
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Henning Bang Halvorsen

Refining Commercial Open Source:
Driving Adaption and Growing
Ecosystems

A Case Study of MongoDB

Master’s thesis in Informatics

Supervisor: Eric Monteiro

June 2020

Henning Bang Halvorsen

Refining Commercial Open Source:
Driving Adaption and Growing
Ecosystems

A Case Study of MongoDB

Master’s thesis in Informatics
Supervisor: Eric Monteiro
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Open source is a widely acknowledged phenomenon in the software development industry
and community because of its highly innovative success stories. However, people still think
of open source as something free of charge, is of low quality and can never be as profitable
as other proprietary business models. MongoDB is the world’s leading NoSQL database
company and has seen huge economic success being an open source project. In an attempt
to uncover their secret to success, a case study was conducted and the data gathered was
based on publicly available documents in email threads and forums. The thesis also in-
cludes an interview with the CTO of MongoDB.

The results indicate that MongoDB has utilised the marketing advantages of a platform
ecosystem and has used the massive open source community as a fertiliser for growing
such an ecosystem. Finally, their recent change of open source licence has ignited a de-
bate around the definition of open source and its applicability on the modern tech scene.
The thesis concludes that further research should be conducted on similar projects like
MongoDB which in the long run can compile to a very successful business model for open
source projects.

Keywords: Open Source, Platform Ecosystem, Open Source Licensing, Business Model

Acknowledgements

Before writing this thesis I had little to no knowledge of open source software. From my
experience, it was something that I considered to be "free of charge" just like many others
who do not know much about the topic. It has been really interesting to take a deep dive
under the hood to learn more about this phenomenon.

This is my first time embarking on writing a thesis completely on my own. It has been
hard, easy, fun and really, really frustrating. However, it has been very rewarding and I
have learned a lot of valuable lessons along the way; both academically as well as personal.

This concludes my five years at NTNU in Trondheim, and what a ride it has been. I
would like to thank all of the people I have met living here, my friends at Studentersam-
fundet as well as my friends at NTNU which I have had the pleasure to cooperate with.

I would like to thank my family for encouraging me along the way, and sometimes provid-
ing some money for a nice dinner on a Saturday.

I would like to thank my girlfriend for all the love and support she has shown me over
these years, as well as helping me grow into a better version of my self.

Lastly, I would really like to thank my coordinator, Professor Eric Monteiro, who has
guided me through the very overwhelming realm of scientific research. I would like to
especially thank him for always staying positive and constructive even though I had very
little to show for in my guidance hours.

ii

Contents

1. Introduction 1
1.1. Background . 1
1.2. Motivation . 3
1.3. Problem Description . 3
1.4. Research Questions . 4
1.5. Thesis Structure . 4

I. Literature Study 5

2. The History of Open Source 6
2.1. Richard Stallman and the Free Software Movement 6
2.2. Free Software and Open Source . 8
2.3. Open Source 2.0 . 9
2.4. Commercialisation and Business Models . 11
2.5. Open Source Today . 12
2.6. Innovation and the Future . 13

3. Licences 16
3.1. The Ten Rights of Open Source . 16

3.1.1. Free Redistribution . 17
3.1.2. Source Code . 17
3.1.3. Derived Works . 17
3.1.4. Integrity of The Author’s Source Code 17
3.1.5. No Discrimination Against Persons or Groups 17
3.1.6. No Discrimination Against Fields of Endeavour 17
3.1.7. Distribution of License . 17
3.1.8. License Must Not Be Specific to a Product 18
3.1.9. License Must Not Restrict Other Software 18
3.1.10. License Must Be Technology-Neutral 18

3.2. Strong Copyleft . 18
3.3. Permissive Licences . 19
3.4. Weak Copyleft . 19
3.5. Custom Licences . 20

4. Software Development Process 21
4.1. Traditional Development . 21

4.1.1. Waterfall . 21
4.1.2. Agile . 22

iii

4.1.3. DevOps . 25
4.2. Open Source Development . 26

4.2.1. Community as a Team . 27
4.2.2. Decentralised . 27
4.2.3. Open Collaboration . 27
4.2.4. Knowledge Sharing . 28

4.3. Project Growth . 28
4.3.1. Forks . 28
4.3.2. Ecosystem . 29

4.4. Project Success . 30
4.4.1. Market and Technological Success 30
4.4.2. Extrinsic Cues . 31
4.4.3. Intrinsic Cues . 31
4.4.4. Correlations between Cues and Success 31

5. Developer Motivation 34
5.1. Personal "Itch" . 34
5.2. Mobilising by Ambiguity . 35
5.3. Gifting Culture . 36
5.4. Need to Belong . 36
5.5. Renown . 37
5.6. Economic Incentives . 37
5.7. Choice of Licence . 38

II. Method 39

6. Research Strategy and Method 40
6.1. Method . 40
6.2. Literature Review . 40
6.3. Data Generation . 41

6.3.1. Case Study . 41
6.3.2. Documents . 42
6.3.3. Interview . 42

6.4. Interview Guide . 43
6.4.1. Interview Situation . 43

6.5. Analysis Method . 43
6.6. Quality . 44

6.6.1. Reliability . 44
6.6.2. Validity . 44
6.6.3. Generalisation . 44

6.7. Limitations . 45

7. The Choice of Case 46
7.1. Practical Criteria . 46

7.1.1. Time alive . 46
7.1.2. Activity . 46
7.1.3. Success . 46
7.1.4. Growth . 47
7.1.5. Innovation . 47

iv

7.1.6. Start-up . 47
7.2. Thematic Criteria . 47

III. Case Study: MongoDB 48

8. The History of MongoDB 49
8.1. Traditional Database Systems . 49
8.2. The Limits of RDBMS . 50
8.3. Why NoSQL? . 51
8.4. Original Business Plan . 52
8.5. Why Open Source? . 53
8.6. Early Stakeholders . 54
8.7. Expansion . 55
8.8. MongoDB Today . 56

9. Organization 59
9.1. The Company . 59

9.1.1. Development . 59
9.1.2. Products . 60
9.1.3. Open Source Licence . 60

9.2. The Community . 62
9.2.1. Code of Conduct . 62
9.2.2. Key Contributors . 62
9.2.3. Applications Built by the Community 63

9.3. Forums . 63
9.3.1. User Forums . 63
9.3.2. Developer Forums . 64
9.3.3. MongoDB World . 65

9.4. Community Acknowledgements . 65
9.4.1. Community Badges . 65
9.4.2. Certifications . 66
9.4.3. MongoDB University . 66
9.4.4. Innovation Award . 66

IV. Analysis 67

10.Discussion 68
10.1. MongoDB’s "Itch" . 69
10.2. Community Engagement . 69

10.2.1. Mobilising . 70
10.2.2. First Contact . 70
10.2.3. Gifting Culture . 70
10.2.4. Users over Contributors . 71
10.2.5. Virtual Incentives with Value . 71

10.3. The MongoDB Ecosystem . 71
10.3.1. Focus on Platform . 72
10.3.2. Rapid Development . 72
10.3.3. Acquiring Community Projects . 72

v

10.4. Business Model . 73
10.4.1. Project Success . 73
10.4.2. Multiple Value Propositions . 73

10.5. Choice of Licence . 74
10.5.1. Debate . 74

10.6. Refining Commercial Open Source . 74

11.Conclusion 76
11.1. Limitations of the Study . 76
11.2. Further Work . 77

Appendices

A. Appendix 86
A.1. Assignment Text . 86
A.2. Interview Guide . 87

vi

List of Figures

2.1. Free Software Foundation Logo . 8
2.2. The Browser Wars . 10
2.3. The Open Source Initiative Logo . 12

3.1. The Copyleft mark . 18
3.2. Table of different open source licence types 20

4.1. The waterfall model as it was first presented by Royce 21
4.2. One sprint in Scrum . 24
4.3. SEMAT Quick Reference Guide . 25
4.4. The phases of the DevOps cycle . 26
4.5. Elements of a platform ecosystem . 30
4.6. Factors leading to IT Project Success . 32
4.7. Original hypothesises model of cue impacts on success 33

8.1. MongoDB Inc. Logo . 49
8.2. 10gen Logo . 52
8.3. Milestones from the MongoDB website’s about page 54
8.4. Milestones from the MongoDB website’s about page 55
8.5. Milestones from the MongoDB website’s about page 56
8.6. Milestones from the MongoDB website’s about page 56
8.7. Numbers from the MongoDB website’s about page 57

vii

1 | Introduction

Today, 99% of all new software projects have open source dependencies. Nat
Friedman [1]

These are the words of GitHub CEO, Nat Friedman, at his talk entitled "The state of
Open Source" at the GitHub Universe 2019 conference [1]. Over the last four decades,
the open source phenomenon has evolved from being a way to protest proprietary software
to becoming one of the most commonly used paradigms when developing software today
[2] [3]. However, it is still commonly believed that open source development is only for
the "genius hackers" sitting in the dark in a basement somewhere, coding twenty-four
hours a day [4] [5]. This is a myth that strains back to the 1980s and the roots of open
source. Yes, the original ideology was founded by so-called "hackers" but has evolved
way beyond its cradle. The value of free and open source software has become more and
more apparent both to individual developers as well as large enterprises. SourceForge, a
web-based platform for distributing and finding open source business software, has over 35
million monthly users and well over 500,000 software projects. It is hard to believe that
such a large phenomenon can fit in small, dark basements.

1.1. Background

As stated, even large enterprises are tilting towards using open source as their chosen way
of working compared to traditional methodologies and closed models [6] [7]. They see the
value in contributing to the worldwide knowledge base and to receive external input and
expertise in return. Many think that open source software is equal to free software, where
free in this case refers to "free of charge". Therefore, it is believed that utilising such a busi-
ness model cannot be commercialised or bring any form of income for the company. This is
a common misconception that originates from a concept fairly equal to open source which
is in fact called free software, but it refers to "free as in freedom, not free beer". The free
software movement was the first to rebel against propitiatory software, and by spreading
their ideology, they successfully avoided the formation of monopolies in the software mar-
ket. Some meant that the name free software was too ambiguous and too often mistaken
for free of charge and that the free software movement was too focused on the social aspects
behind "sharing". Thus, the open source foundation arose where, although open source
implies the same values as free software, the focus shifted from a social aspect to a more
practical aspect; open source development as a methodology. The founding father of the
free software foundation, Richard Stallman, argues that free software and open source are
the same categories of software but that the fundamental values behind the ideologies are
different, namely being a social movement and a development methodology respectively [8].

What differentiates the open source way of working from traditional closed projects is

1

the formation of communities around each project as well as the large umbrella that is
the open source community. A community that thrives on helping each other and being
open to new ideas from contributors all around the world. This way of working has let
projects grow at staggering speeds [9] and evolve from the simplest of ideas to some of the
most commonly used software today. It also allows small companies and startups to com-
pete with million dollar companies like Microsoft, Google and Apple by having external
stakeholders in addition to the internal ones. Most software on the market today that are
proprietary has got an open source alternative. These are often attractive because propri-
etary software can be very expensive, and open source software is usually free of charge.
This is where another misconception arises. How can an open source product generate
revenue if it is free of charge?

At its core, open source contribution is voluntary work. Most contributors are not getting
paid directly. However, there are still many factors that motivate developers to do this
work. Some developers and companies rely heavily on a certain piece of software for their
business and want to ensure that the project is kept alive and is still evolving, preferably
in the direction of their needs. Other developers might be specialists in a particular field,
for example, software security, and use open source projects as targets of ethical hacking
to practice their skills and then offer security fixes if they find any breaches. Finally, some
companies even pay their developers to work on open source projects for a few hours a week
or a month. These might be projects that the company relies on, or some other projects so
that their developers gain experience from working on several different projects. So even
though open source contributions is regarded as "free labour", there is always something
to gain for the developers as well. Even though developers "give away" their contributions,
there are some underlying expectations of getting something in return. It varies what this
"something" is. Open source development has therefore been compared to gifting culture
[10]. Gifting culture involves some kind of mutual understanding that a gift given has to
be "returned" in one form or another. These returned gifts can take many forms in open
source development, all the way from small merits to employment offers.

Open source has one key advantage that no company will ever have. It allows all the
developers in the world to be become potential parts of the project, thereby enabling
the quality of the project to be on another level than a proprietary competitor. This is
derived from Linus’ Law defined by Eric S. Raymond, one of the founders of the Open
Source Initiative [11]. Linus’ Law states that "given enough eyes, every bug is shallow"
and is named after the developer of one of the most famous open source projects today;
Linux. Because of open source development, there has been a paradigm shift in the world
of technology which enables faster, safer and better development of new technology. Even
though it was primarily related to software, the open source model has started to spread
into other fields, applying the philosophies of sharing ideas openly. The battery patents
of Tesla Inc. are open source which has enabled competitors to keep up in the electric car
industry, Googles Android OS dominating in the mobile OS market with around 85% of
all devices worldwide running it [12], and high-end universities like MIT have begun to
share material and lectures openly to make higher education more accessible [13]. With
the ongoing COVID-19 pandemic, tracking contamination has only been possible due to
open data sets of peoples location and heath journals [14]. Even Microsoft, perhaps the
biggest opposition to free- and open source software, have turned their head around and
started to embrace open source software and develop many projects of their own.

The world runs on open source software. - Devon Zuegel, [15]

2

Thus, developers and companies are starting to see the importance of open source through
the innovative impact of larger open source projects. However, open source is still scary
and misunderstood by non-developers in the commercial market. The applied business
models today are simply not profitable enough for them to be willing to take risks. There
are however open source projects who have achieved great commercial success. Some
argue that the only reason open source is not the only methodology being used is that the
ultimate business model has not yet been discovered. These success projects might hold
the key to such a model.

1.2. Motivation

This thesis will try to guide future software projects who want to adopt an open source
model and to fully reap its benefits by analysing an existing, long-lived, robust open source
project which has frequent users or is a crucial part of several other projects. It will also,
most importantly, argue that it can be a very lucrative business model for those with
commercial motivations. There already exists a lot of papers and articles written on open
source software, but many of them quantitatively approach the subject by only scratching
the surface of the characteristics that make a robust open source project. Also, the field of
IT as well as the open source community changes rapidly, and some times even drastically,
so previously conducted research become outdated quite quickly. It would be interesting
to see what previously conducted research is still applicable as well as to see if there are
new patterns in developer incentives which deserve more attention. I will try to justify
why open source is not just a popular thing, but why it is important as well. This will
provide freshly conducted research to the knowledge base and may hopefully serve as a
foundation for further research and provide developers and others in tech with insight in
what makes make an open source project last as well as profitable.

1.3. Problem Description

The open source model has greatly impacted the software and tech industries through
innovative projects [16] [17]. Its effectiveness, quality of outcome and core values are
highly acknowledges by developers [18] [19]. To drive the adaption of the model further,
large enterprises and other commercially focused companies would need to embrace the
model in favour of other proprietary models. However, many of these larger corporations
struggle to understand how open source can be as lucrative and profitable of a business
model. MongoDB has accomplished great economic success with $250 million revenue in
2019 and is an example of a very profitable open source company [20]. They seem to
leverage open source to build a platform instead of a single product. Their ecosystem has
grown into a large collection of products and services developed both by the company as
well as their community. With this as a background, the problem definition of this thesis
is formulated as such.

To what extent does the success of MongoDB rely on the application of the
open source model, and how may this case contribute to the development of
open source as a business model?

3

1.4. Research Questions

Derived from my problem description, I have come up with the following research questions
which, if answered, will serve most valuable in my opinion.

• RQ1: To what extent does MongoDB follow the definition of an open source project,
and how can this have contributed to their growth?

• RQ2: How has the platform ecosystem model provided technical and economic ad-
vantages?

• RQ3: How does the community react to eventual deviations in the appliance of the
open source model, and what are the potential consequences?

1.5. Thesis Structure

This thesis consists of three major parts. The first part is the literature review where I will
present previous studies and background literature which is essential to understand open
source and its history.

The first chapter will cover some of the history of open source, it’s status today as well as
some predictions for the future of open source. One of the main differences from traditional
development methodologies is how open source projects are organised. The next chapter
will present a comparison with traditional development methodologies and pinpoint the
most important characteristics of open source development as a methodology. This chap-
ter will also look at the different business models that are applicable as well as the main
strategies for expanding and growing your project. The final chapter in this part will be
solely dedicated to developer motivation and how to mobilise a community around an open
source project.

The next part presents the research strategies and methods applicable to this thesis. There
are several approaches to gathering data for a thesis like this, but I will argue why the
methods I chose were feasible. I will also argue why the project MongoDB is a suitable
candidate for this case study, both from a practical perspective and a thematic perspective.

The third part contains the actual case study with a presentation of both MongoDB Inc.
as a business and organisation as well as the database product itself from a more technical
perspective. This is where detailed findings that are presumably relevant will be presented
as I discover them.

In the final part, I will analyse my findings and explain why they are relevant to the
literature study, as well as attempting to answers my research questions. Finally, I will
provide some final thoughts on this project, the limitations of my work and suggest further
research on the topic based on my results.

4

Part I.

Literature Study

5

2 | The History of Open Source

To understand why the open source methodology is so widely used and acknowledged by
developers today [18] [19] one need to understand why it arose in the first place, how it has
grown into the phenomenon it is today and what the future holds for open source. The
following sections will present the history of open source, its role in the tech industry today
and its predicted future. This section is primarily historical and will introduce terminology
and theory that are further explained in the next chapters of the literature study.

2.1. Richard Stallman and the Free Software Movement

In the late 1970s and the early 1980s, a man by the name of Richard M. Stallman was
working in the MIT Artificial Intelligence lab. In those days most new hardware was
shipped with a piece of software as well as the source code for that software because the
primary business was selling hardware. There was no real market for software as a stan-
dalone product. This meant that, if needed or wanted, one could modify the software so
that the hardware would suit the specific needs of the users. Stallman and the rest of the
lab heavily utilised this opportunity to modify, or hack, most of the equipment in the lab,
sometimes productively, sometimes just for fun. These groups of developers were named
hacker communities [8].

As the years went by, more and more companies stopped shipping the source code along
with the hardware and software. The software was pre-compiled as binary code that would
run on the hardware but was unreadable by humans and thus un-modifiable. Soon, the
whole computer farm in the AI Lab was completely replaced with proprietary systems
and software. This damaged their hacker community and it was Stallman’s first encounter
with non-disclosure agreements and the restrictions that followed [21]. Stallman and his
colleagues grew more and more hostile towards the whole idea of proprietary software and
he eventually acted out his frustration by creating the idea of Free Software and started
the Free Software Movement that later became The Free Software Foundation. His idea
was that software should be completely transparent allowing the consumers to modify the
code if they so needed, just like he had been able to just a few years prior. The free soft-
ware movement did not just apply to software but carried a vision of a free society where
sharing achievements and progress were at the centre of driving technological, as well as
social, innovation forward [8].

Personal computers were becoming more and more accessible to the public. It was becom-
ing common for developers to have computers at home instead of just at their university
or workplace. At the heart of every computer, there is the operating system (OS) which
connects software and hardware [22]. The UNIX operating system was the most com-
mon operating system at the time used at different universities and labs where developers

6

would most often access a computer. However, it was a proprietary software system and
because of its licence and terms of use, it could not serve as the basis of an ecosystem
of free software, because it could not be redistributed by third parties. As an operating
system engineer Stallman discovered that he could combat the proprietary software market
by creating a new operating system from scratch that he would encourage other people
to use and modify, thus spreading his idea of free software. Stallman realised that the
UNIX system architecture was composed of a set of many smaller components talked to
each other. To create a system that could compete with UNIX, he just had to develop
replacements for each of these components one by one. He made public announcements
about his mission and encouraged other developers to join him in the development of these
programs and by 1991 they had managed to replace almost every single component. Thus,
the GNU project was born [23].

GNU is a recursive acronym. It stands for "GNU’s Not Unix" - Richard Stall-
man, [8]

One of the most crucial components of an operating system is the kernel. The kernel can
be considered the core of an OS because of its responsibility to allocate resources to the
other parts of the operating system. The kernel was one of the last components Stallman
and his team were working on before they had made a complete, free rewrite of the UNIX
OS. Enter Linus Torvalds, a college student from Finland who at the time was also writing
his own OS for his home machine, only that he started on the other end with the kernel.
He modelled the kernel after the machines he had been using in university so that he could
use his home computer the same way. Torvalds was able to finish his kernel before the
GNU team, so when the Linux kernel was released [24], people who knew about it started
to look for other, free software components that could eventually make up a complete OS.
Since the GNU team had been working from the other side of the bridge, these components
were already available to them. The Linux kernel filled the gap in the GNU system and
the first free, complete OS was created; The GNU/Linux Operating System [25].

An important thing to point out is that free software is not public domain. If it was,
some developer could take that piece of software, make minimal modifications (or even no
modifications) and then redistribute it as proprietary software denying those who down-
load it to look at the source code, denying modification and further improvement, and put
a price tag on it potentially making money on someone else’s work. Stallman and the free
software foundation, therefore, came up with the concept of copyleft [26].

It’s the idea of copyright flipped over.

When copyrighting your product, you take legal action to prevent someone else to make
money based on your work. It prevents redistribution and sales under other names than
yours. Copyright documents can be quite comprehensive and breaking copyrights can
lead to large fines or other punishments [27]. Copyleft also protects your rights but those
rights are the opposite of copyright. You are encouraged to distribute the product with
modifications and improvements, to make money off it and brand it with your or your
company’s name. Both copyright and copyleft in themselves are just ideas which are
manifested as legal documents and they can have many different degrees of restrictions.
The most common copyleft based licences applied to free and open source software are
more thoroughly presented in chapter 3.

7

2.2. Free Software and Open Source

One of the earliest contributors to the GNU project was a man named Eric S. Raymond
[28]. In 1993, he received a copy of one of the first, commercial copies of the GNU/Linux
system and he was completely blown away by the fact that this product in his hands had
become reality. At that time he had many years of experience as a software developer
and the ways which free software was being developed broke all the rules he knew about
developing software. Things like control and complexity by keeping the development team
small and tightly connected and having objectives that were tightly overseen were almost
completely missing. A product like GNU/Linux should in his, and probably many other’s,
opinion has failed but it did not. It had become nothing less than phenomenon and Ray-
mond was eager and determined to figure out how this could have happened [8].

A few years later, Raymond published a paper called The Cathedral and The Bazaar [5]
which were his observations and analysis of how the open source world could work, even
though the name "open source" had not emerged yet and it was still called free software.
In his paper, he presents two models for developing software and compares the two against
each other. One is what he called The Cathedral Style is what represent traditional, closed
source project development environments. The cathedral style has characteristics like small
developer groups arranged in a hierarchical and authoritarian structure, objectives that are
very specific and detailed, and the time between version releases are often long. This style
could also be applied to open source as the core developer team could release the source
code but be very strict regarding accepting contributions from a "lower place" in the hi-
erarchy, in other words from developers outside the core team. In this way, the cathedral
style becomes very one-sided [5] [8].

The other style was named The Bazaar Style which strives to replicate how projects like
Linux is being developed. Characteristics like short release intervals, and many contribu-
tors and peer reviews. Raymond argues that having this one characteristic of a very large
group of peers getting involved with the project would, in the end, lead to better success
than all the characteristics of the cathedral style. In this model, the "power" is equally
distributed in the hands of every single contributor. All contributions, as well as discus-
sions, are publicly available on the Internet [5] [8].

