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Abstract 

In the last four decades several methods have been used to model occupants’ presence and actions (OPA) in 

buildings according to different purposes, available computational power, and technical solutions. This study 

reviews approaches, methods and key findings related to OPA modeling in buildings. An extensive database of 

related research documents is systematically constructed, and, using bibliometric analysis techniques, the scientific 

production and landscape are described. The initial literature screening identified more than 750 studies, out of 

which 278 publications were selected. They provide an overarching view of the development of OPA modeling 

methods. The research field has evolved from longitudinal collaborative efforts since the late 1970s and, so far, 

covers diverse building typologies mostly concentrated in a few climate zones. The modeling approaches in the 

selected literature are grouped into three categories (rule-based models, stochastic OPA modeling, and data-driven 

methods) for modeling occupancy-related target functions and a set of occupants’ actions (window, solar shading, 

electric lighting, thermostat adjustment, clothing adjustment and appliance use). The explanatory modeling is 

conventionally based on the model-based paradigm where occupant behavior is assumed to be stochastic, while the 
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data-driven paradigm has found wide applications for the predictive modeling of OPA, applicable to control 

systems. The lack of established standard evaluation protocols was identified as a scientifically important yet rarely 

addressed research question. In addition, machine learning and deep learning are emerging in recent years as 

promising methods to address OPA modeling in real-world applications. 
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1 Introduction 

In the last four decades several methods have been used to model occupants’ presence and actions (OPA) in 

buildings to meet different research objectives given available computational power and technical solutions. Often 

the purpose has been to understand how people use a space and how their behavior impacts on a building’s energy 

performance. Indeed, occupant behavior is also one of the main sources of uncertainty in building’s energy modeling 

[1]. In particular, the oversimplification of the OPA description can introduce a large discrepancy between the 

simulated and actual energy consumption of a building [2,3]. These and other issues have driven the exploitation of 

various approaches to explain and predict OPA in order to accurately model OPA in building energy simulation 

tools and to improve building management systems to decrease building’s energy consumption. In order to address 

these issues, the attention of the building research community on OPA modeling has increased in recent years [4]. 

One initiative approved by the International Energy Agency (IEA) in 2013 is the Energy in Buildings and 

Communities (EBC) Annex 66 [5] that aimed to study the importance of occupant behavior in buildings and its 

modeling techniques and to formalize simulation approaches regarding occupant behavior. Following this, in 2017 

IEA approved the EBC Annex 79 “Occupant-centric building design and operation”, which aims to explore open 

issues on the implementation and application of occupant modeling into practice [6]. In the context of IEA-EBC 

Annex 79, this review aims at providing a thorough and carefully-designed overview of the methods and techniques 

used for modeling OPA in buildings in order to create the current state-of-the-art and identify the latest trends in 

this research sector. Given these ambitious objectives, a systematic approach is used to review the scientific 

literature to reduce the risk of missing important contributions in the field, and bibliometric analysis tools are 

adopted to extract patterns and information from the identified database of documents. In the scope of this work, 

the existing OPA studies are grouped into three paradigms: rule-based models, stochastic OPA models, and data-

driven methods. The first paradigm includes, but is not restricted to, the time-dependent users’ profiles as defined, 

for example, in the ASHRAE standard 90.1 [7]. The second paradigm considers the occupant behavior to be 

stochastic since behavior varies between occupants and may evolve over time [8] and is the result of complex 

relationships between contextual factors, adaptive triggers, and non-adaptive triggers [9]. The third paradigm refers 

to data-driven methods where a black-box model is derived from relating input and output data [10] so that, the 

modeling is conducted without an explicit aim to understand the OPA [11] and/or only with the limited inclusion of 

the domain engineering knowledge [12]. Resultantly, the data-driven OPA modeling, for the scope of this study, 

can be defined as “an approach to modeling that focuses on using the computational intelligence and particularly 
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machine learning (ML) methods in building models that would complement or replace the “knowledge-driven” 

models describing physical behavior” [12]. The present study aims at describing the features of methods used for 

OPA modeling in buildings rather than reporting their mathematical formulation that can be found in statistical and 

machine learning handbooks. A summary of a few modelling techniques is available in [13]. 

1.1 Related work 

Numerous reviews about OPA modeling have tried to categorize and formalize the different approaches to OPA 

modeling [9]. However, they are usually limited in the covered time span, in the building typology investigated or 

in the OPA under study. For example, Gunay et al. [14] have reviewed the modeling approaches developed for the 

simulation engine EnergyPlus regarding occupant presence, window and shading operations, lighting, and clothing 

adjustment developed since 2014. Yang et al. [15], focusing on institutional buildings, have studied the available 

estimation, detection and modeling methods to assess presence and movement of occupants. Gilani and O’Brien 

[16] have reviewed the estimation and detection methods to study OPA in office buildings. Chen et al. [17] have 

studied presence estimation and detection methods developed between 2005 and 2017. Zhang et al. [4] have 

reviewed the modeling methods for OPA regarding residential and commercial buildings. Balvedi et al. [18] focused 

on residential buildings in the temporal coverage from 2006 to 2017. Dong et al. [19] did an extensive literature 

review including all typologies of buildings, but without considering any modeling method regarding occupants’ 

movement and activity or their clothing adjustment. Li et al. [20] covered a large period, till 2018, and all typologies 

of buildings, however, clothing adjustment was not considered. Finally, Salimi and Hammad [21] covered all OPA 

aspects, considering a time coverage from 2008 till 2018 and focusing on office buildings. Table 1 compares the 

main features of analyzed literature reviews and identifies the main gaps that the present study aims to fill. 

 

Table 1: Comparison of literature reviews on Occupant Presence and Actions since 2015 

Authors Year 
Temporal 

coverage 

Typology of 

buildings 

Occupant presence and actions 

Presence 
Movement 

activity 

Window 

operation 

Shading 

operation 

Lighting 

operation 

Thermostat 

adjustment 
Appliance use 

Clothing 

adjustment 

Gunay, 

O'Brien, 

Beausoleil-

Morrison 

2015 Up to 2014 All •   • • •     • 

Yang, 

Santamouris, 

Lee 

2016 Up to 2016 Institutional  • •             

Gilani, O’Brien 2016 Up to 2015 Office •   • • • • • • 

Chen, Jiang, 
Xie 

2018 2005-2017 All •               
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Zhang, Bai, 

Mills, Pezzey 
2018 Up to 2016 

Residential 

and 

Commercial 
• • •   • • • • 

Balvedi, Ghisi, 

Lamberts 
2018 2006-2017 Residential • • • • • • •   

Dong, Yan, Li, 

Jin, Feng, 

Fontenot 

2018 Up to 2017 All •   • • • •     

Li, Yu, 

Haghighat, 

Zhang 

2019 Up to 2018 All • • • • • • •   

Salimi, 

Hammad 
2019 

2008-2018 

+adding 
Office • • • • • • • • 

 

1.2 Motivation and objectives 

The overview of the state-of-the-art presented in Table 1 reveals a lack of review studies that cover thoroughly the 

different aspects of OPA modeling and the different building typologies, as well as the latest developments in this 

field. Therefore, standing as an addition to the work done in the IEA-EBC Annex 66 and embracing the new 

propositions of the IEA-EBC Annex 79, the main purpose of this study is (1) building an updated biographical 

database of the studies that have developed models on OPA, (2) based on analysis of this database, providing an 

overview of the scientific production and the current scientific landscape on OPA modeling, (3) identifying the key 

methods adopted in OPA modeling by considering different OPAs and by comparing documents that propose rule-

base methods, data-driven methods, and a stochastic description of OPA, and (4) drawing a future outlook in OPA 

modeling. 

