
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Jørgen Helgå Stamnes

Gitpod, the new standard in
programming courses?

A qualitative design and creation study of
opportunities and pifalls of using Gitpod for
mandatory programming assignments.

Master’s thesis in Natural Science with Teacher Education

Supervisor: Hallvard Trætteberg

June 2020

Jørgen Helgå Stamnes

Gitpod, the new standard in
programming courses?

A qualitative design and creation study of
opportunities and pifalls of using Gitpod for
mandatory programming assignments.

Master’s thesis in Natural Science with Teacher Education
Supervisor: Hallvard Trætteberg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface and Acknowledgements

This thesis have been a rough endeavour for me. There has been a
lot of events the recent year. I will say this; without the help and sup-
port of my family, friends and supervisors, this thesis would not have
been finished. I would like to send a big thank you my supervisors,
Hallvard Trætteberg and Madeleine Lor̊as. They have been there for
me the whole way. The trust, the caring, the tough love. Without you,
this would not have been possible.

I would like to thank my father for giving me the extra push, the
free food, free shelter and my own office. My brother for giving me
some epic social surroundings, and a shout-out to my boys at Discord,
for providing me with tremendous amounts of laughs, mental breaks
and social surroundings. All this have been a wonderful antidote to
the self-imposed isolation during the corona-virus. It has truly been a
wild ride.

1

2

Abstract

Gitpod is a new web-based integrated development environment that
approaches integrated development environments from a new angle.
Giptod focuses on short-lived programming environments that auto-
mate builds, setups and installation.

With the recognition for Gitpods potential, this study aimed at an-
swering the following question ”What are the opportunities and pitfalls
when introducing a cloud IDE (Gitpod) in TDT4100 for mandatory as-
signments?”, where TDT4100 is a course on object-oriented program-
ming at the Norwegian University of Science and Technology. Further-
more, to answer the question, a set of subquestions was proposed to
learn more about the opportunities and pitfalls when comparing Git-
pod to Eclipse (IDE used within TDT4100), and Gitpods pedagogical
implications.

The study was conducted using a qualitative design and research
approach. The research method consisted of semi-structured interviews
paired with observations of students using Gitpod with mandatory as-
signments. This study found that Eclipses package system and auto-
generating mechanisms might interfere with students understanding
of folder structures and Java structures on a deeper level. Accord-
ingly, through the analysis of data, there are three components to a
programming course: the technological, the structural and students
relationship between them. Subsequently, Gitpod might better adhere
to socio-cultural and collaborative learning environments. The study
found that students have positive attitudes, recognises use-cases for
Gitpod and quickly adapt to the environment. However, individual
exploration may be challenging.

Keywords: Gitpod, Eclipse, pedagogy, integrated development
environment, cloud, programming

3

4

Sammendrag

Gitpod er et nytt utviklingsmiljø i skyen som som legger vekt p̊a korte
og kastbare miljø som automatiserer bygging, oppsett og installasjon
av program og kode.

Med oppdagelsen av mulighetene med Gitpod, prøver denne stu-
dien å svare p̊a følgende spørsmål: ”Hva er mulighetene og fallgruvene
ved å introdusere en skybasert IDE (Gitpod) for obligatoriske øvinger
i faget TDT410?”, hvor TDT4100 er et emne om objektorientert pro-
grammering ved Norges teknisk-naturvitenskapelige universitet. Stu-
dien svarer p̊a dette spørsm̊alet ved å finne muligheter og fallgruver ved
å sammenligne Gitpod med Eclipse (mijøet brukt i faget TDT4100) og
mulige pedagogiske implikasjoner.

Studien ble utført med en kvalitativ design and creation metode.
Forskningen besto av semistrukturerte intervju med observasjoner av
studenter som programmerte i Gitpod med tilhørende øvinger. Stu-
dien viser at pakkesystemet og autogenereringsmekanismer i Eclipse
forstyrrer, hvor studenter viser tendenser til d̊arlig forst̊aelse og bruker
generelle javastrukturer feil. Ved analyse av data, har det blitt gjenkjent
at programmeringskurs gjerne best̊ar av tre sammenflettede kompon-
tenter; Det tekonologiske, kursstruktur og undervisning og studentenes
forhold til disse. Det viser seg at Gitpod mulig følger en god sosiokul-
turell og samhandlingsnær tilnærming. Studien viser at studentene
har gode holdninger, gjenkjenner bruksomr̊ader og tilpasser seg raskt
Gitpods utviklingsmiljø. Derimot kan individuelle ferdigheter være en
begrensning ved bruk av Gitpod utenfor kurset.

Nøkkelord: Gitpod, Eclipse, pedagogikk, utviklingsmiljø, sky-
teknologi, programmering

5

6

List of Tables

1 Assignment formats . 26
2 Main learning activities for a Gitpod environment . . . 27
3 Backlog items for artefact development 28
4 Topics discussed during the pilot-test with colleagues . 31
5 Categories formed by the open codes during the group-

ing process . 40
6 Categories from video observations 41
7 Themes formed from categories 42
8 Participant previously used IDE’s, IT framworks and

languages . 47
9 Anonymous presentation of participants. Name, years

of experience and their favorite programming language 47
10 Opportunities and pitfalls from introducing Gitpod for

mandatory assignments in TDT4100 63

7

List of Figures

1 Assignment and task structure 9
2 Eclipse integrated development environment. On the

left, the file explorer is open, with its correspond tree
of packages. The big top-right square is an open text
editor, showing code for the java-file LineEditor. At the
bottom the JUnit testing framework is shown. 10

3 Eclipse Theia IDE. 1. File-explorer 2. Text-editor. 3.
Terminal window . 12

4 Launching a workspace from a the version control dis-
tributor Github. 1. a pre-fix to the Github URL is
needed to copy files stored in block 2. 13

5 Differentiation between snapshot and workspace sharing 15
6 The zone of proximal development 18
7 Repository structures 27
8 Running a test-suite for Account.java task. Output is

the java test runner extension 30
9 Research methodology 33
10 General overview of time proximity for the research design 35
11 The stepwise-deductive induction method by (Tjora, 2017) 36
12 The unified programming course model. Described by

the derived themes and their interconnections 55

8

Glossary

API Application programming interface . 60

CAQDAS Computer-assisted qualitative data analysis software . 39

CPU Central processing unit . 15

CSCL Computer-supported collaborative learning . 22, 24

GPU Graphics processing unit . 15

GUI Graphical user interface . 9, 29, 30, 56

ICT Information and communications technology . 3

IDE Integrated development environment. 3, 8–10, 12, 16, 17, 22, 23,
51, 57, 58, 66

JDK Java Development Kit . 24, 57, 61

MKO More knowledgeable other . 20, 60

RAM Random-access memory . 15

URL Uniform resource locator . 8, 13

ZPD Zone of proximal development . 20

9

Contents

1 Introduction 3
1.1 Background and motivation 3
1.2 Research approach . 4

2 Awareness and Suggestion 7
2.1 TDT4100; Object-oriented programming 7

2.1.1 Course structure 8
2.1.2 Assignments and tasks 8
2.1.3 Eclipse and problems 9

2.2 Gitpod . 11
2.2.1 Eclipse Theia 12
2.2.2 Gitpod eco-system 12
2.2.3 Features . 14

2.3 Opportunities . 15
2.4 Summary . 16

3 Theory and related work 17
3.1 Socio-cultural learning theory 17

3.1.1 Guidance and support 18
3.1.2 Scaffolding . 18
3.1.3 Socio-cultural programming 20

3.2 Mental constructs . 20
3.3 Web-based IDEs - What is out there? 21
3.4 Pedagogical IDEs . 23
3.5 Summary . 24

4 Artefact development 25
4.1 Initial discussions . 25
4.2 Repository architecture and sequential exercises 26
4.3 Challenges . 27
4.4 Artefact design and description 28

4.4.1 Repository architecture 28
4.4.2 Test suites and feedback 29
4.4.3 Running code 30
4.4.4 Sequential exercises 30

4.5 Pilot-test . 30

0

5 Research process and methodology 32
5.1 Pragmatism . 32
5.2 Qualitative Design and Creation research 32
5.3 Design and creation . 34

5.3.1 Data gathering strategy 35
5.3.2 Interviews . 35
5.3.3 Observation . 37

5.4 Analysis . 38
5.4.1 Coding . 38
5.4.2 Codes . 39
5.4.3 Groups . 40
5.4.4 Themes . 41

5.5 Research quality . 42
5.5.1 Validity . 42
5.5.2 Reliability . 43

5.6 Ethical concerns . 44

6 Evaluation and results 46
6.1 Participants . 46
6.2 Students needs and learning 46

6.2.1 Needs . 48
6.2.2 Learning . 48

6.3 TDT4100; A student perspective 50
6.4 Past and present IDE experiences 51

6.4.1 General knowledge and preferences 51
6.4.2 Eclipse . 52
6.4.3 Gitpod and observations 53

6.5 The unified programming course 55

7 Discussion 56
7.1 Pedagogical implications 56

7.1.1 Mental constructs and containers 56
7.1.2 Pedagogy and IDE 59

7.2 Comparing IDEs . 60
7.2.1 Implications of sharing 60
7.2.2 Accountability 62

7.3 Opportunities and pitfalls 63
7.4 Generalizability . 64

1

7.5 Future work . 64

8 Conclusion 66

Appendix A Informed consent letter 70

Appendix B Interview guide 73

Appendix C NSD 76

Appendix D Assignment descriptions 81
Appendix D.1 Assignment 81
Appendix D.2 Task . 82

Appendix E Gitpod setup 83
Appendix E.1 Gitpod.yaml 83
Appendix E.2 Gitpod dockerfile 83
Appendix E.3 Task definitions 83
Appendix E.4 Command bash scripts 84

Appendix F Interview codes 85

Appendix G Observation codes 88

Appendix H Observation schema 89

2

1 Introduction

In 2012, the European Commission adopted a strategy for ”Un-
leashing the Potential of Cloud Computing in Europe”. The strategy,
which had its aims to create 2.5 million new jobs, and increase the total
GDP by 160 billion by 2020 had not included the education strategy
needed. Bosse et al. (2016) says that there is a need to focus on the di-
dactic processes in information and communications technology (ICT).
Teaching and learning should follow the paradigm of internet connec-
tivity; always connected, always available. The ”always connected”
philosophy of material availability is enhancing discovery. Bosse et al.
(2016) says that collaborating through cloud systems are omnipresent
through the social spaces, and should be equally ubiquitous in learning
situations.

With the rapid change and emergence of new computing paradigms
and technologies, educational institutions are continuously challenged.
This rate of change is also applicable for cloud technology; the real-
ization that hardware suddenly can be provided as software services is
key (Campbell, 2016). Cloud computing let us increase our flexibility,
speed, cost-effectiveness and efficiency. Teachers and educators should
introduce and teach these concepts to create students that effectively
use and explore the capabilities of cloud computing (Campbell, 2016).
Sommerville (2013) argues that every single student is in fact, cloud
users, and therefore the topic of cloud computing should be incorpo-
rated in every course, even if students do not explicitly understand
it.

Through discussions with associate professor Hallvard Trætteberg
during May 2019, I was introduced to the relatively new paradigm
of integrated development environments in internet-browsers. Accord-
ingly, through further supervision, Hallvard proposed an inquiry of
potential educational purposes and possibilities with a new web-based
IDE called Gitpod.

1.1 Background and motivation
The course TDT4100 - object-oriented programming at the Norwe-

gian University of Science and Technology have a past history of being
looked upon as a grandiose course, that is both difficult and frustrating
for students. For the time being, a significant role in TDT4100 lifespan

3

has been the Eclipse IDE, a development tool for programming. The
difficulty of the curricula, in combination with a tool aimed at profes-
sional developers, have made TDT4100 a rather complex learning en-
vironment. Complexity has created some overhead with Eclipse; time
is used on non-related curricular activities. Accordingly, the way that
TDT4100 is structured, a closed and highly connected Eclipse IDE,
have created a situation where learning activities include unwanted
non-curricular attention and flexibility limitations.

From my preliminary study of Gitpod with regards to TDT4100
and Eclipse, I found that Gitpod may serve as a good technological
choice. Gitpods uniqueness creates an interesting dynamic, where we
can think of other ways to structure and teach programming. There is
a distinction between these two environments: Gitpod is an IDE that
strictly runs in the browser, while Eclipse is a software tool installed on
a personal computer. To search for possible answers regarding the po-
tential for Gitpod as an educational component in TDT4100, I wanted
to ask the following questions

• RQ.1: What are the opportunities and pitfalls when introducing
a cloud IDE (Gitpod) in TDT4100 for mandatory assignments?

– RQ.1.1: What are the opportunities we gain from Gitpod
compared to Eclipse?

– RQ.1.2: What are the pedagogical implications and op-
portunities of Gitpods functionality, by introducing it in
mandatory assignments?

1.2 Research approach
The mandatory assignments in TDT4100 are tightly configured

with Eclipse. To be able to transfer assignments from the Eclipse
environment to a strict cloud environment, some time must be de-
voted to development. These assignments that are introduced in a
cloud environment of Gitpod need to be tested for evaluation and gain
in knowledge. How such a test should be performed, is a question of
time, resources and objectives. Pedagogical implications induce an ex-
ploration phase, where literature and previous work are interesting —
combining literature with data form a possibility to find cues that can

4

be analysed with theory. To tackle these broad assumptions, I have
based my research on the model of Design and Creation (Oates, 2006).

The most fundamental grounding for choosing Design and Cre-
ation lies in the description. The design and creation strategy revolves
around the development and research of new IT products called arte-
facts. A single artefact that is to be researched can have a plethora of
different goals tied to it. These might be an instantiation: a process
proving that a working system demonstrates constructs, ideas, meth-
ods, genres or theories. Other types of examples might be that an
application is used in a completely new domain. The approach that
applies to this project is the following:

An IT application that is a vehicle for a possible gain in
knowledge where that application is used in a real-life con-
text (Oates, 2006).

Our vehicle for gain in knowledge elsewhere respectively becomes
introducing Gitpod, and the real-life context is using Gitpod for manda-
tory assignments in TDT4100 that substantiates its learning outcomes.
Furthermore, the context in which Gitpod will be used imposes a de-
velopment process; we need to transfer mandatory assignments. An
artefact has to be developed, in order for that artefact to be tested.
Pedagogical implications often have qualitative designs. Design and
creation have an array of combinations for data gathering. Allowance
for a wide array of data gathering methods creates an opportunity to
use qualitative methods.

From the standpoint of design and creation, Oates (2006) suggest
that one follow a set of procedures or strategies that will serve as a
guideline for how one should research by using an artefact in a real-
life setting. The method of conducting research with the strategy of
Design and Creation resolves around a five-step approach. These steps
are as follows: Awareness, Suggestion, Development, Evaluation and
Conclusion.

In Section 2, awareness and suggestion are presented and discussed
to clarify problems and solutions for TDT4100 and the Gitpod envi-
ronment. In section 3, theoretical frameworks and related work are
presented for further discussions on the topic of pedagogical implica-
tions as part of awareness. The development process of assignments

5

for the Gitpod environment are clarified in Section 4, and a refined
description of research methodology follow in Section 5, both part of
a development focus. Results and evaluation are presented in Section
6, while the discussion follows an overlap between evaluation and con-
clusion. Lastly, in Section 8, conclusion and a summary of the inquiry
is made.

6

2 Awareness and Suggestion

The following Section will describe the awareness and suggestion
pattern aforementioned in the introduction. Awareness relates to recog-
nition and exploration of new technology, literature, problems or prac-
titioners that express needs (Oates, 2006). Suggestion resides in cre-
ating a tentative idea formed from the awareness phase.

This Section will begin with an introduction to the course and its
corresponding learning objectives and how learning objectives are re-
alized through Eclipse. Subsequently, a brief and concise discussion
around the problem areas for the current Eclipse setup will be pre-
sented. Lastly follows a description of the Gitpod environment, with
a discussion for how Gitpod might improve these problems.