He presented his paper at a Linux conference in 1997. As his paper circulated in the
community, it eventually reached the ears of the company Netscape. Netscape was in the
internet browser market and are the company behind the Netscape Navigator which was
the most popular browser before Microsoft decided to launch Internet Explorer. They
became the first large company that decided to open source their products in an attempt
to battle Microsoft in the browser wars [29] in which they desperately needed a secret
weapon to overthrow Microsoft’s browser monopoly. It became the first real test Ray-
mond’s observations on such a large scale. But Raymond saw a problem. What had until
now been called free software, a term that was easily misinterpreted as "free of charge"
or something that sounds cheap or bad, had a sort of unprofessional association. These

Figure 2.1.: Free Software Foundation Logo

8

misunderstandings had to be addressed and the message that needed to be conveyed was
that

The software was open, and the source code was available - Larry Augustin,
then CEO of VA Linux (now Geeknet, inc.) [8]

hence the name Open Source. However, the term free software remained as Stallman and
the rest of the free software movement were sceptical to the commercialisation of open
software and they argue that

The freedom to cooperate with other people, freedom to have a community is
important for our quality of life. It is important for having a good society that
we can live in. That is in my view even more important than having powerful
and reliable software - Richard Stallman, [8]

To clearly define this new term open source, Raymond and a man named Bruce Perens
[30] decided to write what would be called The Open Source Definition [31] which consists
of a set of rights that a piece of software has to have to comply with the definition of
open source. These rights are elaborated in on section 3.1. The Open Source Definition
would serve as the core for what would later become The Open Source Initiative [32], an
organisation with the main task to educate the world about open source by explaining and
protecting the open source label [33]. They also developed several licences that would be
considered OSI-approved, in other words, align with the open source philosophy [8].

One of the main reasons that the Linux kernel managed to grow so popular was that
several companies decided to focus on developing complete OS distributions of their own
built on the Linux kernel and providing support for their distributions. Red Hat, who was
the first Linux based company to go public on the stock market, is one of these companies
along with previously mentioned VA Linux. By no means was Linux the only software that
occupied the open source scene. The following are some examples of open source software
who also made huge names for themselves in the same era [8].

• Apache Server - A very flexible and powerful HTTP web server. [34]

• PHP - A popular scripting language suitable for web development. [35]

• GNOME - A Linux based desktop environment, part of the GNU project. [36]

2.3. Open Source 2.0

What began as a movement of hackers doing volunteer work finally got the attention of
venture capitalists and larger corporations. Open source was becoming a serious com-
petitor to the proprietary software giants, often represented by Microsoft. In his paper,
The Transformation of Open Source Software, Brian Fitzgerald suggests that the open
source phenomenon has "metamorphosed" from its hacker-inspired origins to something
viable for commercialisation and is regarded as a legitimised way of developing software [4].
Fitzgerald argues that the conception that open source is a collective of extremely talented
hackers that devote their skills to revolutionise the world is a myth. If this was the case,
then open source would not be a global buzzword and would not have grown as much is
it has. This stereotype can be criticised based on the amounts of research done on the
inside of open source projects by looking through email lists, IRCs and asking developers
directly about their incentives to contribute. Exactly what motivation and incentives drive

9

the developers of open source is still a puzzling topic for many researchers. In chapter 5
I will take a closer look at this topic in detail as it arguably serves as the basis for open
source as a methodology [37] [38] [39].

Briefly mentioned earlier, the company Netscape Communications were the pioneers of
opening up closed source projects and embracing the open source philosophy. At the time,
the Internet was still something mainly used in academia and the military, but browsers
like the Netscape Communicator enabled access to the Internet for the common man.
There were many browsers like this emerging at the same time, but Netscape was ahead in
the competition by "doing everything right" [40]. The Netscape IPO soared on their first
day as public, and very quickly caught the attention of Microsoft who would then release
the first version of the browser Internet Explorer that would bundle together with their
Windows Operating System. At this time, the Netscape Navigator and Internet Explorer
were serving the same purpose in a very similar way, so naturally, the consumers did not
see why they would install another browser on their Windows machines when there was
an identical one already at their disposal. Netscape soon had to face the hard reality of
not being able to compete with Microsoft in the browser wars. As a sort of desperate
measure, Netscape decided to release the source code for their Communicator suite [40].
The code was available for anyone to pick up and give new life to hopefully spark the next
generation of browsers. This is how the Mozilla Project came to be, a project that would
use the Netscape source code as a foundation for Netscape’s newest browser by harnessing
the power of an open source community. By creating this community around their project,
the Mozilla project had grown larger than any company. The community were not just
interested in creating the next, big browser but were also creating tools, like an email
client, as part of a suite of applications that would provide the "best possible browsing
experience to the widest set of people" [41]. In 2002, the first version of the Mozilla suite
was released but went rather unnoticed as well over 90% of the users of the Internet were
using Microsoft’s browser. Mozilla kept on fighting and in 2003 they founded the Mozilla
Foundation who would continue to manage the development of the Mozilla suite as well
as making it their mission to fight for "openness, innovation and opportunity" on the In-
ternet. In 2004, version 1.0 of the Firefox web browser was released and was finally able
to compete with Internet Explorer as it was downloaded over 100 million times in the first
year of release [41]. This meant one very important thing, it gave the user a choice. There
was no longer one king and competition was once again brought back into the realm of
internet browsers.

Figure 2.2.: The Browser Wars

10

What is important to note from Mozilla is their mission to satisfy as many people as
possible, in other words, make their software general purpose. Since open source is all
about distribution and modification, the product should be utilisable as a solution, or at
least a foundation in a solution, to many different problems. To fully utilise a huge com-
munity of developers, the project has to suit the needs of as many as possible. Their work
also expands beyond software like their browser and email clients to creating guidelines for
the use of the web and push innovation and technical competence around the globe [42].

We’re a non-profit organisation working to build a Web that is open, accessible,
safe and - most of all - a force for good. - Mozilla.org, [42]

2.4. Commercialisation and Business Models

Even though Mozilla is a non-profit working through donations and volunteer work, open
source does not equal non-profit. In the era of open source 2.0, several business models
were developed and others enhanced for a more modern market. With the software being
open, anyone can do a deep dive into how it works under the hood. This means that
anyone can become a potential expert on a particular software studying all the details of
the software. This allows businesses to sell support services around certain software, which
enables a competitive support market. With proprietary software, the company that de-
velops the software also claims a monopoly on support services because they are the only
ones who know and can know, every detail about the software. If the company does not
provide quality support the customers will have bad experiences and there is nothing they
can do about it [4].

Aggregating a set of open source tools into a suite and providing support for that par-
ticular set was the main business model, to begin with, utilised by companies such as
Cygnus Solutions and Red Hat. Another one was to provide two versions of the product.
One that was usually completely free of charge, and one that had more features which
cost a fee to purchase. These models were called value-added service-enabling and loss-
leader/market-creating respectively [4]. With open source 2.0, these models were refined.
The value-added service-enabling model has allowed open source products to become infras-
tructures or ecosystems where smaller companies can become a part of this infrastructure
by providing services like support and consultancy for the underlying product. For ex-
ample, a small company could specialise in providing support for just one of Red Hat’s
products like their Cloud Suite, where 90% of the support the clients need can be handled
by that company and the remaining 10% of more complex problems sent via them to Red
Hat directly, thus Red Hat can relocate their resources from support to development [4].

Open source 2.0 has in some sense provided colour to the otherwise black and white stance
between proprietary software and free software. It can be argued the GNU Public Licence
(see chapter 3) to be in some sense "too free". This has led to the development of several
licences that suit particular needs of a company, and as long as they are approved by the
Open Source Initiative the project will qualify as open source. This has allowed large
companies like Apple, who are very fond of their patents, to open source some part of their
technologies to leverage the talents in the open source community to increase their prod-
uct quality and productivity. As an icing on the cake for Apple, these contributions are
mostly free of charge as well. As described by Fitzgerald [4], this becomes a "circular phe-
nomenon" where Apple’s reputation in the open source community increases for releasing

11

intellectual properties, their technology is evolving faster and becoming more attractive,
which again will result in more contributions [4].

2.5. Open Source Today

As if it was not enough to revolutionise the world with his Linux kernel, Linus Torvalds did
it again with his source code version control system called Git. He developed it as a way
to handle all the thousands of incoming contributions to the Linux kernel in a manageable
way for one person. Git is now an essential tool in software development in general and
has spawned many source code management platforms like GitHub and Bitbucket. These
platforms have allowed easy collaboration and distribution of projects in the open source
community [43] [44].

Today, 99% of all new software projects have open source dependencies. - Nat
Friedman, Current CEO of GitHub [1]

In 2019 alone, over 10 million developers from all around the world contributed through
GitHub. No company of any size will ever be able to contest the potential power of millions
of developers worldwide. These platforms have become crucial for any project, proprietary
as well as open source, and has allowed development to speed up quite drastically through
tools for continuous integration and deployment, which are further presented in chapter 4.
SourceForge which serves as one of the main platforms to distribute open source projects
has as of 2020 more than 500,000 different projects, over 35 million monthly users connect-
ing and 4 million downloads per day [45].

With the huge success of Linux that has been previously been described you might be
thinking why not every computer is shipped with a Linux based operating system as the
default operating system instead of Microsoft’s Windows or Apple’s macOS. One of the
main reasons was that Linux was late to focus on the user experience for people without
much technical skills and experience. Some Linux distributions today, like Ubuntu, have
realised this and strive to provide a competitive user interface. However, even though
Linux did not win the desktop wars, it won practically everywhere else. As of 2019, Linux
runs on 96.3% of the world’s servers, it runs on 90% on all cloud infrastructures, and it
ran on whopping all of the world’s 500 supercomputers in 2018 [12]. The Android Opera-
tion System for mobile [46] dominates the mobile OS market by over 70% worldwide [12].
Although argued that it is not a Linux distribution per definition, it is built on the Linux
kernel that they could modify to suit their needs. The killer feature that has allowed the
Linux kernel to be embedded almost everywhere is it’s diversity or, in other words, it’s

Figure 2.3.: The Open Source Initiative Logo

12

general-purpose [5].

The tendency today is that projects that radiate a certain value proposition and general-
purpose will, once grown, become one of two phenomena. One path is the path of Linux
where the core software is forked into a copy by someone else than the original developers,
then modified and improved on until the product is somewhat distinguished from the orig-
inal. This allows for several different companies and developers to create their version of
a given software, in this example a Linux distribution, and distribute their product. The
Linux project has many such distributions like Debian and Fedora, which again has sub
distributions like the popular Ubuntu as a derivation of Debian, and Red Hat Enterprise
Linux as a commercially supported derivation of Fedora supported by Red Hat. Forking is
explained further in section 4.3.1. The other path is where the original product is so solid
and well maintained by the original developers and that their terms of use are so free that
there is no need for a fork. Instead, the community forms an ecosystem of associated apps
and tools that makes integration of the core project into any other project much easier.
These are tools like drivers for different programming languages, middle-ware interfaces
for making the transition between another technology and this one seamless, and tools like
graphical user interfaces to an otherwise console-based application. Platform ecosystems
are more thoroughly explored in section 4.3.2.

From a business perspective, more and more applicable models for the generation of rev-
enue has appeared in the last decade. Much like Red Hat’s model you can sell support and
certifications around a certain product. With Software as a Service (SaaS) models, you
can take a piece of software that is open source, for example, the popular web platform
Wordpress, and use the software and its ecosystem to tailor solutions for customers, thus
distributing a product that is created by certain software. If you are developing the soft-
ware yourself, revenue can come from sponsorships from larger consumers of your product.
Larger companies often invest in sponsorships to make sure the project is kept alive and
healthy. Exposure is also a consequence of having well-known brands back your project,
which may attract more potential contributors [47]. If your product has not gotten the
attention of larger potential sponsors yet, platforms like Patreon and Liberapay allows
recurrent donations from individual people who back your project. Also on this stage is
the newly launched feature GitHub Sponsors which tries to combat the eventual death of
open source projects due to lack of funding. GitHub Sponsors offers a unique take where
people can choose to fund individual developers directly, regardless of what project they
are working on. It turns out that people will pay monthly fees towards projects they be-
lieve in and care about as well as developers they admire, and through these platforms,
the developers can often provide some incentive to do so [48]. These incentives are more
thoroughly explored in chapter 5.

2.6. Innovation and the Future

Today, open source lies at the heart of technological innovation [49] [17] [16]. Open source
has evolved from only being applicable in the software world to become more aligned with
what Richard Stallman originally envisioned. Some of the greatest achievements of the
last decade are results open source and open collaboration. Tesla Motors Inc., one of the
largest electric car manufactures in the world, pledged in 2014 to open source all of their
patents as a means to advance the sustainable transport technologies of the world faster.
At the rate, they were producing and the technology was advancing at the time, there was

13

no future in sight were electric-powered cars could ever compete with fossil fuel-powered
cars. According to Tesla, less than 1% of the sales from major car manufactures were elec-
tric before their patent releases [50]. Today, almost every large car manufacturer has an
electric vehicle available in the market [51]. Another great achievement is the recent first
photo of a black hole. Scientists used the open source programming language Python along
with many other open source libraries and plugins in the Python ecosystem to accomplish
this great scientific discovery [52].

It has become common to refer to open source outside of the software world as the open
source model [43] [37] [53], an abstraction of the open source values of open collaboration.
The model has been applied to closely related fields like electronics with projects like Ar-
duino, but also in totally different fields like food and beverages with projects like open
source Colas and Free Beer who seek to prove the value of the open source model in fields
outside technology. The term open innovation has also sprung out from the open source
values and is promoting. Open innovating is encouraging companies and enterprises to
move away from secrecy and the closed environments of traditional research facilities and
labs. Even though this term has been researched since the 1960s, it has gotten new life and
new meaning in the modern information age we live in today. The idea is that companies
will no longer have competitive and innovative advantages by just keeping to themselves in
a world where knowledge is so widely distributed. Open innovation encourages to synergise
external sources of innovation like customer involvement, academic research and market
competitors with the internal intellectual property of your company. This allows the reduc-
tion of costs in research and development quite drastically and allows the involvement of
the customer early in a product development process, which has proven to be very effective
[54] [49].

So where is open source headed, and if it is has so many great characteristics, why does
has it not eliminated the proprietary marked? Even though open source is acknowledged
by software developers, it is still misunderstood by those with less technical competence.
It is still believed to have low security with bugs galore, as well as not as lucrative as a
business model as proprietary software with high price tags [43] [39]. But it’s ever-growing
popularity and portfolio of impactful and innovative projects are sure to persuade even the
most conservative companies to adopt it, where applicable, as their model. Open source
has eliminated monopoly in the software market as almost every single proprietary prod-
uct has an open source alternative. If it does not, it is sure to have it within a short
amount of time. The main obstacle open source has yet to overcome is to clearly define
a general-purpose business model that will work for a large number of projects. Larger
projects like Linux does not have an issue with financial sustainability because of its size,
renown and its wide applicability. Smaller projects, however, who are usually maintained
by a single developer or a small group, struggle more with their funding. As an example, a
small company might provide a great piece of software used by many larger corporations,
for example in retail or marketing. The software may even be free of charge as with many
open source products, but according to the licence used (in most cases), the companies
using it are not obligated to "give back" to the project in form of funding. Who should
be donating? Who should assure the survival of a crucial piece of software? These are the
kind of questions which has remained unanswered for over two decades. As mentioned,
more and more ways to fund open source projects are available but giving the customer
the right incentives to become a supporter might be difficult. Once a general-purpose,
sustainable business model for open source becomes commonly known, few reasons remain

14

to develop proprietary software. Even so, open source ethics and values will continue to
guide society down the path of openness, just like Stallman, Torvalds and all the rest of
the open source and free software communities have envisioned [8].

It’s one, big act of subversive playful cleverness to change society for the better
because I’m only interested in changing it for the better. - Richard Stallman [8]

15

3 | Licences

Open source completely redefined the way software is being developed and has without a
doubt been the catalyst for the for competition in the software market. The history can be
quite overwhelming with terminology and different events that sometimes seem completely
coincidental. In the following chapters, we will take a deeper dive into the building blocks
of open source and hopefully uncover some of the secrets for why it has become the global
phenomenon it is today. The very foundation lay in the documented versions of the ide-
ology; the open source licences. It turns out that both developer and businesses carefully
evaluate which project to work on or use based on the applied licence [55]. Therefore, it
is necessary to take a closer look at the differences between them to understand how each
licence can affect a project in the long run. Even though there are many to choose from,
these licences can mainly be split into three different categories with some key differences
which are presented below.

Normally for proprietary software or other non-software related products for that man-
ner, you how to agree to some sort of licence of use [27]. These licences often present
you with your right for refunding the product if damaged, in which situations or places
that product can or should be used, and finally, and most importantly for this thesis, that
you are not allowed to redistribute the product under another name or as an unlicensed
third party. The open source paradigm is almost the complete opposite of this because
it encourages redistribution and sharing of the software. The Open Source Initiative has
issued several licences that can be applied to open source projects to protect their openly
collaboratory nature. Open source companies have also developed their own licences which
are run by the Open Source Initiative for approval. All of these licences emphasises the
same key points [44] [43].

• The software can be freely used, both commercially and privately.

• The software can be freely modified to suit particular needs.

• The software can be freely distributed to allow others to use, modify and distribute
a modification.

According to the Open Source Initiative, every project that declares itself as open source
has to follow a set of terms or "rights" that covers how the project should be distributed
to its consumers. These terms are called The Ten Rights of Open Source [31].

3.1. The Ten Rights of Open Source

The following subsections try to explain each right in a non-legal fashion for better under-
standing the intentions from a developer perspective. The term product will, in this case,
refer to the software that has an open source licence. The term developer will refer to the

16

person or people who created the product. The term consumer will refer to the person or
people who wish to acquire and utilise the product.

3.1.1. Free Redistribution

The right to free redistribution allows the consumer to use the product as part of a larger
distribution which the consumer can charge for if they so wish but it is not required to
provide the developer with a royalty or fee. In the example of Linux, consumers take the
Linux kernel, aggregate a suite of software to go along with it and redistribute it as their
product. In the early days of Red Hat, their business model was to sell Red Hat Enterprise
Linux as a box set for a certain price [8].

3.1.2. Source Code

The developer has to provide the source code of the product so that the consumer can
maintain the software and eventually modify it to suit their particular needs. For example,
if the developer has a product that is written to run on Windows, open source code allows
the consumer to rewrite the program to work on macOS.

3.1.3. Derived Works

If the product has some issues or features missing that the consumer decides to fix or
implement, the consumer is free to redistribute their improved or expanded version of the
product. Again, if a product is purely written to work on Windows, one such "derived
work" can be a version of the product that works on any of the large operating systems.

3.1.4. Integrity of The Author’s Source Code

The honour of the original developer is to be kept. This means that if a consumer redis-
tributes a product that has been improved, it should clearly state what changes have been
made. It can also be redistributed as a higher version number than the original product,
or in some cases rename the product to completely separate the two versions. The essence
is that av the developer created "Product name V1.0", a redistribution of that exact code
should be credited to the author.

3.1.5. No Discrimination Against Persons or Groups

The consumer could be anyone of any background, political view, ethnicity, etc. Bruce
Perens’s example is that an abortion clinic and an anti-abortion activist is both allowed
to be consumers.

3.1.6. No Discrimination Against Fields of Endeavour

This right builds upon the previous one stating that the product can be used in any
institution or group. Again using Perens’s example, the product can be used in business
as well as a school.

3.1.7. Distribution of License

The licence which is applied to a product must be distributable in itself. It should be able
to stand on its own so that a potential consumer does not need to apply for additional
licences.

17

3.1.8. License Must Not Be Specific to a Product

This means that the licence cannot restrict the product to only being redistributed on
a given OS or platform. For example, the product cannot be exclusive to Windows and
restrict consumers to improve it to work on other platforms.

3.1.9. License Must Not Restrict Other Software

If the product is distributed on a CD or a website where other products exist that does
not apply for the licence, the developers cannot insist that every other product on that
shared medium has to be open source.

3.1.10. License Must Be Technology-Neutral

This licence aims to handle a very specific scenario. So-called "clickwraps" or dialogues of
an agreement that require the consumer to actively agree (like actively clicking a button)
should not be mandatory as this might hinder ways of redistribution via platforms like
FTP and web mirroring. The product should also be usable on platforms that do not
support dialogue windows that the consumer has actively engaged with.

3.2. Strong Copyleft

The GNU General Public Licence, or GPL for short, is one of the most commonly used
licences in the open source world [56]. It is one of the earliest licences and was written
by Richard Stallman himself back when they were distributing the GNU system. It was
written as a general-purpose licence and consisted of what Stallman meant were the most
important parts of all the previous licences he had written for each singular components of
the GNU system like the GNU Emacs, the GNU C compiler and the GNU Debugger. It was
written as a mirror image of all the characteristics of a copyright licence, hence the term
copyleft [26]. As previously mentioned, copyleft take is the opposite of copyright where
the consumers are encouraged to modify and redistribute software as we have already seen
through the rights of open source. When the original version of the GPL was released in
1989 it set out to tackle two main problems which Stallman had with proprietary software.

The most obvious one was to make the source code "open", to provide human-readable
code along with the software that was being distributed. Any redistribution, of either the
whole software or parts of it, also had to provide all of the source code. Thus the licence
assured that no one could take an open source product and make it proprietary. The other
problem the GPL addressed was the aggregation of software into larger distributions. If
one piece of software under an open source licence and one piece of software under a more
restrictive licence where to be distributed together, one of the licences might restrict the

Figure 3.1.: The Copyleft mark

18

other hence reducing the "freedom" of the software. The GPL, therefore, states that every
piece of software that has a component under the GPL must apply the GPL to the whole
system. This assured that no more restrictive licence would compromise a software’s free-
dom. This was the first version of the GPL.

The GPL is an example of what is known as strong copyleft because it demands its derived
works to apply the same licence (or equivalent ones) thus forcing the spread of open source
and free software. New software that is written is rarely written completely from scratch,
which means developers that want to distribute their software under another licence which
is less restrictive cannot do so. From a legal perspective, the GPL can become very complex
[26].

3.3. Permissive Licences

On the other side of the spectrum from strong copyleft, we find what is called permissive
licences. Products carrying this licence still provides all the open source rights, except
when it comes to redistribution there is no demand that the modified version must carry
the same licence. It can even be made proprietary thus not forcing software aggregations
to be open source. Another common label for permissive licences are non-copyleft (tilting
toward public domain and not towards copyright). The most commonly used permissive
licence is the MIT licence. In short, it allows the consumer to do whatever they want
with the product as long as the MIT licence is distributed along with derived and modified
works. The licence seeks to handle any legal issue by simply stating that the product is
provided "as is" meaning that the consumer has no rights of warranty or support for the
product if something was not satisfactory to them. It also rids the developer of all ties
to the product regarding legal issues. In no scenario will the developer be held accounted
for the software’s behaviour. The only thing the developer has to provide is their, or their
company’s, name and the year the product was released [57].

By being this permissive the MIT licence and other licences of similar calibre become com-
patible with other licences. This means that there is no longer a requirement to "force"
the open source ideology on a modified or derived work of the product because it can be
redistributed along with software that carries different licences. Although, if the product
itself is never modified but simply used as is as a library or plugin in a larger system, that
specific component will still carry the MIT licence. This essentially allows the spread of
open source software to be halted, and in some cases also reversed, as derived works of a
product carrying a permissive licence can be made proprietary [57].

3.4. Weak Copyleft

As a sort of middle ground between permissive licences and the strong copyleft licences,
there is a domain called weak copyleft. The use case for weak copyleft was primarily for
open source software to be distributable alongside proprietary software. Only works de-
rived directly from a product with a weak copyleft licence has to remain copyleft. These
licences are mainly used for libraries and plugins linked together with other software. If
the library is modified, it is required to keep its licence, or licence equivalent, to remain
open source. However, weak copyleft allows for proprietary software to be built. This can
also halt the spread of the open source model but not to the same extent as permissive
licences as the product that is copylefted cannot be made proprietary [57].

