
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Eirik Kaldahl
Martin Havlor Kostveit

Health Information Systems in
Developing Countries

Designing for an effective evolutionary platform

Master’s thesis in Informatics

Supervisor: Eric Monteiro

June 2020





Eirik Kaldahl
Martin Havlor Kostveit

Health Information Systems in
Developing Countries

Designing for an effective evolutionary platform

Master’s thesis in Informatics
Supervisor: Eric Monteiro
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

This thesis focus on scalable platform ecosystems, and how to design for an effective evo-
lution of these platforms. Scale often comes at the price of specialisation, so we explore
methods for making platform development more agile, to accommodate for the eminent
lack of specialisation in large, generic platform ecosystems. Our data collection is the
result of four weeks of fieldwork in Zomba, Malawi, were we participated in an ongoing
development process to make a unified health information system for Malawi. Using the
District Health Information System 2 platform, we made a prototype, while conducting
research on how the development process were coordinated. The research method used
is based on an action research approach, which entails simultaneous observation and par-
ticipation of a process. Our findings tells a story about poor infrastructure and computer
knowledge among the end users, influencing design decisions. This ensued systems with
a difficulty to identify patients and store their records. We discuss tools that can be used
to help the distribution of decision making, and partition the system into smaller ecosys-
tem, which can evolve separately and in accordance with its’ environment. The suggested
approach is designing for metadata, by utilising an Adaptive-Object Model pattern. This
allows for rapid changes to business needs, by altering variables that changes the domain
at run-time rather then code. We argue that this will encourage more agile processes in
an environment otherwise characterised by rigid implementations, and shifts power to the
end users.

i



Sammendrag

Denne avhandlingen setter søkelys på skalerbare plattform økosystemer og hvordan de-
sign kan påvirke plattform evolusjon. Et systems skalerbarhet kan være med på å redusere
evnene systemet har til å tilpasse seg. Vi utforsker derfor metoder for å øke smidigheten
til en plattforms utviklingsprosesser. Datakolleksjonen vår er et resultat av fire uker feltar-
beid i Zomba, Malawi der vi deltok i en pågående utviklingsprosess med hensikt å utvikle
et enhetlig helsesystem for Malawi. Ved å bruke plattformen District Health Information
System 2 lagde vi en prototype. Samtidig, forsket vi på hvordan utviklingsprosessen ble
koordinert. Forskningsmetoden vår er basert på aksjonsforskning-metoden, noe som in-
nebærer å observere samtidig som man deltar i en prosess. Våre funn kan fortelle om
dårlig infrastruktur og lave teknologiske kunnskaper blant sluttbrukerne. Systemet som
blir brukt som et resultat av dette har vanskeligheter med å identifisere pasienter, logge
og lagre data om dem. Vi foreslår verktøy som kan brukes for å fordele beslutningstaking
og partisjonere systemet slik at hver del kan utvikle seg separat og i samtid med miljøet
rundt. Vår tilnærming er å designe for metadata, ved å bruke et programvaremønster kalt
Adaptive-Object Model. Dette tillater raske endringer av organisasjonens behov ved å en-
dre variabler som definerer domenet istedenfor kode. Vi hevder at dette vil oppmuntre til
mer smidige prosesser i et utviklingsmiljø som ellers er preget av rigide implementeringer,
og flytter makt til sluttbrukerne.

ii



Table of Contents

Summary - English i

Summary - Norwegian ii

Table of Contents iv

Acknowledgement i

Abbreviations ii

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7
2.1 User centred development . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Agile methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Participatory design . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Platforms and generic development . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Generic development . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Application Platform Development . . . . . . . . . . . . . . . . 13
2.2.3 Open source and community driven development . . . . . . . . . 14

2.3 Health Information Systems . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Open source health systems . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Development in developing countries . . . . . . . . . . . . . . . 16
2.3.3 HISP and DHIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Method 21
3.1 Access to case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Action Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



3.2.1 Action research in our study . . . . . . . . . . . . . . . . . . . . 22
3.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Data source categorisation . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Data validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Case 29
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 State of the art, Malawi . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Personal identity . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Baobab HIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.4 HISP organisation and governance . . . . . . . . . . . . . . . . . 35
4.1.5 DHIS2 web API . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Prototype work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Development process . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Designing for metadata . . . . . . . . . . . . . . . . . . . . . . . 47

5 Discussion 49
5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Implementation-level design . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Patient Centred Design . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 HSA centred development . . . . . . . . . . . . . . . . . . . . . 52
5.2.3 Designing for relevance . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Generic-level design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.1 Platform fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Making the platform fit . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.3 Adaptive abstraction-levels . . . . . . . . . . . . . . . . . . . . . 61
5.3.4 Unified platform tools . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.5 Partitioning evolution . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.6 HIS politics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 DHIS2 improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.1 Labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Form capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion 65

Bibliography 67

A Forms 71

iv



Acknowledgements

We would like to take the opportunity to thank everyone that has helped us with this
thesis. First, we want to thank our supervisor, Eric Monteiro, for his his insights and
useful guidance. Without you, this wouldn’t be possible. We also want to thank Magnus
Li, who helped us with local knowledge of DHIS2 development and assistants in finding
the location of our fieldwork, in addition to introducing us to relevant literature. Lastly,
we want to thank Tiwonge Manda, and the entire team in Malawi, who helped us with
accommodations in Malawi and field expertise.

i



List of Abbreviations

AOM = Adaptive-Object Model
API = Application Programming Interface
ART = Antiretroviral Therapy
CSIRO = Commonwealth Scientific and Industrial Research Organisation
DHIS2 = District Health Information System 2
EMR = Electronic Medical Record
EU = European Commission
GIS = Geographic Information System
GSMA = Global System for Mobile Communications Association
HIS = Health Information System
HISP = Health Information System Program
HSA = Health Surveillance Assistant
IIMC = International Information Management Corporation Ltd
ISP = Internet Service Provider
IT = Information Technology
LAN = Local Area Network
MVP = Minimum Viable Product
OPR = Outpatient Registry
OSS = Open source software
PD = Participatory Design
TB = Tuberculosis
UDP = User-Defined Product
UiO = University in Oslo
WHO = World Health Organisation

ii



List of Figures

2.1 Agile development process . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 A card, from W3School . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multi-level design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Malawi location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Health Passport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Baobab system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 ART patient card entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 ART patient card records . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 System main page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Active patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 Continue visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Register patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.10 ART patient form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Patient page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1



LIST OF FIGURES

2



Chapter 1
Introduction

1.1 Motivation
Economies of scale is often obtained in information systems using platform ecosystems
as they possess scalable traits. While scalability is desired by the organisation, users want
specialised implementations for their needs and situation. These desires are contradicting,
as scalability can only be achieved through generification. The systems’ relevance is also a
very important consideration as the environment is never constant and in turn, systems of-
ten gets outdated. Thus the scale has a positive correlation with the challenge of keeping its
relevance. Considering systems’ evolutionary traits is therefore of increasing importance
with scale, because boundaries can mean that systems have no room to evolve. Scalability
and relevance is not something that happens on its own, it needs to be carefully considered
by the developers. We would suggest an agile development process, but acknowledge that
it does not share platform ecosystems’ ability to scale.

This thesis focuses on scalable platform ecosystems and how platform organisation in-
fluence it’s ability to change to its environment, which we call evolutionary dynamics. We
encourage a discussion regarding economies of scale, where we argue that scalability often
comes at a price. Because platform ecosystems need to be inherently generic, implement-
ing user specific solutions appear contradicting. By encouraging the platform to easily
evolve however, we can keep the modules relevant even in a changing environment. We
discuss how we can encourage platform evolution by decentralisation of governance and
facilitating for decision rights partitioning within organisations. We use the District Health
Information System 2 (DHIS2) platform as an example and recommend some changes to
the platform. The thesis is written in collaboration with the University in Oslo (UiO) and
is a contribution to the Health Information System Program (HISP) (2.3.3).

Our case study involves fieldwork in Zomba, Malawi, where we were part of a devel-
opment process of a new HIS project. The project researched the possibility of a collective
HIS for Malawi. Developing countries suffer from scarce resources which mean that devel-
opment decisions have greater impact. A failed attempt or wrong focus can mean make or

3



Chapter 1. Introduction

brake in many situations as resources are not available to compensate or try again. Africa
have long been in this developing stage, and with all the new technology available they will
evolve faster then earlier nations have (Rosling et al. (2018)). The importance of a sys-
tems’ evolutionary dynamics complimenting the evolutionary speeds of the environment
is therefore even more relevant in the developing world. The evolutionary speed is evident
from how they have adopted mobile technology before ever adopting computer technology
(Lule (2018)), and also true in regard to health information systems (HIS) where they now
want to implement their systems on smartphones. Yet, the change is not constant in all
contexts and the speed differ greatly from situation to situation. Systems need to be able
to develop individually from one another. We encourage different implementations by de-
signing for incompleteness, giving decision makers power to change systems through an
Adaptive-Object Model (2.2.1).

The original assignment text sounded as follows;

Health Information systems in developing countries ”Developing countries have lim-
ited resources for healthcare delivery hence need to make the most of resources available.
This project / thesis is linked to the HISP / DHIS2 (www.dhis2.org/) initiative. Based on
open source software, HISP aims at increasing the efficiency and quality of health services
by enhancing the necessary reporting of health status. Mobile technologies are crucial as,
even when roads and electricity is patchy, there are mobile phones. The approach of HISP
is pragmatic: rather than elaborate, complex ’perfect’ solutions, HISP provides simple
and robust ones that have a realistic chance of uptake. HISP, across Africa and Asia, is
implemented in about 50 countries in varying degree of completion. It is one of the world’s
largest systems serving patients in the Global South, measured by size of the caption pop-
ulation. The project/ thesis involves empirical fieldwork in Africa or Asia on selected
services of the HISP portfolio. The purpose of the work is to identify requirements and
subsequently help implement these as part of the evolving portfolio of HISP software. The
HISP project is managed by the University of Oslo (UiO). This project / thesis will be in
collaboration with the UiO team.”

4



1.2 Research questions

1.2 Research questions
1. Designing for an effective evolutionary platform

(a) Economies of scale: Scalability vs. specialisation. Scale comes at the price
of specialisation and developers need to make considerations of global or lo-
cal development. How does the focus on scalability effect the evolutionary
dynamics of the platform?

(b) How to make platform development agile? Usually platform development fol-
low a waterfall development process and choices are made at the beginning of
the development process rather than on the go. We acknowledge that this im-
pair evolutionary dynamics and see how certain techniques mitigate the issue
through;

• Making partitions?
• Splitting design into implementation-level and generic-level?

(c) How the internal organisation can distribute governance? Often decision
making distribution resemble the hierarchical organisation which impair evo-
lutionary dynamics. We look at actions the organisation can do to counter
these effects.

1.3 Structure of the thesis
Our thesis is made up of five main sections. Firstly we examine related topics through a lit-
erature review, where we focus on user centred design principles and generic development
processes. We also look into health information system and review the HISP organisa-
tion and work processes. The topics we discuss in literature review are meant to explain
concepts we use in discussion and which should be explained. After the literature review
we go through the case methodology by showing how we gathered our information. The
chapter is meant so that anyone can recreate our findings and to know how we got the
the research contribution we are presenting in this thesis and how we interpreted the data
available to us. The case section is where we present all findings from our field work in
Malawi. It is solely our experiences and how we interpreted the findings. It introduces
some experiences and prerequisites for development in Africa and Malawi and detailed
description of the prototype we made in collaboration with the locals in Malawi.

The discussion chapter is where we contribute to the field of research being health
information systems, platform development and specific recommendations to the DHIS2
system. We try to have a general focus but use examples from our experiences to sup-
port the discussion topics. Finally we conclude our discussions and recommend further
research topics and improvements which could be done to our process.

5



Chapter 1. Introduction

6



Chapter 2
Literature Review

2.1 User centred development

As part of the recent excitement for IT systems and the realisation of how it can solve user
specific problems there has been a trend of involving users in the developing process to
solve more user specific problems and increase the usability of the system. Usability in the
context of computer science have become a new science on its own. It refers to how well
an artefact works in regard to a specific set of users within its context. It is often measured
through learnability, memorability and user satisfaction. Users’ needs often change and
are not fully categorised before development start. The process is therefore in need of
constant reevaluation and many businesses adopt agile methods for this purpose.

2.1.1 Agile methods

Agile methods are development process principles that aim to reduce cycle time of de-
veloping new technologies. Today developers have reduced the cycle time of developing
new technology due to an increase in computer power and utilisation of new processes.
This means that developers have a lower threshold for creating new software and more
user specific experiences. Especially when talking about agile processes compared to old
methods like waterfall, we see developers reach out to their end users and create issues
based on their response to the product. For instance, creating a minimum viable product
(MVP) and testing it on the presumed end users has become an industry standard in many
startups where the end user is in focus (Ries (2011)).

The main idea of agile developing is that development is evaluated continuously and
split up into small periods often referred to as sprints.

7



Chapter 2. Literature Review

Figure 2.1: Agile development process

As shown above in (Figure 2.1) each sprint starts with defining what is to be , then
the build and release. When this is done the implemented build is evaluated and a new
sprint starts with the same approach. The evaluation often include the customer and user.
The main advantage of agile development is that the system is continuously evaluated
and therefore ensured to be developed in the intended direction. Working close with the
customer and including them in the process ensures that changes can be made without
using to much time down the wrong path.

These processes usually follow a loosely defined set of steps. Firstly you have an
introductory sprint, often called sprint zero, where you plan how to realise the project at
hand. You will have to define the problems to be solved, the context, form and goals
of the problem and with this set some requirements for the system. These take form of
functional and non-functional requirements. Functional requirements are requirements the
system specifically need to do while non-functional requirements are goals to be reached
in regard to the operation of the system. With the requirements set it is helpful to make
personas which represent some users of the system. The developers task is then to solve
the requirements set in regard to each personas. It is most often very helpful to make a
minimum viable product which can be tested before the system goes into production as
production requires a lot of resources and changes are harder and more expensive the later
into production they are made. This is in very rough points how user centred development
can be achieved effectively and with high quality. It however require some very important
knowledge about the system. To solve the user specific requirements the users have to
be visible, the context which the users are in must be conceptualised and the goals of the
system must be formalised. This make up the motivation to start the development. In small
systems this can happen organically as the project is not initialised before the motivation
is defined and the motivation is user specific. In larger systems however the motivation is
often not as specific and the end users hard to reveal.

As Garud et al. (2008) discusses, the system can be decomposed into smaller enti-
ties which collectively solve the purpose intended and can individually solve smaller and

8



2.1 User centred development

preferably user specific problems. While the collective system focus on one general goal
each decomposition can focus on specific tasks. This makes it easier to organise a devel-
opment team into developing large scale, dynamically influenced systems.

2.1.2 Participatory design

A central part of succeeding in information system development is through involvement
of the end user (Berg (2001)). The principles of participatory design (PD) sheds light
on this by giving the end users more presence in the development process. Traditionally,
projects using PD were aimed at empowering workers at their workplaces (Braa & S.
(2012)), and today the core principles are much the same. They are based on changing
the end users’ role in the process, from being an informant to being an active participant
and decision maker. Bodker et al. (2004) argues that the participation becomes more real
when the end user is in on the process, i.e drawing sketches, rather then just answering
questions. According to Routledge International Handbook of Participatory Design, by
Simonsen & Robertson (2012), the PD participants usually takes on the role of either a
user or a designer. The users tries to communicate their desires while learning about the
technological reach of the system. The idea is that the users have to understand the system
to be able to know what is feasible to create in terms of design and functionality. The
designers try to help the users learn, while simultaneously trying to learn about the users’
real needs.

Different PD approaches also depends on setting. While the above explain how to pre-
form PD in a perfect vacuum, this is never the case. In developing countries, PD can be a
challenge since the ground work is not laid down. One of the prerequisites for PD to work
is that the participants is familiar with the technology in question, since they are supposed
to engage and contribute with useful input. In developing countries however, there is a
general lack on technological skills among the people, mainly due to lack of computers,
infrastructure, internet and education in these areas. For PD to work on this environment,
one must first address this issue, and train the users in the appropriate technologies be-
fore starting PD work. A suggested approach, by Kimaro & Titlestad (2008), is to use
participatory customisation, which is similar to PD, but is based on users and developers
collaborating on adapting a known system to their needs. It was shown that when users
had training and knowledge about the system, their contributing also grew.

End user involvement

When relying as much on the end users contributions as you do in PD, it is important to be
aware of what type of contributions they are making. As mentioned earlier, the user has to
understand both the system and its limits when participating, to be useful. In addition to
this, the developers must remember that one users thoughts and ideas might not reflect the
majority of the user bases thoughts and ideas. Kushnriuk & Nøhr (2016) addresses this
issue, stating that for large information systems where the user base contains thousands of
people, it may be difficult to figure out how representative a given user is. Other sources
suggest opposite opinions, however, as Kujala (2003) agrees that finding representative
users is difficult, but follows up by stating that with too many user voices it may be an

9



Chapter 2. Literature Review

issue to find consensus. They also mention that users may need to be educated in certain
design aspects before engaging with the design team.