2.1 TDT4100; Object-oriented programming
TDT4100 is a course that is held at the Norwegian University of

Science and Technology. The aim of the course is to give students
an introduction to the paradigms and practical skill in object-oriented
programming with Java. The course is the predecessor from the intro-
ductory course TDT4110 - introduction to Information Technology;
procedural programming in either Python or Matlab. Students en-
rolling for TDT4100 are primarily first year students on their second
semester. Subsequently, students that enroll for TDT4100 should end
up with the following set of knowledge, skills and expertise.

1. Knowledge: Students will have knowledge of the most impor-
tant concepts and mechanisms of object-oriented languages and
how object-oriented programs and simple apps are structured
and tested

2. Skills: Students will gain skills in object-oriented programming,
relevant programming methods (coding, testing and debugging)
and modern development tools

3. Expertise: Students should be able to use object-oriented pro-
gramming to solve practical problems and explore the opportu-
nities of modern development tools.

7

The focus that is most important for the inquiry, is the empha-
size on objectives related to the use of modern development tools.
TDT4100 realizes modern development tool usage through the pro-
fessional IDE, Eclipse1. To clarify: Students should solve practical
problems, explore and use relevant programming methods to gain skill
in object-oriented programming with Eclipse.

2.1.1 Course structure
To support the goals for knowledge, skill and expertise facilitated

through the Eclipse IDE, a set of structures are made to distribute
and give students activities and support mechanisms that mediates
learning. Accordingly there are four main learning activities: lec-
tures, assignments, lab-hours and assignment-walk-through-lectures.
Furthermore, the course has its main focus on assignments, where all
the other activities are support mechanisms to help, teach and prepare
them. Completion of assignments are required for becoming eligible
for the exam.

2.1.2 Assignments and tasks
For the remainder of the thesis, the following terminology will be

used in order to describe the mandatory assignments in TDT4100.
Figure 1 outlines the terminology for the assignment task relationship.
Each week there is a new assignment, each assignment has n tasks
(normally in the range of 3-8 tasks per assignment), where a set of m
tasks must be finished in order to complete one assignment. More de-
tails about the first assignment for TDT4100 can be found in Appendix
D.1.

The assignments are given on a weekly basis, with a total of 12
assignments over a 12 week period. Each week the assignments can be
on one of the formats given in table 1. The tasks are either sequential,
non-sequential, application specific or has a testing or debugging focus.

Each week the students participating in TDT4100 must deliver
their asisgnments online by compressing their files that relates to the

1Eclipse. A professional development tool developed by the Eclipse foun-
dation. More information can be found here: https://www.eclipse.org/org/
foundation/

8

https://www.eclipse.org/org/foundation/
https://www.eclipse.org/org/foundation/

Figure 1: Assignment and task structure

current assignment. With file compression and delivery, they also have
to show and explain their solution to a student assistant during lab
hours. The assistant will give them a score from 0 to 100. The stu-
dents will be eligible for the exam if the score exceeds 750 points during
the assignment period. However, student assistants are also used for
help and tutoring.

2.1.3 Eclipse and problems
As mentioned, there are some practical problems with Eclipse for

TDT4100. First, a brief introduction for what an IDE is, and how
Eclipse is structured for TDT4100, will be presented. Secondly, the
problem of a highly integrated Eclipse will follow given the above.

Eclipse
Eclipse is an integrated development environment developed by the

Eclipse Foundation. An IDE stand as a software tool that encompasses
common developer functionalities combined into a graphical user inter-
face (GUI). In Figure 2, Eclipse’s GUI is shown. An IDE has typically
a text-editor for changing and writing files, with the assistance of syn-
tax highlighting capabilities, language specific auto-completion, and

9

live bug-detection for possible compile or build issues. An IDE usually
abbreviate processes for compiling and running programs, and debug-
ging options to graphically display and locate bugs (Redhat, 2009).
Accordingly, an IDE is a tool that has features that help with pro-
ductivity, structure and the creation of programs and applications.
Correspondingly, Eclipse has all the features mentioned above.

Figure 2: Eclipse integrated development environment. On the left, the file explorer
is open, with its correspond tree of packages. The big top-right square is an open
text editor, showing code for the java-file LineEditor. At the bottom the JUnit
testing framework is shown.

Problems
Interestingly, the root of the problems associated with Eclipse comes

down to the fact that all of the learning objectives are facilitated
through a highly structured and specific configuration. Furthermore,
students are also required to complete assignments for exam eligibil-
ity. As a result, there are setup-procedures required for Eclipse to be
functioning properly, that relies heavily upon the students themselves.
Consecutively, those properties need to be maintained throughout the
course, hence there are still non-curricular related activities present.
Problems that are recognized are:

10

1. Initial setup procedures: The Eclipse environment for TDT4100
is reliant on repositories containing specific configuration for setup
and distribution of assignments. Configuration has created a
complex installment procedure that is necessary for getting Eclipse
ready for programming. These procedures has created overhead
and halts progression from the get-go.

2. Maintenance: Students are responsible for maintaining the cor-
rect state of the source-code in Eclipse with version control man-
agement through git2. Students do not get presented with Git
in their study program paths before entering TDT4100. As a
result, they now becomes the maintainers. Conflicts between
source trees occur.

3. Accountability: Students are held accountable for their setups
and maintenance without the necessary tool-set required to solve
particular niche problems that occur.

4. Resources: Resources are required to support students during
their programming endeavour with obligatory assignments.

With these problem-areas, work has been put in to elevate and
potentially find alternative solutions for distributing assignments in a
more reliable and accountable manner. Hence, In the next subsection,
Gitpod will be presented.

2.2 Gitpod
Browser-based integrated development environments have been around

for some years, and Gitpod is one of those environments. In this sec-
tion I will briefly describe Gitpod and its intrinsic functionality and
eco-system. In addition to system functionality, a discussion around
opportunities for TDT4100 and its structure will follow. Lastly, a
suggestion for further directional matters will be presented for devel-
opment purposes.

2Git: A version control system for updating, changing and tracking code. In-
dustry standard.

11

2.2.1 Eclipse Theia
Eclipse Theia is the underlying IDE that Gitpod exposes. It is

maintained as an open-source project by the TypeFox foundation (Type-
Fox, 2019). Theia exposes an extensible developable environment that
allow users to create custom browser and desktop IDEs. Theia is pre-
sented in Figure 3. In short, Theia contains all the previously men-
tioned IDE features that was presented by the description given in
Subsection 2.1.3.

Figure 3: Eclipse Theia IDE. 1. File-explorer 2. Text-editor. 3. Terminal window

2.2.2 Gitpod eco-system
The Gitpod eco-system contains four integrated components: Docker3,

Kubernetes4, Theia IDE and version control distributors that use Git
(Github, Gitlab, BitBucket). Particularly, the Docker (container) com-
ponent of Gitpod is valuable to understand.

3Containerization software. More information about docker can be found here:
www.docker.com

4Kubernetes, container orchestrator tool by Google. More information about
k8s can be found here: www.kubernetes.io

12

www.docker.com
www.kubernetes.io

A container is a standard unit of software that packages up
code and all its dependencies so the application runs quickly
and reliably from one computing environment to another.
A Docker container image is a lightweight, standalone, exe-
cutable package of software that includes everything needed
to run an application: code, runtime, system tools, system
libraries and settings (Docker, n.d.).

In other words, Theia is an application that is a packaged software
container that runs reliably on different environments, and is accessible
through web-browsers. Correspondingly, the relationship with version
control distributors and Gitpod are important. You can only start your
environment from a repository location, copying the files within that
repository, and launch them in a Gitpod instance. Figure 4 illustrates
this component of working with version control distributors, and Figure
3 show us the result.

Figure 4: Launching a workspace from a the version control distributor Github. 1.
a pre-fix to the Github URL is needed to copy files stored in block 2.

13

2.2.3 Features
Containerization of applications, and how it relates to Gitpod, cre-

ates some interesting features that exceeds Eclipse functionality. More-
over, the features are the characteristics that will furnish a discussion
for possible solutions.

Workspaces
A common term in Gitpod is workspaces. A workspace is a sin-

gle container launched in the Gitpod eco-system. We can view this
workspace as the terminology suggest, namely a workspace, a place for
working (with programming). The previous description of using ver-
sion control distributors repositories for launching Gitpod is the act of
creating a workspace. In Figure 3 a Gitpod workspace is running in
the browser. The workspace contain all the source code. The files are
eligible for execution and are editable.

Declarative control
Gitpod let us describe how the system should behave upon launch.

Declarative configuration through YAML5 definitions and bash6 scripts
ensure that all future workspaces that are launched from a configured
repository, are behaving correctly and contains the desired state.

Sharing and collaboration
An Individual workspace can be shared. Two sharing features are

prominent.

1. Snapshot A snapshot is a deep copy of a workspace. It contains
all the container-configuration and files of the shared workspace.
A complete replication and copy.

2. Workspace sharing Shares and opens up the current workspace.
Two or more contributors can work on the same file system.

Snapshot and workspace sharing allows users to replicate their cur-
rent working state. The distinction between the two modes of sharing
is illustrated in Figure 5.

5A readable serialization language commonly used for configuration files
6Shell and command language used for UNIX

14

Figure 5: Differentiation between snapshot and workspace sharing

Hardware independence
While Eclipse is a standalone desktop application that requires in-

stalment on a local computer, Gitpod is a software as a service (SaaS)
platform, that consecutively requires an Internet connection and a
web-browser for software access. Understanding the difference between
SaaS and normal desktop applications becomes crucial.

Meanwhile, desktop applications use hardware, such as CPU, GPU,
and RAM on a personal computer, Gitpod outsources hardware. A
workspace do not explicitly execute on a local personal computer, but
rather, workspaces are software that runs on hardware provided by
cloud-services that are accessible through web-browsers.

2.3 Opportunities
Given the current state of TDT4100, new technology might bring

fruition to more interesting qualities within TDT4100. With Git-
pod, we gain immediate access to a programming environment with
workspaces. No installation required. Furthermore, course administra-
tors can gain declarative control over the distribution, creating more
reliable environments for coding, and users (students) are withdrawn
from their hardware on laptops. Subsequently, environments are re-
produced and replicated through a configured repository. Workspaces
are shareable units of pre-configured and ready-to-code environments.

Awareness of Gitpods internal structures gives an overview of po-
tential opportunities. However, the assignments are currently not com-
patible with Gitpod, hence using Gitpod for mandatory assignments

15

becomes a process in which some development is needed.

2.4 Summary
TDT4100 is a course that focuses on object-oriented programming

through the IDE, Eclipse. Problems with the current distribution of as-
signments in TDT4100 are initial startup procedures, maintenance of
source-code state, students accountability and resource expenditure.
Consequently, Gitpod exposes a different alternative to traditional
desktop IDEs, with reusable workspaces, hardware Independence and
declarative control of behaviour and state. Opportunities with dis-
tributing assignments with Gitpod are removal of installation, accessi-
ble coding environments and alternatives to resource allocation.

16

3 Theory and related work

In the world of pedagogy, there are different paradigms that view
the world in specific manner, and IDEs are something that program-
mers do not live without. To find interesting research on student expe-
rience and pedagogical implications of IDEs, I will examine methodolo-
gies, theories, concepts that are relevant for my research inquiry. First,
the pedagogical branch of socio-cultural theory will be presented. Af-
ter that, mental constructs and the notional machine will be described.
And lastly, related work from pedagogy and IDEs.

3.1 Socio-cultural learning theory
The socio-cultural learning theory finds its roots from the Russian

psychologist Lev Vygotsky. The theory itself has had a cultural devel-
opment driven by the Europeans and Americans heavily inspired by
Vygotsky himself. The main characteristics stem from the early devel-
opment of children, their culture, which determines how and what a
child learns about the world (Skaalvik & Skaalvik, 2013).

The leading cognitive association with Vygotsky is his thoughts
on the zone of proximal development (ZPD). The zone of proximal
development is categorized as the zone in which the student/pupil with
adequate support and guidance from his tutors, may accomplish a goal
or a set of tasks, in which the pupil would not accomplish without the
guidance.

As for the base for the theory, and presented in Figure 6, Vygotsky
proposes three zones from the expected mental and cognitive capabil-
ities for a student.

1. What a student can achieve independently

2. What a student can achieve with guidance and tutoring

3. What a student cannot do on their own with either peer support
or tutor guidance

In a world where a child learns about his environment, the key to
success and a simplified interpretation of ZPD is the following “The
things a student can do with assistance, are the things that are possible
tomorrow completely alone” (Skaalvik & Skaalvik, 2013). The key

17

Figure 6: The zone of proximal development

takeaway is that the curriculum that is taught for a given individual
should strive to live in the ZPD.

When it comes to the set of tasks, curriculum and difficulty pre-
sented by a given course, ZPD can be an alternative way of describing
adaptive education. This style of teaching demands great efforts of dif-
ferentiation and a highly individualized study of each students’ ZPD.

3.1.1 Guidance and support
The idea of an individual having a ZPD accentuates a teaching style

that consists of various strategies to give the circular area of develop-
ment the chance to flourish. Since the instruction is tightly related
to the students’ proximal development zone, it means that each stu-
dent needs some guidance and support, hence “Scaffolding” (Skaalvik
& Skaalvik, 2013) is used as a metaphorical term.

Guidance and support build the foundation of scaffolding. The
takeaway, however, is that scaffolding is expected to be taught in a
specific manner; a guide in which you only give hints and tips so that
a student can find out the answer on their own, not by mere telling
or showing them what they are supposed to do; you are guiding, not
showing.

3.1.2 Scaffolding
Instructional scaffolding differs from other types of instruction sup-

port in which the goal of what students are intended to get out of it,

18

the timing of the support and what kind of support. The first thing we
must look at is that scaffolding needs to make the student compatible
enough to support the current performance, where the main goal is to
make the student able to complete a skill independently. A calcula-
tor does not qualify as a scaffolding tool in which it aids the student.
It may aid their calculation skills in the “moment”, but it does not
account for independent calculation in the future.

The second thing is when students are engaged with ill-structured
/ authentic problems in which there are more than just one solution
to the problem. Instructional approaches such as lecturing models,
strategy and examples do not qualify as scaffolding. It does not build
off the current knowledge, it is just pure representational.

Third, scaffolding needs to build upon what the students already
know and be tightly relational to the assessment of the given knowl-
edge domain. Show and tell (traditional instruction) do not qualify
as scaffolding; it does not support itself on what the students already
know (Belland, 2017).

The historical definition of “scaffolding” was initially proposed as
a metaphor to describe how parents and teachers provide support for
their children as they learned to build pyramids of wooden blocks (Bel-
land, 2017). This scaffolding support was meant to instruct their chil-
dren in building pyramids, while they were doing the bulk of the work
to solve the pyramid problem. Scaffoldings’ role was to fill the gaps in
students knowledge and abilities to such extent that they could com-
plete the task at hand. The main goal was to support children in their
engagement with problems, to lead the development of skills to become
and be an integrated part of their problem-solving independence.

Scaffolding was contingent, that means it took on two key events; It
was iterative and interconnected. These two key events assess the scaf-
foldees’ current performance characteristics and also the provisioning
of just the right amount of support. Contingency means that scaffold-
ing as a whole relies upon a dynamic assessment approach.

Scaffolding also required a shared goal between the scaffolder and
the scaffoldee. Shared goals was considered necessary to let the scaf-
foldee know what a successful task would look like and how to obtain
it. This specifies and points out a crucial part of the Independence
aspect of scaffolding (Belland, 2017).

19

3.1.3 Socio-cultural programming
While Belland talks about the building blocks of scaffolding, chil-

dren and students place in the hierarchy; there are some principles
that encourage programming pedagogy. The mediation of teaching
with scaffolding ensures that students can complete tasks individually,
rely heavily upon the notion of having roles of a ”More knowledge-
able Other” MKO (Sentance et al., 2019). The idea of a MKO relates
to teachers and peers, where concepts and models are mediated to a
less knowledgeable student from a MKO. While a construct of pairing
knowledge aligns with a socio-cultural stance, the mediation through
language is prominent. Teaching should focus on facilitation of col-
laboration and discussion (Sentance et al., 2019), while programming
tasks should be carefully scaffolded over time, gradually more complex,
incorporating elements that focus on the ZPD.

