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Trondheim, February 1, 2020
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Abstract

This Master’s thesis studies operations research in the context of maintenance and inspection on the

power grid line. The potential of lowering operating costs by optimizing inspection and maintenance

decisions motivates this study. The problem is to plan when to inspect a utility mast and which

maintenance to perform based on the information inspections reveal. A utility mast is a multi-unit

system composed of several components. A variety of available decisions and random events affects

a mast’s condition over time. Today, power grid operators do not utilize comprehensive data-analysis

when making inspection and maintenance decisions. This indicates that mathematical models should

be explored, aiming to reduce costs from operating the power grid.

We propose two models for solving the problem. One is restricted to periodic inspection intervals

of fixed length. The other model allows sequential inspection decisions. That is, deciding when to

inspect next at each inspection. Both models are solved to optimality using stochastic dynamic pro-

gramming. They return optimal policies, which we study on a four-component utility mast. To the

best of our knowledge, the literature does not consider optimal sequential inspection and mainten-

ance optimization for multi-unit systems.

To enable decision-support for larger systems, we propose a heuristic that uses our sequential in-

spection model to combine solutions for smaller systems and derives an optimal policy for the four-

component mast. The heuristic performs almost as well as our two models and is a good starting

point for future research looking to apply maintenance optimization to real-life cases.

The findings we discuss in this thesis show a significant potential to reduce the power grid operator’s

total costs by applying inspection and maintenance optimization. Our proposed models provide op-

timal inspection and maintenance decisions for a sub-set of critical mast components, and our pro-

posed heuristic lessens the gap between theory and real-life usage.
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Sammendrag

Denne masteroppgaven studerer operasjonsanalyse i kontekst av inspeksjon og vedlikehold av strøm-

nettet. Den motiveres av potensialet for besparelser ved bruk av optimale inspeksjons- og vedlike-

holdsbeslutninger. Problemet er å planlegge når strømmaster skal inspiseres, og hvilket vedlikehold

som skal gjennomføres basert på informasjon fra inspeksjonene. En strømmast beskrives som et sys-

tem sammensatt av flere komponenter, der ulike beslutninger og tilfeldige hendelser påvirker kom-

ponentenes tilstandsutvikling over tid. I dag benyttes omfattende dataanalyse lite av nettselskapene

til å støtte inspeksjons- og vedlikeholdsbeslutninger. Dette indikerer at optimeringsmodeller bør ut-

forskes, med formål om å redusere kostnader tilknyttet drift av strømnettet.

Vi presenterer to modeller for å løse inspeksjons- og vedlikeholdsproblemet. En har faste inspeks-

jonsintervaller av en gitt lengde, mens den andre tillater at inspeksjonsintervallene settes sekvensielt,

altså løpende gjennom en beslutningsperiode. Begge modellene er løst til optimalitet ved bruk av

stokastisk dynamisk programmering. De returnerer optimale inspeksjons- og vedlikeholdsregimer,

og for å utforske regimene ser vi på et mast-system bestående av fire komponenter. Så vidt vi vet

beskriver ingen litteratur optimale løsningsmetoder for sekvensielle inspeksjons- og vedlikeholds be-

slutninger på flerkomponent-problemer.

For å muliggjøre beslutningsstøtte for større systemer lager vi en heuristikk som bruker vår sekvensi-

elle modell til å løse en rekke mindre problemer, og kombinerer disse til en løsning for mast-systemet

med fire komponenter. Denne heuristikkens regimer presterer nesten like godt som de optimale re-

gimene fra våre modeller, og er et godt utgangspunkt for å videre utforske hvordan stokastisk dy-

namiske programmer kan brukes på større og mer virkelighetsnære problemer.

Våre funn indikerer et potensial for at nettselskapene ved bruk av optimering kan redusere sine

kostnader tilknyttet drift av strømnettet. Våre modeller gir optimale inspeksjons- og vedlikeholds-

beslutninger for mindre system bestående av kritiske mastkomponenter, og vår foreslåtte heuristikk

reduserer avstanden mellom teori og praksis.
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Chapter 1

Introduction

In this thesis, we study the Utility Mast Inspection and Maintenance Problem on the Norwegian

power grid. The problem involves deciding when to inspect a mast and which parts of the mast to

maintain based on their condition, to minimize the costs of operating the grid. These costs include

the cost of inspection and maintenance, as well as the costs associated with mast failures, such as

power interruption and unplanned repairs.

A mast’s condition worsens over time in a stochastic manner, and travelling out to maintain a mast has

a fixed cost independent of which parts of the mast one is travelling out to fix. This uncertainty and

the economic dependency between components complicate the problem. When inspecting a mast,

it may be optimal to maintain any of the components only if one maintains several components at

once.

A power grid ensures electricity supply to individual consumers and essential societal functions such

as hospitals, research facilities and educational institutions. Managing the power grid includes mon-

itoring the grid’s condition and renewing or maintaining it when needed. In 2019, a total of 115 grid

companies operated the Norwegian power grid. The transmission grid had a length of over 351 000

kilometres with a book value of 132 billion NOK, and the local distribution grid had 3.2 million cus-

tomers. In the same year, cost of maintenance and operation of the grid totalled to 9.6 billion NOK.

The costs from interruptions in electricity delivery were 711 million NOK (NVE, 2020b). Operating

and maintaining the power grid had an average cost of 2 343 NOK per customer (NVE, 2020a).

In Norway, the tariffs charged to consumers are set based on the grid operators’ collective costs

of operating the power grid. Thus, cost reduction of grid line management yields a direct societal

interest in grid operation efficiency. Furthermore, reliable delivery of power is important for both

1
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the operators and the consumers. In addition to increased consumer satisfaction, fewer and shorter

interruptions also mean reduced penalty costs that consumers take part in through the rental of local

distribution grids.

Grid management also has environmental implications. Overly conservative strategies regarding

maintenance and inspection will mean unnecessary travelling across the whole grid and overcon-

sumption of mast parts. Efficient decisions regarding the replacement or repair of mast parts may

increase their lifetime. Consequently, such decisions reduce waste. Several industry experts claim that

the power grid reliability will not be significantly affected by some strategies that are less conservat-

ive (Bakken, 2019). These claims imply a potential for better inspection and maintenance decisions

that will have a positive socioeconomic and environmental impact.

The importance of modelling the maintenance of deteriorating systems was first acknowledged in

the 1940s due to industrial and medical applications (Thomas et al., 1991). The study of optimizing

decisions related to inspection and maintenance through mathematical programming begun in the

1960s. Derman (1963) published an article that model the replacement of a single component after

an inspection reveals its condition. Today, publications typically concern business-specific modelling

of maintenance and inspection optimization problems.

As for power grid management, there are few publications concerning maintenance optimization.

To the best of the authors’ knowledge, the few existing publications within the field of maintenance

optimization do not consider optimal inspection and maintenance of utility masts, but rather optimal

grid investments (Lim and Han, 2018) or balancing supply and demand through allocation and

maintenance of generators (Xiao and Cao, 2020).

As technical systems have evolved, and we increasingly rely on different equipment, the importance

of effective maintenance activities is growing (de Jonge and Scarf, 2020). Today, society depends

on the power delivery system, a complex and critical infrastructure (Kiel and G. H. Kjølle, 2019).

The Norwegian power grid industry standard is thorough inspection every tenth year and aerial

observation every year. Bakken (2019) claims that the same risk level can be achieved by aerial

inspection every other year which would save the operators a total of 200 million NOK per year.

The research literature on maintenance and inspection optimization investigates both single- and

multi-unit systems with various possible decisions and uncertainty factors. Derman (1963) studied

the problem of replacing a single component following an inspection. However, as a consequence

of better techniques for analyzing complex systems, multi-unit systems has become more relevant.

Lugtigheid et al. (2008) consider a setup cost, shared between all components maintained at the same
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time. Dynamic programming has been applied to both single-unit and multi-unit systems (see Chu et

al. (1998) and Korpijärvi and Kortelainen (2009)). Several models are developed for optimizing both

inspection and maintenance decisions. Typically these models consider a periodic inspection interval,

especially for multi-unit systems such as the one from Babishin and Taghipour (2016). Some models

allow for a more flexible sequential inspection schedule. H. Ellis et al. (1995) optimizes such an

inspection schedule for a bridge. However, optimal sequential inspection schedules are suggested

for future research, especially for multi-unit systems.

We model the multi-unit Utility Mast Inspection and Maintenance Problem (UMIMP) in two ways

that differ with respect to inspection decisions’ flexibility. The problem considers inspections and

maintenances over a planning horizon. One model requires an equal period of time to pass between

all inspections, while the other enables setting the next inspection when conducting an inspection.

Both models are multi-stage decision processes that yield optimal inspection and maintenance de-

cisions, adapting with events that may occur over the planning horizon. We derive optimal decisions

through stochastic dynamic programming, incorporating uncertainty of future mast conditions and

potential economic dependencies between components.

Furthermore, we propose a heuristic to combat the curse of dimensionality associated with stochastic

dynamic programming, using one of our models to solve small problem instances, then combining

the solutions to solve larger problems. We find that optimal maintenance and inspection decisions

have significant potential for reducing the cost of grid line operation. Bridging the gap between theor-

etical models and real-life application is challenging, but should be further researched. Our heuristic

highlights a possibility of approaching large problem-instances, and may be used as a starting point

for power grid optimization.

The remainder of this thesis is structured as follows: Chapter 2 introduces the Norwegian power grid

and its utility masts and introduce the terms "maintenance" and "inspection" in relation to mainten-

ance optimization. Chapter 3 reviews maintenance optimization literature with a particular focus

on the role of inspection and explains the theory behind Markov decision processes and dynamic

programming. We provide a detailed description of the UMIMP in Chapter 4 and present the math-

ematical models that solve it in Chapter 5. In Chapter 6 we present the case company, Wiseline AS,

and define a number of cases that are analyzed in Chapter 7. Future research topics are suggested

in Chapter 8 before we present our concluding remarks in Chapter 9.



Chapter 2

Background

This chapter aims to give the reader an introduction to some of the topics addressed in this thesis.

Section 2.1 presents the Norwegian power grid’s characteristics and regulations, before Section 2.2

focuses on the utility mast and how its components deteriorate. Section 2.3 defines maintenance and

highlights its importance, presents decisions related to maintenance and introduces maintenance op-

timization. Section 2.4 introduces inspection and presents its relation to maintenance optimization.

The last section, Section 2.5, focuses on inspection and maintenance of the Norwegian power grid

and illustrates this process.

2.1 The Norwegian power grid

This section introduces the Norwegian power grid characteristics and presents the power grid regu-

lations imposed on the operators.

2.1.1 Norwegian power grid characteristics

In Norway, the electrical grid consists of three different levels. These are, hierarchically ordered

from the top level to the bottom level, the transmission grid, the regional grid, and the distribution

grid. Norway has a single, designated transmission system operator (TSO), Statnett, owning 94% of

the transmission grid and renting the remaining 6%. The regional grid operators own the last 6%,

operating within production and turnover. The transmission grid has a span of about 11 000 km

(Ministry of Petroleum and Energy, 2019).

The regional grid is the mid-level link between the transmission and distribution grids, spanning over

19 000 km. It also supplies some high-priority end customers such as hospitals and airports (Reiten

4
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et al., 2014). In contrast to the transmission grid having only a single TSO, around 70 different actors

operate the regional grid (Rosvold, 2020).

Supplying almost all small end-users such as households, in addition to commercial and industrial

players, the distribution grid has a far longer span than the other levels combined of about 316 000

km. This grid level is divided into a low- and high-voltage segment at 1kV, with the high-voltage dis-

tribution grid spanning about 100 000km. The low-voltage grid is distributed to ordinary customers,

normally carrying 400V or 230V. (Ministry of Petroleum and Energy, 2019).

In 2018, the cost associated with operating and maintaining the power grid was a total of 9,7 billion

NOK (NVE, 2020a). This cost amounts to 19 000 NOK per kilometre of the electrical grid line, every

year. The term "Operating and maintenance cost" is frequently used by The Norwegian Water Re-

sources and Energy Directorate (NVE), including costs such as salary and staff cost, system services,

cost of goods, losses on receivables, internal priced services, overhead cost and other operating costs

(Syvertsen et al., 2018). Consequently, the term also includes any costs associated with the grid line

inspection to reveal the needs of maintenance, and maintenance to ensure safe and reliable power

delivery.

When the power grid disconnects, we have an energy delivery interruption. Several thousand in-

terruptions occur on the Norwegian grid line every year. Some planned maintenances cause, while

other interruptions may be unexpected and a result of utility line failure. Such interruptions mean

undelivered to parts of the society, which is costly (Mjølnerød, 2019). In 2018, a total of 28 761 of

interruptions occurred on the distribution grid. 10 798 of these were unplanned interruptions. The

interruptions resulted in a total of 17 919 MWh of undelivered electricity (Statnett, 2019). According

to statistics from Hafslund Nett from 2001-2007, their consumers will experience an average of 40

minutes interruption in their electricity supply every year. An interruption has a mean time of 50

minutes (G. H. Kjølle et al., 2012).

The replacement of a standard wooden pole in a utility mast cost about 18 000 NOK (Rasjonell

Elektrisk Nettvirksomhet AS, 2019). Research suggests that the maintenance strategy of wooden

poles on the Norwegian grid line is overly conservative. The frequency of wooden pole replacements

could be postponed by 20 years on average. If the lifetime of today’s wooden poles were extended

with 20 years, the direct savings would be around 150 billion NOK (Solvang and Foros, 2019). This

highlights the potential savings of more efficient maintenance on just one of the components that

comprise a utility mast.
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2.1.2 Regulating the Norwegian power grid operators

The Norwegian power grid regulations primarily concern the safety of the surroundings. They state

that electrical facilities should not pose a threat to life, health or property (Nordnes, 2011). The

regulations also require frequent enough inspection of the power grid line to achieve an acceptable

risk of a power outage. Today, this means a minimum of yearly aerial observations and a more

thorough inspection of the masts’ tops in addition to checking them for rot at least every tenth year.

The operators may inspect more rarely if they can show a risk analysis of their grid that proves an

acceptable risk level associated with the proposed inspection plan. However, grid operators are free

to inspect more often (Bakken, 2019).

As for maintaining the power grid, no regulations enforce maintenance. Instead, NVE use penalty

costs that enforce sufficient grid reliability. The network operators must pay a penalty cost if they fail

to supply energy to their grid line’s consumers. This cost is called Cost of Energy Not Supplied (CENS).

Penalty cost also may be enforced if safety measures are not maintained properly. Additionally, all

Norwegian operators of electrical facilities are subject to rules regarding health, safety and envir-

onment (Supervisory, 2020). Regardless, there are no time-based requirements enforcing action to

decrease the risk of such violations.

Most Norwegian households are connected to one grid line with a single responsible operator. As

a consequence of this monopoly situation, NVE strictly regulates the grid companies and Statnett.

They divide their regulations into two types: Direct regulations and economic revenue regulations

(NVE, 2019).

Direct regulations define standards, roles and procedures. NVE monitor that the power grid operat-

ors comply with these regulations. NVE also hand out fines to those who violate these regulations.

Maintenance is one measure that grid line operators must take to remain compliant, while inspection

typically identifies potential and existing violations that need attending.

Economic revenue regulations intend to prevent the operators from exploiting the monopoly situ-

ation. The grid line operators receive an annual allowed revenue cap, including a fair tariff that the

grid line consumers pay. The revenue ensures a reasonable return on investment for the power grid

operators. Furthermore, the consumers’ tariffs reflect the cost of operations for the power grid op-

erators, and thus streamlining the operation will be beneficial for both operators and consumers in

the long run.

The CENS costs imposed throughout a year, are deducted from the allowed revenues(Langset et al.,

2001). The CENS cost is calculated based on where interruptions occur and the customers affected
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by an interruption. Different customer categories are represented by average cost rates that aim to

represent the different end-user consequences (G. Kjølle et al., 2008). The CENS cost related to a

power outage represents the interruption’s societal costs but does not consider other costs than the

end-user’s. For example, the CENS rates do not account for the cost of unavailable public services

(G. H. Kjølle et al., 2012).

2.2 The utility mast

This section presents the building blocks that make up a typical Norwegian utility mast and their

relevance to reliable power delivery. Furthermore, we show how a utility mast wears out over time,

by the deterioration of its components.

2.2.1 Utility mast composition

Utility masts are connected by a transmission line and make up a utility line. They transfer power

from one location to another. A utility mast can be the part of either the transmission-, regional or

distribution grid. While utility lines vary in length and composition, their underlying structure is

similar.

Most of Norway’s utility lines are overhead, opposed to underground, and overhead utility masts will

be the focus of this thesis. They hold up the utility lines to reduce interference from humans, animals

and vegetation close to the ground.

A collection of components with different characteristics and functions, makes up a utility mast. Some

components keep the transmission line is at a regulatory height and sufficient distance from other

objects (Augland and Staurvik, 2014), while others directly influence the mats’ ability to deliver

electricity.

Figure 2.1 illustrates a typical Norwegian utility mast. The pole and traverse are of either wood or

steel. With large forests in Norway, wooden poles are common cost-effective, yet sturdy alternatives

in the regional- and distribution grids. For the transmission grid, steel is more common. Steel allows

higher, more solid structures. It is also safer as the lines with high voltage become less accessible from

the ground, and the masts are less prone to sudden failure. The foundation and backstay support

the pole and are also essential for the pole to be reliable. Some components secure a stable and safe

electricity transfer. The insulator, spark gap, and deflector are examples of such components. The

transmission line is not a part of the utility mast itself, but the section that is close to the mast is

often considered a utility mast component when describing it.
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Figure 2.1: A visualization of a typical Norwegian utility mast, provided by Wiseline AS

Across the Norwegian power grid, masts are exposed to different environments in terms of weather,

constructions and terrain. Masts also have different purposes as to the type of transferred electricity,

and high-voltage transmission requires different mast structures than low-voltage transmission does

(Riibe and Weyergang-Nielsen, 2010). In this thesis, we study a typical Norwegian utility mast and

seek to formulate a general model than can be applied to different masts given the right compon-

ent data. For a complete description of overhead utility mast components, we refer the reader to

(Nordnes, 2011).

2.2.2 Deterioration

When a system’s condition falls from a higher, better level to a lower, worse level, the system de-

teriorates (Nicolai, 2008). All utility mast components will worsen over time and eventually fail.

Depending on the component, it may be prone to sudden shocks that drastically worsen its con-

dition. Other components may gradually wear out over time. A combination of these two types of

deterioration is also possible. A utility pole may continuously degrade due to rust or rot over several

years before an external shock such as a lightning strike hits it. Depending on the shock’s severity and

the degree of degradation that has happened before it, the utility mast may fail to deliver electricity.

Deterioration may vary significantly across a period of time as well. Woodpecker holes contribute to
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faster deterioration of wooden utility poles, but the number of woodpeckers that visit a utility pole

in a year can differ from year to year. Some components may be more prone to immediate failure

than continuous deterioration. Trees falling over utility lines is a typical cause of electricity outage

(Solvang and Foros, 2019).

Although it is impossible to say precisely what will happen to a utility mast in the future, it is possible

to estimate its components’ expected deterioration. By doing so, one will find the expected lifespan

of each component that comprises the utility mast. Typically, the expected lifespan is based on a

component’s nominal load and empirical data on how external factors have influenced it earlier. For

a utility mast, the expected lifespan of its components is given in years. The number of years that a

component carries out its intended task is called the component’s lifetime (Stene et al., 2005).

If a component’s function directly influences a masts’ ability to deliver electricity, it is a critical com-

ponent. A utility mast has both critical and non-critical components. A non-critical component failure

will be the sole cause of interruption in power delivery. However, they may influence the deterior-

ation process of other mast components. Removing the top hat from a utility mast does not cause

a power outage, but it will make the pole rot faster. Several non-critical components’ failure may

also cause failure in power delivery as the utility mast may need a sufficient number of functioning

non-critical components to deliver electricity.

2.3 Maintenance

This section focuses on what maintenance is and how it can be utilized for better asset management.

We present the structure of maintenance decision making and introduce the research field that is

maintenance optimization.

2.3.1 The purpose of maintenance

Throughout this thesis, maintenance will refer to a definition from The United States Departement

of Defence (United States Departement of Defence, 2019): Work that allows a system to carry out its

intended task by improving its condition. The term repair specifies restoration of a system not carrying

out its indented task, as maintenance may be either a repair or carried out to prolong a systems

lifetime. Both repairs and general maintenance may involve replacements of system components.

Kuo et al. (2001) includes two types of maintenance when describing accepted principles for increas-

ing system reliability. The first is repair maintenance, meaning manual replacement of forces when

they fail. The second is preventive maintenance, meaning replacing forces either when they fail to
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carry out their intended task or at some fixed interval if they have not failed yet.

In the survey by H. Wang (2002); maintenance is categorized into two different classes, Preventive

maintenance (PM) and Corrective maintenance (CM). These terms are quite aligned with the above

definitions, where repair and corrective maintenance are subject to the almost same interpretation.

An important distinction is that H. Wang (2002) introduces two adjunct concepts, where actions

on a failed force never fall into the PM-category. The survey, reviewing a large amount of literature

regarding maintenance, also includes repairs in addition to replacements. PM is carried out on an

operating system with operating forces, and CM when a failure has occurred.

Throughout this thesis, the focus will be on preventive maintenance based on the desire to restore a

system’s function, should it, at some point, fail to carry out its intended task. Preventive maintenance

includes inspection decisions in order to obtain information and make optimal choices. Corrective

maintenance is a result of failure and is rarely desirable, but maybe accepted at some risk level

due to economic benefits of a lover frequency of repairs and replacement. This risk level is in close

relation to the systems reliability. How often and when to carry out PM versus CM, is a result of the

maintenance strategy.

2.3.2 Maintenance decision making

A maintenance strategy aids decisions regarding the type, timing and frequency of maintenance

(Muchiri et al., 2011). Pintelon and van Puyvelde (2006) explains maintenance decision making by

dividing it into three. A maintenance action is the basic elementary work needed on a component.

A maintenance policy is the rules that describe which mechanisms trigger different maintenance

actions. The structure which policies and actions are based upon is a maintenance concept. Reliability

centred maintenance (RCM) and Total Productive Maintenance (TPM) are two concepts where the

former generally focuses on the risk of system failure, while the latter takes an organization-wide

approach for avoiding failure and quality assurance. The terms "strategies" and "concepts" are often

used interchangeably (Nakajima, 1988).

According to Lam and Yeh (1994), a maintenance policy reduces total costs and avoids failure of a

system. We see here a broader interpretation of this term. Throughout this thesis, we will use the same

definition as recent literature reviews that try to clarify the use of these terms. Maintenance concepts

may include qualitative decisions, while maintenance policies only base decisions on measurable

parameters (Sharma et al., 2011). A Maintenance policy may be age-based, time-based or condition-

based, depending on which parameters are measured and trigger maintenance actions. A policy may

be based on several parameters, and even the binary parameter stating whether the systems work or
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not. A policy relying only on the latter is referred to as run to failure (RTF) policy (van Horenbeek

et al., 2010).

2.3.3 Maintenance optimization

Maintenance optimization emerged as a research discipline after the Second World War. This was

due to the increased acknowledgement of how maintenance planning is important for cost-efficient

asset management (Ben-Daya et al., 2016). The discipline includes the use of mathematical models

to predict when items fail. This use highlights how maintenance is also important for preventing these

failures and repairing those items which have already failed. An appropriate definition of mainten-

ance optimization is:

"A method aimed at determining the most effective and efficient maintenance plan (i.e., inspection time

and frequency, work preparation, required maintenance resources) so that the best possible balance

between direct maintenance costs (e.g. manpower cost, logistics and transportation costs) and the con-

sequences of not performing maintenance (e.g. loss of power production and assets) is achieved." (Shafiee

and Sørensen, 2019)

Maintenance optimization became widely recognized in the 1960s because of its evident use for pre-

venting failures and unplanned downtime. This use meant lower cost related to asset management.