2.2 Platforms and generic development
The majority of developing teams today adopt some form of an agile work methodology
were they involve the end users in one way or another. Especially when talking about de-
velopment of large systems, where the process is iterative and the system requirements and
preferences is expected to change, it is important for the developers to adopt techniques
that reduces the resources needed to functionality and design.

2.2.1 Generic development

A known technique for helping resource management for large systems is developing for
generic use. This is generally split up into two fields. The first field is creating a generic
code base for high modifiability and reusability of components. The second is creating
generic software, which can be used for a broad amount of use-cases and instances of a
system. We will go more thoroughly over these in the next sections.

Generic code

As the systems’ preferences is expected to change developers use agile processes. Devel-
opers evaluate their progress in each cycle and make changes in a relatively short period of
time. It is therefore important that the code is easily editable. This is where generic code
comes in.

The idea of generic code is that code should be developed in a way that it can be
described in different ways to be reused for many purposes. This is a concept that makes
a developers task more effective as less code is needed to describe a complete system.
Generic programming is a well known concept when developing systems but recently it
has gotten a new meaning. When exercising generic programming it is hard to also solve
the problem of user centred development to achieve high usability. They are contradicting
concepts that are very difficult to perform symbiotically. While generic software is a
process of generalising code to be reused, user centred development focus on specifying
a specific user demand. One solution is to separate the implementation phase from the
development phase and focus on developing a generic core system so you can implement
it in many use cases. The idea is that local designers should use the core code base to
implement different solutions that solves the use case at hand, without writing any new
high level code into the system. Some systems that utilise this concept is described as low-
code software. Low-code comprises a part of the development process where the designers
implement solutions with very little or no actual programming code.

Component based development A form of generic coding is component based devel-
opment. When developing UI elements and following the generic software approach it is
often best practice to develop individual components for reuse. Components are described

10



2.2 Platforms and generic development

individually but the content is supplied when the component is implemented in the sys-
tem. Component based development is an old term, but with development platforms as
React, Angular and others the term have gotten a new meaning being an important one
in current and future development. The term describes a way of developing independent
generic components that can be manipulated in different ways for reuse. This makes for a
reduced cycle time as you only define a component once and reuse it for any purpose. Fol-
lowing the standards of React development, for instance, is a very good example of how
these element are created, where you usually split up the code in different components. A
component could be any segment or part of a segment of the system. For instance, a com-
ponent could be a card, like in Figure 2.2. Instead of coding multiple of these card, one
card component can be made and then called upon where needed with the right parameters.

Figure 2.2: A card, from W3School

Big projects controlling big systems demands a well organised code structure and high
reusability. By creating independent generic components this can be achieved.

Generic software

Issues may arise when developing a so called generic core system. Pollock et al. (2007)
brings up some of these issues when talking about how to accumulate functionality in the
”birth stage” of a system. They describe the perfect situation as making generic templates
and alter these to the local needs. In the empirical study they did, they found that with
each new customer to the system, new modifications to the template was required. The
reason these templates were made in the first place, was to reduce development time and
costs. Since requirements continued to increase, they found that something needed to
be done about the method of obtaining them. What they found was that by shifting the
level of implementation away from the individual and to the community, the requirements
could become more generic. In short, by staying close to the different costumers when
creating generic software will in most cases make the software non-generic. The different
costumers all got their different requirements, and when the software tries to fit all the
different requirements it will end up becoming a semi tailored solution with a couple of
features some of the costumers won’t even use. By creating requirements in a community

11



Chapter 2. Literature Review

on the other hand, the community of costumers can find the highest level requirements that
fits everyone.

While small, idiosyncratic functionalities can wait for a local implementation when
creating a generic software, there could arise a split in the community defining the re-
quirements. Pollock et al. (2007) also touches on this with an example from their empirical
study. When a generic software for student management was implemented at universities
in both Europe and America, they realised that the universities had different rules for how
to progress students from one year to another. Since this was such a big feature, it implied
that the two different institutions should have two different versions of the software. The
solution they came up with was to make two generic templates, instead of just one.

Local changes to generic software We have discussed the different issues that a com-
pletely generic software can lead to. It can become too generic and not fit in anywhere. It
can even have to many specific functionalities and be regarded as non-generic. For generic
software to be effective, especially regarding systems like DHIS2 which is made to be
able to support multiple health institutions, it needs to be able to implement local needs.
When DHIS2 was rolled out nationwide in Kenya by the Ministry of Health, there were
uncertainties regarding the internet coverage in parts of the country. It was then decided to
implement the system on one online central server supplemented by standalone installa-
tions for offline use. This local implementation made it possible for the workers with poor
to no internet connection to use the system. Offline data would be transferred as soon as
the device got connection, together with offline data entry features from HTML5 to man-
age unpredictable connection issues Manya et al. (2012). Changes like this does not only
help the institutions that are creating it, but also everyone adopting it. It is even fair to say
that local changes to the generic software help with the innovation of the product. Soon
after Kenya rolled out its version of DHIS2, countries like Ghana, Uganda, and Rwanda
followed and adopted the same approach Poppe et al. (2013).

Adaptive Object-Model

Adaptive Object-Model (AOM) is an architectural pattern that renders components defined
by data interpreted at run-time (run-time meaning from when the program is opened/executed
to when it is closed/terminated). It is often called a reflective or meta architecture, because
it renders these components based on the information it receives from some source of meta-
data. The main aim of AOM is to make the system more configurable and dynamic, to suit
the systems’ needs. In a business setting, this could mean managing existing products or
extending a system to add new products. With AOM, tools can be made so inexperienced
users can modify the system and its design based on simple variables.

So how does AOM work? AOM tries to represent data like classes, attributes, rela-
tionships and behaviour as metadata, often by storing it’s object models in the database.
When the system starts up, it interprets all the metadata stored, and renders it as system
components. We will explain this with an example, creating a survey with AOM. By using
AOM, we would have a lot of metadata about the survey, e.g name, gender and age. These
data points would also have attributes attached to them, such as string, boolean and inte-
ger. When the system is started, the metadata would be sent to the system, and the system
would interpret it and sort out how to show it as components. For example, the name field

12



2.2 Platforms and generic development

would be interpreted as a string input field. The whole survey is then rendered like this. If
someone added, modified or removed something from the metadata, these changes would
then be reflected on the system the next time it is ran. This also shows how anyone can
modify the system without using code. AOM is a great asset in any generic system, as
it can work as a way to fit these systems into more specific contexts without having to
redefine the whole system code. An example of this is the User-Defined Product frame-
work (UDP). The UDP framework was developed as a system used to represent insurance
policies, but in reality it can make any complex business objects. It introduces an easy
way to modify these different objects and their attributes. For the initial purpose, it could
produce insurance policies, with a type (car, house, etc), a price and a duration, among
other things. But as Yoder & Johnson (2002) points out, it can be used in a variety of
scenarios such as a bicycle manufacture that needs to describe the different bike models it
sells. This means that whether you are a bike manufacturer or an insurance manager, you
can build these components so that others, such as a salesperson, can customise a bike or
an insurance policy based on the models created. This highlights the key aspect of AOM,
which is to be able to quickly adapt to a business needs such as adding new attributes and
components on demand.

2.2.2 Application Platform Development
Platform-based ecosystems are in many markets the dominant model for software devel-
opment. The theory behind such ecosystems consist of a generic core which provides a
shared interface for which modules can solve specific problems. They depend on a diverse
developer community to add on functionality to the generic core. This has been argued to
inspire for a much faster evolution of a system as everything is potentially replaced and
improved by individually creative thinkers developing specialised features for their use.
Examples of systems like this is iOS with its 140 000+ apps and Firefox with its 8 000
add-on extensions. Many of the relatively small applications or add-ons of the aforemen-
tioned systems have added functionality that the ”owners” themselves hardly could have
imagined. The key being that the developers that contribute to the platforms make systems
that solve a problem they themselves have discovered and realised could be solved with the
building blocks provided by the platform. They add specialised, user specific functionality
which in a way is a shortcut for the creators of the systems but also a way of ensuring good
user specific content. We are very familiar with some large platforms that we use every-
day (e.g iOS, Android, Google Chrome). They have created platforms that are inherently
governed in the users/developers and their output is not very controlled, almost anything
can be created at any time. How these systems are run and controlled is very much up to
the owners of the systems.

Creating a platform based system is an exhaustive activity and should be considered
carefully before starting the development process. The system is expected to have a long
active life and priorities and focus elements often evolve in time. The choices made at
the beginning of the platforms life should therefore accommodate for changes unforeseen.
This may sound impossible but following some architectural principles the problem can
at least be mitigated. The system need to permit changes to individual modules without
compromising their ability to function together again (Tiwana et al. (2010)).

The platform architecture describes how the systems partitioned code base interoperate

13



Chapter 2. Literature Review

with other partitions and modules in the system (Tiwana et al. (2010)). When considering
how the ecosystem of partitions and modules should work together it is ideal to ensure
that the core exhibits low variety and high reusability while the rules for adding modules
ensure the modules produced exhibit high variety. The partitioned ecosystem are also more
adjustable as they are smaller in size and work on the specific partition features is easier
then it would have been had it been one single entity.

2.2.3 Open source and community driven development
Open source software (OSS) is software that is publicly accessible (opensource.com”
(n.d.)). The idea is that anyone can access the source code and modify it. The counterpart
to open source is called proprietary or closed source, and means that only the organisation
or person that created the software, controls it. Weber (2004) describes the creation of
open source software as an experiment in social organisation around a distinctive notion
of property. Property, in this statement, is not like the conventional meaning of property,
where it means something that is yours, and that you can exclude others from using. It is
more centred around the right to distribute something, rather than exclude.

Being a part of a OSS team often means working without any sort of remuneration.
However, Hann et al. (2004) argues for other motivations for contributing to OSS projects.
They list five different reasons, which we will briefly go over here.

• The first one is for normative reasons, which means to become esteemed within a
certain circles, whether it’s friends, online communities or other circles.

• The next one is called values, which means contributing because you strongly be-
lieve in the core values of the OSS. An example could be wanting software to be
free, hence helping OSS software to compete with the proprietary ones.

• Motivation for participating in OSS development also comes from wanting to learn.
The idea of understanding, means wanting to become familiar with different types
of technology, and therefore entering a community with knowledge in these tech-
nologies.

• Another motivation can be for the purpose of acquiring knowledge about something
career-oriented. This is similar to the understanding motivation, but the technolo-
gies in question might not be as freely chosen. As an example, someone could be
involved in OSS development to acquire skills to use on their resume for job search-
ing.

• The last one is called Ego Enhancement and is related to participation to boost your
own self-esteem or personal growth. Also similar to understanding, but centred
around the thought of accomplishment.

OSS is made by a community of people, all with their own motivations. But how are
OSS projects typically governed? O’Mahony (2007) refers to open source governance as
having direction, control, and coordination of a community of individuals and organisa-
tions in regards to the project they contribute to. While there are many ways of govern
a given system, when talking about OSS, the most used model is community-managed.

14



2.3 Health Information Systems

By gathering data from four large OSS communities (the Apache, Debian, GNOME, and
Linux Standards Base), O’Mahony identified five key features of community managed
governance. We will briefly go over each one.

• Independence - The software is not dependent on any one sponsor, but diverse in
where it gets its funds and other support from.

• Pluralism - The software management is maintaining multiple ideas in regards to
approaches, methods and individuals point of view.

• Representation - All members of the community have the right to be represented in
decision-making of the whole project.

• Decentralised - No organisation has the sole decision-making rights. The contribu-
tors have access to all different decision-making levels, from code level (new fea-
tures, bugs, etc) to community-wide decisions (e.g change in process or structure of
the leadership).

• Autonomous participation - Any member of the community can contribute in their
own way, This means that the governance model should promote participation based
on a members’ own motivations and skills.

2.3 Health Information Systems
Health Information Systems (HIS) are systems that process data, information and knowl-
edge in health care environments. HIS are large and often integrated into the public records
where the system is implemented. This makes the systems complex and often hard to de-
velop to be generically modified. Additionally the systems have been implemented and
developed for years, and being the field of medicine the try and fail methodology is not
a popular approach as the consequences can be dire. The systems are often a collection
of many smaller systems that each solve a problem faced in the field of medicine. They
have in the past been institution based systems that are specific for each field of medicine
and specific treatments. Recently, however, there has been a trend shift to a more patient-
centred approach Haux (2006). As the aim of HIS is to contribute to a high-quality, ef-
ficient patient care and following the idea of user-centred design (2.1) focusing on the
patients rather then the institutions.

Health Information Systems rarely have the same prerequisites. Some health systems
are private, some are public and countries often have a shared amount of both. This means
that no one system can solve the problems faced in the health industry. A HIS needs to
consider patients interactions, nurses interaction, doctors interaction and process all data
connected to all different technologies you can find within different institutions. A lot of
the data is analysed and used in health care planning and clinical research, which makes
up the basis for further medical advances and help doctors diagnosing their patients.

2.3.1 Open source health systems
As mentioned above, a major part of all HIS are used in public institutions, and when
talking about public institutions we have to talk about budgets. A public institution does

15



Chapter 2. Literature Review

not always have the funding to go for the best and most expensive equipment or software.
These institutions needs to find other ways of acquiring this, that doesn’t involve spending
a big amount of money. An example of this is the Centro Médico Nacional la Raza, a
major hospital complex in Mexico Ciy, funded by the government. Instead of using a
huge chunk of their budget on a paid software system, they chose an open source software
(Webster (2011)). Webster also talks about how open-source is becoming more popular by
mentioning how software like OSCAR in Canada, Open Medical Record System in many
parts of Africa, SIGA Saúde Health Information System in Brazil and DHIS in big parts
of Africa and Asia, gaining more attraction.

While commercial companies argue that open-source systems has more potential for
bugs and security breaches than commercial software does, a recent analysis from Reynolds
& Wyatt (2011) state that this is simply not true and in fact open-source systems are more
repellent of external attacks. The argument is that because open-source systems allows for
an ”independent assessment of the security of a system” it “makes bug patching easier and
more likely, and forces developers to spend more effort on the quality of their code”.

A general understanding of why open source software works and thrives, especially
within health, has something to do with who is involved. The resources invested often
comes from people with knowledge and understanding of which problems exists. They
are also often the ones with these problems, hence becoming a part of the open source
community in order to fix the problem. Both knowledge and passion about the software is
what fuels these open source systems, which a lot of the times are more valuable than e.g.
consultants.

2.3.2 Development in developing countries

The need for offline systems

According to a report from 2019 (GSMA (2019), on mobile internet connectivity in Sub-
Saharan Africa, there are around 3,5 billion mobile internet subscribers globally, which
accumulates to about 47% of the population. In Sub-Saharan Africa, however, only 24%
have access, which reveal that they account for about 40% of the population not connected
by mobile network. Furthermore, studies like Ajuwon & Rhine (2008) and Hilbert (2014)
suggests that mere access isn’t even sufficient, but must be backed up by effective usage
of the technology. According to the GSMAs digital inclusion report from 2014, this is an
issue for communities all over Africa (GSMA (2014). Countries with the highest African
mobile internet connectivity statistics, like South Africa, experience that internet access
is very slow and expensive, unreliable and sometimes unavailable. These problems also
indirectly impacts transnational projects and organisations because of the mismatch in
responsiveness between different locations (Wyche et al. (2010).

A strategy proposition for e-education in South Africa, made by Walls et al. (2015),
presented a conjecture claiming that offline platforms are more suited to the requirements
of most rural or peri-urban communities. They argue that offline decentralisation of hubs
and mesh networks will make resources more available, and that scaling up to online
platforms and cloud based solutions in the future would be a more viable strategy.

16



2.3 Health Information Systems

Implementation of offline systems

Today there are countless projects that utilise offline options for their systems. In China,
around 72% of the population with access to the internet experiences low-quality connec-
tion, often due to low access to bandwidth, unstable data connections and the ISP bar-
rier (commonly know problem in China that refers to the poor inter-connectivity between
ISPs). Because of this problem, hundreds of millions of chinese people have started using
technologies supporting offline downloading of large files Li et al. (2015). In this case, the
offline downloads happens by users requesting large downloads from a proxy, typically
with fast and reliable network. The proxy downloads the file, and the user can fetch the
file at any time, when their connectivity is stable.

CSIRO is an Australian federal government agency, responsible for scientific research
apps. In a paper on how well their field data collection was gathered from two of their
apps, the CSIRO Surveyor (Post Bushfire House Surveyor) in Australia and DroidFarmer
in parts of Africa, a review of their offline capabilities was conducted. Both systems have
some sort of offline functionality to prevent data loss where internet is unstable or non
existent. While the CSIRO Surveyor uses a cache to backup data in case of a mobile
internet breakdown, DroidFarmer uses a offline storage, and later synchronises the data
with the server. Both of the systems was well received by their target audience, and their
offline data collection methods have a huge impact for gathering data where internet is not
accessible Lane et al. (2015).