3.2 Mental constructs
Why students struggle to understand computing concepts, have

been studied by computer science education researchers for a decent
amount of time. The concept of a ”notional machine”; An abstract
model of the computer may have been concluded as the missing build-
ing block. (Bower & Falkner, 2015).

A notional machine can be categorized as a characterization of the
role of the computer of executing programs in a particular language
(Sorva, 2013). Notional machines are the abstractions we create, to
connect different parts of hardware and software that execute pro-
grams. While there are different kinds of programming languages, a
single notional machine mostly exists for each language. Java might
have a different notional machine than say, Python. Notional machines
that describe object-oriented behaviour are different from procedural,
that is different from mathematical machines. A higher-level abstrac-
tion of notional machines in regards to Java might be the mental model
of a computer keeping track of objects running through the program,
passing messages and interacting with each other (Sorva, 2013).

Learning to program is not easy. There are five areas of difficulty
connected to the task of programming. The general problem of orien-
tation discusses the problem of finding out the question of what pro-
gramming is for, what problems programming tackles and presumed

20

advantages of learning such a skill (Du Boulay, 1986). Secondly, there
is the difficulty of understanding the general properties, of the machine
that is programmed, in regards to the mental model of a notional ma-
chine. The third difficulty exemplifies the formal language, learning
semantics and syntax. Understanding standard structures to achieve
goals with sums, loops and conditions are the fourth condition. The
last and final difficulty resides in the aspect of programming prag-
matics. How does someone test, debug and specify applications with
available tools? These five difficulties are not entirely separable; they
are often intertwined into a shockingly complex system that students
attempt to deal with simultaneously (Du Boulay, 1986).

”Learning a programming language involves not only learn-
ing that language, but also the language for managing pro-
grams as well as the language for editing programs” (Du Boulay,
1986)

A computer program with its programming system is also a mech-
anism, a mechanism that creates other mechanisms. Even so, learners
will often interpret these systems with their own mental models, rather
than relying on help. These mental models can be impoverished and
insufficient to explain program behaviour (Du Boulay, 1986). A learner
needs a rather simple explanation of system ingredients.

3.3 Web-based IDEs - What is out there?
As cloud computing has emerged in the last decade, desktop ap-

plications migrate to the cloud and web. Applications such as Slack,
Google Sheets and Docs, Microsofts office package and normal file stor-
age have become commonplace. The success of application migration
to web-based systems is also challenging the status quo for integrated
development environments. Often, these integrated development en-
vironments are trying to offer functionality beyond the original desk-
top applications. Tran et al. (2013) have a long-term strategy to de-
velop their IDEOL application for fixing the challenges of collabora-
tion through ICT courses. Collabode (Goldman et al., 2011) tries to
support synchronous programming through a web-based IDE, CoRED
(Lautamäki et al., 2012), IDE 2.0 (Itahriouan et al.) and Adinda

21

(van Deursen et al., 2010) resolves around the challenges of collabo-
ration. Gaikwad et al. (2014) tries to resolve a presentation problem
by having all the environment installed on their own computer during
presentations. Dutta et al. (2014) are discussing how to implement a
multilingual web-based IDE.

Almost all the former IDEs have some property of collaborative
learning. Collaborative learning is the property of peer interaction and
serves as one of the most important factors in learning (Dillenbourg
et al., 2009). The evolution of computer-supported collaborative learn-
ing (CSCL) can be divided into three eras. 1: CSCL emerges after a
neglect for such properties. The neglect resulted in the understanding
of co-constructed knowledge and productive social interactions. The
second area constitutes of a scientific community growth of social in-
teractions through activities, environments and utilization. The third
era concludes a disappearance for CSCL as an individual pedagogi-
cal framework, where CSCL are becoming more and more integrated
within activities, both physical and virtual (Dillenbourg et al., 2009).

Group learning and activities are becoming the norm, that culture
without such interactions would be unthinkable. The scene of CSCL
proves an emergence of both learning theories and technological evolu-
tion, where an illusion of converging towards a socio-cultural pedagog-
ical perspective and individual constructs are debatable. Some think
that a CSCL environment is strictly for the individual, while others
argue that knowledge is co-constructed through a pure socio-cultural
lens of social interaction and thinking (Dillenbourg et al., 2009).

The broad definition of ”collaborative learning” regardless of com-
puters, is the activity where two or more persons actively attempt to
learn something ”together” (Dillenbourg, 1999). The scales that in-
duce the concept of ”collaborative learning” are many. From a single
group of 3-5 people collaborating, or the label of CSCL where around
40 people participate in a course. While the context of collaborative
learning seems rather broad, there are a variety of meanings for both
keywords of ”learning” and ”collaboration”.

22

3.4 Pedagogical IDEs
Teaching object-oriented programming in universities has become

more and more common (Kölling et al., 2003). This is most likely ubiq-
uitous in today’s computer age and time. Although there seems to be
a lack of clear direction in ICT and pedagogy, especially for object-
oriented languages, where Kölling et al. (2003) profoundly suggest
that object-oriented programming inherently find itself at a complex-
ity level of procedural programming. Kölling et al. (2003) commonly
reveals three common fundamental problems with existing integrated
development environments: the environment is not object-oriented, the
environment is too complicated, and the development environment fo-
cuses on the graphical user interface.

Object-oriented environments should reflect the paradigm that you
are programming in, where students should work with abstractions
that has a purpose. Object-oriented classes and objects should be
worked with directly, instead of files and applications found in most
IDEs, that mostly are too complicated (Kölling et al., 2003).

BlueJ, as an educational component in object-oriented teaching,
shows us a specific set of pedagogical interventions that supposedly
abrupt and change how we teach object-oriented teaching. However,
from another perspective, the key to students performance in introduc-
tory courses do not depend on the tools used; instead, it is an extended
duration for the introductory course. Silva-Maceda et al. (2016) com-
pared pedagogical approaches in introductory programming for the
C-language, using a pedagogical tool called RAPTOR in one module,
and a standard module without. These modules had two timeframes, a
pre-university course paired with regular university courses, and with-
out any pre-course, following a usual university scheme. Both RAP-
TOR and the standard way of teaching followed the pre-paired and
typical scheme. While RAPTOR seemingly outperformed the stan-
dard approach, on both lengths of introductory programs (pre and
non-pre), the RAPTOR approach did not show any statistical signif-
icance when preliminary skills were taken into account (Silva-Maceda
et al., 2016). Moreover, preliminary skills are an essential performance
indicator; however, more data is required to generalize their findings.
Meanwhile, during a study of how novices tackle their first line of code,
Vihavainen et al. (2014) argues that their data suggest that beginning
with an off-the-shelf IDE do not impose any detrimental effects on stu-

23

dents. Instead, it is syntactical issues that arise during start phases of
programming.

The implications of IDE usage can also be seen as a necessity for
students attention and excitement for a particular tool. During a two-
year pedagogical experiment, Chen & Marx (2005) developed an ap-
proach to teach introductory programming in Java with Eclipse, that
encompasses working with command-line JDK first, for several weeks,
and then afterwards including IDE usage through Eclipse gradually.
Supposedly, this line of an introduction should create a more general
sense of the higher aspects of productivity within IDE’s and get a
general overview of structures within Java. While, given the choice
of choosing IDE’s, students would pick more comfortable IDE’s over
Eclipse (Chen & Marx, 2005).

3.5 Summary
The zone of proximal development proposes three zones in which a

learner may be located, with a focus on activities that create challenges.
Learning is mediated through scaffolding. Guidance and support be-
come essential aspects of realizing the learning potential by creating
stimulus. Learning programming is often looked at as a grandiose task.
Some believe that a wrong interpretation of a notional machine may
be the issue, while others argue that it is a complicated endeavour that
includes pragmatics, semantics, mental constructs and properties. Nu-
merous IDEs have been developed, with effort in creating collaboration
within tools. CSCL gradually has become more integrated into phys-
ical and virtual spaces. IDE related pedagogy suggest that there are
implications of usage that indicate either using professional IDEs or
strict special tooling for pedagogy.

24

4 Artefact development

In order to test Gitpod in a real-life setting, I had to do some initial
development. The goal was to have a functional Gitpod setup that
had similar design and structure as the mandatory assignments from
Eclipse. This section does not resemble any newfound development
strategy, as its sole purpose was to create a working system that could
be used for testing.

The development process and the final product description was
a collaboration between me, and my supervisor, course teacher and
associate professor Hallvard Trætteberg. The goal before the tests
was to create a minimal viable product. The product was a pre-
configured GitHub repository ready for Gitpod workspaces. The Git-
pod workspace was to take on a set of functionality that we already had
with our Eclipse installation, creating some sort of familiarity between
these two IDEs. The primary goal for the development process was to
transfer the existing assignments of our Eclipse setup, onto Gitpod.

4.1 Initial discussions
We discussed and found learning activities where we could eventu-

ally use Gitpod. Three learning activities became our focus, and are
outline in table 2.

Since time and resources had to be taken into consideration, the
development of the artefact had to be of reasonable scope. In Ta-
ble 1 types of different assignments are presented. Thus, we found
that an artefact with Gitpod in regards to mandatory assignments for
TDT4100 would suffice. With the more problematic area of applica-
tion development (Table 1) for some assignments and the complexity
of doing such application development with Gitpod, we resided in nar-
rowing the scope even further, excluding applications assignments from
the artefact.

The artefact was to include the same structure as Eclipse (folders
and Maven setup), the same testing regime (each task has a pre-made
test-suite) and keep the sequential nature of tasks intact.

25

Assignments
Format Description

Sequental New assignments are tightly correlated to
preceding assignments. Previous classes
(objects) and tasks are expanded with new
principles and methodologies

Non-sequential New assignments sometimes do not rely
on tasks from previous assingments; Some
tasks cannot be broadened in order to em-
phasize an object-oriented methodology.

Application development Assignments can have an application fo-
cused theme; creating simple desktop
applications to exemplify object-oriented
programming in an applicable manner.

Testing and debugging Each task in an assignment may have
test-suites. Knowledge about testing and
debugging occurs throughout the entire
course. Some assignments emphasizes pri-
marily on testing and/or debugging

Table 1: Assignment formats

4.2 Repository architecture and sequential exercises
Since Gitpod only initializes from various distributors of reposi-

tories, one question arose during development ”How do we structure
these repositories?”. While Eclipse has a direct coupling with the as-
signment repository, but not explicitly reliant on these repositories, we
had to find a solution for how assignments should be distributed.

Different architecture setups were discussed for assignments during
the development phase. Three architecture setups where discussed: as-
signments on branches, one central repository for everything and mul-
tiple repositories for each assignment. These structures are illustrated
in figure 7.

26

Learning activities
Activity Description Situation
Assignments A Gitpod environment

with a focus on mandatory
assignments should cover
sequential, application
and debugging/testing
assignments.

TDT4100

Lectures A Gitpod environment with
a focus on lectures in-
cluded more interactive lec-
tures with code-examples
and snapshot sharing dur-
ing lectures.

Lectures in general

Web development Some courses have web and
application development fo-
cuses, and thus a new fo-
cus on development could
be with Gitpod.

Web development
courses

Table 2: Main learning activities for a Gitpod environment

(a) Mono repo (b) Multi repo (c) Branch structure

Figure 7: Repository structures

4.3 Challenges
Some challenges where more prominent than others. The central

problems are outlined in table 3. The focus for development became
ensuring that these issues where solved. The issues became the source

27

of truth whether the artefact was finished or not. During development
daily notes were taken with note keeping in Microsoft OneNote.

Gitpod artefact problems
Topic Description
Test suites and feedback The environment should have

easy-to-use tests and good feed-
back. The Eclipse test depen-
dency did not work on Gitpod,
therefore an alternative had to be
implemented

Repository architecture Gitpod has a tight integration
with Github and Git. An easy
repository architecture must be
ensured

runnable code The code had to be fully built be-
fore any code could run. This
problem made the Gitpod setup
non-congruent with our Eclipse
installation

Sequential exercises We needed a way to ensure that
sequential exercises worked prop-
erly

Table 3: Backlog items for artefact development

4.4 Artefact design and description
In section 2.2, the Gitpod environment was described. In this Sec-

tion we continue to expand upon the Gitpod artefact inquiry, and
discuss how the obstacles was solved.

4.4.1 Repository architecture
The debate of repository architecture for the mandatory assign-

ments converged on a the mono-repo architecture; keep all the assign-
ments continuously in one single repository. Meanwhile, branch and
single-purpose repositories are viable options; they seemed to include

28

teeming arrays of complexity to the already complex nature of work-
ing with Docker container virtualization. Furthermore, keeping track
of multiple repositories and branches for each assignment would not
impose any significant concerns; rather, GUI tasks had to be written
manually in advance to switch between assignments. Additionally, the
nature of saving programming progress during a branch and multi-
repo structure would potentially create more difficulties for students
to store progress. However, one continuous repository would not be
free of problems; rather, it stood out as the preferable choice and sub-
stantiated the existing assignment scheme.

In appendix Appendix E, I included the configuration for the
declarative style of creating Gitpod environments. Here, we can see in
E.4 a command bash script. The script runs every time a workspace
is launched. This bash script ensures that there is always a connec-
tion to the already existing repository for academic staff of the course,
that holds the assignment plan. The upstream repository for each
workspace is set during initialization. The update process of publish-
ing new assignments (that are sequentially tied together) is one single
command from an admin.

4.4.2 Test suites and feedback
Testing is a big part of TDT4100 assignments, and initially, the

testing framework for the already existing Eclipse setup did not prop-
erly work for Gitpod. Thus, an alternative had to be implemented.
Non-working test-suites with JExercise7, forced tests to be executed
through maven commands. In spite of non-working tests with JExer-
cise, another issue arose with the alternative of abstracting tests with
GUI task commands. Beneath the abstraction where maven com-
mands. Maven commands could not be run without creating them
manually. Alternatively, the Java Test Runner extension8 created an
opportunity to have seemingly manageable auto-runnable tests, and
create feedback on the tests through descriptive expansion panels. The
test-suite extension is shown in figure 8.

7JExercise is a test-suite dependency specifically developed for TDT4100
8Java Test Runner extension is downloaded from the extension library for Visual

Studio Code. It is compatible with Gitpod environments

29

Figure 8: Running a test-suite for Account.java task. Output is the java test runner
extension

On the left-hand side of figure 8, the tree view of folder structure
given an assignment is shown, while at the far right, the expansion
panels are individual tests. In this scenario, every single test failed due
to non-implemented methods. The problem of test-suites was fixed
with this extension in a reasonable manner; however, the expansion
panels were not compatible with Gitpod, and therefore stand as a bug
that needs fixing from TypeFox.

4.4.3 Running code
Running code was not an issue, but the building of entire projects

was. Due to the nature of Maven, the whole project had to be ”build-
able” in order for program execution. Accordingly, one specific set of
Theia configuration had to be disabled. With the disabled configura-
tion, all future workspaces launched would contain that configuration,
hence reproduction of behavior and state.

4.4.4 Sequential exercises
Students progress from assignment to assignment in a sequential

manner were executed by command through a GUI task with a single
pull from the main repository, due to mono-repo architecture. Config-
uration task for this can be found in appendix Appendix E.

4.5 Pilot-test
A pilot-test was run and tested on a couple of associates that knew

Java from before. Testing the artefact served four purposes.

30

1. To test that the solution worked

2. To potentially find bugs within the system before the initial tests

3. Guidelines for potential interview questions and tests

4. Putting myself in a comfortable interview position gaining some
experience and traction beforehand

The complete configuration and assignment scheme can be found
at my github9. Discussion from the pilot-test is summarized in Table
4

Gitpod pilot-test
Topic Discussion
Experience They found it easy to use, and was impressed by

the simplicity of launching an instance. Subse-
quently, common IDE features where pleasant.
No comments on lagging or sluggishness while
programming.