19

When the GNU team realised the need for some of its tools to be distributed along with
side proprietary software, Stallman and the Free Software Foundation created the GNU
Lesser General Public Licence. It was originally named Library General Public Licence
because it was to be used with every library but Stallman later stated that it is a matter of
strategy. If you can licence your library with the normal GPL, its in favour of the free soft-
ware ideology because it prevents proprietary software from using your library. However,
if there are already existing competing libraries that are licensed differently, the LGPL is
recommended to appeal to both the open source market and the proprietary market [57].

3.5. Custom Licences

Choosing which licence is right a particular project can be a cumbersome task. If there
is no specific license approved by the open source initiative that appeals to you or your
company’s vision, creating a custom licence might be the best option. This allows the
handling of legal edge cases in a particular market or domain. These licences often take
inspiration from one another and, most of the time, they can still be categorised as strong
or weak copyleft, or permissive. As long as the custom licence gets approved by the
Open Source Initiative, the community usually welcomes custom licences with open arms
[57]. The following table categorises some of the most commonly used licences with some
examples of projects which they are applied to.

Licence Type Example Licences Example Projects
Strong Copyleft GPL, AGPL MySQL, Wordpress, Git
Weak Copyleft LGPL, MPL Firefox, VLC Media

Player, 7-Zip
Permissive MIT, Apache Kubernetes, Django,

jQuery

Figure 3.2.: Table of different open source licence types

20

4 | Software Development Process

Through the history of software development, many have tried to devise the perfect devel-
opment methodology. Which phases are important in a software development process, how
can you guarantee that the customer receives what they are paying for, how can you involve
the customer or product owner in the process to make sure there are minimal misunder-
standings. These are some of the questions that when answered should point towards how
software should be built [58]. Understanding which tools are at your disposal as project
managers, as well as developers, is crucial to estimate project scopes, development time
and potential costs. This chapter aims to highlight how open source projects are developed
from a practical perspective to better understand which tools are present and which ones
are lacking in the open source developer tool belt.

4.1. Traditional Development

To make sure the contrast between open source development and traditional development
is thoroughly reflected, an introduction to traditional development methods is required.
Even though some of them are rarely used and others have changed drastically over time,
it is useful to look at which components in each methodology were the most restrictive or
counterproductive.

4.1.1. Waterfall

One of the earliest ways of developing software is known is the waterfall model. It is a very
rigid model that is split into several phases of development often displayed in a way that
resembles a waterfall (see figure 4.1). It gets its name from the direction of the project
phases. Like with a waterfall where the water only runs in one direction, when you go from
one phase to the next in the waterfall model, there is no going back to the previous phase,
in other words, no way back up the waterfall. It is a linear process where each new phase
depends on deliverables from the previous phase [59].

Figure 4.1.: The waterfall model as it was first presented by Royce

21

Because of its linear nature, the waterfall model is one of the easiest methods to un-
derstand both from a developer perspective and the customers perspective. However, it
originates from the manufacturing and construction industries where going back and forth
between several phases might be impossible. For example, you cannot go back and change
the architecture of the foundation of a building of the foundation has already been laid.
Applying the waterfall model to software development has been mostly critiqued through
the years because going back and making incremental changes are much easier to execute
with code than concrete. It was mostly used as a model in the early days of software devel-
opment because there were no other general-purpose project models that were recognised
for creative work like this. Although the waterfall model is mostly used as an example
of early development models that are inferior to more modern methods, it is sometimes
still used in military projects which require very strict planning. It is applicable where
the project requirements very crystal clear, the technologies that are to be used are well
known by the developers, and the scope is fixed and will not be changed [59].

Royce [60] presented this model in a paper in 1970 where it was not presented as a rec-
ommended model but rather an example of a model does not, in fact, work for software
development. The initial model was split into six, sequential phases.

• System and software requirements: The requirements of the system are carefully
planned by the project owners and the tech lead of the project.

• Analysis: Understanding the domain of project by creating models and business
rules, in other words, the business logic.

• Design: The software architectural phase where the developer’s plan which tools
to use, which services to develop and how these will communicate, converting the
business logic into software terms.

• Coding: Writing the software based on the architecture from the previous phase.
Since everything is planned, the implementation should be rapid.

• Testing: Systematically searching through the system for bugs and mistakes. It is in
this phase that the lack of work done in the planning phases starts to show. There
might even be uncovered misunderstandings between the project owners and the
developers.

• Operations: Getting the system up and running on the desired platforms as well as
maintaining its uptime and providing support for the users.

Many have later refined his model to try and justify the use of the waterfall model, even
Royce himself proposed variants that loosen up the strict sequential patterns. That water
still runs the same direction, but it can take different paths down the river.

4.1.2. Agile

As we can see by the waterfall model, the later in the process errors and mistakes were to
be uncovered, the more impact they would have and the more time and resources it would
take to go back to fix the issue [61]. The cost of fixing errors like this grows exponentially
with each phase it slips by. This was the main reason the agile model emerged. Developers
criticised the restrictions and micro-management of methods like the waterfall model and
in the 1990s smaller, more lightweight models began to appear. Seeing this rise of several

22

methodologies, a group of developers gathered in 2001 to create the Manifesto for Agile
Software Development. A document that would present principles and values that agile
software development should follow. The values are expressed as follows:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

While there is value in the items on the right, we value the items on the left
more. - The Agile Manifesto, [62]

In addition to these values, there are also twelve principles which go deeper into defining
these values [63].

Agile methods also divide the project into phases, but instead of each phase having a
dedicated task being handled, the phases in agile development are simply "timeslots" of-
ten referred to sprints. In each sprint, every task that was previously dedicated to a
whole phase and regarded the whole system is executed, but each sprint focuses on smaller
parts of the system. This makes it much easier to uncover obstacles that in models like
waterfall would only be uncovered once the coding or testing phase came along. The de-
veloper becomes more adaptive to changes along the way which can greatly reduce costs.
Agile software development often utilises techniques and tools for continuous integration
and continuous unit testing of the already written code. This puts the focus on writing
high-quality code that can be easily maintained and later built upon by using the same
techniques [61].

Agile as methodology shifted the project focus away from the product to the customer.
Using more time and energy understanding the actual customer needs has proved to yield
much more satisfied customers [61]. The needs of the customer are rarely completely static
as well, they change with time. After each sprint, the developers could verify with the cus-
tomer that their requirements were being met. If not, they could reiterate and adjust the
product more to the liking of the customer. By uncovering misunderstandings frequently
during development, you avoid severe costs at the delivery phase due to some minor details
interpreted wrong in the planning phase [61].

Scrum

Even though its first appearance was before the release of the agile manifesto, Scrum is
still considered an agile methodology and is still one of the most well known and widely
used software development methodologies. Agile methods aim to make the developers
more independent while still keeping track of the team and projects process. In Scrum,
the previously mentioned sprints often have a length of two weeks. Each day, the team
performs a daily scrum, a daily meeting where they briefly present what they are currently
working on and if they have obstacles they need to solve with the help of others. These
meetings are a way to keep the project manager updated on what each team member is
currently working on. If the teams grow very large, things like these meetings can become
quite time-consuming. Scrum, therefore, recommends a team size of a maximum of ten
people. At the end of each sprint, the team conducts a retrospective meeting where they

23

look back at what went well and what could be improved to the next sprint [61].

The way work is being distributed among the team members is by the use of what is
called a Kanban board. This is, in its simplest form, a table consisting of the three columns
"to do", "in progress" and "done", though exact wording may vary. In each of these
columns are post-it notes containing what is known as "tasks". Tasks are small and very
explicit so that ambiguity is at the minimum. Developers can pick a task, read it and (if
written correctly) understand exactly what needs to be done. The tasks are derived from
larger tasks called user stories or sometimes just stories. The user stories represent the
requirements that have been worked out by the product owner and the scrum master, the
person in charge of making sure the method is being used correctly [61].

There are a lot more details to the scrum framework that someone with the role as process
manager is sure to know and teach the team over time as these rituals and the way of
working becomes more of a habit. Due to many of these activities requiring the whole
team to engage at the same time, teams that are geographically separated will have a
harder time using this model. The whole point of agile development is to work together
and communicate as a team as often as possible. Even though modern tools like video con-
ference call systems and digital Kanban boards greatly reduces the geographical barriers,
the agile manifesto strongly encourages face-to-face interaction [62]. Another limitation is
team members with very specific and specialised skills. Ideally, the whole team should be
able to work on every task to some degree. With teams that are limited to a maximum of
ten people, it is important to make sure diversity is present. It would be bad if the pile of
tasks regarding security were being dealt with very slowly because only one member of the
team know how to solve them, while the rest of the team cannot do anything to help [61].

SEMAT

It is believed that the method used to develop a given project should be "tailored" to that
specific project. This allows developers to pick and choose from a variety of activities and
tools they see fit to utilise in a given project. The SEMAT Essence Kernel is a frame-
work developed to help developers with this method tailoring. By visualising a path to the
intended goal, developers can pick the components, called artefacts, that suit both their
needs and their preferences for way of working. For example, your team might agree that
a daily scrum meeting is totally redundant. You are then free to choose to leave that one
out in favour of other ways to keep the team updated on each other. Maybe simply writing
your name on the task you are doing on the Kanban board is enough. Many developers seek
away from all the obligatory meetings and activities and want more time to write code [64].

Figure 4.2.: One sprint in Scrum

24

However, a methodology like Essence Kernel can be viewed as a double-edged sword.
The freedom to construct a whole new methodology requires discipline and knowledge of
software development processes from the whole team. They have to know what works for
them and what they want. Of course, this is not something that you just know, it has to
be learned through experience. Besides, tailoring a method for each project means that no
one knows how that particular method will work for that particular project. This requires
the team to evaluate its constructed methodology along with the actual product along the
project development time, which can be quite time-consuming [64].

4.1.3. DevOps

In later years, the term DevOps has become a buzzword on many developers lips. The name
comes from the aggregation of development and operations. Like with agile development,
tools for delivering high-quality code are being heavily utilised. Continuous integration,
testing and deployment are at the heart of these processes. While agile development seeks
to tie together the customers, or product owner, and the developers, DevOps strive to close
the gap between the developers and the IT-departments, in other words, those who build
the software and those who maintain it [65].

DevOps leverages all the stages of software deployment, many of which can be highly
automated using different tools.

• Coding: Most developers use an integrated developing environment, or IDE, which
provide auto-completed code snippets, commands to push and pull code to reposito-
ries, review code and merge code.

• Building: On platforms like GitHub, Gitlab and Bitbucket, automated processes can
run to check that the code that is being pushed can successfully compile and be built
without failure. This hinders code that fails to build to be merged into the repository.

• Testing: Similar to the automated building, automated testing can be done as well
where suites of unit tests and integration tests are run each time a new commit is
pushed. This makes sure no working code is broken when new code is being pushed.

• Packaging: Bundling large amounts of code dependencies into one package that is
ready for the release can be quite a big and complex task. Automated scripts can
run these processes with a simple command.

Figure 4.3.: SEMAT Quick Reference Guide

25

• Releasing: Taking down the newest release from production and releasing the new
package. This also sometimes involves sending release packages off to approval in
app stores or similar.

• Configuring: Many systems today are moved away from private company servers
and into the cloud. Cloud vendors allow allocating the resources needed for the
application to run without restrictions and auto-scale if needed.

• Monitoring: Monitoring tools allow administrators to be alerted if errors occur in
production, or in the worst case the application stops working. There are also tools
to track end-user behaviour for analysing usage patterns.

One way to measure performance in IT is by throughput and stability, in other words how
often new releases happen and how error-free these releases are and how quickly eventual
errors are fixed [65]. DevOps aims to better performance all across the deployment pipeline.

• Improving the deployment frequency.

• Shorten the time it takes for a product to get from development to the market.

• Lower failure rates when releasing new versions.

• Shorten the time it takes to fix errors that manage to get released, as well as the
time it takes to reset the system should everything crash.

Automation has made the maintenance part of software projects much easier to handle
for smaller teams, which is why continuous integration and testing are some of the most
important tools for open source project maintainers.

There are many different books and papers written on software methodology that go much
more in-depth than this section did. It is by no means a complete introduction to Scrum,
SEMAT or DevOps but I found it necessary to present the essence of them to draw lines
between these traditional methodologies and open source development, which I will do in
the following section.

4.2. Open Source Development

Open source development carries some characteristics that make it hard to apply traditional
methodologies like the waterfall model and sometimes even the agile methods like Scrum
as well. In addition, developers tend to become lazy following certain methodologies when

Figure 4.4.: The phases of the DevOps cycle

26

the framework becomes too restrictive or the exercises feel too mandatory instead of useful.
How are open source projects being developed practically speaking? Are methodologies
being used at all, or is chaos dominating? First, we need to take a closer look at the
characteristics of open source projects from a practical perspective to see if methodologies
are even applicable.

4.2.1. Community as a Team

Open source projects usually start with having a single developer or a small team of de-
velopers at the core. They might have been working on the project for some time before
releasing to the public using a methodology like Scrum or another agile variant which
have suited their need. However, one of the most unique characteristics of an open source
project is that all the developers in the world could potentially become part of your team
[66] [39]. How is this dealt with? The original developers might be restrictive towards
who they allow becoming a part of the core team if they allow anyone at all. In this case,
the core team can still be kept very small and to some extent continue with their chosen
methodology. To utilise the power of a large community, they have to be able to contribute.
Granting them access to a digital Kanban board of the project might be possible, where
contributors can pick tasks to complete [67].

So far it seems like traditional methodologies might be applicable with some adjustments
here and there. However, the biggest obstacle is simply the fact that open source con-
tributions are volunteer work. That means it is not something you can assume is being
worked on from nine to five, five days a week. Volunteer work is something you do in your
spare time [44] [10]. Therefore, it is hard to do something like sprints because it is hard to
estimate how many developers are available to help during each sprint.

4.2.2. Decentralised

As previously mentioned, according to the agile manifesto, the best way of communicating
is face-to-face. This becomes practically impossible when contributors can be living any-
where on the globe. Of course, there are the video systems, but if potentially thousands of
people are to participate in meetings over video there could be trouble and chaos. Nonethe-
less, with the help of email lists, forums and IRC chat rooms developers can communicate.
The key is that contributors must be able to assign tasks to themselves which suits their
skills and interests, and at a time that they can work [38].

4.2.3. Open Collaboration

Even though having a large community of people can be hard to manage, there are also
some very important benefits. No matter the size of your company, you will never have as
many employees as the possible millions of contributors that share a passion for open source
contribution. Open source has done in the software industry what general science has done
in other fields like mathematics, biology, physics and chemistry. It is an environment of
peer review [10]. Software development can be very complex and sometimes very hard to
debug when errors occur. In his paper [5], Eric Raymond formulated what he called Linus’
Law (named after Linus Torvalds). In short, it states that "given enough eyeballs, every
bug is shallow" and put in more formal terms:

Given a large enough beta-tester and co-developer base, almost every problem
will be characterised quickly and the fix obvious to someone. - Linus’ Law, [5]

27

Due to its peer-review nature, open source projects have been proven to be very secure and
close to bug-free which are two very important aspect of software products that potential
customers care about. However, seems only to be believed by developers and not by those
who lack computer science skills [10].

To accomplish true open collaboration, the project has to have high modularity. That
is why traditional development methods like waterfall cannot be applied to open source
software development. As Torvalds stated, you cannot have people working in parallel
without modularity. This is crucial because of the different schedules of people working
with open source. You have to allow flexibility regarding when to work. Modularity de-
creases the need to coordinate implementations between developers, which is highly needed
as contributors do not necessarily know each other or see each other as colleagues [66] [68].

4.2.4. Knowledge Sharing

Another benefit of having a large community is the ability to seek out help from the
community and not just via official support services. Developers often post questions on
different forums like StackOverflow or designated forums for a given project, if they exist.
Having the questions and potential answers to them available publicly means that other
developers who might have the same or very similar problems can look up answers to their
questions without having to ask them again and wait for replies. Asking questions on
forums might not be a characteristic of open source per se but the knowledge sharing is
enhanced due to the openness. Much finer details of the software can be shared due to
visible source code as well, which allows very thorough debugging if needed [68].

4.3. Project Growth

Once an open source software has grown to a certain size and popularity, one of two things
seems to happen. One alternative is that someone decides to create a fork of the project
and start creating their own version of the product derived from the original. There can
be many such forks. The other alternative is what I will in this thesis call an ecosystem. It
is important to understand the difference between these two alternatives when considering
the future of your project.

4.3.1. Forks

When developers want to contribute to a project on a platform like for instance GitHub,
they cannot simply go to a repository, download the code, make some arbitrary changes
and push the code back up. That could potentially ruin many, many hours of work if you
were to accidentally (or purposely) delete files and folders. By default, you do not have
access to make changes to an existing repository directly when it is owned by someone else.
This is where the concept of forking comes in [69].

When you fork someone’s project, a copy of that project at the time of forking is cre-
ated and put onto your account on the source code platform at hand (for the sake of
explaining, I will use GitHub as an example). The copy that now exists on your domain
on GitHub is a copy that (given the right licence) you are free to download and modify
any way you like. Let’s say you have made some changes that improve some part of the
software and you would like to contribute that change to the original project. You can
do this by requesting the original owner to take your change and pull it into the original

28

project for others to see hand utilise. This is the main way contributions are being made
these days [69].

But you have another option. Instead of proposing the original owner to pull in your
changes, you keep your copy of the software and decide to build on it further. At this
moment, your fork will (probably) strive further and further away from the original and
become a derived work. A rationale for doing so might be that the original software an-
nounced that they were changing their licence and you wanted to keep a version of that
product which kept the old licence. Another reason for forking like this is to tailor an
otherwise more general-purpose piece of software to serve a more specific service, like the
Nokia X Software Platform which is a fork of the Android Project. It was developed by
Nokia to run specifically on their Nokia X family of devices [70].

4.3.2. Ecosystem

If several forks were to be taken out of your project, then essentially there will be several
editions of your software out on the market that will eventually end up as competitors.
This might be fine if the project you publish was never meant to be a business intention-
ally. It also serves as a way for your project to survive, if you were to abandon the original
project, some fork out there might still be alive and carry on your vision [69].

If you intended to start a business, however, you would want to avoid too many forks
of your project so that your edition of the project is the one that receives the most atten-
tion from the community of developers and users. You want to grow an ecosystem around
your product to make it as accessible as possible to as many as possible. Even though the
whole set of derived forks from a given project are sometimes being called ecosystems, I
will for the sake of making a difference not refer to that as an ecosystem because forks try
to separate themselves from the original, whilst my definition of an ecosystem is where the
original project is still the active root [71].

In an ecosystem, the original product is still being worked on by a core team of devel-
opers, being the original creators or their successors. What the ecosystem consists of are
additional applications and software surrounding the core products that make it more ap-
pealing to a wider group of potential users. For example, if you have a core banking system
written in the C programming language, someone could write a driver or middle-ware that
allows your banking system to be used by other applications written in Java, C++ or any
other programming language that would suit particular needs. Another example can be
providing a graphical user interface to your banking application, making it easier to do
some operations that otherwise had to be done through terminal commands [71].

Tiwana [71] defines the set of elements that make up an ecosystem. The platform is
the core software of the ecosystem which contains the main functionality and source code.
It also contains interfaces which are the tools needed for the software to communicate with
other software. These interfaces are the drivers. All the different software that utilises the
platform are called applications. These are systems that have another main functionality
than the platform but it uses the platform as part of its main functionality. The ecosys-
tem is then defined as the collection of the platform and all its associated applications [71].

The whole ecosystem model can also be viewed from another angle, where you have written
a small piece of software that excels at one specific thing that other, larger companies then

29

decides to use in their solution. Thus, your project becomes a part of their ecosystem and
often ends in acquisitions by the larger company because they want to make sure that
components of their ecosystem survive [71].

Software systems today are growing more and more complex and rely heavily on already
written code through dependencies and plugins. Growing a platform ecosystem around
your product is almost a necessity to be competitive in today’s market. Ecosystems enable
flexibility through multi-purpose. It is no longer a market where the competition is prod-
uct versus product, but platform versus platform. Developers and other customers want
one platform to solve as many of their problems as possible [71].

4.4. Project Success

What are the metrics that measure the success of an open source project, and what is even
considered a successful project? One way to measure it is that the project is doable and that
it produces some product that solves the problem it was developed to solve. There are huge
IT projects in both the public and private sectors that fail to cost over $US150 billion in
the United States and the European Union annually. To avoid such catastrophic numbers,
Taherdoost [47] suggest several key components that lead to successful IT projects, see
figure 4.6. It should be pointed out that their research was focused on closed source
projects inside a company. However, some of the points are universal for development in
general, and by being an open source project, some of these factors might not need to be
present.

4.4.1. Market and Technological Success

Other research [68] propose that open source project success is defined as an aggregation
of market penetration and technology advancements over a set period. In other terms, it
is divided into market success and technological success. The model further proposes two
sets of factors that affect these success types; extrinsic and intrinsic cues.

Figure 4.5.: Elements of a platform ecosystem

30

4.4.2. Extrinsic Cues

The extrinsic cues are the observable factors without investigating the functionality of the
project through code. They are surface-level cues that can be understood by any user,
developer or not. These cues are often visible on the websites of the project or other
distribution platforms like SourceForge and GitHub. They are things like which licence
the project uses, the size of the user base or the number of downloads, and the size of
the developer community. These cues can also be things like language translations of the
project [68].

4.4.3. Intrinsic Cues

The intrinsic cues are the ones that require technical expertise to observe. They are
defined as project complexity and modularity. Complexity refers to how readable and
understandable to code is. High complexity leads to developers having to either have a
very high skill level to read or that the flow of the program is not easily understood and
require a lot of time to fully understand. Modularity refers to the ability to work on
several different parts of the project in parallel. Breaking the software up into smaller
components which could, in theory, serve as individual projects. Linus Torvalds has stated
that modularity is alpha-omega for operating system development [68].

4.4.4. Correlations between Cues and Success

The research proposes a connection model as shown in figure 4.7 where hypothesises of
positive impacts are indicated by arrows. In their results, most of these hypothesises
were true, except there was no significant evidence that technical success implies market
success. However, some other research suggests that there might be implications the other
way around. That a popular project, in other words, market success, attracts developers
who want contributions to famous projects in their portfolio [68].

31

Figure 4.6.: Factors leading to IT Project Success

32

Figure 4.7.: Original hypothesises model of cue impacts on success

33

5 | Developer Motivation

There have been conducted many studies on the motivational factors for contributing to
an open source project but many scholars are still puzzled by their findings and often opt
for further research on the topic. Many argue that discovering the incentives behind these
contributions can help businesses grow their communities around their products, which is
arguably one of the most crucial characteristics of successful open source projects [5] [72]
[73] [39]. In this chapter, we will take a closer look at previously researched factors of
motivation for developer contribution to projects, both from the contributor’s perspective
and the project owner’s perspective.

5.1. Personal "Itch"

For some developers, writing code is not simply their job but also what they like to do
in their spare time. Coming up with pet project ideas is not always easy. Still wanting
to do development outside of their work, developers can exercise their passion for already
existing open source projects. They use open source projects as practice tools to improve
their coding skills. They also get the chance to work with technologies that are not part of
their work-related technology stack to discover new interests in other branches of IT which
they normally do not tap into.