There is also an extensive use of offline functionality in health information systems.
The health sector often work with data that is critical then and there. If HIS have to rely on
internet connection to be able to fill out forms it could lead to detrimental consequences.
When implementing DHIS2 in Ghana, their offline solution was based on storing data
from forms in the browser cache, and upload it when connections where stable. They
found, however, that there was not sufficient storage space in the browser cache to store
all the forms. This lead them to disregarding the idea all together. As mentioned in 2.2,
DHIS2 in Kenya implemented offline support in order to meet the challenges regarding
poor internet coverage in the country. Later, this was adopted by other countries, such as
Ghana, by copying what Kenya had done (Poppe (2012)).

2.3.3 HISP and DHIS

Background

Health Information System Program (HISP) is a global Health Information organisation
aiming to strengthen Health Information Systems in developing countries. The organisa-
tion started up in South Africa in the 1990’s, and has since then spread to a number of
African and Asian countries. The University of Oslo (UiO) is one of the leading organisa-
tions within HISP, contributing in various projects including in-country capacity building
and implementation support and research. This master’s thesis will be included as work
UiO does in contribution to HISP.

District Health Information System (DHIS2) is an open source, web based health man-
agement Information system controlled and developed by HISP. It is a platform for collect-
ing, managing, analysing and using health data in developing countries and has become a

17



Chapter 2. Literature Review

global standard in international development. With it being the national health informa-
tion system in 67 countries it has a huge impact on how developing countries manage their
information systems. It is also utilised by organisations like Doctors Without Borders,
International Medical Corps to manage their routine data (DHIS2 Fact sheet (n.d.)).

Levels of design

The DHIS2 software development operates on two levels of design, one with a global
objective and one for local implementation and customisation. Li & Nielsen (2019) refers
to these levels as generic-level design and implementation-level design, which we have
described in the sections below.

Generic-level design In a general context, generic-level design refers to design and de-
velopment of the generic parts of a system. The DHIS2 platform core is the generic part
of DHIS2, and is developed by a group of core developers, mainly situated in Oslo, Nor-
way. The software they are creating aims to support a vast amount of requirements and
use-cases, so it can fit implementation purposes in as many contexts as possible. The
idea is to have a configurable software core that lays the foundation for a local fitting and
implementation of the software.

Implementation-level design Implementation-level design refers to design and devel-
opment during implementation of the generic software and how the it is built and modified
to support local needs. This is often done on site, by anyone that wanna implement DHIS2
into their software. The design and development processes can be similar to in-house
development, but with a ’core’ system to support the development from the start.

Figure 2.3 illustrates how the two levels of design complement each other, where the
’core developers’ make a generic system to support an implementation by HISP India.

Figure 2.3: Multi-level design

18



2.3 Health Information Systems

Data modules

DHIS2 provides a variety of data modules for different ways to create and change the
DHIS2 systems. You can create customised data elements to be used where ever you
want. And by using your meta-data model you can generate data entry forms based on the
model automatically or modify them to fit specifically to your needs. The gathered data
can later be aggregated and visualised in various ways. The most notable data modules are
the Tracker, the Event Capture and aggregation.

Tracker The DHIS2 Tracker is an extensions of the DHIS2 platform. It is made up of
the same design principles as DHIS2, which means it is based on a generic data model,
with the possibility of metadata configuration via a user interface. The Tracker’s main
functionality is to capture and store information about individuals, track them over time
using unique identifiers and produce statics on single entities or aggregate data on a larger
data collection. DHIS2 Tracker was made as a way to share clinical data across different
health facilities in a simple manner. It’s purpose is to be a basic and easy to set up trans-
actional system, rather than being a fully functional EMR system. Instead of being this
advanced EMR system on it’s own, it wants to take on a complementary role in the system.

Event Capture The Event Capture lets the user register an event in a given time and
place. What is referred to as an event in DHIS2 is a single data enquiry, e.g. a survey.
The Event Capture does not track an entity, like Tracker does. The events are associated
with a program (e.g ART treatment), an organisation unit and a specific date and time
for when the event occurred. It consists of a set of data points like, e.g name, age and
some measurements. The Event Capture also works offline, that is to say, if the user loses
internet connection, the event can still be captured. The data is then stored locally and
uploaded and stored on the server once connection is achieved.

Aggregate Besides from gathering data, through enrolment and monitoring of patients,
mapping of diseases, etc, DHIS2 is used to aggregate data. It uses raw data sets, gathered
from DHIS2 data entries, or from external sources that has been entered into the system.
The aggregated data can be displayed in a large variety of ways. Thematically, by grouping
the data based on topics, such as HIV/AIDS, vaccine etc. Timelines, visualising trends
over time. Geographical, grouping data based on location, e.g region, district or national
level. Lastly DHIS2 provides a number of different presentations of the data, like maps
and GIS, tables, reports and graphs.

19



Chapter 2. Literature Review

20



Chapter 3
Method

3.1 Access to case

The case study we conducted in Malawi is a contribution to the HISP design lab at the
University of Oslo (UiO). The design lab is the headquarters of HISP and responsible for
development and research in regard to the DHIS2 platform. The lab houses PhD can-
didates in the field of computer science and have tight affiliations with institutions and
organisations in the developing world, with which they frequently exchange sabbatical el-
igibles and students’ abroad studies. The work that is done by these connections account
for research toward further development of the DHIS2 platform.

In our case we established contact with a PhD student at the lab which had a good
understanding of which institutions that were available. These included an organisation
in Delhi, India, a HISP team established in Dar Es Salaam, Tanzania and the Chancellor
college in Zomba, Malawi. At that time the team leader in Malawi had planned a new
project which focused on subjects interesting to our field of study and so we planned
prerequisites for a case study at the college.

The HISP team in Malawi is centred around the Chancellor College in Zomba. This is
also where we were stationed during our stay. Through a facilitator (later known as FA-01)
at the campus, we got access to local developers and their workflows, to learn about the
different ways they work and what they put emphasis on. For our thesis he placed us in the
team working on digitisation of the countries health passports (See Figure 4.2. Through
the college we also got to meet the end users both on campus and in the field. Usually,
one of the facilitators (FA-01 was in charge of workshops and meetings with end users on
campus. Another facilitator (FA-02) arranged the field trips to go to the health facilities
and look at how they use, or don’t use, computer systems to help patients and store data.
So through these facilitators we unlocked a sea of information we could use in our thesis.

21



Chapter 3. Method

3.2 Action Research
Action research is a research method that centres around collaboration between researchers
and practitioners. Bryman & Bell (2011) describes it as ”an approach in which the action
researcher and a client collaborate in the diagnosis of the problem and in the development
of a solution based on the diagnosis”. The purpose of this type of research is to use people
involved in a social situation and try to change the existing situation to the better (Meyer
(2001)). Reason & Bradbury (2008) also points out that action research is about ”creating
new forms of understanding, since action without reflection and understanding is blind,
just as theory without action is meaningless”.

3.2.1 Action research in our study
Meyer (2001) states that the strength of action research comes from its focus on creating
solutions to practical problems as well as its ability to empower practitioners, getting them
to engage with research and the subsequent development or implementation activities.
This is the main reason why we find action research to be especially applicable to our study.
In a given HISP project, local empowerment is a key factor for success and by involving
in their work we can help with just that. By conducting action research, the researcher
can also benefit from personal relations with the other actors. Since the local actors are
most likely well known with the local context, a close collaboration will essentially help
validate the research.

3.3 Data Collection

3.3.1 Data source categorisation
While collecting data, we have been in contact with numerous people. For convenience
of the readers and ourselves we have made codes to help recognise different data sources.
The codes are listed below:

• LD-xx: Local developer

• FA-xx: Facilitator

• NU-xx: Nurse

• HSA-xx: Health Surveillance Assistant

• HISPD-xx: HISP developer in Norway.

xx will be replaced by a number when used. I.e LD-01.
These categories are made up by how we view the different actors and it is based on

what type of role they had when interacting with them. This means that their role in our
study might not be the role they play in their work, but rather our perception of it. We
mention this because we observed that the projects in Malawi had very diffusely organised
themselves. This was most likely due to the fact that the majority of the project members

22



3.3 Data Collection

consisted of students at the university. Students tend to have an unstable schedule which
can result in high turnover for the projects. Roles in the projects will be affected by this.

A facilitator refers to an authority figure in HISP Malawi, which is responsible for de-
cisions regarding what is to be done, with who and when. I.e when to conduct a workshop.

A health surveillance assistant is anyone working with the patient or the HIS treating
the patient. A nurse is also a HSA, but we have a different code for nurse since these were
the ones we meet in the workshops described later.

3.3.2 Documents
As part of the HISP lab and earlier development processes there have been written a num-
ber of articles and master thesis’ on the subject of Health Information Systems and related
topics of interest to the DHIS2 platform. All this information is available free of charge
for anyone to use. We used these articles and papers to get a brief overview of what the
HISP lab and HISP team in Oslo is working on and which topics are interesting for further
development. We quickly understood that making usable generic software was a big issue
and consideration in every update of the platform. The core team is trying to create a plat-
form that can be implemented everywhere and into any situation. The definite majority of
the articles written about the platform had the assumption of using the platform in a HIS
capacity but some of the more recent articles discussed the possibility of implementing
the system into other arenas. One master thesis based on field work in Ghana did research
on the possibility of utilising the system i the educational sector. The motivation of creat-
ing a more generic platform has thus only increased the past years, but yet facilitating for
implementation-level design (see 5.3 from Li & Nielsen (2019)).

In this process we where introduced to different questions regarding large platform
development and the issue of planning the platform governance.

3.3.3 Observations
Workshops in Oslo

Prior to our field work in Malawi we where invited to participate in two workshops at UiO
with the HISP team, lead by HISPD-01. At these workshops we where introduced to prior
and current research done for the DHIS2 platform. Students that had already been on their
field work, shared their experiences and students and PhD candidates discussed their field
of interest and possible research problems. During the workshops we discussed in plenum
the potential research problems introduced and tried to formulate our own interests and
expectations about our research. It was meant as a open discussion for everyone’s benefit.

Meetings

Much of our data was gathered through unstructured meetings. These meetings included
different actors based on it’s agendas. We had the meetings either alone with the develop-
ers or together with both developers and a facilitator.

Even though the meetings we had throughout our stay had different agendas, they were
mostly planned the same way. We often got informed one day ahead of time with when

23



Chapter 3. Method

and where to meet, and what the purpose of the meeting was. The meetings was often
very loosely planned and we frequently experienced change of time, place and agenda.
The time aspect was the hardest to get used to, since it is so different from the way time
is handled in Norway. It became apparent after a while that the team members, and the
culture as a whole for that matter, had a very casual relationship to time. A typical situation
was getting told to meet at a certain time to start working, while in reality, the meeting did
not start before one hour past the scheduled time. The meetings was often about planning.
We planned how to work, i.e who does what, but before this we often planned metadata
and design decisions so everyone was on board. In DHIS2, metadata is a important aspect
of the system and has to be designed carefully before work on the system can be started.
This was the theme in the majority of the meetings with the other developers. We discussed
how to set up the metadata properly, which data points we needed and distributed work
assignments. The dynamic was often that the most experienced developer knew how to
go forward, and would assign different tasks to the others. When design decisions was
concerned, the facilitator was often there to distribute assignments.

Throughout our stay, we participated in around 20 of these types of meetings. The
facilitator would be present in about half of them, while the rest was developers only. The
meetings usually lasted three to four hours, and gradually transitioned into work sessions.

Workshops in Malawi

As mentioned in Section 3.1, our facilitators had contacts in the health sector which they
frequently used for design purposes. One of the things they would do was to invite nurses
to the campus to participate in design workshops. We decided to call them casual work-
shops because of the seemingly lack of agenda. Despite the fact that the agendas were
vague, the workshops were surprisingly effective. Their method was simple; let the nurses
control every design decision being made, because they are the expert users. Since they
know what they like and dislike with the current systems, they should know how the best
possible system will look like.

The workshops included several activities. First, FA-01 brought up different systems
with similar or same aims of our system and we discussed and pointed out strengths and
weaknesses in these systems. This was mostly to get inspired for the next phase of the
workshop. We proceeded to draw individual prototypes of different parts of the system,
chosen by the facilitator. This was quick sessions, to get main ideas on the table. The
nurses was also active in the prototyping, drawing their own version of the system. After
the prototyping, we gathered around to compare drawings. In this phase, the nurse was the
main actor. They had the power to tell us what they liked and disliked about the different
designs and to pick out what they wanted to work with. Even though they had the power,
everyone was trying to explain the different advantages of their designs. This was because
the nurses did not have too much experience and might miss important details about the
design that made it good. As an example, when designing the front page the nurse wanted a
small list view of all the different pages you could choose from while a lot of important and
heavy functionality was going to be on the front page. At first she didn’t understand our
design decision (this was the design we eventually chose, and can be viewed in Figure 4.6),
and why it lacked functionality. After explaining why we wanted to separate functionality
and have a simple dashboard with easy access to everything, the nurse agreed and went for

24



3.3 Data Collection

our approach.
During our stay we participated in three of these workshops and they lasted the whole

day, mainly because the nurses took the day of work to participate.

Interviews with nurses

Often in combination with the workshops, we had sessions of conversations with the
nurses. We call these interviews mostly because we were supposed to ask them ques-
tions and they answer, even though they felt closer to casual conversations than interviews.
While the design decisions were mostly done in the workshops, the interviews was more
about them and how they worked on a daily basis. Even though we asked questions to-
gether with the developers for the sake of the system, we also asked questions for the sake
of our thesis. This was also encouraged by our facilitator during the workshops and the
interviews. We asked them how they approached and enrolled their patients, and how the
sent them to the different wards, to try and understand how the data flow worked on the
different clinics. The conversations were usually after the workshops and lasted no more
than 30 minutes.

Interview with facilitator

After getting home from the field trip, we processed the data we had gathered in Malawi.
While doing this, we wrote down data we felt we lacked, so that we could have an interview
with the facilitator over Zoom (a video and voice chat application). This interview lasted
about one and a half hours, where the facilitator filled us in on the missing data. The
interview was transcribed and later used in various parts of findings and discussion.

Field trip

Arranging workshops and interviews with the nurses was a way to get concrete feedback
and make prototypes based on this. Moving on, the facilitator wanted us to go on a field
trip with the local developers to a health facility. Before we could go however, we had to
get approval from the facility which took nearly a week.

On the day of the field trip, we had a meeting with NU-02, LD-01 and FA-02 on cam-
pus before all five headed to the facility. At the meeting we discussed what we expected
from the field trip and what we were there to observe. The field trip took us to a health
facility near the college. While we were there we had two agendas, following the action
research approach. As a part of the local development team we were there to observe, ask
questions and take notes and pictures concerning the system we were creating. In addi-
tion to this, we made notes and observations on how the facilitators and local developers
wanted to use these field trips to gather information.

When we arrived we got a tour of the facility, and NU-02 introduced us to HSA-01.
He showed us the different wards, and we were able to ask him questions. In the different
wards, he introduced us to the people working there, and let us sit down with them to
observe. Here we got to talk to the nurses and HSAs operating the systems as well as
the patients getting enrolled in them. Some nurses and patients didn’t speak English, so
a lot of what was said had to be translated by FA-02. Most of the wards didn’t have

25



Chapter 3. Method

functioning computers, resulting in having to use paper based solutions. Other wards,
such as the antiretroviral therapy (ART) ward, had all the computer equipment the facility
could support because of the high demand of this ward. Since they used computers the
most in ART, we conducted most of our observations in there, by sitting next to HSA-02
and HSA-03 while they took care of their patients.

3.3.4 Prototyping
Our main objective on behalf of the HISP team in Malawi, was to participate in the creation
of a prototype for a health information system. Prior to this, the team had two researchers
work on an information accumulation project, mHealth4Afrika (4.1.5), and learnt how the
DHIS2 web API worked. Our system was supposed to replace the mHealth4Afrika system
as a prototype for the coming DHIS2 system in Malawi.

Action research development

Working on the prototype, we only used the development methods preferred by the HISP
Malawi. This included how we defined the requirements and how we planned the imple-
mentation. While we tried to give as much input as possible on the prototype itself and it’s
design, we tried not to interfere with which work methodology we used.

Methodology and implementation

The methodology we practised was similar to agile development in the way that they
decided requirements and changes to the requirements. Requirements was frequently
changed depending on input from end users, but there were never any sprints or other
kinds of time frames for when functionality should be done. The way it was handled felt
more casual. When implementing we had a lot of freedom on the design and code struc-
ture. After some implementation we were supposed to show the work we had done to the
team and end users, which refined the requirements ones more.