2 Methodology 

The purpose of this work is enabling a comprehensive analysis of the existing literature in the field of occupant 

behavioral modeling in building performance analysis. The presented systematic literature review is conducted 

following the PRISMA methodology, and the research question and the related literature search are built according 

to the guidelines proposed by Denyer and Tranfield [22]. Although the PRISMA methodology is a useful guideline 

for a critical development of systematic reviews, it is not an instrument that can automatically guarantee their quality 

[23]; thus, a large pool of experts from the IEA-EBC Annex 79 community has been involved in the planning, 

development and execution of this study. As such, the authors are aware of the possibility of relevant articles that 

might be missing in the review but are confident that the identified bibliographic database represents the main 

tendencies and approaches adopted into the field so far. 
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The PRISMA methodology considers four main phases: (1) identification, (2) screening, (3) eligibility, and (4) 

inclusion of studies. The summary of the PRISMA methodology is presented with a flow chart that shows the 

number of bibliographic records initially identified by the search query and subsequently included in this study 

(Figure 1). 

 

 

Figure 1: Literature screening process following the PRISMA framework (Moher et al., 2009). 

 

2.1 Identification of studies 

The first step consists in constructing the research question. In this work, the CIMO-logic [24] is adopted, where 

CIMO stands for Context, Intervention, Mechanism and Output, and the research question is: “How do we model 

(M) the occupant presence and actions (I) to simulate the performance (O) of buildings (C)?” (Table 2). 
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Table 2: The CIMO-logic for studying modeling of Occupant Presence and Actions in buildings 

Context Intervention Mechanism Outcome 

Where? In which context 

the intervention is 

embedded? 

What? Which is the main 

topic? 

How? Which is the 

medium? 

To get what? What is the 

wanted information? 

Buildings 

(all building types) 

Occupant presence and 

actions: 

● Presence and activity 

● Window operation 

● Shading operation 

● Lighting operation 

● Thermostat 

adjustment 

● Appliance use 

● Clothing adjustment 

Modeling techniques: 

● Rule-based 

models 

● Stochastic OPA 

modeling 

● Data-driven 

methods 

Outputs: 

● Energy performance 

● Indoor comfort 

 

Next, a comprehensive list of keywords is populated for each of the CIMO terms, and a research query is construct 

using the Boolean operators AND, OR and NOT and exploiting the list of keywords (1) to include all the keywords 

that have the same root but different declinations (e.g., for considering both British and American spelling), (2) to 

consider precise technical wording, (3) to exclude some divergent terms. Afterwards, exclusion criteria are applied 

to limit the search to usable documents in order to limit the search only to journal articles, conference papers, 

reviews, books, book chapters and articles in press written in English. Old articles and conferences proceeding not 

available anymore were also excluded. Finally, the search query is executed in the Scopus, Web of Science and EI 

Compendex databases. However, due to compatibility issues with the bibliometric tools, the file exported by EI 

Compendex could not be used. Furthermore, the files exported by Scopus and Web of Science could not be merged 

and, given the wider coverage, the Scopus file was eventually used for the literature search.  

During the screening phase, the titles and abstracts of the identified documents were read, and several publications 

were excluded because not relevant. Afterwards, only studies with full-text were considered eligible for further 

analysis. Then, quality and consistency assessments were conducted by reading all the full-texts of the eligible 

documents. Those documents (i) not matching the research question, (ii) not relevant, (iii) without sufficient data, 

and (iv) presenting overlaps were also removed from the final database. Also, a few studies were removed due to 

overlap (e.g., the same set of data or models presented in both journal articles and conference papers). Finally, the 

bibliographic database was consolidated, and the bibliometric analysis were executed in Bibliometrix [25] to 

identify relationships between topics, patterns in the metadata of publications and thematic evolution. 
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2.2 Bibliometric analysis 

The bibliometric analysis provides information on the relevance of the identified bibliographic records and uses 

science mapping to extract knowledge at the nexus among conceptual, intellectual and social structures. 

2.2.1 Collaboration network 

A collaboration network involves the analysis of authors’ productivity, affiliations, and countries (of their affiliated 

organizations) and is represented on a map. It specifically deals with the scientific production disaggregated by 

country and the collaboration between authors with affiliations in each country. When a document is written by two 

authors whose affiliations belong to different countries, it is considered a collaboration. 

2.2.2 Co-word analysis 

A co-word analysis is a quantitative method for mapping the structure of a science field [26]. This technique 

analyzes the pattern of co-occurrence of pairs of words, which is the simultaneous occurrence of two words in a 

piece of text. The co-word analysis is performed by adopting clustering algorithms that identify the main themes 

characterizing the work under study. Outcomes of the co-word analysis are typically displayed with a co-occurrence 

network. The dimension of the node representing a keyword is proportional to its frequency of appearance in the 

analyzed bibliographic database, while the thickness of the connecting lines is proportional to the equivalent index 

value. The equivalent index eij is defined as eij = cij
2 / (ci cj), where cij represents the number of the documents in 

which both the keywords co-occur, ci and cj are the numbers of the documents in which each keyword appears. 

3 Analysis of bibliographic metadata 

In recent years, the interest on OPA modeling and the related scientific production have increased (Figure 2) [5,27]. 

It should be noted that the literature search in this article was conducted in August 2019, therefore, the count for 

2019 does not account for the documents published in the second half of the year. 
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Figure 2: Annual scientific production of documents presenting Occupant Presence and Actions models. The 

count for 2019 considers only those documents indexed until August 2019 

 

The median of the publication year is 2015 and the average is 2013, in other words, a large share of the collected 

documents has mainly been published in the last four to six years. Specifically, there is a strong rise in published 

documents on OPA since 2010. By consequence, this review may be considered as an assessment of the current 

practice in OPA modeling in buildings. Looking at the temporal evolution of the published documents by source, 

the journals that have published more documents regarding OPA modeling in the latest years are Building and 

Environment and Energy and Buildings, followed by the Journal of Building Performance Simulation (Figure 3). 

 

 

Figure 3: Chronological development of publication by sources. 
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Regarding the document production by country, the United States of America is the most productive country with 

74 published documents from 1979 onwards. In addition, its collaborations are the most numerous (with 20 co-

authored documents) and the most spread around the world (11 collaborations involve multiple countries) (Figure 

4). Europe, as a whole, is very productive with eight out of 16 countries having more than 10 publications (UK, 

Italy, Switzerland, Germany, Denmark, France, Belgium and Netherlands). European collaborations are mostly 

internal, but there are also connections with countries from all continents. 

 

 

Figure 4: The collaboration network map shows country collaborations and production 

4 Analysis of the documents on OPA modeling 

The bibliographic collection is composed of 278 documents from 146 sources published from 1979 to nowadays. 

On average, each document is cited 46.1 times. The documents were written by 809 authors who appeared 1003 

times as co-authors within this document collection with an average of 3.54 co-authors per document. These figures 

show a consolidated and spread international collaboration on this topic. 

After the screening phase and having read all the full-texts, contextual data was extracted from the 278 documents 

and used to characterize the overall production of OPA models. Few documents propose more than one model and 

address more occupant actions; therefore, the number of models analyzed is up to 310. Figure 5 displays aggregated 

figures on the number and percentage over the total number of collected models. 
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Figure 5: Graphical description of the Occupant Presence and Actions models collected in the bibliographic 

database (number of OPA models; percentage) 
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For the OPA model development, measurements are the most frequent data source. They represent a reliable manner 

to gather data and control uncertainty, but privacy issues may be encountered during the execution of measurement 

campaigns [28,29], typically when data collection happens in large buildings with general visitors for people-count 

purpose. From the analysis of the building use, offices are the most studied building type followed by residential 

units. In particular, the number of documents related to offices is around 60% higher than for residential buildings. 

This imbalance may be due to a more predictable occupant behavior in offices, an easier experimental setting, and 

a more direct transferability of models and results. In addition, the experiments on occupant behavior in offices can 

be less affected by privacy concerns when compared to the residential buildings. Naturally ventilated buildings are 

the most commonly researched building type and control strategy. This could be a result of the wider availability of 

collected data and the high variability of people interacting with a building and its devices, resulting more interesting 

from a model developmental perspective. However, several documents do not report explicit contextual information 

on the above three aspects and, hence, these descriptive statistics must be read as indicative figures. 

All documents are also categorized on the base of the modeling approach used to develop the OPA models. It 

emerged that, in the last years, thanks to extended measurement campaigns and a higher wealth of available data, 

data-driven models are attracting increased interest for their capability to manage large data sources without missing 

the aleatory nature of OPA in buildings [30], followed by stochastic OPA modeling techniques, and rule-based 

methods. Next, the documents were grouped according to the Köppen-Geiger's climate classification system [31]. 