A big part of software development is automating an otherwise time-consuming, perhaps
even boring, task. Having to do cumbersome tasks that take up a lot of time is referred
to as having a personal itch. "Scratching" this itch is when a developer decides to solve
this particular problem and make it easier on themselves. Much like the focus in agile
development is directed towards the customer needs, so is it in open source but with the
developer also being the customer. The developer faces a problem and decides to solve
it. Then he or she thinks that they are probably not the only ones having this problem.
If they are at the current time, surely someone else will come along and stumble upon
the same problem. In good faith, the "right thing to do" is then to publish their solution
so that others may find it. Others can then find the software and adapt it to their own
problem, often having to rewrite it slightly and might as well end up improving it thus
helping the original developer in return as well. In his paper [5], Raymond presents a set
of lessons from his observations of the open source phenomenon.

Every great piece of software starts by scratching a developer’s personal itch -
Raymond [5]

Another one of his lessons states that the value of taking some already existing and available
piece of software and modifying it to specific needs. With the growing codebase that is
available through open source, existing solutions for your problem is almost guaranteed

34

to exist. It might not fit your needs perfectly but it is better to take those solutions and
tailor them to solve your problem rather than reinventing the wheel.

Good programmers know what to write. Great ones know what to rewrite (and
reuse). - Raymond [5]

A personal itch can often become more than simply a problem that you want to solve, it can
become something you are passionate about. Passion is often the main factor that drives
volunteer work in the first place. Finding a job that perfectly aligns with your passion is
not an easy task, so to follow that passion free time consumed thus resulting in volunteer
work, being it for yourself or others. People with a passion for something also tend to have
some experience, bad and good. In other words, things they have tried that have been
successful as well as unsuccessful. Having an open and transparent project allows outside
contributors to locate the parts of the project that needs improvement. After all, things
cannot be fixed if people do not know that they are broken [5].

5.2. Mobilising by Ambiguity

Sometimes the personal itch can be something you cannot reach or something you simply
do not know how to scratch. You recognise where it itches, in other words, what kind of
problem you need to solve, maybe you even have some vague ideas of how to solve it. By
looking online for solutions, people tend to be met with a wall of noise [74]. Today, there
are so many options when choosing software to solve particular problems and developers
would like someone to stand out in the crowd that appeals to their needs. Someone who
can scratch their back.

Throwing lots of very specific details in developers face can scare them off, as most people
do not know, or need to know, every single detail about the tools they are using. They
just need to know that the tools can solve their problem. Thus, using more vague de-
scriptions that sound appealing at first glance will allow many developers to believe the
solution works for them. Open source gives the developers the freedom to verify this for
themselves because of the ease of acquiring the software in question. Ambiguity and vague
descriptions, in this case, helps spread adaption in the community. For example, let us
say we have a product X which many developers know and have used for a long time. X
is becoming obsolete when tackling a new, rising problem. For the sake of the example, X
cannot handle over 1000 simultaneous users in your application. You ask your friends or
colleagues "I need to find something that will handle over 1000 simultaneous users", and
they then reply "Oh, there is a tool called Y. It is just like X, but it can handle lots of
simultaneous users". That immediately sounds like an attractive alternative to most devel-
opers. A tool that is like something they already know, but also might solve their problem.
I say might here because of the ambiguity in the reply given by the friend or colleague.
It was never said the exact number of users it could handle. Maybe you need to handle
one million users, and maybe Y turns out to only handle 5000 users. This is example is
obviously very simplified. The point is that these vague statements serve as leverage for
projects to stand out in the noise of other alternatives, so the developers likely to attempt
to scratch their back with it. This is a very effective way of mobilising a community of
both users and potential contributors to gain interest in a particular project [74].

35

5.3. Gifting Culture

At first glance, the idea of contributing to open source projects free of charge and with
passion as the sole motivation seems quite puzzling to many. Even though, in most cases,
there are no direct exchanges of services and payments open source contributing has been
compared to the idea of gifting culture [10].

Imagine you are at a bar with a couple of your friends. One of your friends orders a
round of beer for everyone at the table. You happily accept your drink and enjoy it, after
all, you did not pay for it! After a while, another one of your friends get up and buys
another round for the whole table. You enjoy another "free" beer. For is it free? For
each beer you drink, expectations build up for you to at some point get up and return the
favour and buy a round of beer yourself.

Virtual gifting does not necessarily work the same way as physical gift-giving. Usually, a
physical gift has an intended receiver and is not meant to be giving to someone else. That
is not the case with publicly available software. Who are the intended receivers of an open
source software? Yes, it is meant for those who may have to solve the same problem as
the project creator but with no guarantee that these people exist. In other words, it does
not become a gift before anyone claims it [10].

Depending on the gift that is given, different levels of moral obligations arise in the receiver.
Some believe that acknowledgement and praise are enough because it points a spotlight
at the gifter and if these acknowledgements become many, it can raise the gifter’s social
status and reputation in the community. Others believe that more than words is in order.
That gifts in some form or another have to be returned to the project. Open source gift
culture differs from classical gift culture in that gifts are very rarely, if ever, rejected. Have
many times haven’t someone received the most horrible Christmas sweater from a family
relative but still accepted it and even put it on right then and there. Contributing code
or information to an open source project, on the other hand, might lead to rejection if the
contribution is of too low quality or not aligned with the vision of the project owner. This
differs from project to project in terms of how close the project relates to the cathedral
model or the bazaar model [10].

There is a phenomenon which is called the "field of dreams" which refers to a belief that
"if I build it, people will come". This mentality might work in traditional gift-giving where
the exchange of the gift is happening at a certain place and time and where both parties,
as well as others, observe the event. However, in the virtual gifting environment, this place
and time are not known to both parties. Developers can break this mentality by being as
present as possible when a gift is received [75].

5.4. Need to Belong

There are many developers today who work as freelancers who work alone from home or
other places where there are no colleagues to interact with. These developers tend to want
a place to belong to. They seek to be part of a group or a team of other developers with
the same interests in technology as them. Open source communities are one of the ways
these freelancers can satisfy this need [76] [74].

36

Flaming has been brought up as a real problem in most forums and mailing lists. Po-
tential contributors hold back their work in fear of being flamed by the community. Is that
still the case today? If a person is afraid of flaming, it is more "safe" to start a project of
your own than to deliver code to an existing project. But if no one is contributing to each
other’s projects, then the whole idea of open collaboration falls apart. Developers tend
also to hate being criticised for their code, which is why they spend a lot of time "wrapping
their gifts" in humble words. Even though famous people in the community tend to flame
for no apparent reason, contributors need to be able to differentiate between pure flaming
and good criticism [10]. Putting yourself out in the public eye also puts you in the line of
fire of negative comments, flaming and Internet trolls. You are more likely to remember
the one bad comment over a thousand positive. It can, therefore, be as including and
humble as possible when publishing your project. Approach it like you try to encourage
the shy kid in class to speak up as well [77].

Never write something and don’t submit it, it goes against the whole philosophy
of free software [10]

5.5. Renown

An open source community can in many ways be compared to society with its social hier-
archy. Many strive to become famous for their talents, knowledge or actions. Contributors
who put in a lot of effort and time to further improve an existing project or write a new
tool in the ecosystem tend to become "celebrities" in the community. Their voice then
carries further and they are more respected when making a presence in the forums. Some
developers seek this status to add to their portfolio which they can use when applying for
a job that might be a tough competition to get [73].

This status can be acquired simply by word of mouth where people recognise you as a
contributor of importance but some companies, often those who have their own forums,
have some kind of merit system implemented where contributors can earn visible awards
for others in the forum to see. Having these merit systems can be enough to convince a
developer to contribute to your project in favour of another [73].

Celebrity status in a community serves another purpose from the company or project
owner’s perspective. The contribution of these acknowledged developers allows the compa-
nies to locate skilled programmers that stand out, which are potential employee candidates.
Programmers that are above average in skill are hard to uncover based on other metrics
like the number of commits or lines of code. Does a skilled programmer write 1000% more
code than the average programmer? What about those who write shorter, more efficient
code? Through peer reviews in an open source repository, the developer’s skills can be
more easily verified [73].

5.6. Economic Incentives

Some companies have built their products on open source software. Sometimes these
companies are so reliant on a particular open source component that they want to assure the
progress and innovation of that piece of software as well as making sure that its community
is kept alive. One way for them to achieve this is by directly funding this project. This
is more common when the company is not considered an IT company but might be using

37

a complete open source solution to handle some, or all, of their tasks [43]. These kinds
of services are usually what is known as software as a service, or SaaS. In this case, they
are most likely using an enterprise edition of the software, paying for support services or a
subscription of some sort. If the company only uses a free version of the software, they can
donate funds to the developers of the software directly. However, if the company is, in fact,
a software company that uses the open source product as part of their software stack, they
might make their own developers contribute to that particular software as part of their
workday. In this way, the developers are receiving direct payment from their company,
and the company as a whole becomes the "gifter". In most cases what economic incentives
comes down to is if the benefits of the contribution outweigh the investment or cost. In
the case of companies, the cost might be hours they need to pay developers to execute the
work. Even more generalised, the cost is simply referred to as time spent on a particular
open source project that could have been spent on other areas [78].

5.7. Choice of Licence

The choice of licence has also proven to be a crucial part of the rationale behind choosing
to contribute to a specific project or not. Those believing in the free software philosophy
will sometimes refuse to contribute to projects that are not strong copyleft. Some are
more liberal but will only contribute to those projects with licences approved by the Open
Source Initiative [67] [44].

Most developers in the open source community are familiar with the most common li-
cences and exactly which rights they grant those who use them. Open source is built on
trust. The community believes the licences that are approved by the Open Source Initiative
keeps this trust between projects and the developer community. Some believe that those
who wish to do commerce with open source are testing the limits of this trust with custom
licensing. Companies with commercial interests are often motivated by extrinsic factors
that indirectly satisfy their needs. This is often a monetary need which is satisfied by doing
some work. However, this clashes with the values of the open source community which we
have seen are driven by intrinsic motivation, factors that directly satisfy their needs, like
with personal itches when developers create software that directly scratches their back [79].

The open source licences clearly emphasise that nobody is to be excluded from develop-
ment or use of open source projects, and commercial actors that define their own licences
need to tread lightly when defining custom licences so that trust and honesty like this are
not defiled. A classic study by Mary Douglas [80] looks at the definitions of what is pure
in this world. It can be compared to the definition of open source where the rights of open
source and the Open Source Initiative approved licences are viewed as pure in the open
source community, while commercial companies are sometimes viewed as defiling the pure
open source. It sparks the question of who has the right to define what is pure. Does
the open source definition need a redefinition to enable full utilisation of open source as a
commercial business model?

38

Part II.

Method

39

6 | Research Strategy and Method

The main purpose of this thesis is to add to the body of knowledge as well as shed light
on a problem of importance. Although it would be of great value to solve the problem,
it is not within the time and resource restrictions of thesis to accomplish that goal. It is
also a case of re-interpretation of the existing theory that might have changed through the
course of the years [81].

To fulfil the purpose of the thesis, a scientific research method was applied. Research
is mainly split into two categories; quantitative and qualitative research. Quantitative
research uses data gathering methods to acquire lots of surface-level data like people de-
mographics, short opinions on different topics or how many times a certain artefact of
interest is observed in an environment. These kinds of data are quantifiable, meaning that
they can be translated into numbers which can be used for calculations and predictions.
This category of research results in statistical findings which, if significant, uncover pat-
terns in society [81].

Qualitative research, on the other hand, seeks to dive deeply into single artefact such
as a single company or a small group of people, projects, tools, etc. Qualitative data is
represented by everything that does not translate to numbers. Examples are things like
words, images and sounds [81].

In this chapter, I will justify my choice of research strategy, data gathering and analy-
sis methods, and in the next chapter, I will present the rationale behind choosing the case
that I did for this study.

6.1. Method

There are lots of quantitative research conducted on open source which usually looks at
things like single incentives for developer motivation to justify their validity. To solve my
problem definition, a qualitative approach was more suitable. It allowed me to aggregate
several previous studies on many different factors to then validate their presence in the
chosen case. In this way, anomalies could also be discovered if previous research was, in
fact, no present in the case.

6.2. Literature Review

A huge part of this thesis consists of a literature review of previously conducted research
and other relevant information which combined with my findings lay the foundation for
discussion. A literature review is usually conducted in two steps, or as two different reviews
depending on who you ask. The first has the purpose of finding a topic of interest in the

40

thesis as a whole. Because I was given an assignment text (see appendix A.1, I knew that
the thesis was going to be about open source. This is way too broad a topic, so a literature
review was conducted to find more specific topics to research. The review resulted in the
problem definition described in the introduction.

My approach was inductive meaning I started by learning about the case before find-
ing relevant theory. This approach allowed me to avoid bias from previously conducted
research on the topic. Therefore, the second part of the literature was conducted after I
was done investigating the case, and it focused on finding a theory that could explain or
justify the findings [82].

The material for both of the reviews mostly consists of journals, reports and books, but
also some video material as well. See the complete bibliography. I made sure to always
criticise what I was reading and compare it to other similar research.

6.3. Data Generation

Many data generation methods are applicable for gathering qualitative data. As the overall
strategy for this thesis, a case study was used and as ways of data gathering, I conducted
an interview and the rest of the data is collected through observations [81].

6.3.1. Case Study

The main purpose of a case study strategy is to focus on one artefact or a "thing" that
is to be researched. It can be on many different levels from large organisations all the
way down to a single decision. This artefact or thing is called the case. Usually, several
different data generation methods are applied such as interviews and documents which are
used in this thesis [81].

A common characteristic of case studies is the conservation of a natural setting. This
means that the environment that the case operates in is not affected by the arrival of
the researcher. By being like a fly on the wall, the researcher’s presence can be unnoticed.
There are several types of case studies that can be conducted based on what kind of outcome
that is wanted. These are exploratory, descriptive and explanatory studies. An exploratory
study is conducted when there are little to no knowledge on a topic and the research goal is
to understand a problem more thoroughly. Descriptive studies usually result in a detailed
analysis of the case in a certain context. Explanatory studies take the descriptions even
further by tying them together with literature and explaining why certain events occur [81].

Based on the existing knowledge base on open source software development, I intended
to conduct a descriptive study and analyse the case in great detail. However, since the
case I chose was a more extreme instance rather than a typical instance, I adapted my
approach and found that an exploratory study suited the thesis outcome better as the
results from the analysis sparked new questions.

Case studies as a strategy have been criticised for being too biased towards the case un-
der investigation. This means that the results are not necessarily generalisable enough to
be applied elsewhere. However, case studies provide theories and implications for further
studies [81].

41

6.3.2. Documents

The main source of data in this thesis comes from documents, and only from the type
of found documents. A document is simply all kinds of written material produced by an
organisation, formal as well as informal. Found documents are data that is already gener-
ated once the researcher enters the scene. Formal documents contain data like sales figures,
personnel records and official announcements. Examples of informal documents are notes,
emails, chat messages, forum posts and so on. Documents are not just textual content but
expand to visual content as well like images, graphs and videos [81].

Gaining access to documents is relatively easy compared to other data gathering methods
like interviews or questionnaires which require a lot more time invested in planning, issuing
and conducting. Most forums and email lists are made public, especially in open source
projects because most of the interaction is in written format. Document-based research is
ideally conducted on the Internet due to the vast amounts of data that exists [81].

6.3.3. Interview

There are three types of interviews; structured, semi-structured and unstructured. Struc-
tured interviews are more common when you have several people you want to interview
and you wish to ask the same questions to every single interviewee. Semi-structured are
when you still have a set of questions you want to ask, but you allow the interview to
diverge from the original order of questions based on how the interviewee answers. The
unstructured interview is much like a conversation about a topic when both the interviewer
and interviewee talk freely and exchange ideas [81].

In addition to documents, one interview was conducted for this thesis to gain more de-
tailed insight into the history of the case that was not well documented publicly. Interviews
are useful when there is a need for additional details, and when you have more complex
questions that are not easily answered without asking someone directly. They are usually
open-ended, meaning that the answers might vary from each time the question is asked
because the interviewee might sidetrack differently. This way, topics can be viewed from
different angles as well as the chance of unexpected findings. Therefore, I decided to pre-
pare and conduct a semi-structured interview where I encouraged the interviewee to answer
my questions in as much detail as possible, sometimes moving away from the questions as
well, or answering several later questions in an earlier question [81].

Recruiting

When recruiting interview candidates, they have to fulfil certain criteria. Those include
being reflected on the topic of interested and that they are in a position to comment on the
topic, by for example being a trustworthy and knowledgeable source. This is a strategic
recruitment approach [82].

For my interview, it was important that the interviewee could elaborate on their per-
sonal experiences early in the lifetime of the case as well as in the current state of the case.
A suitable interview candidate that fulfils these criteria is the CTO of MongoDB who was
also a founder. I decided to reach out to him by his email address which was publicly
available on MongoDB’s website. In the email, I presented the purpose of my thesis and
why I was contacting him. He was quick to respond and allowed me to pick a time slot of

42

30 minutes in his calendar wherever it fit my schedule. I estimated that one respondent
would suffice, thus not pursue more than one interview.

6.4. Interview Guide

According to Tjora [82], a well-structured interview is split into three main parts. A
warm-up phase, a reflection phase and a closure phase. In the warm-up phase, very simple
questions and light questions are asked for the interviewer and interviewee to become
comfortable with each other and the interview situation. This can also be as simple as
small talk, which is what I did. The reflection phase is where the more complex questions
are asked, and this is the core of the interview where the relevant data is being gathered.
In my case, I had prepared an interview guide consisting of open-ended questions. Finally,
the closure phase normalises the situation and it is common to inform how the research
will proceed from here [82].

6.4.1. Interview Situation

Many factors can affect the interview situation. It is important to make the interviewee
feel comfortable which enables them to speak more freely in the reflection phase. Another
factor is for you as an interviewer to dress and appear in a way that suits the situation.
Differences in social status and skill level, as well as age and the spoken language of the
interview, are all factors that weigh in [81].

Research shows that there is a considerable difference in the medium used when con-
ducting interviews. Face-to-face interactions are more valuable due to interpretations of
body language between the interviewer and the interviewee, in contrast to conducting a
purely spoken interview over a phone call. Video calls are somewhere in between the two
but when either party becomes aware of the screen between them, it can affect the inter-
view [81].

In my case, the interview was conducted over a video call which I recorded. To record
the interview is common because you as an interviewer can focus on the interviewee and
the flow of the interview itself rather than taking notes. I decided to dress business casual
which resonated with how the interviewee dressed. Breaking the ice was not as easy as a
face-to-face situation because of the lack of natural eye contact as well as an introductory
handshake. The interview was conducted in English, which is not my mother tongue. The
difference in social status, as well as age and skill level, were high, with me being a student
and him being the CTO and founder of a multi-million dollar company.

6.5. Analysis Method

The interview was mainly meant to be an additional data source to the much larger
document-based data already gathered, as well as the literature studied. I transcribed
the recording of the interview to be able to search through and analyse it more effectively.
When transcribing, the key is adding details like pauses and sounds because they might
have a significant meaning in the analysis. Even though it might prove to be irrelevant, it
is better safe than sorry to include it [81].

My analysis mostly consisted of documents being treated as vessels. This means that

43

they are containers of data. I applied themes analysis where I was not looking for specific
keywords or terms but rather a broader topic over several chunks of data. What I did was
comparing observed topics in documents along with the interview answers with characteris-
tics and observations found in the literature. By doing this I wanted to find anomalies and
exceptions that lay foundations for further research on more specific topics. Documents
studies, as well as all other data generations methods, can never paint an objective picture
of reality. However, be researching a large enough quantity of documents you move closer
to objectivity.

6.6. Quality

All qualitative research is influenced by the researcher’s interpretations. To assure the
quality of the research, we use three main indicators of quality. They are reliability, validity
and generalisation. They are each defined in the following subsections as well as the
measures I have taken to improve the quality of my research in these three areas [82].

6.6.1. Reliability

Reliability defines the reliability of the research. In an ideal world, another researcher
should be able to conduct the same research and arrive at the same conclusion. Regarding
my interview, none of my questions involved sensitive data where the interviewee could hold
back information in other interview situations. Our prior relationship was non-existent and
would not influence the answers. On the other hand, in the document data gathering, some
data was gathered from articles which may be biased. This might reduce reliability. To
counteract this, I made sure to read articles and documents from different points of view
to see all nuances. My personal view on the topic of this thesis might lead to bias affecting
the research. As my position as a novice researcher, I lack experience with conducting
large scale research like this thesis. It may have affected my approach and how I analysed
my findings [82].

6.6.2. Validity

Validity defines if our findings are in fact answering our research questions. The validity
can be strengthened by making sure your research has roots in other relevant research.
My discussion chapter aligns my findings with previously conducted research on many of
the same topics, where many of the sources are highly acknowledged in the community.
Originally, my research was going to purely document-based but I decided to conduct an
interview as well to get a better understanding of the topic and details around it, which
also improves validity. Talking with one of the founders of the case can both increase and
decrease validity. It can be argued that it can decrease if the interviewee wants to provide
answers which put their product in a positive light. However, it can also increase validity
as I can verify already defined questions and get answers straight from the main source
[82].

6.6.3. Generalisation

Generalisation is how the findings of the research can be transferred or applied elsewhere.
Case studies can be argued to have low generalisation because the knowledge only relates to
the case. Broader knowledge, however, can be of value to construct new concepts, theories
and implications which lay foundations for further research. My chosen case is already

44

an edge case, so it can be argued that generalisation might be low. However, if this their
method is simply untested, it can still be generalisable to a degree [82].

6.7. Limitations

The topic of the research has been altered several times, sometimes drastically. The method
had to be adapted to these changes which have taken up a lot of time and resources.
Had the last of these changes not occurred as late as they did, I might have conducted
more interviews and even applied more ways of data generation like questionnaires. The
literature study was also impacted by these changes and ended up more limited than I had
expected.

45

7 | The Choice of Case

For this thesis, MongoDB, the most popular open source, NoSQL database today [83], was
chosen as a suitable candidate of a sustainable open source project. It was chosen through
a selection process which involves a set of criteria that had to be fulfilled. It was also
chosen due to its innovative impact on the software industry which might be an interesting
factor to discuss later on. In this chapter, I will present the different practical criteria
behind the choice of case.

7.1. Practical Criteria

A lot of characteristics of a successful and sustainable open source projects were presented
in the prestudy chapters, some of them were backed by several studies and some were
just observations that might not be as relevant to this research as first assumed. These
criteria are mainly thematic, which means that they affected the development process of
the project. However, the case must also fulfil a set of practical criteria which indicates if
it can be analysed in enough depth for this research. The practical criteria are defined as
follows.

7.1.1. Time alive

The chosen project should have existed for some time so that we do not have to predict
the future of the software but can analyse its past. However, the tech industry changes
rapidly. Therefore, the project should not be too old either. For the sake of this research, I
define the time alive span to be three to fifteen years. At the time of writing, the software
needs to have been released between 2005 and 2017 and still be active today.

7.1.2. Activity

It is important that even though the project was released some years ago that it still is
active. There are several ways a project can be characterised as active. One metric can be
the number of pull requests in the project repository over a set period. These pull requests
can be from both a core development team or project owners, or by external contributors.
These two sources might also be important to differentiate between. Having an inactive
core team that never accepts external pull requests, or never answers questions on the
forum or comments might impact the survival of the project.

7.1.3. Success

The project chosen should also be fairly successful which in this case means a high number
of downloads and also preferably a high number of active users (active in this case means
reported use over some time). A highly successful project can also be an indicator of the

46

impact on the industry in terms of innovation. If the project is highly innovative, it might
be an important part of becoming sustainable.

