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Abstract

This paper develops a real options model to value a forest stand. A trinomial tree is used to
approximate stochastic timber prices, and subsequently, used in a dynamic programming
approach to calculate the stand value and harvest age. The model is specified for both
geometric Brownian motion (GBM) and the mean reverting Ornstein–Uhlenbeck process
(MR), as well as for a single forest rotation and multiple forest rotations. The multiple
rotations problem results in a perpetual compound option, and a heuristic approach is
developed to simplify calculations. The approach is conceptually simple and in response
to the perceived lack of transparency in real options models, which, perhaps, has hampered
widespread use by forestry practitioners. The model is applied in a series of numerical
examples. The results suggest that the choice of the stochastic process has a significant
impact on the stand value and optimal harvest age.

i



Sammendrag

Denne artikkelen presenterer en realopsjonsmodell for verdsettelse innen skogbruk. Et tri-
nomisk tre anvendes for å tilnærme stokastiske tømmerpriser, og dynamisk programmer-
ing benyttes for å beregne verdien av et skogområde og bestemme optimalt hogsttidspunkt.
Modellen er spesifisert for både en enkel skogrotasjon og for multiple skogrotasjoner, samt
for to ulike stokastiske prisprosesser: geometric Brownian motion (GBM) og mean rever-
sion (MR). Multiple skogrotasjoner er et eksempel på en compound-opsjon, og en heuris-
tisk tilnærming utvikles for å forenkle verdsettelsen. Realopsjonsmodellen er anvendbar,
og er en respons på mangelen av transparens i mange realopsjonsmodeller, hvilket kan
ha bidratt til å hemme vidstrakt bruk av realopsjonsanalyse innen skogbruk. Modellen
benyttes i en rekke numeriske eksempler, og det demonstreres at valget av stokastisk pros-
ess har stor innvirkning på verdien av et skogområde og hogsttidspunktet.
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Chapter 1
Introduction

A booming home-construction market has contributed to elevated timber prices in the
past years (Wall Street Journal, 2020a). However, the coronavirus pandemic is now ef-
fectively causing a construction slowdown (Wall Street Journal, 2020b), and the restric-
tions on international trade, travel, and business have caused significant uncertainty in the
forestry industry (Timber Trades Journal, 2020). Although the coronavirus pandemic’s
implications are currently the most visible, climate-related disturbances remain a signifi-
cant concern and driver of volatility. On the supply side, vast and multiple wildfires are
destroying swathes of trees and leaving behind scorched earth where new trees struggle
to grow (National Geographic, 2020). Meanwhile, the rapid expansion of spruce bark
beetles, particularly in Central Europe, forces forestry managers to prematurely harvest
large areas of attacked forests, causing sudden surges in the supply of timber (Reuters,
2019). The outbreaks of bark beetles are not unique to Europe. Beetles are also ravaging
North-American forests (National Geographic, 2020), and the tropical forests face a sim-
ilar problem with vines, that use other plants as hosts, killing trees (CNBC, 2020). On
the demand side, the use of alternative wood-based fuels has proliferated in recent years,
providing a novel source of demand (Deutsche Welle, 2020). Concomitantly, forests are
increasingly recognized for their role as carbon sinks, and new policies are initiated to
reflect this (Gren and Aklilu, 2016). Consequently, within an environment of increasing
uncertainty, the challenge of making optimal harvesting decisions and correct valuations
become rather formidable.

In the context of irreversible harvesting decisions and uncertainty, the importance of valu-
ing managerial flexibility has long been recognized (Insley and Rollins, 2005). However,
traditional valuation methods such as discounted cash flow analysis come short when tim-
ber prices are stochastic, and the conventional approaches to determine the optimal time
to harvest, which largely build on the pioneering work of Faustmann (1849), may yield
significantly wrong conclusions (Gjolberg and Guttormsen, 2002).

A recent strand of the forestry economics literature draws on the real options literature

1



to accurately incorporate the value of flexibility, yet the practical application in forestry
management remains rather sparse (Manley and Niquidet, 2010). In other industries, such
as the pharmaceutical sector, complexity, and perceived lack of transparency stand out as
the main obstacles to more widespread use of real option analysis (Hartmann and Hassan,
2006), and continuous-time analytical models have been characterized by “low practical
validity” (Worren et al., 2002). Consequently, the potential of binomial approaches and
other tree based models have been emphasized (Hartmann and Hassan, 2006). Therefore,
I present a trinomial tree model in this study. The trinomial model is an extension of the
binomial model and is able to approximate more complex stochastic processes such as
mean reversion (MR), yet it remains conceptually similar. The mathematical simplicity
and ease of exposition should help make the real options approach more transparent, and,
in turn, the results more palatable to forestry practitioners. I use dynamic programming
to calculate the stand value and expected rotation age for a single forest rotation where
the forest is assumed to grow deterministically. The model is specified for both geometric
Brownian motion (GBM) and MR timber prices. The assumption of GBM is widely used
in forestry economics as it makes the problem of determining the optimal harvest age, and
stand value more tractable (Insley and Rollins, 2005). However, as noted by Gjolberg and
Guttormsen (2002), there are reasons, both theoretical and empirical, to believe that timber
prices do not follow GBM, and instead should be modelled as a MR process.