3.4 Data analysis
This thesis is primarily made up of two cornerstones, the literature review in Chapter 2 and
the case in Chapter 4. Before the field trip to Malawi, we had already done research on
topics we found interesting and added it to the literature review. While we were in Malawi,
we looked for data on the subjects we had written about to get own data to compare it with.
As an example, one of the subjects we wrote a lot about before the field trip was generic
development, and how to do local changes on a global generic software. Since we went
down to Malawi, which were a local branch of the global organisation HISP, we tried to
observe similarities and differences in what we wrote and what we saw.

This also worked the other way around. In Malawi we gathered unforeseen data, which
we never had thought about writing in the literature review. Since we have nothing to
compare our findings with, we had to go back and find papers on these subjects. As an
example, we found that the Malawian HISP team would like to use low code principles

26



3.4 Data analysis

when coding the system. This in turn meant that we had to go back to the literature review
and add information about it.

There were also a few times we found data on the subjects we had written about al-
ready. Even though it was comparable data, it was never one-to-one. This meant we
had to go back to both sources, pick out similarities and discuss it. These topics include
agile development. In the literature we had written some very general sections on agile
development, and in Malawi we got to see some very unique practises of it.

We wrote notes about what we experienced every day in Malawi. These notes were
scribbled down in the field and later reviewed and refined. They were used for various
things, since we follow the action research method. Some was used to gather require-
ments for the application, and other notes were written as observations on how the team in
Malawi worked.

When collecting qualitative data as we do in this thesis, through meetings, workshops,
field trips, etc. one must be aware that personal biases exist. As mentioned by Walsham
(2006), the background, experience and prejudices we have, will influence how we make
sense of the data we gather through our research. When gathering data in a country so
different from our own, it is important to understand this. In 4.1.1 we clarify how the
situation as-is in Malawi, and try to make the setting of our field trip as transparent as
possible.

Much of the data analysis was done after the field work, back in Norway. We found it
easier to make sense of the bigger picture doing it this way, contrary to analysing the data
as we got it. You can make an argument for analysing data when it’s fresh in memory, but
we rather trusted in our ability to review and refine it for later use.

3.4.1 Data validation

To help us evaluate our own data collecting we decided to adopt some of the principles for
interpretive field studies described by Klein and Myers (1999).

The fundamental principle of the hermeneutic circle suggests, according to Klein and
Myers, ”that we come to understand a complex whole from preconceptions about the
meanings of its parts and their interrelationships”. Furthermore, in a interpretive study
contexts, parts can be viewed as the researcher’s and participant’s preliminary understand-
ings. The whole, in turn, can be understood as the shared meanings emerging from in-
teractions between us as researchers and everyone we have interacted with. This means
everyone ranging from HISP Norway, to HISP Malawi and the health workers there.

The principle of interaction between the researcher(s) and the subjects concerns how
researchers recognise the participants as interpreters and analysts. As Klein and Myers
puts it, ”Participants are interpreters as they alter their horizons by the appropriation of
concepts used by IS researchers, consultants, vendors, and other parties interacting with
them, and they are analysts in so far as their actions are altered by their changed horizons”.
In our study we have practised action research, and by that unconsciously interfered with
the participants horizons regarding the software development process and design choices.

The principle of dialogical reasoning involves understanding of how preconceptions
from preliminary research can influence the data that emerges from the field study. As
Klein and Meyers points out, ”the intellectual basis of the research design provides the

27



Chapter 3. Method

lenses through which field data are construed, documented, and organised”. As we dis-
cussed above, one of our data collection strategies was to look for data we already covered
prior to the field trip. It is important to understand that in a hermeneutic circle the point
is to iterate between the theoretical preconceptions and the findings to try and modify the
original research design to fit with the findings. The data we collected helped us refine
our preliminary research by adding and removing different topics. As an example, we
wrote about user centred development in the preliminary research. We used information
about other field trips where findings revealed a lack of user centred development. Then
we wrote theory about what we thought contrasts how they do it in Malawi. As you will
read in Chapter 4, this was not the case, which meant we had to go back and refine what
we wanted to use the user centred development theory to say.

28



Chapter 4
Case

Our case study is situated in Zomba, Malawi. We were invited to gather data on how a
local HISP team’s work methodology is, identify requirements needed to evolve the HISP
software portfolio and subsequently help implement these.

In a research capacity we were invited to be a part of a development team that had
a new system delivery aimed at improving the local HIS in Zomba. We were expected
to take part in the development process, but not intervene with the plan as we aimed to
improve on the process on a higher level. We were given the main responsibility of the
design choices for the system, so the local HISP team could benefit from our experience
in the interaction design field.

4.1 Background

4.1.1 State of the art, Malawi
Africa is in general considered less developed than many other parts of the world. It has
had it’s issues over the years stretching from colonisation and resource exploitation by
European countries, to civil wars and bad management. Malawi is no exception. Malawi
is a relatively small country in central Africa (Figure 4.1). It has a population of around
18 million, where only about one million live in the capital Lilongwe, and 700 000 in
the next biggest city, Blantyre. This means that the effective population density at any
location is very low. The majority of the population live in smaller villages all over the
country, mainly involved in agriculture. Health clinics are often associated with bigger
cities, meaning that people usually have to travel far for medical treatment. Malawi has
only recently lost their status as the poorest country in the world, now the fourth poorest,
where 70.3% of the population live under poverty line of 1.9$ a day, according to World
Bank Data. The low income means that the vast majority can’t afford any transportation
which they can use to get to hospitals or clinics, thus health visits happen rarely. People
are seldom registered in the system, checked and are uneducated when it comes to health.
Because of the lack of sexual education in the country, as of 2016, approximately 1 million

29



Chapter 4. Case

people (9,2% of the population) are diagnosed with HIV/AIDS. Being among the poorest
countries in the world Malawi gets a lot of aid from other countries and organisations
such as US AID, UNICEF, The Global Fund, Bill & Melinda gates foundation. These
resources are used to give food to the poor, build hospitals, schools and fund research and
development of HIS.

Figure 4.1: Malawi location

Zomba is the former Capital of Malawi, but is today considered a smaller city with
just above 100 000 citizens. The city holds the biggest educational institution in the coun-
try, the Chancellor College, which is also the biggest college ground of the University of
Malawi, having more then 4 500 students. In addition to regular education activity, the
College acts as a hub for HISP in Malawi. A local team is sanctioned to research and
develop HIS demanded by the Health ministry and health organisations present in the re-
gion. The local HISP team has tight bonds with the University of Oslo (UiO), where the
current HISP Malawi team leader has written his PhD and helped other Malawian students
with exchange programs. We will refer to the local development team as the HISP team
throughout our thesis, to make it easier for the reader. It is however, important to mention
that the local team only utilises HISP products where it is needed, often complemented
with other open source software, like OpenMRS.

Health system The health system is comprised of several programs which focus on spe-
cific health issues, e.g. TB program monitor and treat patients suffering from tuberculosis.
Different programs have different kinds of Health Surveillance Assistants (HSAs), which
conduct patient visits to the clinic, monitoring and treating of the health issue associated
with each program. A visit is logged using generalised forms which the HSAs fill out per
visit. Small clinics function as local help to their immediate surroundings and the pro-
grams offered vary from clinic to clinic. Bigger institutions, like general hospitals, are
localised in the cities and offer all the programs and specialists for different health issues.

30



4.1 Background

One program which is common for all the clinics is the outpatient registry (OPR). The
OPR program is designed to diagnose and treat patients that don’t need to be admitted into
the hospital for overnight care. This is generally the most used program any clinic offers.

4.1.2 Personal identity
An important aspect of life in Malawi, and in general in Africa, is that many people are
not familiar with the concept of personal identification. Malawi don’t have any formal
identification papers, passports are rare so the use of identification papers are small. The
health system is based upon Health Passports (Figure 4.2), which briefly identifies a per-
sons medical history. They are purchased at the clinics by patients not carrying one already
and is meant to store all the patients visits and prior treatments. It is however, only a book,
often lost and rarely updated properly by the Health Surveillance Assistants (HSA), so for
a health worker to meet a patient without a health passport or any other identification paper
is not uncommon.

Figure 4.2: Health Passport

The clinics keeps files on site of their patients, but as mentioned above, getting to
clinics can be tough. Occasionally, babies are born outside of the clinics, leaving no
history if not registered later on. The clinics don’t share their files with other clinics either,
so getting a positive ID and the patients’ history is a rare luxury for HSAs. All in all it
is a chaotic and complex system. Identifying the patient you are seeing as a HSA is very
important as diagnoses vary greatly dependent on family history, previous visits, age, etc.
Additionally, the experience of nurses vary and are generally low, which mean that they
often diagnose on the basis of simple signs. They usually avoid thorough examination as
well, because of lack of resources and capacity. To illustrate how big an issue this is we
will give an example from the visit to one of the clinics (3.3.3).

One patient came in for consultation for the ART program, going through the baobab
system and process described in Section 4.1.3. The patient was not registered in the system
and had to be enrolled to proceed. It is worth mentioning that HSA-01 later told us that
she most likely had been enrolled before, but since they had no identification or record it

31



Chapter 4. Case

was just as easy to enrol her once more. To be able to enrol her, HSA-01 needed her name,
place of birth, date of birth and some family history. Her last name was one of the most
common ones in Malawi, many share the last name of different old tribes or important
state figures. Her place of birth she descried as a small village with no name. HSA-01 had
to ask some follow-up questions and try to guess which village it was. After some time
he managed to do so, and asked for her date of birth. She did not know how old she was,
only that she was born in the dry season, which indicates the period between mid-May and
mid-August.

Being able to get any identification from a patient with those prerequisites is an almost
impossible task. The name and place of birth was not too important at this point, but she
would have to be correctly identified for her next visit to the clinic. Having a common
name and no place of birth is not a very easy identifier. The more immediate problem
was her age, because treatment at the ART program takes her age into account, not to
mention being important for doctors to diagnose her later. To solve the immediate problem
however, HSA-01 asked about important events during her life time, such as presidents,
elections, football world cups, etc. Say that she remembered the 2010 football world cup
and began school the following term she must have been around five or six which means
she was born in 2004 or 2005.

Resolution The government is currently working with a solution to this problem. Citi-
zens are encouraged to get unique ID papers, but it will take time. Currently, 80% of the
population have registered and have their unique ID papers yet the clinics have not taken
it into use because it is not effective if only 80% of the population has it. The process
is ongoing and anyone can register at centres in the bigger cities. HSAs need to expect
everyone to be a part of the system before we can use it to develop solutions that depend
on it.

32



4.1 Background

4.1.3 Baobab HIS

Another system currently in use is developed by the Baobab Health Organisation. This
system is divided into programs as mentioned above and aims to manage and improve
the health system on a national level. One of Baobabs’ program projects is an ART pro-
gram, for diagnosis and treatment of HIV/AIDS. LD-02 from our team had been part of
this project and had hands on experience with the system. The system is integrated onto
touchscreens (Figure 4.3), which trained HSAs use to record visits to a clinic. It is a fairly
new system, which aims to replace the old ART patient cards (see Appendix A).

Figure 4.3: Baobab system

The ART program consisted of a number of stages which effectively digitised one
ART patient card entry. Instead of having to fill out paper forms, store them and having
to physically find the forms each time the patient revisited, the system did many of these
things for HSAs.

To depict how the system works, we will go through how one ART visit was conducted.
One room in the clinic was allocated to ART related visits. In this room, there were three
nurses and two other HSAs, trained in the Baobab system. Five patients at a time entered
the ART examination room and presented their Health Passports (Figure 4.2) to one of
the nurses together with a registration number unique for each patient. While the first
nurse logged the entry in a large ledger by hand, the other found a plastic folder in a
large cupboard (Figure 4.5), which had pages with stickers representing earlier visits. The
plastic folder and passport was then placed in a pile working as a queue for the HSAs
working with the touchscreens. The HSAs then used the unique identifier to find the
patient in the system, and started logging the visit. The system resembled one column in
the ART patient card (Figure 4.4) and asked for the information in each row in separate
stages. Each stage had its own page with a next button at the bottom. When the HSA was
finished with all the information a machine printed out a sticker containing all the relevant
information of the visit which was glued to a free space on the paper in the plastic folder.
After this the patient was directed to a nurse and received their medication. The plastic

33



Chapter 4. Case

folder was then stored back in the cupboard and the HSA was free to help a new patient.

Figure 4.4: ART patient card entry

The program resembles heavily the paper based ART patient cards in that it asks for
the same information in each entry point on the cards. As mentioned above, each stage in
the system resembles one or several rows in the table of entries in the patient cards. The
program in its whole represent one whole column (Figure 4.4).

Figure 4.5: ART patient card records

As you can see from the figure above (Figure 4.5) the system is definitely not fully
digitised yet. The system stores patient information but doesn’t contain all the previous
visits. As we understood the system, reports of aggregated statistics are generated on
demand. Since this takes a lot of time, it typically takes months between each demand. At
this point technicians and nurses gather the ledgers and records stored in the cupboard and
enters this into the DHIS2 system to create reports which say something about the HIV
and AIDS situation. Thus the potential of the system is not fully utilised.

34



4.1 Background

Interviews with the technicians showed a positive excitement for the system with some
obvious points of improvement. The system had no back function which meant that if an
error was made on the last stage the technician would have to restart the system by pulling
out the power cord and putting it back in again. This was a time consuming affair. The
hardware also raised issues. The touchscreens where robust and fast, which also meant
expensive. The technicians told us that for every touchscreen functioning, there where two
out of order, because they didn’t have the money to repair them when they went out of
order. While strolling through the different wards we saw this first hand, touchscreens just
piled in corners, not in use.

4.1.4 HISP organisation and governance
The local team in Malawi is structured in an informal manner, where the role is often
more dependent on experience and seniority of each individual setting rather then clear
predefined roles in an overall capacity. The development team is also subject to structural
changes where people are brought in based on specific knowledge and expertise. During
our time in Malawi, there was little way of knowing which members where participating
in each activity. Below, we will discuss the different roles involved in the project.

Product contractor The team works as implementers of the DHIS2 platform. Each
implementation have a contractor which require HISP Malawi’s local experience and ex-
pertise. This contractor is often large health organisations that require data tracking soft-
ware to help the local population. The system we were replacing, mHealth4Afrika which
we will discuss further down in Section 4.1.5, was contracted and funded by European
Commission (EU) under Horizon 2020. They where a big stakeholder in the develop-
ment process, and had substantial governance over the design. At the preliminary design
and concept meetings for that system, they expressed important aspects which then was
conceptualised to form the system they finished.

In interviews with FA-01 and LD-01, which participated on the mHealth4Afrika project,
we discovered that there are often many contractors and funders of the system. This often
leads to negative political complications as all the funders have their own take on how the
system should look and behave. In the particular example of mHealth4Afrika, the contrac-
tors had so many different opinions and requirements that the system became too broad for
Malawi to use. Interviews also revealed an unbalance of money contributions between the
contractors which had a positive correlation to the power they had over the system. Politics
regarding each contractors’ level of governance contributed to difficult design planning.

Partnering entities Some projects are based on a collaboration between several HISP
entities across countries. The mHealth4Afrika for instance, is a collaboration between the
University of Malawi, Nelson Mandela University in South Africa, Strathmore University
in Kenya, University of Gondar in Ethiopia and the University of Oslo in Norway. Addi-
tionally, developers from Ireland and Turkey was involved from International Information
Management Corporation Ltd (IIMC) and Software Research, Development and Consul-
tancy Corp. This organisational outline is a very difficult environment for development.
Many people are involved and the governance distribution is unclear. In addition as the

35



Chapter 4. Case

main development team was in Ireland, but all the end-users are in Africa, design choices
was often made difficult and on wrong assumptions.

Team leader The Malawi HISP team has a team leader (FA-01), which organises meet-
ings and activities for the rest of the development team. FA-01 is a a senior member of
the HISP organisation and a high ranking faculty member which act as the main organ-
iser for local development. The local HISP meetings mentioned above (3.3.3) was always
organised by FA-01, weather he was attending or not, and he made all arrangements for
field trips, development and interviews together with FA-02. The team leader had great
respect in the meetings, and had a higher level of governance when it came to the process
and design. Being a high ranking faculty member he also had governance in regard to
the College. This helped our processes as we got to use more of the college resources
available.

One aspect to consider is that this team leader is an academic. From interviews with
FA-01, we understood that this is normal as the HISP teams are often affiliated with local
Universities. Our experience is that the recent academic background contributes to good
processes through field knowledge.

Developers As the team we worked with is stationed at Chancellor College, a university
in Zomba, it did not come as a surprise that most of the developers were students from the
university. The developers were involved with HISP and DHIS2, either because of own
interests in the system, or because it was a part of their thesis. Nevertheless, one of the
problems with having students as developers is the large turnover. A students free time
is quite unpredictable and varies from year to year, depending on how many classes they
enrol in, etc. In addition to this, students eventually graduate, and most likely move on
to pursue other work. As far as governance is concerned, the local developers is granted
a lot of freedom in their development. Everything from language and frameworks, to
dependencies and initial design proposals, is completely in their hands. The moment where
the difference in governance is evident, is on the organising level. The developers has little
to do with organising meetings, interviews with users or what is to be changed after these
meetings and interviews.