7.1.4. Growth

In terms of growth, the steeper the curve the better. Having a fast-growing project comes
with its own challenges and obstacles and how the team overcomes these might be crucial for
a sustainable project. In addition, how open the team is to input from external contributors
is crucial for the project to be popular and or its survival.

7.1.5. Innovation

It is not mandatory, but I think it would be more interesting to analyse a project that has
had a revolutionary or innovative impact on the tech industry. It would be interesting to
see how being an open source project has affected this aspect.

7.1.6. Start-up

Ideally, the project should not be an internal project in some large million dollar company.
This is because having a start-up that has to find their own investors and does their own
venturing will potentially take more thought-through decisions, and there are few projects
out there with large enterprises having their back if the project should fail.

7.2. Thematic Criteria

Choosing MongoDB as the case for this thesis was mainly based on the fulfilment of the
practical criteria and that, on a surface-level, it was labelled open source. However, after
studying it more closely, MongoDB turned out to have a different approach to the whole
idea of open source than most other projects and the definitions of open source projects
in general. From my findings, MongoDB turned out to be an edge case in the open source
world but a part of it nonetheless. The original intention of this thesis was to analyse a
more generic example of an open source project to uncover its success factors, fragility
and eventual other secrets to sustainability. However, instead of abandoning MongoDB
as a case in favour of another project, MongoDB’s success story piqued my interest and I
wanted to see if their utilisation of open source and the platform ecosystem was the key
to their huge commercial success.

47

Part III.

Case Study: MongoDB

48

8 | The History of MongoDB

Today, MongoDB stands as the number one choice of NoSQL database system in the world
[83]. The term NoSQL was first defined back in 1998 by Carlo Strozzi who used the term
to state that his "Strozzi NoSQL Relational Database" did not support the traditional
Structured Query Language (SQL) interface [84]. However, the term used by Strozzi does
not have the same meaning is NoSQL in the 21st century. MongoDB has grown from a
small team of developer into a large company with over 1900 employees and $250 million
in annual revenue and has built a great ecosystem based on open source [20]. This chapter
will take a closer look at the history of MongoDB and their rise in the database market.

8.1. Traditional Database Systems

To better understand why a NoSQL database was innovative and much needed, we first
need to look at traditional database management systems or DBMS. Before computers
became commercialised, companies used to store all of their data on customers, employees,
economy etc. on paper and in folders. As their data collection grew it became tedious to
organise and maintain due to a large amount of physical material. It was taking up lots of
storage space and designated people had to be hired to keep track of every single piece of
data. When digital databases came about, this task became much easier by using a DBMS
which is defined as "a set of software and an operating system that is used to maintain
a database". The database systems allow the user to perform so-called CRUD-operations
which stands for create, read, update and delete. This way data could be easily accessed,
modified and maintained by companies and also allowed them to gather more data as they
no longer required physical storage space for folders and papers [85].

A DBMS uses a function called querying which allows the users to "ask" the database
to find certain information for them. A query can also be used to generate new informa-
tion like "how many of our employees are male" or "how many sales were under $100,000
last year". There are many different types of database management systems but the most
common, still to this day, is the relational database management system, or RDBMS. The
data in RDBMS are organised in tables, probably to feel similar to ways of organising data
before the computer. The tables are constructed of columns and rows, where a column

Figure 8.1.: MongoDB Inc. Logo

49

in an RDBMS is called a field and a row is called a record. An example of a field can be
the name of a product, the price of that product, the weight of the product and so on. A
record contains a specific entry where each of the fields is assigned a value (even though
fields are allowed to be empty some times). An example is a product named "apple", the
price of "$1" and the weight of "100g" [85].

One of the most important features of an RDBMS is that the database can be spread
across several tables and connect them together through what is called relations. This is
in contrast to flat-file databases where all of the data is stored in a single table. These
relations are what allows the users to perform advanced and complex querying to locate
exactly the data they need. This is possible by using what is known as SQL, or Structured
Query Language. It consists of several commands to perform the previously mentioned
CRUD-operations, namely Select, Insert, Drop and Delete. SQL allows aggregations of
several tables to be made temporarily so that the user can see connections between data.
For example, one table might contain a client name and address, another table might con-
tain an address and the price of the house at that address. By only knowing the name of
the client, the user can construct a query to yield the price of the house in which the client
lives [85].

The main advantage with these systems over physical folders and papers is that the
database becomes accessible by more than one person or a small designated group. Queries
can even be performed close to simultaneously by different users on the same database.
Another advantage is that the data retrieved is presented in a well-formatted manner and
is concise each time it is retrieved. This is due to the structured table format implemented
by the RDBMS. However, an RDBMS is not the solution to every database requirement.
There are some disadvantages to these systems as well. Structuring the data this way can
easily become very complex and require personnel which specialise in this sort of table
management. Even for skilled people, setting up a robust and consistent RDBMS can
challenge even the most experienced of developers due to complex data relations. It might
sometimes also require a more powerful machine to run the system on once the company’s
data collection grows. There are many implementations of RDBMS out there including
but not limited to MySQL, Microsoft SQL Server and Oracle. All of these use SQL to
perform the operations on the database [85].

8.2. The Limits of RDBMS

With more and more data being generated on the web from social media, advertisements
and new web applications, developers started to realise that traditional SQL databases did
not scale very well with this rapid expansion of the web. RDBMS relies on structured data
which can be organised into tables. Sorting the data in different tables like this requires
the use of primary keys and foreign keys which allows the data tables to be indexed simi-
larly to tree structures. Assigning these keys becomes hard with large amounts of free text
and other unstructured data generated by users online. It also struggles with data objects
that are taking up a lot of storage space, such as high-resolution video. Web applications
were becoming more and more complex and demand several new features from developers.
Because of this, a trend in the market was that developers wanted to use less time main-
taining database relations and more time developing their applications [85].

Enter Eliot Horowitz and Dwight Merriman. In the early 2000s, they were both working

50

at a company called DoubleClick which handled internet ad services. They experienced
the explosion of data on the web first hand and came up with the idea for a document-
based database after realising that they had built over twelve custom workarounds for
their traditional databases to solve their problems. They never found existing solutions ef-
ficient, flexible and scalable enough to solve their particular tasks. Even though relational
databases were, and still are, very powerful, in terms of big data they lacked a simpler way
to store data as objects instead of relations, and a way to scale horizontally. In 2007, they
decided to experiment with ways to improve these features. They drew their inspiration
from cloud computing where software and services were spread across multiple machines
to balance workload. In addition, they observed that many applications were becoming so
complex that they could have over 70 relations in their database just to store a user profile.
Developers wanted more rapid development and releases, and they wanted a database that
"just works" taking the load of database administrators. They realised that a lot of time
could be cut from relation management, thus proposing a document model instead [86].

8.3. Why NoSQL?

As mentioned, an RDBMS does (when designed and implemented properly) provide a ro-
bust and consistent database model. However, the data structures used makes this kind
of system slow when performing large tasks and queries. Also, they scale poorly horizon-
tally due to all the relations between tables. If horizontal scaling, or sharding, cannot be
executed properly, then the time it takes to retrieve data from a single database source
scales with the volume of data that is stored. It also means that all your data has to be
stored in a centralised location. This means that users in Australia might have to access a
server in New York which can lead to annoying delays. You can perform vertical scaling, or
normalisation, by upgrading the server machine with better CPUs and other components,
but this will peak when there is no more room in the physical machine or when there are
simply no better components out there. An RDBMS strives to follow the CAP-theorem
[85].

In short, if an RDBMS follows the CAP-theorem it has:

• Consistency: Every time a user requests to read something from the database, the
most recent entry is returned or the user is informed that an error has occurred.

• Availability: The user can always request data from the database and will always be
given a response that is not an error. This means that the most recent entry might
not be returned.

• Partition tolerance: The Internet is by no means foolproof in regards to message
delivery. Partition tolerance means that the system keeps operating even though
some messages are lost along in the network.

To make sure the RDBMS follows this theorem requires a lot of work, so huge amounts of
both time and resources are invested in database management. As mentioned, when the
amount of data becomes humongous, performing queries on the database takes more and
more time and becomes very hard to maintain. This time consumption is the main reason
the NoSQL-databases were developed. They sacrificed some of the consistency provided
by relations in an RDBMS for faster performance as the databases grow. This was a much
more crucial metric in, for example, social media and other platforms with huge amounts
of data. The name MongoDB is a play on the word humongous and refers to its ability to

51

handle huge amounts of data [87].

Implementing a NoSQL database requires much less time and effort invested in design-
ing detailed and complex relations. MongoDB and other NoSQL solutions operate using
document-oriented storage which means that the data is stored together in the same doc-
ument instead of spreading out across tables in need of aggregation of advanced queries to
acquire. However, it is common to think that NoSQL stands for "No SQL", but it does, in
fact, stand for "Not Only SQL" because SQL operations are still supported in some NoSQL
implementations. Even though a NoSQL database like MongoDB requires less work to set
up and requires no predefined schema, one should not blindly begin storing data without
some idea of how the data is going to look. It is advisable to create a data model, but in
contrast to traditional RDBMS where this is done on the database level, in NoSQL this is
usually done on the application level. This means that even though you have absolutely no
idea of how your data is going to look, or if it is completely dynamic changing its structure
all the time, a document-oriented database can handle it [87] [86].

NoSQL databases are (in general) cheaper to maintain because you do not require as many
system admins to manage the database, both maintaining and expanding if required. Ex-
pansion is the main way to cut cost due to no schema requirement. Cost cuts can also be
made due to the horizontal scaling ability that NoSQL possesses. This means that if you
need to expand your storage units or processing capacity, you add an additional node in
your cluster. You do not need to buy the largest, most powerful machines and components,
but you can combine a set of several cheaper machines into a cluster [85].

It is important to state that even though it sounds like MongoDB and other NoSQL
databases has many advantages they are by no means going to replace RDBMS entirely.
Some systems might have requirements that can only be solved by an RDBMS, for exam-
ple, some kind of system used in the medical field that has to be available all the time.
RDBMS is often the better choice where data has a tight relation, such as a patient journal
[85]. RDBMS are also applicable to normalisation which in the world of databases is to re-
duce, or often remove, redundancy of data. This allows the data to take up as little storage
space as possible, which also results in better performance. But in regards to MongoDB,
their value proposition was to tackle the coming era of big data [86].

8.4. Original Business Plan

When Horowitz and Merriman sat down to the develop what would solve the ever-approaching
big data problems they and others had, their original plan was to develop an app engine,
much like the Google App Engine, and a database system that together would form a plat-
form as a service (PaaS). A PaaS product grants customers a set of resources and tools
to solve their problems often without the need for support. It means that instead of inte-

Figure 8.2.: 10gen Logo

52

grating a product, for example, a database system, into their own ecosystem, they simply
outsource the handling av the database to the service. All they have to do is provide the
service provider with the data they want to store, the service provider handles the lest.
They originally looked to simply combine several already existing, open source solutions
to form their platform but the lack of a suiting candidate for the database system made
them create their own. As previously mentioned, Horowitz and Merriman had already
built several niche database solutions for other companies and projects. They decided to
build a solution that would not only satisfy a niche but that would serve as a generalised
solution for frustrated developers that wanted less to do with databases. They decided
they would build their PaaS from scratch, both the app engine and the database system
which at the time where called ed (for Elliot and Dwight) and p (for platform) respectively,
later renamed MongoDB and Babble [87]. A database system has previously been defined
but it is important to define an app engine as well because its very nature has had an
impact on a very important decision in the MongoDB history.

Today, Google’s app engine has become so popular that the definition of what an app
engine is refers to Google’s implementation. What it really consists of is an infrastructure
that allows developers to build and host applications on someone else’s servers and data
centres, for examples those owned by Google. The 10gen app engine would be written
in server-side JavaScript, being the so-called "language of the web" and a very popular
programming language at the time, and that would also affect how the syntax for their
database system would look. From a developer perspective, this meant less time learning
new technology as there were many similarities in the way they usually programmed and
how the database interface work feel. This kind of solutions, called cloud platforms or
similar, allows the customers to rent computing power through the Internet without the
need for powerful machines at their physical disposal [88].

However, most of their potential customers and beta testers flinched at the thought of
having to use an app engine. This technology was considered restricting and even unneces-
sary at the time. In 2008 when Google’s App Engine launched, all applications had to be
written in Python and were limited to 500MB of storage among several other limitations.
So when 10gen announced that their PaaS would include such an app engine, it was not
well received. Their database project, however, was of interest to many who were also
tasked with handling the global expansion of data. Their plan to launch the platform
as a whole package was not successful as stated by Kristina Chodorow, one of the four
early developers on the project, 10Gen had "practically no users". They knew that a bold
decision had to be made [87].

8.5. Why Open Source?

Later that year, as Chodorow so nicely puts it, they "ripped the database out of the
app engine and open sourced them" as two separate projects [87]. However, according to
Horowitz, the plan was to have the project open sourced all along, even the full app engine.
The reason was that developers often are scared of proprietary software solutions, espe-
cially when it comes to security and handling personal data. By open sourcing the project,
every developer could inspect and verify the code and eventually figure out exactly how
it worked. In addition to this, the goal for 10Gen was to create general-purpose software
which Horowitz believes can never become true general purpose and widely adopted unless
it is open source, again because of the fear of closed source.

53

When asked for his reflections on how MongoDB would look if they had not open-sourced
the project, Horowitz stated that

No one would have used it.

which sets things into perspective because of how huge MongoDB is today. When your
project is open source, a whole new community of people and companies becomes interested
in it, quite many simply because they are very interested in open source and want to push
that paradigm forward.

You open up a whole new avenue for yourself as a way of getting people inter-
ested and exited about your product.

This helps to spread the news of your product by word of mouth in the ever-growing, global
open source community.

It seems being open source helps with getting the word out about your product, which
is what you would want as a new startup. But what about trade-offs? Is there any-
thing that you miss out on when choosing open source over closed source? As previously
mentioned, open source projects are usually free of charge and the licensing is commonly
understood, so anyone can download it and start working with it right away. From a
money-making perspective, having the product free of charge means losing revenue from
individual sales. You also end up losing the users that do not use it correctly and then do
not ask for help. These users might end up having bad experiences with the product and
you cannot do anything to help them. Horowitz realised this and went to great lengths to
be present when he showcased MongoDB to his friends and others who were existed about
the project. He even stated that he used to reply to every single post about MongoDB on
forums online to make sure people knew that his assistance was just a comment away [89].

8.6. Early Stakeholders

At the beginning of the project, Horowitz and Merriman ventured to gather funding and
their first potential customers were developers who facing challenges with the large amounts
of data at hand. With their impressive portfolio of previous, very successful startups,
Horowitz and Merriman gathered quite many investors and raised as much as $81 million
through venture capital funding. Big names at that time, and also today, like Intel Capital
and Red Hat, were some of the most eager. Funny enough, SourceForge was also involved
very early on. As for stakeholders, it was mainly the team themselves as the investors
simply put their faith in the 10Gen to come up with a feasible solution. After all, they
were experimenting and they were never sure if the product they were developing was even

Figure 8.3.: Milestones from the MongoDB website’s about page

54

something that would satisfy their own needs, much less the needs of others [89]. As with
many software projects, there is always a risk that the project would not be as feasible as
first promised but with a large amount of capital raised 10Gen could take their time to
develop the platform.

As mentioned, 10Gen was not the first startup that Merriman and Horowitz had been
a part of. They both worked on DoubleClick, an Internet ad serving service which Merri-
man founded and Horowitz worked on as a software engineer. In the early 2000s, Horowitz
and Merriman left DoubleClick to found ShopWiki, a search engine for e-commerce. Dou-
bleClick ended up being acquired by Google in 2007 for $3.1 billion, and ShopWiki which
was acquired by Oversee.net which at the time operated several large comparison sites for
travel and finances. The CEO and President of Oversee.net at the time, Jeff Kupietzky,
stated:

ShopWiki is the most comprehensive shopping search engine in the market. -
Jeff Kupietzky [90]

Only two years after ShopWiki was founded, Merriman and Horowitz left ShopWiki to
found 10Gen. There is no doubt that these two had an impressive portfolio of successful
startups to show to potential investors when venturing for 10Gen. Horowitz was even
named one of the top 25 entrepreneurs under the age of 25 by BusinessWeek in 2006 [91].

How do previous accomplishments by developers affect projects? It was clear that both
Merriman and Horowitz had made names for themselves as entrepreneurs, quite successful
ones at that too. How would the lack of this reputation have affected the product?

It’s not about the developers, it’s about the organisation, and that the organi-
sation is someone that you can rely on that is not going to destroy the product
by accident. - Eliot Horowitz A.2

By being open source, it allows surveillance of the code by the eyes of the community to
avoid these "destructions" that Horowitz speaks of. For them, the more valuable asset
from successful startups was experience running companies, not necessarily the amount of
funding from investors. They realised that there were resources to be leveraged by being
open source A.2.

8.7. Expansion

MongoDB was growing. As the years went by, more and more companies were interested
in a way to tackle the data volume problem and sought out MongoDB as a solution. They

Figure 8.4.: Milestones from the MongoDB website’s about page

55

had managed to establish a great reputation in the open source community and their
product was being praised. In 2011, 10Gen launched their first cloud service, a year after
they hired their 100th employee and started to provide 24/7 support for their customers.
Word of MongoDB spread like wildfire, and only a year later 10Gen signed their 1000th
customer and 250th employee. They also realised that it was the name MongoDB that
was on everybody’s lips, while the name 10Gen were rarely spoken in the same context.
Therefore, they decided to rename the company MongoDB Inc. to relate closer to their
product. They launched their first MongoDB conference called MongoDB World in 2014
attracting over 1500 attendees. In the same year, MongoDB Inc. acquired the company
WiredTiger who make a storage engine of the same name, which was also open source.
MongoDB has great performance and scalability for applications that relied primarily on
database reads. However, their current storage engine was not performing nearly as well
for writing. They had plans to build a new engine that would solve these problems for
them. However, the developers over at WiredTiger had gotten word of their troubles and
decided to fork MongoDB, implement their own engine in their system, send it back and
say "Hey, will this work?". WiredTiger had achieved much better scalability for database
writing, implemented it in MongoDB, and MongoDB did not have to lift a finger. This
would allow MongoDB to be a good choice for customers in IoT with lots of sensor data
being written to databases, data logging systems and other write-heavy scenarios. And so
WiredTiger was acquired [89]. MongoDB was awarded one of the best places to work by
Glassdoor that same year, and later in 2016, they hired their 500th employee [92].

Figure 8.5.: Milestones from the MongoDB website’s about page

8.8. MongoDB Today

MongoDB is still strong believers in open source and provides a community edition which
is completely free of charge, as well as an enterprise edition which is under a commercial
licence but is free to try out for evaluation purposes and non-commercial development.
Large enterprises are often very concerned about security and data breaches so the enter-
prise edition of MongoDB provides additional security features on top of the community
edition to satisfy these concerns. This additional layer of security and support is what

Figure 8.6.: Milestones from the MongoDB website’s about page

56

MongoDB monetises on primarily, because of the commercial licence. This model is called
Open Core and refers to the fact that the core part of the system is open source, but there
are additional proprietary features on top which had to be paid for [93].

Even though MongoDB’s success escalated when they dropped their initial plans for a
complete platform and to solely provide the database, in recent years MongoDB has moved
back towards being a full-blown platform in itself once again, which according to Horowitz
is what they always envisioned MongoDB to be. The important thing to note is that
every single expansion, new service or improvement has one common purpose, to make
data handling as easy as possible for all developers. MongoDB is still all about making
the database a problem of the past [89].

Today, MongoDB offers several services that target specific parts of the development stack
as they move closer and closer to the application layer as well as expanding the stack.
These tools include MongoDB Stitch for front-end developers to use a serverless service for
their database needs and MongoDB Atlas which is a database service in the cloud which
allow developers to focus more on their application development rather than database
management. MongoDB Inc. has also recently (as of spring 2020) acquired Realm an open
source database system which is one of the most popular ways of working with data on
mobile devices. This new fusion, called MongoDB Realm which is soon to be released,
allows real-time data synchronisation between desktop and mobile devices even with dif-
ferent operating systems. As Horowitz stated in the announcement of MongoDB Realm
at MongoDB World 2019, "MongoDB will be the best way to build data-intensive appli-
cations anywhere" [94].

The task of building a general-purpose database that will fit every need is not to be taken
lightly. Along the way, the battle between SQL and NoSQL still waged and still does today.
Even though much of the SQL based technology was outdated when MongoDB entered
the scene, by no means was it the end of relational databases. Also on the open source
scene, tools like PostgreSQL had constantly been improving, and other NoSQL tools like
Amazons own DynamoDB, Oracle NoSQL and CouchDB just to name a few are still trying
to fill some of the use cases where MongoDB can be bested. However, in an interview, the
current CEO, Dev Ittycheria, stated MongoDB was way ahead of their competitors [95].

I think three, four years ago, it wasn’t clear who the winner of the NoSQL

Figure 8.7.: Numbers from the MongoDB website’s about page

57

market was going to be. We were ahead, but there were other people who were
within shouting distance. I think that’s become very clear who the winner of the
market is. - Dev Ittycheria [95]

MongoDB is constantly expanding its product farm as well as improving their existing
solutions. The fact that MongoDB today is the champion in the NoSQL marked can have
many reasons, some financial, but also in regards to how the company is structured, how
they interact with the open source community of developers and their interaction with
their potential and existing customers which is what will be discussed in more detail in the
next following sections.

58

9 | Organization

To understand how the success MongoDB could come to pass we have to take a closer look
inside at how the gears were, and are, turning. This section will look at the organisational
structure of the company, what tools they use to organise development both internally and
externally towards outside contributors, and finally how the developer forums where the
main interactions between MongoDB and its community go down.

9.1. The Company

Some of the big names in MongoDB has already been mentioned, namely Dwight Merri-
man and Eliot Horowitz. As of today, they both still work at MongoDB as Co-founders,
and Horowitz is also the CTO of the company. Several of the other top employees at Mon-
goDB is listed on their website under the leadership section [96], including also previously
mentioned CEO Dev Ittycheria. Since the beginning, the company has grown from a small
team of 4-5 developers to having over 1800 employees. The vision of the original team
was always to expand and make the product available to as many users and customers
as possible, thus the need for great marketing teams, support teams, security teams and
developer teams.

9.1.1. Development

Even though MongoDB is an open source project and is strong believers in the open source
and free software movements, the way their products are developed are rather unusual for
an open source project, at least from what we usually think of as open source. MongoDB
has a more closed approach than other projects by having most of the development of
their main products, like the core database, done by employees of the company. Ittycheria
himself has, in fact, stated that MongoDB is not like a traditional open source project
because their rationale for going open source was never about getting a lot of help and
contributions from the community. It was to "drive adoption" [97]. By being completely
transparent as well as providing a quality product, MongoDB views their community not as
contributors but as users. He compares MongoDB to other projects which larger companies
have open sourced some of their systems under a very permissive licence to create developer
engagement. This is possible for companies where the software they release is not the core
of their business. The examples used are Yahoo’s Hadoop and Facebook’s Cassandra, both
also being database systems.

[...] MongoDB was built by MongoDB. [...] We open sourced as a freemium
strategy; to drive adoption. - Dev Ittycheria [97]

A freemium strategy is to provide the product for free but to require payment for certain
extra features or support [98].

59

MongoDB has however still benefited from community contributions. Seeking to become
a pure general-purpose product, the database had to work with a wide set of tools and
programming languages. Many of the drivers for integration with different programming
languages were originally developed by the community. By focusing on developing a very
attractive core product, once the community found MongoDB to be the most compelling
database on the market, the developer power at the ready to develop drivers for the newest
popular framework is really what drove their wide adaption. Horowitz has stated that they
never had the time to even consider other competitors in the market because they were so
focused on making other developers successful and productive [89].

