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Abstract

In the paradigm of differentiable programming, programs are modeled as a
parameterized solution prototype, which is trained by gradient-based opti-
mization. DeepMind’s Differential Neural Computer (DNC) is an example
of the transition from traditional deep learning models to differential pro-
grams. In this thesis, a Julia implementation of the DNC is presented. An
argument is made for the applicability of the Julia programming language
and its machine learning ecosystem, with Flux at its core and Zygote as the
algorithmic differentiation engine, on differentiable programs. The focus of
the thesis is on the role of algorithmic differentiation in machine learning
toolkits. The reimplementation is benchmarked, achieving 10% speedup on
a simple training task with a simpler implementation, with some internal
methods running up to seven times faster.



3

Sammendrag

I differensierbar programmering-paradigmet modelleres programmer som parametris-
erte løsninger på et problem som deretter trenes med gradientbaserte op-
timeringsmetoder. DeepMinds Differentiable Neural Computer (DNC) er
et eksempel på overgangen fra tradisjonell dyp læring til differensierbar
programmering. I denne oppgaven argumenteres det for at Julias maskin-
læringsrammeverk, med Flux i sentrum og med Zygote som algoritmisk dif-
ferensiator, er et mer passende verktøy for implementasjon av programmer
som DNC enn TensorFlow. Implementasjonen settes i kontekst av algorit-
misk differensiering sin rolle i differensierbar programmering. DNC reim-
plementers i Julia og dens interne metoder måles opp mot den originale
TensorFlow-implementasjonen, der den oppnår lik treningstid med enkelte
interne metoder som kjører opp mot syv ganger så raskt.
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Chapter 1

Introduction

Deep learning has proven to be a useful tool yielding impressive results in
areas including computer vision[1], language processing[2] and many more.
While deep learning models achieve great results in their specific task, they
rarely translate well to other problems, and new models need to be designed
and trained with appropriate data. As machine learning models evolve, re-
searchers are looking to generalize them so they can be applied to a wider
range of problems. This leads to the evolution of a new type of software:
programs that prototype a parameterized solution to a problem and apply
gradient based optimization to solve it. In this sense, neural network is
merely one of many possible prototypes. This new paradigm, called dif-
ferentiable programming (δP), impact the way machine learning progresses
today. Machine learning researchers are acknowledging the fact that the
backpropagation algorithm is a special case of reverse mode algorithmic
differentiation (AD), and frameworks for machine learning are transitioning
from course-grained block based gradient calculation to general-purpose AD.
Yann LeCun, Chief AI Scientist of Facebook, phrased it like this:[3] “Deep
Learning est mort. Vive Differential Programming!”

The motivation for artificial neural nets is twofold. On one hand, they can be
approached mathematically as highly parameterised functions that are able
to approximate unknown relations. On the other hand, drawing inspiration
from the world of psychology, they can be viewed as an attempt to model
human intelligence, mimicking the functionality of the human brain. The
human neural net consists of synapses that can trigger and propagate signals
to other neurons. Similarly, artificial neurons will receive an input, perform
calculations and propagate an output to the next layer of neurons. A natural

1



2 Introduction

extension of this is to simulate other parts of the brain as well, such as
the hippocampus. In psychology, concepts and limitations of our working
memory is studied. The working memory involves an attention mechanism
to focus on relevant information. Hippocampus, the memory bank, stores
information while a central entity retrieve and manipulate the data.
The differential neural computer (DNC)[4], developed by DeepMind, draws
inspiration from both the world of psychology and information science. Be-
ing an extension of the Neural Turing Machine (NTM)[5], the DNC mimics
a computer in its architecture: A neural network, usually recurrent, acts as
controller, similar to a CPU, and is able to access an external memory, the
model’s hippocampus. The entities accessing the memory are called read
and write heads after the notation of the Turing machine.[6] In a traditional
machine, memory locations are accessed explicitly. However, in the DNC,
the memory access system needs to be wholly differentiable to enable learn-
ing. This is solved by using blurry access operations that interact with all
memory slots to a varying degree. Being able to learn general problem solv-
ing is one of the main attractions of the DNC. As a combination of a deep
learning network and a traditionally implemented memory access module,
the DNC fits nicely as an illustrator of the transition from deep learning to
δP.
The DNC is implemented in TensorFlow version 1.15[7], a machine learning
toolkit developed by Google. TensorFlow provides high performance models
using a static computational graph allowing thorough compiling optimiza-
tions and job planning for heterogeneous systems.
The goal of this thesis is to study next-generation tools for differential pro-
gramming through a reimplementation of the DNC. The framework of choice
is the Julia programming language[8, 9]. For many years the norm for sci-
entific frameworks has been to provide a dynamic front end that is simple
to write and understand, while the heavy lifting is done with C or Fortran
in the back end to provide high performance. Languages such as MATLAB,
Octave[10], and R[11] are all examples of this approach. This is called the
two-language problem, and Julia aims to solve it [8]. Introduced in 2012,
Julia achieves C-like performance in a dynamic language through modern
optimization techniques and a carefully designed language. The language is
aiming primarily at scientific and numerical computing and use an extensive
type system with a multiple dispatch system to specialize against run-time
types. Through Julia’s machine learning framework Flux and its diverse
ecosystem, the language is establishing itself as a hotbed for next generation
δP applications, such as a differentiable ray tracer[12] and neural ODEs[13].
The core actors in play in the Julia implementation of the DNC are Flux,
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providing high level abstractions of machine learning models, and Zygote,
Flux’ algorithmic differentiator. As gradient propagation is at the heart of
any machine learning model, a high performance AD engine is key for a
high performance ML framework. Zygote’s approach to AD is different than
most other dynamic AD engines, and is discussed in detail in section 2.2.
Through the implementation of the DNC, the aim is to discuss benefits and
drawbacks of a dynamic approach compared with the static approach used
in the original TensorFlow implementation. Performance metrics are easily
compared, but their are not the only factor of a program’s quality. Simplicity
is a feature which unveils itself in multiple aspects of program development.
High level languages are designed to empower the programmer through sim-
plicity. Abstracting away the gritty details of the low level language, the
programmer is allowed time to focus on creative and efficient design. How-
ever, the abstraction often comes at the price of performance. In the world of
machine learning, a multitude of programs and libraries provides high level
abstractions of complex data structures, networks, and mathematical rou-
tines. They allow the data scientist to focus on building the desired model
correctly. Simplicity should also allow for fast debugging, inspection, testing
and benchmarking of the program. A program that is simple to inspect is
less likely to introduce bugs. Although not as easily quantified, simplicity is
also a desirable feature of a program.
This thesis compares TensorFlow with Zygote through a concrete example:
the DNC. Chapter 2 introduces the concept of algorithmic differentiation,
especially considering its applicability in machine learning frameworks. AD
in TensorFlow and Zygote is presented and compared. Chapter 3 presents
the differentiable neural computer in detail and discuss the implementation
process for the Julia version. Finally, benchmarking results are presented
and discussed.





Chapter 2

Algorithmic
Differentiation

Algorithmic differentiation is the process of automatically deriving gradients
for a computer program. Commonly referred to as automatic differentiation,
it differs from numerical and symbolic differentiation in several ways. AD
is derived from the observation that any numerical algorithm is eventually
a combination of elementary numerical operations, and given elementary
differentiation rules, derivatives can propagate numerically through the pro-
gram using the chain rule. AD gives true, not approximated, gradient values
due to the implementation of basic derivative rules, and it avoids expres-
sion swell by (exact) numerical intermediate computation. A mathematical
background for AD and its two modes is presented: forward, computing
derivatives in parallel with the primal program, and reverse, propagating
derivatives back through intermediate variables after completion of the pri-
mal program. The role of AD in modern machine learning framework is
discussed with focus on TensorFlow and Zygote. Eventually, Zygote’s ap-
proach to AD is discussed in detail.