A high proportion of models are developed in temperate and continental climates identified respectively by the 

letters C and D with 50% and 21% out of the total number of models respectively. Follow tropical climates (A) with 

5% and arid climates (B) with 2%. In about 22% of the models, the climate condition was not mentioned. 

The first five climatic zones by the number of developed OPA models represent almost the whole Europe, the USA 

and most populated portion of China (Figure 6), which are also the most productive countries per number of 

publications. 

 



 

13 

 

 

Figure 6: Number of available OPA models by Köppen-Geiger's climate zones in the bibliographic database. 

4.1 Scientific landscape 

Two main analyses are performed to describe the scientific landscape drawn by the bibliographic database: the 

three-field plot and the co-occurrence network map. These analyses help to understand the research trends and the 

connections among the themes rising from the state of the art. 

The three-field plot displayed in Figure 7, shows the number of connections (size of the boxes) and strength of the 

connection (size of the connection lines) between most frequent words in abstracts (left field), Authors’ Keywords 

(middle field) and scientific journals (right field). 
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Figure 7: Evolution of the most frequent words in the abstracts (left field) to the keywords (middle field) and to 

the journal sources (right field) for the papers in the bibliometric database 

 

The most frequent words in the abstracts point out the main and general terms of the research questions (like 

‘energy’, ‘building control’). In the middle field of the author’s keywords, the main concepts on which the domain 

is built (like ‘occupant behavior’, ‘thermal comfort’, ‘windows opening’, ‘lighting control’, ‘machine learning’ and 

‘office building’) is presented. Finally, the main keywords as available in the journals are shown. For example, 

‘occupant behavior’ is a very general term that is present in all the most representative journals, but ‘thermal 

comfort’ is mostly present in Building and Environment and Energy and Buildings, ‘lighting control’ is mostly 

related to Solar Energy and Energy and Buildings, and ‘machine learning’ is more present in Applied Energy and 

Building and Environment. This analysis provides insights to researchers new to the field to aid identifying the most 

suitable journals for publishing their studies. 

The co-occurrence network in Figure 8 shows the different clusters of Authors’ Keywords, which are identified by 

the Walktrap clustering algorithm assuming 50 nodes and normalizing the relationships by the association strength 

[25]. 
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Figure 8: Co-occurrence network of Author Keywords from papers in the bibliographic database 

 

The largest cluster (in green) collects the most traditional keywords (e.g., ‘occupant behavior’, ‘office building’, 

‘energy efficiency’, ‘thermal comfort’) and some satellite terms typical of stochastic modeling. The second cluster 

(in red) pivots on ‘neural network’ and includes several data-driven topics like ‘machine learning’, ‘data mining’, 

‘prediction’ and other term referring to widely used application like ‘building management systems’ and ‘smart 

buildings’. The third cluster (in brown) is somewhat distant from the other terms and is very concentrated. It deals 

primarily with ‘occupant presence’ and includes terms like ‘presence detection’, ‘number estimation’, ‘building 

occupancy’ and ‘cross-space modeling’. The orange cluster pivots on ‘building automation’ for ‘building energy 

efficiency’ together with ‘occupancy detection’ and ‘activity recognition’. The blue cluster vertex on ‘demand side 

management’ and includes the terms ‘demand response’ and ‘occupancy’. The purple cluster focusses on ‘intelligent 
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lighting control’, with terms like ‘daylight harvesting’ and ‘smart lighting’. The keyword ‘daylighting’ is isolated 

but connected with ‘lighting control’ while ‘visual comfort’ and ‘indoor positioning’ are isolated and not connected. 

5 Explanatory and predictive power for Occupant Presence and Actions 

modeling 

In contrast to other scientific disciplines, the research on OPA requires models with both explanatory and predictive 

power, which represents a particular challenge. Motivated by the latter need for dual modeling objective, this section 

provides a comparison of the existing modeling formalisms for both causal explanation and predictive modeling. 

OPA models were developed (1) to optimize the building design, (2) to represent the occupants in building 

performance simulation (BPS), and (3) to predict the human behavior for the inclusion in building control systems. 

The first two goals may be achieved by explaining the relationship between OPA and a set of objective 

measurements. For instance, by knowing the fixed working hours it may be understood the reason why an occupant 

was present at the workspace. Alternatively, the causal explanation of the intervention on sunshades may be visual 

discomfort that can be correlated with the solar radiation on the window surface. Here an important property of the 

chosen methods is to possess high exploratory power. 

Regarding the third goal, OPA models for the application in building control require predictive power, in order to 

forecast the events or states on the future time-steps with satisfactory accuracy. In this place, models that possess 

high explanatory power are often assumed to inherently possess predictive power [32]. However, the research on 

statistical modeling pointed out that the distinctive models are required for prediction and causal explanation 

[32,33]. The need for non-identical methods for representing the impact of occupants in BPS and for predictive 

modeling has already been pointed out by Mahdavi and Tahmasebi [34], hence, this distinction has sometimes been 

overlooked by the modeling studies. 

The causal explanation can be addressed using statistical and linear models [32]. The research on explaining 

occupant behavior has a longer tradition when compared to the predictive OPA in buildings modeling. Therefore, 

the set of statistical and linear models in use widely overlaps with the established general modeling formalisms that 

were reviewed by D’Oca et al. [35]. In addition to the methods proposed by the latter study (namely Bernoulli 

models, generalized linear models, and survival models), the generalized class of probabilistic graphical models, 

which also includes discrete Markov models, showed to be powerful tools for the research on human-building 

interaction. For instance, logistic regression and linear models have been applied to investigate the relationship 
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between the thermal conditions and the resulting occupants’ actions [36,37]. Furthermore, the results of the past 

exploratory studies on the human-building interactions led to a better hypothesis formulation regarding the drivers 

of occupant behavior as well as defining the baseline predictive OPA models. 

The prediction of OPA has been commonly addressed using machine learning-based methods. The literature 

screening has pointed out that the occupants’ presence, activity recognition, and movement detection have been 

widely researched in the context of predictive modeling. For that purpose, the well-established modeling formalisms 

relied on probabilistic modeling, probabilistic graphical models, and conventional machine learning such as Support 

Vector Machine (SVM) and k-nearest neighbors (k-NN) algorithm. In the case of occupants’ action prediction, 

different NN architectures have been investigated to model adaptive actions such as the use of lighting, solar 

shadings, windows, appliances, and clothing adjustment. The alternative widely explored methods include the 

conventional machine learning methods, such as k-NN, SVMs for classification and regression, as well as the 

variations of decision trees and ensembles of decision trees. The application of probabilistic methods and 

probabilistic graphical models led to promising modeling results for the application in the built environment. Hence, 

these classes of methods have not been comprehensively explored in the scope of existing OPA research. Moreover, 

stochastic models were also explored for their predictive capabilities for OPA. As a result, the logistic regression 

has been established as a baseline predictive model for window opening behavior, while in the scope of the recent 

study, the logistic regression showed promising results for learning the thermostat setpoints [38]. 

A first significant difference between the stochastic methods for the causality explanation and for the predictive 

modeling lies in the required data split. In the case of stochastic modeling, a set of data points is used to establish 

the hypothesis, while a set of distinct data points is eventually used to test the goodness of the hypothesis. 

Commonly, these two data sets were collected on the same occupant or on the same building, and the amount of 

available data is constrained by the design in terms of extent of the monitoring campaign [11]. Since these 

hypotheses widely address the relationship between the unique building design and the behavior, there are no strong 

requirements of the sample size. 

An additional significant difference between the stochastic and machine learning modeling is the interpretability of 

models. Here, we refer to interpretability as the description of the internal rules of a system in a way that is 

understandable to humans [39]. Commonly, the machine learning models are developed to maximize the prediction 

accuracy and the results are often not interpretable using domain knowledge. This lack of interpretability has been 

seen as a major drawback for considering the machine learning approaches in the building design phase. However, 

as already pointed out by existing research, the most accurate explanations are not easily interpretable to people; 
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and conversely, the most interpretable descriptions often do not provide predictive power [39]. Therefore, human 

interpretability is not a crucial property of the OPA models for inclusion in building control systems. Rather, the 

strict evaluation protocols in terms of models’ effectiveness and the critical analysis of the predictive powers may 

be seen as the necessary components for the consideration of the machine learning methods in building control. 