This cost was minimized through the use of different Operation Research (OR) models (Pintelon

and Gelders, 1992) to make maintenance optimization models. In this thesis, we will focus on such

models. This focus excludes several OR-models used concerning maintenance, such as models for

inventory control or project management.

Note that, from the definition, maintenance optimization includes the optimization of an inspection

plan. This thesis is particularly concerned with inspections role in maintenance optimization, and the

reader will thus find separate sections dedicated to it. However, in this thesis, the term "maintenance

optimization" includes optimizing inspection decisions unless otherwise stated. Today, maintenance

optimization is commonly used on systems, as companies consider this a profit-generating business

element (Kutucuoglu et al., 2001). Consequently, the potential for maintenance optimization re-

search is of general interest.

Generally, we struggle to find applications of maintenance optimization to power grid maintenance.

Although operators focus on effective maintenance decisions that are cost-effective, they are less

concerned with finding the optimal choices. The challenge of applying maintenance optimization

models to specific problems is acknowledged within the field and is not only related to power grid
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operation (van Horenbeek et al., 2010). Consequently, the Norwegian power grid operators do not

focus much on optimizing their maintenance and inspection decisions (Energi Norge, 2017). In 2019,

the cost of operating and maintaining the Norwegian power grid was a total of 9.6 billion NOK.

This cost implies significant economic potential in finding the optimal choices related to power grid

maintenance.

2.4 Inspection

When faced with the decision of maintaining a system, there are several factors to take into consider-

ation. Although minimizing expected costs means optimizing the balance between costs and benefits

of the available decisions, deriving this optimum can be far from trivial. Forecasting a system’s de-

velopment through deterioration models and how maintenance actions affect the deterioration, is of

great aid in making the decisions. Still, if one is to decide on maintenance, one must also have an idea

of what condition the system is in at the time of the decision. This section presents how inspections

are considered in relation to maintenance optimization before introducing typical categorizations of

inspection decision structures in maintenance optimization problems.

2.4.1 Inspection and its relation to maintenance optimization

Within all industries, maintenance planning includes deciding maintenance methods and choosing

inspection frequency (Verma et al., 2006). Most of the maintenance optimization models allow taking

a look to know or estimate a system’s condition. Some even require it before carrying out any main-

tenance (B. Liu et al., 2017). Inspection is a way to acquire this information and plays an important

role in maintenance optimization.

Onoufriou and Frangopol (2002) state that inspection is a way of ensuring structures’ safety and

serviceability, but point out that it can represent a high cost. The role of inspection has evolved from

being based on general guidelines and judgement, to optimize future actions when incorporated in

a planning and decision model. Thomas et al. (1991) summarize how inspection relates to mainten-

ance optimization problems:

"Inspection involves examining deteriorating systems to try to identify their state, in order to effect some

repair, replacement, or maintenance action." (Thomas et al., 1991, p. 283)

Modelling inspection is an integral part of modelling a maintenance optimization problem. Inspec-

tions may differ in cost, the kind of information they return and the accuracy of this information.

Inspection can be modelled differently in terms of costs, information accuracy and type of informa-
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tion. The decision space in the problems discussed so far has varied from merely deciding whether

to inspect or not, to several possible inspection types.

2.4.2 Inspection structures in maintenance optimization

Inspection can be considered as either an uncontrollable source of information, a negligible part of a

maintenance optimization or as performing a set of actions. These three options represent different

degrees of inspection flexibility (Durango-Cohen and Madanat, 2008). Additionally, the inspection

can be completely controllable or restricted to some rules such as is the case for inspection of the

Norwegian power grid. Although the power grid operators can choose when to inspect their grid

thoroughly, they are forced to do so at least every tenth year. Furthermore, their set of inspection

actions contain one that gives superficial information about the utility lines and one that is more

thorough.

If the inspection is controllable, a maintenance optimization problem may require a specific inspection

policy structure. According to Nakagawa and Mizutani (2009), there are three types of structures:

• Periodic inspection. Inspections are performed at periodic times. Before conducting a mainten-

ance and inspection plan, all inspections are planned and distributed evenly across the time

specified in the plan. Thus, one performs inspection periodically, at pre-determined, even in-

tervals.

• Sequential inspection. Also called aperiodic inspection because the condition of even intervals is

removed, meaning that one can regard the inspection decisions as sequential. In every stage

where an inspection is performed, one decides when the next inspection is, independently of

earlier inspection decisions.

• Asymptotic inspection. Involves minimizing the expected cost of system failure by finding an

appropriate interval with the optimal probability of system failure. One carries out inspections

at these intervals.

The last structure type, asymptotic inspection has the same structure as periodic inspection, but is de-

rived differently. Therefore, one may therefore subdivide inspection policy structures by only periodic

and sequential inspection (de Jonge and Scarf, 2020). This thesis focuses on periodic and sequential

inspection. We derive two models that return an optimal periodic and sequential inspection policy,

respectively.

Sequential inspection is sometimes referred to as dynamic inspection scheduling. This emphasizes the

fact that sequential inspections allow decisions to be made for the next interval in question and does
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not require pre-determination such as the periodic inspection. Sequential inspection policies are well

known to be advantageous compared to periodic inspection policies (Verma et al., 2006).

2.5 Maintenance and inspection of the Norwegian power grid

In Norway, harsh weather and severe storms commonly cause transmission line failure. The reason

for a blackout is often intense periods of wind and icing, or sudden lightning strikes (Kiel and G. H.

Kjølle, 2019). Combined with utility masts’ natural deterioration processes, the Norwegian power

grid operators face several threats to reliable and cost-effective power delivery.

Inspection and maintenance costs largely contribute to the operating costs related to power grid

management. To ensure cost-effective life cycles for the utility masts, power grid operators need to

plan both inspection and maintenance of the grid. This planning involves deciding when to send

technicians to inspect the power grid line and what to do with the utility masts based on the inform-

ation obtained from inspection. An inspection of a utility mast returns information about the mast

components’ condition. Additionally, dangerous situations may arise near the utility masts. This is

a natural consequence of transportation and supply of electricity. Power grid line inspections can

detect these situations and ensure appropriate action for resolving them (Nordlandsnett AS, 2019).

Technicians inspect the utility line either from the ground or by helicopter. Different types of inspec-

tion require different equipment and some types are more comprehensive than others. Consequently,

the condition of utility mast components is returned with different degrees of certainty. A visual

inspection is typically less accurate than analyzing components in a laboratory. Technicians may

also use measurement tools specifically created for the inspection of some utility mast components

(Nordnes, 2011). Furthermore, the different inspection types will require different amounts of time

and have different costs associated with the inspection.

The grid operators apply an inspection and maintenance strategy on their grid to balance mainten-

ance and inspection costs with an acceptable risk level concerning interruption costs, safety, and

reliable power supply. The operators find an appropriate periodic interval and a maintenance plan,

basing their decisions on risk analysis, and the condition returned from inspections. Maintenance

decisions involve repairs or replacements of utility mast components (Wiseline AS, 2017).

The most common maintenance policy applied by Norwegian power grid operators today is condition-

based maintenance (CBM). This policy means that when an inspection reveals a mast component

condition that exceeds a certain threshold, they repair or replace it (B. A. Ellis, 2008). Often, the

individual components’ thresholds may be set based on the technician’s expertise or empirical data.
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Finding the optimal threshold for each component can be challenging. Furthermore, as some costs

are associated with a technician only travelling out to a utility mast, it may be cost-efficient to repair

less deteriorated components if some component condition exceeds its threshold.

As the cost of operating the Norwegian power grid influences the price of using the grid for customers,

more efficient inspection and maintenance have socioeconomic value. With efficient strategies, cost

of maintenance and re-investment will be lower, making optimization of the Norwegian power grid

maintenance and inspection an attractive field of research.

Illustration of maintenance and inspection decisions on a utility mast

We conclude this chapter by illustrating how a utility mast may deteriorate and the choices and

information related to such a process. We assume that the power grid operator can only choose one

inspection type to gain information about the mast’s condition. Immediately after an inspection, the

power grid operator must also choose between maintaining the whole mast or leaving the mast in

its current condition. Furthermore, we assume that a system failure is self-announcing. This means

that if the mast fails, the operator will immediately know, possibly because of a blackout.

Figure 2.2 describes the whole process. The blue line indicates the actual condition of a mast, which

is unknown to the operator. As time passes from left to right in the figure, the mast will deteriorate

and be closer to failure. However, the operator knows that the mast deteriorates in a probabilistic

manner and can therefore be certain of an interval representing the mast’s possible condition. The

grey areas in the figure mark this belief. A red plus indicates an inspection and a green circle indicates

maintenance.

Figure 2.2: The figure shows an illustrative example of how a utility mast may deteriorate over time,
and the information and decisions available to a power grid operator.
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We see that the mast is known to be "good as new" at the start of the period, and gradually de-

teriorates. While deteriorating, the interval representing the operator’s belief of the mast condition

becomes larger. This increase is natural, as the deterioration process may have developed in several

different ways and these possibilities increase over time. Note that the operator knows that the mast

has not failed although it may do so because of a falling tree or a lightning strike. This knowledge is

because such an event would immediately make itself known to the operator.

When the operator first decides to inspect the mast, the inspection reveals the actual condition and

the operator decides not to maintain the mast. The belief interval is then much smaller, and the

operator again waits before the next inspection. At the next inspection, the mast’s revealed condition

has adequately deteriorated, and thus the operator decides to maintain it. The maintenance in this

example sets the mast’s condition back to "good as new", and the operators takes no further action

in the remaining time illustrated by the figure.

The illustrative example explains the problem faced by power grid operators. They can inspect their

masts in order to obtain information about their condition. Furthermore, they can choose to maintain

a system before it reaches the failure condition. An operator’s choice of inspection and maintenance

of a mast is subject to the answer to an important question: Is it more economical to inspect now and

possibly replace the system to avoid it reaching the failure state? Kao (1973) formulates a variation

of this question. If the answer is positive, an operator inspects the mast and asks the same question

before maintaining it.
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Related Literature

This chapter presents maintenance optimization literature focusing on how inspection is modelled in

maintenance optimization problems. Furthermore, we introduce the reader to the theory behind solu-

tion approaches used in this thesis, supplemented with illustrative examples and similar approaches

within the field.

Section 3.1 provides historical context as to how maintenance optimization models have evolved

since the field’s birth. Section 3.2 introduces common terminology and gives an overview of main-

tenance optimization literature. Inspection is superficially mentioned in relation to the literature

discussed Section 3.2 as it is more thoroughly discussed in Section 3.3. We dedicate an entire sec-

tion to inspection in maintenance optimization because of its importance to this thesis. Section 3.4

considers theory about the Markov decision process and highlights this process’s use in maintenance

optimization literature. The last section, 3.5, introduces dynamic programming, a common solution

approach to maintenance optimization problems. The last section also discusses some relevant pub-

lications that make use of a dynamic programming approach.

3.1 The evolution of maintenance optimization models

Maintenance optimization has received wide attention among researchers since the 1940s. A model

of a maintenance optimization problem includes many factors. Consequently, one finds many at-

tempts at classifying models based on their characteristics. These attempts include the work of Bar-

low and Proschan (1965), Sherif and Smith (1981), Dekker et al. (1997) and Sharma et al. (2011).

This section provides an overview of how maintenance optimization models have evolved and thus

motivate the characteristics used to classify these models today.

17
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Attempts at classifying maintenance optimization models based on common problem characteristics

date back to the 1960s. McCall (1965) categorizes such models based on the available information

about a system’s distribution of times to failure. In the same year, Barlow and Proschan (1965) cat-

egorized maintenance optimization models by how decisions were made. They differentiate between

continuous-time and discrete-time decisions.

Thomas (1986) introduces his survey by claiming that the literature on maintenance recently has

shifted to consider systems comprised of several building blocks, from traditionally considering

singe-item systems or components. The maintenance optimization literature from the 1980s typ-

ically model systems comprised of several items. This indicates that there are important distinctions

between models that consider systems as indivisible and those who consider several building blocks

making up a system. The shift is a consequence of better techniques for analyzing complex systems.

Earlier research also highlights the importance of interactions between units in a system for the

system’s reliability.

Thomas et al. (1991) classify maintenance models of deteriorating systems by four facets: The

stochastic description of how the system deteriorates, how the system can be improved through avail-

able maintenance actions, the criterion to be optimized and the availability of information about the

systems’ state. The latter facet is closely related to the information acquisition of a system’s state,

possibly modelled as a choice rather than just modelling the available information as fixed. Thomas

et al. refer to the information acquisition of a system’s condition that aids maintenance decisions as

inspection.

Dekker (1996) defines maintenance optimization as optimizing the balance between cost and bene-

fits of maintenance. This definition implies that a maintenance optimization model requires quan-

tification of these said benefits and costs. In their review of maintenance optimization articles from

2001-2018, de Jonge and Scarf (2020) state that maintenance optimization includes both analysis

and development of mathematical models. These models aim at optimizing or improving mainten-

ance policies. This definition is broader and does not require any specific quantification. Regardless,

optimization naturally leads to the quantification of some parameter one aims to optimize. The liter-

ature considers different optimality criteria, such as minimizing the cost rate or the total costs within

a specific time period. Another optimality criterion is the maximization of availability or reliability.

Y. Wang and Pham (2011) optimize for both costs and availability (by minimizing costs and the

unavailability).

General maintenance optimization models provide theoretical insight into how mathematical pro-



Chapter 3: Related Literature 19

gramming can aid maintenance and inspection decisions. However, they have limited impact on

actual maintenance management because of the inadequate problem definitions provided by main-

tenance modellers (Sharma et al., 2011). This both highlights the importance and difficulty related

to accurate mathematical representations of real maintenance and inspection problems. Application

of academic models on specific business problems is challenging. The gap between theoretical mod-

els and their applicability for actual decision support is claimed to be the biggest problem within the

field (van Horenbeek et al., 2010).

3.2 Overview of literature on maintenance optimization

The purpose of this section is to introduce the reader to the existing literature on maintenance optim-

ization and discuss the general contents of a maintenance optimization model through examples from

earlier publications. We highlight important aspects of the research field by describing the problems

modelled in relevant publications. This section begins with a presentation of relevant terminology,

before discussing publications with different modelling approaches. Following the chronological de-

velopment of research within the field, we first consider the modelling of single-unit systems before

using established standard features of these models to introduce the increased complexity of model-

ling multi-unit systems. Then, we discuss deterioration modelling in the literature before describing

some optimization techniques used to solve maintenance optimization problems.

3.2.1 Common terminology used in the literature

For a complete discussion of terminology used in the literature for modelling, managing and optim-

izing maintenance, we refer the to Ben-Daya et al. (2016). Their discussion begins by introducing

the term engineered objects, exemplified by single products or complete infrastructures. Engineered

objects are claimed to be unreliable and therefore, in need of maintenance. Such objects are com-

monly referred to as systems in the literature. A system can be considered as an asset performing

an operational function (de Jonge and Scarf, 2020). The asset deteriorates and is thus subject to

maintenance.

A system may have a hierarchical structure, consisting of sub-systems. These sub-systems inherit the

characteristic of a system, and may therefore also consist of additional sub-systems. On the lowest

level in the hierarchy, the sub-systems cannot be divided further into sub-systems. These indivisible

systems are called components. Depending on the maintenance optimization model, a component’s

ability to function may be described by a state, ranging from fully functional to failed. The possible
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states that a component or system may be in, the state space, can be either a discrete set of states or

a continuous interval representing the aforementioned range (Y. Liu et al., 2020).

The literature uses the terms "condition" and "state" interchangeably. Therefore, it is difficult to dis-

tinguish the use of these two terms completely. Typically, "condition" is used in a general context,

e.g. when describing a problem at a higher level. The introduction of a mathematical model in a

maintenance optimization problem often includes representing a system’s condition by states in a

state space. Thus, "state" is generally used when discussing the model. An example is the model

proposed by W. Wang (2007), where the term "condition" frequently occurs in the introduction, but

never when introducing notation and formulating the model, as opposed to the term "state".

Maintenance optimization models regard a system either as a single-unit/single-component or multi-

unit/multi-component system (H. Wang, 2002). Because of the possible hierarchical structures with

several levels of sub-systems within a system, we the term "multi-unit system" throughout this thesis

for systems that may be further divisible into sub-systems. When the term "component" is used (in-

stead of "sub-system"), it is to emphasize that there are no lower levels in a system model.

3.2.2 Single-unit system models

A maintenance problem considering only a single component was first described by Derman (1963).

The article considers a component whose state is revealed through inspections at intervals set before

the maintenance decisions. The system deteriorates from a "new" state into a "final" state. The cost

of replacing the component increases if the system fails, making it optimal to replace the component

right before failure if one was to have complete information about the component’s state at all times.

However, this information was only made available at the mentioned inspection intervals. When

seeking to minimize the cost of maintenance, one faces a trade-off between lower risk of costly

failure, and the extra cost related to a possibly avoidable replacement. In the article, the objective

is to provide a condition-based rule, stating that the component should be replaced if it reaches a

certain state (or a worse state) at the time of an inspection. A Markov Chain with stationary transition

probabilities describes the deterioration process. We further elaborate on this particular description

in Section 3.4.

The single-unit model from Derman (1963) was since its publication subject to several expansions

in later literature. Pierskalla and Voelker (1976) refer to extensions made shortly after the first pub-

lication of a single-unit model, in an early survey of maintenance models. Kolesar (1966) preserve

the optimality of the initial solution but extend the model to regard a non-decreasing "occupancy"

cost for increasingly deteriorated conditions. The occupancy cost can be interpreted as an increasing
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cost for maintaining the system as its state worsens.

citetross1969markovian, introduce a more general state space, allowing a continuous state-development

earlier modelled by a set of discrete steps. Kao (1973) proved results similar to the works above by

allowing randomization of inspection intervals, meaning that the information reveal was not made

based on pre-determined intervals. However, it is important to notice the difference between random

inspection and dynamic inspection decisions. The latter allows the decision maker to reveal inform-

ation at different, not necessarily evenly, distributed time points across the total time considered in

a model. As Pierskalla and Voelker (1976) published their survey quite shortly after the single-unit

model’s introduction, several later extensions were not considered there. Sherif and Smith (1981)

mention some of these extensions is their survey, showing that common aspects of modern mainten-

ance models were quickly taken into account by later publications.

Although the literature on maintenance optimization has shifted towards multi-unit systems, these

early publications introduce common aspects of modern-day maintenance modelling and prove use-

ful for describing multi-unit models. Research on single-unit systems is still being conducted. More

recent publications include a global approach by Chu et al. (1998), considering a continuous state

space where the information about a component’s state is uncertain at the time of a maintenance de-

cision. This approach is distinctively different from the other discussed work, where revealed inform-

ation is assumed to be certain. Berrade et al. (2015) consider failures that are not self-announcing.

That is, a failure is only detected by an inspection. The objective is to decide the optimal interval

for carrying out these inspections. Cha et al. (2017) model how the probability of a system shock, a

sudden damage, may increase with its age. The paper provides an interesting discussion on a shock’s

double effect, as it may affect an item’s state and the probability of further deterioration. A com-

ponent’s probabilities of deteriorating from one state to another are commonly modelled for each

possible state transition and referred to as the transition probabilities (van Oosterom et al., 2017).

Today, publications on maintenance optimization considering single-unit systems often address spe-

cific characteristics of a model and suggest changes that differ from the most common model adop-

tions. These changes often focus on specific extensions that better relate to specific real-life industrial

business cases (de Jonge and Scarf, 2020). This approach also coincides with the challenge suggested

by van Horenbeek et al. (2010), addressing a lack of applicability for general maintenance optimiza-

tion models. Different models have different associated assumptions regarding state representation,

maintenance possibilities, and information inspection returns.
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3.2.3 Multi-unit system models

With the shift in maintenance optimization literature from considering only one unit to systems

comprised of multiple components, the interaction between sub-systems naturally received greater

interest. It is common to classify this interaction between units into three types (Dekker et al., 1997;

Nicolai and Dekker, 2008; Laggoune et al., 2010; Shen, Hu et al., 2020). These three types are:

• Economic dependence: Sub-systems are economically dependant if the total cost of maintain-

ing them one by one is different from the cost of repairing all of these sub-systems at once.

Zhou et al. (2016) demonstrate this by modelling a pump system consisting of a motor and a

pump. When repaired simultaneously, the cost of setup and productivity loss may be reduced

compared to repairing the sub-systems individually at different times.

• Structural dependence: Sub-systems are structurally dependant if maintaining one sub-system

implies a maintenance action on another sub-system, such as dismantling, replacing or regular

maintenance (Dao and Zuo, 2015). Dinh et al. (2020) illustrate structural dependence using

a gearbox system. In order to remove a specific gear, a specific bearing needs disassembling.

S. Wu et al. (2016) model another type of structural dependence. In their model, some sub-

systems’ failures invoke the possibility of maintaining other sub-systems during the system’s

downtime.

• Probabilistic dependence: Also referred to as stochastic dependence (Thomas, 1986; Shen, Hu et

al., 2020). Probabilistic dependence between sub-systems means that their state influences one

or several other sub-systems’ lifetime distribution or one or several other sub-systems’ state(s)

influence their lifetime distribution (Shen, Elwany et al., 2018). When introduced, only sub-

system failure affecting the probability of other sub-system failures were considered (Murthy

and Nguyen, 1985). This type of dependence has later been extended to include all parts of the

degradation process, not only the processes going directly to failure (Gao et al., 2019). Li et al.

(2016) propose a model with the latter mentioned, more general probabilistic dependency in

a system with two components.

Other examples of dependency-centred literature include introducing a shared setup cost for main-

tenance by Lugtigheid et al. (2008). A binary maintenance decision for each sub-system incurs a

setup cost when maintaining any sub-system, and does not change with respect to the number of

maintained sub-systems at once. They represent the system’s state by a weighted sum of sub-system-

states, assigning weights according to how critical a sub-system is for the system. Another approach

addresses the possibility of carrying out maintenance on other sub-systems when a sub-system failure



Chapter 3: Related Literature 23

forces the fixed setup cost, adding a decision to an event traditionally regarded deterministic (one

only fixes the failed sub-system and wait for the next opportunity to carry out regular maintenance).

In the literature on multi-unit models, economic dependencies are the most commonly addressed

type of dependency (de Jonge and Scarf, 2020). However, the other types of dependencies are also

frequently discussed. Examples given with the definition of each dependency above substantiates this

claim. By modelling several machines and limiting the maintenance resources, Armstrong (2002)

addresses resource dependency, traditionally considered as another type of economic dependency

(Thomas, 1986). The machines must be shut down during maintenance, making it costly to plan for

simultaneous maintenance if the number of idle technicians is lower than the number of machines

to be maintained.

Keizer et al. (2017) claim that recent literature development makes the classification mentioned

above insufficient because of the increased interest in resource dependency. Although the paper is

widely cited, we fail to find a general acceptance within maintenance optimization literature for

this adoption. In their publication from 2020, Shen, Hu et al. refers to the traditional three types as

"common to see in the literature".

Recent publications on maintenance optimization of multi-unit systems commonly delve into specific

aspects of general maintenance problems. As a natural consequence of considering systems com-

posed of multiple units, many recent papers focus on sub-systems’ dependencies. Models also tend

to address deterioration processes differently, especially considering how state spaces are defined.