Algorithmic differentiation

Although AD propagates numerical values, it is distinctively different from
numerical differentiation. Numerical differentiation use algorithms to nu-
merically estimate the derivative of a function based on some function val-
ues or other information about it. The algorithms are usually based on the
difference quotient f(x+h)−f(x)

h which when evaluated at the limit as h→ 0

5



6 Algorithmic Differentiation

gives the derivative of the function f at the point x. However, as setting
h = 0 directly gives division by zero, an estimation error is expected, and
for small values of h, floating point rounding errors can become an issue.
The difference between algorithmic and symbolic differentiation is less dis-
tinct. Symbolic differentiation, also called computer algebra, manipulates
the function expression to generate an exact expression for the derivative
function. Fundamental rules of differentiation such as the product and chain
rule are applied and the result is simplified to an acceptable level. Symbolic
differentiation is exact but is slow when applied to a function of many input
variables, as is the case with all deep learning applications. Also, sym-
bolic differentiation would require the programmer to express the program
in closed form, as control flow and loops are not directly supported. The aim
of algorithmic differentiation is to find the derivative of an arbitrary block
of computer code. Symbolic differentiation would have to face the complica-
tions of expressing the entire program in a single mathematical expression.
At the core of AD is the chain rule of differentiation. Contrary to symbolic
differentiation, AD aims not to manipulate the expressions symbolically with
the chain rule but rather evaluate the intermediary results numerically and
propagate the gradient through the program. With elementary operations
having defined differentiation rules, AD is able to break a block of code down
to its basic operations, find their gradient, and then propagate the gradient
values with the chain rule.

Forward mode AD

*

sin

*

a b

ˆ

w3

w2

w1

y

Figure 2.1: Forward mode AD
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Allowing the differential values to propagate in parallel with program exe-
cution results in forward mode AD. Forward mode AD is simple to imple-
ment as it only requires an extra bookkeeping variable for the derivative of
each variable which gets updated when an operation is performed on the
variable. Interestingly, this is equivalent to replacing each variable in the
program with a dual number x+ẋε (section 2.2). This is the implementation
strategy followed by i.e. ForwardDiff.jl [14].

∂y

∂x
=

∂y

∂wn−1

∂wn−1

∂x
=

∂y

∂wn−1
(
∂wn−1

∂wn−2

∂wn−2

∂x
) = ... (2.1)

Forward mode AD is using the chain rule to substitute each inner expression
iteratively as in equation 2.1. For each sub-expression wi, we are computing
its derivative ẇi = ∂wi

∂x .
As a simple example, consider the function y = sin(a∗ b) + b. The two inde-
pendent variables a and b determines y. The transformation is a combination
of elementary operations:

w1 = a

w2 = b

w3 = w1 ∗ w2

w4 = sin(w3)

w5 = w4 + w2

(2.2)

A program evaluation trace such as this is often referred to as a tape or
Wengert list[15, 16] and is the basis for both forward and reverse mode AD.
By applying the chain rule, we can find the sensitivity of each independent
and intermediate variable. Table 2.1 shows an iteration of a forward mode
AD pass calculating ∂y

∂a . The left column shows the program evaluation trace
and the right column the accompanying derivative program. Calculations on
the derivative values can be viewed as an independent program determined
by the values ẇ1 and ẇ2. These seed values are determined by the choice of
variable on which derivation is applied. In the illustrated example, the seed
values are ẇ1 = ∂a

∂a = 1 and ẇ2 = ∂b
∂a = 0. As the differential calculations

are done in parallel with the original program, the time complexity is only
a constant factor to that of the original program. If ∂y∂b , the sensitivity on y
with respect to b, is needed, the same procedure needs to be repeated but
with different seeds, namely ∂a

∂b = 0 and ∂b
∂b = 1. This illustrates the fact

that forward mode AD performance deteriorates when the number of input
variables increases, motivating the need for reverse mode AD. While forward
mode can calculate the sensitivity of an input variable for all the dependent
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variables in one pass, reverse mode is able to calculate the sensitivities of all
independent variables for a single dependent variable.

Table 2.1: A calculation of y = sin(a∗b)+b and the corresponding ∂y
∂a using

forward mode AD.

Original program Forward mode AD
w1 = π ẇ1 = 1 (seed)
w2 = 2 ẇ2 = 0 (seed)
w3 = w1 ∗ w2 = 2π ẇ3 = w1 ∗ ẇ2 + w2 ∗ ẇ1 = 2
w4 = sin(w3) = 0 ẇ4 = cos(w3) ∗ ẇ3 = 2
w5 = w4 + w2 = 2 ẇ5 = ẇ4 + ẇ2 = 2

Reverse Mode AD

In case of f : Rm → Rn, m >> n, we want to avoid passing through the
programm times to calculate the derivative with respect to each independent
variable. Reverse mode AD fixates a dependent variable, and computes
the sensitivity of every sub-expression. In the extreme case of a function
f : Rm → R, only one pass using reverse mode is sufficient to calculate the
complete gradient ∇f = ( ∂y∂x1 , ...,

∂y
∂xm

). In deep learning applications, the
number of independent variables can be very large.
Equivalently to forward mode, reverse mode AD is based on the chain rule.
Instead of substituting the inner expression using the chain rule as in forward
mode, now the outer expression is substituted

∂y

∂x
=

∂y

∂w1

∂w1

∂x
= (

∂y

∂w2

∂w2

∂w1
)
∂w1

∂x
... (2.3)

For each sub-expression, we are interested in calculating the adjoint, denoted
w̄i defined in equation 2.4.

w̄i =
∂yj
∂wi

(2.4)

w̄i represents the sensitivity of an output variable yj to changes in wi. Con-
trary to forward mode, reverse mode AD can not be calculated in parallel
with the original program as we start from the end and work our way back-
wards in the computational graph. Therefore, while requiring only one pass
to calculate adjoints for each sub-expression wi, it also requires the storage
of intermediate variables wi together with information on what operations
were used to achieve them. Table 2.2 shows the evaluation of reverse mode
AD through the same expression as in table 2.1. It should be noted that
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both ā and b̄ are calculated in the same pass. As w2 contributes to two
expressions, their adjoint values need to added in the calculation of w̄2.

Table 2.2: A calculation of y = sin(a ∗ b) + b and the partials ∂y
∂a and ∂y

∂b
using reverse mode AD.

Original program Reverse mode AD
w1 = a = π w̄5 = 1 (seed)
w2 = b = 2 w̄4 = w̄5

∂w5
∂w4

= 1

w3 = w1 ∗ w2 = 2π w̄3 = w̄4
∂w4
∂w3

= cos(w3) = 1

w4 = sin(w3) = 0 w̄2 = w̄5
∂w5
∂w2

+ w̄3
∂w3
∂w2

= 1 + w1 = 1 + π

w5 = w4 + w2 = 2 w̄1 = w̄3
∂w3
∂w1

= w2 = 2

AD in Practice

Forward Mode

Most forward mode AD implementations relies on the mathematical notion
of dual numbers. A dual number is an element of the set D defined in
equation 2.5.[17]

D = {ã = a+ ȧε : a, ȧ ∈ R, ε2 = 0, ε 6= 0} (2.5)

For notational brevity, we define a+ ȧε = (a, ȧ), and call a the primal The
notation is similar to that of complex numbers with the critical difference
that ε2 = 0 and not −1. Addition and subtraction is defined identically as
for complex numbers:

(a, ȧ) + (b, ḃ) = (a+ b, ȧ+ ḃ) (2.6)

Inspecting dual multiplication, an interesting observation can be made.