Opportunities and
pitfalls

Starting with the course becomes considerably
faster. Sometimes, there is not so obvious where
certain features where. Saving progress might
be problematic. An introduction for Gitpod
might be much faster than the current situa-
tion. Delivery of assignments were quite easy.
A special opportunity for better lectures.

Pedagogy The availability of an environment might have
a considerable effect on learning.

Table 4: Topics discussed during the pilot-test with colleagues

9Github repository used for testing assignments www.github.com/jorgensta/
gitpod-student

31

www.github.com/jorgensta/gitpod-student
www.github.com/jorgensta/gitpod-student

5 Research process and methodology

The thesis is trying to answer the question of which opportuni-
ties and pitfalls, technically and pedagogically, an object-oriented pro-
gramming course (TDT4100) would have in introducing Gitpod for
mandatory assignments. To understand and further discuss these im-
plications, a robust methodological framework is needed.

Interested in both social science and engineering, I believe that
there exists a link between qualitative and quantitative data. Some
phenomenons, theories or hypothesis can only be explained through
qualitative data, some require quantitative data, and sometimes, we
might consider both. In this research section, I will begin by describing
my choice of paradigm. After my paradigm description, I will outline
the process of my research methodology; Design and creation and the
stepwise-deductive induction method. The last part of my process will
describe quality considerations and ethical concerns.

5.1 Pragmatism
How the world should be interpreted has been discussed back to

ancient western philosophy, and the debate continues even to this day
(Johnson et al., 2007). Mixed method research strive towards uniting
the extremes of quantitative data (Plato) and qualitative data (the
Sophists). Mixed methods are striving to find the middle ground be-
tween the extremes, respecting the wisdom of both inquiries.

The primary philosophy of mixed methods is pragmatism (John-
son et al., 2007). The approach caters to consider multiple viewpoints
and not just the consideration of a paradigm being absolute. Prag-
matism can be regarded as an alternative paradigm (Yvonne Feilzer,
2010), where the researcher is free from constraints imposed by either
postpositivism and constructivism; pragmatism relies on the empirical
orientation that imposes real-world problem-solving (Yvonne Feilzer,
2010).

5.2 Qualitative Design and Creation research
An important note in regards to design and creation research is

that the process should not just be an illustration of technical prowess,
but also should include academic perspectives, such as analysis, argu-
mentation and discussion. Alas, the approach of design and creation

32

must contribute academically. Oates (2006) proposes three ways an
IT-artefact can be academically valid.

1. The artifact is the main focus of the research

2. The artifact is a vehicle for gain in knowledge elsewhere

3. The gain in knowledge is the development process of the artefact

Figure 9: Research methodology

To reiterate on information from the introduction, The approach
used for this research, is with the artefact being a vehicle for gain

33

in knowledge elsewhere. The components contributing to the research
methodology is outline in figure 9.

5.3 Design and creation
Oates (2006) mentions that the design and creation should be con-

ducted in an iterative fashion; respectively by a five step iteration
approach.

1. Awareness. The initial state. Oates (2006) explains, it is
through the recognition or advancements of a problem. This
recognition advancement pattern relates to new technology, new
literature that is studied, or practitioners that express needs.

2. Suggestion. Creates a leap from the initial awareness of the
intricate problem area or advancements. This leap explores and
put a tentative idea to life.

3. Development. Create or implement something from this tenta-
tive idea from the previous step (suggestion). How this artefact
is created depends upon the context of the area or field.

4. Evaluation. Tests the artefact that has been developed. As-
sessment of the proposed artefacts worth and deviations.

5. Conclusion. Sums up the results and are written up. The gain
in knowledge is identified. If the results proves to be loose ends,
unexpected results or anomalies, then these might be addressed
for further research on the subject.

Figure 10 denotes a timeframe in which order each step in the iter-
ative process should be followed. As with the beginning of this thesis,
we have discussed the foundation on which the awareness suggestion
and development are grounded.

In the next subsections I will describe my chosen methods for evalu-
ation. Accordingly, evaluation consists of data gathering and analysis.
Consequently, I will discuss my data gatherings validity and reliability.
I will close this chapter by discussing ethical aspects.

34

Figure 10: General overview of time proximity for the research design

5.3.1 Data gathering strategy
The strategy used for data gathering has been the stepwise-deductive

induction (SDI) method by Tjora (2017). The scope of SDI is illus-
trated by figure 11.

In SDI the researcher is working in stages; from the gathering of
data, all the way until the creation of theories or concepts derived
from that data. The upward process illustrate the inductive part of
the process (Tjora, 2017). The deductive aspect of the model refers to
connecting previously known theories to the empirical data. The arrow
from top to bottom in figure 11 illustrates this deductive pattern.

The data gathering method was an interview with a programming
task on a computer. The programming task was captured with screen
recording software. The interview distinguished between three-phases:
warm-up, the central portion of the interview (questions and program-
ming) and round up. The interview guide can be found in Appendix
B.

5.3.2 Interviews
The most popular data gathering method in qualitative research is

interviews or some deviation that resembles an interview (Tjora, 2017).
Interviews can be divided into three types; structured, semi-structured
and unstructured (Oates, 2006).

35

Figure 11: The stepwise-deductive induction method by (Tjora, 2017)

The goal of unstructured and semi-structured interviews is to create
an environment where the participant at hand is allowed to speak
their mind freely (Tjora, 2017; Oates, 2006). An important note is
that these types of interviews should strive to give the participant a
relaxed environment that allows for introspection and reflection about
the topic at hand. Furthermore, questions are structured openly, giving
digressions a particular value; participants can travel into topics that
may be either invaluable or valuable. Digressions serve as a defence
mechanism. Some aspects may not have been thought through before
the interviews, and the digressions might turn out important for the
inquiry (Tjora, 2017). The interview method used here is the semi-
structured interview. The interview-guide can be found in appendix
Appendix B.

Tjora (2017) advocate that interviews should be structured in three
parts (introduction, reflection and ending), to ensure a natural flow
for the interview. The introduction should contain easy questions that
warm up the participant for more thoughtful answers in the central
portion of the interview. The ending should normalize the situation,

36

and be a step where vital information about data confidentiality and
treatment is discussed between both parties involved. Furthermore, a
standardized procedure is to use audio recordings during the interview
(Tjora, 2017; Oates, 2006). Recordings allow the interviewer to gather
all that has been said while keeping a strict focus on the interview.

Transcription

Complete transcription of interviews is advocated. How one should
transcribe interviews are a different question, where there is no accu-
rate translation from oral dialogue to written text (Tjora, 2017). Con-
sequently, the researcher should often include more details than neces-
sary, where dialects, gestures, atmosphere, uncertainty indicators and
verbalization problems might become important (Tjora, 2017; Oates,
2006).

For the interview transcriptions, I transcribed dialectic features
when it felt appropriate and avoided tracking gestures. I transcribed
uncertainty during the interviews and verbalization problems. All
the aforementioned transcribing details contribute to the overall at-
mosphere and memory of an interview.

5.3.3 Observation
Observational studies have often been connected to anthropology,

referred to as ethnography. This line of observation tries to explore
social constructs in their natural habitat (Tjora, 2017). The use of ob-
servations in regards to computing research is often linked with human-
computer interaction (Oates, 2006). These observations are often used
to explore how people do their jobs, or in this particular scenario, how
students use IDE’s. Observation as a data-gathering method has a
wide range of approaches, where each approach has its own spectrum
(Oates, 2006).

With an observational method, there are different types of partic-
ipation; the amount of involvement with the interview-object. Oates
(2006) outlines four types of observation: complete observer, complete
participant, participant-observer and practitioner-researcher. The method
used for this inquiry, is an overt participant-observer strategy, with
record-keeping using a screen recorder of the participant computer

37

screen during programming. The observational template can be found
in appendix Appendix H.

5.4 Analysis
The main goal of the analysis is to create structured data that

allows other readers to gain knowledge in your field of study while re-
moving the need for the reader to go through the raw data themselves
(Tjora, 2017). Qualitative data analysis is not as straight forward as a
quantitative approach. Quantitative data can use established statisti-
cal and mathematical models and procedures, meanwhile, qualitative
data depends on the skill of the researcher; intellectual capacity and
creativity (Oates, 2006; Tjora, 2017).

Tjora (2017) write about the barrier of starting with qualitative
data analysis. A week of gathering data from a field study might gen-
erate hundreds of pages of notes (Oates, 2006). SDI aims at reducing
complexity into a structured format by trusting the empirical data, go-
ing step by step, avoiding premature conclusions and have a systematic
foundation.

5.4.1 Coding
Coding is the first step in the qualitative analysis from the stand-

point of the SDI model. SDI only operate with one coding level and
guarding this with a strictly inductive approach (Tjora, 2017). In
grounded theory and SDI, the coding is referred to as open coding.
Oates (2006) use three levels of codes, open coding, axial coding and
selective coding, which resembles SDI in many ways. One hallmark
of SDI is that the codes are in close proximity to the empirical data
(Tjora, 2017). The analyser should try name codes according to the
terminology used from the transcribed interviews, or situational occur-
rences during the interview; safeguarding the data.

The strategy used to code all the transcribed data was done in
an iterative fashion. First, I reviewed all the interviews getting an
overview of the data, taking some handwritten notes to find some clues
potentially. Tjora (2017) write about jumping straight onto the first
document. I reviewed the transcriptions first.

The strategy for coding used for the transcribed interviews where
that any interesting statement, phrase, word, metaphor or verb could

38

eventually become a code. The strategy creates good reference points
throughout the data. Unique codes can be a good thing; it maintains
the researchers’ memory (Tjora, 2017).

The emergence of CAQDAS tools (computer-aided qualitative data
analysis software) has been a staple in England and the USA for qual-
itative data analysis (Tjora, 2017). CAQDAS tools can be beneficial
for the researcher, but some argue that the analysis can be restricted
by the software capabilities, the learning curve of such a tool, and the
disconnectedness from the raw data (Oates, 2006). However, CAQ-
DAS tools have their potency within their ability to maintain the orig-
inal transcripts during coding, rather doing manual and physical ap-
proaches that can distort the original data (Tjora, 2017). Features of
CAQDAS are often two parallel systems; one system that tracks codes,
and another system that keep track of the edges between codes. For
this inquiry the software tool Nvivo10 was used. In Nvivo codes are
referred to as nodes. Categories can be coded with nested nodes (a
node containing a set of nodes), and themes can be nested nodes of
categorical nodes. Either way, Nvivo can systematically form hierar-
chical structures. Being lightweight and easygoing, Nvivo allowed data
to be structured in a reasonable manner, without disrupting original
transcripts and maintaining context.

5.4.2 Codes
By interviewing and observing students in a programming inter-

view, two different sets of data had to be managed — transcriptions
from interviews and video footage from their programming task. Inter-
views and video observations were coded separately. There were in to-
tal of 14 participants (11 male and three female). Fourteen transcripts
and video observations resulted in 78 generated codes from transcripts
and 17 codes from observations. More information about these codes
can be found in appendix Appendix F and Appendix H.

10Nvivo, licence provided by NTNU. More information about Nvivo can
be found here https://www.qsrinternational.com/nvivo-qualitative-data-
analysis-software/

39

https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/

5.4.3 Groups
The next step in the process from the SDI model (figure 11) where

the process of grouping together codes inductively. Grouping these
codes consists of fitting each code in to a thematic context (Tjora,
2017), whilst filtering irrelevant code.

In table 5 you will find all the categorical groups that formed from
transcriptions, and table 6 present the categories from video observa-
tions.

Category Description Codes
TDT4100 as a
course

Students own words and experiences
with the course TDT4100. Assign-
ments, logistics, resources and help

8

Challenges with
TDT4100

Challenges that students have in
TDT4100

7

Learning to code Students own statements about how
they learn programming the most ef-
ficiently and thoroughly

16

Student needs Statements and descriptions of what
students feel they need in addition to
the original course curricula

3

Past experiences Past experiences with programming,
courses and how they relate to
TDT4100

3

Experiences
with Gitpod

Students experience with using Gitpod
during their interview

15

Experiences
with Eclipse

Students exeprience with Eclipse dur-
ing the semester

9

Experiences
with IDEs in
general

General IDE experiences gathered from
diverse contexts

10

Git; attitude
and relevance

Their attidutes and outlook on git as a
version control system

2

Programming in
Gitpod

Students experience with programming
tasks in Gitpod

3

Table 5: Categories formed by the open codes during the grouping process

40

Observation cat-
egory

Description Codes

Uncertainty and
obstacles

Students show uncertainty while pro-
gramming. Package problems, class
declarations, folder structure and file
extensions

6

Nervousness Students show hints of nervousness
during the programming interview

3

Familiarity and
shortcuts

Students have their familirarities and
shortcuts that they are used to from
previous experiences

4

Effective work-
flow and feed-
back

How well students perform using Git-
pod during the programming interview.
Feedback from the system, error mes-
sages and IDE utility

3

Eclipse automa-
tion realizations

Moments of realizations occur, where
automation provided by Eclipse be-
come obvious

1

Table 6: Categories from video observations

5.4.4 Themes
Whether another step of coding is required, comes down to the

number of groups that can be summarized in themes. Tjora (2017)
says that a master thesis may suffice with only groups, excluding the
creation of themes. Themes were generated from the categories of tran-
scripts, as they had adequate amounts of codes. The categories formed
from video observations were fewer, thus no themes were formed. In
table 7, generated themes are presented.

The themes in table 7 are interrelated. This creates a dynamic in
which the concept development described by Tjora (2017) do not fit.
A shift in perspective move towards a conceptual model that connects
the themes. Creswell (2002) name this interrelated themes.

41

Theme Description
Students needs,
experiences and
learning

Students own experiences with coding,
tools and how they learn

TDT4100: A
student perspec-
tive

A student perspective of the course
TDT4100. Thoughts on how the lec-
tures work. How the course is struc-
tured. Thoughts and experience with
the curricula.

Technical IDE
aspects

Thoughts and experience with the rele-
vant technology used in the course and
how that students relate to the technol-
ogy used.

Table 7: Themes formed from categories

5.5 Research quality
The three criteria of validity, reliability and generalizability are of-

ten indicators of research quality (Tjora, 2017). I will describe and
discuss these criteria in regards to the research methodology presented.
First, the metric of validity will be discussed. Reliability will follow
as the second parameter to the equation. Generalizability will be pre-
sented as a part of the discussion, in Section 7.4

5.5.1 Validity
In research, validity raises the question about whether or not the

answers we find in research are valid (Tjora, 2017). We can strengthen
the validity of the methodological processes by interpreting how they
conform to the questions asked, and by inviting individuals to reflect
upon the relevancy and precision to the choices made by the data
generating methods and through relevant theory for analysis (Tjora,
2017). These validity metrics have been adhered to, by presenting clear
methodological choices through research questions, methodology and
constructed themes.

The researcher also has a personal position in regards to the in-
quiry. An ideal is that the researcher maintains a neutral or an objec-
tive stance. The engagement of the researcher in a given inquiry can

42

be looked upon as noise that can challenge and influence the results.
However, the researcher is essential, but complete objectivity and neu-
trality in qualitative research do not exist (Tjora, 2017). A researcher
should be open-minded for change and insight.

My personal engagement might infer with the results. I initially
had a personal preference for Gitpod over Eclipse that could poten-
tially infect the participants while interviewing, giving biased questions
and getting biased answers. Meanwhile, I tried to keep an objective
stance, hiding my personal preferences. But after a while, that personal
preference for Gitpod, slowly but steadily diminished, as the appreci-
ation for Eclipse increased. How influential my engagement were to
create biased questions and answers, is debatable, but it is important
to describe the situation. However, I do believe that my diminished
engagement for Gitpod may have created a more neutral analysis and
discussion.

During observations, and interviews alike, some participants were
noticeably nervous amid programming while being observed. Partici-
pants exhibited covert and overt signs such as: arithmetic that fails,
directly stating that being observed was intense, programming hecti-
cally and they disremembered and ignore simple tasks and feedback.
A major validity concern, as the situation do not resemble a real-life
context in which the participants operate as normal.