3.2.4 Modelling deterioration

One carries out maintenance in order to keep equipment operational, yielding the required out-

put and quality. Maximizing the equipment’s ability to do so in a cost-effective way is considered

the objective of maintenance (Pintelon and Gelders, 1992). As systems are subject to deterioration,

maintenance is unavoidable (Nicolai, 2008). Consequently, modelling how a system deteriorates is

essential for modelling and optimizing maintenance decisions. The single-unit system modelled by

Derman (1963) worsens gradually with time, implying that the component’s state distribution is de-

pendant on its age. Deterioration of a system is generally considered a result of ageing, usage or fatal

shocks (Chiang and Yuan, 2001). The deterioration is commonly considered uncertain, e.g. through

random shocks on the system (Y. Wang and Pham, 2011) or due to different possibilities for state

transition with ageing (Maillart, 2006). This type of deterioration is called stochastic deterioration

(McCall, 1965).
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Maintenance optimization models were early on categorized based on whether decisions were made

at discrete time points, or continuously (Barlow and Proschan, 1965). These categories may also be

used for the state space and consequently for the deterioration processes (Ross, 1969). The model

we suggest in this thesis has a discrete structure for both decisions and states. A common approach

resulting from these assumptions is modelling a Markov process to benefit from the discrete struc-

ture regarding the uncertain state of a system (Byon and Ding, 2010). Section 3.4 elaborates the

characteristics, implications and modelling benefits of these processes.

The assumption of discrete state space and deterioration may be unreasonable for some systems.

Some processes can describe these spaces as continuous. Alaswad and Xiang (2017) describe pro-

cesses used when modelling continuous-state deterioration. Liao et al. (2006) suggest a gamma

process to model continuous deterioration, while X. Liu et al. (2013) use a geometric Brownian pro-

cess. For additional literature on continuous-state deterioration modelling, the reader referred to

Alaswad and Xiang (2017). The article refers to different modelling approaches, including the use of

an inverse Gaussian process. As both the model and solution approach in this thesis consider a dis-

crete state space, the remainder of this chapter will focus on how the literature exploits this chosen

approach.

3.2.5 Optimization techniques

A Markov deteriorating system and the decision structure of maintenance optimization problems are

commonly exploited by modelling a Markov Decision Process (MDP) (Alaswad and Xiang, 2017). Such

a decision process can be defined by a set of discrete states, transition probabilities, a set of possible

actions and a cost distribution related to decisions and/or events (Levin et al., 1998). Problems

formulated as MDPs are widely solved by using dynamic programs (Alaswad and Xiang, 2017). We

discuss and illustrate MDPs in Section 3.4 and this solution approach in Section 3.5.

The literature on optimization techniques for solving maintenance optimization problems naturally

extends beyond dynamic programming. We refer the reader to van Horenbeek et al. (2010) for an

overview of optimization algorithms used in maintenance optimization problems. Different optimiz-

ation algorithms are both classes in the provided classification framework and the topic for a short

discussion with further references to research applying these algorithms. The article discusses tra-

ditional algorithms such as linear and integer programming alongside metaheuristics, evolutionary

algorithms and those considering multiple objectives. As we use dynamic programming as the solu-

tion approach to a maintenance optimization problem, we consider a further discussion of other

optimization techniques beyond this thesis’s scope.
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3.3 The role of inspection in maintenance optimization

This section introduces the role of inspections in maintenance optimization problems. We consider

several modelling approaches using inspection decisions to optimize a maintenance problem. First,

the modelling choices related to cost and accuracy of inspection are discussed and exemplified

through publications in Section 3.3.1. Then, we introduce the different inspection types relevant for

a maintenance optimization problem in Section 3.3.2. We also discuss relevant literature of the two

most commonly considered inspection decision structures introduced in Chapter 2. These are called

"periodic" and "sequential" inspection, and are presented in Section 3.3.4 and Section 3.3.3, respect-

ively. Throughout the different parts of this section, we present publications considering single-unit

systems before publications on multi-unit systems. We see that especially one type of inspection

policy structure, sequential inspection, is little researched for multi-unit systems.

3.3.1 The cost and accuracy of inspection

Thomas et al. (1991) introduce a categorization of inspection models based on the cost of acquiring

information and how accurate this information is. For each of these two factors, they consider two

different possibilities. The information is either costless or costly, meaning that information either

is acquired at a price or is freely available. Information can also either be perfect or partial. The

former means that the system’s actual state can be acquired, while the latter implies uncertainty

about this state, possibly represented as a probability distribution over several states. By combining

these factors, they categorize models based on the price (that may be zero) and availability (or

unavailability) of both partial and perfect information.

The most straightforward approach taken to include inspection in a maintenance optimization model

is assuming continuous monitoring of a system, at no cost. Thus, perfect information is available for

free. Kawai (1983) conducts such an approach by modelling a system that requires an inspection be-

fore maintenance. Inspections are assumed to be costless and provide perfect information, making

the decision of inspection irrelevant. They are irrelevant because the model can assume that perfect

information is always available, as the model neglects the cost and uncertainty of information. Assaf

and Shanthikumar (1987) also assume perfect and free information in their model considering the

problem of maintaining a group of machines. Although they do not require inspections to carry out

maintenance, the objective function value is not affected by when and how inspections are conduc-

ted, making it optimal to obtain information as often as possible. Again, the assumption of free and

perfect information makes inspection decisions irrelevant, reducing the problem to just finding the
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optimal maintenance policy.

In reality, inspections rarely provide perfect state information. Consequently, this assumption does

not apply to all systems. Durango-Cohen and Madanat (2008) claim that maintenance optimization

models commonly assume perfect information from inspection because it enables modelling with

Markov decision processes (which we discuss in Section 3.4). These models implicitly assume perfect

information and exact deterioration probabilities. Especially the former assumption has received

attention. If the assumption of perfect inspections does not hold for a specific model, it is common

to represent an inspection’s return as a probability distribution of possible states (Byon and Ding,

2010; Andriotis and Papakonstantinou, 2020; Morato et al., 2020).

Papakonstantinou and Shinozuka (2014) suggest several possible approaches not subject to the lim-

itation of assuming perfect information. These approaches include the partially observable Markov

decision process (POMDP) which we discuss in 3.4.5. Approximation methods collectively referred to

as point-based solvers are highlighted as a promising approach to such process models. Point-based

solvers use a lower bound initialization to update estimations of the objective value, and iteratively

seek to improve the accuracy of both the system’s state and the objective value.

Although the approach with point-based solvers is exciting and reports new results (Morato et al.,

2020), the assumption of perfect information is also commonly made because of its relation to many

existing problems.

The combination of available technology and methods for inspection can often provide excellent

information about a system. Especially for discrete state spaces, assuming that an inspection will

correctly provide a system’s state is reasonable for many problems. In the paper on underground

cable maintenance by Bloom et al. (2006), the authors address that the diagnostic tests (a form of

inspection) are inaccurate. However, they state that an inaccurate test can be useful. Their model

assumes perfect information, and as the state space is discrete, one can assume that the tests provide

correct classification, although the reality includes imperfect information.

3.3.2 Types of inspection

In more recent literature, the opportunity that lies in controlling inspections has received greater

attention. One option is to model how hidden failures can be detected often enough to avoid larger

costs at a later time (Berrade et al., 2015). Furthermore, B. Liu et al. (2017) exploit inspection

as a fragmented decision. They consider inspection as an individual decision for each sub-system

with costs being partly fixed for any inspection at all with a variable cost assigned to each kind of
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inspection. The term inspection types is used in the literature to denote the fragmentation, where an

inspection type can include either a set of sub-systems, the whole system, or single sub-systems.

H. Ellis et al. (1995) model a bridge subject to a possible inspection every other year, and maintenance

every year. Two types of inspection are carried out on the bridge: A visual or ultrasonic inspection.

Not carrying out an inspection is also allowed, but we do not refer to this as a type. "No inspection" is

however a part of the decision space containing inspection decisions. We see that different inspection

types may reveal information about the same unit on this system, but this information may vary in

accuracy. Instead of considering the different parts of the bridge as sub-systems in the model, the

bridge is considered a single-unit system, and inspection types incorporate that the bridge in reality

consisting of several sub-systems. Furthermore, four maintenance actions are available for the bridge

and not conditional on the inspections.

Courage et al. (2017) models inspection types that yield different information accuracy and inform-

ation on different sub-system’s. The system in question is a crack in an offshore wind turbine (al-

ternatively, one can consider the turbine as the system and that it only needs to be described by a

crack to optimize its maintenance). The crack is described by the two components "crack width" and

"crack depth". Three types of inspection can be carried out. Two of them provide information about

the crack depth, one being cheaper and providing less accurate information than the other. The last

type provides information about the crack width. Thus, we see that inspection types may differ in

both yielded accuracy, which part of the system structure it considers, and the cost of inspecting.

3.3.3 Periodic inspection optimization

In Chapter 2 we introduce Periodic inspection as a decision structure commonly modelled in main-

tenance optimization. Such a structure requires an even, pre-determined interval for all inspections

over a planning period. Formally, let |N | denote the total number of periods for a maintenance op-

timization problem and n denote a specific period. Deciding periodic inspection then means setting

an interval z, where the system is inspected in every stage that n mod z = 0 and n ≤ N . Thus,

inspection is performed periodically, at pre-determined, even intervals.

The problem of finding an optimal inspection interval is formulated for both multi- and single-unit

systems. F. Wu et al. (2015) optimize the inspection interval of a single-unit system. They consider

a pre-defined state-threshold for when the system should be maintained. Imperfect maintenance ac-

tions are a possibility, making the deterioration process slower without improving the system’s state.

Yang et al. (2018) optimize several inspection intervals and thus relax the traditional condition of

periodic inspection. They allow two different intervals where the shorter interval is applied whenever
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an inspection (that is first carried out at a longer interval) reveals a single-unit system’s defective

state.

Considering an infusion pump at a hospital as a multi-unit system, Taghipour and Banjevic (2011)

find the optimal inspection interval that enables one of three maintenance actions. In their model,

inspections are the only way to gain information about the system, as failures are hidden. Babishin

and Taghipour (2016) adopt a combination of both hidden and self-announcing failures by mod-

elling a structural dependency in their multi-unit system. The system works as long as a sufficient

number of its components do. If too many components fail, so does the system. System failure is

self-announcing, while component failures are not as long as the total number of component failures

do not exceed a specific limit. The model optimizes two types of decisions simultaneously; choosing

between replacing and repairing a failed component and setting the optimal interval for inspections.

Golmakani and Moakedi (2012) also optimize periodic inspection but consider a multi-unit system

with stochastic dependency.

The problem of maintaining offshore wind turbines described by Courage et al. (2017), is also a

multi-unit maintenance optimization problem that optimizes periodic inspection. Here, an optimal

rule is derived, stating which maintenance action that should follow different inspection outcomes.

This rule results in three different optimal decisions. The decisions are dependent on the information

returned by an inspection (the crack depth). Three different intervals of an increasingly deeper crack

detected by inspection result in deciding either no, a minor or a major repair of the crack.

3.3.4 Sequential inspection optimization

In Chapter 2, we also introduce Sequential inspection. Such a structure allows the decision of the next

inspection at the time of an inspection, independently of earlier inspection decisions. Formally, each

stage n can be assigned an inspection variable yn that can represent each of the possible inspection

types by discrete integers. yn may be a binary variable where 1 means "inspect in stage n" and 0

means "do not inspect in stage n".

Research on maintenance optimization problems that consider sequential inspection optimization

is generally more recent than periodic inspection optimization. The single-unit system model by

H. Ellis et al. (1995) allows inspection every other year. Although the decision is periodical, the

problem considers sequential inspection. Inspections do not have to happen every other year, and

thus the inspection intervals are allowed to vary. The model finds optimal inspection and maintenance

decisions for every year on this single-unit system.



Chapter 3: Related Literature 29

Berenguer et al. (1997) also consider a single-unit system and use a numerical method to optimize

two choices: The date of the next inspection, and whether to replace the system after an inspection.

The model assumes self-announcing failures, perfect information and an infinite time horizon. The

latter assumption differs from the preceding example and is seemingly not particularly focused on

in the literature. This may be because it generally is harder to optimize sequential inspection for a

finite time horizon than for an infinite one (Nakagawa and Mizutani, 2009).

It is possible to formulate a dynamic program that considers inspections as a decision like the model

from Bloom et al. (2006). Their paper considers inspection as a sequential option not required in

order to maintain the underground cable unit. The dynamic program returns an optimal policy where

decisions are dependant on the system’s age and prior failures. If an inspection (termed "test", in the

paper) is conducted, maintenance is immediately carried out if the deterioration is severe enough.

Although several models exist for sequential inspection optimization, we see that most of the main-

tenance optimization models consider periodic inspection. This is especially the case for multi-unit

systems. Durango-Cohen and Madanat (2008) show that adopting sequential inspection can save

costs. In their case, relaxing the constraint that requires periodic inspection leads to a reduction in

expected cost from the single-unit model’s dynamic program.

de Jonge and Scarf (2020) suggest that future research should consider optimal dynamic inspection

schedules (instead of the more common heuristic approach). They only review maintenance optimiz-

ation models with sequential inspection for single-unit systems. This indicates that such optimization

for multi-unit systems should be researched further.

3.4 Markov decision process

Using a Markov Process to model transitions between discrete states is a common modelling ap-

proach for maintenance optimization. This section describes the approach and shows how to use

it when modelling decision-making for a stochastically deteriorating system. Section 3.4.1 explains

the characteristics of a decision process, while Section 3.4.2 introduces the Markov process. Section

3.4.3 goes through how one can model decision making before an illustrative example is given in

Section 3.4.4. Section 3.4.5 gives an overview of maintenance optimization literature that models a

Markov Decision Process.
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3.4.1 Decision process

With stochastic deterioration as described for systems subject to maintenance, their state or perform-

ance may worsen with time. When evolving in a probabilistic manner, a system follows a stochastic

process (Hillier and Lieberman, 2012). The problem related to making decisions on such a system

can be modelled as a decision process. Decision processes can describe the system’s condition and

how it changes over time with the decisions. The system’s condition is commonly described by the

term state. We consider a car tire as an example. Its state can be characterized as either "good as

new" or "broken".

Depending on how one chooses to model the state space, one can represent the system’s state by

a continuous interval of everything between the two characteristics, or only a discrete space where

a system is in either state. Models commonly contain something between these two extremes, with

several additional discrete steps representing a gradual transition. For instance, we may represent the

car tire’s condition by two additional states between "good as new" or "broken", these being "worn"

and "well worn".

Discrete time-steps such as hours, days or decades usually represent the system’s development when

making decisions and revealing new information. The total time in question for a system and the

possible decisions along the way is called the planning horizon, and the time steps are referred to as

stages (Mes and Rivera, 2017). King and Wallace (2012) point out that time periods should not be

confused with stages, where the former only model time passing by, and the latter model points in

time where decisions are made based on new discoveries. For the car tire example, it could be natural

to consider seasons as stages, and suggestively eight years as the planning horizon (U.S. Department

of Transportation’s Federal Highway Administration, 2018; Leister, 2018).

At each stage, a system’s development will depend on earlier actions on the system. Depending on

the process, a model of this development from one stage to another may include a random variable.

Considering a system at a particular stage, the system’s further development is affected by the actions

made at this specific stage. A given set of actions limits the possibilities of influencing the system’s

development. This set is known as the decision space, where each action corresponds to a decision.

The agent seeking to optimize the decisions according to some specified objective is called a decision

maker. If the system model in question has more than two stages where decisions are allowed, it

follows a multi-stage decision process. Processes where the decision maker only interacts with the

system once or twice are single- and two-stage processes, respectively.
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3.4.2 Markov process

If a system deteriorates stochastically, its current state is dependant on both earlier actions and the

random events affecting its deterioration. At a certain stage, the system’s state in the next stage

depends on the decisions made in the current stage and the random deterioration that will happen

before the next stage. Taking all these factors affecting the system’s state into account, modelling

the system’s state in the next stage means considering many known decisions and random events.

To simplify a model describing the system’s development, one can assume that the state in the next

stage only depends on the current state and the decision made at the current stage. That is, the

stochastic deterioration is not affected by how the system has come to be in its current state.

With the probabilities of further deterioration only being dependant on information from the cur-

rent time stage and decisions taken at this stage, the system’s development is also only dependant

on the current time stage’s information and decisions. A system that has this property has a memory-

less property. The systems then follows a Markov process (Hillier and Lieberman, 2012). The term

"memoryless" stems from the fact that how the system has reached its current state is irrelevant and

can be "forgotten". Using the car tire as an example, its probability of further deterioration is not

dependent on whether it was "as good as new" in year two or if it was "worn" in year two when we

see that is it "well worn" in year three.

We can formally consider the random variable X and a subset S⊆ [0,∞]. In the case of deteriorating

systems, X may represent the state with higher values meaning further deterioration. S may be the

possible outcome of events affecting the system, and the sum of two outcomes means that both have

happened. According to Nelsen (1987), if the following equation holds:

P(X > a+ b|X > a) = P(X > b), a, b ∈ S, (3.1)

the variable has the Markovian property. Using the car tire as an example with X representing the

state of the tire, a may be that the tire at some point has been "good as new" and b may be that

now it is "well worn". Furthermore, we assume that the tire may deteriorate directly to any state

representing a worse condition than its current condition. The probability of the tire being "broken"

(that is, worse than b), is the same regardless of the fact that the tire may at some point have been

"worn" or gone directly from "good as new" to "well worn". In the illustrative case of the car tire,

Equation 3.1 only holds if the most recent observation of the car tire yielded "well worn" (that is,

X > a). This is because of the limited state space and the fact that the current stage affects the

deterioration probability.
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It is important to note that past states are taken into account by the present state. While we do not

consider past states when calculating probabilities for future states, they do have indirect importance

as the current state results from past states and state transitions.

3.4.3 Making decisions

The state space considered for a specific problem may be finite as suggested for the car tire, or infinite

such as could be the case when using the age of a system to represent its state directly. Assuming that

the state space is countable or consisting of a finite set of states and that the modelled deterioration

process is a Markov process, the process is called a Markov chain (Petrushin, 2000).

Markov chains may be either discrete time or continuous time, depending on how the observations

of the system’s state are made. A system may be subject to continuous monitoring or inspected

at a pre-determined interval (such as the suggested seasonal inspection of a car tire, possibly in

conjunction with exchanging winter and summer tires). When using a Markov chain to model a

decision process, decisions can be pre-determined given different observations at different stages

by optimizing for the objective, taking all future possibilities into account. A decision process that

uses transition probabilities to calculate how immediate and subsequent effects will contribute to the

objective function, is called a Markov decision process (MDP).

In a stochastic process, the system state in the next stage will be dependant on a random event.

Any decision will also affect the model’s objective function, commonly as a cost or a reward. Some

decisions may be costly, but lower the probability of events expected to exceed these decisions’ cost.

Decisions influence the probability of future states and consequently, the expected cost of future

decisions. An MDP seeks to find the decision sequence that optimizes the objective, which often is to

minimize expected costs, but may also be another pre-defined criterion. Any sequence of decisions

is called a policy, a term introduced by Bellman (1954). A sequence of decisions that optimizes the

objective is an optimal policy.

With the above-described characteristic, we can formulate the problem of finding the optimal policy

mathematically. The problem considers making the optimal decisions on a system within a planning

horizon, given that it develops through a stochastic process with discrete states and transition. In a

stage in the planning horizon, n ∈ N , the system will be in one state sn within the state space S.

A decision’s cost is given as Cn(Sn, xn). A valid decision, xn, is limited to decisions in the decision

space, Xn. The following state in our MDP depends on a probability distribution for going to other

states P(sn+1|sn, xn). The combination of a random event and the decision made in the current stage,

brings the system into a state, sn+1 in the next stage n+ 1. Note that the state in the next stage may
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be the same as the current state. The decision function Xπ(sn) returns a decision for all states. π ∈ Π

denotes a sequence of decisions in the set of all possible sequences. Thus, π denotes a policy and Π

the set of all possible policies. Finding the optimal policy is then equivalent to solving the expression

(Mes and Rivera, 2017):

min
π∈Π
Eπ{

∑

n∈N
γnCn(sn, Xπn (sn)} (3.2)

In Equation 3.2, the factor γ≤ 1 can be interpreted as a discount factor, allowing future rewards to be

discounted reducing the impact of costs with time. Omitting γ (that is, implicitly setting γ= 1), the

derived expression will treat costs as equally contributing to the objective over the planning horizon,

and consequently minimize the total expected costs. Altering Equation 3.2 to consider an infinite

planning horizon (straightforwardly obtained by setting γ ≤ 1), the expression will minimize the

long-run average cost.

3.4.4 An illustrative example of a Markov decision process

To obtain a simple illustration of a Markov decision process, we consider a system that only consists

of one component. Throughout a year, the system will either continue to work normally or fail. In

the case of a failure, one must replace the system with a new system. For simplicity, we assume that

in the case of a failure, the system will not fail again before the next year and still be possible to

maintain in the same period (although it will likely be left alone, as the age will be very low at the

beginning of the next year). The probability of failing is a known function that solely depends on the

age of the system. At the end of every year, the decision maker must choose between replacing the

system, or leaving it in its current state. Considering the system’s age as its state, the possible state

transitions are ageing or replacement (where the latter implies a brand new system at the beginning

of the next year). This also means that the transition probabilities at a given point of time for the

system, considering a year forward in time, are given from only the decisions taken at this point and

the system’s age.

Given the characteristics described above, we have a Markov decision process. Technically, both the

state space and planning horizon are infinite; we have not defined any end of the planning horizon,

or a maximum age allowed system age. Let each stage be a year, represented by n. The state of the

system, sn, is defined by its age. Costs either incur when replacing the system, or a failure occurs.

Note that in order for the model to yield any other policy than simply doing nothing each year, the
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cost of failure must exceed the cost of replacing the system. In a stage n, the system will be in state

sn, and we represent decision in this state by xn. As the system’s future states are only dependant

on the current state and decision, so is the expected future cost. This cost can be formulated as

cn(sn, xn). Furthermore, we can represent the transition probabilities with the two expressions P F (sn)

and 1− P F (sn) for a system failure and normal ageing, respectively.

To illustrate the stages of the proposed MDP, we use a decision tree. Figure 3.1 shows a decision tree

for three stages in the planning horizon, corresponding to the system described above. The squares

are decision nodes, denoting times when the decision maker can make a choice between replacing

the system (xn = 1 for stage n) and doing nothing (xn = 0 for stage n). The circles are chance nodes,

illustrating that a probabilistic event decides the immediately succeeding state of the system. Arcs

between the nodes illustrate the possible state transitions for a system in a given state to another.

The probability of moving along an arc going out of a choice node lies above the appurtenant arc.

Figure 3.1: Markov decision process illustrated as a decision tree

To highlight the difference between decisions and random events, we mark some states, s′n. This

marking distinguishes between the course of events within a stage. As mentioned, a failure may

happen throughout a year, but the maintenance decision is made at the end of the year, meaning

with the system in state s′n in year n. This order of events makes it possible to maintain the system

in the same year that a failure forces its replacement. Although this is a result of how we model the

process, considering what happens within a single stage is vital to obtain a model that corresponds

as closely as possible with the real-life situation.
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3.4.5 Markov decision process in maintenance optimization literature

In the literature survey by Pierskalla and Voelker (1976), maintenance optimization models are clas-

sified based on how they model deterioration. One of the modelling approaches addressed in this

particular classification is the use of an MDP. This use implies that the Markov Decision Process is

a traditional modelling approach for maintenance optimization processes. However, the same ap-

proach is commonly used in newer publications, possibly incorporating uncertainty in observing

system states in a stage.

A system is said to be Markov deteriorating if the deterioration process is Markovian (Bloch-Mercier,

2002). Such a modelling approach is found in Chiang and Yuan (2001) and Kurt and Kharoufeh

(2010). The latter publication considers a system subject to periodic inspection and Markov deterior-

ation. The system’s state space is discrete, and a state represented by a high numerical value indicates

a "worn" system with an increased probability of failing. A system in the state with the largest possible

value has failed and does not function. The objective is to derive a replacement policy that minimizes

the total discounted cost over an infinite horizon, regarding costs of inspections, replacements and

operation.

Maillart (2006) considers an infinite planning horizon in his model. It describes the maintenance of

a system as a Markov chain with discrete time steps. Inspections reveal the system’s state and im-

minently require the decision maker to either maintain the system or do nothing. The paper regards

inspection as a choice as well, and discuss two cases. First, the proposed model considers informa-

tion revealed through inspection as perfect. Later, an extension of the model considers a probability

distribution for states the system may be in. An MDP is formulated and minimizes cost for the infinite

horizon.