6 Modeling occupant presence 

Human occupancy information is crucial for any modern building management system. The retrieved information 

can be utilized to understand both space utilization and building energy optimization, which enables informed 

decision making. Occupant presence is commonly declined in three sub-domains: occupancy detection, estimation 

and prediction; activity prediction and room occupation; and people movement between zones. 

In this section, 53 documents published between 2004 and 2019 were analyzed. According to the developed 

bibliographic database, the annual scientific production in occupant presence modeling research reaches its peak 

(11 documents) during the period 2016-2018. The documents with most impact (in terms of a total number of 

citations) were published in Energy and Buildings. Next, there are documents published in journals with diverse 

scopes that do not belong to the core sources identified by Bradford’s law, like Energy Conversion and Management 

and Geodesy and Cartography. These results point out that occupant presence modeling is a topic not exclusively 

related to energy and indoor environmental research in buildings. 

The data-driven models represent 56% of the total, followed by stochastic OPA modeling techniques (30%) and the 

rule-based models (14%). In particular, 27% of the data-driven models use NN techniques, 13% SVMs, and 11% 

Hidden Markov model (HMM). Regarding the stochastic OPA modeling techniques, 42% make use of Markov 

chain models, 17% of linear time series models, while 13% of the Monte Carlo method. 

Figure 9 shows the percentage of documents using a typology of methods on the overall documents published in 

that year considered in this review. In the last years, data-driven models are emerging compared to the other two 

typologies. A cause for that could be the increase of data wealth due to the digitalization of the building lifecycle, 

large sensors installation campaigns, and availability of smart meters. 
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Figure 9: Yearly percentage of presence models with respect to the total number of published models belonging to 

the bibliographic database in each year 

6.1 Occupancy detection, estimation, and prediction 

Occupancy detection usually refers to the binary inference of occupant presence and absence in different zones of 

an indoor or outdoor space while occupancy estimation usually refers to the occupancy count. Occupancy prediction 

is to forecast the in a future time window. Occupancy detection, estimation, and prediction are challenging tasks 

due to many reasons. For instance, there is a wide variety of sites of interest (such as individual and open plan 

workplaces, shopping malls, cinemas, etc.), which differ in size and operation mode. Hence, the appropriate 

contextual information must be considered for effective deployment of any system for occupancy detection, 

estimation, and prediction. Recent technological developments and the proliferation of pervasive technologies have 

opened up many opportunities to detect, estimate, and predict indoor occupancy leveraging various sensors and 

smart devices [40]. 

Many sensor-based technologies are available to detect and estimate occupancy in different types of sites [41]. A 

comprehensive review that compares the capabilities of different sensor types and their fusion for occupancy 

detection and estimation is presented in [17]. However, these technologies require extensive installation of hardware 

and continuous maintenance. Moreover, their accuracy can be influenced by specific physical orientation (i.e. 
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seating, standing, walking styles) of occupants since the sensors are usually placed under the desk or overhead. To 

reduce the cost of extensive sensor installation, a probabilistic method for room-level occupancy counting is 

presented in [42]. This model utilizes common sensors available at different rooms for disaggregating accurate 

building-level occupancy counts to room-level occupancy counts. Another probabilistic fusion technique to estimate 

indoor occupancy from 3D camera counts is presented in [43]. Data from smart electricity meters is also used to 

detect the occupant presence [44,45]. The basic idea is to conduct cluster analysis on continuous variables, like 

power load, carbon dioxide (CO2) concentration, and estimate occupant presence. Another research highlights the 

use of different sensing systems including radio frequency, infrared, ultrasound, video cameras, and wireless local 

area network in recent literature [15]. However, these technologies are susceptible to surrounding electromagnetic 

conditions, inconsistent connections and may raise privacy concerns [15]. 

From the analysis of the developed bibliographic database, many state-of-the-art machine learning tools have been 

deployed to develop smart building applications which include occupancy detection, estimation, and prediction. 

Several classification models including Linear Discriminant Analysis, Classification and Regression Trees, and 

Random Forest models are evaluated for occupancy detection utilizing data from light, temperature, humidity and 

CO2 measurements. The data coming from various smart sensors are utilized to provide real-time as well as future 

predictions of occupancy status. However, it shall be mentioned that, since sensor data varies in dimensions and 

frequencies from one domain to another, a model trained for one domain cannot be applied effectively in another 

domain. To address this challenge, a semi-supervised domain adaptation method for CO2-based human occupancy 

counter is presented in [46].  

Finally, several evaluation metrics are used to validate the occupancy detection and estimation models including 

prediction accuracy, precision, recall, f-1 score, mean average error (MAE), mean average percentage error 

(MAPE), and root mean squared error (RMSE). However, it would not be fair to quantify the widespread use of a 

model and evaluation metric as the performance of a model generally depends on the specific application, size and 

quality of the data. For example, the deep learning-based models require a large dataset for better performance while 

compromising the interpretability. If the purpose is casualty analysis, it is possible that the statistical and machine 

learning models are a better choice over deep learning. 

The models discussed above are mainly developed and deployed using data from a specific site. Given the variety 

application scenarios, one of the key challenges is to transfer such models build for one site to another site as it may 

require extensive parameter tuning. In the future, efficient transfer learning methods could be adapted to mitigate 

this gap and more research effort needs to be given towards the adaptation of explainable machine learning and deep 
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learning techniques. This will allow the research community and beyond to better understand the outcomes of the 

deployed models. 

6.2 Occupant activity recognition 

To adjust and operate control systems based on indoor occupant behavior, it becomes crucial for a building 

management system to recognize the indoor occupants’ presence and its associated activities. The ability to identify 

or forecast a particular activity can minimize the exhaustion of unnecessary energy resources. Indeed, the difference 

in occupant activity might have a significant effect on the building’s energy performance. Conservative behavior 

by occupants has been shown to save up to 30% of the building’s energy consumption, while careless or reckless 

behavior can increase that amount by one-third [47]. Proper modeling of occupant activities is necessary to estimate 

building energy consumption and adjust the building’s energy demands to optimize it [48]. Other notable uses of 

activity recognition and prediction include their use in health monitoring, to provide automated assistance and detect 

uncommon situations [49]. 

Activity recognition constitutes the monitoring of OPA along with the change of state in their environment. It is 

based on two main types of approaches, vision-based activity recognition and physical measurement-based or maybe 

environmental sensor-based. The former uses surveillance-based systems such as cameras [50], 3D-stereo vision 

systems [42], infra-red or depth registration [51], while the latter uses wearable or deployed sensors or RFID tags 

[52]. The typical solution for the detection of the occupant’s activity involves a fusion of different environment 

monitoring techniques [53–56]. Most of the developed models are built on a foundation on quantity data but there 

are few examples that used quality-based data as the main development source [57]. Earlier works regarding the 

prediction of the occupant activities made use of probabilistic models and Bayesian belief networks [58]. Recent 

research efforts have also focused on Markov-chain models and HMM to estimate and forecast occupant activity 

levels [59,60]. Usually, most of the developed models are validated by ground truth data, obtained from visual 

observation via video recordings or notebook reporting [61]. Another development in the field of activity 

recognition and prediction is the use of deep learning methods for human activity recognition, where models are 

making use of Convolutional Neural Networks (CNN) [62–64] SVM [65,66], and Recurrent Neural Networks 

[67,68]. 

The main gaps for activity recognition are having a wider range of activities, since most of the research efforts to 

date have targeted a selected number of pre-defined activities [58,62–67]. In addition, the interdependence between 
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activities has to be recognized as well [69]. Future efforts can be outlined to incorporate the personalization 

perspective for accurate activity recognition, along with adaptation with evolving activities, and context aware 

recognition [70] 

6.3 People movement between zones 

People’s movement between zones is intended as the transition of occupants from one room to another inside a 

building. Occupants with their movement change also the sensible and latent loads between zones and so influence 

the temperature and humidity in rooms. This topic is fundamental for detailed building models, in which the spaces 

are described at room-level and, on average, occupancy probability assigned to all the rooms are too simplistic. 

