied for host B such that packets sent from host B
to host A will be sent to the attacker host instead.

Based on this an ARP spoofing attack is a logical next step for an attacker
to start listening in on the traffic going back and forth between the two other
hosts on the network, namely the host machine and the vehicle controller
docker container. Just performing the spoofing attack without being able to
forward the packets from the two hosts communicating would be very noisy
since it would essentially cause a denial of service for the two hosts since none
of their packets would arrive at the designated host. IP version 4 packets
can be forwarded on Kali Linux with the command shown in listing 9.

sysctl -w net.ipv4.ip_forward=1

Listing 9: IPv4 packet forwarding

58



After enabling the IPv4 packet forwarding the Ettercap must be config-
ured for the ARP spoofing attack. Figure 8.6 shows the setup screen for
Ettercap. The important part to notice here is that Ettercap will be using
eth1 which is the interface that connects to the vehicle network.

Figure 8.6: Ettercap Setup

Next Ettercap must search for hosts on the network, the hosts that it
finds on the network are shown in figure 8.7. This list shows more hosts
than netdiscover did, the reason for this is that this scan was done when the
host machine was connected to the home network using the wireless adapter
instead of the Ethernet adapter. The other hosts here are other units that
are connected to the home network which the host machine is connected to,
the important part for the purpose of this test is that the hosts 192.168.1.106
and 192.168.1.125 are shown which are the host machine that runs Unity and
the vehicle controller docker container.
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Figure 8.7: Ettercap Hosts List

Next the targets that will be victims of the ARP spoofing must be selected
and figure 8.8 shows the adding of the targets in console window shown in
the lower part of the Ettercap application and is marked with yellow.
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Figure 8.8: Ettercap Targets Added

The last step needed to start the ARP spoofing is to select the ARP
poisoning option from the MITM (Man In The Middle) menu shown in figure
8.9
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Figure 8.9: Ettercap MITM Menu

Finally when the ARP Poisoning option is selected from the menu the
ARP spoofing attack will begin and can be confirmed by looking at the
console window of the Ettercap application shown in figure 8.10, the message
in the console window also confirm that the targets that will be spoofed are
indeed the ones that is wanted in this penetration test.
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Figure 8.10: Ettercap ARP Poisoning

Since the ARP spoofing attack should be active now it should be possible
to listen for packets sent between the host machine with IP 192.168.1.106
and the vehicle vessel controller with IP 192.168.1.125 and the listening for
packets will be done with Wireshark. This means that the penetration testing
has entered the execution phase of the testing. From figure 8.4 it is known
that the ports which are open on the host machine is using TCP hence
filtering on TCP packets in Wireshark would be a nice way to only show
relevant packets between the vehicle controller container and the services
running in the Unity process on the host machine. To emulate the traffic
between the two hosts the Unity simulation will be running on the host
machine and input will be given to the vehicle controller client. In a real
setting the client would only establish connection when used and input would
only be given when needed, but for the sake of simplicity input will be given as
the penetration test progresses. When starting Wireshark the right ethernet
interface must be selected for the attacker, figure 8.11 show this menu and
that interface eth1 will be selected.
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Figure 8.11: Wireshark Interface Menu

Since it is assumed that the host machine running the Unity module and
the vehicle controller would be communicating with each other the packets
captured would look something like it does in figure 8.12 One can see that
there are many packets being sent back and forth and one can also see that
the source and destination for every packet is either the host machine or the
vehicle controller docker container.
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Figure 8.12: Wireshark Packets Capture

To get a better understanding of what type of information that is being
sent between the two hosts an attacker could also use Wireshark to inspect
the contents of the packets and see if they disclose any sensitive information.
The http2 packets seen in figure 8.12 could be a good place to start. Figure
8.13 shows the inspection of a HTTP2 packet from the list of packets previ-
ously seen. In the window in the lower part of the Wireshark application the
data of the packet is shown. On the left the data is shown in hexadecimal
and on the right it is shown in ASCII characters. The part marked with
yellow is especially interesting because this is human readable and makes up
actual words. From an attackers standpoint this is very interesting because
the attacker can see that the source of the packet is IP 192.168.1.125, in other
words the vehicle controller docker container, and that the destination is the
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IP 192.168.1.106 which is the host machine. Since the rpc function name
is disclosed in the packet data, and for this specific packet it is the Drive-
Forward rpc, then it is not far fetched to assume that an attacker would be
able to deduce that the 192.168.1.125 host is a controller client that issues
commands to the 192.168.1.106 host.