9.1.2. Products

The current product farm of MongoDB is huge [99]. It has grown along with the company
and is the result of analysing the customer’s needs. Some of these products are inspired
by community developed products which are deprecated or lacked core functionality.

MongoDB Community Edition

Their primary product is, of course, the open source database itself which is free to down-
load and use. This version of the database is called the community edition and has all the
core features of the MongoDB platform.

MongoDB Enterprise Edition

Next, we have the enterprise edition of MongoDB. It is built on top of the community
edition with extra layers of features and security which can be tailored to each company’s
needs. 24/7 support services also come with the enterprise edition. Some of the security
features include a role-based privileges system and Kerberos authentication.

Other Software Tools

In addition to these two editions of the database, other tools such as Charts and Compass
are built to provide visualisations of your data and a GUI to interact with it.

Cloud Services

MongoDB offers a bunch of cloud services as well which integrates with large cloud providers
like Amazon, Google and Microsoft. Their service called Atlas is a pay-as-you-go service
where you can scale the database to suit your needs and only pay for what you actually
use. Another service called Stitch allows MongoDB queries to be written on the frontend,
execute certain events in response to actions in the web application and lets you interact
with your data in Atlas through the client application code. The much anticipated Mon-
goDB Realm is also on the horizon which will combine Stitch with the newly acquired
Realm and make data synchronisation across multiple platforms easy.

9.1.3. Open Source Licence

Before October 2018, MongoDB has been releasing its products under the GNU Affero
General Public License V3.0 (AGPL) [100]. This licence is published by the free software

60

foundation and is of the strong copyleft type. It is very similar to the normal GPL li-
cence with one key addition that handles modified code that is run on a server but never
distributed.

[...] suppose the program is mainly useful on servers. When (developer) D
modifies the program, he might very likely run it on his own server and never
release copies. Then you would never get a copy of the source code of his
version, so you would never have the chance to include his changes in your
version. [...] Using the GNU Affero GPL avoids that outcome. If D runs his
version on a server that everyone can use, you too can use it. Assuming he has
followed the license requirement to let the server’s users download the source
code of his version, you can do so, and then you can incorporate his changes
into your version. [...] - The Free Software Foundation [100]

As MongoDB, and many of its users, provide services that are in fact server based like this,
the AGPL allows transparency in all potential version of the MongoDB database system
as well as the ability for those who wish to download the source code and build their own
version.

On October 16th 2018, MongoDB decided to abandon the AGPL licence in favour of
their own licence; the Server Side Public License (SSPL) [101]. The reason is according
to MongoDB based on the importance of open development and that the AGPL is not
specific enough regarding vendors who provide software as a service, and that large cloud
vendors are testing the limits of the AGPL by trying to monetise on all the value of open
source projects like MongoDB without giving back to the communities.

Rather than litigating this issue in the courts, we are issuing a new license
to eliminate any confusion about the specific conditions of offering a publicly
available MongoDB as a service. This change is also designed to make sure
that companies who do run a publicly available MongoDB as a service, or any
software subject to the SSPL, are giving back to the community. - Server Side
Public License FAQ [102]

This new licence is based on the GPL, but is issued by MongoDB and has not yet been
approved by the Open Source Initiative. In fact, MongoDB decided to withdraw the SSPL
from the OSI review process, which has sparked a lot of discussion of the definition of
open source. In a public email, Horowitz stated that it was out of respect for the time and
resources of the OSI board and the rest of the free software and open source community.

We continue to believe that the SSPL complies with the Open Source Definition
and the four essential software freedoms. However, based on its reception by
the members of this list and the greater open source community, the community
consensus required to support OSI approval does not currently appear to exist
regarding the copyleft provision of SSPL. Thus, to be respectful of the time and
efforts of the OSI board and this list’s members, we are hereby withdrawing
the SSPL from OSI consideration. [...] In the meantime, current and future
versions of MongoDB Community will continue to be offered under the SSPL.
Over the coming days, we will update the messaging on our website to make it
clear that the SSPL has not been approved under the OSI’s definition of “open
source.” However, MongoDB remains free to use and source available under the
SSPL, meaning users are free to review, modify, and distribute the software or

61

redistribute modifications to the software in compliance with the license. - Eliot
Horowitz [103]

This exception is from the mail thread exchange between MongoDB, and OSI and its
community from march 2019. The discussion goes on for several threads, each weighing
in both in favour and opposition to the licence. The discussion boils down to the need for
extension of the term strong copyleft. As of today, the licence is still not approved but it
has not been resubmitted either [102].

9.2. The Community

Even though most of the development seems to be conducted by employees at MongoDB,
they do have a community of developers that contribute to the code base from all around
the world. Since MongoDB as a company has grown so large in the last years and began
offering several other products in addition to just the database, the community has also
spilt following each different branch of the MongoDB products. To organize the community,
there is a code of conduct that must be followed if you as a developer wish to contribute
to either of the projects.

9.2.1. Code of Conduct

MongoDB’s code of conduct is available on their website and are neatly presented as
two-word sentences that can be elaborated on by simply opening an accordion element
associated with that two-word sentence. What is important to note is this code of conduct
who the targeted readers are, which are not simply external developers. MongoDB’s code
of conduct is for everyone to follow which includes employees, customers, partners and
leaders as well as those who make up the "external" part of the community. I have put
the word external in quotation marks because MongoDB strives for their community to be
one as every community members participation is validated and appreciated regardless of
being an employee or external developer. The code of conduct is split into two parts, one
for behaviour in general and one specifically regarding the use of the forums. A question
asked should be specific and strive to not go off-topic. They specifically state that the
community consists of many volunteers and that answers to a question might take some
time, so it is important to be patient. They encourage to share experiences on the public
forums instead of closed email or other sources so that people can learn from the successes
and failures of others. And finally not to spam the forums with links that violate their
terms and conditions [104].

9.2.2. Key Contributors

From the original release in 2009, the MongoDB ecosystem has grown quite substantially.
I asked Horowitz if he could name any key persons in the community. To his knowledge,
there were not singular people that stood out in the community.

No individual person, I think it’s really been a mix of things. [...] The core
database has not a massive amount of individual contributors working on it.
Which makes sense, databases are not something people just go in an goof off
on in the weekends, because they are big and complicated and messy. - Eliot
Horowitz A.2

62

He then states that where the community thrives are all the areas around the core database.
This includes things such as drivers for different languages, or connectors to services like
Kafka. This statement is justified by the fact that most contributors to the core database
project on GitHub, as well as some of the most used drivers, are in fact Mongo employees
[105]. The development of more niche drivers and tools done by the community in the
MongoDB ecosystem seems to be one of the company’s greatest strengths. By having
MongoDB be a choice in almost every developer scenario allows very broad adoption.

9.2.3. Applications Built by the Community

As MongoDB has grown through the years, more and more of the community developed
drivers has been taken over by the company and developed by them. They are still open
source, and contributions are welcome and MongoDB can confidently put their name on
the quality of the product. Today, almost every driver for commonly used languages are
officially developed by MongoDB and the more obscure ones remain developed by the com-
munity. However, they are linked through the official MongoDB website but MongoDB
makes sure to specify that they are not supported officially in any means [106].

In addition to drivers, there are tools built in the MongoDB ecosystem to make certain
tasks easier or more approachable for developers. Mongoose is such a tool meant to make
it easier for developers to model their application data into something that can be saved
in MongoDB. Robo 3T (formerly Robomongo) is another such tool which provides the
users with a GUI to interact with their MongoDB database and perform simple as well as
advanced operations without having to write everything in a terminal.

9.3. Forums

As mentioned in the code of conduct, it is encouraged to share experiences with the prod-
ucts, not only from a developer perspective but also from a product owner or product
manager perspective to evaluate if MongoDB is the right solution for their business or
start-up. In other words, there are parts of the forums dedicated to several levels of tech-
nical competence. To narrow this down a bit, one can see the forums as containing two
groups of people, those who use MongoDB as a product in their own business or project
and those who help develop the product that is MongoDB.

9.3.1. User Forums

In the user forums, one can see the code of conduct shining through as people are usually
very friendly in their phrasing, both the person asking as well as the respondents.

After digging through both of the forums, I have found a pattern that new people in
the community tends to introduce themselves with a post stating who they are and what
their experience with MongoDB is. This is not written in the code of conduct as some
mandatory step but is simply a norm. An example from the newest welcome-post at the
time of writing is as follows. The names of the developers have been anonymised in this
thesis because I have not gotten their explicit consent to use their name, even though it is
currently available on the public community forums at the time of writing.

Hi all, my name is Developer#1 and I’ve been working with MongoDB off and
on since the 1.8 days. In my current role, I don’t do much database work, but I

63

do act as an internal consultant for teams running MongoDB and Cassandra.

Fun facts:

• I spent two years working with the education team as a TA for several of
the online University courses.

• I was a part of the MongoDB Masters program.

• I was awarded the first MongoDB Administrator’s Certification.

• I’m a Colorado native and have never been downhill skiing

• I hope to share what knowledge I can and look forward to learning from
everyone.

I hope to share what knowledge I can and look forward to learning from every-
one.

This kind of posts falls under a tag in the forums called welcome, and every single post
gets responses from other developers in the community wishing them welcome, pointing
them in the right direction where their expertise can be most useful, and some of the
existing developers might actually be looking for this particular person as they have the
exact experience they are looking for, thrilled to see them join. Some of those who write
these welcome-posts are returning developers, as is the case of Developer#1 presented
above. This sometimes leads to old colleagues or students/teachers getting in contact.
The comment below describes this.

Hi Developer#1, I remember when you were a teaching assistant on one of the
MongoDB introductory courses that I took. Maybe more than one? I’m still a
MongoDB user. And I really ought to sign up for additional classes soon – and I
need to finish the aggregation course I had started long ago but somehow paused.

Thanks so much

Developer#2

The forums have high activity levels and most questions get answers or comments within
a few days, either as answers to solutions or pointing the questioner to another post where
that same question has been answered before [107].

9.3.2. Developer Forums

As mentioned, there is another forum primarily for those who wish to contribute by de-
veloping the products themselves. To be able to contribute any developer must first sign
a contributor’s agreement. I am no lawyer, but to my understanding, in short, you allow
MongoDB to claim the rights of the work you do, being adding new code or modifying
existing code in the repositories. It also makes sure that the code you write and contribute
is not owned by some other third parties which can become a legal issue. After the agree-
ment has been approved, you can register for an account that lets you access the MongoDB
Jira board. Jira is a tool to track the progress of a project through rows and columns with
small Post-It-like notes on them containing details of a specific part of the system to be
implemented or fixed. This is the primary place for developers to interact as they can pick
an already existing issue or feature, discuss possible solutions and, once ready, submit pull
requests connected to a specific Jira task [108].

64

Some also tend to use a Google Groups forum to submit technical questions that are
not necessarily suggesting improvements or changes, but pointing out details in the code
that are not easy to understand at first glance. Occasional improvements suggestions or
bug reports do exist in this forum, but the authors are encouraged to take it to the Jira
board and submit tickets there. In addition to these technical questions, the official release
notes of different builds of the core server are also published in this forum.

To try and centralise all of the community activity, being it usage related or development-
related questions, MongoDB released their own community forum on their developer hub
platform. A single hub for all things related to developing, learning, sharing and discussing
MongoDB [109]. The developer hub itself launched in march of 2020.

The Developer Hub is the place to learn about all things MongoDB [109]

9.3.3. MongoDB World

MongoDB’s size and broad usage have also inspired the company to host their own annual
conference with keynotes and workshops focused on MongoDB. This is also the arena where
the company reveal big announcements like acquisitions or partnerships, new products or
other announcements worthy news like new leadership. In 2019 MongoDB World had over
2000 attendees, over 100 talks, 200 Ask the Experts sessions and a Hackathon with 900
participants from around the world. MongoDB World is not only for the company to show
off their products, but also an arena for developers to meet and discuss their experiences
with MongoDB related development. This allows for community members that usually
talk over the forums to have an excuse to meet up in person. As a result of the COVID-
19 pandemic, many such events as MongoDB World has been cancelled or postponed to
next year. However, MongoDB has been quick and organised a virtual alternative called
MongoDB .Live held later in June [110].

9.4. Community Acknowledgements

MongoDB has many ways of engaging their community in different activities as well as
having several different achievements which individual can attain.

9.4.1. Community Badges

One of such ways is community badges. In order to use the MongoDB online forums, you
have to register an account which identifies you when you interact by asking or answering
questions and commenting. These profiles are visible to all who also has got an account
registered on the forums. The community badges one has obtained is shown here. Some
badges are very long hanging fruit to engage people from the very beginning. There are
badges for receiving your first like on a post you have written, for sharing your first post, and
for simply filling out your profile information just to name a few. There is even an exclusive
Star Wars badge for people who logged in on the fourth of May, which is international Star
Wars day. At the other end of the scale, there are badges which are much harder to obtain
and which are used to identify the most active users on the forum. One badge requires you
to visit the forums every single day for a year, another one requires you to have minimum
5 likes on over 300 posts. In addition to obtainable badges, MongoDB staff have their own
badge to highlight the presence of MongoDB employees among the rest of the community
[111].

65

9.4.2. Certifications

The badges obtained on the community forums are only visible there as well. However,
MongoDB offers several educational programs which aim to provide developers with the
skills of what they consider a certified MongoDB professional developer. As proof of their
competence, developers can take certification exams which, if passed, gives them the right
to use certification badges on other sites than the MongoDB forums. These certifications
are meant to help developers land jobs in startups and larger companies which already use
MongoDB or plan to switch over to it and require skilled engineers who know the ins and
outs of MongoDB. They provide both developer certificates which focuses on integrating
existing software and MongoDB, and database administrator certificates who focuses on
maintaining and scaling the database to suit the company needs [112].

9.4.3. MongoDB University

As a measure to prepare developers and administrators for these certificates, MongoDB has
launched MongoDB University which is a free educational platform for anyone who wants
to be proficient with MongoDB. Several courses are ranging from very beginner-friendly
introductory courses all the way to advanced topics like database security. Over 1.5 million
people have registered from over 196 countries [113].

9.4.4. Innovation Award

As part of MongoDB World (and now .Live), annual innovation awards are being handed
out. The award can be won by any individual, group or larger organisation who has built or
is building something with innovative potential. Among the prizes are an actual, physical
award, recognition at the global MongoDB World (or .Live), and a featured story on the
project on the MongoDB blog. The innovation award spans over several different categories
to recognise all kinds of accomplishments reached with the help of MongoDB, ranging from
honouring a single certified professional who has done a great deal for the community, to
companies who has a significant increase in their revenue thanks to MongoDB [114].

66

Part IV.

Analysis

67

10 | Discussion

Open source has indeed made a huge impact in the tech industry in the last few decades
with projects ranging from operating system distributions to electric car batteries. Lots of
research has been conducted on the topics of licences, developer motivations and business
models [43] [10]. The open source model is known for producing highly innovative prod-
ucts that are high quality and thoroughly reviewed and improved by a large community of
peers [16] [17]. The innovative power is intriguing to many who wish to start a business
developing a software product.

Often associated with being free of charge, many believe that open source is not a sustain-
able way to run a company from a financial perspective. To combat this scepticism, many
business models for open source development has been tried and found relatively effective.
With platforms for crowdfunding, making donations to projects, recurring or one time,
are also becoming much easier. These platforms allow developers and other customers to
donate to the projects they see value in and care about [73] [54].

Many projects rely on a large community of contributors to keep the project alive and
attractive in the market. Over time, as projects age, the is always the risk of contribu-
tors losing interest in the projects. In the modern open source world, it is just as much
about keeping projects alive as publishing them in the first place. The excitement around
a product can be short-lived if not nurtured properly. There are many studies conducted
on the incentives and motivations behind contributors, such as community renown and in
some explicit rewards [78] [72].

In light of the cathedral and the bazaar models of developing software, one could argue
that a more cathedral-like approach greatly reduces the risk of project death by contrib-
utor loss because the project is mainly developed by a team of developers high up in a
hierarchy. By managing to build a company with sustainable income around such a group
of developers, the project is more likely to sustain at the expense of having rapid growth
through outside developer power [5] [93].

By adopting a model that is somewhat in between the cathedral and the bazaar, as well
as finding the right incentives for growing a community mainly consisting of users and
reviewers before contributors, companies could arguably gain market advantage through
rapid development, financial gain and adaption. In this chapter, I will discuss my obser-
vations of MongoDB and see if growth has been a product of adopting such a model, and
see if previous research on developer motivation and incentives also apply to a community
of users instead of contributors.

68

10.1. MongoDB’s "Itch"

Writing databases is as Horowitz has stated not an easy task and can quickly become
quite complex, thus requiring special skills, talent and experience. Horowitz and Merri-
man both fulfilled these requirements as developers even before the work on MongoDB
began. Regarding the lesson from Raymond [5] that every piece of great software begins as
a developer’s itch, it is certainly true in the case of MongoDB as seen by great continuous
success. Not only were Horowitz and Merriman scratching their own itch by solving their
own big data issues, but they were reaching out to scratch an itch in the market as well
[5].

Raymond [5] also points out the value in reusing previously written code. Just like the
approach that the GNU/Linux project did by replacing parts of a complete OS one by one
with free software components, MongoDB took a lot of its inspiration from the already
powerful relational database technologies. Instead of reinventing everything from scratch,
they simply made changes to the main parts of relational databases that need to be im-
proved; easier data modelling for developers and scaling horizontally. This implies that
great ideas can come from taking existing solutions and find ways to improve it instead
of reinventing the wheel [89]. Providing source code can speed up this process even fur-
ther as the cogs and gears of a program can be studied in great detail by the community [4].

The original MongoDB team were seemingly not salespersons or great at marketing. All
they did was write about their project on their blogs and talk out it at developer meetups.
However, the word of mouth spreads exponentially. Being open source allows developers
to try it out without having to pay or apply for a trial version. Even more impactful is
the "mouth" of someone famous. Many companies were looking for an easier way to store
data, preferably in a document-based manner just like MongoDB [92]. The popular open
source hub SourceForge was one of the first stakeholders in MongoDB and gave a great
review of a version of MongoDB that was not even at release yet.

MongoDB was arguably at the right place at the right time, as the new generation of
developers that came around in the early 2010s were interested in rapid development and
frequent releases. With relational databases, as applications grow the complexity usu-
ally grows with it and the relations becomes very hard to maintain. A document-based
database like MongoDB was answering the call of these developers for a simpler solution.
Even though MongoDB might have been lucky releasing at the right time, they are still
growing larger and larger even today, so something else has to have driven their popularity
as well. After all, the hardest part of open source seems to be sustainability [4].

10.2. Community Engagement

Research has shown that the interaction between community and project owners is the
quintessential part of open source [78] [43]. Usually, when talking about open source com-
munities, the term refers to contributors who are directly engaged in projects development
by contributing code. In the MongoDB camp, they seem to view the term differently as
they see their community mostly as users rather than contributors. They see them as a
mean drive growth by adoption and word of mouth. When the community has this differ-
ent role, how does that affect their motivation and what incentives, if any, do they expect
from MongoDB?

69

10.2.1. Mobilising

Mobilising the community early one was something Horowitz and Merriman seemed to excel
at. Driven by pure excitement they were showing their product to everyone they knew.
They attended hackathons showing off what their product could do to hacker communities.
Since NoSQL technologies were not that common at the time, it could seem that there
was ambiguity around exactly what problems MongoDB could solve. But the topic on
everybody’s lips was how to tackle big data and people became quite interested when
MongoDB was described to be "easy to use and setup, and great at scaling horizontally".
Since it was written with JavaScript like notation it was also labelled as JavaScript for
databases. It is clear by the lengths they went to advertise and share their product, no
sign of the "field of dreams" was present [74].

10.2.2. First Contact

Many developers dislike being flamed on public forums for asking "stupid questions" or not
abiding by the norms of that particular community forums [4]. MongoDB seeks to tackle
this issue with several means. One is their code of conduct which encourages nice attitudes
towards other community members, as well as serving as a written version of the norms of
the forum. Being precise when asking questions and providing enough details being a few
of those norms. The new developer forum seems to have many ways of encouraging new
community members to be active participants. New welcome posts are still popping up in
the forum every day. With this, MongoDB has lowered to bar for community participation
which appeals to developers need to belong [76].

Another factor that was present in the earlier days of MongoDB was that Horowitz was
tearing down the hierarchy in the community. He went to great lengths to answer every
single question on the forums, and when the consumer and the CTO communicate directly
like this the consumer feels heard and valued as an important part of the community [81].
He was even able to talk to me in his otherwise busy day.

10.2.3. Gifting Culture

In traditional projects where contributions are welcome, the gifting culture is much more
visible. By abiding by the bazaar model, the developers set expectations for the commu-
nity to give something back to the project. In these cases, the gift of code is returned by
the gift of code (or documentation etc.). The point is that the gift is given and the one
received is at seemingly equal value, or at least exists in the same domain [10].

By closing off the project for contributions, MongoDB sends the signal that they do not
want anything in return. Instead, they just want the community to reap the benefits of
using an open source tool that is easy to just start playing with right out of the box without
having to worry about licensing and other legal issues. However, there is no such thing
as a free lunch, and MongoDB does, in fact, seem to want something in return but it is
not something that the individual user can give. They want broad adaption, they want a
reputation, they want great reviews and a solid word of mouth. By using the community
as advocates MongoDB has become the first choice of many developers needing to choose
a database [10] [83].

A solid adaption not only grows MongoDB as a single product but draws the database
market’s focus towards the realm of NoSQL in favour of other technologies. It allows

70

projects like MongoDB to control the technology scene. And a bigger market means more
potential sales. As an example, when Tesla open sourced their patents, more cars can use
similar batteries and require similar chargers. This allows Tesla to have other companies
build chargers that are compatible with their cars as well, saving a lot of time and resources
that would have been spent providing charging stations all over the globe [115].

10.2.4. Users over Contributors

Even though MongoDB does not seek contributions as gifts, they still value their product
adaption very highly. They believe that through engagement and simply reaching many
peoples lips their product will always be in circulation among options for databases when
building software. The recent aggregation of their developer and user forums into the
developer hub have in essence made the potential number of users that can interact with
each other the union of all the forums. This means that people who usually stuck to one of
the forums can discuss and interact with the people who stuck to one of the other forums,
thus extending the network of possible interactions [10] [107].

This aggregation also means that MongoDB can better monitor the feedback the commu-
nity provide. Their vision has always been aligned with the agile principles of appealing
to the customer’s needs and really taking in their feedback [62].

10.2.5. Virtual Incentives with Value

MongoDB provides its users with many forms of virtual achievements and other incentives
of value. Their badge system has low tier badges which are easy to obtain as well as
higher-tier badges which are harder to obtain. They can serve the purpose of satisfying
personal accomplishment as well as renown in the community. It seems that it also satisfies
the developers need to belong as merit systems tend to encourage too more interactions in
the forums [76] [78].

Perhaps the most valuable obtainable asset in the community is the professional certi-
fications which can be taken through MongoDB University. These certificates serve as
proof that developers have the skills needed to handle MongoDB implementations and
management. By taking a glance at the curriculum it does not seem to take a very long
time to complete. This is also a means of including the community since the sense of
accomplishment with MongoDB technologies are low hanging fruit [43].

I do not have data which can verify the existence of monetary incentives driving con-
tributions to MongoDB but due to its size and wide adaption among larger companies, it
seems possible that they exist.

10.3. The MongoDB Ecosystem

The idea of having the core product more restrictive towards accepting contributions seems
to have lead to the community seeking expiration in applications around the product, thus
expanding the platform ecosystem.