Expert users One of the main sources of functionality and design decisions came from
something the team called an expert user. Seemingly, the expert users were the end users
of the system being made. In our case, implementing a health system for use at health
centres, our end users were nurses and other health personnel, and therefore our expert
users. Different nurses would get invited to participate in workshop sessions and informal
interviews. With the title ”expert user”, came the power to influence and even control what
were to be added, modified and removed from the system requirements. The development
team had programmed parts of the system and explained different design decisions, but it
all came down to whether the nurses agreed or not.

The HISP Malawi organisation raises many important question related to governance
distribution in large platform systems. In light of new additions to the platform, specifi-

36



4.1 Background

cally the Web API (4.1.5), how is the system governance affected? This is something we
will take a closer look at in the discussion section.

4.1.5 DHIS2 web API
Shortly before we where introduced to the DHIS2 system, the core team had worked on
implementing a Web API for DHIS2 implementations. Prior to the Web API you had to
base all implementations on the DHIS2 dashboard functionality which is very limited. It
solves specific problems for statistical report purposes and data management. In interviews
with the local developers, they said that they ”often had to hack the intended structure to
meet the system requirements”. If it couldn’t be done, they had to request new applications
from the core team. For instance, the developers wanted to use the Adaptive-Object Model
(AOM) (2.2.1) to auto fill the different input fields in the forms. This meant that the system
had to talk to the web API and ask for the fields for different form inputs like personals or
ART treatment. However, when the meta data the forms were based on were made, they
were sorted alphabetically and not by the order they were made. This meant that when
asking for the data from the API, there was no way to automatically sort the data so that
the forms were correctly sorted in the system. To hack this, we had to create the meta data
with numbers in front of their names to sort them (i.e. ”1 - First name”, ”2 - Gender”, etc),
and then strip the names of their numbers in the code. The easy fix to this would be to add
a field in the meta data creation, linking each item to a number, and when confronting the
local developers with this they told us it was not possible to request such small changes
to the core team at UiO. In the local developers experience, this was often not prioritised
in favour to more critical functionality. The requested application would therefore take
too long to develop for the team to use in the current development process. Additionally,
the application made by the core team needed to be developed with a broader intention
so it could be fitted elsewhere. The application was in many cases not specific enough
and couldn’t solve the requested needs. To mitigate this huge bureaucratic problem, the
local developers requested a Web API. Developers can use the API to create systems with
a much better user experience and without having to wait as everything can be developed
locally with the use of React and Node. It is still a new addition to the DHIS2 platform but
so far it seems that the local developers are pleased with new addition. A test project was
initialised by the University of Malawi in collaboration with the local HISP team which
showed good results. Our field work is an addition to research which aim to improve the
platform, and specifically the API.

Two years prior to our arrival the local HISP team developed a HIS using the API. This
was called mHealth4Afrika.

mHealth4Afrika

mHealth4Afrika is a collaborative research and innovation project, aimed at ensuring cor-
rect data tracking among other things. Before this project, the health clinics in many
remote villages have kept their records by physical logs which challenges the validity and
relevance of information. The problem also being that there are many different programs
that each patient is a part of and need to be registered for. At a national level, this some-
times mean that patients are duplicated in different programs and the statistics get inflated.

37



Chapter 4. Case

The project is a collaboration between HISP teams in Malawi, South Africa, Kenya and
Ethiopia. The main goal of the project was to make the data collection process digitised.
This would mean that health clinics all over the partnering countries could utilise the same
tool to track and update data and be sure that the information at hand was up to date with
recent events. The application is meant to track events that follow a clinical visit and keep
track of the information gathered. When the developers initially made the use cases and
evaluated the user stories, the DHIS2 Tracker application was considered, but concluded to
be inadequate for the application as the users required a custom outlook of the forms. The
developers needed a path sensitive form that did not require to much writing, but rather a
series of multiple choice questions followed up by questions sensitive to earlier answers.
This could not be done in DHIS2 Tracker without tricking and hacks, so the team decided
on making a new application from scratch using the DHIS2 API. This way they had more
freedom to design the page as they wanted. The application was targeted at Health Surveil-
lance Assistants (HSAs) that work at these clinics, logging events every day. They needed
an easy to use, fast application that could be used locally at any clinic. They also needed it
to work offline as the system is expected to encounter bad internet services at times. The
application was developed in Angular, tested and released.

The local developers experienced a problem in regard to the funding of this project.
The contractors of the project had not anticipated upkeep costs of the system after im-
plementation. As the contractors didn’t have a computer science background or sufficient
experience during development processes, the upkeep costs was not taken into account.
The whole of the budget was spent on development, which led to a big problem when it
was implemented and expected to function in the field. In interviews with the developers,
they had the same experience from a number of other projects they had worked on. It most
often led to the system being outdated or even never useful as the funding ran out before
the whole system could be finished.

38



4.2 The problem

4.2 The problem

The expectations of what the problems could be, we got from our guidance teacher and
HISPD-01. These were of course only parts of the problem, as the two teams have very
different motivations. The HISP team in Norway are the ones developing the platform and
wanted us to do research on how the platform could be improved upon, while the local
team in Malawi wanted research on a local implementation using the platform.

HISP Norway The workshops (3.3.3) introduced us to a number of potential research
problems. One of the research problems presented read ”What aspects determine whether
something generic could be usable and relevant across implementation (i.e., what can be
global, and what needs to be local?)”. This question is no new consideration when de-
veloping large generic software as DHIS2 and Google, Apple and Amazon have all their
strategies on how this is best done within their domain. The question in regard to DHIS2
however, raises some important questions and problems that are not as easily solved as
many of the issues of the platforms mentioned before. DHIS2 is a health based service,
which has some sensitive and specific problems. The question of ”what can be global”
helped us realise that it don’t need to be. Global, in any case, is way to generic for any
HIS in our opinion. Local systems narrows the perspective down, but can be too closed
minded when considering the benefit of sharing information and systems with other local
implementations. We wondered then if it needed to be as black and white as global or lo-
cal implementations. The ”D” in DHIS2 stands for district, and can really mean anything
considering who the system is meant for, which countries, region or continent. Our ques-
tion in regard to this was not what aspects determined weather something could be cross
implemented, but who had the knowledge and connections to find out if it was? Who had
governance? Who had interest in implementing across other implementations? What was
their incentive to do so? At this point we only made more questions for ourselves, but it
helped us get a grasp of what we were going to write about, what problems we could face,
what questions we could get the answers to. One of the PhD candidates at UiO was heavily
invested the question of governance, with regard to HISP teams worldwide, though he fo-
cused mainly on projects and organisations in India, where they do things very differently.
This also interested us at this point and we wanted to find out more specific to Malawi.

The experiences from other parallel master thesis was helpful in making some expecta-
tions about the work we were set out to do. Prior to these workshops, we had tried reading
state of the art and getting equated with large platform systems, HIS and generic program-
ming. The preliminary study period (3.3.2) before these workshops, we experienced as a
tedious process, but necessary to get an overview before conducting the field work. As the
field work period was restricted by many factors, we were dependent on making the most
of the time we had, and therefore dependent on preliminary knowledge to guide our data
collection process. The method itself of doing action research development was new to us,
but having it presented to us beforehand helped us understand how we should work when
we arrived in Malawi. Specifically the exercise of noting and logging the process seemed
difficult. When participating in the development process of a project you are not used to
note how the work is being done, rather just focusing on doing the work. FA-01 however,
had experience with this method and reminded us on how to work.

39



Chapter 4. Case

HISP Malawi Following the action research development process and observing the lo-
cal team’s needs and wants regarding the new system, we found the largest problem to be
with regard to the collection of HIS in Malawi. The Malawian HIS is divided into dif-
ferent programs, which is typically a sort of clinic which intend to solve specific health
problems, e.g ART programs intends to monitor and treat HIV and AIDS patients while
TB programs intends to monitor and treat patients suffering from tuberculosis. Until now,
the HIS consisted of many separate systems that intended to help specific programs, e.g
Baobab system acted as a system for the ART program. Optimally, the local developers
wanted a system which incorporated all the programs into one. An underlying problem
to this was the identity issue Malawian citizens face. What to associate each program’s
entry to is not very obvious when you don’t have a system containing any associations.
For data to be relevant it needs to be associated to time and relevance, which in the case
of HIS is a patient that needs to be associated with a unique identity. This was some-
thing that wasn’t immediately obvious to us as it is an unknown problem in our world but
something that needed to be addressed before we could continue in Malawi. Another big
concern regarded the availability of the system. The old DHIS2 system did not support
responsive data downloads, you had to request the whole data set with no possibility of
limiting search, which is of course a huge problem in a country where internet is scarce
and unreliable. This was only the functional problems however, because funding for these
systems came from separate organisations acting as product contractors to the local de-
velopers. The organisations had their interests often specific to one of the programs and
would therefore have greater governance when it came to decision making in regard to the
system specifications.

So Malawi wanted a system to digitise the health passports, incorporating all programs,
keeping patient records and history up to date and available to all. This was not a task
which could be solved with the old DHIS2 system as it was. Design governance was
almost completely limited to the HISP Norway core team. The new Web API did, however,
present new possibilities for developers, distributing governance, making it possible to
personalise local implementations.

40



4.3 Prototype work

4.3 Prototype work

4.3.1 Development process

This section is meant to give an overview of our development process experience in
Malawi and give an overview of the workflow of HISP Malawi.

1. Preliminary phase

As we were invited to participate in the development process we, as well as the local
team, needed to understand what we were going to implement. The development process
started from scratch which was initiated by a preliminary phase intended to uncover system
preferences.

Activity The team started by reviewing mHealth4Afrikas’ preferences and from there
arranged a workshop with the new development team where we would discuss what we
wanted to keep and what we wanted to add. We got a very brief overview of how the
system was going to look and what work we needed to do to uncover the rest of the user
preferences.

Result The system should optimally replace the old health passport system in Malawi.
This is an old system where each citizen visiting a health clinic gets a health passport
which they use to keep their health records. At the first visit the patient fills out a general
section which adds some general family history and personal information and at each visit
the patient updates the notes section of the passport. These health passport is kept by each
user and brought to the next return for a clinical visit.

A frequent problem is that these passports are lost and not regularly updated. Addi-
tionally they only gather general visit information and do not carry any specific program
information. The specific program information is done in separate forms (e.g ART form
from Appendix) that are kept at each clinic and very rarely shared between other clinics.

2. Design research

After concluding the preliminary phase and getting a general overview of the functionality
of the system, we needed to review some design choices. To help us with this, the local
team arranged a workshop together with a nurse from one of the nearby clinics.

Activity Over the course of one afternoon, a nurse participated in our design workshop.
We started with a simple interview about her daily workflow at the clinic and continued
with a brainstorm workshop. We included the nurse in the whole workshop and encour-
aged her to give feedback on all our design discussions. Each team member, including the
nurse, made a small paper prototype which we presented in plenum and commented on.

41



Chapter 4. Case

Result Having the nurse participate in our activities helped us swiftly come to a set of
design concepts. All ideas where instantly tested and reviewed by a user and the time
used was very productive. In other projects we have experienced that even a lean approach
to the design phase is somewhat tedious. The development team involve the end-user
in the development process by interviews, being a tedious process on its own, reviewing
the interview, discussing design approaches only within the team, testing their theories
on a new set of interviewees and doing the same process all over again until the team
has a viable approach. HISP Malawi have adopted a much more casual approach to this
process, by inviting the user to participate in the actual process, not only partially through
interviews.

3. Design prototype

After the activities of the second phase we had a very rough sketch of how the system
should look. The local team still wanted to make a prototype which we could use to show
users and ask for input.

Activity We started directly with a partial prototype created in React. This prototype
was created over the course of the next three weeks. We only had the sketches for a couple
of main features, but tried to make the components generic and create new features as
we went along. The prototype was built on the Adaptive Object-Model (2.2.1) pattern
without any real metadata to be based on. The metadata was in parallel built by other team
members.

Result We created a somewhat complicated minimum viable product (MVP), without
any real connections to the metadata. We created our own dummy data, which could be
replaced with real data queries. The MVP was then showed and discussed with a local
nurse which gave us some pointers on what she liked and disliked.

42



4.4 Findings

4.4 Findings

4.4.1 Ease of use

Opting for click functionality In interviews and workshops the expert users, NU-01 ex-
pressed her main concern to be that systems often require to much typing, and are therefore
not user friendly. Problem being that the health personnel have a hectic workload and ”are
lazy” in NU-01s’ words. Local Health Surveillance Assistants’ (HSA) experience with
computers are on average very low, which suggests favouring clickable interactions. Dur-
ing our stay in Malawi we scheduled several interviews with developers and nurses, which
all revealed the same conclusion. LD-02, that have taken part in earlier projects, such as
the Baobab HIS (4.1.3) and mHealth4Afrika (4.1.5), commented that ”at the request from
expert users we opted for clickable functionality” mainly rationalising it by speeding up
processes that earlier had to be manually typed. The nurses also saw the benefit of ”re-
stricting functionality” by restricting use and letting the system validate the information
the HSA typed into the program.

In our system, we had a request to hide functionality from the users. Our system meant
to mitigate the problem of connecting data to the right patient and therefore we needed to
have the patient registered in the system. At launch, the databases for the system would not
have registered users and the nurses would have to populate the database. This, however,
revealed an interesting issue we would not have foreseen. The nurses wanted to hide the
”Register Patient” functionality from the main page.

Figure 4.6: System main page

As shown in Figure 4.6, we instinctively placed the button in the main view so it would
be easily accessible, being a very frequent functionality just after launch. NU-01 disagreed
with this and meant that ”the HSAs would just register new patients every time they where

43



Chapter 4. Case

helping patients” disregarding the search functionality as the system intended. NU-01
argued that ”the HSAs are lazy and will just register new patients”, whilst we argued that
the true lazy thing to do is to search for the patient in the database and not have to fill in a
whole form every time. Most likely, the HSAs felt safer by just registering a new patient
each time, as they have been trained to do so. Introduction to a search field can be stressful,
especially with the ongoing identification issue.

Opting for click functionality can also be viewed as not opting for typing. This can
create problems when implementing search for patients, or typing in a medical comment.
It can be mitigated by trying to anticipate what the user is wanting to do. For instance, the
search functionality in our system, located to the right in Figure 4.6, should try to further
fill out the patients’ name or restrict the search in the background by location or common
clinic databases. This is a subtle functionality, and helps increase the usability and speed
of the system. In our short time span, we did not get to implement any resembling feature,
but tried to solve it in other ways. By clicking the Today’s patients button from Figure
4.7, the user gets a list of all enrolled patients at the clinic. We understood that during
a patient’s visit the patient sees many different HSAs, nurses and doctors which all add
on visit information. Therefore it should be easier to find enrolled patients than random
patients in the system, to reduce the pool of searchable patients.

Figure 4.7: Active patients

Familiar design One experience from the prototype work (3.3.4) was that all develop-
ment opted to copy the already known systems that were in place. Our work aimed to digi-
tise the forms and health passports (Figure 4.2). The team already had experience from the

44



4.4 Findings

Baobab project, where they more or less directly copied the ART forms (see Appendix).
From this experience, and interviews with the HSAs using the system at the clinics, we
concluded that this was an important design choice to consider and maintain in our work.
It is not hard to imagine the benefits of the system resembling the already in place solu-
tion, but there is of course some concerns by blindly copying old systems as well. As we
understood from the developers, projects usually have those kind of premises. They are
rarely asked to create new and innovative systems, which using cutting edge design. The
systems opt for familiarity, which in the case of Malawi are some basic forms like the ART
form (see Appendix). This also became apparent in the workshops, when the expert users
always chose the designs resembling the system they used. We often interfered, asking
them ”well, how about this” pointing at new design proposals. Their response was often
”this is similar to what we use now”, while pointing at the resembling design.

Though the time constraint hindered finishing the prototype, we got to implement a
basic Adaptive Object-Model which populated forms based on metadata. Creating the
logic for accumulative data is one of the main features of the DHIS2 application today,
and based on the structure set we tried letting the system interpret and populate the forms
associated with the different programs. You can read more about this in Section 4.4.2. The
colour coding of each patient (top right of each patient card in Figure 4.7) is also meant to
give a familiar feel to the HSA at each clinic. They represent the different colours of the
individual Health Passports (Figure 4.2), yellow for women, blue for men and orange for
children.

45



Chapter 4. Case

Multiple paths Another finding was that there should be multiple ways of doing a given
task, as the interviews revealed that workflow for each nurse was unspecified. We wanted
the nurses to be able to choose how they wanted to solve a given task. This also aimed to
get the nurses more involved in the system and increase ownership over it. A positive bi
product when implementing this is shallow paths to all points. A challenge when develop-
ing these different workflows is that all paths lead to a point where data need to be relevant
to the situation in the workflow chain. In our prototype you could access a patients’ ART
program information either by going to ART from the home page or the patients page.