We see that even stochastic processes with uncertain information reveal may be MDP-models. If

the state distribution is based on uncertain observations of the system’s state, the process is "hid-

den" (Eddy, 2004). When formulating such a Markov Decision Process, the corresponding stochastic

model that describes state transitions from one stage to another is a hidden Markov model (HMM)

(Petrushin, 2000). An MDP where a systems develops according to a HMM is a partially observable

Markov decision process (POMDP) (Sondik, 1971). Several recent publications consider this approach

(Byon and Ding, 2010; Andriotis and Papakonstantinou, 2020; Morato et al., 2020). The uncertain

observations may be something else than inspection, e.g. self-announcing failures. Using Hidden

Markov Model theory, Neves et al. (2011) estimates a single-unit system’s state by using empirical

data.
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3.5 Dynamic programming

This section considers a common solution approach to maintenance optimization problems applic-

able to MDPs. We first introduce the theory behind the approach in Section 3.5.1 before presenting

how a dynamic program can consider uncertainty in Section 3.5.2. Section 3.5.3 provides an example

illustrating how to find optimal decisions in an MDP by using stochastic dynamic programming. We

discuss a commonly discussed drawback of dynamic programming called "the curse of dimension-

ality" is discussed in Section 3.5.4 before the section is concluded by providing publications that

use dynamic programming to solve maintenance optimization problems in Section 3.5.5. We present

publications considering single-unit systems before turning the attention to multi-unit systems.

3.5.1 Introduction to dynamic programming

One common approach to solve an MDP to optimality is using dynamic programming. The overview of

the literature on maintenance optimization suggests that modelling a maintenance decision problem

as an MDP and using a dynamic programming algorithm is suitable for such problems. This approach

is, among others, suggested by Mes and Rivera (2017). Dynamic programming is a method developed

by Richard Bellmann in the 1950s, motivated by studies of multi-stage decision processes and the

relating mathematical challenge of solving problems related to these processes (Bellman, 1954).

Bellman used a repetitive technique to derive a functional equation for dynamic programming. He

decided to call the technique "The Principle of Optimality" (Dreyfus, 2002). Another name for this

principle is "The Bellman Principle":

"An optimal policy has the property that whatever the initial state and initial decisions are, the remaining

decisions must constitute an optimal policy with regard to the state resulting from the first decisions."

(Bellman, 1954, p. 504)

One common approach to solve an MDP to optimality is using dynamic programming. The overview of

the literature on maintenance optimization suggests that modelling a maintenance decision problem

as an MDP and using a dynamic programming algorithm is suitable for such problems. This approach

is, among others, suggested by Mes and Rivera (2017). Dynamic programming is a method developed

by Richard Bellmann in the 1950s, motivated by studies of multi-stage decision processes and the

relating mathematical challenge of solving problems related to these processes (Bellman, 1954).

Bellman used a repetitive technique to derive a functional equation for dynamic programming. He

decided to call the technique "The Principle of Optimality" (Dreyfus, 2002). Another name for this

principle is "The Bellman Principle":
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fn(sn) = min
xn∈Xn

{ fn+1(Tx(sn))} (3.3)

As all possible valid transformation are taken into account, Equation 3.3 gives a deterministic dy-

namic program (Bellman, 1954). In the MDPs discussed so far, we see that transitions are dependant

on decisions. To more explicitly express a relation between decisions and transformations, one may

use a transition function, sn+1(sn, xn) (Lundgren et al., 2012, p. 485). Given state sn and decision xn,

the function describes the resulting state sn+1. Representing the immediate cost of choosing xn in

state sn at stage n by c(sn, xn), the recursive relation can be formulated as (Hillier and Lieberman,

2012, p. 438-468):

fn(sn) = min
xn∈Xn

{c(sn, xn) + fn+1(sn+1)} (3.4)

From Equation 3.4, we see that the return from being in state sn at stage n is dependent on the

return obtained in the next stage, n+1. Thus, the solution procedure is required to start at "the end"

and find an optimal policy at the last stage in the planning horizon, |N | (which will only contain

one decision and transformation). After this policy is derived, it is used to derive the policy for stage

|N | − 1. To obtain the optimal policy for the whole planning horizon, polices must be derived step-

wise for earlier stages until the optimal policy for the initial stage is returned. Because the solution

approach moves recursively backwards in time, it uses backward recursion. As the optimal policy at

stage |N | also is "forward-looking" according to Equation 3.4, it implicitly requires a final value to

initialize the recursion. This value, fn+1(sn+1) for n=N , may be set for each different possible state

in the state space.

Originally, Bellman (1954) formulated the functional equation by using forward recursion. This is an

alternative formulation of Equation 3.4. Instead of a final value fn+1(sn+1) for n=N , a formulation

using forward recursion requires an initial value given for f0(s0) (assuming that the first decision

stage is at n= 1). The forward recursion approach moves chronologically along the stages until the

last stage.

3.5.2 Stochastic dynamic programming and relation to MDP

State transitions in an MDP may either only be dependant on the decisions taken in a stage, or

additionally a random event in each stage. In the latter case, both a decision variable and a ran-

dom variable drawn from a probability distribution will influence state transitions from one stage to
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the next. When decisions alone do not determine these state transitions, one may still use dynamic

programming as the solution approach. The program is then a stochastic dynamic program (SDP).

In the literature, this is also termed a probabilistic dynamic program (Hillier and Lieberman, 2012,

p. 438-468). This kind of dynamic program was suggested by Bellman (1954) as an early extension

to the original formulation. Instead of relying on certain values, the return function, fn(sn) yield the

expected value of being in state sn in stage n.

With the adoption of fn(sn) representing expected cost, Equation 3.4 becomes a valid solution to the

expression derived for an optimal policy in an MDP (see Equation 3.2 in Section 3.4.3). By recursively

finding optimal decisions in all stages, starting with the last stage, Equation 3.4 only holds if the

decisions xn for n ∈N together make up an optimal policy, corresponding to to Xπn in Equation 3.2.

As the cost function Cn(sn, xn) yield expected cost, it can be represented by the adopted fn(sn). By

dividing the problem of finding an optimal policy for the MDP into smaller sub-problems, it is solved

through stochastic dynamic programming.

As optimal policies are derived recursively from the end to the beginning, the program will also yield

optimal policies for all the sub-problems (Mes and Rivera, 2017). Thus, after solving the original

problem, a dynamic program has derived an optimal policy for any valid state for every stage sub-

sequent to the first stage considered in the original problem. All these policies may be beneficial if

one is to make informed decisions in every stage. As the decision maker can adapt to improbable

events assigned a low expected cost (because of the low probability of the event happening), the

fact that the SDP calculates all optimal policies can be exploited. However, this also means that the

recursive function must calculate the expected cost of all decisions for all possible events, no matter

how unlikely they may be. This naturally results in many calculations, a challenge further addressed

in Section 3.5.4.

3.5.3 Using dynamic programming to find optimal decisions in an MDP

Considering the single-unit system example introduced in Section 3.4 to illustrate an MDP, we now

turn our attention to how to solve it with dynamic programming. The decision maker faces the choice

of replacing the system every year. For a new system, a system of age 0, the chance of failure is 0.

When the system reaches 1 and 2 years of age, the respective chance of failure before reaching the

next stage is 0.4 and 0.6. We assign a cost of 30 for replacing a failed system and 15 for replacing

a functioning system. Although a both of these costs represent a replacement, the higher cost of

replacing a failed system may be explained simply by the cost of not knowing when in a year a

failure occurs, or a penalty cost that incurs when the system is not delivering its desired output.
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Adopting the notation from the recursive relation in Equation 3.4, fn(sn) is the expected cost in

stage n of making present and future decisions according to the optimal policy. Let c(sn, xn) be the

expected cost of decision xn in stage n. Equation 3.4 then gives the optimal policy for maintaining

the single-unit system.

The problem must have an initial condition to initialize the recursive procedure. Assuming that we

consider only decisions on the system in year 1 and 2, our planning horizon N is limited to the set

{1,2}. We denote the initial condition as f3(s3) = cs3
, assigning a cost of being in state 0, 1 and 2 at

the end of the second year. Figure 3.2 presents the initial conditions and the solution approach. At

stage 3, we calculate the expected cost of being either of the possible states at the beginning of stage

3 and then repeat the process for stage 2 and stage 1.

In the figure, moving along an arc (as either a result of decision or chance) has an associated cost.

The cost for an arc is placed above it. Arcs going out of a chance node are also assigned a probability

corresponding to the transition probabilities but omitted in the figure for illustrative purposes. At

least one arc going out of a decision node is red, denoting the optimal choice. We see that if the

system fails the first year (or one makes the non-optimal choice of maintaining the system at the

first opportunity), the expected cost of both choices in year 2 is 20, and thus any choice is optimal.

Furthermore, achieving the lowest expected means letting the system age once and then replace it.

The optimal policy comprises these two choices.

In year 0, the expected cost of following the optimal policy is 32. This expected cost includes the

expected cost of optimal choices in all possible subsequent stages. To illustrate the expected cost

calculation, we consider the expected cost of being in the worst possible state in the last stage (the

rightmost upper circle). The probability of failure is 0.6, and the cost of failure is 30. The initial

conditions state that failure and repair will mean a cost of 5 being incurred at the end, while the cost

of staying in the worst state means a cost of 15. As the probability of no system failure is 0.4, the

expected cost is: 0.6 · (30+ 5) + 0.4 · 15= 27.

It is important to note that the optimal policy does not guarantee the least costly outcome. If a failure

occurs in the first year when following the optimal policy, the minimum expected future cost is 20,

but the penalty cost of 30 will occur due to system failure. Thus, in this situation, the expected total

cost will be 50.

We see that deciding to replace the system each year would cost 35 with certainty, providing a better

outcome than following an optimal policy when a failure happens in year 2. This observation illus-

trates the difference between an optimal solution and a guarantee of obtaining the lowest possible
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cost. Still, when faced with the first decision, the expected cost was 32, better than the 35 that proved

to be the lowest possible cost when following an optimal policy. It is also interesting to observe that

when left in an unlikely state (that is, the less likely event has occurred) in stage 2, the decision

maker can still follow an optimal policy for minimizing future costs.

Figure 3.2: The figure shows how to use dynamic programming to minimize the expected costs in an
MDP. Red vectors indicate optimal decisions at each stage.

3.5.4 The curse of dimensionality

While calculating the optimal policies for all possible combination of events can be beneficial, the

complexity of doing so is a widely discussed drawback of dynamic programming. As stochastic dy-

namic programming considers probabilistic events in addition to the possible decisions, this solution

approach becomes especially complex for large problems. The need to calculate expected costs for

all combination of events is known as the curse of dimensionality. Powell (2016) divides this curse

into three separate curses, being:

• The state space. Consider a multi-unit system consisting of |K| components, where each com-

ponent has |S| individual states. The state space representing the whole system has the size of

|S||K| different possibilities.

• The outcome space A specific system state may be associated with several transition probab-

ilities, representing the possible states that the system may transition into in the next stage.

These possibilities for all state transitions make up the outcome space, and a dynamic program

must calculate the expected return for all outcomes in each stage.

• The decision space The illustrative examples introduced so far have only considered two

possible actions; replace or do nothing. However, a model can consider several possible main-

tenance decisions. An example is adding a "minimal repair" option, as considered by Sheu et al.

(2018). Replacements and minimal repairs may differently affect the probability distribution

for future outcomes. Thus, each possible decision may differently affect the expected return of
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subsequent stages. As is the case for the outcome space, the dynamic program must calculate

all of these expected returns.

3.5.5 Dynamic programming in maintenance optimization literature

Considering a single-unit system, Chu et al. (1998) formulate a dynamic program approach for min-

imizing the cost of maintenance, where the possible maintenance actions are to repair a failed system

or carry out preventive maintenance. The paper concludes that considering several maintenance pos-

sibilities with different costs would be the next step, studying a system consisting of two components.

In another single-unit formulation, (Bloom et al., 2006) consider an underground distribution cable

subject to several decisions: Inspection, repair, rejuvenation or replacement. A dynamic program

encapsulates both forecasts of deterioration and information reveal as a result of inspections. The

program minimizes the life-cycle cost for a cable. More recently, the research on maintenance optim-

ization models of single-unit systems uses stochastic dynamic programming to investigate problems

with finite time horizons (de Jonge and Scarf, 2020). Stochastic dynamic programming may ex-

ploit uncertainty of maintenance outcomes. That is, a preventive maintenance action can only detect

some deficiencies and thus may be unsuccessful. This can result in a system failure despite recent

preventive maintenance. Sachan et al. (2016) suggest an SDP for this particular problem.

Facing the decision of long-term scheduling of maintenance, Janjic and Popovic (2007) argue that

dynamic programming is expedient for their multi-unit system with discrete states and consequently

discrete transitions. Encapsulation both of the suggested next steps from Chu et al. (1998), Korpijärvi

and Kortelainen (2009) consider a multi-unit system and allow for both repairs and replacements.

They minimize cost by the use of dynamic programming. As dynamic programs are often applied

to maintenance optimization problems, the curse of dimensionality has also received attention in

related literature. To curtail the complexity of large models, Abbasi et al. (2009) suggest a program

for a multi-unit system that exploits risk management theory to prioritize different maintenance

decisions.
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Problem Description

This chapter presents the Utility Mast Inspection and Maintenance Problem (UMIMP). In Section 4.1,

we present the characteristics of the UMIMP. In the next section, we describe the problem’s decision

structure.

4.1 Problem characteristics

The UMIMP is to find the optimal inspection and maintenance decisions for a power grid utility mast.

The objective is to minimize the total expected costs from failure, inspection and maintenance over

a planning horizon while also accounting for the utility mast condition at the end of the planning

horizon.

A power grid line consists of several homogeneous utility masts, with a set of components. We con-

sider a collection of components representing the mast a system. Some of the mast’s components

affect its ability to deliver electricity. If the failure of a component results in the mast’s failure and,

consequently, the power grid line, it is considered critical. The problem considers critical components,

as they have the most significant implications for inspection and maintenance decisions.

A component is always in a certain condition. A components’ condition is subject to change over time

due to stress and damage from external factors. That is, it deteriorates. A component in a significantly

deteriorated condition will be more prone to failure than a less deteriorated component. The most

important external factors are weather, wildlife and natural deterioration processes. A components’

exposure to such factors is stochastic, hence so it is deterioration process. For example, a woodpecker

might peck the mast’s wooden pole, which worsens the poles’ state. Before a certain point in time,

we cannot tell if the woodpecker will choose to do so on a given pole in the future. However, based
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on empirical data, we can say something about the probability that a component will deteriorate due

to woodpeckers or other external factors, during a given period of time.

A set of discrete states can model condition of a component. The lowest state indicates the best condi-

tion, being a new, or good as new, component. Higher states indicate progressively worse conditions,

the highest state being a component that has failed. During a time period, a components state may

remain unchanged or change to a worse state. This deterioration is modelled by transition probab-

ilities for each component, representing the probabilities of remaining unchanged or worsening to

each of the possible worse states during a time period. The probability of deterioration depends on a

component’s current state, not how long it has been in that state or its previous state development.

That is, the transition probabilities have the Markovian property.

When a power grid line fails to deliver power, its operator pays a penalty cost of energy not supplied,

CENS, based on the number and importance of the affected customers and increases with the grid’s

total downtime. A power grid operator seeks to maintain the mast components so that the costs

spent on inspection and maintenance are less than the reduction in expected cost from CENS and

unplanned maintenance.

Deterioration mostly affects the risk of failure and not how the components function. A pole can be

quite rotten and still completes its function (holding the grid lines and other components above the

ground). However, it is much more likely to break when exposed to external forces like wind than

a new pole. Additionally, sudden events like a lightning bolt might break even a new mast. A new

mast has a lower risk of failure than an older, more deteriorated mast because no deterioration has

happened. However, the risk of a new mast failing is still present.

4.2 Decision structures

The problem concerns three types of interactions with the power grid: repair of a failed system,

maintenance to reduce failure risk and inspection to uncover the state of the mast’s components.

If a system failure occurs, a repair is needed to restore the power grid’s function. As opposed to

maintenance and inspection, a repair is not a choice and must be carried out as fast as possible after

a failure occurs.

Maintenance takes place before a component has failed, improving its state. As components in better

condition have a lower chance of failing, preventive maintenance reduces the risk of, and consequen-

tially the expected cost from, failure.
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Inspections detect the states of the system’s components. They have an associated cost, but no direct

effect on the power grid. However, an inspection reveals information about all system components

and can help a power grid operator decide on maintenance and lower the risk of failure.

Maintenance can only be carried out within a given time period following an inspection. The inform-

ation that an inspection reveals aids the maintenance decision. The maintenance cost depends on the

type of component being maintained and the time spent by the personnel maintaining it. Also, any

maintenance has an associated setup cost independent of the number of components maintained.

When deciding on maintenance, the operator can choose to maintain any set of components, allow-

ing several components to share the same setup cost.

Inspection and maintenance decisions should be seen in relation to each other. Increasing the fre-

quency of inspections will make a power grid operator more capable of assessing the components’

state and thus their risk of failure. If an inspection reveals that a component is in a lower state than

expected, the operator can postpone maintenance of the component. This postponement can reduce

total maintenance costs. Components in a worse state than expected can be maintained, reducing

the risk of failure and expected costs. However, increasing the frequency of inspections also means

increased inspection costs.

The power grid operators will typically decide on an inspection plan, inspecting the grid at specific

intervals. They also face regulations imposing inspections at least every tenth year. However, they

are not obligated to take any action regarding the grid’s maintenance after an inspection.

The operators may inspect their grid more often than the regulations require. This option also means

that they may decide when the next inspection should be conducted based on revealed information

from a preceding inspection. Thus, both the maintenance decision and the next inspection’s timing

can be adjusted based on the insights from an inspection.
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Mathematical Model

This chapter presents two mathematical models for solving the Utility Mast Inspection and Main-

tenance Problem (UMIMP). Section 5.1 explains our general modelling approach and Section 5.2

presents assumptions for both models. Section 5.3 presents the Periodic SDP (PSDP), a stochastic

dynamic programming model for the problem of optimizing periodic inspection intervals and main-

tenance decisions. In Section 5.4, we solve two simple problems with the PSDP to provide a better

understanding of how it works. Finally, Section 5.5 presents the Sequential SDP (SSDP) that builds

on the PSDP but allows inspection intervals of varying length, that are set dynamically depending

on the state of the system.

5.1 Modelling approach

The UMIMP involves maintenance and inspection decisions throughout a planning horizon. Hence,

the problem is inherently multi-staged. Also, deterioration and failures are stochastic; we only know

their respective probabilities. Given these problem characteristics, we propose to use a stochastic

dynamic programming approach to solve the UMIMP.

We look at a system of different components throughout a planning horizon. Discrete states model

the condition of a component. We divide the planning horizon into equal length periods, stages, in

which a selection of events that influence the state of the components may occur. Deterioration and

failure events are subject to randomness, while a decision maker’s choices determine inspection and

maintenance events. In our models, the events in a stage follow a pre-defined order. Figure 5.1 shows

the events and their order.

Depending on a given inspection policy, an inspection may take place at the beginning of a stage.
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An inspection reveals the system’s state, i.e. the pre-maintenance state becomes known. Then, based

on the pre-maintenance state’s value, a model suggests a maintenance decision for each component.

If the model suggests maintaining a component, it is replaced and considered "good as new". If no

inspection takes place, the state of the system remains unknown, and no maintenance takes place.

Figure 5.1: Timeline indicating the order of which different events influence the system

The system is now in what we call the "pre-deterioration state". The components may now deterior-

ate, and in the worst case, fail. The probability of deteriorating differs for different components and

depends on the component’s current state. If a component fails, it results in a system failure. This

failure incurs a penalty cost and forces a system repair. Repair happens directly after failure, making

the component "good as new". After deterioration and repair of potential failures, the resulting state

is the next stage’s pre-maintenance state.

5.2 Modelling assumptions

The following assumptions apply for both the Periodic and Sequential SDPs.

• Modelled components are critical. All modelled components are considered critical for the

system’s ability to function. If a component fails, the system fails as well.

• Failure is handled individually for each component. When several components fail within

the same stage, they do so at different times. Thus the cost of failure can be incurred several

times per stage for different components. The probability of two components failing at the

exact same time is negligible, meaning that there are no synergies to be exploited when a

failure occurs. Therefore, each failure will incur CENS, the components variable maintenance

cost and the fixed maintenance cost.

• Maintained components become "good as new". When maintaining a component, it is set

back to the first state and is indistinguishable from a new component.

• Repair of a critical component is carried out immediately. When the system fails, repair of

that component will be done momentarily, incurring associated costs.
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• A component can only fail once per stage. The probability of a component failing, then being

repaired, and then failing again in the same period is negligible.

• CENS is constant. The penalty cost of failure is constant for all components in the system,

regardless of which component caused the failure. The cost is based on empirical data, but do

not consider varying downtime due to factors like longer repair times for certain components.

• Deterioration follows know probability distributions. While the outcome of a deterioration

process in a stage is unknown, the deterioration follows a know probability distribution. De-

terioration has the Markov property, as described in Chapter 3 The modelled deterioration of

a component is only dependant on the state of the component and independent of age and

deterioration of other modelled components.

• Time is discrete. The planning horizon is divided into a finite amount of time periods or stages.

These all have the same length and are indexed increasingly, the first period being 1 and the

largest index being the final stage.

• Inspection provide perfect information. An inspection returns the actual states of all com-

ponents. As discussed in chapter 3, while this is a simplification, it is a reasonable assumption

when modelling a discrete state space.

• Inspection in first stage. As the initial state is known, we assume that an inspection takes

place in the first stage.

5.3 Periodic SDP model

This section presents a model for solving the UMIMP with periodic inspection intervals by a stochastic

dynamic program and is thus referred to as the Periodic Stochastic Dynamic Program (PSDP or

Periodic SDP). The model aims to find optimal maintenance and inspection decisions, i.e. decisions

that minimize total expected costs over a planning horizon.

5.3.1 Notation

We use the following notation for the PSDP. Most of it is also used for the Sequential SDP presented

in Section 5.5, except for explicitly mentioned changes.
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Sets:

N Set of stages N = {1, 2, ..., |N |}

K Set of components K = {1, 2, ..., |K|}

S Set of states S = {1, 2, ..., |S|}

Parameters:

C F The penalty cost of failure, typically referred to as CENS (cost

of energy not supplied)

C MV
k Variable cost of maintaining component k ∈ K

C M F Fixed cost of maintenance

C I Cost of inspection

C End
ik End of horizon cost. Cost of ending up in state i for component

k ∈ K

Bk Initial state of component k ∈ K

Pi jk Probability that component k ∈ K deteriorates from state i ∈ S

to state j ∈ S. Summarized in a matrix Dk for each component

zmax The maximum allowed inspection interval
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Decision variables:

xkn
xkn ∈ {0,1}. 1 if component k ∈ K is maintained in stage n ∈

N , 0 otherwise. xn = [x1n, x2n, ..., x|K|n] is sometimes used for

convenience

z Inspection interval, i.e. number of stages from one inspection

to the next. z ∈ {1, ..., zmax}

yn yn ∈ {0,1}. 1 if inspection takes place in period n and 0 oth-

erwise. Is forced by the value of z, such that between two con-

secutive inspections there are z − 1 stages without inspection

State variables:

skn Pre-maintenance state. skn ∈ {1, ..., |S|}. The condition of com-

ponent k ∈ K at the beginning of stage n ∈ N . 1 is considered

good as new, |S| − 1 significantly deteriorated and |S| failed.

sn = [s1n, s2n, ..., s|K|n] is sometimes used as notation for the

system’s state

s
′

kn Pre-deterioration state. s
′

kn ∈ {1, ..., |S|}. The condition of com-

ponent k ∈ K in stage n ∈ N after potential maintenance

and before potential deterioration and repair of failures. s
′

kn =

[s1n, s2n, ..., s|K|n] is sometimes used as notation for the sys-

tem’s state

5.3.2 Model formulation

State transition

Figure 5.2 indicates the order of events that influence the system. In the figure, we use squares to

indicate decision nodes, i.e. when a decision maker determines the outcome, and circles to indicate

chance nodes, where the outcome is stochastic. If an inspection takes place, as in Figure 5.2 a), it

reveals the system’s state. The decision maker will then choose which components to maintain, if any,
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leading to the pre-deterioration state. As the pre-maintenance state is known, and only deterministic

maintenance decisions influence the system between sn and s
′

n, the value of the pre-deterioration

state is also known. Then the system experience deterioration, where each component may or may

not deteriorate to a worse state, and potentially fail. If a failure occurs, the component is immedi-

ately repaired. The resulting state is the pre-maintenance state of the next stage (s(n+1)). Unless an

inspection takes place in stage n+1, the state of the system is now unknown. Figure 5.2 b) indicates

the same order, but in this case, no inspection takes place. Consequently, the state of the system is

unknown, and no maintenance decision takes place.