(a+ ȧε)(b+ ḃε) = ab+ aḃε+ ȧbε+ ȧḃε2 = (ab) + (aḃ+ ȧb)ε (2.7)

The coefficient in front of ε mirrors basic symbolic differentiation rules. We
can exploit this by extending a function to operate on a dual number such
that

f(a+ ȧ) = f(a) + f ′(a)ȧε (2.8)

In practice, this is usually implemented by overloading operators to accept
dual numbers storing both a and ȧ. A bare-boned and extremely simple
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example can be implemented in the Julia programming language using only
a couple lines of code, as shown in listing 2.1. This simple script is enough to
differentiate any expression consisting of addition, multiplication, and basic
trigonometrical functions, and can easily be extended to include e.g. the
exponential and logarithmic function.

Listing 2.1: Simple example of forward mode� �
struct Dual

primal
dual

end

import Base: +, *, sin, cos

+(a::Dual, b::Dual) = Dual(a.primal+b.primal, a.dual+b.dual)
*(a::Dual, b::Dual) = Dual(a.primal*b.primal, a.primal*b.dual+a.dual*b.primal)
sin(a::Dual) = Dual(sin(a.primal), a.dual*cos(a.primal))
cos(a::Dual) = Dual(cos(a.primal),-sin(a.primal)*a.dual)

function gradient(f, inputs...)
res = zeros(length(inputs))
# We need to iterate through the function once for each input
for i in 1:length(inputs)

# Seed the input derivatives
# input `i` is seeded to 1, the rest 0
duals = [j==i ? Dual(inputs[j], 1.0) : Dual(inputs[j], 0.0)

for j in 1:length(inputs)]
# Calculate derivative with respect to input `i`
res[i] = f(duals...).dual

end
res

end

julia> f(a, b) = sin(a*b) + b
f (generic function with 1 method)

julia> gradient(f, π, 2.0)
2-element Array{Float64,1}:
2.0
4.141592653589793� �

An advantage of operator overloading is that the user does not have to be
aware of the internal dual representation. Although minimal, inefficient and
error prone, this example illustrates the approach of e.g. the Julia package
ForwardDiff.jl[14].
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Reverse Mode and Machine Learning

Gradient based optimization is at the very core of modern machine learn-
ing. In its simplest form, gradient descent minimizes a function f : Rn → R
by adjusting the function parameters w in the opposite direction of their
derivative: wt = wt−1 − γ∇f with learning rate γ. The gradient is calcu-
lated using backpropagation. The backpropagation algorithm is in fact a
special case of reverse AD; derivatives are propagated backwards from the
calculated scalar loss value through all network layers. Gradient-based opti-
mization techniques are used in a multitude of machine learning systems, so
the need for a high performance gradient calculation is evident. Typically,
machine learning systems use a tracing approach similar to the one intro-
duced in section 2.1. Using operator overloading, methods now not only
produce forward output, they also record the operations and the inputs, es-
sentially producing a graph of basic operations equivalent to a Wengert list.
Differentiating the Wengert list is straightforward - the same procedure as
exemplified in section 2.1 can be utilized. For large models, a challenge arises
as the number of intermediate values that needs to be stored become too
large for the memory to handle. This can be solved by for example check-
pointing, a scheme where only a subset of variables are stored, and sections
of the forward run is recomputed as intermediate variables are needed. Other
algorithms compromising between time and space complexity also exist[18].
Machine learning toolkits typically follow one of two paradigms: static or
dynamic declaration, depending on whether they compile the tape or inter-
pret it respectively. Programs following the static declaration paradigm are
also called define-and-run programs, as they use a two step process.

1. Construct a computational graph

2. Execute the graph with different inputs

This approach is used by popular toolkits such as TensorFlow[7], Theano[19],
and Caffe[20]. A number of benefits arise from static declaration: The com-
putational graph can be subject to optimizations ensuring the following ex-
ecutions are as fast as possible. Since the second step often include thou-
sands or millions of iterations, there is a lot to gain, and the developer can
allow less efficient optimization routines as their one time cost will be amor-
tized across a long training session. Additionally, the graph can be used
to schedule computation across multiple, possibly heterogeneous, devices.
The drawback however is the models’ inflexibility. The static computational
graph can only calculate the program it was designed for, and the graph may
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only consist of specifically designed components the optimizers and work dis-
tributors can understand. The graph is usually expressed through a separate
mini-language encapsulated in calls to library functions. Any necessary fea-
ture needs to be reimplemented in the library, as e.g. control flow has to
be incorporated into the static graph. This results in TensorFlow having
constructs such as tf.cond representing an if-statement and tf.while_loop for
iterations. Semantically and syntactically, the sub-language will necessarily
be more restricted than the host language. Many modern networks challenge
the limits imposed by static graphs. In some cases, the behavior of the model
depends on the input data provided to it. It could be required to handle
variably sized inputs as is the case for natural language processors operat-
ing on sentences of different lengths. Tree-[21] and graph-structured[22, 23]
networks allow variably structured inputs, requiring a significant complex-
ity in the static architecture as each input may require a different model
procedure.
Define-and-run toolkits overcome these issues by allowing unspecified in-
put size at compile time and through the introduction of special control
flow handling graph nodes such as tf.cond, being a building block for the
implementation of non-trivial control flow. Indeed, one of TensorFlow’s ini-
tial goals was to enable researchers to explore a wider variety of models[7].
Increased graph complexity decreases the opportunity space for optimizers
however, thus degrading the main benefit of static graphs.
There are also some practical difficulties in using statically declared graphs
for intricate model design. Complex program logic, which in itself may be
difficult to implement in the host language, is even harder to code correctly
through an indirect API and require a deep understanding of the library.
While many errors are detectable at compile time, some will emerge at run
time only, especially for programs allowing unspecified input size. Debugging
is harder in statically declared programs because the distance between the
bug and the error caused by it is greater both temporally and spatially.
The value of simplicity should not be underrated when complex models are
at subject, as simple debugging and inspection allow the programmer more
time to experiment and understand complex issues, and less time inspecting
bugs.
Programs in the dynamic declaration paradigm, including among others
PyTorch[24], Chainer[25], and DyNet[26], and Zygote[27] merge the two
steps described above. They are often labeled define-by-run frameworks as
a computation graph is constructed on-the-fly following the execution of
the loss function. A new graph is created for each training example, leaving
advanced features such as variable input sized data, control flow, or recursion
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to be handled by the host language. Gradient tracing is typically interleaved
with model execution. Dynamic execution enables fast prototyping and
simple debugging because the models are expressed in the host language.
They can also draw benefit from all features of the host language as long
as the operations are differentiable, allowing complex model design out of
the box. The immediate drawback is of course the introduced overhead of
reconstructing a graph for each example. The opportunity for whole-model
optimization is lost. The graphs can however be kept lightweight as they are
strictly defined (input size and structure is known) and use only basic nodes
as complex features are handled by the host language. While this somewhat
mitigates the drawback, graph creation and maintaining still represent a
heavy cost for dynamic approaches.