71

10.3.1. Focus on Platform

This seems to be a deliberate choice by MongoDB as driving the idea of general-purpose
requires a solid collection of interfaces, in this case, drivers. In the modern software market,
single products can no longer gain a competitive advantage. Platform ecosystems enable
customer lock-ins which again leads to wider adaption and even more customer lock-ins
[71]. By growing a platform ecosystem thus their product’s general-purpose, smaller micro-
segments of markets can be penetrated which are usually inaccessible by companies who
solely provide single products or services. MongoDB has by doing this been able to capture
the long-tail; the niche markets.

10.3.2. Rapid Development

Today the company has over 1900 employees and most of the drivers are now being officially
developed by employees at MongoDB. Before the company was this large, the community
was still huge due to the adaption of MongoDB grew faster than they managed to hire more
employees. The sheer size of the community has enabled extremely rapid development of
new drivers once certain technologies suddenly become the new craze in the tech world.
This was the case with Node.js, where a community developed driver was released just a
few days after the launch of Node.js [89].

Being omniscient in an ever-changing tech world is close to impossible but having a commu-
nity look at problems, and solutions, from any possible angle, can help you as a company
see things that you would otherwise never discover. This seems to be the case when Mon-
goDB acquired the WiredTiger engine. Since MongoDB was open source and transparent,
the folks at WiredTiger downloaded the code and built their own system into MongoDB,
sent it back to Horowitz and the rest of the team and asked for their evaluation. This event
led to MongoDB acquiring WiredTiger without MongoDB having to lift a finger. Open
source allows smaller startups like WiredTiger to perform actions like these in pursuit of
being bought up, which is a quite common goal in the entrepreneur world [89].

10.3.3. Acquiring Community Projects

Many of the drivers for MongoDB has been built by the community. However, as the
company has grown over the years more and more of these drivers have been fused into
the company from the community. More and more of the drivers are now official drivers,
meaning that MongoDB employees are developing them. Some of them simply got an
official MongoDB sticker smacked onto them claiming them as they were, others had to
be rewritten from scratch to abide with the driver guidelines developed by the MongoDB
staff. By issuing a guideline for how every single driver should behave, they strive to make
MongoDB a familiar, seamless experience regardless of what programming language is be-
ing used.

The community’s reaction to these fusions has varied but more than often been posi-
tive. They are still open sourced under the same licence as before, so contributions are
still welcome just as they were when the drivers were still community-based.

72

10.4. Business Model

MongoDB seems to have been flexible with their business model, utilising different strate-
gies at different stages in the projects lifetime. Their current business model seems to be
something that not many other competitors apply, so it might be a key to their current
success and continuous growth.

10.4.1. Project Success

MongoDB has satisfied many of the factors of a successful IT project [47]. Horowitz and
Merriman were both skilled developers with great motivation for their project, and going
to the lengths of answering every question on the forums as well as being present when
demonstrating the product has built superior customer relationships. MongoDB is very
agile and adapts very easily to the tech market, and listens to their customers’ needs. Their
product is pursuing a simple design, is regularly delivered with frequent releases, and they
certainly developed the most important features first; their core database.

As stated by Linus Torvalds, modularity is the key to open source. MongoDB has been
very modular with their products allowing easy expansion of tools in the ecosystem. The
core database might be complex because of the very nature of databases but since their
focus never was to have developers contribute that much to that repository, complexity is
not an issue as an intrinsic cue [68].

Regarding the extrinsic cues, MongoDB used the AGPL licence for a long time which
incorporates strong copyleft. These types of licences are greatly supported in the free soft-
ware camp as well as open source, allowing the choice of licence to be a string extrinsic cue.
They did, however, change it to a non-OSI approved licence which has had its amounts
of consequences (see section 10.5). The user base and developer base are both huge and
has been one of the main focus areas of MongoDB, expanding these bases. It is safe to
say that MongoDB has satisfied a lot of indicators of project success, technical as well as
market success.

10.4.2. Multiple Value Propositions

Stated many times already, finding the ultimate business model for open source projects
can be hard. That said, even though such a method would be discovered, adopting the busi-
ness model to the state of the project is key to its economic growth. Horowitz has stated
that in the early phases of development, they were developing something they wanted, or
at least thought they wanted, as it was quite experimental. They were not sure if anyone
else wanted their software. MongoDB can be seen as a NoSQL movement more than a
market, as it seems they were not sure if their product would even get to a release candi-
date outside of beta [89].

Today, MongoDB provides a collection of different solutions to provide its customers with
the experience they want. The community edition of the database is, of course, free and
fully open source for developers to download and use freely. They also provide the enter-
prise edition under a commercial licence built on top of the community edition with several
extra proprietary features and tools. This allows MongoDB to keep a low and attractive
price point because the core of their product is still free of charge. In addition to the
features, they also provide support either from a distance or by sending employees over

73

to help customers everything up and facilitate the implementation phase. Companies find
this to be very competitive versus other proprietary vendor’s high price tags. This business
model has been applied by many other open source companies and in itself does not provide
the company with the profit it needs to grow as MongoDB has done. However, MongoDB
has heavily invested in its cloud platform Atlas which allows customers to outsource all of
the work of setting up the database and managing it to MongoDB. All they have to do is
provide the data they want to store and how they wish to organise it. Their cloud service
allows customers to interact with their product without ever having to speak to MongoDB
employees, which is desired in some cases [89] [71].

By having both these models, MongoDB appeals to both the larger enterprises with more
complex systems that require the help from trained support staff and the smaller compa-
nies that just need something up and running fast to test their proof of concept through
the very low price point cloud services.

10.5. Choice of Licence

MongoDB’s switch from the AGPL licence to their own SSPL licence has got a lot of
attention from the open source community [103]. They tried to get both the first version
and the second version of the licence approved by OSI but the first one was rejected
and MongoDB withdrew the second one from the review process. This second move was
arguable because the process was taking up a lot of time and resources from OSI but that
MongoDB also meant that the whole review process is faulty.

10.5.1. Debate

The controversy of the SSPL licence has sparked a debate in the open source community
[116]. The purpose of the licence is to hinder corporate giants to monetise on MongoDB’s
technology without having to pay MongoDB anything, thus potentially "stealing" profits
from MongoDB. However, this can also impact smaller startups. If someone running a
much smaller company or start upbuilds something really cool and that their product
heavily relies on MongoDB as a database, then eventually MongoDB could come knocking
at the door and demand that they buy a commercial licence of MongoDB or open source
their own product. The community sees this as an issue as open sourcing your product
might rob them of revenue from proprietary sales. However, the purpose of this thesis is
to find ways for open source to be the most lucrative it can be. In the future we might see
the SSPL licence become open source compliant according to OSI, or that OSI verification
will no longer have the same status in the community.

10.6. Refining Commercial Open Source

The SSPL seems to be another step MongoDB has taken in the right direction towards
refining commercial open source. In the early days of GNU and Linux, open source was an
anomaly. A small thing that no one really understood and acknowledged as a commercial
opportunity. Today open source is at the heart of the most popular mobile system in the
world [12]. The main challenge that commercial open source faces today seems to be finding
the sweet spot in between a closed project and a completely open project. How wide should
the doors be opened for the community to feel that their contributions and feedback matter
while you as a company still remain in control? MongoDB has done many things right.

74

By building their ecosystem of very open projects (drivers and third-party tools) around
a core that is more closed, the excitement and passion for the product are exercised by
expanding the platform ecosystem. The more diverse ecosystem, the more general-purpose
the product becomes which is key to drive adaption along with mobilisation tactics early
on in the project’s life. Regarding their business model, MongoDB’s approach of combining
several different value propositions allows them to compete in multiple markets at the same
time and provide an attractive alternative in all of them. Being too focused on applying
only one model seems to be an economic bottleneck in other projects.

75

11 | Conclusion

The problem definition of this thesis seeks to answer how MongoDB has grown into a
profitable company through their open source products. The answers from the findings are
not clear but can imply where the key to their financial success might lie, which is mainly
in three areas.

By having their core product free of charge, they have eliminated the high price tag that
usually comes with proprietary software. This is a common characteristic of open source.
On top of this, they have utilised several business models, both as SaaS through the cloud
as well as more tailored solutions for larger enterprises. In this way, they offer their services
at very attractive price points and two different markets.

By having the doors to their core product more closed off for contributions which reminis-
cent of a cathedral style approach with slightly open doors, MongoDB’s has directed their
community’s skills and itches towards building an ecosystem around the core software.
This has allowed them to become a viable solution in many different scenarios, in other
words, general purpose. It is not to shove under a rock that the founders of MongoDB
were skilled developers and managed to build a product of great quality early on but their
growth is a consequence of their involvement with the community and listening to their
users and customers, providing them with the features they want. It seems that MongoDB
has utilised the community formed by being open source to drive interest and adoption of
their product.

Their change of licence to one that is not OSI-approved has gotten a lot of attention
in the open source community. It has sparked a debate around whether the open source
definition is not adapted to the modern software market. The licence change directly af-
fects MongoDB’s potential profit and is therefore crucial to their continuing growth. It will
be interesting to see the consequences of this debate in the future. If it is recognised by the
community and OSI in the end, it would be a step in the direction of refining commercial
open source.

11.1. Limitations of the Study

As presented in the method chapter, this thesis has been tossed in turned in many directions
before I landed on the topic that I did. To gather more data from the community, I would
like to have interviewed some random contributors and community members to hear their
reflection on why they chose to join the MongoDB community over another community.
The topic of the thesis becomes closer to marketing than development so more theory on
branding and growth hacking could have been useful.

76

11.2. Further Work

The purpose of this thesis was to shed light on the way MongoDB rose to success by
utilising open source in the hope that they had found the key to commercial open source.
Many of the findings can be argued to be too surface level and ambiguous but the essence
of their business model is clear. It would be interesting to see more research on this model
used elsewhere, in projects where it already exists and to try it out on new projects. In
addition, the debate of what is pure in the open source community is still unresolved and
it would be exciting to read a study that focuses solely on this debate.

77

Bibliography

[1] N. Friedman, “The State of Open Source - GitHub Universe 2019 - YouTube.”
[Online]. Available: https://www.youtube.com/watch?v=jImkk1BxGa4

[2] M. Priyadarshini, “The Top & Fastest Growing Open Source Projects
On GitHub In 2019,” Fossbytes, Tech. Rep., 2019. [Online]. Available:
https://fossbytes.com/top-fastest-growing-open-source-projects-on-github-in-2019/

[3] Red Hat Inc, “The state of Enterprise Open Source: A Red Hat report,”
Red Hat Inc, Tech. Rep., 2019. [Online]. Available: https://www.redhat.com/en/
enterprise-open-source-report/2019

[4] B. Fitzgerald, “The Transformation of Open Source Software,” MIS Quarterly, Tech.
Rep. 3, 2006.

[5] E. Raymond, “The cathedral and the bazaar,” First Monday, vol. 2, no. SPEC, pp.
23–49, 10 2005.

[6] J. Sanders, “Why open source software adoption is accelerating in the enterprise,”
TechRepublic, 2019. [Online]. Available: https://www.techrepublic.com/article/
why-open-source-software-adoption-is-accelerating-in-the-enterprise/

[7] Ben Bromhead, “10 advantages of open source for the enterprise,” OpenSource.com,
Tech. Rep., 2017. [Online]. Available: https://opensource.com/article/17/8/
enterprise-open-source-advantages

[8] J.T.S. Moore, “Revolution OS - Documentary,” 2002. [Online]. Available:
http://www.revolution-os.com/index.html

[9] The Linux Foundation, “Using Open Source Software to Speed De-
velopment and Gain Business Advantage,” The Linux Foundation,
2017. [Online]. Available: https://www.linuxfoundation.org/blog/2017/02/
using-open-source-software-to-speed-development-and-gain-business-advantage/

[10] M. Bergquist and J. Ljungberg, “The power of gifts: organizing social relationships in
open source communities,” Information Systems Journal, no. 11, pp. 305–320, 2001.

[11] “6 pivotal moments in open source history | Opensource.com.” [Online]. Available:
https://opensource.com/article/18/2/pivotal-moments-history-open-source

[12] Hostingtribunal, “111+ Linux Statistics and Facts - Linux Rocks!” 2019. [Online].
Available: https://hostingtribunal.com/blog/linux-statistics/#gref

[13] Massachusetts Institute of Technology, “MIT OpenCourseWare | Free Online Course
Materials,” 2020. [Online]. Available: https://ocw.mit.edu/index.htm

78

https://www.youtube.com/watch?v=jImkk1BxGa4
https://fossbytes.com/top-fastest-growing-open-source-projects-on-github-in-2019/
https://www.redhat.com/en/enterprise-open-source-report/2019
https://www.redhat.com/en/enterprise-open-source-report/2019
https://www.techrepublic.com/article/why-open-source-software-adoption-is-accelerating-in-the-enterprise/
https://www.techrepublic.com/article/why-open-source-software-adoption-is-accelerating-in-the-enterprise/
https://opensource.com/article/17/8/enterprise-open-source-advantages
https://opensource.com/article/17/8/enterprise-open-source-advantages
http://www.revolution-os.com/index.html
https://www.linuxfoundation.org/blog/2017/02/using-open-source-software-to-speed-development-and-gain-business-advantage/
https://www.linuxfoundation.org/blog/2017/02/using-open-source-software-to-speed-development-and-gain-business-advantage/
https://opensource.com/article/18/2/pivotal-moments-history-open-source
https://hostingtribunal.com/blog/linux-statistics/#gref
https://ocw.mit.edu/index.htm

[14] J. Stern, “How open source software is fighting COVID-19,” Open-
Source.com, 2020. [Online]. Available: https://opensource.com/article/20/3/
open-source-software-covid19

[15] GitHub, “Keynote - GitHub Satellite 2019 - YouTube,” 2019. [Online]. Available:
https://www.youtube.com/watch?v=sGC2rwOiaWc

[16] J. Wallen, “10 open source projects that are leading innova-
tion,” 2013. [Online]. Available: https://www.techrepublic.com/blog/10-things/
10-open-source-projects-that-are-leading-innovation/

[17] ——, “Best open source projects of the year,” TechRepub-
lic, 2019. [Online]. Available: https://www.techrepublic.com/article/
the-best-open-source-innovations-of-the-last-decade/

[18] Google, “Why Open Source?” 2020. [Online]. Available: https://opensource.google/
docs/why/

[19] A. Howden, “On the value of open source,” 2018. [Online]. Available:
https://medium.com/sitewards/on-the-value-of-open-source-6c3075837a9f

[20] PR Newswire, “MongoDB, Inc. Announces Fourth Quar-
ter and Full Year Fiscal 2019 Financial Results,” 2019.
[Online]. Available: https://www.prnewswire.com/news-releases/
mongodb-inc-announces-fourth-quarter-and-full-year-fiscal-2019-financial-results-300811992.
html

[21] D. Bretthauer, “DigitalCommons@UConn Open Source Software: A History,”
OpenCommonsLibrary, 2001. [Online]. Available: https://opencommons.uconn.edu/
libr_pubs/7http://digitalcommons.uconn.edu/libr_pubs/7

[22] R. Finkel, “What is an operating system?” in Computer Science Handbook, Second
Edition, 2004, pp. 80–1. [Online]. Available: https://www.howtogeek.com/361572/
what-is-an-operating-system/

[23] “The GNU Operating System and the Free Software Movement.” [Online]. Available:
https://www.gnu.org/

[24] Fossbytes, “Linus Torvalds’s Famous Email — The First Linux
Announcement,” 2016. [Online]. Available: https://fossbytes.com/
linus-torvaldss-famous-email-first-linux-announcement/

[25] Free Software Foundation, “The GNU Operating System and the Free Software
Movement,” 2020. [Online]. Available: https://www.gnu.org/

[26] ——, “What is Copyleft? - GNU Project - Free Software Foundation,” 1998.
[Online]. Available: https://www.gnu.org/licenses/copyleft.html

[27] Tech Terms, “Copyright Definition,” p. 1, 2009. [Online]. Available: https:
//www.investopedia.com/terms/c/copyright.asp

[28] Eric S. Raymond, “Eric S. Raymond’s Home Page,” 2020. [Online]. Available:
http://www.catb.org/~esr/

79

https://opensource.com/article/20/3/open-source-software-covid19
https://opensource.com/article/20/3/open-source-software-covid19
https://www.youtube.com/watch?v=sGC2rwOiaWc
https://www.techrepublic.com/blog/10-things/10-open-source-projects-that-are-leading-innovation/
https://www.techrepublic.com/blog/10-things/10-open-source-projects-that-are-leading-innovation/
https://www.techrepublic.com/article/the-best-open-source-innovations-of-the-last-decade/
https://www.techrepublic.com/article/the-best-open-source-innovations-of-the-last-decade/
https://opensource.google/docs/why/
https://opensource.google/docs/why/
https://medium.com/sitewards/on-the-value-of-open-source-6c3075837a9f
https://www.prnewswire.com/news-releases/mongodb-inc-announces-fourth-quarter-and-full-year-fiscal-2019-financial-results-300811992.html
https://www.prnewswire.com/news-releases/mongodb-inc-announces-fourth-quarter-and-full-year-fiscal-2019-financial-results-300811992.html
https://www.prnewswire.com/news-releases/mongodb-inc-announces-fourth-quarter-and-full-year-fiscal-2019-financial-results-300811992.html
https://opencommons.uconn.edu/libr_pubs/7 http://digitalcommons.uconn.edu/libr_pubs/7
https://opencommons.uconn.edu/libr_pubs/7 http://digitalcommons.uconn.edu/libr_pubs/7
https://www.howtogeek.com/361572/what-is-an-operating-system/
https://www.howtogeek.com/361572/what-is-an-operating-system/
https://www.gnu.org/
https://fossbytes.com/linus-torvaldss-famous-email-first-linux-announcement/
https://fossbytes.com/linus-torvaldss-famous-email-first-linux-announcement/
https://www.gnu.org/
https://www.gnu.org/licenses/copyleft.html
https://www.investopedia.com/terms/c/copyright.asp
https://www.investopedia.com/terms/c/copyright.asp
http://www.catb.org/~esr/

[29] J. Hoffmann, “The History of the Browser Wars: When Netscape Met
Microsoft - The History of the Web,” 2017. [Online]. Available: https:
//thehistoryoftheweb.com/browser-wars/

[30] B. Perens, “Bruce Perens,” 2020. [Online]. Available: https://perens.com/

[31] OpenSource.com, “The Open Source Definition | Open Source Initiative,” 2020.
[Online]. Available: https://opensource.org/osd

[32] ——, “Open Source Initiative,” 2020. [Online]. Available: https://opensource.org/

[33] ——, “History of the OSI | Open Source Initiative,” 2020. [Online]. Available:
https://opensource.org/history

[34] Apache, “The Apache HTTP Server Project,” 2020. [Online]. Available:
https://httpd.apache.org/

[35] PHP, “PHP: Hypertext Preprocessor,” pp. 1704–1704, 2013. [Online]. Available:
https://www.php.net/

[36] “GNOME – An easy and elegant way to use your computer,” 2017. [Online].
Available: https://www.gnome.org/

[37] N. R. Budhathoki and C. Haythornthwaite, “Motivation for Open Collaboration:
Crowd and Community Models and the Case of OpenStreetMap,” American Behav-
ioral Scientist, vol. 57, no. 5, pp. 548–575, 2013.

[38] S. Jr and C. Denner, “Attractiveness of free and open source software projects,”
18th European Conference on Information Systems, Tech. Rep., 2010. [Online].
Available: http://www.eclipse.org/

[39] A. Hars and S. Ou, “Working for free? Motivations for participating in open-source
projects,” International Journal of Electronic Commerce, vol. 6, no. 3, pp. 25–39,
2002.

[40] A. Truong, “Netscape went public 20 years ago today—a
look at how it catalyzed the dot-com boom and changed
the world,” 2015. [Online]. Available: https://qz.com/475279/
netscape-changed-the-internet-and-the-world-when-it-went-public-20-years-ago-today/

[41] Mozilla Project, “History of the Mozilla Project,” 2020. [Online]. Available:
https://www.mozilla.org/en-US/about/history/

[42] Mozilla, “Grants — Mozilla,” 2020. [Online]. Available: https://www.mozilla.org/
en-US/grants/

[43] L. Dahlander and M. Magnusson, “How do Firms Make Use of Open Source Com-
munities?” Long Range Planning, vol. 41, no. 6, pp. 629–649, 12 2008.

[44] T. Kilamo, I. Hammouda, T. Mikkonen, and T. Aaltonen, “From proprietary to
open source - Growing an open source ecosystem,” Journal of Systems and Software,
vol. 85, no. 7, pp. 1467–1478, 7 2012.

[45] SourceForge, “SourceForge - About,” 2020. [Online]. Available: https://sourceforge.
net/about

80

https://thehistoryoftheweb.com/browser-wars/
https://thehistoryoftheweb.com/browser-wars/
https://perens.com/
https://opensource.org/osd
https://opensource.org/
https://opensource.org/history
https://httpd.apache.org/
https://www.php.net/
https://www.gnome.org/
http://www.eclipse.org/
https://qz.com/475279/netscape-changed-the-internet-and-the-world-when-it-went-public-20-years-ago-today/
https://qz.com/475279/netscape-changed-the-internet-and-the-world-when-it-went-public-20-years-ago-today/
https://www.mozilla.org/en-US/about/history/
https://www.mozilla.org/en-US/grants/
https://www.mozilla.org/en-US/grants/
https://sourceforge.net/about
https://sourceforge.net/about

[46] Google, “Android Website,” 2020. [Online]. Available: https://www.android.com/

[47] H. Taherdoost and A. Keshavarzsaleh, “A Theoretical Review on IT Project Success
/ Failure Factors and,” 4th International Conference on Telecommunications and
Informatics, Sliema, Malta, pp. 80–88, 2015.

[48] GitHub, “GitHub Sponsors,” 2020. [Online]. Available: https://github.com/sponsors

[49] E. v. Hippel and G. v. Krogh, “Open Source Software and the “Private-
Collective” Innovation Model: Issues for Organization Science,” Organization
Science, vol. 14, no. 2, pp. 209–223, 2003. [Online]. Available: http:
//pubsonline.informs.orghttp//www.informs.org

[50] E. Musk, “All Our Patent Are Belong To You,” pp. 1–8, 2014. [Online]. Available:
https://www.tesla.com/blog/all-our-patent-are-belong-you

[51] EV Database, “Newest and upcoming electric cars in 2019 and 2020 -
EV Database,” 2019. [Online]. Available: https://ev-database.uk/compare/
newest-upcoming-electric-vehicle

[52] A. Nowogrodzki, “How to support open-source software and stay sane,” pp. 133–134,
7 2019.

[53] R. Sen, S. S. Singh, and S. Borle, “Open source software success: Measures and
analysis,” Decision Support Systems, vol. 52, no. 2, pp. 364–372, 1 2012.

[54] S. Vujovic and J. P. Ulhøi, “An Organizational Perspective on Free and Open Source
Software Development,” in The Economics of Open Source Software Development,
2006, pp. 185–205.

[55] GitHub, “Choose an open source license,” 2020. [Online]. Available: https:
//choosealicense.com/

[56] Free Software Foundation, “The GNU General Public License v3.0,” 2007. [Online].
Available: https://www.gnu.org/licenses/gpl-3.0.html

[57] Sylvain Leroux, “Open Source Licenses Comparison Guide,” 2019. [Online].
Available: https://itsfoss.com/open-source-licenses-explained/

[58] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile Software
Development Methods: Review and Analysis,” VTT, Tech. Rep., 2002. [Online].
Available: http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf.