5.5.2 Reliability
If some other person, team or researcher would have executed the

same procedures that have been presented, they would have gotten the
same results — a test of the reliability of the research. Tjora (2017)
write about the following steps that can strengthen the reliability: clar-
ify verbatim quote selection, clarify how the participants were chosen
and describe the relationship between researcher and participants.

The participants where chosen from a pool of 600 students. I had a
presentation of my inquiry in a TDT4100 lecture. After my presenta-
tion, I sent sheets of paper through the auditorium. Those that were
interested would write down their email, and I would contact them
after, setting up the interview. I had initially 37 interested students.
Due to the lack of email responsiveness and other factors, I got 16
students aligned for interviews. There were two participants that I
had a relationship with (through other mediums), while the rest of the

43

participants were completely new interactions.
Quotes were deliberately chosen to extract the most important as-

pects of the analysis. The chosen method was to present more than
just a single quote for a given code or category, to highlight that a
category was not restricted in terms of data. A broad and diverse
presentation was also a criterion, with verbatim quotes from each and
every participant.

5.6 Ethical concerns
Data anonymization and treatment of participants are two impor-

tant aspects of ethical concerns with the research presented. The latter
represents the presentation of data, while the former relies on partic-
ipants well-being. Some research might address burdensome personal
affairs, while others do not. Information about withdrawal conditions
(participants can abort any time) are crucial, and sensitivity for audio
recording should be treated and respected accordingly (Tjora, 2017).
The concern of the participants for this research was their potential re-
sponse to the context of being interviewed and programming in front of
a stranger — precautions were taken by being polite and lighthearted
during the interviews, creating a pleasant atmosphere. The withdrawal
conditions were part of the interview guide that was presented at every
interview. See appendix Appendix B for the interview guide.

Anonymization of participants when presenting the data is also a
concern. Some data cannot be guaranteed to be anonymous. Partici-
pants can come from a small pool of eligible people or specific environ-
ments. In some contexts, anonymization will greatly reduce analytical
capacities. Anonymous presentations of participants are mandatory
(Tjora, 2017). The 14 participants for this research were taken from
a pool of over 600 enrolled students. A portion of them may be rec-
ognized through the raw data. Therefore appropriate measures were
induced by avoiding names and age at all costs and presenting par-
ticipants with anonymous names — interviews where written digitally
through Microsoft OneDrive, approved by NSD. Recordings were taken
with a password-protected iPhone, offline, with no synchronization op-
tions between other cloud providers. Audio-recordings, iPhone, cloud-
provider and personal computer where password protected.

Before the gathering of data, the research process and methodology
was sent for evaluation to the Norwegian Centre for Research Data

44

(NSD). The request was registered on the 2nd of February 2020, and
was approved on the 6th of February 2020, with reference number
983188. The methodologies used to gather and store data are therefore
approved by NSD as congruent with their laws on privacy, correctness,
integrity and confidentiality. See appendix Appendix C for both the
request and approval.

45

6 Evaluation and results

In qualitative research, there are two main approaches to present
data from a qualitative study. One approach is to present verbatim
quotes from the interviews while reporting the key findings of the re-
search (themes). The key findings are discussed in a separate section,
with links to the analysis and previous research. The second approach
is to merge all three components, with verbatim quotes, key findings
and discussion (Burnard et al., 2008). In this section the analysis will
be presented first, separating it from the discussion.

The interview transcriptions are originally written in Norwegian,
and therefore these have been translated to English. First, I will
present my participants broadly and individually. For the remainder
of this section, I will use the anonymous names during the analysis.
The analysis will combine analysis with empirical data directly from
the interview transcripts, describing my themes. Lastly, the model will
be presented as a basis for my discussion.

6.1 Participants
There where in total 14 participants. 11 participants where male,

and three were female. They where all university students in their
second semester. Their names, occupation and integrity will be intact
with anonymous names. Table 8 shows a combined statistical overview
of their starting points. Individual presentations of my participants can
be found in table 9. I will use the anonymous names throughout my
presentation and analysis. All students had a 2 month period of using
Eclipse (for mandatory assignments) before entering the interviews.

6.2 Students needs and learning
The theme of students needs, past experiences and learning cen-

ters the attention around students. The general findings from these
interviews about students, is that they are relatively knowledgeable
and experienced. Many of the students have previous experience from
High School, side-projects, self-interest exploration and even video-
games modding. 3 of the students did not have any computer science
background entering university studies. From table 8 we see that they
have used 16 different IDE’s and 14 languages/frameworks, where some

46

Category Listing
Previous IDE’s Xcode, Atom, Visual Studio Code,

Visual Studio, Emacs, Arduino
IDE, Thonny, PyCharm, IDLE,
DreamWeaver, Notepad++, Brackets,
Sublime, Eclipse, WebStorm, Jyputer
Notebook

Languages and
frameworks

Python, Javascript, Haskell, C++,
Unity, Java, SQL, HTML, CSS, Swift,
Arduino, PHP, Action-script, Flash

Table 8: Participant previously used IDE’s, IT framworks and languages

Name Years of IT ex-
perience

Favorite lan-
guage

Jonas 2 Java
Tom 1-2 Python
Mitch 0 Java
Sarah 1.5 Java
Charles 4 Java
Peter 1.5 JavaScript
Evan 1.5 JavaScript
Shane 0.5 Java
Mia 2.5 Python
William 2.5 JavaScript
Ryan 1 Java
Katie 2.5 JavaScript
Logan 2.5 Python
Michael 0 Python

Table 9: Anonymous presentation of participants. Name, years of experience and
their favorite programming language

students have used two or more. The range of previous IT experience
goes from zero to four years.

47

6.2.1 Needs
The extent that the participants went in order to fit the course

into their specific set of needs, where interesting. The students where
typically engaged with explaining their setups. William described his
stationary PC setup that were synchronized with his laptop:

”At home I’ve got a stationary computer, and I do not feel
like I can synchronize my laptop with my stationary. When
I am home, I often use remote desktop that connects to my
laptop, so that I don’t have to install Eclipse [...] I have
created a solution with OneDrive cloud storage ” - William

Another example is that students seem to be using that they like
the most, free of choice. Logan politely discussed his time back at High
School where they were allowed to find IDE alternatives

”We did not have any installation rights on the computer,
but we were allowed to download a portable version of Brack-
ets, because it functioned well. Brackets had livepreview of
HTML, and we could mark things inside our code, and it
changed the livepreview. It was pretty smooth” - Logan

While some seemingly are more interested and invested in the use
of technology, some do not have that previous experience and show a
complete contrast to these needs.

”I haven’t programmed before, so I do not have any prereq-
uisite to know whats good or bad” - Michael

6.2.2 Learning
The learning category consists of a collection of topics about how

they learn, outlooks on learning and their stance at the aspect at learn-
ing new things. An interesting finding about learning object-oriented
programming, is that there is almost an unanimous vote on the activity
of learning the object-oriented paradigm.

”I have to write code myself to understand it.” - Sarah

”By just coding. Definitely” - Tom

48

”Just doing it, enough said” - Jonas

”Learning by doing [...] I try to do every single assignment.
I learn so much from it” - Ryan

Throughout the interviews, something interesting occurred. While
the students seemed ”pro”-techonology and their non-lacking interest
for it, there is something interesting about their outlooks on learning
new things (IDE, tools, version control). I’ve called this type of learn-
ing activity ”Sooner or later”. The students show intuition about what
they are supposed to learn in future contexts. But this intuition were
filled with non-chalant outlooks on things, with statements such as ”I
just have to” and ”I just have to learn it”. Something show that the
students begin to form a picture of necessity; tools that you just have
to learn.

”Yeah but, you just have to learn it anyways [...] You just
have to get used to it” - Ryan

Another example from a discussion about the version control sys-
tem , the phenomena of ”sooner or later” presents itself.

”If people eventually have to learn Git, I propose is just
an advantage. You’ll have to do it sometimes anyways” -
Charles

From a discussion about the nuances between Gitpod and Eclipse
with Mia, she says profoundly that ”you have to”.

”What we are using right now looks almost too similar to
Eclipse, you’ll have to grasp Eclipse also, you cannot just
open Eclipse” - Mia

This type of expectancy from the students is quite interesting.
Rather than just doing what the course material is expecting, they
also have a futuristic mindset for future endeavours.

”I’ll have to learn terminal soon” - Shane

49

6.3 TDT4100; A student perspective
The students do think that TDT4100 is a good course. It has

loads of resources connected to it. A great support system of student
assistants, with a great selection of assignments that fit to both ends
of the spectrum of programming skills. Either way, there is one thing
that we find; that is that the entry level is hectic, frustrating and a big
leap from previous courses.

”It has been loads of trouble with Eclipse. It has been, espe-
cially in the starting phases, loads of problems with setting
it up correctly” - Jonas

”The biggest challenge is that object-oriented programming
is a big leap from our introductory course” - Tom

”Its the logic [..] how these logical structures are cooperat-
ing” - Sarah

”It is the language that people use, like Professors and lec-
tures. When they write assignments we are supposed to to,
I will usually interpret those assignments for hours on end.
That is quite challenging” - Mitch

”The introductory course I thought were pretty simple. When
we came here though, for some weird reason, everything be-
came much more challenging” - Mitch

Even though the entry level for object-oriented programming and
TDT4100 seems hectic and hard, the amount of resources and avail-
ability of logistics seem to be more than acceptable. There seems to be
nothing wrong about how the course is structured, as the grandiosity
of the course seems to lay the foundation for learning to take place.

”I feel like we have so much resources available.” - Mia

”We’ve got a whole web page filled with all sorts of things
that we’re supposed to learn. And we’ve got discussion
groups as well” - Mia

50

”I feel the assignments are ... I learn so much from them
[...] And the assignment scheme is very good too” - Ryan

”I think that here are so much available resources compared
to other courses” - William

”I think that the assignments have been good, because you
can choose which difficulty you want” - Charles

6.4 Past and present IDE experiences
This theme concentrates on how students are using gitpod, what

they think about using such a tool, what students think about using
Eclipse as an IDE, and all the general IDE knowledge put together.
This section also includes programming observations.

6.4.1 General knowledge and preferences
In the introduction, in table 8, the overall experience of the students

are presented. These ranges, from 0-4 years of experience, are a little
surprising and impressive. Most of these students have had past expe-
riences with programming either through previous university courses
or high school courses (IT1, IT2). With all the previous exeprience,
they begin to explain why they seem to prefer a certain IDE.

”(Atom IDE) is generally more cleaner and easier to con-
centrate on the code itself” - Evan

”I am used to VScode. It loads quite quickly” - Peter

But rather interestingly, even with the combined experience with
IDE’s within this sub-set of the students, there are some that do not
even know the logic and purpose of an IDE, even though they have
used such tools for quite some time.

”We have used it all the time, but I’ve never been given a
formal definition for what it is” - Micheal

”The thing is, I’ve only used IDEs [...] There’s something
with it, I do not know what’s behind the scenes” - Katie

51

While the more experienced students do often recognize that some
IDE functionality may not have any purpose.

”It is a fullblown IDE that has so much functionality, we
don’t need all of that” - Shane

Seemingly, the amount of knowledge about IDE’s seem to be rather
naturally partitioned, one particularly good comment came from Lo-
gan, with 2.5 years of experience.

”If I suddenly just opened Notepad and began writing a
java class from scratch, then I do not think that i’ve ...
it would’ve been shitloads of syntax errors, and I’ve proba-
bly forgotten include that, those, yidda, yadda, you know”
- Logan

6.4.2 Eclipse
I asked my participants what their experience with Eclipse was, and

their outlooks. Not so interestingly, most of them have had problems
with the installation process. A part from installing Eclipse, they
mostly seemed positively indifferent.

”Nah, we haven’t had so many bad experiences with it [...]
It was a small hurdle in the starting phases with installing
it [...] For me it has been pretty smooth” - Mitch

The functionality of auto-suggestion with methods really stood out
as exiting for Logan, and as a potential for learning more about the
capabilities for the Java language, and the dependency that you have
with using an IDE.

”When you press dot in Eclipse, and it suddenly shows 100
different methods, that is when I think about the use cases,
there is so much I could’ve used” - Logan

52

6.4.3 Gitpod and observations
The Gitpod programming session, and the round-up interview after

the programming, show many things. One common observation dur-
ing the interviews, was that many participants were nervous during
the act of programming in front of another person. They show both
covert and overt signs; Arithmetic that fails, telling me directly that
it was intense, the programming gets hectic and they forget and ig-
nore simple task definitions, feedback and IDE features. However, the
nervousness diminishes after a while. Furthermore, the students are
relatively quick adapters. There seem to be no problems in using and
navigating the tool, and they learn quick from mistakes that occurred
earlier. Nevertheless, nothing more seemed to be problematic. The
programming task went well for almost all participants involved.

On the contrary, one key finding from the programming interviews,
is the lack of understanding and experience with the package system,
class definitions and file formats while programming with Java in Git-
pod.

”Eclipse just create everything for me, I’ve never tought
about it” - Michael

”In Eclipse, those semicolons automatically appear when
you’re writing” - Peter

”This does Eclipse for you” - Logan

”I usually would’ve gotten the usual stuff (package, class,
.java) if I would’ve done this in Eclipse” - Katie

A comment from Ryan after he forgot to declare a package state-
ment in the top of the file that he was working in, and was given a
hint.

”Ahhh, of course ... Eclipse just does it for me”. - Ryan

Before the programming session, one participant breaks down this
difficulty of understanding the folder structure and packages.

”[...] (Eclipse) It’s structure is quite weird to what I am
used to, projects and stuff.” - Evan

53

Many of the participants where quite used to the Eclipse IDE fea-
tures. Productive features such as auto-generation of getters and set-
ters, constructors and shortcuts. A common act of asking for these
features where prominent during the observations.

After the interviews, I had a closing session with summarizing ques-
tions. The default reaction from students where that they all seemed
moderately positive, it was quite similar to Eclipse and other types of
IDE’s that they had used before.

”Its very smooth that it is online and such, with regards
to that it isn’t dependent upon your PC. Its actually super
smooth, if you suddenly loose all your stuff or something”
- Micheal

”Almost the same as Eclipse actually” - Katie

Even though moderate passivity was prominent, some students
were moderately skeptic at a certain point, having a lack of trust in
the system.

”I feel that I am little sceptical for everything that is in the
cloud, I don’t feel like I’ve got it properly. What happens
with this internet page? What if its down for maintenance.
I think its best to have it on my own PC.” - Sarah

The programming started with the same trend; nervousness. After
a while, they all seemed rather relieved and felt that they had mastered
something. It was somehow their own brain-freeze that kept them from
doing what they wanted, not the IDE itself.

”I thought that it should be considerably harder to use when
it was something that I had not seen before” - Mitch

”The thing that was hard, was my own brain freeze” - Shane

54

6.5 The unified programming course

Figure 12: The unified programming course model. Described by the derived
themes and their interconnections

My model of the unified programming course, derived and modelled
after the generated themes consists of three interrelated components.
There is the student that has thoughts about current technology usage,
their identity derived from the set of needs to explore and configure,
and how they learn programming. The component of looking at the
course as a whole do not entirely derive from what technology that is
used, rather, it is the whole combination; exercise selection, support
systems, teaching styles and flow of information and resources. The
technical aspects of IDE’s show us that the technical is connected to
the students, and the course-material that is taught.

55

7 Discussion

In the previous section, the interview and observational data were
presented, and the model of the unified programming course. The
model and data will furnish the upcoming discussion. In Section 2.1
the structure of the course TDT4100 were presented, in Section 2.2
the Gitpod environment and in Section 3 pedagogical theories and
previous work were presented. All these sections provided a set of def-
initions, theories and previous work that will be used in coordination
with the analysis for a discussion. The topics that this discussion is
concerned about is the opportunities and pitfalls for introducing Git-
pod for mandatory assignments in TDT4100, with a focus on pedagogy
and a comparison to Eclipse.