Figure 8.13: Wireshark HTTP2 Packet Inspection

Now this is a pretty big discovery for the attacker, it is also not that
hard to imagine that if the attacker would be listening for long and enough
and inspecting many packets he would be able to discover the rest of the
rpc function names, one very important one that is shown in figure 8.14 and
marked in yellow.
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Figure 8.14: Wireshark Brake RPC Disclosure

To understand why this is very big discovery it is important to explain
the filter feature of Ettercap. In addition to performing the ARP spoofing
attack which is a very big deal in of itself, Ettercap is capable to apply
filters on the packets being forwarded through the attacker host. The filters
that can be applied in Ettercap is very powerful, but for this penetration
test just a couple of features of it will be used. A filter is able to match to
specific protocols such as TCP and also on the source and destination port
numbers. It is also able to search through the data parts of the packet and
check whether certain strings can be found, and in addition to this it can
drop a specific packet preventing it from reaching the host that is intended.

This means that it should be possible to construct an Ettercap filter
that will only drop packets that contains certain strings, like say ”Brake”.
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Now this starts to get serious, because in theory the communication between
the vehicle controller client in the vehicle controller docker container and
the Unity module on the host machine will work just as expected except for
when the Brake rpc function is issued from the client, then it will be dropped
and hence the vehicle in the Unity module will not receive the command to
brake. The Ettercap filter is supposed to support functionality for altering
the packets as well, but that is out of scope for this penetration test. The
code for the filter for dropping the HTTP2 packets that contains the Brake
rpc command is shown in listing 10. This filter first checks whether the
protocol for the packet is TCP, then it checks whether the destination port
is 50080 which is the port for the vehicle controller service running in the
Unity module. It both of these checks are successful then it checks whether
the packet data contains the string ”Brake”, if it does then the packet will be
dropped. The end result of applying this filter should be that only packets
from the vehicle controller client that contains the rpc function Brake would
be dropped.

if (ip.proto == TCP) {

if (tcp.dst == 50080) {

#Only drop packets which contains string "Brake"

if (search(DECODED.data, "Brake")) {

msg("Found Brake, dropping the packet...");

drop();

}

}

}

Listing 10: Ettercap Drop Brake Packet Filter

For Ettercap to be able to run the filter it must be compiled, the command
for compiling this filter is shown in listing 11 where drop brake.filter is the
name of the filter source containing the filter code shown in listing 10.
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etterfilter drop_brake.filter -o drop_brake.ef

Listing 11: Ettercap Compile Filter

To apply the filter the only action needed is to select the filters option
from the menu list in Ettercap shown in the top right corner of figure 8.15
and is marked in yellow. Then select load filter from the next menu and
select the compiled filter file.

Figure 8.15: Ettercap Filter Menu

During the penetration test this attack has been having varied success,
sometimes it does not trigger on the first Brake rpc issued and it will also
block the connection between the vehicle controller client for other HTTP2
packets as well after triggering which forces the vehicle controller client to
reconnect to be able to issue other commands such as DriveForward. This is
still a very serious attack since the vehicle controller client will work as normal
until a Brake rpc is issued, so that the filter does not always works on the
first Brake command is just a small drawback. It is the fact that the system
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seems to be working perfectly just up until the Brake command is issued is
the scary part. One could device a filter that would drop every packet, which
would be serious in of itself but then it would be very obvious that something
is wrong very early and not necessary in a critical condition like when the
vehicle needs to brake. One could also imagine that if information about the
vehicle speed were disclosed this attack would be even more dangerous since
one could create a filter that only drops packets when the vehicle speed is
above 50 kilometers per hour.

The last phase of the penetration test is the post execution phase, and
here ways of mitigation the vulnerabilites discovered during the information
gathering and execution phases will be discussed. The largest and most
critical vulnerability of the penetration test is the fact that an attacker is able
to perform ARP spoofing, without that the attack with dropping the packets
would not work since the packets would not be intercepted by the attacker
host. Hence some method of mitigating the ARP spoofing attack would be
very effective in this situation. This can be done either by detecting and
denying the spoofed ARP replies on the attacked host, or by having static
ARP caches on the host such that the attacker is not able to change the
ARP entries in the ARP cache of the host [29]. One can also imagine that
encryption of the data would make it a lot harder for the attacker to figure
out which packet contained the Brake rpc command, and hence dropping
those specific packets would be a lot harder. Without stopping the ARP
spoofing and just encrypting the data of the packet, the attacker would still
be able to drop the packets sent from the controller, effectively causing a
denial of service attack, which is still a very serious attack.
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Autonomous vessel penetration test

The penetration testing for the vessel will have a lot of similarities with the
penetration testing for the vehicle. In fact, the information gathering phase
will be almost identical, so the same amount of details on how to perform
that part of the attack will not be in this penetration test.