Figure 4.8: Continue visit

When the patient has been registered as an active patient the health workers can access
the continue visit feature (Figure 4.8). This feature saves the patients current data, e.g
from check in, and makes it easy for any ward to find the patient and continue to register
information for the visit.

At either of these points the situation calls for the same relevant information regarding
the patient as the data system need to link to the relevant patient. A session is what we
called the time from when a patient enrols in to a visit, to the time he/she ends the visit.
From the patient page this information can easily be transferred through to the session, but
from the home page a patient is not selected and therefore need to be chosen before the
health worker can continue. In the process of creating this feature we struggled with mak-
ing it clear for the health workers the idea of a session. We experimented with selecting
a active patient for the current session, but feedback from interviews and simple testing
discarded the feature. The experience only increased the lessons learned from opting for
familiar design.

Responsive design As we understood from the interviews with the expert users and
developers there was no obvious technology platform for which the system was best suited

46



4.4 Findings

for. Clinics share no equipment standards and the staffs’ technical experience differed
greatly. Additionally, the system needed to be implemented onto a platform which was
easily available. The Baobab system used very expensive touch screens, which were hard
to fix and update to keep working. Computers were not broadly available and internet
connection unreliable. We had to make the system responsive to fit any platform, but opted
for mobile first design. This decision was based on interviews with the NU-01, which
worked at the clinic we visited on our field trip (3.3.3), and assumptions made about the
general health clinic situation in Malawi. NU-01 wanted to use her smart phone to interact
with the system as the clinic in question didn’t have access to computers. She also argued
that this is the situation in many of the clinics and many nurses own a smartphone. It is
also a good idea for making it easily accessible and mobile for all users.

4.4.2 Designing for metadata
When starting the development process we, assumed the system preferences to be much
of the same as what was defined on its previous iteration. This lead to a very shortened
preliminary phase and the team decided after a short period to start development, just after
the first couple of workshops. Also, rushed by our time constraint, we eagerly started
development without looking over to much of the developing standards. We made the
decision of defining the fields required on each page within the code. After understanding
that the system would be presented in different ways based on its’ location, we had to
rethink how the system was being rendered. Following the principles of Adaptive-Object
Model (2.2.1), we had to define metadata to be interpreted at run-time. The metadata
wasn’t defined yet, but creating a mock data structure for illustration and development was
sufficient for our purposes.

Figure 4.9: Register patient

In Figure 4.9 and 4.10, we have used the same elements and render functions to pop-
ulate the forms based on the relevant metadata. The metadata is structured based on pro-
grams, associated with tracked entities, which can accumulate data entries for different
purposes. We realise this is not a very detailed description, but for this chapter we con-
sider it sufficient to understand the concepts. The register patient form (Figure 4.9) creates
a tracked entity associated with programs, like the ART program. The ART program is
made up of initial information and a recurring data entry consisting of a number of stages.

47



Chapter 4. Case

These represent the entries shown below (Figure 4.10). We were only partially introduced
to the concepts specific to DHIS2, but we managed to make logic of it in a short manner
of time. It was from this experience we realised the power of metadata design and the
huge advantage of creating an API which can implement these ideas, not only to make the
system design flexible but also also the governance distribution flexible. We will go into
further detail in the discussion below.

Figure 4.10: ART patient form

48



Chapter 5
Discussion

5.1 Research questions
1. Designing for an effective evolutionary platform

(a) Economies of scale: Scalability vs. specialisation. Scale comes at the price
of specialisation and developers need to make considerations of global or lo-
cal development. How does the focus on scalability effect the evolutionary
dynamics of the platform?

(b) How to make platform development agile? Usually platform development fol-
low a waterfall development process and choices are made at the beginning of
the development process rather than on the go. We acknowledge that this im-
pair evolutionary dynamics and see how certain techniques mitigate the issue
through;

• Making partitions?
• Splitting design into implementation-level and generic-level?

(c) How governance effect evolutionary dynamics? Distributing the decision-
making authority to a broader set of stakeholders often encourage speciali-
sation.

The concept of economies of scale describes cost advantages, enterprises obtain due
to their scale of operation. As their operation grows the minimal cost of producing one
more unit is lowered due to the already developed infrastructure etc. This is also true for
generic software development, as the initial cost of development is often the most signifi-
cant one, and maintenance cost would be relatively lower per unit the bigger the reach of
the system is. Making a system fit numerous purposes means more sales and more users,
leading to decreased development cost per user. However, this require that the software
is inherently generic, so it can fit into as many use cases as possible. In user centred de-
sign (2.1) developers consider the end-user to influence design choices. It makes systems
more relevant for the intended audience and increase usability traits such as efficiency,

49



Chapter 5. Discussion

effectiveness and user-experience. The process of user centred design means specialised
solutions for specific users. These two concepts, generically and user centred, are both
very important for enterprises, but they also appear contradicting. It is paradoxical to have
a solution that fits all, and at the same time fit for specific use. Platform-based software
ecosystems are often sought after for this purpose. They exhibit an inherently generic core
for scalability and individual modules for specific cases. It is emerging as a dominant
model for these purposes and the success stories are many, including Apple’s App store
and Mozilla Firefox’s extensions. Platform development divides the development and de-
sign processes into two separate aspects. One for maintaining the generic traits and one
concerning the specialised modules. Li & Nielsen (2019) have developed a framework
which name this separation appropriately. They argue that there are different levels of
design, concerning local and global aspects, which they have named Implementation-level
design and Generic-level design accordingly. In this chapter we will discuss our findings
with regards to implementation- and generic-level design.

5.2 Implementation-level design

5.2.1 Patient Centred Design

Health Information Systems (HIS) are often centred around a patient entity. When the
users of HIS, which are health personnel, interact with patients, they usually need access to
the patient’s records and manage to survey information about a diagnosis. To make these
systems function like intended, information need to be associated with a given patient.
This require extensive planning when designing the system, to correctly identify and assign
the right information to the right patient. The HIS we experienced in Malawi disregarded
this consideration. Their HIS consisted of a number of very separate entities that solved
specific and very local problems. For instance, the Baobab system (4.1.3) functioned as
a digitised form, printing out a copy of the examination, which then was stored locally
at the clinics. It didn’t consider making data accessible for other systems or incorporate
other systems’ data. It’s purpose seemed to be making the current forms slightly more
effective to process through. In our opinion the designers had not considered the impact
the system had on the environment. Wever et al. (2008) states that ”the way users interact
with a product may strongly influence the environmental impact of a product”, and argues
that developers have a responsibility to keep in mind sustainable outcomes of the use of
their systems. He makes a good point about the responsibility the designers over users of a
system. This way of handling the examinations was not a sustainable solution. So why did
the systems we encounter ignore the apparent immense potential of creating a connected,
collective of HIS?

The health system in Malawi is made up of a number of programs which help monitor
and treat distinct health problems. The ART program mentioned earlier is one of them, and
intends to monitor and treat HIV and AIDS patients. The TB program is another, which
intends to monitor and treat patients suffering from tuberculosis. The programs gather
data at different clinics, about specific observations related to the program. For every
program the patients are registered the same way, but with no link between the programs.
As an example, the same patient can be a part of the ART program and the maternity

50



5.2 Implementation-level design

program, which means that they are both HIV positive and pregnant. The connection
between the two programs indicates that precautions should to be taken. However, because
of the program separation in the Baobab system, this conclusions cannot be drawn. When
designing this system the developers have paid little to no attention to how the programs
they create can act together in a pool of programs. We label this approach as Program
Centred Design, because the separate programs is in focus. Following generic design
principles (2.2), we tried to find generic traits in different components of the system. We
identified that the programs should be more coherent in regards to the patients they serve,
and suggest an alternative approach. We call this approach Patient Centred Design, with
an aim to associate all data entries to a patient instead of a program. This approach was
explored while developing our prototype (3.3.4), and found that the core generic trait of
the HIS was the patients. All programs need to be associated with a patient, which means
a patient package or module can be developed generically to fit all programs.

During our prototype work our task was to create a system that could act as a collective
HIS. With limited time resources we focused on the design principles for the system using
the new Web API. As mentioned above we put the patient in the centre and associated
all data entries to a patient utilising the Tracker model provided by the DHIS2 platform
(2.3.3). Therefore, one of the first things we developed was the patient page (Figure 5.1).

Figure 5.1: Patient page

This page represent a unique patient and is meant to be viewed whenever a patient
visits a clinic. Our idea was to replicate the health passport and associate all visits with
a patient. This is a simple idea, which is why we had a problem understanding why this
approach weren’t thought of before. Why didn’t Baobab create a system that benefited the
collective system and made it easy to associate data with patients? Similar issues arose
when prototyping in Malawi. In interviews with nurses they told us that ”HSAs will not
bother with searching for a patient, if they can just register a new one”. They argued that
the reason was HSAs were ”too lazy” to search for the patients. One could argue what is
more lazy, but this was their perception. As we mentioned in Section 4.4.1, we initially
had to hide the register patient button because of this, but we still wanted to find out why
it seemed like none wanted to bother with associating a patient to different programs and

51



Chapter 5. Discussion

visits.

Unique associations A reason this might be the case is linked to a problem we had
with data associations. New data entries could hardly be associated with any relevant data
entities as there didn’t exist any. A prerequisite for data to be associated with a data entity
is that the data entity is unique. Data can be linked to a unique clinic, hospital, village
or in this case a patient. When the underlying information describing the data entity is
not unique this is not possible to do. From the personal identity situation in Malawi we
described a scenario where a patient tried to explain who she were and where she came
from (4.1.2). She gave a name, but in Malawi there are often many with the exact same
name from the same village. She did not know her day of birth, but only knew how old
she were. Her village was very small and didn’t have a name, they more or less just called
it home. For the HSA enrolling this patient, it was an impossible task to uniquely identify
her. In our system we wanted to create patient records associated with the patient, but how
could we identify the right patient? How could they know if a person named ”John Traore”
was the same as the patient ”John Traore” (from Figure 5.1) found by searching his name?

Lack of time meant that we didn’t get all the answers we where after. We got to proto-
typing and used it to understand how they developed systems in Malawi using DHIS2. The
overall experience is very positive and we are confident that the developers at Chancellor
College are well suited to develop systems using textbook methods and theories. It was
their idea to interview HSAs, include them in workshops and visit them at the clinics, all
of which reflects a thought out user centred development process. The issues we encoun-
tered was with the ground work for identification which hinders the process of creating a
unified system. Work on solving the identity problem have already began however, and
according to the local developers, 80% of the population have already been registered into
a new identification system. The goal is to supply every citizen with a unique ID numbers
and identification papers. This will have huge impact on the current HIS, as registered
citizens will be easy to identify using the ID. One of the main issues will now be to create
a relevant system suited for the information available today, but at the same time make the
system modifiable for the future identification situation.

What we argue to be the best solution will be difficult to implement for several reasons,
one being that it takes time before it can be implemented, because of the ID roll out.
Another important thing to consider is that the technicians at the clinics are not used to
the idea of tracking data entities or creating data associations. The technicians have been
trained in doing a repetitive task, like filling out forms when presented with a patient. It is
important that the end users are on board with the changes to the system. As mentioned,
today’s system are program centred and doesn’t concern about the value of the information
it gatherers. And as Wever et al. (2008) was quoted earlier, ”the way users interact with a
product may strongly influence the environmental impact of a product”.

5.2.2 HSA centred development
User centred design (2.1) aim to improve user experience of the system by making sure the
system fits intended use. This means specialising the system for specific users and specific

52



5.2 Implementation-level design

situations. If the system has additional goals of achieving economies of scale, it must cover
a broad set of users and use cases. Commonly, user centred design is complemented by
an agile development process that continuously evaluate the direction of the development
process. In practice this means that the development team ask the users what they need,
then develops, tests, evaluates it, before starting on a new iteration of the same process.
Generic software however, is only used if implementations of the same system will share
the same traits, i.e parts of the system are common in all implementations. Therefore,
implementing generic software need to be considered before the development process can
start. If the generic traits was discovered at a later stage of development, the likelihood
of it effecting already implemented features would be high. Pollock et al. (2007) refers
to the birth of a package, as he argues that ”there are many choices influencing the extent
to which the package will become ’generic’”. What organisational practices are common
and what the organisation want to generalise needs to be considered at ”the birth” of the
packages. The challenge is making a plan in an environment that is constantly changing.

Even though we know that a new system is on its way to ensure that everyone can be
uniquely identified, Malawi cannot wait for a HIS. It needs one which works in the cur-
rent situation, for the current users. The users of the system are the Health Surveillance
Assistants (HSA). They are using Health Passports (4.2), which represent the patient’s en-
tire medical history in a small booklet, both as a record storage, and as a encyclopedia
to look up potential risk groups and prior illnesses the patients may have. Our prototype
work (3.3.4) consisted of digitising the booklet as a mobile friendly system with the same
functionality, such as recording and looking up information about the patient. This task
was assigned due to a combination of the local teams research on user needs prior to our
arrival, and our own research and findings. On the same note as the current system, our
prototype had to find a solution to the problem of identification, for the current environ-
ment situation. After interviewing nurses and experiencing the situation first hand at the
clinics, we came up with a temporary solution that could work until the national ID was
fully enforced. The idea was to use the amount of information that existed and combine it
into unique identifiers. The patients would hand over as much personal information they
have to the HSAs enrolling them, typically by handing them their health passport. The
HSAs would keep feeding information into the system until it had enough to uniquely
identify the person. For example, name and date of birth might not be enough, because
two or more people could have the same name and date of birth. The HSA would proceed
by filling in parents name or village, until only one person was left in the search results.
This approach would also mitigate the problems with citizens not knowing their date of
birth, as the HSAs could just work with the information the patient actually knew.

The system we imagine would base its entirety on the Health Passports, since the
information of one that has been duly updated is actually very comprehensive. It con-
tains general history, family history, past medical and surgical history, family planning for
women, growth chart for children, vitamin supplementation and more. The main body
of the booklet however, is a set of blank pages where summaries of previous visits are
logged. These logs are written by the HSAs at the different wards at the clinic, and fi-
nalised at the outpatient registry (OPR) with a diagnosis or treatment. OPR is, same as the
general health information, a generic part of all the systems, while the programs vary from

53



Chapter 5. Discussion

clinic to clinic depending on what services they provide. Being able to add programs on
demand is what enables a platform to scale in its environment which represents the next
stage in our suggested development process (Figure 5.2). This includes adding individual
modules to complement the system, like App Store does for the Apple iOS or extensions
does for Mozilla Firefox to name a few.

Figure 5.2: Process

Having the system dynamically add programs that are needed means that the system
can stay relevant even in a changing environment. The environment the system is to be
implemented in is expected to change, and new programs are needed periodically. At the
time of writing this thesis, we are experiencing the outbreak of Covid-19 which represent
a new program that needs to be implemented into the system. Adding this today would
mean a development team would have to create a whole new system which would take
time to develop. Handling outbreaks like Covid-19 and Ebola requires swift action, and
the programs needed are most likely very similar to one of the other forms that already
exists. We suggest following the principles of designing for metadata as discussed in 4.4.2.
The programs should follow principles of continuity to make the system feel complete and
familiar resembling each other. By basing the data on metadata editable in the DHIS2
dashboard a new program can swiftly be added to the system without to much work. In
our prototype work (4.4.2) we tried implementing this idea, and it works as a good example
of how it can be done.

Availability As we mentioned in 4.4, we opted for a mobile first, responsive design. This
was on request from the local developers and had come up as a user preference before our
arrival. We confirmed this whilst observing the current system and concluded that the
current machines reduced availability. The machines running Baobab (Figure 4.3) often
broke down and was expensive to repair. They were also expensive to buy in the first
place, which had led to a lack of machines on the clinics. Mobiles and tablets on the other
hand, are cheaper and much more available to the HSAs. Therefore, in the process of HSA
centred development this was in our opinion the best option to increase availability.

In one of the first workshops we attended, we did a walk through of the mHealth4Afrika
system where the developers pointed out what was lacking and could be improved upon.
This system had to download the whole data set before it rendered, making it slow to load
in. It also meant that the system was heavily internet depended. First hand experience,
and research on the topic (2.3.2), told us that internet was expensive and lacked proper
availability and speed. In our prototype work we had no time to consider this aspect of
the system, but it is an important requirement developing further. In our prototype work
we had no time to consider this aspect of the system, but it is an important requirement
developing further. If availability should by improven and then maintained, the system
need to function with an infrequent access to internet connection. Offline capabilities are
therefore important to consider.