The bibliometric analysis suggests that the topic of detection and modeling of indoor movement of occupants is 

gaining momentum as it is strictly related to the topic of smart buildings. The indoor tracking of occupants is not a 

new field of research [71]. However, only in the last years, some descriptive and predictive models are emerging 

aiming specifically the better description of occupants for buildings energy modeling [72]. The description of the 

localization of occupants in real-time is fundamental for a large variety of smart buildings services; specifically, 

energy management and indoor environmental control [73]. For example, the proper load calculation due to 

occupants and their spatial distribution could avoid over-heating/cooling or under-heating/cooling of areas which is 

of a major importance especially for large public spaces [72,74]. Furthermore, these models could help to track and 

learn inhabitant’s daily routine unobtrusively with the aim to optimize energy usage without affecting occupants’ 

comfort [75]. Moreover, although satellite-based radio navigation systems are the common method that provides 

accurate track and modeling of movements outside buildings [76] and their use for positioning inside buildings is 

theoretically possible [77], it is difficult with traditional Global Positioning System (GPS) receivers to locate 

occupants in buildings [71]. Firstly, because the signal must be unobstructed, indeed conservative models suggest 

that the attenuation in buildings can reach levels of 2.9 dB per meter of structure [76]. Secondly, because this 

typology of systems requires the user to carry a tag. 

Generalizing, the overall research process can be summarized into two consecutive tasks: people movement 

detection, identification, and localization, and people movement modeling for forecasting and simulation. 

The literature relates mainly to the first task, in which arrays of binary sensors [78], environmental sensors [79], 

cameras [80], pressure sensors [81], inertial and vibration sensors [82,83], radio-frequency identification sensors 

[84], Bluetooth [75,85] and Wireless Local Area Network (WLAN) [86–88] are used to detect occupants and track 
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their movements [89]. Generally, environmental sensors are the cheapest solution, but they provide less information 

about human movement, unless densely spread in the indoor space. Cameras or infrared sensors provide good 

accuracy, but they are usually expensive sensors with high maintenance costs and privacy issues. Pressure sensors, 

inertial and vibration sensors are usually employed under the floor, making the maintenance and the installation to 

be planned. Finally, the sensors like relying on Bluetooth or WLAN provide very detailed results, however, often 

they need that the occupant carries constantly a device. 

The second task is usually performed with machine-learning algorithms that are able to learn representation from 

the data and use them to forecast, simulate and model the occupants’ presence in rooms and their movements 

[74,75,90,91]. Some studies solve the simulation and forecasting via stochastic models, due to the lack of surveys 

and statistical information with proper detail [72,92]. 

 

To summarize, the topic of modeling people's presence, movement between zones and activity is relatively new, 

and machine learning methods are emerging as a promising approach to forecast, simulate, and model the occupants’ 

presence in rooms and their movements inside buildings. 

7 Modeling occupant actions 

People interact with a building and its devices in various manners to meet individual needs. Occupant actions have 

a role in modulating energy fluxes exchanged by a space and the outdoors and, hence, have an important impact on 

the actual energy use in buildings and perceived occupants’ comfort. In this study, considered occupant actions are 

windows operation, solar shading operation, electric lighting operation, thermostat adjustment, appliance use, and 

clothing adjustment. 

7.1 Window operation 

Window operation is an important control mechanism that, enabling physical connection with the outdoors, provides 

occupants with the ability to control the local indoor environment (i.e. regulate the indoor air quality and room air 

temperature). Moreover, since the ‘70s, building regulations are progressively increasing the energy conservation 

requirements of the building envelope with a reduction of infiltrations and conductive heat losses. Thus, the share 

of the ventilation losses on a building’s overall energy balance is enlarging. In this context, window operations 
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become even more important, and there is a high demand for window operation models that create realistic patterns 

for use in building energy simulations and for the predictive modeling for building control systems. 

In this section, 43 documents published since 1990 were analyzed. According to the analysis of the developed 

bibliographic database, the control mechanisms, even though clearly influenced by physical conditions, tend to be 

governed by a stochastic rather than a deterministic relationship [93]. Stochastic models estimate an outcome by 

assuming a probabilistic relationship with one or more predictor variables. For modeling window opening behavior, 

the most common approach used so far are logit models and logistic regressions. These models can be used to 

predict the probability of a window’s state (i.e. open or closed) [36,94,103,104,95–102] or the probability that a 

certain action will occur (i.e. window opening or closing action) [105–108]. The former has been typically 

implemented with a Bernoulli process while the latter with a Markov process. A Bernoulli process [37] is a sequence 

of independent binary random variables where the current state has no impact on the future state; by definition, it 

ignores the actual dynamic processes leading occupants to perform actions. This limitation can be overcome using 

a Markov process [37,94,103,109–111], since it is a random process where future states are dependent only on a 

current state together with the probabilities of the state changing. However, to integrate these simulation approaches 

in a conventional BPS tool, since the time advances in fixed time steps, they have to be discrete (discrete-time 

random process). Therefore, the temporal resolution of predictions is limited (e.g., short duration openings could be 

ignored if they last less than the given time step). Furthermore, the time in which the active state (e.g., window 

closed) will be reversed is not predicted. To pose a solution, Haldi and Robinson [112] developed a hybrid approach: 

state transitions were predicted as Markov processes, while a continuous-time approach was employed through a 

survival analysis to estimate the time to reversal of the state. 

Several studies implement NN and also deep learning has been used so far [113]. NNs are capable of learning the 

relationship between input signals and capturing key information through the training process based on historical 

records. Furthermore, they also possess a number of other strengths such as fault tolerance, robustness, and noise 

immunity [114,115]. However, the architecture choice and hyperparameters optimization in the current NNs are 

still developed on an ad hoc basis. This implies that NNs applications are usually case dependent [116]. They have 

to be designed and validated each time for every diff erent applications. 

From the analysis of the bibliographic database, it was observed that other ML techniques adopted to analyze 

window-opening behavior are based on a Gaussian distribution model (e.g., [95]), a Bayesian network (e.g., [117]), 

a cluster analysis and mining association rules (e.g., [118]). 
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Researchers have adopted diff erent indices to evaluate the performance of their models, such as the true positive 

rate (TPR), true negative rate (TNR), the accuracy of the model (ACC), the mean absolute error (MAE), the mean 

signed deviation (MSD), and area under the curve (AUC). Consequently, there is a lack of horizontal comparison 

among these models. The motivation behind this difference is due to the fact that a convergence towards a systematic 

set of statistics for the prediction of the performance of behavioral models is missing. In this regard, Mahdavi and 

Tahmasebi [34] suggest two categories of indicators: indicators addressing aggregate aspects of models’ predictions, 

and indicators addressing the interval-by-interval congruence between predictions and measurements. 

Following the Köppen climate classification scheme, the majority of the analyzed window opening models were 

developed in temperate climate zones Cfb (43%), Cfa (23%), Csa (2%), while the remaining in continental climate 

Dwa (16%) and Dfb (16%). Furthermore, most published studies referring to occupant window behavior have been 

carried out in European countries [37,94,113,117,119–126,102,127–133,105–107,109–112]. Since window 

operation enables physical connection with the outdoor environment, it can be directly influenced by different 

conditions such as the atmospheric environment but also contextual factors such as routine/habits [134] and 

individual preferences [135]. It is therefore evident that in-depth research of window behavior in other climates and 

contexts is necessary. 

While statistical models are a quite consolidate approach to model window operation (Figure 10), data-driven 

models still requires further exploration, although deep learning has been recently used to investigate window 

operation [113]. 
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Figure 10: Timeline of window operation models  

 

7.2 Solar shading operation 

Solar shading devices coupled with electric lighting are fundamental instruments to provide indoor thermal and 

visual comfort. The use of solar shading controls the internal daylight and influences the resulting solar heat gains. 