TensorFlow

Introduced in late 2015 by Google Brain, TensorFlow aimed to be a tool for
large scale machine learning. For Google, having the probably most vast
amount of data available in the world, a machine learning interface had to
be able to handle Google’s massive production workload while also allowing
flexibility for researchers and other users to experiment with model design.
TensorFlow uses a dataflow-based programming abstraction. A model is
represented by a directed graph. The user design the graph through an
API, and then execute the graph with data. In a typical machine learning
use case, the graph is defined once and then executed thousands or millions
of times with some data. Each node in the graph represent an operation.
The edges of the graph are tensors: n-dimensional arrays of some specified
element type. Each operation has zero or more tensors as input and outputs
zero or more tensors.
To understand the design choices of TensorFlow, a look at its predecessor is
needed. DistBelief [28] was Google’s previous system for large scale machine
learning models. While DistBelief’s programming model is similar to that
of TensorFlow, the nodes in DistBelief are predefined layers, a composition
of mathematical operators with adjoints defined at block level. By instead
using primitive operations as graph nodes, TensorFlow enables programmers
to write and experiment with their own layers without having to alter the
core library. Another need TensorFlow addresses is the ability to refine
existing training algorithm or even define new algorithms. Since DistBelief’s
origin in 2011, training algorithms have been an active area of research, and
more flexibility in the implementation of the training algorithms was an
important reason for the shift from DistBelief to TensorFlow. Nodes of
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primitive operations are easy to define gradients for and allows users more
fine grained control of the flow of the program, both in the backward and
forward pass. TensorFlow thus originated partly as a result of more fine
grained algorithmic differentiation. This development continues today with
TensorFlow 2.0 enabling eager execution, i.e. dynamic graphs, by default
with the option of converting the model to a static graph for training and
deployment. Swift for TensforFlow is working on making AD a first class
feature of the Swift language[29].
DistBelief uses a Python scripting interface to interact with layers. The
layers were defined in C++ for performance reasons. For machine learn-
ing researchers seeking to experiment with new layer architectures, the use
of a separate, less familiar language was seen as a barrier [7]. This is an
illustrating example of the two language problem: expressive and flexible
languages such as Python, R, or Matlab are used as scripting language for
fast prototyping and development, but when high performance is needed, the
program needs to be expressed in C or C++. For performance and porta-
bility, the core library of TensorFlow is also written in C++, however the
scripting interface allows for much more fine-grained control of the operation
composition.
TensorFlow use a tracing approach to automatic differentiation. Gradients
are calculated by extending the TensorFlow graph in the following procedure:
To compute, ∂Y∂I , the gradient of some output variable Y with respect to some
variable X, first find the path in the graph from I to Y . Then, backtracking
the path from Y to I, for each node in the path, add a new node in the
TensorFlow graph computing the gradient function for that node. This is
an implementation of reverse mode AD, a natural choice for an application
aimed at large scale machine learning. Here, the number of input variables
can be large and the number of output variables small, as for example in an
image classification model. Each node in the gradient function sub-graph
can take values from the forward path as input, in addition to previously
computed partial derivatives. A simple example of this is a multiplication
node. If the forward node defines the operation f(u, v) = u ∗ v, the gradient
function node computing f ′(u, v) = u ∗ v′ + u′ ∗ v is a function of both
derivative values and primal values. This complicates memory management.
Disregarding gradient computation, intermediate values in a typical neural
net can be immediately disposed after being passed on to the next layer.
However, values calculated early in the forward pass is often necessary late
in the backward pass. These values hold on to memory resources, a resource
that can be scarce, especially when operating on a GPU.
TensorFlow first define the model, i.e. the TensorFlow graph, and then ex-
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ecute it. This deferred execution has the advantage that is allows graph
optimizations before run time. Knowing the entire graph before execution,
optimization routines such as common sub-expression elimination dead code
elimination can be applied to the graph. Since the operations in the graph
are typically repeated thousands or millions of times, TensorFlow may al-
low expensive optimization routines. Additionally, scheduling of operations
increase performance because you are able to control memory usage and
necessary data communication between devices.
With the TensorFlow graph effectively acting as a dataflow-based abstract
syntax tree, TensorFlow is resembling its own separate programming lan-
guage [30]. Instead of the usual Python syntax, the client is interacting with
an underlying data structure through an API. This is especially apparent for
control flow: conditional and iterative control flow is implemented through
the tf.cond and tf.while_loop functions. The language duality can be
a barrier for users as there are now two separate semantics to learn. It is
thus compelling to question the necessity of this complexity in a machine
learning library. Abadi argue that as machine learning applications benefit
from programming language tools, machine learning appears more and more
relevant to the design of new programming languages [30].

Zygote

The Julia programming language is designed to solve the two-language prob-
lem discussed in section 2.2 for technical computing. It aims to provide
performance on the level of statically compiled languages as C and For-
tran with the interactive and dynamic behavior of Python or LISP. This
is done through careful language design with the main ingredient being a
rich type system and multiple dispatch: aggressively customizing implemen-
tation based on the input types. Through its machine learning framework
Flux[31], Julia is entering the machine learning stage promising high perfor-
mance in a dynamic language. Flux developers argue that machine learning
engineering is turning into a programming language problem. As researchers
experiment with advanced stacks utilizing control flow, recursion, and data
structures, the requirements for modeling tools are merging with require-
ments for programming languages. Flux thus becomes for not only machine
learning, but for the more general paradigm of differentiable programming.
Viewing machine learning models as simply differentiable algorithms, they
should be expressed by a programming language, just like other algorithms
are. Flux aims to be a simple and hackable ML framework by leveraging
the fast Julia compiler. It is a dynamic define-by-run interface, and thus
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differentiate itself from static graph building such as TensorFlow. Machine
learning model are expressed not as a separate graph but rather directly in
the Julia AST. Thus, all of the language features of Julia, such as control
flow, custom data types, and macros, are supported. Flux, as the rest of
base Julia, is written in Julia itself. This blurs the line between user and
developer as anyone can read, understand and extend the library.
Zygote [32, 27] is the differentiation engine used by Flux, providing source-
to-source AD for the ML framework. Claiming that the limitations of both
static and dynamic approaches to AD are not inherent to AD itself, but
rather to the Wengert list, Zygote employ a different approach to AD. In-
stead of working on improving differentiation of Wengert lists, they rather
aim to differentiate code in Static Single Assignment form (SSA). SSA, first
introduced in 1988[33], is a representation where each variable is assigned
exactly once, and all variables are defined before they are used. It is used
in many compilers as it enables efficient implementations of many com-
piler optimizations such as constant propagation and dead code elimination.
Whereas the Wengert list is a linear record of elemental operations, SSA
include control flow through a special joining function called the φ-function,
generalizing the Wengert list. If the value to be used depend on the path
of the program the theoretical φ-function will choose the correct value. In
practice, compilers implement the φ-function with goto-blocks.
Consider the example explored in tables 2.1 and 2.1 where f(a, b) = sin(a ∗
b) + b. Let J be a differentiation function such that for a function y =
f(x1, x2, ...), J (f, x1, x2, ...) = y,By where By is a pullback function: it
accepts the adjoint of y and outputs the adjoints of the inputs. The pullback
function propagates the adjoint further back in the same way as each line
in table 2.2: By(ȳ) = ȳ ∂y

∂x1
, ȳ ∂y

∂x2
... In other words, J calculate a step of the

forward pass while also recording the necessary operations for the backwards
pass symbolically. The pullback is not evaluated until it is called in the
backwards pass.
Transforming the SSA form to use include J , we end up with the following
primal (forward) program:

%1,%2← J (∗, a, b)
%3,%4← J (sin,%1)

%5,%6← J (+,%3, b)

(2.9)

%1, %3, and %5 are values in the forward pass, while %2, %4, and %6 are
pullback functions. Since there is no control flow, the representation is equal
to that of a Wengert list, and AD can be performed as normal:
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Table 2.3: Adjoint SSA program compared with reverse mode AD in math-
ematical notation. Underlined variables reference the primal program in
equation 2.9.

SSA Mathematical notation

%1,%2 ← %6(1) Bw5(1) = (∂w5
∂w2

, ∂w5
∂w4

= w̄4)

%3 ← %4(%2) Bw4(w̄4) = w̄4
∂w4
∂w3

= w̄3

%4,%5 ← %2(%3) Bw3(w̄3) = (w̄3
∂w3
∂w1

= w̄1, w̄3
∂w3
∂w2

)

%6 ← %1 + %5 w̄2 = ∂w5
∂w2

+ w̄3
∂w3
∂w2

return %4, %6

To understand the difference from differentiating Wengert lists, a branching
example is useful. Consider the composite function

g(a, b) =

{
f(a, b) b ≥ 0

a otherwise

The forward pass require control flow based on the value of b. This is
implemented with goto logic as in block 2.11. Note that block #2 is identical
to block 2.9 and internally, this block is differentiated like table 2.3. Register
%8 is used to record the actual path of the program so that the backwards
traversal know which blocks it should pass through using a statement like
"goto #x if %8", as shown in the right column of equation 2.11. Again,
underlined references in the adjoint refer to the primal.