As discussed in the Autonomous vessel implementation section, using
the network from [2] will not be possible for this test due to problems with
connecting the vessel controller service to the Unity simulation. Instead the
testing for this section will be using an extension of the simplified autonomous
vessel network. This is to show that the same testing can be done for the
vessel controller as for the vehicle controller. Figure 8.16 shows the simplified
autonomous vessel network with and malicious actor added. The malicious
actor on this network is a Kali Linux host.
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Figure 8.16: Autoferry Malicous Simplified Network

Even though this network does not capture the real complexity, it still
provides the possibility to test how an attacker could manipulate insecure
communication between a vessel controller and the lower level system of the
vessel. The vessel controller in this case is of course not totally realistic and is
here to provide a proof-of-concept implementation, but if the vessel controller
were replaced with for example a ROS controller, which in principle should
not much of a problem since ROS can run in a docker container the same way
as the proof-of-concept vessel controller can. In fact, the Autoferry project
at NTNU uses ROS in many of their systems for the autonomous passenger
ferry, so this idea is not far fetched at all.
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For the information gathering phase the same process of using netdiscover
for discovering the hosts on the network is done. The host ip addresses
are going to be exactly the same as in the vehicle test because the vehicle
controller container is just swapped out with the vessel controller container
and the ip is statically set to be 192.168.1.125. The nmap scan for the vessel
controller container will be the same since no ports are declared open on the
container. For the host machine there is a small difference, figure 8.17 shows
the result of the nmap scan. The open ports here are a bit different from
the result for the vehicle, here the sensordata streaming service is running
on port 50067 and the vessel controller service is running on port 50081.

Figure 8.17: Vessel Host Machine Nmap scan

As with the vehicle, the next step here is to intercept the traffic from
the vessel controller to the host machine running the simulation of the vessel
in Unity. The process for intercepting the packets will be the same as for
the vehicle, ARP spoofing will be performed using Ettercap. The setup and
execution of the ARP spoofing attack is identical as for the vehicle. When
the ARP spoofing attack is in place the next step in the penetration test is to
look at the intercepted packets from the vessel controller to the host machine.
Figure 8.18 shows a interesting packet, in the data field of the packet one can
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see that the backward rpc function name of the vessel has been disclosed.
This can be attacked in the same way that the Brake rpc name were attack,
namely by creating a Ettercap filter that drops the Backward rpc packet
when received. One interesting thing to notice about 8.18 is that the protocol
type of the packet inspected in Wireshark is not HTTP2 as for the vehicle.
This seems to be dependent on Wireshark, sometimes it interprets the the
protocol of the packet as HTTP2, gRPC and TCP. This is probably because
the underlying IP protocol being used is TCP, so Wireshark seems to have
issues on determining whether the TCP packet should be listed as gRPC,
HTTP2 or TCP. So this shows that an attacker must not take the protocol
type for granted, but should inspect each packet carefully if possible.

Figure 8.18: Vessel Controller Wireshark Capture
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The rationale for dropping the Backward rpc packet is similar to that of
the Brake packet for the vehicle, the way the vessel will brake is by driving
backward and hence slowing down. By dropping the Backward rpc packet
one can prevent the vessel from easily slowing down. As with the vehicle this
will not trigger until the packet with the Backward rpc name is sent and then
dropping the packet. This also has a varied amount of success, sometimes it
works on the first Backward rpc packet sent and sometimes it takes a couple
of packets before it triggers. After dropping the packet, the channel between
the vessel controller and vessel in the Unity simulation on the host machine
might block, probably due to TCP re-transmission issues. The end result is
still serious, resulting in the vessel being unable to slowdown or even steer if
the channel blocks. Listing 12 shows the source code for the filter, the only
difference from this compared to the filter for dropping Brake packets for the
vehicle is the check on destination port number and the string to search and
compare on in the decoded data section of the packet.