7.1 Pedagogical implications

7.1.1 Mental constructs and containers
The results from this study indicate that the participants show a

tendency to forget and have a slightly weird sense of discourse when
operating with folders instead of Eclipses’ package system. From Fig-
ure 2 we can see that Eclipse abbreviates folders to capture the internal
Java structure of packages, with icons that look dissimilar to folders.
The Theia IDE in Figure 3 show a folder structure that is usually
found in computer GUIs. Also, the participants were found uncertain
while declaring new files and their extensions. Supposedly, writing
normal Java files and navigating packages for two months prior, did
not transfer over to Gitpod. Eclipse creates all file extensions, package
declarations and general class structures for you, creating a potential
disconnect from actual Java programming and structural hierarchies,
whereas Gitpod forces you to think about file declarations and the
package system by having no direct support for such generation of
file-extensions and declarations.

The interfered capability with Java structures is something that
can have multiple causes. The results show that nervousness was usual
amongst the participants. The causes for why participants show dis-
ability may therefore be even less clear. A plausible answer for the
obscurity found might be that abstraction of notional machines may
not be fully developed. Gitpod might have a different notional ma-
chine from the Eclipse environment. However, Eclipses package system

56

might not transfer students knowledge over to Gitpods regular folder
structures. A language requires more than just learning the language
itself (Du Boulay, 1986), and if pragmatics and key structural seman-
tics are missing for how Java programs are structured, there may be
potential issues with how Java is taugh, or Eclipse. Chen & Marx
(2005) experimented with a more gradual introduction to Java seman-
tics by working directly with the JDK, such that IDE usage would be
recognized from students as a purposeful tool. Subsequently, using a
more primitive tool (such as Gitpod) might be a healthy step towards
a more refined understanding of Java programs in TDT4100 through
strengthening of semantics, pragmatics and more defined notional ma-
chine of java structures. However, there were multiple statements from
the participants about how they got stuck (programming within Git-
pod) when Eclipses package system always generated those package
declarations and file extensions for them. Alas, the lack of transfer-
ability from Eclipses package system to other IDE structures might be
the issue, if such initial pragmatics do not exist. However, the partici-
pants did get a slight introduction for how Gitpod was packaged and
structured. In turn, all packages and folder structures was identical
to that of Eclipse. The only difference was the icons with package
symbols found in Eclipse to that of traditional folders in Gitpod.

Eclipse is a standalone desktop application that is located at per-
sonal computers. Gitpod is an environment that consists of container
images and cloud infrastructure. While the results show that students
think that the IDE’s are similar, the fact is that they are two facets of
technology. The notional machine for such a cloud-distribution with
Gitpod might create further distance and wrong interpretations. how
does it work? A key component in using such technology and a concern
is the difficulty in which students potentially create mental constructs
that relates to cloud technology.

Students mental construction and understanding of how local en-
vironments work, has been seen as a complex system that students try
to deal with simultaneously (Du Boulay, 1986). Adding another layer
into the already existing complex system, with containers, might cre-
ate more difficulty in understanding. A correct and effective notional
machine for Gitpod, most likely requires effort, and wrongdoing of the
mental model could potentially occur. Teaching must include guid-
ance for these mental constructs, and how such a distribution works.

57

The students seemed rather surprised by how similar both IDE’s where
(Gitpod and Eclipse), to such extent that both of the two IDE’s may
have similar notional machines, if we look past the cloud environment
from Gitpod. While, seemingly, as seen by these results, with some
minor support during programming, all students were getting better
at the programming task, and almost no issues were prohibiting the
assignments from continuing (apart from time constraints) — standard
goals with sums, loops, conditions and functions where becoming no-
tably easy. Alas, using Gitpod for the given purpose of working with
programming tasks, might be just as complicated compared to that of
Eclipse.

Meanwhile, if the goal of creating independent students are of im-
portance, other factors must be considered. Socio-cultural theory is-
sues a paradigm in which mental constructs and knowledge are con-
structed through social interaction. Furthermore, efficient and produc-
tive learning should be localized in the zone of proximal development
(Skaalvik & Skaalvik, 2013), and should, after that, be scaffolded ap-
propriately (Belland, 2017) . Ultimately, to independently use Gitpod
beyond the assignment scheme may create the same issue, where if stu-
dents were given a choice in preference, they would use something else
(Chen & Marx, 2005). Correspondingly, the results show that there
were in total of 16 different IDEs used across all participants, and most
of them had used two or more. Interestingly, more experienced stu-
dents show indications of independently choosing other mediums to
code, while less experienced students do not have enough knowledge,
and therefore stick with the given IDE proposed by the course. How-
ever, the results found that some of the more experienced students
found Gitpod more aesthetically pleasing than Eclipse, intuitive and
similar to those IDEs that they had previously used. However, if Git-
pod would be used outside of TDT4100, workspaces would need to be
appropriately configured and stored in repositories on version control
distributors. Given the experience of the students, there is little to
no experience with repositories and Git. However, this might prove
to be an incentive to incorporate more version control syllabus into
the curricula, as the results found that students show signs of futur-
istic inclinations towards technology they ”just” have to learn. How-
ever, such an imposed complexity might be useful if a prolonged time
is given for adaptation, as more time yields the most results (Silva-

58

Maceda et al., 2016). A more concurrent teaching strategy might be
appropriate. Meanwhile, if we are to understand Kölling et al. (2003),
the introduction of object-oriented programming through professional
IDEs limits the learning outcomes, while others suggest otherwise (Vi-
havainen et al., 2014). Meanwhile, the mechanism might also become
increasingly complex and hard to understand (Du Boulay, 1986).

7.1.2 Pedagogy and IDE
BlueJ proposes a clear and concise pedagogy for teaching object-

oriented programming. However, none of the presented techniques
from the BlueJ system relates to existing pedagogical theories. Sub-
sequently, BlueJ is not a substitute for professional IDEs and should
be used thereafter. Theory on pedagogy relating to the use of IDEs
are lean, where BlueJ (Kölling, 1999), IDEOL (Tran et al., 2013) and
others (Itahriouan et al.; Goldman et al., 2011) are more proof of con-
cepts. Collaboration through IDEs might be important to facilitate
and support learning — illustration and concise frameworks alike. The
usefulness of collaboration through IDE initiatives might be a result
of a different shift in perspective. Either it is for educational purposes
or technical prowess and suggestions. It can be debatable whether
collaboration can be seen as a socio-cultural approach to teaching, or
a cognitivistic approach (Dillenbourg et al., 2009). However, proof
of concepts can give clear directions. While directions are clear, there
seem to be lack of tests, proven by metrics that can give readers a more
clear indication of whether such technology improves computer science
learning and programming. While the discussion evolves around IDEs,
in particular, the model of the unified programming course stands as
a more wholesome picture; the components in courses constitute the
building blocks for learning. IDE’s cannot be seen as a single unit
that stands for all problems or solutions related to learning program-
ming. Learning programming should incorporate measures in regards
to learning techniques, activities, students, external and internal fac-
tors.

Most IDEs that have been presented have their goals more ori-
ented towards proof of concepts. My model of the unified program-
ming course outlines a more wholesome picture. Through a set of
strictly defined exercises that sequentially build upon one another (Ta-
ble 1), TDT4100s assignments may scaffold over time (Sentance et al.,

59

2019). The lab-hours with assistants create opportunities for students
to transfer knowledge from a MKO. Sharing might increase the avail-
ability of resources that increase the capacity for individual follow-up,
where more adaptive and dynamic assessments can occur (Belland,
2017). Nevertheless, it is the utilization of the Gitpod functionali-
ties that proves and adhere to socio-cultural theory and collaboration.
Therefore, an important factor in deciding whether such pegagogy suc-
ceeds, is tightly related to how such technology is used.

7.2 Comparing IDEs
In order to compare the two technologies, some assumptions are

necessary. Eclipse is a good IDE. The results found that participants
have their own opinions about Eclipse, and they are mostly positive.
This discussion revolves around how Gitpod differs and how those dif-
ferences may give us more opportunities to explore alternatives for
building blocks that constitute teaching and learning. First, the shar-
ing capabilities of Gitpod are discussed. Lastly follows the metric of
accountability.

7.2.1 Implications of sharing
The sharing component and browser compatibility of Gitpod are

the key distinctions that separate Gitpod and Eclipse. To reiterate:
Eclipse is a desktop application installed on a local computer, that
can be configured to use API services. Gitpod is a web-based IDE (or
system) that launches workspaces from repositories. The Theia IDE
is the environment that programmers use in the browser and has all
the utility described by declarative instructions given by the repository
where a workspace was launched from.

A Snapshot taken from a workspace is a complete replica of the
state and files. Eclipse, for TDT4100, have a sharing option resided
in a one-to-many solution, while Gitpod can work as a many-to-many
option. Eclipse can export code from staff to students, whereas export
from students to teachers is more complicated (the complicated issue is
that code has to be transferred through other mediums). Gitpod allows
both sides of the equation (students and teachers) to copy, share and
make code more accessible.

Accessibility is the contrasting difference between Gitpod and Eclipse.
It allows for sharing of code between all parties involved. However,

60

there might be limited knowledge for how such utility can be utilized
productively and whether sharing of environments can be a medium
that increases learning outcomes. Do Students actually benefit from
having such capabilities? Do academic staff and tutors eventually uti-
lize the functionality to their advantage? Do such patterns impose
more overhead than necessary? With little to no research on the topic
of shareable environments, it is difficult to pinpoint exactly what ac-
cessibility is, or how it relates to learning environments in regards to
programming.

Non-curricular activities
The non-curricular activities might be a byproduct of using Eclipse

for assignments. The results show that some of the participants ei-
ther have had problems with installing or reinstalling Eclipse trying
to fix bugs. The results found that some of the participants showed
a certain degree of mistrust in Eclipse when they tried to personal-
ize it. Errors and bugs were related to each student’s local computer,
with a different distribution of operating systems, Eclipse and JDK
versions. However, if a workspace gets buggy, or rather, exploring the
IDE to such extents that it creates conflicts, students always have the
option of starting with a new workspace that is provided by course
administrators, and do not rely on ”fixing” the problem themselves by
reinstalling. However, one cannot anticipate that Gitpod will be free of
bugs and errors, and therefore a centralized repository might become
more problematic, as everyone is dependent upon that single reposi-
tory for new workspaces. However, the results indicate that utilizing
a centralized repository functions well. The non-curricular activity of
installing or re-installing Eclipse is completely removed, Where the
results show that all participants started their environments without
any troubles. However, more time is necessary to answer the questions
of whether Gitpod actually prove to be less prone to non-curricular
activities.

Value in understanding
The results from this study found that many of the students grad-

ually show a certain degree of understanding of how Gitpod works be-
hind the scenes. They showed appreciation for the effectiveness of how
the delivery of assignments may look like. Furthermore, they showed

61

interest for how they potentially could collaborate with each other, and
how replication may help serve as a more effective way of getting help
when they cannot anticipate or know how specific bugs/errors occur
or how they are fixed. The results also showed scepticism of using
such cloud technology. Results indicate that some of the students get
bothered with how Gitpod handles security measures, while some see
the value of not losing their progress due to potential computer fail-
ure. Some see the intrinsic value of using Gitpod on multiple units.
An internet-only usable IDE also bothers some of them. Overall, the
results indicate that they have quite a positive outlook on the use of
Gitpod for TDT4100.

7.2.2 Accountability
TDT4100 currently has a structure in which each student has their

own installation of Eclipse. The accountability of maintaining a cor-
rect state within those files, impose a position where there are multiple
places where a condition may create an error. Every student is prone
to errors. However, a common source of truth and more responsibility
shifted to the maintainers of the repository, create another issue where
if failures happen, it is not students that are held accountable for the
errors. If a potential bug or error occurs at a repository responsible
for assignments, all future workspaces launched from that repository
contain errors. The transfer of accountability may relieve students of
frustration, and more responsibility for the distribution is shifted to
academic staff. From the tests of using Gitpod with sequential assign-
ments, the results indicate that Gitpods ecosystem is relatively easy to
operate, where only a single error occurred throughout 14 interviews.
From my perspective, Gitpod is a liable system that continuously re-
produces environments effectively and predictably.

62

7.3 Opportunities and pitfalls
The incorporation, testing and analysis of using Gitpod on students

might better adhere to a collaborative and socio-cultural way of teach-
ing. Subsequently, snapshots and workspaces create opportunities for
how assignments can be distributed and shared amongst peers. How-
ever, repositories become the single source of truth for whether new
instances work. Gitpod might create more complex notional machines,
due to its cloud infrastructure; however, the participants adapt quickly
to the new environment. Opportunities and pitfalls are outlined in ta-
ble 10.

Opportunities Pitfalls
Better adherence to socio-
cultural and collaborative
teaching approaches

Modification of course struc-
tures

Quick adaptation and similar-
ity to other IDEs

Problematic for individual ex-
ploration

Reliable environments Difficulty in creating mental
constructs and understanding
for how environments work

No installation procedures for
the browser IDE

Preferences for desktop appli-
cations and technical difficulty
in creating environments indi-
vidually

Sharing of environments Prone to plagiarism
Removal of non-curricular ac-
tivities

New non-curricular activities
might occur

Better understanding of inter-
nal java structures
Starting with programming as-
signments immediately
Student satisfaction and new
technology

Table 10: Opportunities and pitfalls from introducing Gitpod for mandatory as-
signments in TDT4100

63

7.4 Generalizability
The reader should interpret these results and the discussion with

a naturalistic mindset. Naturalistic generalization describes a pattern
of generalizability, where the reader (researcher) assess whether these
findings are relevant for them (Tjora, 2017). Common terms that may
describe the situation is comparability, translatability and transferabil-
ity (Tjora, 2017). However, naturalistic generalizability goes against
the nature of trying to generalize and can be seen as a way to elude
the question of generalization. However, with modarate generalization
the researcher identify which aspects might be generalizable and valid
(Tjora, 2017). By the results proposed, courses with similar design
might find the same results.

From my perspective, didactics and pedagogy in programming courses
are areas that are yet fully established. Furthermore, the literature was
difficult to find. Simultaneously, this was my first time doing research,
where I feel that I do not have the capacity and knowledge to address
whether such findings are generalizable. The reader should interpret
my discussion as a new way of approaching pedagogy and didactics
in programming courses, and how Gitpod might be a part of that ap-
proach.

7.5 Future work
This study has shown and discussed an approach of introducing a

new tool for practical programming in an object-oriented course. From
introducing the new tool, a new set of themes emerged. The themes
were an interconnected scheme, where students experience and depend
upon different notions of reliant components. Future work might be
to explore these components in more depth, including how students
learn programming and how that learning is mediated through the in-
terconnected components of technology and course design. Perhaps
the technology we use is a more critical factor than course design? Or
rather, is the support systems of teachers and assistants more impor-
tant?

However, future research on the topic should have a more practical
and problem-solving approach. Longitudinal studies should incorpo-
rate Gitpod (and other programming tools), advancements in course
design and teaching methodologies. Adherence to pedagogy and inspi-
ration from other fields should play a role in designing programming

64

courses and teaching, for instance, looking at different kinds of method-
ological entries over a prolonged time with allowance for exploring new
ideas. An example of this might be using Gitpod as a component in
sequential courses over an entire study program; procedural program-
ming, object-oriented programming, databases, software engineering,
networking and distributed systems. Practical and theoretical uni-
fication of components. These approaches should incorporate both
qualitative and quantitative measures: qualitative understanding of
environments, log-file-analysis and statistical models for how they use
tools that measure against other factors of quantitative measures and
more in-depth explanations for how learning environments work.

65

8 Conclusion

With introducing Gitpod for object-oriented programming, the study
has tried to uncover possible pedagogical implications, whether Git-
pod has opportunities compared to Eclipse and probable pitfalls. By
interviewing and observing students during programming in Gitpod,
the research shows a mild indication of possible misconceived mental
constructs. The Eclipses package system and auto-generating mecha-
nisms might interfere with students structural understanding of tradi-
tional folder structures, and how Java structures operate on a deeper
level. Subsequently, Gitpod might prove to be a viable technological
component that eliminates installation procedures and configuration,
holding academic staff more accountable and can furnish collaboration.
However, Gitpod might be a complex environment for first-year stu-
dents to use independently efficiently. Meanwhile, the component of an
IDE within programming courses do not equate for all learning-related
problems. The results indicate that the course structure and support
systems are equally important factors. Overall, the participants have
positive attitudes, recognises use-cases and similarities from previously
used tools and adapt rather quickly with the use of Gitpod.