Primal program
block #1 :

%1← b < 0

goto #3 if %1
block #2 :

%2,%3← J (∗, a, b)
%4,%5← J (sin,%1)

%6,%7← J (+,%3, b)

block #3 :

%8← φ(#1→ false, #2→ true)

%9← φ(#1→ a, #2→ %6)

Adjoint program
block #1

goto #3 if not %8
block #2

equivalent to table 2.3
block #3

%7,%8← φ(#1→ (1, 0),

#2→ (%4,%6))

(2.11)
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Julia’s existing compiler use SSA form as part of the compilation process [9].
Since the output of Zygote is handed to an existing compiler, it it subject
to its readily implemented optimization routines. As an example, consider
the output in listing 2.2 for a simple function f(x) = 3x + 2. Here, Julia
resolves the pullback functions for the + and ∗ operators, and LLVM runs
constant propagation on the SSA form and is able to reduce the gradient
program to a single command, as the derivative is independent of the input
variable.

Listing 2.2: Compiler optimization for gradient calculation at work. The
interpreted program simply returns 3 for any input.� �

julia> @code_llvm gradient(x -> 3x + 2, 1)

define [1 x i64] @julia_gradient_18785(i64) {
ret [1 x i64] [i64 3]

}� �
At the user end, the difference between Zygote and e.g. PyTorch is small.
They will both play like a dynamic framework, allowing simple prototyping
and fast development due to their interactive abilities. The goal of Zygote
however is that the user should experience a significant speedup, especially
when gradients are applied to non standard functions that are hard to op-
timize for a machine learning framework. A benefit of Zygote is that it can
work with any external Julia package as Julia is a self-implemented lan-
guage and most packages are also written in Julia itself. Thus, it will in
the end break down to elementary Julia operations that, if differentiable,
Zygote can handle. However, like Julia itself, Zygote is still young, and the
developers ship it with a fair warning: Zygote is still under development and
users should expect some hiccups. At the moment, array mutation is not
supported.



Chapter 3

DNC

In 2016, Google’s DeepMind proposed the idea of a Differentiable Neural
Computer (DNC)[4]. The DNC was a continuation of the Neural Turing
Machine (NTM) published in 2014[5]. Both the NTM and the DNC are re-
current neural networks; they contain a state transferring information across
time steps and maps an input at time t to an output at time t. The com-
plexity of the network state is what makes these networks stand out. They
combine a neural network with an external memory section which the net-
work will learn to utilize. Combining a neural net with a separate traditional
style program allows these networks to enter the more generalized realm of
differentiable programming (δP). In these cases, a system resembling a com-
puter memory is controlled by the network through its output parameters.
Memory operations are performed in a fuzzy manner by calculating weighted
averages over the memory rows. The reason for this is differentiability. In a
traditional program, a block of memory would simply be fetched by a read
operation. This procedure is however not differentiable, hence the need for a
fuzzy variant. The differentiability of the fuzzy memory operations allow for
learning. With loss functions that depend on how well the network utilize its
memory, the error gradient will be propagated through the entire program,
from memory operations all the way through the neural net controller.

In this chapter, a detailed overview of the DNC is provided. The nota-
tion and equations are taken from the original paper on DNC[4]. Lastly,
a comparison of implementation differences when using Julia compared to
TensorFlow is discussed.

19
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DNC Description

An overview of the DNC architecture is provided in figure 3.1.

Memory Access

Memory0.54 . . . -2.11
...

. . .
4.31 1.10



Wr

+

Input

Output
interpolation

Controller

Memory
state

Read vectors
Read vectors

Read
(one per read head)Write

Figure 3.1: A overview of the DNC architecture. Dashed lines show recursive
connections.
1

In each time step, the output of the controller is used as parameters for the
reading and writing of memory. With an analogy to the Turing machine,
the modules responsible for memory actions are called read and write heads.
Each read head returns a read vector at each time step. The read vector is
defined as a linear combination of each memory row [5]:

rt =
∑
i

wrt (i)Mt(i), (3.1)

where wrt (i) are the N elements of the read weightings wr
t emitted by the

read head. Since equation 3.1 is differentiable, the reading operation is
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trainable; the sensitivity of the parameters determining wr
t can be found

and thereby the parameters can be tuned.
Memory writes are performed similarly although the procedure is slightly
more complicated. The write head emits a write weighting ww

t while the
controller emits an erase vector et and a write vector at. The erase vector
describes by how much each memory word element should be erased. The
add vector contains new values which should be written to the memory. The
write weighting are weights over memory locations determining which words
will be written to. Together, these vectors determine the write operation by
the following equation:

Mt = Mt−i ◦ (E−ww
t e
>) + ww

t v
>
t (3.2)

Here, ◦ denotes element wise multiplication and E a matrix of ones (E[i, j] =
1,∀i, j). The calculation of read and write weightings is described in the
sections 3.1 and 3.1.
For a reference of all variables used in the DNC, see table 3.1 The domains
SN and ∆N are defined as N-dimensional vectors where the elements re-
spectively sum to 1 and sum to at most 1, as specified by equations 3.3 and
3.4.

SN = {α ∈ RN : αi ∈ [0, 1],

N∑
i=1

αi = 1} (3.3)

∆N = {α ∈ RN : αi ∈ [0, 1],

N∑
i=1

αi ≤ 1} (3.4)

Content based addressing

Content based addressing is calculated with the following equation:

C(M ,k, β) =
exp{K(M [i, ·],k)β}

Σjexp{K(M [j, ·],k)β}
(3.5)

A key k that is compared with each row in memory using a similarity measure
K. A strength parameter β sharpens the similarity measure: a high strength
value amplifies the values of the most similar rows. Cosine similarity is used
as the similarity measure:

K(u,v) =
u · v
|u||v|

(3.6)
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Table 3.1: An overview of variables in the DNC.

Variable Description Domain
t time step N
N rows of memory N
W memory word size N
R number of read heads N
xt input vector RX
yt output vector RY
zt target vector RY
Mt memory matrix RN×W

kr,it read key i(1 ≤ i ≤ R) RW

βr,it read strength i [1,∞)
kwt write key RW
βwt write strength [1,∞)
et erase vector [0, 1]N

vt write vector RW
f it free gate i [0, 1]
gat allocation gate [0, 1]
gwt write gate [0, 1]
ψt memory retention vector RN
ut memory usage vector RN
φt slot indices sorted by usage NN
at allocation weighting ∆N

cwt write content weighting SN
ww
t write weighting ∆N

pt precedence weighting ∆N

Lt link matrix RN×N
f it forward weighting i ∆N

bit backward weighting i ∆N

cr,it read content weighting i SN
wr,i
t read weighting i ∆N

πit read mode i S3

Wr read key weights R(RW )×Y

θ controller weights RΘ

ξt interface vector R(W×R)+3W+5R+3

χt controller input vector R(W×R)+X
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Writing memory

Writing to memory is done through an interpolation of the content based
addressing scheme and dynamic memory allocation as per equation 3.7. The
interpolation is controlled by the gate parameters ga ∈ [0, 1]W and gw ∈
[0, 1]W ] emitted by the controller. The address weighting obtained by the
content based addressing scheme is denoted cwt , while at is the allocation
based address weighting, detailed in this section.

ww
t = gwt [gat at + (1− gat )cwt ] (3.7)

The dynamic memory allocation allows the machine to free memory and
allocate new space. This is done through the maintenance of a usage vector
ut ∈ [0, 1]N . In each iteration, the controller emits free gates f it representing
the degree to which the location last read by read head i can be freed. Thus,
the memory retention vector, representing the degree each memory location
will not be freed, is computed as follows:

ψt =
R∏
i=1

(1− f itw
r,i
t−1) (3.8)

Then, denoting element-wise multiplication with ◦, the usage vector can be
defined as:

ut = (ut−1 +ww
t−1 − ut−1 ◦ww

t−1) ◦ψt (3.9)

Every write to a location increases its usage. It is decreased only through
the free gates. Let φt ∈ ZN be the indices of memory locations sorted by
usage in ascending order. Then, φt[1] is the index of the least used memory
location. The allocation weighting is finally defined as follows:

at[φt[j]] = (1− ut[φt[j]])
j−1∏
i=1

ut[φt[i]] (3.10)

If all usages are 1, then at = 0 and no new memory is allocated. Memory
can still be written to depending on the value of the write gates gwt and gat .