Figure 5.2: The figure shows transition between states in a stage. An inspection takes place in a), but
not in b). Squares indicate decision nodes and circles indicate chance nodes.

Function 5.1 describes the transition between the pre-maintenance state, (sn), and the pre-deterioration

state, (s
′

n), as a result of this decision. If a component undergoes maintenance, it is back to the first

state. If no maintenance takes place, the state remains the same.

s
′

kn =











1 if xkn = 1

skn otherwise
, k ∈ K, n ∈N (5.1)

The state transition from a maintenance is illustrated in Figure 5.3. Considering a component, k ∈ K,
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in a stage, n ∈ N , represented by five discrete states (|S| = 5), Figure 5.3 a) indicates the possible

transitions from s(n) = 1, b) from s(n) = 2 and so forth. When the state is 1, as in Figure 5.3 a), we see

that the system will stay in state 1 independently of the maintenance choice. However, for Figure 5.3

b), c) and d), the maintenance choice and its implications for the possible state transitions become

apparent.

Figure 5.3: The figure shows possible transition between states in a stage due to maintenance, for a
component represented by five discrete states. Note that maintenance is only possible following an
inspection (yn = 1).

Following maintenance, a component may deteriorate. Pi jk indicates the probability of component

k ∈ |K| deteriorating from state i ∈ |S| to state j ∈ |S|. This is the transition between the pre-

deterioration state (s
′

n) and the pre-maintenance state of the next stage (s(n+1)). If the component

does not deteriorate, it remains in the same state, given by the probability Piik. If a component fails

it first goes to the maximum state, |S|, but as it is repaired immediately, it ends up in state 1. We

describe this deterioration in Equation 5.2.

sk(n+1) =























s
′

kn with probability Piik | s
′

kn = i i ∈ S \ |S|

j with probability Pi jk | s
′

kn = i, i < j, i, j ∈ S \ |S|

1 with probability Pi|S|k | s
′

kn = i i ∈ S \ |S|

, k ∈ K, n ∈N (5.2)

In Figure 5.4, we illustrate the possible transitions from the pre-deterioration state in stage n to the

pre-maintenance state in stage n+ 1 due to deterioration and failure. In Figure 5.4 a) we see that

the state can change to any other state. It is worth to note that when going to the failed state, state

5 in the illustration, the component is then repaired and ends up in state 1. Failing in state 1, which

means going to state 1 in the next stage, must be considered differently than not deteriorating and

remaining in state 1, as failing also incurs the cost of failure. The probabilities for each transition are
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indicated to the right of the decision nodes in n+ 1.

Figure 5.4: The figure shows the possible transition between states in a stage due to deterioration for
a component represented by five discrete states.

We see that the probability of ending up in state 1 in Figure 5.4 a) is the combination of P11k and

P15k, while the probability of ending up in state 1 in b) is only given by P25k, in c) by P35k and in d)

by P45k. We also see that the number of possible transitions is fewer when the pre-deterioration state

is 2 compared to 1, 3 compared to 2 and so on. This is because the state cannot improve unless the

component is maintained or repaired following a failure.

All the transition probabilities, Pi jk, are summarized in a deterioration matrix for each component,

Dk. The first row represents the transition probabilities from the first state to the rest and so forth. It

can be described as follows:

Dk =





















P11k P12k ... P1(|S|−1)k P1|S|k

0 P22k ... P2(|S|−1)k P2|S|k

... ... ... ... ...

0 0 ... P(|S|−1)(|S|−1)k p(|S|−1)|S|k

0 0 ... 0 1





















(5.3)

Recursion function

We want to find the inspection interval, z, and the maintenance policy, x , that minimize the expected

cost over the planning period. As we use backwards recursion, the function’s value in the first stage

equals the total expected costs for the entire planning horizon. Our objective function thus becomes:



Chapter 5: Mathematical Model 53

min
z

f1(s1, z) (5.4)

where:

fn(sn, z) =min
xn
{

|K|
∑

k=1
xkn · C MV

k + (1−
|K|
∏

k=1
(1− xkn)) · C M F + yn · C I

+
|K|
∑

k=1

|S|−1
∑

i=1
Pr(s

′

kn = i | skn, xkn) · (Pi|S|k) · (C F + C MV
k + C M F + fn+1(sk(n+1) = 1, z))

+
|K|
∑

k=1

|S|−1
∑

i=1

|S|−1
∑

j=i
Pr(s

′

kn = i | skn, xkn) · Pi jk · fn+1(sk(n+1) = j, z)}

n ∈N

(5.5)

The recursion function 5.5 can be broken down as follows:

|K|
∑

k=1

xkn · C MV
k + (1−

|K|
∏

k=1

(1− xkn)) · C M F + yn · C I (5.6)

Equation 5.6 first sums the variable cost of maintenance for all maintained components. Then it adds

the fixed maintenance cost, incurred once if at least one of the components are maintained. Finally,

it adds the inspection cost if an inspection takes place.

|K|
∑

k=1

|S|−1
∑

i=1

|S|−1
∑

j=i

Pr(s
′

kn = i | skn, xkn) · Pi jk · fn+1(sk(n+1) = j, z) (5.7)

Equation 5.7 is the expected present and future costs given failure. For all components and all possible

states, we multiply the probability of the component being in that state, given the maintenance

decision, Pr(s
′

kn = i | skn, xkn), with the probability of failing in that state, Pi|S|k. This joint probability

is first multiplied with the cost from failure, including the forced repair cost and the CENS. Then,

the equation multiplies the probability with the expected future costs of the state being 1 in the

next stage, as this is the consequence of forced repair. We know the value of Pr(s
′

kn = i | skn, xkn)
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with certainty, being either 0 or 1, based on the values of skn and xkn, and the transition function

given by Equation 5.1. While it does not represent any probabilistic event, we use this notation for

mathematical convenience.

K
∑

k

S\|S|
∑

i

S\|S|
∑

j

Pr(s
′

kn = i | skn, xkn) · Pi jk · fn+1(sk(n+1) = j, z) (5.8)

Equation 5.8 is the expected future costs given the maintenance decision and deterioration outcomes.

Similar to Equation 5.7, we look at the probability of being in a given state, and the probability of

going to a certain state from the given state. The probability is used to correctly weigh the expected

future costs of possible states in the next stage.

Boundary conditions:

sk1 = Bk, k ∈ K (5.9)

z ≤ zmax (5.10)

fn(skn = i) = C end
ik , n= |N |+ 1, i ∈ S, k ∈ K (5.11)

(yn · n− 1) mod z = 0, n ∈ {1, ..., |N |} (5.12)

yn + z ≥ 2, n ∈ {1, ..., |N |} (5.13)

xkn ≤ yn, k ∈ K , n ∈N (5.14)

The first constraint, 5.9, sets the initial state of the system, given as a parameter from the user. 5.10

forces the decision variable z to be at most zmax . Boundary condition 5.11 sets the end of horizon

cost for the recursion function. 5.12 ensures that the inspection variable, yn, becomes 1 every z th

period, and zero in the rest for all z except z = 1, starting with an inspection in the first stage. This is
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based on the assumption that we know the initial state of the system, indicating an inspection in the

first stage. 5.13 ensures inspection in every stage if z = 1. Finally, 5.14 makes sure that maintenance

only takes place following an inspection.

5.4 Illustrative example of the model

In this section, we study two simple cases to illustrate the mechanics of the PSDP. First, we present

the data used in both cases in section 5.4.1. Then, in Section 5.4.2, we look at a single-unit system, a

system with only one component, with relatively fewer states and stages than realistic instances. We

look at the resulting policies from the model and calculate some of the expected costs by hand, before

exploring the transition between stages in Section 5.4.3. Then we expand the problem somewhat

in Section 5.4.4 by introducing a second component to highlight the interdependencies between

components.

5.4.1 Example case parameters

Our first example is a system with only one component, that can be in three different discrete states.

We look at the system over a planning horizon of 5 years, each year represented by one stage. Our

second example is similar to the first, but introduce a second component with different properties

and solves for a system of two components.

Case |K| |S| |N | zmax s1 C I C MV
k C M F C F

Single-unit 1 3 5 2 [1] 5 [6] 4 30

Multi-unit 2 3 5 2 [1, 1] 5 [6, 5] 4 30

Table 5.1: Illustrative case parameters

Table 5.1 summarize the parameters that are used in both example cases. Table 5.2 gives the com-

ponents’ deterioration matrices. We use D1 for the single-unit example, and both for the multi-unit

example.

D1 =





0.5 0.4 0.1
0.0 0.6 0.4
0.0 0.0 1.0



 D2 =





0.7 0.2 0.1
0.0 0.8 0.2
0.0 0.0 1.0





Table 5.2: Deterioration probabilities for component 1 and component 2 in D1 and D2, respectively
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5.4.2 Single-unit example

When solving the single-unit example, we calculate the expected cost of every possible state-decision

combination in each stage. In this thesis, we use the term stage table when referring to the tables

that hold the calculated values for all state-decisions. We use these values for each stage to find the

optimal choice for any state of the system. The collection of these optimal choices is the optimal

policy, i.e. the model’s solution to the problem. Figure 5.5 shows the resulting stage tables along

with optimal values for each stage from the PSDP, where the optimal inspection interval from the

solution is z = 2.

Figure 5.5: Stage tables returned by the PSDP for all stages in the planning horizon

From Section 5.3 we know that the PSDP uses backwards recursion in its calculations, i.e. it starts

calculating all the values for the final stage table and then uses those values to calculate the values

for the stage table in n = 4 and so on. When calculating the stage table in the final stage (n = 5),

our implementation use what we define as an endtable, holding the end of horizon costs.

We start by calculating the values in the stage table where n= 5, using the recursion function given

by Equation 5.5, in the previous section. Considering the upper-left cell, we have s5 = 1 and x5 = 0.

We apply these values, the parameters defined in the problem and the end of horizon cost to Equation

5.6*:



Chapter 5: Mathematical Model 57

K
∑

k

xkn · C MV
k + (1−

K
∏

k

(1− xkn)) · C M F + yn · C I

= 0 · 6+ (1− (1− 0)) · 4+ 1 · 5

= 0+ 0+ 5

= 5

(5.6*)

As there is an inspection in stage 5, but no maintenance takes place, we see that the total costs from

maintenance and inspection must be 5, which we find by using our numbers in 5.6. Then calculating

the expected cost of failure we use 5.7:

K
∑

k

S\|S|
∑

i

Pr(s
′

kn = i | skn, xkn) · (Pi|S|k) · ((C F + C MV
k + C M F ) + fn+1(sk(n+1) = 1, z))

= 1 · 0.1 · (30+ 6+ 4+ 0) + 0 · 0.4 · (30+ 6+ 4+ 0)

= 4+ 0

= 4

(5.7*)

For this example, we only sum over one component in 5.7. The probability of s
′

5 = 1 is 1 given

s5 = 1 and x5 = 0, and the probability of s
′

5 = 2 is consequently 0. Looking at D1 we see that the

probability of deteriorating to the failure state from state 1, P131, is 0.1 (the upper-right value in D1).

This probability is multiplied by the cost of failure and the expected future cost of being in state 1.

The cost of failure is the combination of CENS, component maintenance cost and fixed maintenance

cost, summing to 40. The expected future cost is in this case the end of horizon cost of state 1, being

0. Finally, we calculate the expected future costs for all the events where the component does not

fail:

K
∑

k

S\|S|
∑

i

S\|S|
∑

j

Pr(s
′

kn = i | skn, xkn) · Pi jk · fn+1(sk(n+1) = j, z)

= (1 · 0.5 · 0+ 1 · 0.4 · 12) + (0 · 0 · 0+ 0 · 0.6 · 12)

= (0+ 4.8) + (0+ 0)

= 4.8

(5.8*)
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Summing all the parts of the recursion function we end up with:

5+ 4+ 4.8= 13.8

This is the same value that the model returns. We suggest that the reader does a calculation to verify

the results.

5.4.3 Applying the results from the single-unit example

Figure 5.6 illustrates applying the policy given by the PSDP on a possible scenario considering the

single-unit system in the example.

Figure 5.6: A possible scenario for the single-unit system over the planning horizon.

Starting in the first stage (i.e. from the left), we do not maintain the component in the first stage. This

is in accordance with the optimal choice given by the first stage table in figure 5.5, where x∗1(1) = 0.

We see that the component deteriorates between stage 1 and stage 2. As there is no inspection in

the second stage, no choice for maintenance can be made, and the state remains 2. Between stage

2 and 3 there is no deterioration. In stage 3, the system is inspected, and according to the policy

from the PSDP the component is maintained. Despite our efforts to avoid failure by maintaining the

component, we are unlucky, and the component fails in stage 3. As the component is repaired, the

state is 1 in stage 4. Again, there is no inspection, thus no available maintenance decision. Then the

component deteriorates between stage 4 and 5, and in stage 5, the component is maintained. As the
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component does not deteriorate in stage 5 (the last node), the incurred end of horizon cost is 0.

We recognise the first recursion function value, 59.0, from the first stage table in figure 5.5. The

recursion function value represents the expected total costs from the current and future states. Thus

this first recursion function value represents the total expected costs over the planning horizon.

Similarly to the first value, we recognise the other recursion function values from the other stage

tables, depending on the state in that stage, e.g. in the second table, we have the second value

of 58.4 associated with being in state 2, rather than the first value of 44.4 associated with state

1. The recursion function values are typically decreasing, as the stages with expected future costs

become fewer with time. Thus, the expected future costs decrease with time. However, we see that

the recursion function value of stage 5 is slightly higher than that of stage 4. This is because the state

in stage 5 is worse than the state in stage 4, having higher expected costs.

Briefly looking at the costs we see that inspection without maintenance incurs a cost of 5, inspection

and maintenance cost 15, and a failure costs 40. The total costs from this scenario sums to 75. This

is higher than the expected cost of 59, but then again, we did get unlucky when getting a failure

directly after maintenance.

5.4.4 Multi-unit example

We now briefly look at an extension to the previous example, adding one more component to the

system. Let the component from the previous example have index 1, and the new component have

index 2. The example uses the same parameters as previously introduced, presented again in Table

5.3 with the deterioration probabilities in Table 5.4.

Case |K| |S| |N | zmax s1 C I C MV
k C M F C F

Multi-unit 2 3 5 2 [1, 1] 5 [6, 5] 4 30

Table 5.3: Illustrative case parameters for the multi-unit example

D1 =





0.5 0.4 0.1
0.0 0.6 0.4
0.0 0.0 1.0



 D2 =





0.7 0.2 0.1
0.0 0.8 0.2
0.0 0.0 1.0





Table 5.4: Deterioration probabilities for component 1 and component 2 in D1 and D2, respectively

Solving the PSDP for a multi-unit problem mostly follows the same procedure as for a single-unit

problem. We will not go through the multi-unit example to the same extent, but rather point out a

few important distinctions. The stage tables for the multi-unit example are found in Figure 5.7. We

first note that each table is significantly larger. This should not be too surprising, as the number of
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possible system states grows exponentially with the number of components in a problem.

Figure 5.7: The figure shows the stage tables returned by the PSDP for all stages in the planning
horizon for a two-component case.

We see that the decisions related to the first component are the same as for the single-unit example.

If the state is 1 (s1n = 1), there should be no maintenance (x∗1n(s1n = 1) = 0), and if the state is

2 the component is maintained (x∗1n(s1n = 2) = 1) for stages 3 and 5, having inspections. Then,

we note that the same is not always the case for the second component. Looking at the third stage

table (n = 3), we see that if only the second component is in state 2 (s3 = 12), that is s13 = 1

and s23 = 2), no maintenance is suggested (x∗3(s3 = 12) = 00). However, if both components are

in state 2, maintenance is suggested for both components (x∗3(s3 = 22) = 11). This highlights the

dependencies between components, i.e. the second component will only be maintained if it can share

the fixed maintenance cost with the first component.

If we look at the fifth table (n= 5), we see that the model now suggests maintenance for the second

component regardless of the first component. This is due to the end of horizon cost making main-

tenance slightly more preferable than no maintenance, costs being 28.7 and 29.6, respectively.

A final note on the multi-unit example is the calculation of probabilities. The probabilities of changing

to different states depend on all components’ deterioration matrices, making the calculation of the

transition probabilities slightly more complex for larger-sized problems. E.g. the probability of going

from sn = 11 to sn = 21 is given by P121 ·P112 = 0.4 ·0.7= 0.28. We encourage the reader to calculate

a few of the table-values by themselves to better understand how the model works.
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5.5 Sequential SDP model

In the Sequential Stochastic Dynamic Program (SSDP or Sequential SDP), the time between inspec-

tions are no longer set with fixed intervals but chosen following an inspection based on the revealed

information and chosen maintenance decision. In accordance with maintenance optimization liter-

ature presented in Chapter 3, we call this inspection structure "sequential inspection". This structure

allows the model to better adapt to the revealed information, but with a larger number of possible

decisions at each stage, and consequently an increase in the number of required calculations.

5.5.1 Additional model assumptions

In addition to the assumptions shared by both models, the Sequential SDP model has the following

assumption:

• The decision maker decides the time until the next inspection when carrying out an

inspection. The time until an inspection is not decided at every stage, only those in which an

inspection takes place.

5.5.2 Additional notation

The notation of the Periodic SDP still applies, with an exception outlined underneath.

Decision variables:

zn zn ∈ {1, ..., |zmax |}. The number of stages until the next in-

spection. If there is an inspection in the next stage, the value

is 1. In the stage where an inspection takes place, zn is set to a

new value and will never become zero.

We introduce zn as a replacement to z in the PSDP. The optimal choice, z∗n, is the zn that minimizes

expected future costs, given the maintenance decision x∗n. This decision can only be taken in stages

where an inspection takes place (yn = 1 ≡ zn−1 = 1), otherwise it is forced to be one less than the

previous time until inspection-value (zn = zn−1 − 1). This is shown in Equation 5.15:

z(n) =











z∗n if y1 = 1

zn−1 − 1 otherwise
, n ∈N (5.15)
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5.5.3 Model formulation

Recursion function

The recursion function remains fairly similar, with one important distinction. We now seek to min-

imize zn at each stage. The objective becomes:

min f1(s1, z0) (5.16)

where:

fn(sn, zn−1) = min
xn, zn
{

|K|
∑

k=1

xkn · C MV
k + (1−

|K|
∏

k=1

(1− xkn)) · C M F + yn · C I

+
|K|
∑

k=1

|S|−1
∑

i=1

Pr(s
′

kn = i | skn, xkn) · (Pi|S|k) · (C F + C MV
k + C M F + fn+1(sk(n+1) = 1, zn))

+
|K|
∑

k=1

|S|−1
∑

i=1

|S|−1
∑

j=i

Pr(s
′

kn = i | skn, xkn) · Pi jk · fn+1(sk(n+1) = j, zn)}, n ∈N

(5.17)

Note that the expected future cost, fn+1, now takes in zn as an argument, rather than z like the PSDP.

Other than that, the recursion function remains the same.

Additional boundary conditions:

z0 = 1 (5.18)

yn · (z(n−1) − 1) = 0, n ∈N (5.19)

yn + z(n−1) ≥ 2, n ∈N (5.20)
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Boundary conditions 5.18, 5.19 and 5.20 replace conditions 5.12 and 5.13 from the previous section.

Boundary condition 5.18 is set so that an inspection takes place in the first stage. 5.19 ensures that

the variable indicating inspection, yn, does not take the value 1 unless it follows a stage where z(n−1)

is 1, and condition 5.20 ensures that yn is 1 following a stage where z(n−1) is 1.



Chapter 6

Case Study

In this chapter, we present the case data that is used to test the mathematical models from Chapter

5. The cases are based on data and insights provided by our case company, Wiseline AS. They are

designed with the intention to show practical implications of power grid inspection and maintenance

optimization using stochastic dynamic programming. Section 6.1 gives a brief introduction to the case

company, while Section 6.2 presents the parameters considered in the case study. In Section 6.3 we

define the Base Case, several variations to this Base Case and the cases used for run time analysis.

Section 6.4 defines conventional policies, similar to those used by power grid operators today. These

are used to compare the policies returned from the mathematical models, studied further in the

Computational Study.

6.1 The case company: Wiseline AS

Wiseline AS is a Norwegian company that provides decision support to power grid operators. Using

lifetime analysis and system condition data, they simulate and visualize the grid’s development over

time, and the implications of using different inspection and maintenance strategies. For instance,

they have often seen that grid operators can make significant savings by adopting less conservat-

ive maintenance strategies, without unacceptable increase in risk of failure. As part of their work,

Wiseline assist power grid operators to better capture and structure data about the grid, allowing

for more comprehensive data analysis in an industry where conventional methods typically play a

central role. The insights are useful on a strategic level, understanding the long-term implications

of different inspection and maintenance policies. It is also valuable at a tactical level, e.g. deciding

which lines should be prioritized in a given year. Finally, it can be used on an operative level, deciding

which maintenance thresholds should be used for different mast components.

64
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While Wiseline can provide new insights for the power grid operators through data analysis, they

currently do not find optimal policies. Simulated policies are typically set in workshops with power

grid operators, and are based on convention and gut feel. They point to optimization as an interesting

topic to explore further to enhance decision support for power grid operators.

6.2 Case parameters

In this section, we briefly discuss the mathematical models’ parameters and how they are found.

Most of the case data used in this thesis are based on insights and real-life data provided by Wiseline,

applied to the problem context. We make several assumptions, and the results should be considered

illustrative.

The utility mast and its components

As discussed in Chapter 2, a power grid line consists of several utility masts. Masts in the same

line share many properties, such as related costs and implications of failure. Typically, many of the

masts are located in similar environments, and a common assumption is to say they experience

similar deterioration processes. Thus, deriving the optimal maintenance and inspection policies for

one representative utility mast will provide valuable insights when considering the maintenance and

inspection strategy for the entire line.

A utility mast has several components. Components serve different functions, such as electricity

transmission, structural support and safety, to mention a few. When considering maintenance policies

for a mast’s components, some will have more straightforward policies than others. For example, a

component that is always maintained when found in a given state, regardless of other components

states, has a more straightforward policy than one where the maintenance decision is linked to the

state of other components in the system.

In our models, we focus on a subset of the mast’s components, where all modelled components

are critical to the mast’s ability to deliver electricity. That is, any component failure leads to mast

failure. Furthermore, we will primarily look at components with non-trivial maintenance policies

(i.e. policies with several economic dependencies). We use the term system when referring to our

selection of components that represent the mast.

Figure 6.1 shows the mast modelled in the cases with all component IDs and names. The mast

consists of four components that the mast requires to function. These are chosen to give a simplified,

representative development of a mast’s deterioration along a planning horizon. Unless explicitly

stated, these components are all included in the cases presented in this chapter.
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Figure 6.1: The figure shows the utility mast modelled for our case study. All the components on the
form are critical and intended to collectively represent a simplified utility mast.