The next step is to produce knowledge, that can be put into a
toolkit for various teaching purposes. Teachers of all types should
incorporate something new, that could be utilized in different teaching
contexts. Information technology is becoming more popular every day
and has become a crucial part of society. We see changes in syllabuses
in K-12 schools and the emergence of new study programs. Teachers
should put effort into getting an overview of all the possibilities out
there because there are no established norms for how we are supposed
to teach coding. Exploration and experimentation should be of high
importance for every teacher out there.

66

References

Belland, B. R. (2017). Instructional scaffolding in stem education. Cham:
Springer International , .

Bosse, I. K., Armstrong, N., & Schmeinck, D. (2016). Is cloud computing
the silver lining for european schools? International Journal of Digital
Society (IJDS), 7 , 1171–1176.

Bower, M., & Falkner, K. (2015). Computational thinking, the notional
machine, pre-service teachers, and research opportunities. In ACE (pp.
37–46).

Burnard, P., Gill, P., Stewart, K., Treasure, E., & Chadwick, B. (2008).
Analysing and presenting qualitative data. British dental journal , 204 ,
429.

Campbell, S. (2016). Teaching cloud computing. Computer , (pp. 91–93).

Chen, Z., & Marx, D. (2005). Experiences with eclipse ide in programming
courses. J. Comput. Sci. Coll., 21 , 104–112.

Creswell, J. W. (2002). Educational research: Planning, conducting, and
evaluating quantitative. Prentice Hall Upper Saddle River, NJ.

van Deursen, A., Mesbah, A., Cornelissen, B., Zaidman, A., Pinzger, M., &
Guzzi, A. (2010). Adinda: a knowledgeable, browser-based ide. In Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2 (pp. 203–206).

Dillenbourg, P. (1999). What do you mean by collaborative learning?

Dillenbourg, P., Järvelä, S., & Fischer, F. (2009). The evolution of research
on computer-supported collaborative learning. In Technology-enhanced
learning (pp. 3–19). Springer.

Docker (n.d.). What is a container? URL: https://www.docker.com/
resources/what-container.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of
Educational Computing Research, 2 , 57–73.

67

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

Dutta, M., Sethi, K. K., & Khatri, A. (2014). Web based integrated de-
velopment environment. International Journal of Innovative Technology
and Exploring Engineering , 3 , 56–60.

Gaikwad, T., Dhavale, P., Gaware, K., & Shivale, N. (2014). Web based
ide. International Journal of Research in Information Technology , 2 .

Goldman, M., Little, G., & Miller, R. C. (2011). Real-time collaborative
coding in a web ide. In Proceedings of the 24th annual ACM symposium
on User interface software and technology (pp. 155–164).

Itahriouan, Z., Aknin, N., Abtoy, A., & El Kadiri, K. E. (). Building a web-
based ide from web 2.0 perspective. International Journal of Computer
Applications, 975 , 8887.

Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a
definition of mixed methods research. Journal of mixed methods research,
1 , 112–133.

Kölling, M. (1999). The problem of teaching object-oriented programming,
part 1: Languages. Journal of Object-oriented programming , 11 , 8–15.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The bluej
system and its pedagogy. Computer Science Education, 13 , 249–268.

Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., & En-
glund, M. (2012). Cored: browser-based collaborative real-time editor
for java web applications. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work (pp. 1307–1316).

Oates, B. J. (2006). Researching Information Systems and Computing . Sage
Publications Ltd.

Redhat (2009). URL: https://www.redhat.com/en/topics/middleware/
what-is-ide.

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching com-
puter programming with primm: a sociocultural perspective. Com-
puter Science Education, 29 , 136–176. URL: https://doi.org/
10.1080/08993408.2019.1608781. doi:10.1080/08993408.2019.1608781.
arXiv:https://doi.org/10.1080/08993408.2019.1608781.

68

https://www.redhat.com/en/topics/middleware/what-is-ide
https://www.redhat.com/en/topics/middleware/what-is-ide
https://doi.org/10.1080/08993408.2019.1608781
https://doi.org/10.1080/08993408.2019.1608781
http://dx.doi.org/10.1080/08993408.2019.1608781
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2019.1608781

Silva-Maceda, G., David Arjona-Villicaña, P., & Edgar Castillo-Barrera, F.
(2016). More time or better tools? a large-scale retrospective comparison
of pedagogical approaches to teach programming. IEEE Transactions on
Education, 59 , 274–281.

Skaalvik, E. M., & Skaalvik, S. (2013). Skolen som læringsarena: selvopp-
fatning, motivasjon og læring . Universitetsforlaget.

Sommerville, I. (2013). Teaching cloud computing: a software engineering
perspective. Journal of Systems and Software, 86 , 2330–2332.

Sorva, J. (2013). Notional machines and introductory programming ed-
ucation. ACM Transactions on Computing Education, 13 , 8:1–8:31.
doi:10.1145/2483710.2483713.

Tjora, A. (2017). Kvalitative forskningsmetoder i praksis. 3. utgave. Oslo:
Gyldendal norsk forlag AS , .

Tran, H. T., Dang, H. H., Do, K. N., Tran, T. D., & Nguyen, V. (2013).
An interactive web-based ide towards teaching and learning in program-
ming courses. In Proceedings of 2013 IEEE International Conference on
Teaching, Assessment and Learning for Engineering (TALE) (pp. 439–
444). IEEE.

TypeFox (2019). Smart tools for smart people. URL: https://typefox.io/.

Vihavainen, A., Helminen, J., & Ihantola, P. (2014). How novices tackle
their first lines of code in an ide: Analysis of programming session
traces. In Proceedings of the 14th Koli Calling International Conference
on Computing Education Research Koli Calling ’14 (p. 109–116). New
York, NY, USA: Association for Computing Machinery. URL: https:
//doi.org/10.1145/2674683.2674692. doi:10.1145/2674683.2674692.

Yvonne Feilzer, M. (2010). Doing mixed methods research pragmatically:
Implications for the rediscovery of pragmatism as a research paradigm.
Journal of mixed methods research, 4 , 6–16.

69

http://dx.doi.org/10.1145/2483710.2483713
https://typefox.io/
https://doi.org/10.1145/2674683.2674692
https://doi.org/10.1145/2674683.2674692
http://dx.doi.org/10.1145/2674683.2674692

Jørgen Helgå Stamnes
Institutt for datateknologi og informatikk
Sem Sælandsvei 9, 7491 Trondheim
41403910
jorghs@stud.ntnu.no Trondheim, Februar 2020

Vil du delta i forskningsprosjektet

 ”​En studie av IT-studenters erfaringer og bruk av

programmeringsverktøy​”​?

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor formålet er å se nærmere på erfaringer
og meninger om bruk av IDE, og øvingsopplegget i objektorientert programmering. Samtidig ønsker vi å
få erfaringer ved å prøve ut en alternativ løsning . I dette skrivet gir vi deg informasjon om målene for
prosjektet og hva deltakelse vil innebære for deg.

Formål
Formålet med denne studien er å se på studenters erfaringer med integrated development environments
(IDE) og samtidig prøve ut en alternativ IDE. Målet er å samle inn data for å kunne finne ut av hvilke
pedagogiske og tekniske konsekvenser et slikt alternativ medbringer, og er med på å styrke forståelsen av
hvordan NTNU driver undervisning, spesielt i Objektorientert programmering. Arbeidet er en del av min
masteroppgave som skal ferdigstilles juni 2020.

Hvem er ansvarlig for forskningsprosjektet?
Prosjektet er i samarbeid med ​førsteamanuensis Hallvard Trætteberg og stipendiat Madeleine Lorås ved
Institutt for datateknologi og informatikk på NTNU.

Hvorfor får du spørsmål om å delta?
Utvalget er trukket, og er en del av, alle studenter som studerer og er oppmeldt i faget objektorientert
programmering​.

Hva innebærer det for deg å delta?
Hvis du velger å delta i prosjektet, innebærer det at du blir med på et programmeringsintervju. Intervjuet
er en kombinasjon av et semi-strukturert intervju, og en deltagende observasjon i form av en
programmeringseanse (brukbarhetstest). Opplysninger som blir samlet inn er følgende: skjermopptak av
programmeringen, lydopptak av intervjuet, loggføring av observasjonen og egne intervjunotater. Det
kommer til å være satt av én til halvannen time til hver informant som velger å delta.

Appendix A Informed consent letter

70

Det er frivillig å delta
Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykke tilbake
uten å oppgi noen grunn. Dette kan gjøres muntlig, skriftlig eller elektronsik. Alle opplysninger om deg
vil bli anonymisert. Det vil ikke ha noen negative konsekvenser for deg hvis du ikke vil delta eller senere
velger å trekke deg. Deltagelsen vil ikke ha noen innvirkning på evaluering og karaktersetting i faget
objektorientert programmering.

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger
Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi behandler
opplysningene konfidensielt og i samsvar med personvernregelverket.

● De som har tilgang på dataene vil være student Jørgen Helgå Stamnes, ​førsteamanuensis Hallvard
Trætteberg og stipendiat Madeleine

● Tiltakene vi gjøre for å sikre at ingen uvedkommende får tilgang på personopplysningene er
følgende: Navn og kontaktopplysninger vil bli lagret med en nøkkelkode som er adskilt fra øvrige
data, datamaterialet lagres på Microsoft Office Cloud, som har avtale med NTNU. Dataene blir
kryptert under forsendelse og lagring. Dataene har adgangsbegrensinger.

● Hvis en mulig publikasjon skulle være relevant, vil de som har deltatt ikke være gjennkjennbare.

Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?
Prosjektet skal etter planen avsluttes 02.06.2020​. ​Innsamlede data vil bli slettet etter prosjektets slutt,
senest 1. September 2020.

Dine rettigheter (obligatorisk)
Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg,
- å få rettet personopplysninger om deg,
- få slettet personopplysninger om deg,
- få utlevert en kopi av dine personopplysninger (dataportabilitet), og
- å sende klage til personvernombudet eller Datatilsynet om behandlingen av dine

personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?
Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra institutt for datateknologi og informatikk har NSD – Norsk senter for forskningsdata AS
vurdert at behandlingen av personopplysninger i dette prosjektet er i samsvar med personvernregelverket.

Hallvard Trætteberg: e-post (​Hal@ntnu.no​) eller mobil 91897263
Madeleine Lorås: e-post (​Madeleine.loras@ntnu.no​) eller mobil 92885006

Hvor kan jeg finne ut mer?
Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med:

·​ ​Institutt for datateknologi og infromatikk ved Hallvard Trætteberg, Jørgen Helgå Stamnes eller
Madeleine Lorås

·​ ​Vårt personvernombud: Thomas Helgesen, e-post (​thomas.helgesen@ntnu.no​) tlf: 93079038
·​ ​NSD – Norsk senter for forskningsdata AS, på epost (personverntjenester@nsd.no) eller

telefon: 55 58 21 17.

Med vennlig hilsen

Hallvard Trætteberg Jørgen Helgå Stamnes
(Forsker/veileder) (Student)

Samtykkeerklæring

Jeg har mottatt og forstått informasjon om prosjektet ​En studie av IT-studenters erfaringer og bruk av
programmeringsverktøy​, og har fått anledning til å stille spørsmål. Jeg samtykker til:

● Å delta i et intervju med deltagende observasjon av programmering

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet, ca. 2. Juni 2020

--
(Signert av prosjektdeltaker, dato)

Hallvard Trætteberg: e-post (​Hal@ntnu.no​) eller mobil 91897263
Madeleine Lorås: e-post (​Madeleine.loras@ntnu.no​) eller mobil 92885006

Intervjuguide

Informant nummer ___

Introduksjon

Presentere meg selv og litt om forskningsprosjektet

• Jørgen, 25 år, studerer lektor (lærer) i informatikk og matematikk, men skal begynne å

jobbe som IT-konsulent. Vært java-utvikler i sommer, har konsulentjobb på deltid, B i

OOP

• Jobber nå med en masteroppgave som omhandler IDE bruk og ny IDE teknologi. I dag

skal vi teste ut Gitpod; en IDE som kjøres i netteleseren og er operativsystem

uavhengig.

• Du er her fordi du har faget TDT4100 - Objektorientert programmering - og meldte deg

på.

Informasjon om opptak

• Jeg ønsker å ta opp intervjuet på lydopptak, der gjør det lettere å analysere dataene i

etterkant, og er en anbefalt metode/strategi for kvalitative studier. Jeg kommer også til å

ta skjermopptak mens du programmerer, dette også for å gjøre det lettere å analysere i

etterkant.

• Du blir helt anyonymisert. Det er kun jeg, bi-veileder og veileder som har tilgang på disse

dataene.

• Opptakene slettes i løpet av sommeren 2020

Litt om intervjuet

• Kommer til å være et todelt intervju; programmering og vanlig intervju. Starter med litt

oppvarmingsspørsmål, deretter beveger vi oss inn i intervju-delen. Etter det blir det en

programmeringseanse, og til slutt flere spørsmål med avsluttning

• Kommer til å stille urelevante og relevante spørsmål. Alle svar er gode svar, jeg er mest

interessert i høre hva du har å si!

• Du kan avbryte intervjuet når som helst

Appendix B Interview guide

73

Innledning/oppvarming

1. Hva er ditt favoritt programmeringsspråk?

2. Cola eller pepsi?

3. 1-10, hvor god er du til å progge?

4. I hvilken posisjon/tid/omgivelse er ditt favoritttindspunkt for å progge?

5. Har du brukt git, github eller gitlab før? Hvor mye?

6. Hvorfor valgte du å studere informatikk / data (mulige variasjoner) på NTNU?

7. Hvor lange har du drevet med programmering / IT / Data?

Hoveddel

8. Hva er dine erfaringer med bruk av IDE (Eclipse)?

a. Hvorfor tror du vi bruker IDE’s?

b. Hva synes du er mest utfordrende med dagens løsning?

9. Hvordan føler du at du lærer programmering best? Er det knyttet til verktøyene, teorien,

forelesningene, prosjekt, øvinger, osv.

10. Føler du at det er noe du mangler i fag som dreier seg om programmering?

11. En IDE automatiserer mange prosesser og gjør dem usynlige for sluttbrukeren. Har det

å bryte ned disse automatiske prosessene konsekvenser for læring?

Prøver ut et alternativt opplegg med Gitpod, og jeg trer inn i en deltage

obersvasjonsrolle. Programmeringsseanse.

12. Gjennomføre en virkårlig øving i OOB, med gitpod

c. Kjøre gitpod container fra et github repository

d. Informant skal selv velge oppgave

13. Kjøre tilhørende tester under programmeringen

14. Levere øvingen (fiktiv leveranse) med snapshots

15. Avlsutte arbeidsområde

16. Starte og begynne på ny øving

17. Lagre endringene (arbeidsområde)

18. Hvordan syns du det gikk? Noe som kommer opp i tankene som første erfaring med

dette?

19. Hvordan synes du det fungerer i bruk? Forstår du flyten i hva vi eventuelt prøver å få til?

Hva synes du om det?

20. Jeg har fortalt deg litt om rammene rundt gitpod, ser du noen umiddelbare

muligheter/begrensninger dette kan medføre?

21. Gitpod krever mer git kunnskaper, hva tenker du om det?

22. Det er kjent at eclipse til tider kan føre til mye hodebry i startfasen m.m., hvordan tror du

en slik ready-to-code approach har for det å lære det å progge?

23. Tror du dette kunne blitt brukt i andre fag? Eventuelt Hvordan?

24. Noe du savner i den nåværende løsningen?

25. Totalinntrykk?

26. Noe du har lyst å tilføye? Noe som har dukket opp på tampen?

22/04/2020 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/5e33ef69-e9ad-458f-a760-2979eb4a2350 1/4

Meldeskjema 983188

Sist oppdatert

04.02.2020

Hvilke personopplysninger skal du behandle?