Reading memory

The read head have the capability of three different read modes: content
mode, backward mode, and forward mode. Read mode weighting is emit-
ted by the controller. πit ∈ S3 interpolates content, backward, and forward
weighting. Backward and forward mode define read locations based on tem-
poral linkage, allowing the read heads to iterate over memory locations in
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the same (or, in backward mode, reverse) order they were written to. To
do this, the system maintains a temporal link matrix L ∈ RN×N . The link
matrix L is defined such that location L[i, j] represents the degree of which
location i was written to after location j. Each row and each column sum
to at most 1, so that they define a weighting over he possible locations. To
calculate L, a precedence weighting describing the degree to which each lo-
cation was last written to. Let pt be such a precedence weighting at time
step t. p is defined recursively as follows:

p0 = 0

pt = (1−
∑
i

ww
t [i])pt−1 +ww

t
(3.11)

ww
t is the write weighting defined in equation 3.7.

With the precedence weighting, the link matrix can be defined:

L0[i, j] = 0 ∀i, j
Lt[i, i] = 0 ∀i
Lt[i, j] = (1−ww

t [i])Lt−1[i, j] +ww
t [i]pt−1[j]

(3.12)

Using the link matrix, forward and backward weighting can easily be calcu-
lated:

f it = Ltw
r,i
t−1

bit = L>t w
r,i
t−1

(3.13)

Finally, the read weighting can be calculated through an interpolation be-
tween the content, backward, and forward weightings:

wr,i
t = πit[1]bit + πit[2]cr,it + πit[3]f it (3.14)

Julia Implementation of the DNC

As a hybrid between machine learning and traditional computing, the DNC
is an excellent case study for algorithmic differentiation systems. The deriva-
tive needs to be propagated not only through well defined networks of simple
algebraic structures, but also custom functions, which could contain compli-
cated data manipulation. Ideally, the programmer should be able to program
without worrying about adjoint calculation. As discussed in section 2.2, Zy-
gote is in attempt at solving this for the Julia language, making algorithmic
differentiation a first class feature of the language. In the implementation of
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the DNC in Julia, strengths and weaknesses of Zygote were exposed. A big
advantage is that used code does not need to be aware of Zygote in order to
be differentiable. In practice, this means the programmer can use libraries
that were written independently of Zygote.

Program architecture

Following DeepMind’s original implementation, the methods are split into
three groups:

• Addressing - handling the low level memory addressing methods. These
include content based addressing (eq. 3.5), allocation weighting (eq. 3.10,
and forward and backward weights.

• Access - implementing a memory access interface that writes and reads
memory, returning read vectors

• Computer - implementing the module interface.

The original implementation is object oriented while this is functional. Julia
is a functional language. While allowing custom types to be implemented as
class-resembling structures, they do not have methods associated to them.
Instead Julia use dynamic dispatch extensively, and users are encouraged
to write multiple function definitions specialized for the input parameter
types. It is argued that functions this way is associated with all of its input
types, not just the type of its first argument. The module interface is the
Dnc method, which is implemented as a recurrent cell to handle inputting
previous iterations read vectors to the controller. The implementation fol-
lows Flux’ standard implementation of recurrent cells and is therefore easily
incorporated in the Flux ecosystem.
Figure 3.3 and 3.2 illustrate the data flow of the memory access module.
Blue variables refer to variables from the controller as per figure 3.4 while
red are variables stored from the last iteration. The write operation is per-
formed first, allowing the read head to read data from this iteration if needed.
The figures illustrates the operations nicely: the write weights are a linear
combination of content based addressing weights and weights depending on
memory allocation. The gates control whether to write at all (gw) and the
factor at which the write should use allocation weights (ga). The read oper-
ation is similar as it is a linear combination of content weights and temporal
weights. The read mode parameter π sets the weights for the linear com-
bination. Since temporal weights are decided by the previous read weights
(as e.g. forward read means to read the location that was written to after
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the last read), only content key and strength need to be provided by the
controller.
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Figure 3.2: Dataflow graph for the memory writing operation. Circles corre-
spond to functions in the Julia implementation. Red variables are state vari-
ables from the previous iteration, blue are input variables from the controller
and green intermediate variables. See table 3.1 for a complete overview of
the variables used.

Method Implementations

Splitting Controller Output

The output from the controller is to control the behavior of the memory
access. The number of parameters needed grows with memory size and the
number of read heads. As an example, the read key krt is of size (W, R),
where W is memory word size and R the number of read heads, requiringWR
parameters from the controller alone. Using LSTM as the model controller,
it is desirable to limit its number of output parameters for performance. For
this reason, the DNC is initialized with an upper limit on controller size.
Following the original implementation, an extra layer is added to transform
the fixed-sized output to the necessary parameters. This is implemented
with one linear transformation for each parameter, as shown in figure 3.4.
The weights of the linear transformations are added to the set of trainable
variables.
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Figure 3.3: Dataflow graph for read vector calculation. Circles correspond
to functions in the Julia implementation. Red variables are state variables
from the previous iteration, blue are input variables from the controller and
green intermediate variables. See table 3.1 for a complete overview of the
variables used.

Content Based Addressing

Content based addressing is the most complex operation performed by the
read and write heads. It requires the comparison of a key with each row of
memory, followed by a normalisation calculation using the softmax function.
An initial, intuitive implementation of content address is shown in listing
3.1

Listing 3.1: Naïve content address implementation.� �
cosinesim(u, v) = dot(u, v)/(norm(u)*norm(v))
weighted_softmax(xs, weight) = softmax(xs.*weight)
function contentaddress(key, M, β, K=cosinesim)
xs = [K(key, row) for row in eachrow(M)]
weighted_softmax(xs, β)
end� �
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Controller
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krt βrt kwt βwt et vt ft gat gwt πt

Figure 3.4: The controller is extended with a layer of independent linear
transformations to obtain the memory access parameters. Variable names
refer to table 3.1.

This naïve implementation reads practically as equation 3.5. While sim-
ple, the implementation has some drawbacks. The main issue nonetheless
is that the eachrow function is not automatically differentiable with Zygote.
Although this is not necessarily a problem here as the above solution is far
from optimal anyway, it signals that the programmer needs to be trained to
know how to write differentiable code. When the design philosophy is for
AD to work out of the box on arbitrary Julia code, this could be trouble-
some. We repeat however that Zygote is a work in progress, and expanding
the code base which allows differentiation is an active are of work. Sec-
ondly, by assuming that key is a one dimensional array, it is unable to
handle both multiple keys, and batched inputs, i.e. a matrix or three di-
mensional tensor of keys. While this could be dealt with by broadcasting
the function across a list of key-memory-pairs, multiple accesses to the same
memory will hurt performance. Julia users are generally recommended to
write loops explicitly, as loops are fast and efficient, contrasting other tools
like R and Matlab. In this use case, however, looping will miss out on pos-
sible matrix multiplications which are implemented much more efficiently
than the equivalent sequence of matrix-vector-multiplications. Changing
xs = [K(key, row) for row in eachrow(M)] in listing 3.1 to an appropriate call to
the pairwise! function in listing 3.2, allows for the handling of batched input
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with multiple keys.