if (ip.proto == TCP) {

if (tcp.dst == 50081) {

#Only drop packets which contains string "Backward"

if (search(DECODED.data, "Backward")) {

msg("Found Backward, dropping the packet...");

drop();

}

}

}

Listing 12: Ettercap Drop Brackward Packet Filter

For the post execution phase of the penetration test, the possible mitiga-
tion for the attacks shown here is the same for the vehicle. The main issue is
the possibility of an ARP spoofing attack and the un-encrypted data in the
vessel controller packets, causing a critical information to be disclosed to an
attacker.
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The attacks for the vehicle and the vessel are almost identical because the
functionality for the proof-of-concept controllers are almost identical. This
would very likely not be the case in reality. What these tests does show
though is that if the interface to control the vehicle or the vessel is similar
to the one that is used for their real physical counterparts and that the con-
troller software and implementation are running in the virtual network that
is similar to the one on the real physical counterparts then proper penetra-
tion tests can be performed. There are much more that could be done during
these tests, for example attacking the router on the network would be a pos-
sibility, trying to get admin access on it and forward ports such that outside
connections could access programs running on the attacker host. The VM or
container that are running the vehicle and vessel controllers might also run
other software that are susceptible to attacks, maybe even attacks that could
lead to remote code execution and privilege escalation on the controller VM
or container resulting in root or admin access can be performed.
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Results and Discussion

During the thesis project the system architecture of a virtual platform that
can be used to test cyber security related issues for autonomous vehicles and
vessels has been designed and developed. The virtual platform are separated
into three high level modules: a simulation module that simulates the phys-
ical vehicle/vessel and the physical world, a network module that emulates
the infrastructure and network system on the vehicle or vessel, and an exter-
nal module that can be connected to the network module, such as a remote
control centre for a vehicle or vessel.

The simulation of the physical world and the physical vehicle and ves-
sel has been done using the Unity game engine. Using a commercial game
engine makes creating simulations including realistic 3D models and environ-
ment much easier. The simulation of the physical vehicle and vessel works
very well using Unity and the can achieve fairly good behaviours of the vehi-
cle and vessel. More realistic behaviours and physical modeling of the vehicle
and vessel than that is done during this thesis project should also be possible,
but that was out of scope for this thesis.

The emulation of the network infrastructure and system on the vehicle
and vessel is done using the graphical network emulator and simulator soft-
ware GNS3. This provides the capability of running routers and switches
with real Cisco IOS images as well as virtual machines and docker containers
that are capable of running any software that the OS they are emulating
are capable of running. The emulated network infrastructure and system
on the vehicle or vessel can then interface with the simulation of the vehicle
or vessel using a RPC framework, which in the case of this project was gRPC.
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The network module is capable of emulating complex switched networks
but an issue with connecting the network module to the physcial host machine
running the Unity simulation arose when the Unity simulation was running
on another network than the host in the network module that communicates
with the Unity simulation does. A solution to this issue was proposed, this
included running the simulation module in a virtual machine on the network
module. This does come at a cost though, since the simulation should prefer-
ably not run in a virtualized environment such as a virtual machine or docker
container because it requires a lot of resources and hence the performance
of the simulation would decrease drastically. As of now the network module
is only capable of emulating Ethernet networks, so system capabilities such
as a CAN bus which the NAPLab Kio Niro uses to communicate with the
drive-by-wire kit is not present. During the research for the virtual platform
architecture it seemed to be possible to virtualize CAN aswell, but this was
deemed out of scope for the thesis project.

Using the virtual platform to perform testing for cyber security issues
works good and security penetration tests has been performed showing how
such tests can be performed using the virtual platform. The tests that were
conducted during the thesis were primarily focused on intercepting and ma-
nipulating the network traffic between a host that controls the vehicle or
vessel in the simulation module. The controller software for both the vehicle
and vessel were developed during the thesis project and its main goal is not
to be very realistic, but to work as a proof-of-concept implementation to be
used in demonstrating the capabilities of the virtual platform.

All in all the virtual platform seems to work well, during the development
some issues were identified such as communicating between the network mod-
ule and the Unity simulation module if the network module contains complex
switching with multiple networks. It also has issues if the infrastructure and
system on the vehicle or vessel requires ways of communicating with compo-
nents that are not Ethernet based, such as communication over a CAN bus.
Although these are not trivial issues, there seems to be no evidence that
points in the direction of these not being possible to solve with the current
architecture. It is now possible to answer the research questions presented
in the introduction.
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RQ1: Is it possible to create a virtual platform such that real autonomous
systems can run on virtualized infrastructure controlling a virtual replica of
the autonomous object?