On one hand, solar shading can allow solar radiation to enter and passively heat the indoor environment, and on the 

other hand, it influences the operation of electric lighting that contributes to indoor sensible heat gains. Furthermore, 

solar shading is also used to provide privacy by blocking the view into a room from the outside.  

In this section, 20 documents published since 1979 were analyzed. Solar shading operation is mainly modeled by 

predicting a shading state (or its change) as a binary variable (i.e. open or closed) [122,123,132,136–142] or by 

estimating a shading device multi state [143–147]. Moreover, there are some specific models that predict the 

Venetian blind slat angle [148,149] and some others that couple the slat angle with the blind multi state [150,151]. 

The occupant-controlled shading devices has become of great interest in building performance simulation for 

different reasons.  
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A fundamental role in OPA models is played by the choice of the predictor variables. From the bibliometric analysis, 

it emerges that the most used predictors in shading control models are indoor and/or outdoor air temperatures  

[122,123,132,140,151], work plane daylight level [137,139,142,143], indoor illuminance [138,146,150], external 

radiation [146,150], and rainfall [122]. Since most of the models use external conditions as predictors, the climate 

in which the data for model construction are gathered is of great interest. In the analyzed bibliographic database, 

almost all models for shading operation come from temperate [123,137,139,140,146] and Continental 

[122,132,150,151,136,138,141–143,147–149] climates, except for Kurian et al. [145] that worked in the tropics. 

Next, except from Andersen et al. [140] that predict shading movements in residential building, all other models are 

built for offices [122,123,147,149–151,132,136–139,141–143]. 

From the performed analysis came that the first shading control model was developed by Hunt in 1979 who used a 

stochastic method (Figure 11). Since 2000, even data-driven methods have been used as accurate tools to predict 

the occupant-driven use of solar shading, with fuzzy logic and regularized logistic regression as the most used 

methods. NNs have been used for controlling the slat angle of Venetian blinds to optimize the energy consumption 

for lighting, and space heating and cooling [143,148,149], and also reinforced learning has been adopted to develop 

a controller to adjust both electric lighting and blind position [150]. 
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Figure 11: Timeline of solar shading operation models 

In summary, models reflecting the operation of solar shading on tropical and arid climates are missing. Furthermore, 

more investigations should address residential and other types of buildings, providing a wider support for building 

energy modeling. 

7.3 Lighting operation 

In this section, 77 documents published between 1994 and 2019 and focused on electric lighting operation were 

analyzed. The analysis of the collected bibliographic records shows that, in the last 20 years, smart lighting control 

systems have been proposed to simultaneously satisfy personalized lighting levels and harvest natural daylight 

reducing energy consumption [152–154]. The first lighting controls were created such as on/off switch control or 

dimming by using sensors’ outputs. Also, user-centric models based on occupants’ location and their activities were 

used to define optimal lighting intensity level as a balance between user satisfaction and energy cost [155–157]. 

Lighting models that use sensor input (mostly occupancy and illuminance level) were primarily applied in office 

buildings. These models aimed to optimize the lighting conditions with respect to the work satisfaction and 

productivity [158,159]. NN technique was adopted in dwellings to implement programming schedules of lighting 

control in [160].  

With regard to the climatic conditions, the majority of the analyzed investigations were developed in temperate 

climate zones Cfa (18%), Cfb (16%), Csa (12%), and some studies fall into the continental climate Dfb (12%). The 

main percentage of investigations (55%) was conducted in office buildings, followed by houses (17%) and 

laboratories (9%). The less analyzed building types are dormitories, hotels, and commercial buildings. Analyzing 

the type of data adopted for the models’ development, it appears that the most common sources come from 

measurements (42%) and simulations (26%). Some documents adopt both measurements and simulations (18%). 

Surveys are rarely adopted alone, but they are typically coupled with measurements (9%) or with both measurements 

and simulations (4%). Regarding the models’ categories, the highest percentage of identified documents belongs to 

the category of discriminative machine learning models (66%) followed by stochastic OPA modeling techniques 

and deterministic models that present similar applications. Some studies implement more than one model that falls 

into the same or into different typologies. 
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The most frequent category is the data-driven models [121,144,161–170,148,171–180,149,181–190,152,191–

194,155–158,160], followed by the stochastic OPA modeling methods [153,159,195–204,161,205–212,184–190] 

and, then, the rule-based methods [139,157,219–223,160,206,213–218]. 

NNs allow forecasting multiple continuous variables based on design parameters because they are able to predict 

unique light use schedules for each design variant [172]. Furthermore, nonlinear transformation from input variables 

to output variables enables the designer to make predictions or classifications with regard to lighting controls 

[161,193]. However, their main drawbacks are that it takes too much time for the training phase [161] and needs to 

be trained again if the layout of any lamp is changed [163,165,166]. Regression models can help in predicting the 

lighting consumption of buildings [210] by providing an accurate estimation of the energy consumption compared 

to the results obtainable with extrapolation methods that use data from office lighting systems [191]. Furthermore, 

regression models were used to predict a state (i.e. on/off) (e.g., [212]), to estimate the probability of light switch 

actions (e.g., [207]), and the interactions with window shades (e.g., [206]). Rule-based models are a simpler manner 

to set a lighting control strategy and, in  the case of large datasets, they provide acceptable results when compared 

with stochastic OPA models [206]. 

The historical overview shows an increasing development of models since 2004 (Figure 12). Rule-based models 

like schedules and profiles were implemented for this intervention [215,216]. Logit model [224] was the first 

technique used to describe stochastically OPA behavior in European countries and Pakistan [195], but its application 

was time limited. Successively, there was the implementation of Markov chain model [159,205]. Since 2005, NNs 

[225] have become the most used data-driven method due to their abilities to learn from input data and the 

breakthroughs made in computing power at the beginning of the 20th century. Other methods for lighting modeling, 

for example, SVMs and decision tree, have emerged since 2010, but are relatively less used than NNs. As a 

prediction method, linear regression is easy to use, and the historical use rate is similar to SVMs and decision trees.  
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Figure 12: Timeline of models for operate electric lighting 

 

Researchers validated their models by means of different evaluation metrics: error or accuracy [149,155,202–

204,164,166,170,177,179,180,186,201]; comparison between the performances of the proposed system and the 

existing system in terms of energy saving or illumination level [139,153,221,173,174,181,191,192,194,199,206]; 

MSE [155–157,161,163,168,193,208]; RMSE [121,152,166,183,184,208,210,211]; statistical parameters such as 

standard deviation, kurtosis, and skewness [165,167,197,209]. 

The analysis of the existing literature showed that the research about electric lighting modeling was mainly 

conducted in locations characterized by temperate climatic conditions. Nevertheless, the user’s interaction with 

electric lighting is influenced by the daylight availability that depends on local sky conditions and latitude. This 

limitation can negatively affect model’s generalization and suggests future studies in diverse geographical contexts. 

Also, offices were the most investigated indoor environments due to the easiness to apply sensors and collect 

measured data. Thus, research should be dedicated to residential, educational, and commercial buildings.  

Discriminative machine learning models were widely developed and tested, stochastic and deterministic models 

require more investigation in order to verify their efficacy. Generally, accurate analyses about user’s habits, 
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preferences, and perceptions of indoor conditions are missing and so investigations could be improved by 

administrating targeted surveys during the monitoring phase. 

7.4 Thermostat adjustment 

Thermostat adjustment behavior is a key component of building performance modeling as it directly influences the 

amount of energy used for space Heating, Ventilation, and Air-Conditioning (HVAC) systems. Thermostats are 

used as control devices to determine when space heating, cooling, or ventilation should be applied to a building 

thermal zone. Thermostats typically include sensors that measure the air temperature or humidity of the building 

thermal zone and will request space heating, cooling, or ventilation if the indoor climate is above or below a set-

point value. The occupants within buildings interact with a thermostat by adjusting the set-points for temperatures 

and humidity and by setting schedules for when the HVAC systems should be active and inactive. Thus, the 

occupant behavior (setting the set-points and the schedules) is one factor determining when an HVAC system 

switches on and off; other factors include the many thermal processes which influence the indoor climate such as 

the thermal properties of the building envelope, the internal heat gains and the capacity of the HVAC. 