Listing 3.2: Pairwise comparison of columns of k and rows of M.� �
function _pairwise!(r::Zygote.Buffer,

col::AbstractArray{T, 3},
row::AbstractArray{T, 3},
β::AbstractArray{T, 2}) where T

nrow = size(row, 1)
ncol = size(col, 2)
batchsize = size(col, 3)
@inbounds for k = 1:batchsize

@inbounds for j = 1:ncol
colj = view(col, :, j, k)
for i = 1:nrow

rowi = view(row, i, :, k)
r[i, j, k] = cosinesim(rowi, colj, β[j, k])

end
end

end
r

end� �
The function simply extracts the correct column and row from the keys k

and the memory M respectively and applies the cosine similarity. Note the
use of type Buffer for the return value: this is a workaround implemented
to overcome Zygote’s inability to handle array mutation. While solving the
need to support three dimensional keys and memory, we still do not utilize
matrix multiplication, and performance suffers. On simple examples using
realistic memory and batch size, this implementation of content based ad-
dressing allocates 144 MiB memory in the backwards pass and takes 66ms
to complete. Such a memory leak is unacceptable in production. Eventu-
ally, this was reduced to 286µs and 624 KiB, a 23000% improvement. To
solve this, a closer look on the cosine similarity metric is useful. The nom-
inator is a dot product, which for a matrix k with multiple read keys is
simply a matrix multiplicationMk. The denominator is the product of the
normalized vectors, which generalizes to the matrix product of the reduced
tensors. Listing 3.3 shows this far superior implementation; gradient cal-
culation is approximately 70 times faster than the pairwise implementation
and doesn’t suffer from a memory leak. The reason for this is the underlying
BLAS function calls that the batched multiplication function from NNlib.jl

utilizes.

Listing 3.3: Julia implementation of content based addressing� �
function contentaddress(k, M, β)
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dot = batched_mul(M, k)
n_k = sum(k.ˆ2, dims=1)
n_M = sum(M.ˆ2, dims=2)
np = batched_mul(n_M, n_k))
norm = sqrt.(normprod)
β = reshape(β, 1, size(β)...)
weightedsim = dot.* β./ norm
softmax(weightedsim; dims=1)

end� �
For comparison, the original implementation from DeepMind’s DNC is in-
cluded in listing 3.4.

Listing 3.4: Tensorflow implemention of content based addressing.� �
def _vector_norms(m):
squared_norms = tf.reduce_sum(m * m, axis=2, keepdims=True)
return tf.sqrt(squared_norms + _EPSILON)

def weighted_softmax(activations, strengths, strengths_op):
transformed_strengths = tf.expand_dims(strengths_op(strengths), -1)
sharp_activations = activations * transformed_strengths
softmax = snt.BatchApply(module_or_op=tf.nn.softmax)
return softmax(sharp_activations)

def _build(self, memory, keys, strengths):
# Calculates the inner product between the query vector and words in memory.
dot = tf.matmul(keys, memory, adjoint_b=True)

# Outer product to compute denominator (euclidean norm of query and memory).
memory_norms = _vector_norms(memory)
key_norms = _vector_norms(keys)
norm = tf.matmul(key_norms, memory_norms, adjoint_b=True)

# Calculates cosine similarity between the query vector and words in memory.
similarity = dot / (norm + _EPSILON)

return weighted_softmax(similarity, strengths, self._strength_op)� �
Both implementations use batched matrix multiplication to compute the dot
products of key and memory rows. The denominator |u||v| is also computed
using batched matrix multiplication. The main difference is that the Julia
implementation calls native Julia methods such as ‘sum‘ and ‘sqrt‘. In the
python implementation, calls to TensorFlow methods are needed for these
basic operations so that they become part of the TensorFlow graph.



Chapter 4

Results

The Julia DNC implementation is a define-and-run version of the DNC with
an easy-to-understand yet high performing code. Extending the machine
learning library Flux, DNC.jl is readily incorporated into other models. It
could for example be passed as any other layer in a Flux Chain, or be used in
a neural differential equation using DiffEqFlux.jl[13]. An attempt at training
the model on the repeated copying task from the original DNC paper[4] was
made, yet no satisfying results were achieved. Rather, the model quickly
converged to a trivial state of not reading the memory at all. The rea-
sons for this is unknown. Through rigorous testing, the correctness of each
module method is ensured, so the problem could be with the repeat-copy-
implementation, and not the model itself. The performance metrics are
therefore still considered valid.

Benchmarks

Table 4.1 presents the computation of a selection of methods used in the Julia
implementation of DNC. All becnhmarks are done using eight Intel Core i7-
4720HQ CPUs operating at 2.60GHz. The @btime macro from BenchmarkTools.jl

was used to benchmark the methods. The method names refer to the Julia
implementation and may differ from DeepMind’s original implementation.
The "Addressing"-methods are the most low level: they are called by meth-
ods in the "Access"-module. For example, readweights will call contentaddress,
forwardweight, backwardweight and then interpolate these weights based on the
readmode-paramater emitted by the controller. The gradient calculation
time range between 2 and 4 times the equivalent forward calculation. The
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relatively fastest gradient calculation is the writeweights method, which com-
pute content based write address using contentaddress and allocation based
weighting using allocationweighting. Since allocationweighting include a sorting
operation, it is not differentiable and skipped in the backwards pass, hence
the good performance. contentaddress is by far the most costly addressing
operation, as it requires a pairwise comparison of all memory rows with all
keys in addition to a weighted softmax operation along each column of the
result. The achieved speed was only possible by converting the similarity
measure to a matrix multiplication which have a fast adjoint implementation
in NNlib.jl.

Table 4.1: Benchmarks of forward and gradient calculations of methods in
the DNC. "G/F" column is the slowdown of gradient calculation compared
with the forward pass only. Parameters: X=6, Y=5, N=16, W=64, R=4,
batchsize=16.

Method Time # alloc. Alloc. memory

Forw Grad G/F Forw Grad Forw Grad

ADDRESSING
contentaddress 89.8µs 286µs 3.18 45 3254 189 KiB 624 KiB
memoryretention 8.35µs 20.8µs 2.49 37 91 10.6 KiB 32.6 KiB
usage 11.3µs 36.2µs 3.20 56 149 18.1 KiB 49.4 KiB
precedenceweight 5.06µs 12.4µs 2.45 24 71 5.27 KiB 11.3 KiB
forwardweight 13.6µs 57.5µs 4.23 8 165 24.6 KiB 52.9 KiB
backwardweight 35.6µs 85.3µs 2.40 128 299 31.6 KiB 61 KiB
ACCESS
eraseandadd 76.5µs 230µs 3.00 29 252 267 KiB 609 KiB
readmem 118µs 283µs 2.40 161 365 93.5 KiB 172 KiB
writeweights 125µs 263µs 2.10 932 1913 126 KiB 442 KiB
readweights 107µs 399µs 3.73 163 3571 128 KiB 674 KiB
MemoryAccess 585µs 2.18ms 3.73 1658 7552 570 KiB 2.20 MiB
DNC
DNC 1.20ms 4.20ms 3.50 1682 7829 693 KiB 2.93 MiB

Benchmarks for the Julia implementation are compared to DeepMind’s im-
plementation of the DNC in TensorFlow in table 4.2. TensorFlow bench-
marks are achieved by recreating the necessary sections of the complete
computational graph and running tf.gradients 1000 times using the timeit

module, averaging elapsed time. Zygote beats TensorFlow in every inter-
nal method, yet for the complete graph calculation performance is equal.
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Table 4.2: Timing of gradient calculations of methods in both Julia and
TensorFlow implementation of DNC. BenchmarkTools.@btime is used in the Julia
implementation and the timeit module for the TensorFlow implementation.
Parameters: X=6, Y=5, N=16, W=64, R=4, batchsize=16.