Deterioration

Different components deteriorate differently, with deterioration probabilities represented in a matrix

for each component. Such a matrix is based on empirical data, physical deterioration models or life-

time expectancy models. We assume that the user of the models provides the deterioration matrices.

A deterioration matrix states the probability of a component transitioning from one state to another,

for all possible states.

Component maintenance cost

Each component has an associated maintenance cost. After a component is maintained it is con-

sidered "good as new", implying that maintenance of a component means replacing it. The cost of

maintenance is comprised of the material costs of the component itself and the cost from a techni-

cian’s time spent on maintaining the component. It does not include the cost of mobilization and

travel to the location, which is instead captured by the fixed maintenance cost.

Fixed maintenance cost

The fixed maintenance cost is incurred whenever at least one component is maintained or repaired

after a failure. It represents the cost of preparing, mobilizing and travelling to the location. The cost

is primarily driven by the time used by the team of technicians, and their hourly rate assumed to

be 1000 NOK per technician. The time used depends on factors such as proximity of the mast to

maintenance base and how easy it is to get to the mast’s location.

Cost of inspection

Different inspection types have different costs, but for the cases in this thesis, we consider the thor-
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ough inspection that returns the actual state of each of the components in the modelled mast. In-

spections are done manually, and we use the same hourly rate as with fixed maintenance, 1000

NOK, as the required labour type is similar. The time used on an inspection also depends on the

same factors as the fixed maintenance cost, as we assume that all components are inspected when

an inspection is carried out. However, we assume that inspection requires less time because of the

additional preparation, mobilizing and the number of technicians required by any maintenance.

Cost of failure

The cost of failure is incurred whenever a component fails and causes system failure. The cost is the

cost of energy not supplied (CENS) combined with the cost of repairing the failed component. Even

though components can fail in the same year, they rarely fail at the same time. Thus each component

failure incurs a failure cost. The cost of repair is the fixed maintenance cost and the maintenance

cost of the failed component. Wiseline indicates that CENS vary widely based on the negative societal

impact caused by failure, and rates range between 447 NOK per hour to 98 117 NOK per hour. The

cases we study in this thesis have a CENS based on a rate within this interval, multiplied by an

estimated downtime.

End of horizon costs

At the end of the planning horizon, the masts value is most practical purposes dependent on its state

at that point. For example, a system where all components are in state 1 will typically be more worth

than a system where all components are in state 3. However, other factors can influence the value

at the end. For instance, if a line will no longer be used, or is subject to a complete re-installation at

the end of the planning horizon, the state does no longer matter. The operator specifies the cost of

ending up in a state, the end of horizon cost, for all the possible states of each component.

Planning horizon

The models and simulation use a stage structure to model time. For all cases in this thesis, each stage

represents one year. A maintenance and inspection plan typically consider several decades. This

is natural as the grid operators often inspect thoroughly when required by the regulations, every

tenth year. Although the optimal inspection interval may vary from this, it is reasonable to consider

between 20-50 years to obtain a lasting maintenance plan.

Initial states

The initial states of the components are required to model and simulate the system. We assume the

components to be "good as new", i.e. s1 = [1, ..., 1], unless something else is explicitly stated. More

often than not, this cannot be assumed, and the mathematical models can still be applied when using
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other initial states.

Inspection interval

Both mathematical models solve for optimal inspection intervals, albeit in different ways. The inter-

vals are both restricted upwards by zmax . This constraint can be viewed as the regulation stating the

required inspection frequency of thorough inspections of the power grid. We mostly use zmax = 10

in this thesis, being the regulation imposed on the Norwegian power grid for thorough inspections.

6.3 Overview of the cases

In this section, we present the cases used to analyze the results from the Periodic and Sequential

SDPs. We first present a Base Case with parameters based on data provided by Wiseline. Then we

introduce several variations to the Base Case, used to see how changes in parameters influence the

policies behaviour and performance. Finally, we outline some cases used for run time analysis.

6.3.1 The Base Case

The Base Case considers a utility mast that is part of a 22 kV power grid line. We consider a system

of four components on this mast, and all are viewed as critical to the system. The components with

associated maintenance costs and end of horizon costs (for states 1 to 4, respectively) are found in

Table 6.1. Each component’s name and ID correspond to the components specified in Figure 6.1.

Component ID Component C MV
k C End

ik

K0303 Pole 23.00 [0, 19.50, 29.00, 29.00]
K0305 Crossarm 3.50 [0, 4.75, 9.50, 9.50]
K0601 Insulators 0.82 [0, 3.41, 6.82, 6.82]
K1002 Cable 5.20 [0, 5.60, 11.20, 11.20]

Table 6.1: The components used in the Base Case and their variable maintenance costs. Values are in
kNOK.

In table 6.2 we find the planning horizon, maximum inspection interval, possible component states,

initial state and costs used for the Base Case. The intuition of the values is discussed in Section 6.2.

The planning horizon, |N|, is 50 years. We use a maximum inspection interval, zmax of 10, as is given

by regulations. All components can be in 5 possible states, and we consider the system to be "good as

new" with all components in state 1, i.e. Bk = 1 for all components k ∈ K at the start of the planning

horizon. Inspection is assumed to take two hours, giving an inspection cost, C I , of 2 000 NOK. We

assume that any maintenance requires 6 hours of preparation, mobilizing and travelling from all
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involved technicians, resulting in a fixed maintenance cost, C M F , of 6 000 NOK. Furthermore, we

assume an expected downtime of 2 hours at an hourly CENS-rate of 7 500 NOK/h, resulting in an

expected C ENS of 15 000 NOK per failure.

Parameter |N| zmax |S| Bk C I C M F C ENS

Value 50 years 10 years 5 [1,1,1,1] 2 kNOK 6 kNOK 15 kNOK

Table 6.2: Parameters and additional costs for the Base Case

The deterioration probabilities for all components are summarized in table 6.3. Each row represents

the probability of deteriorating from a state equal to the row index to all other states. That is, the

upper left number in each matrix represents the probability for staying in state 1, the second number

from the left in the top row represents the probability for deteriorating from state 1 to state 2,

and so on. The probabilities are based on a deterioration constant for each component, provided by

Wiseline, adapted to fit our model formulation. However, they should be viewed as purely illustrative,

and stronger empirical data and lifetime analysis are necessary for precise deterioration probabilities.

DK0303 =











0.944 0.014 0.014 0.014 0.014
0.000 0.892 0.036 0.036 0.036
0.000 0.000 0.784 0.108 0.108
0.000 0.000 0.000 0.676 0.324
0.000 0.000 0.000 0.000 1.000











DK0305 =











0.920 0.020 0.020 0.020 0.020
0.000 0.841 0.053 0.053 0.053
0.000 0.000 0.680 0.160 0.160
0.000 0.000 0.000 0.520 0.480
0.000 0.000 0.000 0.000 1.000











DK0601 =











0.920 0.020 0.020 0.020 0.020
0.000 0.919 0.027 0.027 0.027
0.000 0.000 0.920 0.040 0.040
0.000 0.000 0.000 0.920 0.080
0.000 0.000 0.000 0.000 1.000











DK1002 =











0.964 0.009 0.009 0.009 0.009
0.000 0.964 0.012 0.012 0.012
0.000 0.000 0.964 0.018 0.018
0.000 0.000 0.000 0.964 0.036
0.000 0.000 0.000 0.000 1.000











Table 6.3: Deterioration probabilities for each component used in the Base Case
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6.3.2 Case variations

In addition to the Base Case, we analyze the implications of varying a number of the case parameters.

We consider a system of three components rather than four for all case variations and use a planning

horizon of 25 years. This reveals many of the same tendencies, but at a lower run time. The case

variations’ remaining parameters are the same as for the Base Case, except for those parameters we

vary over for every variation. We use components K0303, K0305 and K0601 from the base case for

these variations. We will vary over the three parameters C I , C M F and C ENS.

Variation in Start End Increment No. of cases CaseID

C I 0 6 0.5 13 VCI_01 - VCI_13

C M F 0 24 2.0 13 VCM_01 - VCM_13

C ENS 0 120 10.0 13 VCE_01 - VCE_13

Table 6.4: The table shows case variations of the Base Case where one parameter is varied at a time.
All numerical values are given in kNOK, except for the number of cases.

The case variations are summarized by Table 6.4. Each row of all the tables states which parameter

that is different from the Base Case.

The varied parameters have a "start"-value, an "end"-value, an "increment" and a "caseID". The "start"-

value indicates the value of the varied parameter in the first case variation, the "increment" indicates

the how much the "start"-value is increased to make a new case variation, and the "end"-value indic-

ates the value of the last case variation, where the increment stops. Each case variation is assigned

a number in their "CaseID" in increasing order from the "start"-value to the "end"-value of the vary-

ing parameter. The letter combination distinguishes case variations of one set of parameters from

another.

In the first row of Table 6.4, we see that the case variations’ "CaseID" begins with "VCI", indicating

variation in the cost of inspection. The cases have the same parameters as the Base Case, but C I

is varied between 0 and 6. As the increment is 0.5, we know that the case "VCI_04" will have an

inspection cost of 1.5.

We will now give a brief summary of the case variation choices for each parameter and the motivation

behind these variations.

Varying cost of inspection

The cost of an inspection will vary between different grid lines. Furthermore, new methods of inspec-

tions are constantly being developed. Hence the cost of inspection can change over time. Therefore,
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it is highly relevant to explore how varying inspection cost influences the models’ suggestions and

performances.

When varying over inspection cost, we start with C I at 0 NOK going to 6 000 NOK, with 500 NOK

increments. Setting the cost to 0 allows us to study behaviour when inspection cost is not a factor.

Varying fixed maintenance cost

Fixed maintenance cost is varied in a similar fashion as the cost of inspection. However, we look at

a larger interval, as the costs of transporting necessary equipment to remote locations can be more

costly than only transporting personnel. Starting at C M F = 0 NOK we increment by 2 000 NOK,

ending at C M F = 24 000 NOK.

Varying CENS

The penalty cost of failure, CENS, is highly influential on the economic implications of failure. Hence,

it is interesting to study how it changes it affects the models’ suggested policies. When looking at

variation only in CENS, the interval starts at 0 NOK and ends at 120 000 NOK, with 10 000 NOK

increments. Setting CENS to 0 NOK implies a very low failure cost that may result in a "run to failure"-

policy. However, failure still results in a forced repair, incurring both component replacement cost

and fixed maintenance cost. In some situations, this might make it more advantageous to maintain

when several components are in a highly deteriorated state, compared to not doing anything. When

increasing CENS, we should expect the mathematical models to suggest more conservative policies

to mitigate the total expected costs from failure.

6.3.3 Run Time Cases

In our Computational Study, we analyze the run time development of the two mathematical models.

We vary parameters that affect the problem size and consequently, the run time. Cost parameters and

deterioration probabilities do not affect either the problem size or the number of required calculations

for solving the model. Therefore, these costs and probabilities will not be specified for the Run Time

Cases. We will now present two different Run Time cases and their variations.

The General Run Time Case

To limit the computations required to analyze the run time development, the General Run Time Case

(G-RTC) is smaller than the Base Case, considering only 2 components. This allows certain problem

dimensions to be varied to a greater extent when analyzing. Relevant parameters for the G-RTC is

summarized in Table 6.5. With 2 components, we significantly reduce the number of needed com-

putations, while still having a multi-unit system. Each component’s possible states are the same as
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the Base Case, while the planning horizon is increased to 30. The planning horizon of the G-RTC is

longer than for the case variations because we wish to increase the maximum allowed inspection in-

terval to more than 25 when analyzing its impact on the run time. The maximum allowed inspection

interval is also kept the same as in the Base Case.

Parameters |K| |S| |N | zmax

Value 2 5 30 10

Table 6.5: Parameters for the General Run Time Case

Variations of the General Run Time Case

The run time of the G-RTC is analyzed for changes of the planning horizon, the possible states for

each component and the maximum allowed inspection interval.

Variation in Start End Increment No. of cases CaseID

|S| 1 10 1 10 GRTS_01 - GRTS_10

|N | 10 100 5 19 GRTN_01 - GRTN_19

zmax 1 30 1 30 GRTZ_01 - GRTZ_30

Table 6.6: The table shows case variations of the General Run Time Case where one parameter is
varied at a time.

Table 6.6 shows the variations of the G-RTC used for run time analysis. Using the same structure as

we present the case variations of the Base Case, we see from the table that each G-RTC-variation

will only differ from the G-RTC in at most one dimension. Each case variation has a "CaseID", where

the numerical values are set in increasing order based on the varying parameter’s value. The letter

combination distinguishes cases based on different parameters subject to variation.

Parameters |S| |N | zmax

Value 2 4 2

Table 6.7: Parameters for the Special Run Time Case

The Special Run Time Case

As the number of components in the system greatly affects the mathematical models’ required calcu-

lations, we create a Special Run Time Case (S-RTC) varying over the problem’s number of components.

The relevant parameters for the S-RTC is summarized in Table 6.7. The states space is reduced to 2

possible states per component and the planning horizon to 4 periods. The maximum allowed inspec-



Chapter 6: Case Study 73

tion interval is reduced to 2. Variations to the Special Run Time Case

Table 6.8 summarizes all the variations of the S-RTC used in the run time analysis. We see a total of

7 variations of the S-RTC, considering a system comprised of 1 to 7 components.

Variation in Start End Increment No. of cases CaseID

|S| 1 7 1 7 SRTC_1 - SRTC_7

Table 6.8: The table shows case variations of the Special Run Time Case where the number of com-
ponents is varied.

6.4 Bench-mark policies

Along with the policies returned from the periodic stochastic dynamic program and the sequential

stochastic dynamic program, we consider four different condition-based maintenance-policies (CBM-

policies), and the "run to failure"-policy (RTF-policy). CBMs are a maintenance policy type that we

introduce in Chapter 2. When inspection reveals a mast component’s state (also referred to as "condi-

tion"), it is replaced if that state exceeds a certain threshold. The suggested policies vary in periodic

inspection interval, and consequently, the state-threshold for the different components is set to reflect

an appropriate risk level for the decision-maker.

We define a benchmark policy with short inspection intervals and high maintenance thresholds,

assuming that frequent inspections compensate for a more risky maintenance policy. This policy is

denoted as CBM-short-high (CBM-S-H). We also set a CBM-extended-low (CBM-E-L)-policy based on

the opposite approach: Extended (long) inspection intervals, but low maintenance thresholds as

the system is rarely inspected. Furthermore, we consider a policy trying to balance inspections and

maintenance thresholds, called CBM-balanced (CBM-B). We also use the RTF-policy, mentioned in

Chapter 2.

Policy Interval K0303 K0305 K0601 K1002

RTF 10 - - - -

CBM-S-H 2 4 4 4 4

CBM-B 5 3 3 3 3

CBM-E-L 8 2 2 2 2

Table 6.9: The table shows the inspection interval and state-thresholds of the conventional policies
for the components used in the Base Case.

The policies serve as a benchmark to our models, as they can reasonably be applied to power grid
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lines, and reflect how a power grid operators can design their policies. We derive the fourth CBM-

policy from the two dynamic programming models and present it in Chapter 7.

The conventional policies are summarized in Table 6.9. Each column of components denotes the least

deteriorated state where the corresponding policy will impose maintenance. For the RTF-policy, state

"-" means that no maintenance will happen unless a failure occurs. The interval-column denotes the

years between each inspection for the different policies.
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Computational Study

In this chapter, we present computational results from using the Periodic and Sequential stochastic

dynamic programs from Chapter 5 to solve the cases presented in Chapter 6. We refer to these pro-

grams as the "Periodic SDP" or "PSDP" and "Sequential SDP" or "SSDP", respectively. When collectively

referring to the stochastic dynamic programs, we use the term "SDPs" or "models". We simulate the

system’s behaviour over the planning horizon to analyze the models’ and benchmark policies’ results.

For all simulations in this chapter, we use the Python module "random", with a seed of 107.

Section 7.1 presents a run time analysis of both SDPs. In Section 7.2, we discuss the maintenance and

inspection policies suggested from both SDPs when used on the Base Case. Section 7.3 compares the

policies suggested by our models with conventional policies by simulation, highlighting their relative

performance. Section 7.4 looks at how varying the case input parameters influence our models’

suggested policies. In Section 7.5, we present a heuristic that divides a problem into several smaller

subproblems, solves them by using the SSDP and combine the solutions to one for the larger problem.

Finally, Section 7.6 reflects on how the results can be applied for real-life purposes, discussing both

possibilities and limitations.

7.1 Run Time Analysis

As the SSDP and the PSDP proposed for the Utility Mast Inspection and Maintenance Problem

(UMIMP) are based on the same approach, and only differ in the inspection decision space, they

have similar run time developments. In this section, we present a run time development for the two

models. First, we specify the models’ implementation and the computer system used to solve them.

Then, we explain how memory is exploited to reduce the run time. Furthermore, we investigate how

75
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the run time develops for the two models when the problem cases increase in size along several

dimensions.

For the Base Case, the PSDP takes approximately three hours to solve, while the SSDP require ap-

proximately nine and a half hours. The remainder of this section uses the Run Time Cases presented

in Chapter 6, to provide better analysis.

7.1.1 Implementation

In this thesis, we implement both suggested models, the plots and simulations using the Python

programming language, version 3.7, with object-oriented code. The performance is analyzed on a

computer with a Microsoft Windows 10 Education 64-bit operating system. The system’s specifica-

tions are Intel Core i7-8700 CPU with 3.20 GHz and installed memory (RAM) of 32 GB.

7.1.2 Exploiting memory to reduce run time

The SDPs calculate the expected costs for all possible decisions and all possible states, for each stage

in the planning horizon. The complete calculation for our problem is given by the recursion functions

for both models in Chapter 5. The relation is more generally described for every state in section 3.5

by Equation 3.4. It is given again here for simplicity:

fn(sn) = min
xn∈Xn

{c(sn, xn) + fn+1(sn+1)}

From the equation, we see that the optimal expected cost value is obtained by calculating the direct

expected cost of each possible situation, for all subsequent states. However, when fn + 1(sn + 1)

is calculated for a given n, calculating fn(sn) requires the exact same calculations in addition to

c(sn, xn). If the dynamic program stores the values used to calculate fn + 1(sn + 1) , they can be

looked up instead of recalculated for fn(sn). This strategy of storing already calculated values for

future use to reduce the number of computations when evaluating recursively defined functions is

known as tabulation (Bird, 1980).

It is important to note that this advantage does not solve the curse of dimensionality, as obtaining

the expected cost for each possible state in every stage requires a large number of calculations.

Nevertheless, the tabulation strategy does ensure better development in run time when the planning

horizon increases.
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7.1.3 Run time across different dimensions

We use variations of the General Run Time Case (G-RTC) for analyzing the run time development.

The variations depend on which dimension is varied, while all other parameters are kept constant.

The only exception is when we look at the run time development for systems with an increasing

amount of component. For this, we use the Special Run Time Case (S-RTC). The run time is defined

as the time it takes for both models to obtain all optimal policies for all states in all stages.

Varying planning horizon and maximum inspection intervals

Figure 7.1 shows the run time for both models for variations of the G-RTC, where the planning

horizon increases with 5-year increments. As the graph illustrates, the run time increases linearly for

both models. This linear development is achieved by the use of tabulation. As states and the number

of components are kept constant, each stage requires the same number of calculations. As these are

saved during a run, increasing the planning horizon only requires additional calculations for the

additional stages.

(a) Varying planning horizon (b) Varying maximum inspection interval

Figure 7.1: The figure shows the run time development with increasing planning horizon or the
maximum allowed inspection interval. The cases used in (a) are GRTN_01 - GRTN_19 and the cases
used in (b) are GRTZ_01 - GRTZ_30.

The run time development for increasing the maximum allowed inspection interval is also linear

for both models, as Figure 7.1b suggests. For the PSDP, this is a natural consequence of calculating

optimal policies for each possible interval to find the interval with the lowest expected cost. Increasing

the maximum allowed interval means that another policy must be evaluated, given the new possible

optimal interval.

As for the SSDP, the situation with increasing intervals is slightly more complicated. Once again, the

tabulation strategy ensures a linearly increasing run time. Because the decision maker may choose
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between all possible intervals after every inspection, the additional possible decisions must be cal-

culated for every stage when increasing the interval. However, the expected costs of subsequent

decisions are still stored and exploited in all preceding stages, as is the case for increased planning

horizons.

Varying states per component

Increasing the number of states that each component can be in has two important implications for

our models’ run time. First, as each of the |K| components has |S| individual states, the system

can have |S||K| different states, although a failure state immediately forces repair and a new state.

Furthermore, we model the possibility of state transitions to all subsequent ("worse" states). This

modelling choice means that a component currently in state 1 that can be in |S| = 5 possible states

may stay in the same state or transition to all subsequent states in the next stage. That is, a total

of 5 transitions are possible. With the same system as described above, the run time complexity for

each state transition is bounded by O(|S||K|). As the expected cost in the next stage is calculated for

each state by calculating the expected cost of all possible state transitions for all possible states, the

number of calculations is bounded by O(|S|2|K|).

(a) The Periodic SDP (b) The sequential SDP

Figure 7.2: The figure shows the run time development for both models on the cases GRTS_01 -
GRTS_10 with increasing number of states (|S|) and a polynomial function of the states per compon-
ent. Note that the number of components (|K|) is kept constant at 2.

The derived expression is plotted with the run time development of the PSDP in Figure 7.2a and the

SSDP in Figure 7.2b. We see that the models are of polynomial time with respect to the number of

states, even when all state transitions are valid. Furthermore, we use a state space of five discrete

states to describe utility mast components. The run time development implies that it may be useful

to combine several components and represent them collectively as a sub-system with possibly more

than five states to exploit how complexity increases in the stochastic dynamic programs.
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Figure 7.3: The figure shows the exponential run time development with increasing number of com-
ponents for both models. The used cases are SRTC_1 - SRTC_7.

Varying the number of components

The derived run time complexity of O(|S||K|) implies that the number of components is largely what

limits the problem sizes that the models are appropriate for, and thus the models’ possible applic-

ations. The run time increases exponentially with the number of components, which we can see in

Figure 7.3. As suggested when discussing varying states, if one can combine solutions considering

sub-systems with fewer components, the models are more applicable as the run time development

can be better controlled.

7.1.4 Comparing the run time of the two models

We see that the two models’ run time development is the same along the different problem dimen-

sions. However, the SSDP clearly requires more calculations than the PSDP. This is not surprising, as

there are fewer restrictions on the inspection decisions in the former. While the PSDP requires a fixed

interval for inspections along the entire planning horizon, the SSDP does not. The SSDP’s inspection

choices is only restricted by the the maximum interval. However, as the run time complexity is the

same for both models, they should be applicable for the same problem sizes.
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7.2 Resulting policies from the Base Case solutions

In this section, we look at the resulting policies from solving the PSDP and the SSDP. Primarily,

we look at non-trivial maintenance and inspection policies caused by dependencies. The policies

provided are from the first stage (n = 1). The models do not necessarily provide the same policies

for all stages, but they are fairly similar, and the policies from any stage would provide a good base

for discussion.

7.2.1 Maintenance rate

One of the benefits our models have over conventional condition-based maintenance (CBM) meth-

ods is the ability to consider dependencies between components within a system. In this thesis, we

focus on the economic dependencies between components. The two costs parameters that influence

dependencies in the system are fixed maintenance cost and cost of inspection. Fixed maintenance

cost remains the same regardless of the number of maintained components in a stage. Hence it can be

beneficial to maintain several components at once. Thus we might end up with different maintenance

thresholds (i.e. the state triggering maintenance on a component) when considering components in

combination instead of considering them individually. Similarly, optimal inspection intervals for com-

ponents considered individually might differ from each other. Inspecting at all optimal suggestions

for every component individually is unlikely to be the best solution (at least not when inspection

costs are significant). Considering the components in combination can suggest an inspection interval

that is better when considering the entire system’s total costs.