The choice of thermostat set-points and operation schedules by the building simulation modeler will hav e a 

significant impact on the predictions of energy use and occupants’ thermal comfort. This is a key factor of the 

performance gap as international and national building performance standards and calculations often assume 

constant, simplistic occupant behavior for the thermostat control. In reality, many occupants will continually adjust 

the thermostat set-points and schedules depending on when they are at home or at work, the external weather 

conditions and for occasions such as holidays. The difference between these assumptions and the actual occupant 

behavior may lead to significant uncertainty in the predictions of building energy use [226]. 

In this section, 44 documents published after 1989 are analyzed. The occupant behavior modeling methods have 

been identified in the developed bibliographic database (Figure 13). The most used methods include 

General/generalized linear model (33%) [227,228], Markov chain models (23%) [229,230] and logit analysis (20%) 

[121,132]. The studies are based on a wide range of buildings such as residential buildings (54%), offices (26%), 

commercial buildings, educational buildings (7%), and commercial buildings (6%). Measurement campaigns are 

used to collect training and calibration data for model development, including internal temperatures (set-point and 

indoor air temperature), occupancy/presence, heating/cooling/ventilation energy demand, and outdoor weather. For 

residential applications, it can be difficult to directly measure thermostat set-points and schedules (as this requires 
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a direct interface with the control equipment) and often indirect measurements are used as a proxy such as estimating 

thermostat settings using the zone air temperature [132,231,232]. This further adds to the uncertainty of the model 

predictions. In the numerous studies in this field, there is no agreement on the choice or amount of measurement 

variables that are required to construct the occupant behavior models or the choice of evaluation metrics which 

should be employed to validate the models. 

 

Figure 13:Timeline of models for thermostat adjustment 

In connection to the previously described thermostat set point adjustments, the occupants’ interactions with the 

HVAC systems have also been explored in residential [227,233–235] as well as in office and commercial contexts 

[236,237]. As a result, the use of the HVAC in residential buildings has been conducted using approaches such as 

Markov transfer probabilities [227] and descriptive statistics [233–235]. In the case of commercial buildings, the 

application of logistic regression and rule-based agent models have been identified as a suitable modeling approach 

[236]. This study pointed out that both logistic regression-based models and the agent-based framework could 

identify approximately 50% of the fan use or heater use events correctly, while the proportion of the false positive 

rate remained around 20%. In another study of office and commercial buildings, NN was evaluated for performance 

among four different machine-learning algorithms [237], which actively learned occupants’ interactions with 

thermostats under dynamic, time and space varied contexts. For a period of five months, the interaction model was 
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conducted to an HVAC system in the case study building. The results reported 4% to 25% energy consumption 

reduction as compared to static temperature set points at the low values of the preferred temperature range. 

Significant further work is required in this area. The field of OPA thermostat set-point modeling is underdeveloped 

in relation to other OPA areas because of the challenges in collecting thermostat data (in residential settings) and in 

modeling the complex interrelated effects of occupant thermal comfort, building thermal response and dynamic 

external conditions. A clear data collection methodology and standardized model testing framework needs to be 

developed, with clear reporting criteria and evaluation metrics. To maximize the potential of existing and future 

datasets, a common data collection vocabulary or ontology should be created which would enable data reuse and 

ultimately meta-analysis of multiple datasets across different building types, sample sizes and country of origin. 

7.5 Appliance use 

Appliance are electrical devices that support people’s daily life, ranging from small machines (like laptop 

computers, air purifiers, coffeemakers and microwaves) to large ones (like fridges, clothes washers and dryers). 

Especially in the residential sector, appliances become one type of key electricity consumers. The energy demand 

for household appliances is growing as rising living standards worldwide [238]. Human behavior has an impact on 

appliance operation and spurs the associated energy consumption within buildings. Better understanding such 

activities offers potentials to operate appliances and their energy supplies (including the power grid and renewable 

energy) in an efficient way. Measuring and modeling appliance usages triggered by occupants, if properly visualized 

and communicated to together with suggestions, can promote energy-saving awareness [239]. Yu et al. [240] 

proposed a data mining-based method for estimating the saving potentials related to standby energy use considering 

the occupant behavior. Meanwhile, energy/load management based on appliance operation minimizes the variation 

of power supply [241], shifts appliance operation from the peak electricity demand [242] and makes appliance adapt 

to changes in electricity price [243]. 

In this section, 36 documents published since 1994 were analyzed. They describe models for identifying and 

modeling appliance states that were based on measurements, simulation, and surveys. Overall, the majority of the 

data used is measured data from field studies and home applications (69%). The studies were undertaken mostly in 

temperate climates (Cfa 39%, Cfb 33%, Csb 6%) with some models in continental (Dfb 11%) and arid climates 

(Bsh 6%, Bwh 6%). Sensing infrastructure for the data collection differed for the individual studies. It included four 

distinct groups of sensing devices: energy-related measurement (power, voltage, and current meters); 



 

34 

 

communications technology (barcode and Bluetooth); environmental sensing (temperature, carbon monoxide, and 

acoustic sensors); and activity-related sensing (triaxial accelerometer and gyroscope, motion, door, and ultrasonic 

positioning sensors). Among them, power meters installed at the main power inlet of households were widely used 

by the studies as predictors. 

Appliances are operated in on/off or multi states. Identifying their states was mainly described stochastically or 

predicted with data-driven methods. The former approaches use Bayesian networks [244,245] and hierarchical 

clustering models [246]. The latter use two different machine-learning-based algorithms: HMMs [239,247–249]  

and NNs [250–252]. To model occupants’ indoor behavior and activities in interaction  with appliances, diverse 

algorithms were employed in the studies, such as pedestrian dead reckoning [253], Bayesian network mode and 

linear regression [254], k-means and Gaussian mixture [69], random forest [255], and SVMs [256]. According to 

power usage of appliances, Gaussian mixture [257], k-means [258], optimization based on defined objective 

function [243] were used to infer load distribution and scheduling for systems. Similarly, power data showed 

potentials to extract building occupancy using data-driven approaches, such as decision trees [259] and NNs [260]. 

Two studies used both power data and occupant surveys [261,262]. Based on such data, the former study aimed to 

identify occupant behavioral predictors using a linear method, and the latter employed a Gaussian mixture method 

to model load patterns of the appliance in offices. For appliance controls in households, NNs [263] and stochastic 

sliding mode control [241] were utilized. As shown in Figure 14, most of the studies were based on recognition of 

appliance states and associated occupant activities using data-driven models.  
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Figure 14: Timeline of models for appliance operation 

 

Evaluation metrics applied to verify the above behavior modeling for appliance uses included precision, recall, F-

score, RMS, RMSE, NRMSE, MAE, distance and positioning accuracy, and variances of positioning errors. 

Most of the studies focused on one type of data (i.e. total electricity consumption of individual buildings or 

households) or one case study with several specified appliances. In actual buildings, diverse appliances are used by 

occupants which are affected by the purposes of the buildings (for example, residential and commercial buildings), 

and occupants’ requirements. Meanwhile, occupant behavior interacting with appliances differs from device to 

device and person to person. In future research, one of the key research questions could be how to generalize 

methodologies for different appliance applications. 

7.6 Clothing adjustment 

Clothing has been considered as a critical interface between humans and their surrounding environmental settings 

[264–267] and is an influential input parameter in a few thermal comfort models. According to current knowledge, 
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age, gender, and relative humidity have no significant effect on the clothing insulation levels chosen by people 

[267]. However, Humphreys [267] stated that the outdoor daily mean temperature to be the most crucial parameter 

affecting clothing insulation levels. Studies before this one had studied clothing insulation using conventional linear 

regression approaches. Deng and Chen [264] argued that the association between clothing and potential factors that 

affects clothing behavior might not be linear, hence, they developed clothing prediction models using ordinal logistic 

regression and NN using data collected in offices. The training accuracies of the NN model for three kinds of actions 

(lowering the set point or reducing the clothing level, no response, and raising the set point or adding clothing) were 

89.4%, 87.3%, and 91.2%, respectively, and its overall training accuracy in predicting all three kinds of behaviors 

was 87.5%, resulting in an accurate tool for predicting occupants’ behavior in the offices. 