[59] Techrepublic, “Understanding the pros and cons of the Waterfall Model of software
development,” 2006. [Online]. Available: https://www.techrepublic.com/article/
understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/

[60] D. W. W. Royce, “Managing the Development of large Software Systems,” Ieee
Wescon, no. August, pp. 1–9, 1970.

[61] H. Kniberg, Scrum and XP from the Trenches. InfoQ, 2007. [Online]. Available:
http://old.crisp.se/henrik.kniberg/ScrumAndXpFromTheTrenches.pdf

81

https://www.android.com/
https://github.com/sponsors
http://pubsonline.informs.orghttp//www.informs.org
http://pubsonline.informs.orghttp//www.informs.org
https://www.tesla.com/blog/all-our-patent-are-belong-you
https://ev-database.uk/compare/newest-upcoming-electric-vehicle
https://ev-database.uk/compare/newest-upcoming-electric-vehicle
https://choosealicense.com/
https://choosealicense.com/
https://www.gnu.org/licenses/gpl-3.0.html
https://itsfoss.com/open-source-licenses-explained/
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf.
https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/
http://old.crisp.se/henrik.kniberg/ScrumAndXpFromTheTrenches.pdf

[62] K. Beck, M. Beedle, A. V. Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for Agile Software
Development,” p. 2006, 2001. [Online]. Available: https://agilemanifesto.org/

[63] K. Beck, M. Beedle, and a. V. Bennekum, “Principles behind the agile manifesto,”
Retrieved, pp. 2–3, 2001. [Online]. Available: https://agilemanifesto.org/principles.
html

[64] I. Jacobson, P. W. Ng, P. E. McMahon, I. Spence, and S. Lidman,
“The essence of software engineering: The SEMAT kernel,” Communications
of the ACM, vol. 55, no. 12, pp. 42–49, 12 2012. [Online]. Available:
https://dl.acm.org/doi/10.1145/2380656.2380670

[65] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 5 2016. [Online]. Available: https:
//ieeexplore.ieee.org/document/7458761/

[66] J. Wang, “Survival factors for Free Open Source Software projects: A multi-stage
perspective,” European Management Journal, vol. 30, no. 4, pp. 352–371, 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.emj.2012.03.001

[67] C. M. Schweik, R. English, S. Haire, and R. Conservation, “Factors Leading to Suc-
cess or Abandonment of Open Source Commons An Empirical Analysis of Source-
forge.net Projects,” The European Journal for the Informatics Professional, no. 43,
pp. 58–65, 2009.

[68] V. Midha and P. Palvia, “Factors affecting the success of Open Source Software,”
Journal of Systems and Software, vol. 85, no. 4, pp. 895–905, 4 2012.

[69] P. Bratach, “Why Do Open Source Projects Fork?” 2017. [Online]. Available:
https://thenewstack.io/open-source-projects-fork/

[70] S. O’Hear, “Nokia’s Forking Of Android Could Benefit Google,” 2014. [Online].
Available: https://techcrunch.com/2014/02/24/nandroid/

[71] A. Tiwana, Platform Ecosystems: Aligning Architecture, Governance, and Strategy.
Elsevier Ltd, 2014.

[72] G. Von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots and Rainbows:
Motivation and Social Practice in Open Source Software Development,” MIS Quar-
terly, Tech. Rep. 2, 2012.

[73] V. Hardy, “Why Do Developers Contribute to Open Source Projects?”
2013. [Online]. Available: http://www.apache.org/foundation/,http:
//www.websitemagazine.com/content/blogs/posts/archive/2013/08/29/
why-developers-contribute-to-open-source-projects.aspx

[74] E. B. Swanson and N. C. Ramiller, “The Organizing Vision in Information Systems
Innovation,” Organization Science, vol. 8, no. 5, pp. 458–474, 10 1997. [Online].
Available: http://pubsonline.informs.org/doi/abs/10.1287/orsc.8.5.458

[75] J. Reed, “Open source or bust - developer engagement, Mon-
goDB style,” 2014. [Online]. Available: https://diginomica.com/
open-source-developer-engagement-mongodb-style

82

https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://dl.acm.org/doi/10.1145/2380656.2380670
https://ieeexplore.ieee.org/document/7458761/
https://ieeexplore.ieee.org/document/7458761/
http://dx.doi.org/10.1016/j.emj.2012.03.001
https://thenewstack.io/open-source-projects-fork/
https://techcrunch.com/2014/02/24/nandroid/
http://www.apache.org/foundation/, http://www.websitemagazine.com/content/blogs/posts/archive/2013/08/29/why-developers-contribute-to-open-source-projects.aspx
http://www.apache.org/foundation/, http://www.websitemagazine.com/content/blogs/posts/archive/2013/08/29/why-developers-contribute-to-open-source-projects.aspx
http://www.apache.org/foundation/, http://www.websitemagazine.com/content/blogs/posts/archive/2013/08/29/why-developers-contribute-to-open-source-projects.aspx
http://pubsonline.informs.org/doi/abs/10.1287/orsc.8.5.458
https://diginomica.com/open-source-developer-engagement-mongodb-style
https://diginomica.com/open-source-developer-engagement-mongodb-style

[76] R. F. Baumesister and M. R. Leary, “The need to belong: Desire for interpersonal
attachments as a fundamental human motivation,” in Psychological Bulletin, 1995,
ch. 117, pp. 497–529. [Online]. Available: http://psychology.iresearchnet.com/
social-psychology/interpersonal-relationships/need-to-belong/

[77] E. Kensinger, “New Study Suggests we Remember the
Bad Times Better than the Good,” 2007. [On-
line]. Available: https://www.psychologicalscience.org/news/releases/
new-study-suggests-we-remember-the-bad-times-better-than-the-good.html

[78] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, “Why Do Developers
Contribute to Open Source Projects? First Evidence of Economic Incentives,”
Carnegie Mellon University, Tech. Rep., 2002. [Online]. Available: http:
//www.apache.org/foundation/,

[79] M. Osterloh, S. Rota, and B. Kuster, “Trust and Commerce in Open Source
— A Contradiction?” ResearchGate, Tech. Rep., 2003. [Online]. Available:
www.unizh.ch/ifbf/orga

[80] M. Douglas, Purity and Danger: An analysis of concepts of pollution and taboo.
Routledge, 1966.

[81] B. J. Oates, Researching Information Systems and Computing, 1st ed. SAGE Pub-
lications Ltd, 2006.

[82] A. Tjora, Kvalitative Forskningsmetoder i Praksis, 3rd ed. Gyldendal Norsk Forlag
AS, 285.

[83] M. Keep, “MongoDB: The Most Wanted Database by De-
velopers for the 4th Consecutive Year | MongoDB,”
2019. [Online]. Available: https://www.mongodb.com/blog/post/
mongodb-the-most-wanted-database-by-developers-for-the-4th-consecutive-year

[84] Strozzi Carlo, “NoSQL Relational Database Management System,” 2010. [Online].
Available: http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/HomePage

[85] R. Elmarsi and S. B. Navathe, Fundamentals of Database Systems, 7th ed. Pearson,
2017.

[86] Derrick Harris, “MongoDB co-creator explains why ‘NoSQL’
came to be, and why open source mastery is an elu-
sive goal,” 2016. [Online]. Available: https://medium.com/s-c-a-l-e/
mongodb-co-creator-explains-why-nosql-came-to-be-and-why-open-source-mastery-is-an-elusive-goal-3a138480b9cd

[87] K. Chodorow, “History of MongoDB – Kristina Chodorow’s Blog,” 2010. [Online].
Available: https://kchodorow.com/2010/08/23/history-of-mongodb/

[88] Google, “An Overview of App Engine,” 2020. [Online]. Available: https:
//cloud.google.com/appengine/docs/standard/python/an-overview-of-app-engine

[89] B. Popper, “Podcast: A chat with MongoDB’s CTO, Eliot Horowitz - Stack
Overflow Blog,” 2020. [Online]. Available: https://stackoverflow.blog/2020/03/10/
podcast-mongodb-cto-eliot-horowitz/

83

http://psychology.iresearchnet.com/social-psychology/interpersonal-relationships/need-to-belong/
http://psychology.iresearchnet.com/social-psychology/interpersonal-relationships/need-to-belong/
https://www.psychologicalscience.org/news/releases/new-study-suggests-we-remember-the-bad-times-better-than-the-good.html
https://www.psychologicalscience.org/news/releases/new-study-suggests-we-remember-the-bad-times-better-than-the-good.html
http://www.apache.org/foundation/,
http://www.apache.org/foundation/,
www.unizh.ch/ifbf/orga
https://www.mongodb.com/blog/post/mongodb-the-most-wanted-database-by-developers-for-the-4th-consecutive-year
https://www.mongodb.com/blog/post/mongodb-the-most-wanted-database-by-developers-for-the-4th-consecutive-year
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home Page
https://medium.com/s-c-a-l-e/mongodb-co-creator-explains-why-nosql-came-to-be-and-why-open-source-mastery-is-an-elusive-goal-3a138480b9cd
https://medium.com/s-c-a-l-e/mongodb-co-creator-explains-why-nosql-came-to-be-and-why-open-source-mastery-is-an-elusive-goal-3a138480b9cd
https://kchodorow.com/2010/08/23/history-of-mongodb/
https://cloud.google.com/appengine/docs/standard/python/an-overview-of-app-engine
https://cloud.google.com/appengine/docs/standard/python/an-overview-of-app-engine
https://stackoverflow.blog/2020/03/10/podcast-mongodb-cto-eliot-horowitz/
https://stackoverflow.blog/2020/03/10/podcast-mongodb-cto-eliot-horowitz/

[90] PR Newswire, “Oversee.net Acquires ShopWiki as Anchor Property in Retail Verti-
cal Market,” 2011. [Online]. Available: https://www.prnewswire.com/news-releases/
overseenet-acquires-shopwiki-as-anchor-property-in-retail-vertical-market-114789439.
html

[91] Businessweek, “America’s Best Young Entrepreneurs,” 2006. [Online]. Avail-
able: https://web.archive.org/web/20070320085217/http://images.businessweek.
com/ss/06/10/bestunder25/source/12.htm

[92] M. Inc., “About Us | MongoDB,” 2020. [Online]. Available: https://www.mongodb.
com/company

[93] V. Backaitis, “Open Source vs. Open Core: What’s the Difference?”
2019. [Online]. Available: https://www.cmswire.com/information-management/
open-source-vs-open-core-whats-the-difference/

[94] MongoDB, “MongoDB Realm unifies mobile, web, and backend development
(MongoDB World Keynote, part 6) - YouTube,” 2019. [Online]. Available:
https://www.youtube.com/watch?v=WEL28rrG3DQ

[95] D. d. Preez, “MongoDB CEO - “I think it’s clear who the win-
ner in this market is”,” 2019. [Online]. Available: https://diginomica.com/
mongodb-ceo-i-think-its-clear-who-winner-market

[96] “Leadership | MongoDB.” [Online]. Available: https://www.mongodb.com/
leadership

[97] M. Asay, “MongoDB CEO tells hard truths about commercial open source -
TechRepublic,” 2019. [Online]. Available: https://www.techrepublic.com/article/
mongodb-ceo-tells-hard-truths-about-commercial-open-source/

[98] Cambridge Dictionary, “Freemium definition,” 2019. [Online]. Available: https:
//www.investopedia.com/terms/f/freemium.asp

[99] MongoDB, “MongoDB Cloud Database Solutions,” 2020. [Online]. Available:
https://www.mongodb.com/cloud

[100] Free Software Foundation, “GNU Affero General Public License,” 2007. [Online].
Available: https://www.gnu.org/licenses/agpl-3.0.en.html

[101] MongoDB, “Server Side Public License,” 2018. [Online]. Available: https:
//www.mongodb.com/licensing/server-side-public-license

[102] ——, “Server Side Public License FAQ,” 2020. [Online]. Available: https:
//www.mongodb.com/licensing/server-side-public-license/faq

[103] E. Horowitz, “Email threads: Approval: Server Side Public License, Version
2 (SSPL v2),” 2019. [Online]. Available: http://lists.opensource.org/pipermail/
license-review_lists.opensource.org/2019-March/003989.html

[104] MongoDB, “MongoDB Community Code of Conduct,” 2020. [Online]. Available:
https://www.mongodb.com/community-code-of-conduct

[105] ——, “MongoDB GitHub Repositories,” 2020. [Online]. Available: https:
//github.com/mongodb

84

https://www.prnewswire.com/news-releases/overseenet-acquires-shopwiki-as-anchor-property-in-retail-vertical-market-114789439.html
https://www.prnewswire.com/news-releases/overseenet-acquires-shopwiki-as-anchor-property-in-retail-vertical-market-114789439.html
https://www.prnewswire.com/news-releases/overseenet-acquires-shopwiki-as-anchor-property-in-retail-vertical-market-114789439.html
https://web.archive.org/web/20070320085217/http://images.businessweek.com/ss/06/10/bestunder25/source/12.htm
https://web.archive.org/web/20070320085217/http://images.businessweek.com/ss/06/10/bestunder25/source/12.htm
https://www.mongodb.com/company
https://www.mongodb.com/company
https://www.cmswire.com/information-management/open-source-vs-open-core-whats-the-difference/
https://www.cmswire.com/information-management/open-source-vs-open-core-whats-the-difference/
https://www.youtube.com/watch?v=WEL28rrG3DQ
https://diginomica.com/mongodb-ceo-i-think-its-clear-who-winner-market
https://diginomica.com/mongodb-ceo-i-think-its-clear-who-winner-market
https://www.mongodb.com/leadership
https://www.mongodb.com/leadership
https://www.techrepublic.com/article/mongodb-ceo-tells-hard-truths-about-commercial-open-source/
https://www.techrepublic.com/article/mongodb-ceo-tells-hard-truths-about-commercial-open-source/
https://www.investopedia.com/terms/f/freemium.asp
https://www.investopedia.com/terms/f/freemium.asp
https://www.mongodb.com/cloud
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.mongodb.com/licensing/server-side-public-license
https://www.mongodb.com/licensing/server-side-public-license
https://www.mongodb.com/licensing/server-side-public-license/faq
https://www.mongodb.com/licensing/server-side-public-license/faq
http://lists.opensource.org/pipermail/license-review_lists.opensource.org/2019-March/003989.html
http://lists.opensource.org/pipermail/license-review_lists.opensource.org/2019-March/003989.html
https://www.mongodb.com/community-code-of-conduct
https://github.com/mongodb
https://github.com/mongodb

[106] ——, “Community Libraries — MongoDB Drivers,” 2020. [Online]. Available:
https://docs.mongodb.com/drivers/community-supported-drivers

[107] ——, “MongoDB Developer Community Forums,” 2020. [Online]. Available:
https://developer.mongodb.com/community/forums/

[108] ——, “MongoDB Jira Board,” 2020. [Online]. Available: https://jira.mongodb.org/
plugins/servlet/samlsso?redirectTo=%2F

[109] ——, “MongoDB Developer Hub,” 2020. [Online]. Available: https://developer.
mongodb.com/

[110] ——, “MongoDB World,” 2020. [Online]. Available: https://www.mongodb.com/
world

[111] ——, “MongoDB Badges,” 2020. [Online]. Available: https://developer.mongodb.
com/community/forums/badges

[112] ——, “MongoDB Professional Certification,” 2020. [Online]. Available: https:
//university.mongodb.com/certification

[113] ——, “Free MongoDB Official Courses at MongoDB University,” 2020. [Online].
Available: https://university.mongodb.com/

[114] ——, “MongoDB World is now MongoDB.live,” 2020. [Online]. Available:
https://www.mongodb.com/world/innovation-awards

[115] A. Krabberød, “Tesla trenger nye patenter - Onsagers
AS,” 2015. [Online]. Available: https://onsagers.no/aktuelt/
tesla-patent-strategi/?fbclid=IwAR20MJuRhboWxCc9Wrsq_YgvJJNn73-a_
WlQToM5WIzDxaUS6PhXUWQIc1w

[116] N. Mathur, “Red Hat drops MongoDB over concerns related to its Server Side
Public License (SSPL),” 2019. [Online]. Available: https://hub.packtpub.com/
red-hat-drops-mongodb-over-concerns-related-to-its-server-side-public-license-sspl/

85

https://docs.mongodb.com/drivers/community-supported-drivers
https://developer.mongodb.com/community/forums/
https://jira.mongodb.org/plugins/servlet/samlsso?redirectTo=%2F
https://jira.mongodb.org/plugins/servlet/samlsso?redirectTo=%2F
https://developer.mongodb.com/
https://developer.mongodb.com/
https://www.mongodb.com/world
https://www.mongodb.com/world
https://developer.mongodb.com/community/forums/badges
https://developer.mongodb.com/community/forums/badges
https://university.mongodb.com/certification
https://university.mongodb.com/certification
https://university.mongodb.com/
https://www.mongodb.com/world/innovation-awards
https://onsagers.no/aktuelt/tesla-patent-strategi/?fbclid=IwAR20MJuRhboWxCc9Wrsq_YgvJJNn73-a_WlQToM5WIzDxaUS6PhXUWQIc1w
https://onsagers.no/aktuelt/tesla-patent-strategi/?fbclid=IwAR20MJuRhboWxCc9Wrsq_YgvJJNn73-a_WlQToM5WIzDxaUS6PhXUWQIc1w
https://onsagers.no/aktuelt/tesla-patent-strategi/?fbclid=IwAR20MJuRhboWxCc9Wrsq_YgvJJNn73-a_WlQToM5WIzDxaUS6PhXUWQIc1w
https://hub.packtpub.com/red-hat-drops-mongodb-over-concerns-related-to-its-server-side-public-license-sspl/
https://hub.packtpub.com/red-hat-drops-mongodb-over-concerns-related-to-its-server-side-public-license-sspl/

A | Appendix

A.1. Assignment Text

Open source (’åpen kildekode’) utvikling får økende oppmerksomhet, ikke minst pga. det
faktum at mye av den mest interessante teknologien idag er utviklet (mer eller mindre)
open source.

Et sentral kjennetegn ved Open source er det slående fraværet av vanlige metoder og
verktøy for å understøtte utviklingen av teknologien.

Hvordan får Open source prosjekter strukturert og organisert utviklingen på uten disse
verktøyene ? Hva (om noe) kan vanlig, kommersielt basert utvikling lære av Open source
baserte metoder ?

Oppgaven vil ta utgangspunkt i nærstudier av utvalgt(e) Open source prosjekt, typisk
gjennom studier av epostlister, elektroniske arkiv, irc.

Oppgaven bygger på en fortolkende forskningstradisjon til forskjell fra f.eks. spørreskjema-
baserte undersøkelser.

86

Interview Guide for CTO of MongoDB
Smalltalk:
Hi, can you hear me?
First of all, thank you
I’m a masters student at NTNU
My thesis is a literature study of the characteristics of successful open source projects. I'm
then taking a deep dive into a case, MongoDB, to try and discover signs of these
characteristics and other eventual discoveries.
I'm no journalist, so some of the questions might overlap.
Is it ok if I record the interview?
Everything helps, so any details you can think of is valuable to me.
If there's something you cannot answer I fully understand

Open Source:

- Why did you decide to go Open source?
- Was that the plan all along, or was it decided when releasing the database?
- Have you reflected on how not open-sourcing the project might have changed the

outcome for your business?
- In what ways do you think being an open-source project has given you advantages?

Are there some disadvantages?

Stakeholders and key persons:

- Were there any stakeholders that withdrew when you decided to only release the
DB?

- Who are the key persons of the project, then and now?
- Who were your original targeted customers? Was it enterprises or smaller

businesses? Or was it developers in general?
- What was your original business model? How were you planning to generate

revenue?
- When and why did you decide to make a community edition and an enterprise

edition?

Development:
- What drives you to develop your new services like Atlas and Realm? Is it the

community that asks for it or is it your own innovation in internal projects that drives
these new services?

- Are there any important milestones and/or obstacles that had a special impact on the
company/product?

Misc.:
I am trying to find specific incidents or moments in your history that were somewhat crucial
or had some kind of importance. A huge decision being taken, a serious security flaw
uncovered or something similar.

A.2. Interview Guide

87

One of the things I have found was that many of the drivers for MongoDB are written by the
community. In this case, I am referring to the driver for Goland that was called mgo. This was
created by a man called Gustavo Niemeyer back in 2011.

From what I have found, in early 2018, you (MongoDB) decided to create your own driver for
Goland as you were dependent on the community driver to be updated to test out new
features. Just days after the announcement of an official driver, Niemeyer updated the
Readme of the repo stating that it will no longer be maintained.

Do you know anything about this, and is this the direction MongoDB is heading as it grows,
replacing the community developed “pieces” with official “pieces” (in lack of better words)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Henning Bang Halvorsen

Refining Commercial Open Source:
Driving Adaption and Growing
Ecosystems

A Case Study of MongoDB

Master’s thesis in Informatics

Supervisor: Eric Monteiro

June 2020

	Introduction
	Background
	Motivation
	Problem Description
	Research Questions
	Thesis Structure

	Literature Study
	The History of Open Source
	Richard Stallman and the Free Software Movement
	Free Software and Open Source
	Open Source 2.0
	Commercialisation and Business Models
	Open Source Today
	Innovation and the Future

	Licences
	The Ten Rights of Open Source
	Free Redistribution
	Source Code
	Derived Works
	Integrity of The Author's Source Code
	No Discrimination Against Persons or Groups
	No Discrimination Against Fields of Endeavour
	Distribution of License
	License Must Not Be Specific to a Product
	License Must Not Restrict Other Software
	License Must Be Technology-Neutral

	Strong Copyleft
	Permissive Licences
	Weak Copyleft
	Custom Licences

	Software Development Process
	Traditional Development
	Waterfall
	Agile
	DevOps

	Open Source Development
	Community as a Team
	Decentralised
	Open Collaboration
	Knowledge Sharing

	Project Growth
	Forks
	Ecosystem

	Project Success
	Market and Technological Success
	Extrinsic Cues
	Intrinsic Cues
	Correlations between Cues and Success

	Developer Motivation
	Personal "Itch"
	Mobilising by Ambiguity
	Gifting Culture
	Need to Belong
	Renown
	Economic Incentives
	Choice of Licence

	Method
	Research Strategy and Method
	Method
	Literature Review
	Data Generation
	Case Study
	Documents
	Interview

	Interview Guide
	Interview Situation

	Analysis Method
	Quality
	Reliability
	Validity
	Generalisation

	Limitations

	The Choice of Case
	Practical Criteria
	Time alive
	Activity
	Success
	Growth
	Innovation
	Start-up

	Thematic Criteria

	Case Study: MongoDB
	The History of MongoDB
	Traditional Database Systems
	The Limits of RDBMS
	Why NoSQL?
	Original Business Plan
	Why Open Source?
	Early Stakeholders
	Expansion
	MongoDB Today

	Organization
	The Company
	Development
	Products
	Open Source Licence

	The Community
	Code of Conduct
	Key Contributors
	Applications Built by the Community

	Forums
	User Forums
	Developer Forums
	MongoDB World

	Community Acknowledgements
	Community Badges
	Certifications
	MongoDB University
	Innovation Award

	Analysis
	Discussion
	MongoDB's "Itch"
	Community Engagement
	Mobilising
	First Contact
	Gifting Culture
	Users over Contributors
	Virtual Incentives with Value

	The MongoDB Ecosystem
	Focus on Platform
	Rapid Development
	Acquiring Community Projects

	Business Model
	Project Success
	Multiple Value Propositions

	Choice of Licence
	Debate

	Refining Commercial Open Source

	Conclusion
	Limitations of the Study
	Further Work

	Appendix
	Assignment Text
	Interview Guide