Method Zygote TensorFlow TF/Zygote
ADDRESSING
contentaddress 286µs 734µs 2.57
usage 36.2µs 449µs 12.4
forwardweight 57.5µs 443µs 7.70
backwardweight 85.3µs 435µs 5.10
ACCESS
eraseandadd 230µs 1475µs 6.41
readmem 283µs 306µs 1.08
writeweights 263µs 811µs 3.08
readweights 399µs 1015µs 2.54
MemoryAccess 2.18ms 3.22ms 1.48
DNC
DNC 4.20ms 4.28ms 1.02

This could be a testament to the optimization features of TensorFlow. The
method readmem is simply a batched matrix multiplication of memory and
read weights. In the TensorFlow version, this is done with a single call to
tf.matmul with the memory transposed, while the Julia implementation use
batched_mul from NNlib.jl achieving equal results. Another interesting thing
to note is forwardweight and backwardweight. From section 3.1, we have that
ft = Ltw

r
t−1 and rt = L>t w

r
t−1. TensorFlow appear to handle the matrix

transpose very well, while the Julia implementation pay a small penalty to
do the matrix transposition. The usage operation heavily outperforms Ten-
sorFlow, but this is with good reason. The Julia code assumes single write
head only, meaning that the usage can operate on two dimensional matrices
only. In the original TensorFlow, multiple write heads are allowed, although
the benchmark is performed with only one.





Chapter 5

Discussion

When the Neural Turing Machine was introduced in 2014, it represented a
new way of thinking about machine learning. Chasing generalizability, the
idea was that a program designed to mimic the behavior of a computer while
still being fully end-to-end trainable could learn to solve complex problems
based on data alone. DNC, the descendant of NTM, improves its mem-
ory access methods and show intriguing results on a number of complex
problem solving tasks. DNC nicely represents the transition from the deep
learning paradigm to the differentiable programming paradigm. In this new
paradigm, deep learning networks are merely a single case of differential
equations modelling the solution to a given problem. They could be ex-
tended or replaced by any other differentiable construct. This transition
require powerful and flexible differentiation tools. Problems requiring a full
extent of language features will also require the differentiation engine to han-
dle the full language. In the DNC, a neural network work nicely together
with a traditional program manipulating and reading data in a matrix. Al-
though initially a TensorFlow program, the DNC is considered a good fit for
the Julia language for a number of reasons. First of all, it is simple to proto-
type and test due do Zygote providing efficient reverse mode AD on-the-fly.
Julia’s expressiveness combined with its C-like performance gives it an edge
when handling complex models. As Zygote play effortlessly with most Julia
packages, the developer is free to explore a wide range of libraries so mini-
mize time spent reinventing the wheel. Lastly, Julia’s growing ecosystem of
machine learning and other scientific programming tools makes it interest-
ing to have a DNC written in Julia available to use as a component of other
applications.

35



36 Discussion

Section 3.2 present the implementation process of DNC.jl. Some pitfalls
were identified, and it was shown that with an inaccurate implementation
performance could severely degrade and sometimes minor changes can lead
to great improvements in runtime. To understand why, knowledge of the
intermediate code representation that Zygote transforms is required. This
can not and should not be expected from most users, but is not necessarily
an implementation problem. More extensive documentation could guide the
programmer to the correct solutions.
The benchmarking results show that a high performance model is possible in
a dynamic framework, beating the TensorFlow implementation by a factor
of up to seven on comparable methods. It is however interesting to note that
the runtime on training the entire model is practically equal. This could be
a testament to TensorFlow’s powerful optimization and job scheduling, but
it could also signal room for improvement in the Julia implementation. It
seems to include extra overhead when incorporating the low level methods in
a complete module call. The benchmarks show execution time on a multicore
CPU. Given TensorFlow’s benefit of being able the graph for optimal job
scheduling on a heterogeneous system, is may be expected that it would
outperform the Julia implementation for large training datasets on GPUs or
TPUs. This is not tested as part of this project, but would be an interesting
question for further work.
Working with benchmark creation of both implementations expose the dif-
ference in experience working with a static and dynamic framework. The
Julia implementation, composed of eagerly executed functions, could easily
be measured by simply running the functions with random input. In Ten-
sorFlow, manual recreation of the correct sub-graphs was needed in order
to isolate the correct gradient calculation. One might argue that this is a
matter of personal preference, however with TensorFlow 2 moving towards
eager execution as default, it seems to be commonly accepted that dynamic
declaration is faster and easier to prototype and develop.
The DNC suits as an illustrating example of the transition from deep learning
to differentiable programming. While its generality and applicability to
diverse problems is interesting enough in its own, it also opens the door
to explore new opportunities with differentiable programs. Julia, with Flux
and Zygote at the forefront, has a strong appeal for programmers in the δP
paradigm as it offers an intuitive high-level interface while providing state-
of-the-art performance. The adoption of DNC into the Julia ecosystem
acts as an example of its ability to handle complex models with ease. The
Julia implementation show that dynamic languages have the capability to
compete with statically declared graphs if programmed correctly. However,
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inaccuracies can cause significant bottlenecks. Model development benefits
from the ability to get quick feedback and inspect data iteratively. While
TensorFlow produce efficient model training at compile time, it is more
to difficult to inspect, debug and test. In the perspective of δP, it can
be useful to have an efficient implementation of the DNC in Julia as its
growing ecosystem of tools for differentiable programming may be able to
utilize in new applications and combinations. It should also be noted that
TensorFlow version 2 is providing eager execution by default, so porting the
original implementation to the new version is also a valid option.





Chapter 6

Conclusion

The implementation of algorithmic differentiation has been discussed and
compared with a special focus on machine learning frameworks. In broad
strokes, they can be split in two groups based on whether they compile a
static computational graph and the execute it on input data or define the
computation graph dynamically on-the-fly. Among the static frameworks,
TensorFlow is probably the largest and most popular toolkit. It has been
successfully deployed in a wide range of applications and power Google’s
many machine learning programs. The original implementation of DNC used
TensorFlow, but an argument is here made for using the Julia programming
language with Zygote as its differentiator. Zygote use dynamic declarations,
but with a slightly different approach than other dynamic frameworks: it
differentiates code in SSA from using source code transformation instead of
the traditional method of tracing the program execution using a Wengert
list. Zygote is looking to be a pillar of what Julia is trying to achieve:
becoming a platform for research, prototyping, and deployment of scientific
computing models, with algorithmic differentiation as a first-class feature of
the language.

Through the reimplementation of the Differentiable Neural Computer, a
thorough comparison of TensorFlow and Flux, Julia machine learning frame-
work, was possible. Differences between static and dynamic programs be-
come abundantly clear when working on both in parallel. The benefits of fast
feedback and simple debugging is highlighted in the discussion. Although
reaching a high performance Julia version, the implementation process re-
vealed some pitfalls and quirks when working with Zygote. Some were due
to the fact that Zygote is young and under development. Nevertheless, it
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was apparent that choosing suboptimal method implementations could re-
sult in huge performance penalties. Additionally, extra care was needed
when dealing with arrays, as mutation of arrays is not supported by Zygote.
This lead to some unexpected errors both on self-written code, but more
importantly, on imported library code. While workarounds were possible,
these errors undermine the goal of allowing language-complete model com-
plexity. The final model outperforms the original implementation gradient
calculation in every internal method, and trains equally fast on the CPU.
Training on GPUs or TPUs was not measured. Due to TensorFlow’s job
scheduling algorithms enabled by the static graph, it is assumed that its
training times on heterogeneous systems will be difficult to beat. However,
Flux offer first-class GPU support and can even run on TPUs, so this would
an interesting research question for further work.
A benefit of the Julia DNC is that it is easily extendible and adjustable. The
codebase is small, as is the codebase for Flux. This allows anyone to adjust
the cod for their needs. Having a DNC available in the Julia ecosystem can
be helpful for researchers wishing to quickly prototype extensions or modi-
fications of the model, or even combine it with other models or programs.
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