We use the term maintenance rate to describe the number of times a component in a given state is

maintained relatively to all possible state combination for the other components. In equation 7.1 we

define the maintenance rate, RM
ikn:

RM
ikn =

1
(|S| − 1)(|K|−1)

∑

sn∈S
′

x∗kn(skn), n ∈N , k ∈ K, S
′
⊂ Ssys \ skn 6= i, |S| (7.1)

We calculate the maintenance rate for all components and all of their possible states, except the

failure state |S|. Ssys is the set of all possible system states. We have |Ssys|= |S||K|, but as we consider

one of the components for each maintenance rate, and do not consider the failure state, we end up

with (|S| − 1)(|K|−1) combinations of system states where skn = i. In short, for all input state vectors

sn = [s1n, ..., skn, ..., s|K |n] where skn = i ∈ S and sn ∈ Ss ys, how often does xkn = 1?

For the Base Case with four components, there are 43 = 64 combinations of state vectors when fixing
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one component’s state. If a policy suggests maintaining a component in state 2 for 48 out of the 64

possible combinations, we divide 48 by 64, and the maintenance rate is 0.75.

The maintenance rate provides an intuitive understanding of our models’ maintenance policy. When

the maintenance rate is 1 for one of the component’s states, the associated component should always

be maintained when an inspection reveals that the component is in this state. When the maintenance

rate is 0 for a state, the component should not be maintained in this state. Using the maintenance

rate, we can get a strong indication of which CBM-policies will perform well.

The maintenance rate is also a useful measure when detecting non-trivial decisions suggested by

the models, i.e., detecting that a component is in a specific state after inspection sometimes triggers

maintenance of that component, but not always. When we consider CBM-policies, the maintenance

rate will always be either 0 or 1, meaning that a component will either always or never be fixed for a

given state. Generally, whenever the maintenance rate is between 0 and 1, non-trivial maintenance

policies will lower the average total cost.

Figure 7.4: Maintenance rate from the Base Case for the PSDP and the SSDP

Figure 7.4 shows the maintenance rate for the solutions from the PSDP and SSDP, for n= 1. The PSDP

model provides CBM-like policies for the pole (K0303) and crossbar (K0305), suggesting to always

maintain the mast in state 3 and above, and the crossbar in state 2 and above. For the insulator

(K0601) and the cable (K1002), the policies are more complex. If we look at the K0601 for both

the PSDP’s and the SSDP’s table, we see that the maintenance rate for state 2 is 0.875 and 0.828

respectively. This suggests that we should maintain the component when detected in state 2 in most

cases, but not all.

7.2.2 Complex suggestions from the models

Knowing that some dependencies influence the optimal decision when the state of K0601 in stage

1 is 2 (that is, sK0601,1 = 2), we investigate this further. Table 7.1 present the optimal decisions for
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a selection of system states, where variations in the second component’s state in stage 1 (sK0305,1)

significantly influence the maintenance decision of K0601. All components except for K0305 are in

state 2. When sK0305,1 = 1 (first row) both models suggests no maintenance of the second component

(x∗K0305,1 = 0), and also no maintenance for the third (x∗K0601,1 = 0). But when sK0305,1 = 2 (second

row), the PSDP suggests maintenance for both components (x∗K0305,1 = 1 and x∗K0601,1 = 1), while

the SSDP continues to suggest no maintenance. However, when sK0305,1 = 1, the SSDP model also

suggests maintenance for both components. We further note that the time until maintenance sugges-

ted by the SSDP increases from 3 to 6 years. An interpretation of this is that since the system state

is improved, the probability that we would like to maintain over the next few years is so low it does

not justify the associated inspection cost for checking the system.

State (s1) x∗1(s1) PSDP z∗ PSDP x∗1(s1) SSDP z∗1(s1) SSDP

[2, 1, 2, 2] [0, 0, 0, 0] 9 [0, 0, 0, 0] 3

[2, 2, 2, 2] [0, 1, 1, 0] 9 [0, 0, 0, 0] 3

[2, 3, 2, 2] [0, 1, 1, 0] 9 [0, 1, 1, 0] 6

Table 7.1: The table shows optimal policies suggested by the SDPs when used on the Base Case for a
selection of different system states in stage 1, where K0305’s state varies. For each vector, the indices
are associated to K0303, K0305, K0601 and K1002 respectively.

7.2.3 Inspection intervals

The SSDP’s dynamic inspection decision property is further highlighted by Table 7.2. Here we vary the

state of the fourth component, K1002. In this case, the PSDP and SSDP suggest the same maintenance

decisions, but we see some interesting variations in the suggested time until the next inspection from

the SSDP. When s1 = [1, 1, 3, 2] it suggests 6 years until the next maintenance. When the state of

the fourth component increases to 3, the SSDP suggests to inspect in 5 years (sK1002,1 = 3, shown in

the second row of Table 7.2). However, when the state of the fourth component (K1002) increases

to 4, both the SSDP and PSDP suggest maintaining the components K0601 and K1002. Due to the

system’s improved state because of maintenance, the SSDP suggest waiting 8 years until conducting

another inspection.

As we see in Table 7.2, the SSDP suggests inspecting significantly earlier than the PSDP for some of

the possible system states. The optimal inspection interval given by the PSDP is 9 years, while the

average suggested inspection interval from the SSDP is 7.496 in the first stage. For the Base Case,

we have a total of 256 possible system states ((|S| − 1)(|K|) = 44). Table 7.3 shows the frequency

distribution of suggested inspection intervals of the SSDP. For most system states, the model suggests
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State (s1) x∗1(s1) PSDP z∗ PSDP x∗1(s1) SSDP z∗1(s1) SSDP

[1, 1, 3, 2] [0, 0, 0, 0] 9 [0, 0, 0, 0] 6

[1, 1, 3, 3] [0, 0, 0, 0] 9 [0, 0, 0, 0] 5

[1, 1, 3, 4] [0, 0, 1, 1] 9 [0, 0, 1, 1] 8

Table 7.2: The table shows optimal policies suggested by the SDPs when used on the Base Case for a
selection of different system states in stage 1, where K1002’s state varies. For each vector, the indices
are associated to K0303, K0305, K0601 and K1002, respectively.

inspecting with 8-year intervals. However, it will suggest shorter intervals in some situations, e.g. for

the first two combinations in Table 7.2.

Years until next inspection 1 2 3 4 5 6 7 8 9 10

Frequency in stage 1 0 0 9 5 7 52 3 180 0 0

Frequency in stage 15 0 0 9 5 7 52 3 180 0 0

Frequency in stage 30 0 0 9 5 7 50 4 181 0 0

Table 7.3: Distribution of suggested inspection intervals by the SSDP for Base Case

From the maintenance rates in Figure 7.4 (in Section 7.2.1), we also note that the maintenance policy

for the PSDP is more conservative than the policy suggested by the SSDP. The PSDP has a higher aver-

age maintenance rate and suggests maintenance for more system state combinations than the SSDP.

For example, the PSDP suggests maintenance for all system states where K0305 is in state 2 in stage 1

(sK0305,1 = 2). The SSDP only suggests maintenance in 85.9% of the system states where sK0305,1 = 2.

This highlights one of the most important differences between the PSDP and SSDP: As the SSDP al-

lows more flexibility, it chooses a less conservative maintenance policy but compensates with more

frequent inspections. This also emphasizes the interconnection of maintenance and inspection.

It is worth to note that the SSDP suggest very similar policies in stages in the first part of the planning

horizon, but will have larger variations towards the end. Table 7.4 shows the frequency distribution

of z∗n for some of the last 10 stages.

Years until next inspection 1 2 3 4 5 6 7 8 9 10

Frequency in stage 40 0 0 5 7 9 52 183 0 0 0

Frequency in stage 42 0 0 7 7 58 48 0 0 136 0

Frequency in stage 44 0 1 10 58 5 0 182 0 0 0

Frequency in stage 46 0 0 13 5 238 0 0 0 0 0

Frequency in stage 48 0 4 252 0 0 0 0 0 0 0

Table 7.4: Distribution of suggested inspection intervals by the SSDP for Base Case

Here we see significant and somewhat unpredictable variations. This is the consequence of the SSDP
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trying to adjust the inspection intervals to minimize the expected end of horizon cost. This adjustment

stresses the importance of setting a reasonable end of horizon cost. Alternatively, one can run the

model for longer horizons and use only the first part, as the suggested policies will approach a steady-

state for stages far from the end of the planning horizon.

7.3 Comparing the performance of different policies on the Base Case

In this section, we compare different policies. We apply the policies returned from the Periodic and

Sequential SDPs on the Base Case, and compare their performances to conventional policies. The

conventional policies are summarized in Section 6.4 of the Case Study. We consider the "run to failure"

policy (RTF), along with several variations of the condition-based maintenance-policy (CBM-policy)

type. In Section 7.3.1, we derive another "conventional" policy from our model-results. We then see

how total costs are affected when simulating with policies in Section 7.3.2. Section 7.3.3 examines

how often the system fails with the different policies before investigating how a different initial state

of the system’s components affects some of the policies with respect to the total cost. In Section 7.3.5,

we look at how the SSDP exploits inspection decisions’ flexibility.

7.3.1 Deriving a CBM from our models

When comparing our models’ results, we also take a simple approach to derive an "optimal" CBM

based on the resulting policies from the SDPs. In this CBM, we let the inspection interval equal the

optimal interval returned by the Periodic SDP, and base the maintenance levels on the component-

states that both the PSDP and the SSDP most frequently maintain at, in their optimal policies. We

refer to this policy as the CBM-optimal (CBM-O) as it is derived from optimal policies.

The reader should note that the "conventional" CBM-O policy is not derived based on intuition, but

rather the data at hand and adapted to a widely used format. Furthermore, the difference between

the PSDP and the CBM-O is subtle but distinct. While the CBM-O has individual thresholds for the

components, the maintenance decisions returned by the PSDP are based on the entire system’s state,

meaning that an individual component may be maintained based on the state of the other compon-

ents in the system. The CBM-O has a static threshold for all components, and will thus always yield

the same choice for a specific component-state.

We provide the CBM-O-policy in the bottom row of Table 7.5, where we have also reproduced the

other conventional policies as they are used on all simulations in this section. For the CBM-O-policy,

we use the optimal periodic interval returned from the PSDP, which is 9. Both models also return
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Policy Interval K0303 K0305 K0601 K1002

RTF 10 - - - -

CBM-S-H 2 4 4 4 4

CBM-B 5 3 3 3 3

CBM-E-L 8 2 2 2 2

CBM-O 9 3 2 2 3

Table 7.5: The table shows the inspection interval and state-thresholds of the conventional policies,
including the derived CBM-O, for the components used in the Base Case.

varying maintenance levels for each component depending on the other states of the system. The

maintenance thresholds of the CBM-O are the lowest state where the SDPs yield a maintenance rate

higher than 0.5 in stage 1.

7.3.2 Total cost from simulations

Table 7.6 gives the results from running 10 000 simulations of the Base Case’s entire planning hori-

zon. The actual total costs of failures, inspections and maintenances are calculated for each policy in

all simulations, and the average is returned, along with the maximum total cost, the minimum total

cost and the standard deviation.

We see that the Periodic SDP and the Sequential SDP obtain the lowest average cost, which stems

from the fact that these policies consider the economic dependencies between components. The

PSDP and SSDP respectively achieve 2.2% - 11.9% and 2.6% - 12.2% lower average cost than all the

conventional policies suggested in Chapter 6. The SSDP has a lower total cost than the PSDP, as the

decision maker can decide both on maintenance (in a stage with inspection) and when to carry out

the next inspection. The flexibility of carrying out or postponing an inspection based on the system’s

current state makes the information from the current inspection more valuable for the SSDP than the

PSDP. However, the decision maker following the SDP-policy can make maintenance decisions based

on the states of all components, as opposed to the CBM-policies, which consider each component

individually during an inspection.

The run to failure-policy (RTF-policy) obtains a low minimum total cost from the simulations. The

minimum cost-scenario is a simulation with very little deterioration on the system throughout the 50

years. For the RTF-policy, inspections are done only when required, every tenth year. With a planning

horizon of 50 years and a required inspection in year 1, the RTF policy will have five inspections

(years 1, 11, 21, 31 and 41) resulting in a cost of 10. This is the lowest possible cost of a 50-year

period, as a system technically may not deteriorate over the 50 years at all (although this is highly
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Policy Avg. Max. Min. Std. Dev.

RTF 240.04 518.86 22.42 68.34

CBM-S-H 253.11 584.88 62.42 64.79

CBM-B 228.14 508.88 30.32 66.02

CBM-E-L 231.22 511.30 37.14 67.80

CBM-O 225.92 504.70 29.14 66.93

PSDP 223.04 512.88 22.32 66.97

SSDP 222.31 523.38 24.32 66.63

Table 7.6: The table shows costs in kNOK from 10 000 simulations for the different policies, with the
derived policies’ performances in bold.

unlikely). As CENS is 15, the minimum-cost simulation from the RTF-policy can not include a system

failure, as the total cost then must exceed 25 (10 + 15 + replacement cost). The total cost of 22.42

comes from five inspections and the end of horizon cost, implying that the system deteriorated some

during 50 years, but not enough to fail. The minimum cost for the PSDP has probably occurred in

the same simulation, where maintenance resulted in even lower total cost (as the end of horizon

cost seems to have lowered more than the cost incurred of maintaining the system). From the SSDP

minimum cost, it is likely that the policy was similar to the PSDP’s, but with an extra inspection,

resulting in a higher cost than both the RTF and PSDP.

Compared to the RTF, the other policies have a lower level of risk related to average cost as they

inspect the system more often, leading to a "best-case scenario" with a higher minimum total cost for

all other policies than the PSDP. As the minimum cost-scenarios are very unlikely, and it is difficult to

predict which policy will return the lowest cost from a single simulation, the risk level might be better

to derive from the standard deviation. We see that the RTF-policy varies the most from the average

total cost in the simulations. The reader should note, however, that the RTF does not yield the highest

total cost. This is because both informed and reasonable decisions may still turn out to be the worst

possible choice. For instance, if inspections are carried out often, and the system is maintained at

low state levels, there is still an off-chance that the system fails in the same stage as maintenance

and inspection happen. Over a large number of simulations, this may happen several times within

a single simulation. This seems to impact the SSDP-policy to some degree, and especially the CBM-

short-high-policy (CBM-S-H-policy), as the latter has the highest total cost from any simulation. This

is reasonable, as the policy both inspect quite frequently and maintain at high state-values.

The CBM-S-H-policy also has the highest average total cost, implying that the inspections are too

frequent and the maintenances are too rare. This policy’s standard deviation implies a trade-off

between risk and reward, where we see that CBM-S-H returns the lowest standard deviation of all
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policies. This is partly due to this policy’s minimum cost, as it inspects every other year. The expected

total cost is consequently very high. The same argumentation applies to the CBM-extended-low-

policy (CBM-E-L-policy), a seemingly less conservative policy that achieves much lower average total

cost, but a higher standard deviation. This again implies the trade-off between higher risk and lower

expected total cost. Nevertheless, we see that the CBM-balanced-policy (CBM-B-policy) achieves

both lower average cost and standard deviation than the CBM-E-L and that the RTF has even higher

average cost and standard deviation. This observation implies that some decisions are beneficial both

for risk and expected cost.

The CBM-O-policy also provide impressive results, with 1.0% - 10.7% lower average cost than all the

other conventional policies. Although this policy does not benefit from the flexibility of the inspection

decisions like the SSDP or maintenance decisions like the SSDP and PSDP, the CBM-O outperforms

all the other conventional policies with respect to average cost. When solving a case to optimality

with the SDPs, deriving the CBM-O is trivial.

7.3.3 System failure rates

Another measure of risk is the number of failures that occur during a 50-year-simulation. No policies

can guarantee that a system won’t fail as a system may fail in the same year that all its components

began as "good as new". This modelling choice incorporates the possibilities of sudden shocks such

as lightning, or intense weather discussed in Chapter 2. However, over several 50-year simulations,

the expected failure rate will differ based on the applied policy.

Table 7.7 shows the average system failures over 10 000 simulations for all policies. That is, the

average number of times a single component deteriorates to the failed state, forcing failure costs

and a replacement. We see that the RTF is a strategy that has a higher risk of failure, while the policy

with the highest average cost, the CBM-S-H, has the lowest average failures.

The risk discussed concerning the standard deviation of total costs from all policies seems to corres-

pond with the average failures. However, we see that the CBM-O has more failures than the CBM-E-L,

although it had a lower standard deviation. This implies that other factors than the risk of failure

affects the standard deviation of total costs, such as the minimum total cost.

We also see that the SSDP has fewer failures than the PSDP. This may result from the SSDP’s ability

to adapt to outcomes with both maintenance and inspection decisions. It is also interesting to note

that the CBM-O has fewer failures than the PSDP and a higher failure rate than the SSDP. The latter

is because of how we derive the CBM-O; we considered the maintenance rates of the SDP-policies
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Policy Avg. System Failures

RTF 7.35

CBM-S-H 4.97

CBM-B 5.10

CBM-E-L 5.31

CBM-O 5.58

PSDP 5.73

SSDP 5.46

Table 7.7: The table shows system failure rates from 10 000 simulations on all policies, with the
derived policies’ performances in bold.

and set thresholds for component repairs where the policies returned from the two SDP-models

"only" would maintain in over than 50% of the possible system states. This makes the CBM-O more

conservative than the PSDP as they have the same inspection interval, while the adaptability of

inspections that the SSDP benefit from makes it the least prone to failure of these three policies. The

conservative trait of the CBM-O can also be seen by it’s significantly higher minimum total cost from

Table 7.6, compared to the SDP-policies.

In Figure 7.5, we see the frequency distribution of failures per 50-year period for the PSDP, the SSDP,

the RTF and the CBM-B. We omit some of the conventional policies to make the figure more readable.

The curves for each policy is distributed around the average system failures in Table 7.7 and also

gives an impression of the standard deviation of failures. This standard deviation is different from the

standard deviation of total costs, and may again better represent the risk related to a power outage.

We see that the CBM-B-policy is denser than the others, which is expected as a more conservative

policy will lead to fewer failures in simulations with more deterioration on the system.

The Periodic SDP also seem to have a denser distribution than the Sequential SDP. The adaptability

of the SSDP may explain this. In some simulations, the system may deteriorate more than expected,

but not enough to trigger maintenance. This situation can arise when only a single component has

deteriorated to a state where it is only repaired if other system components have also adequately

deteriorated. If the rest of the system is in a state of little deterioration, the fixed cost of maintenance

makes it more economical to leave the more deteriorated component in its current state. In these

situations, the SSDP might recommend a shorter inspection interval, while the PSDP is bounded

by the fixed inspection interval of 9 years. If this is the case, the SSDP may avoid some failures,

happening with the PSDP, giving the curves we see in Figure 7.5.
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Figure 7.5: The figure shows the frequency distribution of failures per simulation for four of the
policies, over 10 000 simulations.

7.3.4 Simulating over a different initial system state

The resulting costs and failures from simulations are naturally affected by the problem case in ques-

tion and by the assumption of a brand new system in year 1. The SSDP return optimal policies for

all possible initial states, allowing us to choose optimal policies for the Base Case also when we as-

sume a different initial state for the system. However, for the PSDP, the optimal inspection interval

is derived for the initial state where all components are in state 1.

In Figure 7.6, we simulate on two different initial states: One where all components are in state 1 in

year 1 (Figure 7.6a), and one where all components are in state 3 in year 1 (Figure 7.6b). An initial

state where all components are in state 3 should yield a close to optimal PSDP, as the policy will fix

all components in the first year. Again, we choose only four of the policies for better readability. The

total costs from all simulations are plotted for the RTF, the CBM-B and the two SDPs, where the costs

are in decreasing order. We see that the RTF is increasingly worse than the other policies regarding

total costs when the initial state is worse. This highlights the impact of the RTF- policy. When the

system is quite deteriorated in year 1, the average number of failures across the 50-year period will

naturally increase with no maintenance on the system. The difference between the RTF and the other

policies is more subtle when the system starts in a "good as new"-state.

Furthermore, we see that the SSDP, the PSDP and the CBM-B achieve similar total cost with a worse

initial state, with the SSDP being somewhat better than the PSDP, which again outperforms the CBM-
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(a) Simulations when all components begin in state 1. (b) Simulations when all components begin in state 3.

Figure 7.6: The figure shows the total costs of 10 000 simulations in decreasing order for four of the
policies when all components in year 1 have state 3 and 1.

B. This should not be surprising considering the simulation results on a "good as new"-system. Both

the SDP-policies and the CBM-B-policy will repair the system in the initial state which is less costly

than bearing the risk of system failure from all the components in state 3, which is the choice when

following an RTF-policy. Thus, the cost of repairing the whole system in year 1 is the difference

between the two graphs for the SDPs.

7.3.5 The flexibility of the Sequential SDP

In this section, we discuss the ability of the SSDP to adapt to system deterioration both with the

maintenance decisions and inspection decisions. The latter ability differs from all the other policies

and has proven advantageous concerning total cost. Furthermore, it achieves fewer failures than the

PSDP.

Figure 7.7 shows the different inspection intervals chosen from the SSDP over 10 000 simulations.

The forced inspection in year 1 is not considered a chosen interval and omitted. To avoid any mis-

understandings from the previous discussion, we emphasize that the system’s initial state has all

components in state 1. We note that the most frequent inspection interval is 8 years, but that all

possible intervals between 2 years (barley visible in the figure, happening 27 times) and 9 years oc-

curred in the simulations. Additionally, more often than not, the inspection interval is different from

8 years, showing that the optimal inspection interval varies quite a lot in the simulations.

As the initial state is 1 for all components, the resulting first inspection interval will be equal for all the

simulations. For the Base Case, this interval is 8, which dramatically affects this interval’s frequency

as 10 000 choices come from the exact same starting position. We, therefore, see that after the first
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Figure 7.7: The figure shows the frequency distribution of different inspection intervals chosen by the
Sequential SDP over 10 000 simulations.

year, the distribution is more even. Although 8 years is still the most frequent interval, 7 years occurrs

almost as often after the first inspection choice. The results discussed in this section show that the

flexibility of inspection decisions makes the SSDP perform better than the other policies with respect

to the total cost.

For the Base Case, we have also seen that the SSDP has similar results to especially the PSDP and

the CBM-O. Although the latter two are outperformed by the former, it is interesting to see that

even a CBM-policy can be tuned to achieve close to optimal results. The reader should note that

deriving the CBM-O required solving both models for the case and that its result may vary based on

the case’s parameters. Nevertheless, searching for a good condition-based maintenance-policy for a

larger system may be aided by solving smaller cases with less complex systems to approximate the

optimal state-threshold for each component.

7.4 Varying case input parameters

The Base Case only considers one out of many possible combinations of input parameters. As the

resulting policies from our models are dependent on the case parameters, it is relevant to explore

varying them influence the solutions from the SDPs.

In Section 7.4.1 we explore how changes in the penalty cost of failure influence the relative costs

from, and occurrence of inspections, maintenance and failures. In sections 7.4.2 and 7.4.3 we do
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similar analyses for variations in inspection cost and fixed maintenance cost, respectively.

7.4.1 Varying failure cost

Both the PSDP and the SSDP seek to adjust the number of inspections, maintenances and con-

sequently expected failures such that the total expected costs are minimized. Hence, the associated

costs from these events play a significant role in the policies the models suggests. For example, a

power grid line with high CENS, but low inspection and maintenance costs will be inspected and

maintained more frequently than a remote line with lower CENS, but higher inspection and main-

tenance costs.

The graphs in Figure 7.8 shows how often inspections, maintenance and failures occur on average

over 1 000 simulations when varying CENS for both models. We notice that increasing CENS leads to

an increase in the number of inspections and maintenances, while the number of failures decrease.