54



5.2 Implementation-level design

Offline capabilities As the individual systems now function, data is accumulated on pa-
per or local data sources, which are on a later time fed into the DHIS2 platform (see ??).
This is a very time consuming process, because the HSAs need to type in the information
a second time after gathering it at the clinics. One of the reasons that this is not done at
the initial time of data gathering, is the internet problem discussed above. Since internet
infrastructure is not expected to change drastically, any future system need to acknowl-
edge this issue. Offline capabilities need to be implemented so the system can gather
information as normal, but store the data in the background, and post it when an internet
connection is established. Another issue with the scarcity of internet is that store data
wouldn’t be accessible, like searching for patients and viewing patient’s prior records.

Today, they gather information and store them in hard disks or paper forms, but this
information is not accessible to the HSAs phone. Today, they gather information and
store them in hard disks or paper forms, but this information is not accessible to the HSAs
phone. What can be accessed however, is wireless signals. Creating a Local Area Network
(LAN)- connected to hard disks on-site which holds all patient information could make the
HSAs jobs much easier. They would not need internet at work, and they would not need
to access a limited number of expensive machines to register visits. Rather, they could
connect to the LAN and update the local hard drives. The hard drives would then need to
be connected to the internet occasionally, and feed the DHIS2 database.

Informal participation in development processes

Earlier we have touched in on the subject of user involvement in Malawi. We experienced
their involvement to be very informal in nature with no clear tasks when asked to partic-
ipate in development activities. In our experience the process is usually very distant to
the user following formal interviews and careful analysis of the data. In Malawi however,
HSAs were asked to meet at the college in the morning and participate in a whole day
of planning activities. The experience from Malawi was positive, as the nurses had time
to formulate and explain their ideas more carefully by participating in the design process
directly.

A question was raised while working in this fashion, about how much inclusion of
HSAs was healthy for the system and how to balance the efficiency and desires they bring,
with common design standards. Interviews revealed that the developers usually use the
HSAs that are most vocal and the ones concerned with particular aspects. Kushniruk
points out that in large scale health information systems it can be hard assessing how
representative the users aiding the design process are of the general user base. In Malawi
alone, there will be thousands of users if the system are to be rolled out nation wide. Take
the example where the nurse aiding us told us to hide the ”Add new patient” button until
after the nurses had used the search function. Was this really true for the majority of
the HSAs? In the voice interview with FA-01, we were told that the user group for the
workshops were usually broader than we experienced in Malawi, but it might not be as
large as desired.

As stated by Pollock et al. (2007) generic traits must be considered at the birth of the
package, which mean setting a plan for development. Planning before the development
process means setting a field of focus and making boundaries. Boundaries come in forms

55



Chapter 5. Discussion

of less freedom of development and higher costs of changing system features later in the
development process. User centred design is meant to increase users’ governance but
developing for generic traits contradictory reduce it by encouraging planning and complete
solutions.

5.2.3 Designing for relevance
When developing user-centred modules it is important to consider the users’ context.
For the sake of this thesis, we have called this the systems’ ”relevance”. Common ap-
proaches to system development evaluate the environment, finds a purpose and defines
system boundaries. These boundaries are subject to a specific time and place, a context
where it can be relevant. This approach is based on the assumption that the environment is
stable and the contexts stay relevant. Garud et al. (2008) highlight a pragmatic approach to
design, trying to mitigate the issue, in Incomplete by Design and Designing for Incomplete-
ness. The article discuss the disadvantage or the pitfalls of a traditional scientific approach
which ”extols the virtues of completeness”. They argue that the conventional approach is
likely to run into problems in environments characterised by continual change, which is
often the case in large platforms. ”In such contexts, system boundaries are often unclear
and user preferences are both heterogeneous and evolving”. This is especially important
to consider when the scope of the system is large and considering many environments for
the system to stay relevant.

The development process we recommend is meant to ensure that the HIS is kept relevant
in a period where the ID system is changing. How far the process has come is not only time
dependent, but geographical as well. More urban areas, near the ID registration centres
will most likely adopt the system faster. The system need to change concurrently with the
degree of ID implementation in the immediate surroundings. While implementations in
rolled out, there is also room to test how the system is working in the new environment.
We are in a unique position in this project as we know for a fact that the environment
is going to change and we know in what direction it is changing. This make ”designing
for relevance” an easier task if following a set of techniques that encourages dynamically
modifiable systems.

Adaptive tools

Following principles of Adaptive Object-Models (AOM) from 2.2.1, moving the systems’
data structures and design logic into a database results in a system that can quickly adapt to
changing situations and can keep its relevance. The database can be accessed through tools
specifically developed for the purpose of changing the metadata, and as mentioned by Yo-
der et al. (2001), ”it also encourages the development of tools that allow decision-makers
and administrators to introduce new products without programming and to make changes
to their business model at runtime”. Imagine the process recommended in Figure 5.2. At
which point should the decision to change the system be made? As we have mention in
4.1.1, communication and situation awareness is limited to immediate surroundings and
many communities might seem isolated. Who knows best how the HIS should function
in these places? Surely the people who live in the situation knows best how to tackle it

56



5.2 Implementation-level design

and when to make changes. Therefore, having them make decisions on how their system
should look like would be beneficial for everyone. It can result in less work for the local
HISP teams and ”the power to customise the system is placed in the hands of those who
have the business knowledge to do it effectively”, (Yoder et al. (2001)). In this scenario,
the local HSAs are the decision makers. If they have the power to change the system when
and how they please, they don’t need to waste time waiting on the domain experts. In
Africa, this might sound like an impossible task, but our experience from workshops with
the nurses showed us that they are willing, and understanding of development processes.
They showed us that they wanted to participate in the design choices and that their ideas
was relevant to the systems’ needs. This also brings up a point from Kujala, stating that
users may need to be educated in certain design aspects before engaging with the design
team. Lets recall the problem about nurses wanting to hide the registration button, so HSA
workers that used the system wouldn’t just add a new patient every time. The tools would
then allow certified nurses to implement that function, and try it out for a period of time.
Then they could evaluate and make a decision about what works best, completely without
any help from programmers or domain experts. Maybe it was a right decision in the first
phases of the new system, but not when everyone had been using it for a while?

The system governance would have been distributed to the last end of the chain, the
users of the system. An important question however, is how much they should be able to
control and change. Though the systems may look different from clinic to clinic, they are
still gathering the same information which needs to fit into the common data scheme. The
patient page still need to represent a patient, and so on. The example above is only one
alteration of the system. Should everyone be able to alter the system to their pleasing?
One could then argue that the HSA workers wanting the registration button, would just
change the system to show it. Of course, there would be a need for some kind of ”expert
users”, a panel or a group of people who represents the users preferences, chosen by either
the community of workers, or by the leadership of the HIS.

Evolution of a system, in comparison to natural selection, happens when an alteration
become favourable and later iterations, generations, adopt it. Having many different al-
terations, mutations, means that evolution can happen faster. It means that users can test
solutions faster and do minor or major changes quickly. The system wont immediately be
adopted by all users and it wouldn’t work in all situations, as we have discussed above.
Nevertheless, with the power of rapid alterations it could evolve without the need for
specialists. When we discuss testing in this context we don’t mean to compare it to the
exhaustive testing often associated with development processes, but rather a very informal
approach. Let the users that are going to use the system evolve it as they go. In this pro-
cess, simple sharing of ideas and different implementations can be a very powerful tool.
The users that is going to use the tools, regardless of how they are organised, will not be
familiar with the new system. Getting input from other solutions would be very beneficial
for each clinic to make their system.

Aiming for economies of scale means having a broad, global perspective. It requires
an ecosystem which can facilitate many use cases and exhibit generic traits. However, a
systems’ relevance is in danger when planning for platform-based ecosystems. Implemen-
tations need to be specific for each use-case and be relevant locally. This means involving

57



Chapter 5. Discussion

users more extensively and one solution, following an agile approach, is giving them tools
that closes the otherwise apparent technological knowledge gap. Designing for incom-
pleteness (Garud et al. (2008)) in environments that are in constant rapid change.

In this chapter have discussed all the considerations in regard to the local aspect of an
otherwise global platform ecosystem by focusing on implementation-level design. Next
we are considering the global perspective, the generic-level design.

58



5.3 Generic-level design

5.3 Generic-level design
Platform-based architecture is a choice made by the development team of a system. It
should be carefully planned by the platform owners and architects before starting the pro-
cess. They are responsible for designing the platform in such a way that users can create
modules effectively for the end-users at present and future. Tiwana et al. (2010) present
an idea that ”the evolutionary dynamics of platform-based ecosystems and their modules
is influenced by the co-evolution of the choices of the platforms owners endogenous to the
ecosystem and the environmental dynamics exogenous to the ecosystem”. They present
what they call a ”tripartite co-evolution perspective” which considers platform design,
platform governance and their environment separately. The previous section considers the
environment and discuss a situation where the developers of each module distribute the
governance. In this section we focus on how the platform itself can encourage distributed
governance. The platform is in theory infinitely scalable as it can be incorporated into
any major global, regional and domestic arena which need the accumulation of personal
data, not only specific to the health domain. The platform have already started research
on incorporation in education (the school system in Ghana), as well as agriculture. Addi-
tionally, research into other arenas (e.g police recording) is on its way. In this potentially
unlimited ecosystem, how should the individual modules act? What unites the modules
and can be conceptualised into rules for everyone? What can be generic? Who can use the
modules?

First we need to evaluate how the platform should fit into the current HIS environment.

5.3.1 Platform fit
The Baobab system (4.1.3) and our prototype (3.3.4) exist within the ecosystem of the HIS
in Malawi. They are used in individual situations, but share the accumulation of personal
data and act in the same domain. DHIS2 is an open source platform and the packages
created by the HISP core team is easily available for everyone through their websites.
The individual modules of Baobab however, is not easily accessible. Development teams
using DHIS2 is responsible for how the module act in the ecosystem and for making their
solution available. There is no common directory to search for solutions or share ideas
with other teams wanting to utilise the DHIS2 platform. It is therefore very hard to know,
for a team wanting to start a project, if the solution already exist or if they can use modules
and ideas from other projects.

The systems that we encountered often used DHIS2 as a form of report making system.
They used the aggregate data model (2.3.3) to periodically collect and report health data.
Each system collected their own separate data associated with each program and fed the
DHIS2 platform individually with that data. Not all the programs had been digitised, but
most of them reported some data to the platform. Using the aggregate model (2.3.3) to
monitor an entire population was a time consuming process, as all entries needed to be
summarised outside the system before it could be entered into the system. This solution
stems from the same problem discussed in 5.2, that they lack the unique associations to
use the Tracker model (2.3.3). For the same reason, it would be difficult to collect the
data together, compare them and cross match the results. As an example, let’s say the
World Health Organisation (WHO) wanted a cross match of how many have died in the

59



Chapter 5. Discussion

hands of tuberculous and COVID-19. Two individual solutions could not generate those
associations. So, each module function individually, but how could this be improved?

Each module function individually in a domain where they collect their own data. For
that purpose the modules have their own system to identify the patient they are monitoring.
Remember the Baobab system (4.1.3), which prints out data on stickers and keep the data
in huge ledgers. This system is in no way perfect, but it is a system. That system is not
available for any other developers to use. It is created and used only for the ART program.
The system could be implemented into the TB program or the OPR program using the
same means to identify a patient. This was in large what the prototype (3.3.4) we were
developing was going to solve, but our solution started from scratch. We, as well as the
developers before us, made the assumption that it would be easier just to create our own
system following a patient in addition to making systems for each program. But could it
be solved with what was already available? As the systems use the same standards for
data collection they fit into the same data scheme in DHIS2. This could be exploited by
making tools that can fit into the current situation. Either by adopting one of the major
modules and implementing the same solution into all the others, or by making one united
solution and altering the existing systems to utilise the new instead of the old. With the
new identification system on its way the latter might seem like the better solution, opting
and planning for the new.

Creating a community Making a community, or a store where development teams can
search, use and share ideas would mitigate the immediate problem before a generic solu-
tion could be implemented. Not only to solve the identification problem, but for design
examples, form solutions, metadata interpretation to name a few. With the new Web API
they could follow a package based development process, like Node packages, and import
packages they needed for their purposes. Additionally, if the community followed open
source principles they could even improve on solutions made by others.

5.3.2 Making the platform fit

Until now, we have discussed a top-down approach trying to fit the modules into the plat-
form to create a collective generic HIS for Malawi using only the platform. Developers in
Malawi however, are not exclusively developing HIS using DHIS2. There are a number
of other services available such, as OpenMRS, which have many of the same features as
DHIS2. Developers of HIS in developing countries, in similarity to developers in other
fields, are contracted to solve a need and try doing so as effective as possible. They try
finding services that fit into their platform. Sometimes this involves using DHIS2 services,
but rarely it involves the whole of the system. Rather, developers pick and choose what
they need and discard whatever does not fit or work in their situation. Sometimes DHIS2
solutions are the best and sometimes they are not, and in many cases is it not sustainable
to only use DHIS2. A bottom-up approach, considering how the platform can fit into
the modules is therefore an important aspect of the platform. Separate functions can be
made available through an API functioning individually from one another. The concept
of black box functions is one that is used when describing functions you feed information
and get something else in return. The name let you imagine the function as a black box

60



5.3 Generic-level design

you don’t look into, but just get what you need from. In the same way, HISP can make
their platform’s functions work for the developers to use when creating modules, such as
the Tracker data (2.3.3) functionality can be available through an API exploiting some of
the strong sides with DHIS2 software.

HISP have already started working on an API for this function encouraging the use
of Docker where their functions can work even using different code languages. What
the HISP core team effectively does is move governance over to implementation-level
design, from generic-level design, which moves governance closer to the users aware of
the situation.

5.3.3 Adaptive abstraction-levels
When developing platform ecosystems it is important to consider the connecting solution.
The focus on economies of scale can sometimes work against the system generalising to
broadly making the solution vaguely fit all solutions, but not specific enough to be relevant
to intended use. It can quickly function as a number of individual services rather then a
connected platform which aim for a collective goal. Platform ecosystems are often very
complex and planning how all future modules are going to fit is not possible. Developing
countries are often in rapid change and in different stages of these changes based on lo-
cation, meaning that generalising a solution is especially difficult. Some specialisation is
therefore needed at higher levels then just implementation. Having logic that have more
defining impact over the system means specialising solutions and indirectly keeping the
systems’ intentions clear and on point, not making the mistake of generalising too much.

In organisations there are hierarchies, and because of the lack of highly educated peo-
ple in developing countries, one can argue that hierarchies can be strong on the higher
levels. These structures are important for the business models to work, especially in large
organisations or fields such as a health system. Where expertise is scarce, well established
bureaucracies are important to make good and coherent decisions regarding the whole of
the a system. For example, some decisions should be made by the chief of medicine to
ensure coherent medicine practice, while other decisions should be made much closer to
the patients to ensure effectiveness locally. This type of hierarchy also exist in a platform
ecosystem. The core team have knowledge about the whole system and how it’s focuses on
a global scale. Then there are some with continental and cultural knowledge which have
specific suggestions that should be heard in regard to their expert field. After this you can
imagine someone having specific knowledge based on countries that can influence the sys-
tem, continuing narrowing the abstraction level to regions or institutions and finally having
someone that are familiar with the local aspects. Yoder et al. (2001) discuss an Adaptive-
Object model example where he have distributed tools on different levels. These levels
of abstraction represent levels of governance. At each point in the chain, specialisation is
made to make the solution better fit the situation it is intended for.

It is also important to reevaluate the purpose every now and then as developers fre-
quently do in agile development (2.1). In a grand ecosystem bound by choices made at
the birth of the system (Pollock et al. (2007)) this might seem hard, but through Adaptive-
Object models (2.2.1) and clever planning you can design for incompleteness and reeval-
uate the platform as you go. Having the platform logic be dependent on easily changeable
variables at each level, reevaluation of an abstraction-level means change downward in the

61



Chapter 5. Discussion

system. And change follows on lower abstraction levels when decisions are made higher
up.

5.3.4 Unified platform tools

Creating tools that distributes the governance have one significant downside which we did
not discuss in full above. For a development team to create tools that can alter design
and metadata takes time, time that developers don’t really have as resources are limited.
Therefore, developing such tools, even with the necessary knowledge and guidelines, is
not very likely to be prioritised.

The goal of DHIS2 have always been to make a generic solution to HIS. What all
these systems have in common is that they aim to help locals and that they are used by
less educated users. Also, the situation they need to stay relevant in change constantly and
very individually. Situations changing individually is a key phrase here. As we have seen
with the health system in Malawi, the situation differ from district to district. What we
have been getting at is that it is to broad for one team to create a system that can fit into all
these situations, but the tools to alter them with might and should be considered to work
generally. The problems each implementation face is individual, if not there wouldn’t
be a need for a new implementation, but the unsteady situation and the need to adapt is
constant in all situations the DHIS2 platform is implemented. In addition to the large
time consumption for development of such tools, the notion that we need them suggest we
should standardise so development processes are unaffected. By having unified platform
tools that can work globally, developers would have an easier task of collaborating.