E-postadresse, IP-adresse eller annen nettidentifikator
Lydopptak av personer

Type opplysninger

Skal du behandle særlige kategorier personopplysninger eller personopplysninger om straffedommer
eller lovovertredelser?

Nei

Prosjektinformasjon

Prosjekttittel

En studie av IT-studenters erfaringer og bruk av programmeringsverktøy

Begrunn behovet for å behandle personopplysningene

Behovet er for å ta lydopptak av intervjuene, for videre analyse. Tjora (2012) påpeker at i intervjuer bruker
man alltid en eller annen form for lydopptak.

Tjora, Aksel (2012) - Kvalitative forskningsmetoder i praksis

Ekstern finansiering

Type prosjekt

Studentprosjekt, masterstudium

Kontaktinformasjon, student

Jørgen Helgå Stamnes, jorghs@stud.ntnu.no, tlf: 41043910

Behandlingsansvar

Appendix C NSD

76

22/04/2020 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/5e33ef69-e9ad-458f-a760-2979eb4a2350 2/4

Behandlingsansvarlig institusjon

Norges teknisk-naturvitenskapelige universitet NTNU / Fakultet for informasjonsteknologi og elektroteknikk
(IE) / Institutt for datateknologi og informatikk

Prosjektansvarlig (vitenskapelig ansatt/veileder eller stipendiat)

Hallvard Trætteberg, hal@ntnu.no, tlf: 91897263

Skal behandlingsansvaret deles med andre institusjoner (felles behandlingsansvarlige)?

Nei

Utvalg 1

Beskriv utvalget

Studenter i ett bestemt fag; objektorientert programmering

Rekruttering eller trekking av utvalget

Organisasjonen tar kontakt med sine studenter. Masterstudent tar kontakt med organisasjonens studenter.

Alder

19 - 30

Inngår det voksne (18 år +) i utvalget som ikke kan samtykke selv?

Nei

Personopplysninger for utvalg 1

E-postadresse, IP-adresse eller annen nettidentifikator
Lydopptak av personer

Hvordan samler du inn data fra utvalg 1?

Personlig intervju

Grunnlag for å behandle alminnelige kategorier av personopplysninger

Samtykke (art. 6 nr. 1 bokstav a)

Informasjon for utvalg 1

Informerer du utvalget om behandlingen av opplysningene?

Ja

Hvordan?

Skriftlig informasjon (papir eller elektronisk)

77

22/04/2020 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/5e33ef69-e9ad-458f-a760-2979eb4a2350 3/4

Tredjepersoner

Skal du behandle personopplysninger om tredjepersoner?

Nei

Dokumentasjon

Hvordan dokumenteres samtykkene?

Elektronisk (e-post, e-skjema, digital signatur)
Manuelt (papir)

Hvordan kan samtykket trekkes tilbake?

Ved muntlig, elektronisk eller skriftlig forespørsel.

Hvordan kan de registrerte få innsyn, rettet eller slettet opplysninger om seg selv?

Ved skriftlig eller muntlig forespørsel til ansvarlig vil alle data bli utlevert/slettet

Totalt antall registrerte i prosjektet

1-99

Tillatelser

Skal du innhente følgende godkjenninger eller tillatelser for prosjektet?

Behandling

Hvor behandles opplysningene?

Maskinvare tilhørende behandlingsansvarlig institusjon
Ekstern tjeneste eller nettverk (databehandler)

Hvem behandler/har tilgang til opplysningene?

Prosjektansvarlig
Student (studentprosjekt)
Interne medarbeidere
Databehandler

Hvilken databehandler har tilgang til opplysningene?

Microsoft Office 365, NTNU har databehandleravtale.

Tilgjengeliggjøres opplysningene utenfor EU/EØS til en tredjestat eller internasjonal organisasjon?

78

22/04/2020 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/eksport/5e33ef69-e9ad-458f-a760-2979eb4a2350 4/4

Nei

Sikkerhet

Oppbevares personopplysningene atskilt fra øvrige data (kodenøkkel)?

Ja

Hvilke tekniske og fysiske tiltak sikrer personopplysningene?

Opplysningene anonymiseres
Opplysningene krypteres under forsendelse
opplysningene krypteres under lagring
Adgangsbegrensning

Varighet

Prosjektperiode

02.03.2020 - 02.06.2020

Skal data med personopplysninger oppbevares utover prosjektperioden?

Nei, data vil bli oppbevart uten personopplysninger (anonymisering)

Hvilke anonymiseringstiltak vil bli foretatt?

Personidentifiserbare opplysninger fjernes, omskrives eller grovkategoriseres
Koblingsnøkkelen slettes
Lyd- eller bildeopptak slettes

Vil de registrerte kunne identifiseres (direkte eller indirekte) i oppgave/avhandling/øvrige
publikasjoner fra prosjektet?

Nei

Tilleggsopplysninger

79

80

Øving 1: Objekter og klasser, tilstand og oppførsel
Øvingsmål:

Bli kjent med Java-syntaks og bruk av Eclipse
Lære (enkel) objektorientert tankegang
Lære å lage enkle Java-klasser og -programmer

Øvingskrav:

Kunne tegne enkle tilstandsdiagrammer
Kunne deklarere klasser, med data og kode, iht. oppgavespesifikasjon
Kunne skrive main-metoder for å teste objekter
Kunne bruke standardtyper og -metoder (e.g. toString()-metoden)

NB: Viktig beskjed!

For å få testene og eventuell kode til øvingene lokalt brukes systemet git. I Eclipse kan du klikke på Git --> Pull i menylinja for å
hente den nye øvingen ved hjelp av dette. Om du ikke har denne i menylinjen, er det også mulig å høyreklikke på en av
prosjektmappene og velge Team --> Pull.

Dette må du gjøre

Oppgavene for denne øvingenskal du lagre i ovinger/src/stateandbehavior . Test-filene som kjøres for å versifisere ligger i
ovinger/tests/stateandbehavior .

Hvis du ikke allerede har gjort det, må du installere Eclipse med det ferdigkonfigurerte oppsettet for TDT4100. Se denne
wikisiden.

Du skal velge og gjennomføre minst tre av de følgende oppgavene angående Tilstand og oppførsel.

Account (Lett)
Location (Lett)
Digit (Lett)
UpOrDownCounter (Medium)
Rectangle (Vanskelig)
LineEditor (Vanskelig)
Stopwatch (Vanskelig)

Oppgavene er merket med en vanskelighetsgrad relativt til hverandre. Det er en god idé å begynne med de lettere oppgavene
dersom du ikke er komfortabel med pensum så langt, men det er anbefalt å prøve seg på de vanskeligere oppgavene om du
synes de første oppgavene er uproblematiske. Dersom du allerede føler deg trygg på punktene i øvingskravene kan du forsøke å
gå rett på de vanskeligere oppgavene. Du er selvfølgelig velkommen til å løse flere oppgaver enn minstekravet, hvilket lurt gjøres
med tanke på eksamen og et langt liv som programmerende.

Før du setter i gang kan det vært lurt å lese wiki-siden om Tilstand og oppførsel nøye, samt ta en titt på det tilhørende Counter -
eksempelet. Forelesningene og tilhørende øvingsforelesning er selvsagt også lure å få med seg

Det finnes også masse ressurser på wikien om hvordan ulike metoder skal fungere. F.eks toString -metoden og metoder for
teksthåndtering. Naviger deg litt rundt om du lurer på noe.

Hjelp/Mistanke om bugs

Ved spørsmål eller behov for hjelp konsulter studassen din i saltiden hans / hennes. Du kan også oppsøke andre studasser på
sal eller legge ut et innlegg på Piazza.

Godkjenning

Last opp kildekode på Blackboard innen den angitte innleveringsfristen. Innlevert kode skal demonstreres for stud.ass innen én
uke etter innleveringsfrist. Se for øvrig Blackboard-sidene for informasjon rundt organisering av øvingsopplegget og det
tilhørende øvingsreglementet.

Appendix D Assignment descriptions

Appendix D.1 Assignment

81

Tilstand og oppførsel – Account
Oppgaven handler om en Account -klasse, som håndterer data i en konto. Tilstanden i Account -objekter er som følger:

balance - et desimaltall som angir beløpet som er på kontoen
interestRate - et desimaltall som angir rentefot som prosentpoeng.

Account -klassen har fem metoder, med følgende oppførsel:

deposit(double) - øker konto-beløpet med den angitte argument-verdien (et desimaltall), men kun dersom det er
positivt
addInterest() - beregner renta og legger det til konto-beløpet
getBalance() - returnerer beløpet som er på kontoen.
getInterestRate() - returnerer rentefoten
setInterestRate(double) - oppdaterer renten til å være den nye verdien

Del 1 - Tilstandsdiagram

Tegn et objekttilstandsdiagram for en tenkt bruk av Account -klassen. Velg selv en passende start-tilstand for Account -
objektet og sekvens av kall.

Del 2 - Java-kode

Skriv Java-kode for Account -klassen med oppførsel som er beskrevet over.

Lag en passende toString() -metode og en main -metode, slik at du kan sjekke at oppførselen stemmer med
tilstandsdiagrammet (bruk samme start-tilstand og sekvens av kall)

Testkode for denne oppgaven finner du her: tests/stateandbehavior/AccountTest.java. Original-koden (jextest) finner du her:
tests/stateandbehavior/Account.jextest.

Appendix D.2 Task

82

Appendix E Gitpod setup

Appendix E.1 Gitpod.yaml
1 image:

2 file: .gitpod.dockerfile

3

4 tasks:

5 - init: sdk use java 12.0.2.j9-adpt

6 command: bash command.sh

7

8 vscode:

9 extensions:

10 - vscjava.vscode-java-test@0.22.2:ZBznuSuKUJo5X8dZe6b9Nw==

Appendix E.2 Gitpod dockerfile
1 FROM gitpod/workspace-full-vnc

2

3 USER gitpod

4

5 #

6 # Installs hub CLI for managing github activity

7 #

8 RUN sudo apt-get update

9 RUN sudo apt-get install hub -y

10

11 #

12 # Installs sdkman, and Java 12

13 #

14 RUN bash -c ". /home/gitpod/.sdkman/bin/sdkman-init.sh \

15 && sdk install java 12.0.2.j9-adpt \

16 && sdk default java 12.0.2.j9-adpt"

Appendix E.3 Task definitions
1 {

2 "version": "2.0.0",

3 "tasks": [

4 {

83

5 "label": "Hent oppdateringer (ny uke, nye øvinger)",

6 "type": "shell",

7 "command": "git pull origin master"

8 }

9]

10 }

Appendix E.4 Command bash scripts
1 #

2 # Removes any upstream branch

3 #

4 git remote rm upstream

5

6 #

7 # Adding upstream branch for lecturer/teacher main repository.

8 # works if and only if a correct maintainer opens the repository

9 # (github organizations, team-members)

10 #

11 git remote add upstream https://github.com/jorgensta/gitpod-test.git

84

Appendix F Interview codes

Code Files References
Main impression of Gitpod 9 11
What was it like to program? 8 12
Git experience 13 18
Git impression 1 3
past IDEs 12 34
Surprised by lack of IDE knowledge 1 2
New IDE’s all the time 1 1
Jyputer notebook experience 2 5
General IDE knowledge 3 4
General comments on IDE 9 12
Challenges with IDEs 2 2
Positive outlook on IDEs 2 5
Experience with Gitpod 1 1
Intuitiveness with Gitpod 3 3
Impressions with Gitpod 11 20
Gitpod vs Eclipse comparison 3 3
What was it like to program with Gitpod 5 5
Positive attitude towards Gitpod 10 26
Negative attitude towards Gitpod 4 6
Recognising possibilities with Gitpod 9 19
Challenges with Gitpod 1 2
Skepticism with Gitpod 6 8
GUI comments 3 4
Teaching suggestions with Gitpod 3 5
Understanding the Gitpod flow 3 5

85

Code Files References
Preferences in general 2 4
Preferences 4 7
Adaptation (learning) 1 1
Start phases are critical 1 1
Problem solving 1 1
Position to Git 1 1
Working conditions 1 4
Knowledge and prerequisites 1 4
Job relevance 1 5
How to learn Gitpod 1 2
Help from an IDE 1 1
Hard facts 5 6
Lectures 6 10
Course relevance 1 1
Course focus 2 3
Learning activity examples 1 2
Ephiphany 1 1
Favorite programming language 11 11
Favorite drink 13 13
Wishes to explore 1 1
problems with assistants 1 1
Challanges with OOB 1 1
Challenges with OOB 3 6
OOB in general 1 1
OOB help 1 1
Course improvements 1 2
Teaching 1 1
organization of the course 1 1
Testculture 2 4

86

Code Files References
Experience with Gitpod 10 22
Starting phases with Eclipse 1 2
There are better tools than Eclipse 1 1
Challenges with Eclipse 6 18
Positive towards Eclipse 6 9
Straight out negative about Eclipse 5 8
Hindrance for teaching with Eclipse 1 1
Experiences with Eclipse 11 24
Past experienced (broadly) 9 19
programming basis 2 2
early background 2 2
shortcut preferences 1 2
positive towards current course design 4 5
Assingments distribution and diversification 1 2
Feelings of mastery 1 1
Current course structure 9 21
application assignments 1 3

87

Appendix G Observation codes

Code Files References
Eclipse automation that surprises 6 7
Good workflow 9 10
Reading errors well 1 1
Using test feedback 1 1
Effective use of auto-completion 2 2
shortcut preferences 1 1
Questions about auto generation 6 6
Questions about shortcuts 2 2
Arithmetic that fail 2 2
Nervousness statements 2 2
Do not read tasks definitions well enough 1 1
Ignoring errors 4 7
Class definitions uncertainty 3 3
File type uncertainty 3 5
Folder structure uncertainty 2 2
Package system uncertainty 6 8
Programming difficulties 1 1

88

Appendix H Observation schema

The observational schema was used to capture ongoing events dur-
ing the interview. Timestamps where captured and written, what hap-
pened during that timestamp, where in the program did the event occur
and a description of why the event did occur.

When did it
happen

What hap-
pened

Where did it
happen

Why did it
happen

89

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Jørgen Helgå Stamnes

Gitpod, the new standard in
programming courses?

A qualitative design and creation study of
opportunities and pifalls of using Gitpod for
mandatory programming assignments.

Master’s thesis in Natural Science with Teacher Education

Supervisor: Hallvard Trætteberg

June 2020

	Introduction
	Background and motivation
	Research approach

	Awareness and Suggestion
	TDT4100; Object-oriented programming
	Course structure
	Assignments and tasks
	Eclipse and problems

	Gitpod
	Eclipse Theia
	Gitpod eco-system
	Features

	Opportunities
	Summary

	Theory and related work
	Socio-cultural learning theory
	Guidance and support
	Scaffolding
	Socio-cultural programming

	Mental constructs
	Web-based IDEs - What is out there?
	Pedagogical IDEs
	Summary

	Artefact development
	Initial discussions
	Repository architecture and sequential exercises
	Challenges
	Artefact design and description
	Repository architecture
	Test suites and feedback
	Running code
	Sequential exercises

	Pilot-test

	Research process and methodology
	Pragmatism
	Qualitative Design and Creation research
	Design and creation
	Data gathering strategy
	Interviews
	Observation

	Analysis
	Coding
	Codes
	Groups
	Themes

	Research quality
	Validity
	Reliability

	Ethical concerns

	Evaluation and results
	Participants
	Students needs and learning
	Needs
	Learning

	TDT4100; A student perspective
	Past and present IDE experiences
	General knowledge and preferences
	Eclipse
	Gitpod and observations

	The unified programming course

	Discussion
	Pedagogical implications
	Mental constructs and containers
	Pedagogy and IDE

	Comparing IDEs
	Implications of sharing
	Accountability

	Opportunities and pitfalls
	Generalizability
	Future work

	Conclusion
	Informed consent letter
	Interview guide
	NSD
	Assignment descriptions
	Assignment
	Task

	Gitpod setup
	Gitpod.yaml
	Gitpod dockerfile
	Task definitions
	Command bash scripts

	Interview codes
	Observation codes
	Observation schema