The answer to this is mixed due to the issues that were discovered and
with an emphasis on that all parts of the real autonomous system should
be able to be implemented in the virtual platform. Although, it does seem
to be possible but the current virtual platform is not capable of virtualizing
all the complexities of such systems, but the core software systems and the
Ethernet based infrastructure should be possible to implement in the virtual
platform. This alone might add much needed capabilities to rapidly test new
controllers for the autonomous vehicle or vessel and can save time and money.

RQ2: How can such a virtual platform be used to test cyber security of
autonomous systems?

Such a virtual platform can be used to test the cyber security of au-
tonomous systems by assuming that some host on the internal network of
the autonomous system is malicious and then perform a penetration test of
the autonomous system from that host. The virtual platform makes it pos-
sible for the attacker to perform the penetration test on the systems that
controls the vehicle or vessel since they are on the same network as well as
the result of the attack can be seen in realtime using the Unity simulation
module. The main advantage of having this virtual platform to test cyber
security issues for autonomous vehicles and vessels is that the only hardware
required is a computer that is capable of running the virtual platform, re-
ducing the cost of testing. When the autonomous system is implemented on
the virtual platform there are no barriers to what one can ethically test, one
can cut the brakes of a car moving in high speed because no human lives or
monetary resources are on the line.
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In retrospective there are a few things that should be done differently to
gain even better results from the proof-of-concept work that has been done.
There should be allocated more time to look into how one can connect the
Unity simulator to a complex switched network and still run the simulator
natively on the host machine for best performance. More varied penetration
tests should be performed to show the range of capabilities of the virtual
platform, these penetration tests could include attacks on the sensor data
streaming and attacks on the router and switches that make up the network
module.

This thesis project has been entirely motivated by myself, and I had to
reach out to other departments of NTNU to find supervisors that had domain
specific knowledge that were required for this thesis which added extra work
to the thesis. The COVID-19 pandemic also raised a lot of issues for the
thesis project. It resulted in initial plans to be scrapped and substantial
parts of the goals of the thesis had to be changed.
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Conclusion

The prototype virtual platform designed and developed during this thesis
project tries to do something which it seems like no other autonomous ve-
hicle or vessel simulators tries to do, namely incorporating the network and
machines that runs on these vehicles and vessels and connect them to the
simulator and use that incorporation to perform cyber security testing of the
autonomy system. It does this by utilising simulation of the physical world,
vehicles and vessels using a game engine and using virtualization to emu-
late the hardware that runs the network and software components. If this is
done correctly and properly emulates the machines and autonomy systems
on the vehicle and vessels, such a virtual platform might greatly reduce the
complexity and costs of performing cyber security testing on such systems.
This might result in increased security of such systems and can help prevent
serious incidents from happening.
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Future work

There is no shortage of possible work that can be done and improved on the
system for the virtual platform. The two main improvements to the system
would be to find a solution for the network module of the virtual platform to
be able to emulate complex switched networks and run the Unity simulation
on the host machine, and be able to virtualize communication over CAN bus
together with the rest of the network module. Using the virtual platform
to implement the system architecture of the autonomous passenger ferry in
the Autoferry project would be especially interesting. Most of the existing
network on board the autonomous passenger ferry are Ethernet based and
it should be possible to have the low level control system running on ROS
to run on the vessel controller. This would make up a good environment for
being able to test the security of the autonomy system running on the au-
tonomous passenger ferry. Demonstrating how other types of attacks can be
performed would be a really nice addition aswell. One of the most interesting
possibilities would be to perform attacks on the data stream from a camera
sensor. If the data stream has no authentication or integrity checking mech-
anisms in place one can image that an attacker could be able to replace an
image from the camera sensor with its own image using a man-in-the-middle
approach, which might cause serious harm to the autonomous system. Since
GNS3 provides an API, it would be really interesting to figure out whether
it is possible to have a network specification of a vehicle or vessel and have
GNS3 automatically set up that network, which would reduce the amount
of configuration work needed to perform cyber security testing. This would
reduce the barrier to start testing early in the development cycle of such
autonomous systems.
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