5.3.5 Partitioning evolution

Information systems are dependent on evolving with its environments to stay relevant to
the end users. Evolution is however not an obvious trait, but something that need to be con-
sidered and facilitated to be effective. Tiwana et al. (2010) argue that ”more decomposable
complex systems evolve faster because they require less time to evolve by recombination
and will undergo more diverse evolutionary experiments.” He uses the argument to illus-
trate the advantages of what he calls ”Modular Systems Theory”, which in practice is how
a platform is made up, or usually the preferred architecture. The modules that are created
using the core of a platform to compose smaller subsystems that can individually evolve,
where change is easier because the impact is smaller and therefore experiments are easier
to conduct. If a change that fits into the whole system would work for one subsystems, the
chances are that it would work for other subsystems as well.

5.3.6 HIS politics

Health systems often have a number of benefactors. The funding required for many of
the projects and the impact they have on the environment is not possible without a lot of
resources and knowledge about the surroundings. Therefore, often the same organisations
fund different large projects. They have their interests in the projects and because they are
funding it, they also have a part in the governance. For HISP, this is also true.

62



5.4 DHIS2 improvements

The core development team in Oslo, generic-level designers, make changes to the plat-
form on request from stakeholders which is done via Jira, a project management tool. The
core team have limited resources and therefore need to prioritise changes to the system.
HISP is a non-profit, open-source organisation that is funded by many of the biggest health
organisations around the globe. Each of these organisations are large stakeholders in the
platform because of their funding and therefore have governance of the platform. Each or-
ganisation have their own focus and request that the core developers focus on their needs.
Funding is crucial for HISP and therefore keeping the stakeholders pleased is paramount.
These same organisations are often the ones that fund different projects utilising local de-
velopers, implementation-level. In the projects’ development process the organisations
choose whatever platform they have already funded, e.g DHIS2, OpenMRS, and influence
the architecture by ensuring their interests are maintained. This mean that the organisa-
tions that are often based outside of Africa have the main say in the HIS. Implementation-
level designers are also stakeholders and do request change through Jira but developers
are often get ignored or their requests are not prioritised and after a while outdated. This
impair governance quite badly for many of the local developers and is one of the pitfalls
of making the platform to dependent on funding from these large organisations.

In Zomba specifically, the politics run by these large organisation limits the locals’ in-
fluence over the system which leads to some issues. The level of governance goes through
a path from top to bottom where each level have some governance which restricts the ap-
plications features and design choices and limits the next levels’. The developers at the
last level are left with very little influence over the application design. It is the overall
experience that the influence of each organisation has a positive correlation to the capital
donated by that organisation.

5.4 DHIS2 improvements

5.4.1 Labs

Recent efforts have been made to create a lab at the University of Oslo. This labs work is
mainly focused on the core of the system and organising research projects. These efforts
are made at the top-level of the platform and with DHIS2 being as big as it is the distance
information need to travel to get from top to bottom or from the bottom to the top is very
far. DHIS2 has a global perspective and is use by 72 countries which account for 2.3
billion people, or 30% of the world population. The lab in Oslo is where all changes to
the core is made, and the size of the team doing this job can in no way compare to the
impact the system have today and can have in the future. Developers complain that they
don’t have any real impact on the platform and that they often need to do some tricks, or
”hacks” as they called it, to make the system work. The system need to evolve faster to ever
changing environments. Decentralising the governance would help these efforts, both by
the ”Modular System Theory” (Tiwana et al. (2010)) and by letting more specific decisions
be made closer to the field. Having labs in major regions having more governance over the
platform and sharing resources of use to developers would help in these efforts.

63



Chapter 5. Discussion

5.4.2 Form capabilities
How people prefer to communicate with different computer systems heavily depend on
their experience with computers, the context and the system’s interface itself. In our expe-
rience a skilled user usually don’t mind typing and is happy to do so if the workload isn’t
to heavy and the work not to autonomous. However when the workload become either
very autonomous or the workload increases clicking is simply quicker and less cumber-
some. The speed of clicking through a set of choices can also be increased through clever
design and premade common combinations of radio buttons or preset numbers. The click-
ing preference is also encouraged by the mobile friendly focus. The applications being
made have often opted for familiarity when designing new solutions, which means that the
system often look very like the forms they aim to replace. It is in our experience a large
part of the functionality of the system, being able to quickly interact with large forms, this
is however poorly supported in DHIS2. For instance the metadata defining won’t let you
define a more then one answer data entity. While multiple choice exist and can be imple-
mented as intended in the Tracker system, the API query don’t contain any information on
how to interpret this functionality. Therefore making new functionality should focus on
making it easy to create forms.

64



Chapter 6
Conclusion

Our focus in this thesis has been on designing effective evolutionary platforms. While
platform ecosystems offer scale to systems so businesses can reach economies of scale,
there is need for specialised solutions focusing on the user. This is inherently contradict-
ing, and solved by making a divide between implementation-level design and generic-level
design where ideally the generic-level exhibits low variety and high reusability while the
implementation-level exhibit high variety and low reusability. In this way, developers solve
specific use cases by developing modules for each need. Our experience with this imple-
mentation however, is that change and decision making often takes too long and inhibit
evolution of the platform. Systems can often get to focused on the individual programs
without any shared interfaces. The ecosystem then is experienced as very separate, and
users can’t find any coherence between modules that are part of the same ecosystem. We
have called this program centred design because the focus of the developers are on the
individual modules, rather then the collective ecosystem. What they should consider is
making a generic program which is shared by further developments. In the HIS scenario
from our fieldwork, the generic program would be a patient and we have therefore rec-
ommended a patient centred design approach. There is a need for a ecosystem which can
share information across modules and make a collective user experience. A problem with
this solution is that the evolutionary rate is not constant and differ greatly from location
to location. The evolutionary dynamics therefore need to be localised and the subsystems
must be able to evolve separately.

Platform governance can have an effect on local evolutionary dynamics. By partition-
ing the ecosystem into smaller subsystems, where decision rights is given to each part,
they can evolve separately with the pace of their situation. We discussed the roll-out of
national IDs in Malawi, and that more urban areas would roll it out faster than certain
rural areas. Because of the predicted inconsistency in the roll-out, we argued for a more
dynamic and agile approach to the implementation, where the local clinics could switch
to the new ID system as they saw fit. We discussed how agile development and plat-
form ecosystems don’t work well together, because of the issue of scaling agile processes.
We have explored the possibilities of partitioning a large development process into many

65



Chapter 6. Conclusion

smaller processes, in our case representing the different local implementations. Normally,
changes in systems must be done by altering the code base and this is often dependent on
the developers that made the system. Throughout this thesis we have argued that adopting
an Adaptive-Object Model (AOM) approach can shift this responsibility to the end users.
By introducing a concept like AOM, where data interpreted at run-time decides what is
rendered, all it takes to change local implementations are the end users manipulation of
the metadata. It also aids the development processes to be able to be more agile, as it
allows for more frequent changes locally.

Learning points

After writing this thesis we are left with a couple of learning points, which can be used by
anyone who might write similar work in the future. If there is one thing we learned from
the preliminary work and the field trip, it was the importance of being proactive and take
initiative. We feel like it really payed of every time we were proactive, such as when we
tried to determine the time and location for our field trip. In Malawi, things often took a
long time. Looking back, we think we could’ve been more proactive in having meetings
and activities every day. The trip to the clinics also took a long time to arrange, and we
were virtually completely passive in the process. If we took the initiative here, we might
be able to get more out of it, and go on more than one. We had our reasons of course, being
that we wanted to stay true to the action research method. We wanted to capture exactly
how things were handled, which meant not interfering with meeting scheduling, etc.

When it came to the actually data collection though, we had the opposite problem
in the beginning. When we were new to this method, we tended to lean more towards
participating than observing their methods. This lead to a lack of research on the processes
taking place, before we realised our mistake.

When visiting a foreign country to do research, it is important to establish social con-
nections. We experienced a huge difference in information flow and usefulness of meetings
and conversations the more we got to know the team. Our trip to Malawi lasted for only
one month, and most of our findings came in the last parts of the trip. We weren’t able to
iterate our findings with the team in Malawi in this short period of time. If we could’ve
changed something it would definitely be to schedule a revisit for another month, after we
had processed and reviewed the information we received.

Future work

One of the ideas we put the most emphasise on in this thesis, is the Adaptive-Object
Model (AOM) and the approaches related to implementation of this model. We talk about
the theories around these approaches and how they potentially can help large platform
ecosystems becoming more agile. Further research on this topic would include to test the
theories in the field over a period of time, and document the results. It could be interesting
to see how a system like the coming Malawi health information system could benefit from
utilising AOM with a more patient centred approach to their HIS.

66



Bibliography

Ajuwon, G. & Rhine, L. (2008), ‘The level of internet access and ict training for health
information professionals in sub-saharan africa’.

Berg, M. (2001), ‘Implementing information systems in health care organisations: myths
and challenges’, Int J Med Inform pp. 143–156.

Bodker, K., Kensing, F. & Simonsen, J. (2004), ‘Challenges of user participation in the
design of a computer based system: the possibility of participatory customisation in
low income countries’, IEEE Transactions on Professional Communication .

Braa, J. & S., S. (2012), ‘Integrated health information architecture - power to the users.’.

Bryman, A. & Bell, E. (2011), Business Research Method, Oxford University Press.

DHIS2 Fact sheet (n.d.).
URL: https://s3-eu-west-1.amazonaws.com/content.dhis2.org/general/dhis-
factsheet.pdf

Garud, R., Jain, S. & Tuertscher, P. (2008), ‘Incomplete by design and designing for in-
completeness’.

GSMA (2014), ‘Digital inclusion report 2014’.

GSMA (2019), ‘The state of mobile internet connectivity report 2019’.

Hann, I., Roberts, J. & Slaughter, S. (2004), ‘The governance of open source initiatives:
What does it mean to be community managed?’, Association for Information Systems .

Haux, R. (2006), ‘Health information systems - past, present, future’.

Hilbert, M. (2014), ‘Technological information inequality as an incessantly moving tar-
get: The redistribution of information and communication capacities between 1986 and
2010’, Journal of the American Society for Information Science and Technology .

Kimaro, H. & Titlestad, O. (2008), ‘Participatory it design: Designing for business and
workplace realities’.

67



Kujala, S. (2003), User involvement: A review of the benefits and challenges, Behaviour
and Information Technology.

Kushnriuk, A. & Nøhr, C. (2016), ‘Participatory design, user involvement and health it
evaluation’, Stud Health Technol Inform. .

Lane, B., Car, N., Leonard, J., Lipkin, F. & Siggins, A. (2015), ‘Mobile field data collec-
tion for post bushfire analysis and african farmers’, Springer, Cham .

Li, M. & Nielsen, P. (2019), ‘Making usable generic software. a matter of global or local
design?’.

Li, Z., Wilson, C., Xu, T., Liu, Y., Lu, Z. & Wang, Y. (2015), ‘Offline downloading in
china: A comparative study’, ACM Conference .

Lule, J. (2018), Globalisation, Rowman Littlefield.

Manya, A., Braa, J., Øverland, L., Titlestad, O., Mumo, J. & Nzioka, C. (2012), ‘National
roll out of district health information software (dhis 2) in kenya’.

Meyer, J. (2001), ‘Qualitative research in health care: using qualitative methods in health
related action research’.

O’Mahony, S. (2007), ‘Why developers participate in open source software projects: An
empirical investigation’, Journal of Management and Governance .

opensource.com” (n.d.), ‘What is open source?’.
URL: https://opensource.com/resources/what-open-source

Pollock, N., Williams, R. & D’Adderio, L. (2007), ‘Generification work in the production
of organizational software packages’.

Poppe, O. (2012), ‘Health information systems in west africa : Implementing dhis2 in
ghana’, University of Oslo .

Poppe, O., Jolliffe, B., Adaletey, D., Braa, J. & Manya, A. (2013), ‘Cloud computing for
health information in africa? comparing the case of ghana to kenya’.

Reason, P. & Bradbury, H. (2008), ‘The sage handbook of action research: Participative
inquiry and practice (2nd edition)’.

Reynolds, C. & Wyatt, J. (2011), ‘Open source, open standards, and health care informa-
tion systems’.

Ries, E. (2011), The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses., Crown Publishing Group.

Rosling, H., Rosling, O. & Rõnnlund, A. (2018), Factfulness, Sceptre.

Simonsen, J. & Robertson, T. (2012), Routledge International Handbook of Participatory
Design., Routledge.

68



Tiwana, A., Kosynski, B. & Bush, A. (2010), ‘Platform evolution: Coevolution of platform
architecture, governance, and environmental dynamics’, informs pp. 675–687.

Walls, E., Santer, M., Wills, G. & Vass, J. (2015), ‘The dreams plan: A blupoint strategy
for e-education provision in south africa’, Electronic Journal of Information Systems in
Developing Countries .

Weber, S. (2004), The Success of Open Source, Harvard University Press.

Webster, P. (2011), ‘The rise of open-source electronic health records’.

Wever, R., Kuijk, J. & Boks, C. (2008), ‘User-centred design for sustainable behaviour’,
International journal of Sustainable Engineering pp. 9–20.

Wyche, S., Smyth, T., Chetty, M., Aoki, P. & Grinter, R. (2010), ‘Deliberate interactions:
characterizing technology use in nairobi, kenya’, Association for Computing Machinery
.

Yoder, J., Balaguer, F. & Johnson, R. (2001), ‘Architecture and design of adaptice object-
models’, ACM SIGPLAN Notices .

Yoder, J. & Johnson, R. (2002), ‘The adaptive object-model architectural style’.

69



70



ART Patient Card Adult ARV Formulations  Version 4 
Yellow Card  

Transfer-
In Date 

 ART Reg 
no 

 Year  
 

 

P a t i e n t  /  G u a r d i a n  D e t a i l s  S t a t u s  a t  A R T  I n i t i a t i o n  Conf irmatory  HIV Test  before ART Start  

Patient Name  WHO 
clinical 
conditions 

   Site, HTC 
Serial No.   

Sex, Birth 
Date 

M F DOB    Test Date  Rapid PCR 

Physical 
Address 

 Clin Stage 1 2 3 4 PSHD TB Status 
at Initiation 

Never/ 
>2yrs 

Last 
2yrs Curr ART educat. 

done N Y Date 

 CD4 / TLC  % KS N Y TB treatm. Reg. 
No. 

Start 
Date 

Guardian 
Name  CD4/TLC Date  Pregnant / 

Lactating N Preg Lact ART 
Regimens 

Regi 
men 

Start 
Date 

Phone Patient Guardian 
Height, Wt. 

cm kg Ever taken 
ARVs N Y   

Agrees to 
FUP N Y 

Guardian Relation 
Age at Init.  Last ARVs 

(drug, date)    
 

Visit Date Hgt Wt Adverse 
Outcome 

Outcome 
Date 

ART Regimen 
A d u l t  F o r m u l a t i o n s  

Side Effects (Current) 
Specify ‘Other’ in Notes 

TB Status (Curr.)* Pill 
Count 

Doses 
Missed 

ARVs Given CPT Family Plan. Months 
on 

ART 

Viral Load Next Appointment 

day month year cm kg 
Suspected Confirmed No. of 

tablets To 
No. of 
tablets 

Depo 
given 

No. of 
condom 

Sample 
taken 

Result 
No Yes noRx Rx 

Jan   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Feb   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Mar   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Apr   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

May   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Jun   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Jul   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Aug   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Sep   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Oct   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Nov   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Dec   D Def Stop TO  1A 2A 3A 4A 5A 6A 7A 8A Oth No PN HP SK Lip Oth N Y C Rx    P G  
 

  Bled  

Appendix A
Forms



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Eirik Kaldahl
Martin Havlor Kostveit

Health Information Systems in
Developing Countries

Designing for an effective evolutionary platform

Master’s thesis in Informatics

Supervisor: Eric Monteiro

June 2020


	Summary - English
	Summary - Norwegian
	Table of Contents
	Acknowledgement
	Abbreviations
	Introduction
	Motivation
	Research questions
	Structure of the thesis

	Literature Review
	User centred development
	Agile methods
	Participatory design

	Platforms and generic development
	Generic development
	Application Platform Development
	Open source and community driven development

	Health Information Systems
	Open source health systems
	Development in developing countries
	HISP and DHIS


	Method
	Access to case
	Action Research
	Action research in our study

	Data Collection
	Data source categorisation
	Documents
	Observations
	Prototyping

	Data analysis
	Data validation


	Case
	Background
	State of the art, Malawi
	Personal identity
	Baobab HIS
	HISP organisation and governance
	DHIS2 web API

	The problem
	Prototype work
	Development process

	Findings
	Ease of use
	Designing for metadata


	Discussion
	Research questions
	Implementation-level design
	Patient Centred Design
	HSA centred development
	Designing for relevance

	Generic-level design
	Platform fit
	Making the platform fit
	Adaptive abstraction-levels
	Unified platform tools
	Partitioning evolution
	HIS politics

	DHIS2 improvements
	Labs
	Form capabilities


	Conclusion
	Bibliography
	Forms