(a) PSDP (b) SSDP

Figure 7.8: The figure shows the number of occurrences of failures, maintenances in a stage and
inspection when varying CENS for the Sequential and Periodic SDPs. The used cases are VCE_01 -
VCE_13.

The change in the number of maintenances is most significant for the smaller CENS-values. The aver-

age number of maintenances is 0.106 and 0.111 when CENS is 0 for the PSDP and SSDP, respectively.

When CENS is 10 kNOK, it changes to 0.547 and 0.566 and then to 0.786 and 0.800 for a CENS of

20 kNOK. For the rest of the interval, the increase is significantly lower, with the average number of

maintenances being 0.970 for both models when CENS is at 120 kNOK.

We see that the number of failures becomes less frequent as the cost of a failure increases. The

average number of failures is 3.057 for both models when CENS is 0. When CENS is 50 kNOK, the

failure rate is 1.688 for the PSDP and 1.699 for the SSDP. Then the failure rate remains very stable
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up to a CENS of 100 kNOK, being 1.650 and 1.621, but makes a jump down to 1.405 for both models

when CENS is 110. This change coincides with the change in inspections at the same CENS value.

We also see a relatively small, but significant, jump in the number of maintenances at the same time

from 0.951 to 0.969 for the PSDP and 0.954 to 0.969 for the SSDP.

Considering the number of inspections when varying CENS, we make several interesting observa-

tions. First, we notice that the graph for the SSDP is smoother than that of the PSDP. This is because

the PSDP defines fixed inspection intervals that do not change throughout the planning horizon,

resulting in the same number of inspections for all simulations for each case. In comparison, the

SSDP is more flexible regarding inspections and can adjust the inspection interval to the situation.

Therefore, it will not get the same discrete jumps in the number of inspections as the PSDP.

The number of inspections must be seen in relation to the length of the planning horizon. For these

cases, we consider a planning horizon of 25 years. With a maximum allowed inspection interval of

10, we must have at least 3 inspections. We can at most have 25 inspections, meaning inspection

every year. In the plots in Figure 7.8, where CENS vary from 0 to 120 kNOK, the number of inspection

range from the lower limit of 3 to the upper limit of 25 inspections for both models.

(a) PSDP (b) SSDP

Figure 7.9: The figure shows a change in costs when varying CENS for the Sequential and Periodic
SDPs. The used cases are VCE_01 - VCE_13.

From Figure 7.9, we see the costs’ consequential changes when varying CENS. When CENS changes

from 100 kNOK to 110 kNOK we can recognize similar graph changes for the costs, as shown in

Figure 7.8. It is interesting to note that the increase in inspection cost is much more significant than

the increase in maintenance cost. This implies that in this specific situation when CENS changes

from 100 kNOK to 110 kNOK, the models primarily use inspections as a mean to mitigate failure. It

changes the inspection interval from 2 years to 1 year for the PSDP and the average inspection interval

from 1.992 to 1.0 for the SSDP. Hence, the costs from inspection almost doubles (92% increase for
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the PSDP and 79% for the SSDP) while the increase in maintenance cost is 12.4% and 13.4% for

the PSDP and the SSDP, respectively. A possible alternative policy could have been to set a more

conservative maintenance policy but not increasing inspection frequency.

One might intuitively expect that the cost from failures should be 0 when there is no penalty cost

from failures (CENS= 0). We see from Figure 7.9 that this is not the case. The cost of failures has the

most significant contribution to the total cost. The reason is that a failure still incurs the costs from

repairing the failed component. Further, as the cost of failure is similar to the cost of maintenance, it

will in many situations make sense to use a "run to failure"-policy. However, we see that the models do

suggest maintenance in some situations where CENS is 0, as the cost from maintenance is nonzero.

The reason is that several components can be maintained at once, sharing the fixed maintenance

cost and making it beneficial to maintain rather than applying a pure "run to failure"-policy.

7.4.2 Varying inspection cost

This section will explore how variations in the inspection cost influence the solutions from our models

in a similar fashion as the previous section 7.4.1.

(a) PSDP (b) SSDP

Figure 7.10: The figure shows the number of occurrences of failures, maintenances in a stage and
inspection when varying inspection cost for the Sequential and Periodic SDPs. The used cases are
VCI_01 - VCI_13.

Studying Figure 7.10 we see that the number of inspections also vary between the maximum and

the minimum allowed number of inspections when the inspection cost vary, however oppositely

correlated. Not surprisingly, the models suggest inspecting every year when inspection incur no cost.

As the cost of inspection increase, the frequency of inspections decrease. Fewer inspections reduce the

power grid operator’s ability to carry out well-timed maintenances. This leads to a reduced number of

maintenances, which leads to more failures. The interaction between inspections and maintenances
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is further underlined when studying the development of costs with varying inspection cost, shown

in Figure 7.11.

With the first increments of increased inspection cost, the total cost from inspections remains relat-

ively stable as each inspection’s cost increases, but the frequency decreases. Meanwhile, the average

total cost from maintenance decreases, causing both the average cost from failure and the end of

horizon cost to increase.

(a) PSDP (b) SSDP

Figure 7.11: The figure shows a change in costs when varying inspection cost for the Sequential and
Periodic SDPs. The used cases are VCI_01 - VCI_13.

When the inspection cost is 2 kNOK or more, the inspection rate stabilizes at the maximum inspection

interval of 10 years (exactly 10 years for the PSDP, and an average close to 10 years for the SSDP).

Consequently, the costs also stabilizes, where the total cost from inspections is the only one increasing

due to its increase in cost per inspection.

7.4.3 Varying fixed maintenance cost

In this section, we study the implications on the models’ solutions when varying the fixed cost of

maintenance. From Figure 7.12, we see that there are significantly less change in the number of

inspections when varying the fixed maintenance cost, compared to the change in the number of

inspections when varying CENS and inspection cost. This might indicate that the correlation between

fixed maintenance cost and the ideal number of inspections is relatively small.

We do however notice some variation. For a fixed maintenance cost of 6 and 10 kNOK, using the PSDP

policy results in 3 inspections, compared to 4 inspections for the cases with other fixed maintenance

costs. These results also suggest that less frequent inspection results in fewer maintenances and more

failures, seeing the correlating drop in maintenance and inspection rate, but increase in failure rate

at C M F = 6 kNOK and C M F = 10 kNOK.
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(a) PSDP (b) SSDP

Figure 7.12: The figure shows the number of occurrences of failures, maintenances in a stage and
inspection when varying the fixed maintenance cost for the Sequential and Periodic SDPs. The used
cases are VCM_01 - VCM_13.

Figure 7.12 also shows that the number of stages with maintenance is significantly higher when

there is no fixed maintenance cost. With no fixed maintenance cost, our models do not have any

incentives to coordinate different components’ maintenance. Thus maintenance takes place in more

stages. When the fixed maintenance cost increase, the models seeks to reduce the expected total

costs by maintaining several components at once, thus sharing the fixed maintenance cost.

Figure 7.13 shows the average of the different contributions to the total cost when varying the fixed

maintenance cost. Interestingly, the average total cost from maintenance is lower for C M F = 6 kNOK

compared to C M F = 4 kNOK (12.67 kNOK vs 14.79 kNOK), when using the policy from the PSDP.

This is not trivial, as the cost from maintenance typically increases as the fixed maintenance cost

increases, as is the case for all other values in the graph.

(a) PSDP (b) SSDP

Figure 7.13: The figure shows a change in costs when varying the fixed maintenance cost for the
Sequential and Periodic SDPs. The used cases are VCM_01 - VCM_13.
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We see the same behaviour from the policy suggested by the SSDP, but here at C M F = 4 kNOK,

being 11.74 kNOK compared to 13.38 kNOK at C M F = 2 kNOK. For both these instances, we see

a large increase in the average cost from failure. An interpretation is that for some system states,

maintenance becomes too costly for the models. Thus they instead take on a more considerable risk

of failure.

7.5 2K-SH: The Two-Component Sequential Heuristic

While our models solve a system with a few components to optimally, their run time make practical

use for operational purposes unrealistic. Thus, other methods are needed to obtain useful policies.

This section presents a heuristic, named 2K-SH, that uses the Sequential SDP to solve several smaller

problems to optimality and then combine the solutions to provide an inspection and maintenance

policy for a larger system. We provide an algorithm for the procedure of obtaining policies and discuss

the heuristic’s run time. We also discuss the policies suggested by the 2K-SH before comparing the

heuristic’s results with the other policies considered in this chapter.

7.5.1 Algorithm

Algorithm 1 presents the pseudo-code for the 2K-SH. We use the notation presented in Chapter 5.

To recapitulate, we use C F for CENS, C M F for the fixed cost of maintenance, C I for inspection cost

and C End
ik for the end of horizon cost. zmax is the maximum allowed inspection interval and N is

the set of all stages. K is the set of all components, each component having an individual variable

maintenance cost and deterioration matrix. Finally, we have Ss ys, being all possible system states

that sn can become.

The heuristic uses the same parameters as the main problem when solving the smaller problems

using the SSDP, except for inspection cost. We scale this cost with the number of components used to

solve the smaller problem, 2, divided by the number of components in the main problem, (|K|). This

scaling represents the part of the inspection cost, shared by the components in the smaller problem-

instance. This assumption is reasonable, as an inspection provides information about all components.

The fixed maintenance cost is kept the same, as the heuristic should not trigger individual compon-

ents’ maintenance frequently. The heuristic provides a policy with maintenance decisions x∗n and

inspection intervals z∗n for all possible system state sn in all stages n ∈N .

The heuristic generates a solution by combining the SSDP solutions from all possible component

pairs (2K) out of the problem’s components. When we solve the heuristic for the Base Case with four
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components, there are six such component pairs (4 choose 2), each component being part of 3 such

pairs. If any of the smaller problem solutions suggest maintenance for a component in a given state,

that is x∗ 2K
kn (skn) = 1 for any of the 2K solutions, the heuristic decides to maintain that component

as well (x∗kn(skn) = 1). The inspection interval is found by averaging the optimal intervals form the

smaller solutions and rounding them to the nearest integer.

Algorithm 1: Two-component Sequential Heuristic (2K-H)

Data: C F , C M F , C I , C End
ik , zmax , N , K, Ss ys

Result: Policy with x∗n(sn) and z∗n(sn) for all system states, sn ∈ Ss ys

1 components←list of components k ∈ K with maintenance costs and deterioration matrices

2 temp_solutions← empty array

3 for i ∈ {1, ..., |K| − 1} do

4 for j ∈ {i, ..., |K|} do

5 temp_case←CF , C M F , 2
|K|C

I components[i], components[j]

6 temp_solutions← sol ve SSDP(temp_case)

7 end

8 end

9 for n ∈N do

10 for sn ∈ Ss ys do

11 for k ∈ K do

12 if x∗ 2K
kn is 1 for any solution in temp_solutions then

13 x∗kn = 1

14 else

15 x∗kn = 0

16 end

17 end

18 x∗n ← x∗kn

19 z∗n ← rounded average of all z∗n from all temp_solutions

20 end

21 policy← x∗n, z∗n
22 end

23 return policy

7.5.2 Run time of the 2K-SH

We see from the algorithm that when the 2K-SH solves a problem for a system with |K| components,

it solves all possible two-component combination of these K components to optimality. This means

that the heuristic uses the solution procedure of the SSDP
�|K|

2

�

times. As |K| increases, the solution
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procedure will still solve problem-instances with two components but an increasing amount of these

instances. Generally, the number of instances will increase with a complexity of O(|K|2). It is this

number that drives the run time of the 2K-SH. The run time complexity of the 2K-SH is considerably

more bounded than the run time complexity of the SSDP when increasing the number of components.

Using the 2K-SH on the Base Case with four components means solving the Base Case with two

components
�4

2

�

= 6 times. The resulting run time is approximately 75 seconds compared to the nine

and a half hours needed to solve the SSDP for four components, which is a vast improvement.

The drawback of the heuristic is that it only considers the dependencies between components in

pairs. The reader should note that increasing the number of components in each sub-set solved by

the SSDP in the heuristic, still will mean an exponential increase in run time. When solving for

instances of |K′| components where K′ ⊂ K, the number of combinations that needs to be solved

increases with O(|K||K
′|) (Cormen et al., 2009). Furthermore, each instance’s run time will also

increase exponentially when increasing |K′|. However, the proposed heuristic is based on the intuition

that sub-sets of all the components in a system may be sufficient to discover the most important

dependencies for all components of a larger system. This means that the heuristic’s general approach

should allow modelling of larger systems, as the size of K′ can be limited.

7.5.3 Policies from the 2K-SH

In Section 7.2.1 we introduce the measure maintenance rate and use it to gain an intuitive under-

standing of a model. Figure 7.14 shows the maintenance rates from SSDP and our heuristic.

Figure 7.14: Maintenance rates from the Base Case for the SSDP and the heuristic

The maintenance rates that the policy suggested by the heuristic share similar characteristics with

the policy suggested by the SSDP. We see that the 2K-SH has a somewhat higher average mainten-

ance rate, indicating fewer non-trivial maintenance decisions. This should not be surprising, as the
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heuristic is unable to capture dependencies of more than two components at the time, i.e. when it is

the difference in the third components state that triggers a maintenance decision from (as we saw

in Table 7.1 in Section 7.2.2).

The 2K-SH suggest somewhat longer inspection intervals than the SSDP, with the average number of

inspections over 10 000 simulations being 7.09 and 7.58 respectively. Deciding on longer inspection

intervals is reasonable, as the 2K-HS adopt a slightly more conservative maintenance policy. Table

7.8 shows the distribution of suggested inspection intervals for the SSDP and the heuristic, where

we also see that the heuristic has less variation in the inspection interval length it suggests.

Years until next inspection 1 2 3 4 5 6 7 8 9 10

Frequency in stage 1, SSDP 0 0 9 5 7 52 3 180 0 0

Frequency in stage 1, 2K-SH 0 0 0 0 0 24 42 63 127 0

Table 7.8: Distribution of suggested inspection intervals by the SSDP and the 2K-HS for Base Case

7.5.4 Comparing results from different policies with 2K-SH

To benchmark the heuristic’s performance, we apply it to suggest a policy for the Base Case and

compare those results to the results from other policies we discuss in Section 7.3. Table 7.9 shows

the performance of the Sequential SDP, the Periodic SDP and the derived CBM-O compared to the

heuristic over 10 000 simulations.

Policy Avg. Max. Min. Std. Dev.

CBM-O 225.92 504.70 29.14 66.93

PSDP 223.04 512.88 22.32 66.97

SSDP 222.31 523.38 24.32 66.63

2K-H 223.12 523.38 26.42 66.63

Table 7.9: The table shows costs in kNOK from 10 000 simulations for the different policies, with the
heuristic policy’s performance in bold.

We see that the 2K-SH’s performance is close to those of the PSDP and the SSDP. The average cost

achieved by the heuristic is almost identical to the PSDP, being only 0.4%�higher. Compared to the

SSDP, the average cost is 0.4% higher. Furthermore, the performance is significantly better than the

CBM-O, derived from the optimal policies of the SDPs. Consequently, the 2K-SH achieves 2.2% -

11.8% lower average cost than all the other conventional policies suggested in Chapter 6. Compared

to the SSDP by using simulations, the 2K-SH has slightly higher average total costs and a higher
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minimum total cost, while both the maximum cost and the standard deviation is the same for both

policies.

Table 7.10 shows the average failures and inspections per simulations for the derived policies. The

average inspections for both the CBM-O and the PSDP are exactly six as inspections are always

carried out in year 1 and with intervals of 9 years. Over the 10 000 simulations, the SSDP suggest

more inspections than the 2K-H, and the failure rate is also slightly lower for the SSDP. This implies

that the heuristic derives a less conservative policy with a slightly higher risk of failure. Combined

with the optimal maintenance decisions, this gives a lower total average cost for the PSDP. We also

see that the 2K-SH achieves a lower failure rate than the SSDP and the CBM-O, indicating that

the sequential inspection structure helps achieve a lower risk of failure. However, the PSDP makes

optimal maintenance decisions given the periodic inspection interval, which seems to be the reason

of similar average total cost compared to the heuristic.

Policy Avg. System Failures Avg. Inspections

CBM-O 5.58 6.00

PSDP 5.73 6.00

SSDP 5.46 7.58

2K-H 5.48 7.09

Table 7.10: The table shows system failure rates and average inspections from 10 000 simulations,
with the heuristic policy’s performance in bold.

7.6 Applicability of results

Throughout this chapter, we see that the Periodic SDP and Sequential SDP suggest solutions that, on

average, will perform better than conventional inspection and maintenance policies. However, it is

also clear that there are limitations to the applications of our models. This section highlights some of

the most interesting properties of the models and their results and indicates which real-life purposes

they can, and cannot, prove useful.

7.6.1 Direct use of the solutions

When finding optimal policies, our models compute optimal decisions for all possible future out-

comes. Consequently, one does not need to calculate the optimal choice each time one needs to

make a decision. This ability strengthens the models’ usability for operative purposes, as a techni-

cian can check the already avaliable solution when deciding whether or not to maintain a component



Chapter 7: Computational Study 102

in the field.

In addition to possible operative applications, the models can be useful on both a tactical and stra-

tegic level. Solving for many different power grid lines allows the operator to see them in relation,

indicating when different lines should be maintained and which costs can be expected. On a stra-

tegic level, the solutions indicate which lines have the most economic significance and should be

prioritized.

As Section 7.2.2 points out, end of horizon costs has a considerable influence on the solutions. Lever-

aging this property, the operator can find optimal policies for special situations, for instance, when

planning to take a line out of commission at a given time in the future.

7.6.2 Simplified solutions

While our models solve to optimality, they are unfit for systems with a large number of components.

It is clear that simplifications must be made for practical applications of the solutions.

In this thesis, we indicate ways to help bridge the gap between theory and real-life usage. The easiest,

naive approach, is to derive condition-based maintenance policies based on the suggested solutions.

The CBM-O presented in 7.3.1 is such a policy, and we see that this policy performs better than

other CBM-policies set based on convention and "gut feel". Using this approach, we focus on the

components with the most significant implications for the ideal policies. We recommend considering

components with considerable economic implications first. Then, one can decide on policies for less

important components, constrained by the initial solution.

Using more sophisticated approaches is also possible, and in Section 7.5 we present a heuristic that

combines the solutions from several smaller systems to approximate the solution provided by the

SSDP. The heuristic is significantly faster than the SSDP and provides a solution that outperforms all

the conventional policies. While it is not optimal, it performs almost as well as the SDPs. It can be seen

as a proof of concept for how to achieve policies for bigger systems that account for dependencies

while having acceptable run times.

7.6.3 Understanding the inspection- maintenance relationship

This thesis highlights the interconnection between inspection, maintenance and risk. Section 7.2.3

shows that ideal inspection intervals are subject to the systems state and expected development and

the applied maintenance policy. In Section 7.4, we see that the connection between inspection and

maintenance is complex. Sometimes, fewer inspections can lead to less maintenance, as the ability



Chapter 7: Computational Study 103

to time maintenance correctly is reduced. Other times, a more conservative maintenance policy can

be applied, increasing the number of maintenances while inspecting less frequently.

It is tempting to jump to easy, clear cut conclusions. However, for complex problems like the one

we study in this thesis, it is valuable to dig deeper to understand the underlying mechanics of how

things work. While the problem studied in this thesis cannot be directly applied to a real-life power

grid line, studying the results from optimal policies can provide an understanding that improves the

ability to derive effective inspection and maintenance policies. To quote the famous saying of Richard

Hamming:

"The purpose of (scientific) computing is insight, not numbers." (Hamming, 1962)



Chapter 8

Future Research

Throughout this thesis, we address several interesting topics not included in the described Utility

Mast Inspection and Maintenance Problem, and consequently not addressed by the suggested mod-

els. This chapter briefly presents some of these topics, suggesting them as starting points for future

research.

Considering several dependency types between components

In this thesis, we consider a multi-unit system where components share the setup cost of mainten-

ance when maintained simultaneously. Components may also have structural dependencies. That is,

a mast can function properly until a combination of components fails. Furthermore, components can

also have probabilistic dependencies, i.e. deterioration of one component may affect another com-

ponent’s transition probabilities. For example, we have a probabilistic dependency between a masts’

top hat and its pole. Without the top hat, the mast functions properly, but the pole will rot faster.

Including such dependencies in the models is an interesting topic for further research. A suggestion

is to assign several deterioration matrices to one component where the matrix used in a calculation

depends on the state of another component.

Including imperfect information from inspections

When inspecting a mast, our models receive perfect information about the state of all components.

In reality, equipment and human error may result in uncertain information from inspections. Imple-

menting imperfect information is an interesting extension of the problem we describe in this thesis.

An option is to consider state probability distributions, rather than actual states returned from in-

104
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spections. From the literature review in Chapter 3, we know that modelling a partially observable

Markov decision process and using point-based solvers is also a promising possibility.

Incorporating different inspection types

In this thesis, we consider one kind of inspection, returning information about all the modelled com-

ponents. However, various inspection types can be conducted, e.g. with different equipment. Con-

sequently, inspection types can return different utility mast information. For instance, many power

grid operators also conduct yearly superficial, aerial inspections, as we discuss in Chapter 2. A devel-

opment of our model can include several possible inspection decisions, each returning information

about subsets of the mast’s components.

Further exploring heuristic approaches

To counteract the complexity of large problems, we propose a heuristic incorporating one of our

models. The heuristic provides a starting point for future research. As we consider a mast represent-

ative for a grid line, reducing the problem complexity has positive implications for the entire power

grid. We encourage further research on deriving heuristics based on this thesis’s work, and especially

extending the use of the one proposed here.



Chapter 9

Concluding Remarks

This Master’s thesis proposes a stochastic dynamic programming approach to provide decision sup-

port for inspection and maintenance on a power grid line. We formulate two stochastic dynamic

programs (SDPs) for inspecting and maintaining a multi-unit utility mast.

One model, the Periodic SDP, considers static inspection intervals, while the other, the Sequential

SDP, sets inspection intervals dynamically following an inspection. Both models find optimal policies

given the inspection structure. The Sequential SDP outperforms the Periodic SDP because of the

ability to make new inspection decisions based on revealed information. We study their solutions

using a case with a simplified mast system comprised of four components. The components are

critical to the mast’s ability to deliver electricity. We use five discrete states to represent the condition

of each component. The case has a maximum allowed inspection interval of ten years and considers

a planning horizon of 50 years. We benchmark the suggested policies from our two models using

simulation and compare them to conventional policies representing typical policies used by power

grid operators today. On average, the Periodic SDP achieves 2.2% - 11.9% lower total cost and the

Sequential SDP achieves 2.6% - 12.2% lower total cost when simulated over 50 years. From our

models’ solutions, we also derive an easily applicable condition-based maintenance-policy. This policy

performs better than other conventional policies, with 1.0% - 10.7% lower average total cost.

The number of modelled components has a significant impact on the run time of the models. The

periodic model use approximately three hours to solve the case with four components, while the

sequential use approximately nine and a half hours. We suggest a heuristic approach to enable mod-

elling of larger systems. The heuristic uses the Sequential SDP and solves all possible component-pairs

of the mast’s components, before joining their optimal policies to derive a policy for the entire multi-

unit system. The heuristic solves the four-component case in approximately 75 seconds. Simulations
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with the heuristic’s solution yield promising results. Its average total cost is almost identical to the

Periodic SDP’s average cost and 0.4% higher than the Sequential SDP’s average cost.

This thesis shows that expected power grid operation costs can be reduced by applying sophisticated

policies. Such policies should consider dependencies between components and how inspections can

be exploited for better maintenance decisions. We suggest further research of some topics, and our

models provide a first step for inspection and maintenance optimization of the power grid line.

Furthermore, de Jonge and Scarf (2020) suggest that future research considers optimal dynamic

scheduling of inspections. This Master’s thesis does so by providing a model, the Sequential SDP, that

derives an optimal dynamic inspection schedule.
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