The main predictors used for the clothing adaptation in the existing literature include indoor air and operative 

temperature, relative humidity, CO2, air velocity, outdoor air temperature, skin temperature, human activities and 

time of the day [268]. 

The common evaluation metrics used in the existing literature are R2, RMSE, MAE, MAPE for the regression 

models, and accuracy, F1-score, precision, and recall for the classification models. 

Most of the existing methods in clothing insulation estimation assume the values to be fixed by using in-situ clothing 

estimation methods, thermal models, or depending on the outdoor air and indoor operative temperatures [265–

267,269,270]. Also, some data-driven methods (e.g., NNs, SVMs, and regression models) have been used to 

establish thermal comfort inside a built environment [264–267,269–271]. These data-driven models reflect the 

occupants’ responses and interactions with the building utilities and management facilities. Recently, the focus has 

shifted toward applying machine learning and deep learning models for predicting indoor clothing levels [264,267]. 

From the literature, it is affirmative that the clothing adaptation to any given situation is associated to three 

influencing factors: occupant behavioral adjustment, physiological factors, and psychological factors [265–267]. 

Therefore, for future research directions, the interrelationships and correlations between different influencing factors 

can be studied meticulously in those building types not already analyzed and under different individual conditions, 

like different metabolic activity levels. 

7.7 Combined occupant actions 

Researchers have also developed models that combine more than one user’s actions with the aim of analyzing the 

multiple aspects of comfort and energy consumption in buildings. Lighting operation is one of the most co-modeled 
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aspects due to its impact on both visual comfort, thermal comfort, and electricity demand. For example, 

schedules/profiles, stochastic OPA modeling techniques, and data-driven models were implemented by combining 

lighting operation with shading control [139,141,144,148–151,154,192,272]. Regression models were also 

exploited for modeling different combined actions: light switching with window operation [121], window and solar 

shading operation [123], and light switching with both window and solar shading operations [122]. With the aim of 

analyzing visual discomfort, data-driven techniques were used in [176,177] to model lighting switch in combination 

with blinds operation and change of the space heating set-point temperature. Furthermore, light switching and 

window operation combined with space heating and cooling operation were also modeled by means of 

schedule/profile and stochastic OPA models [185,215]. Moreover, data-driven models [210] and stochastic OPA 

models [196] were implemented to predict the energy consumption of buildings by considering both lighting and 

appliances use. More recently, Haldi et al. [122] investigated the combined operation of windows, solar shading, 

and light switching and developed logit models for residential buildings and offices. These models included random 

effects for all predictors that account the inter-individual variability in behavior among different occupants. This 

attempt allows overcoming the issue of modeling an occupants’ average behavior and explicitly considering 

diversity and variability in occupant behavior. 

Modeling combined actions seems a more effective approach providing a wider view of human actions and their 

impact in terms of energy consumption and occupants’ comfort. The available literature still demonstrates gaps in 

this development and intersectional studies should be encouraged. 

8 Future outlook in OPA modeling 

Among the studies grouped under the data-driven models, there is a subset of studies recently published 

[54,62,274,275,63,64,67,113,252,264,267,273], which use deep learning (DL) techniques. DL is adopted for 

obtaining rich information about occupant behavior and is proven to be competent in extrapolating discriminatory 

features from raw sensor data accumulated from building management systems [273–276]. Traditional machine 

learning approaches perform tasks without exploiting the correlations between diverse input sensor data. For 

example, CNN tries to overcome this issue by implementing convolution across n-dimensional temporal sequence 

to apprehend the dependencies in the input sensor data. However, the size of the kernel is an important parameter 

that can restrict the range of captured dependencies in the input sensor data for the CNN model [276]. Other 

advances in embracing deep learning methods are: 
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1) ML classifiers rely heavily upon heuristic handcrafted features (i.e. the manual selection of features) and 

require expertise in domain knowledge. The manual selection of features could lead to inductive bias, 

because the algorithm uses inputs that it has not yet encountered to predict the target outputs. Typically, 

such bias is supplied by hand through the dexterity and insights of domain experts. Advancements in DL 

make it possible for automated feature extraction and selection, thus overcoming the inductive bias [273–

276].  

2) Shallow features can be recognized well with ML but a difficulty in identifying context-aware activities of 

occupant behavior (e.g., cooking a meal) or extracting other dimensions of occupant behavior [20,277–

279]. 

3) In traditional approaches, extensive training data and labeled annotations are mandatory for supervised 

learning, but in real-world applications, most of the data remain unlabeled (unsupervised). Due to this, 

typical models are unadaptable to a diverse range of context-aware occupant actions and model 

configurations [20,45,275–279]. 

4) Another significant difference between DL and ML methods is the problem-solving capability and critical 

analysis approach. DL tends to solve the issue end-to-end, whereas ML needs the problem statement to be 

broken into stages/parts and explained separately and combined at the final phase. 

 

In summary, unlike ML approaches, DL classifiers are trained through feature learning rather than distinct task-

specific algorithms [276]. However, DL is applicable when the task indented has a large dataset to work with; for 

smaller datasets, ML algorithms performs well with high accuracy. In general, when there is a lack and inadequacy 

of domain knowledge for feature introspection, DL outperforms most of the existing ML techniques [20,275–278]. 

9 Conclusions 

In this study, the PRISMA methodology is exploited to conduct a systematic literature review on the topic of 

Occupant Presence and Actions (OPA) modeling in buildings. The identified documents were collected in a 

bibliographic database and analyzed. The analysis was supported by a data-driven bibliometric tool to provide an 

extended investigation of the methods and findings on the topic and to draw insights into the current state and future 

prospects of OPA modeling. This work, in the context of IEA EBC Annex 79, aimed to systematically cover all 

aspects of OPA modeling in different typologies of buildings. 
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The bibliometric analysis showed that the most productive geographic regions are North America, Europe, and 

China and that the intensity of the collaborations is large and well established between research groups in such 

regions. The documents analyzed in the database mainly involved measurement data in office buildings located in 

temperate and continental climates. Therefore, there is a need to develop new research studies outside these 

consolidated domains to provide a wider coverage of the knowledge domain, specially, in those climate contexts 

where models are missing, and it is expected a substantial increase of population and the construction rate (e.g., 

Africa, Indo-China region, Latin America). Regarding the methods, data-driven models are emerging as the most 

used modeling methods in recent years, which may be due to the large wealth of data coming from sensors 

installation. In particular, there is a recent interest in adopting deep learning techniques to model some OPA aspects 

for both explaining and predicting purposes. Most of the studies on occupant presence and activity detection aim at 

understanding occupant behavior, while the majority of studies on occupant actions are aiming at predicting 

occupants’ interaction with given building devices for adaptive controls’ development. It is highly appreciated the 

development of combined occupant behavioral models that provide a wider and closer-to-reality description of 

occupant use of the building and its systems. This is a domain where newer research is needed to increase accuracy 

of behavioral modeling.  

In general, to maximize the potential of existing and future datasets, a common data collection vocabulary or 

ontology should be created which would enable data reuse and ultimately meta-analysis of multiple datasets across 

different building types, sample sizes and country of origin. 

 

This review has to be intended as a work to be regularly updated and expanded with the rise in number and detail 

of the OPA modeling methods to provide information on developments and new tendencies in the field. To facilitate 

this task, this article provides a dynamic open-access review table as a supplementary material 

(https://osf.io/gnvp2/?view_only=00b08233881f471795d1d8dee79e9828), which can be expanded by other 

researchers to include future studies in order to represent an updated overview on the scientific production on 

occupant presence and action modeling. 

Limitations of the current work are the possible and involuntary omission of OPA modeling documents not spotted 

by the literature search and not at the knowledge of the authors. However, the PRISMA methodology is designed 

to keep such oversights to a minimum. 

 

https://osf.io/gnvp2/?view_only=00b08233881f471795d1d8dee79e9828
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