I follow Insley (2002) in investigating the implications of the specification of the price
process, and demonstrate that stand value and harvest age is significantly affected by the
choice of stochastic process. The stand value is found to be higher under MR compared
to under GBM for prices below the equilibrium. Moreover, the critical price is shown to
be higher under GBM than MR in the early years of the forest rotation, and conversely,
lower under GBM compared to MR when the growth rate has declined. This confirms
the findings of Insley (2002); however, it demonstrates a different approach than the finite
difference method used in her article. To the best of my knowledge, MR has not been ad-
dressed using a trinomial tree in the forestry economics literature. Consequently, I make a
contribution to the forestry economics literature by developing an intuitive and transparent
model which can handle not only GBM, but also the more complex MR process. More-
over, I estimate the parameters of GBM and MR from historical Norway spruce prices
from the Norwegian forestry industry, which presents a novel data set. The results indi-
cate that the choice of stochastic process has a profound impact on the optimal harvesting
decisions, and as such, demonstrates the importance of selecting an appropriate stochastic
process when making decisions in forestry.

I extend on the single forest rotation by addressing multiple forest rotations. In the multi-
ple rotations problem, the option to replant is made available after harvest. The multiple
rotations problem is significantly more complex than the single rotation problem (Insley
and Rollins, 2005), and similar in nature to the valuation of a perpetual American com-
pound option. I approach the multiple rotations problem using a trinomial tree to discretize
prices, and subsequently employ a dynamic programming approach to calculate the stand
value and expected rotation age. I make a methodological contribution to implementing
real options approaches in forestry by increasing the practical validity of the compound
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option model by simplifying the valuation methodology. Specifically, I show that a heuris-
tic approach which uses an option approach for the initial forest rotation, and approximates
the subsequent rotations using the Faustmann formula (Faustmann, 1849) yields a similar
result as the compound option model. To the best of my knowledge, this presents a novel
approach to the valuation of a forest stand with multiple rotations. I demonstrate the ap-
plicability of the heuristic approach using historical Norway spruce prices to calculate the
value and expected rotation age under both GBM and MR. I show that the stand value and
rotation age are higher under GBM than under MR. Moreover, I find that under MR with
a sufficiently high speed of reversion, the stand value and rotation age is independent of
the current timber price. The results imply the need to revise fixed rotation age policies in
forestry to ensure economic efficiency.

The remainder of this study is organized as follows. I discuss related work in Chapter 2,
before introducing the data in Chapter 3. Chapter 4.1 reviews the dynamic programming
technique, and Chapter 4.2 presents the binomial model as an intuitive introduction to the
tree based models. Subsequently, Chapter 4.3 addresses the valuation of a forest stand
considering a single rotation using the trinomial tree. I introduce multiple forest rotations
in Chapter 4.4. In Chapter 5.1, I present and discuss the results considering a single forest
rotation. Chapter 5.2 demonstrates the applicability of the real options approach to multi-
ple forest rotations. Lastly, Chapter 6 concludes the paper, considers potential limitations
of the real options approach, and outlines ideas for future work.

3



4



Chapter 2
Literature Review

The seminal work of Faustmann (1849) introduces a method to value a piece of land de-
voted to forestry, yet it remains best known as a benchmark model for determining the
optimal rotation age1. The optimal rotation problem is one of the oldest and most impor-
tant in forestry economics (Pearse, 1967), and the pioneering paper of Faustmann (1849)
has spawned a substantial body of literature. A strand of this literature illustrates the im-
plications of stochastic prices, which is the focus of this paper and the following literature
review.2

In the Faustmann setting there is perfect certainty with respect to the model parameters.
Specifically, the formulation assumes that interest rates, timber prices and management
costs remain constant over time, and that the forest growth can be described by a deter-
ministic function. This may have been justifiable when dealing with a relatively static
economy, like that of 19th century Germany. However, in today’s economy, technological
advances affect the supply of timber, and dynamic market conditions continue to impact
demand (Newman, 1988). Consequently, price uncertainty is a necessary extension to the
Faustmann model, and the implications for valuation and the optimal rotation age are im-
portant research questions in forestry economics.

Stylized models involving price uncertainty emerged in the 1980s (Insley, 2002), with
the common assumption of prices following GBM. Clarke and Reed (1989) and Reed and
Clarke (1990) extends on these formulations and show that if the cost of harvesting is
ignored, a barrier rule is optimal. That is, as soon as the trees reach a certain size, they
should be harvested, regardless of prices. As pointed out by Brock and Rothschild (1986),
a GBM process has no optimal stopping rule by itself. The barrier rule is a direct conse-
quence of the GBM price process and absence of harvesting costs in the formulation of
Clarke and Reed (1989) and Reed and Clarke (1990). As noted by the authors, a barrier

1The age at which the forest should be harvested to maximize the value derived from it.
2For a broader overview, Newman (1988) and Newman (2002) provides an extensive bibliography and discuss

the development of the optimal rotation literature.
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rule would not exist for a more complex price process such as MR, or when harvesting
costs are included in the model.

As soon as harvesting costs are taken into account, the optimal rotation age cannot be
specified in advance as it depends on the current price, however an expected rotation age
can be provided. Except for in certain restrictive cases, analytical solutions does not exist.
As a result, numerical methods need to be invoked in order to solve the optimal rotation
problem. Thomson (1992) includes harvesting costs in his formulation, and use the bino-
mial option pricing model of Cox et al. (1979) to value a forest stand. The study shows
that the the optimal rotation age is greater than what the Faustmann rule prescribes and the
value of the forest stand is generally higher than in the deterministic Faustmann setting.
Moreover, the rotation age decreases and the forest value increases as the price volatility
increases. Intuitively, the price uncertainty creates an option value of waiting, which in
turn, makes it optimal to wait longer for more information. This application of an option
valuation technique to a managerial decision such as deciding between harvesting or let-
ting the forest grow, is known as real options analysis. Real options analysis is commonly
used in decision making under uncertainty, and adapts techniques for financial options to
real-world decisions (Dixit et al. (1994), Trigeorgis et al. (1996)). The real options ap-
proach is inherently more mathematically complex than most of the traditional methods
employed in forestry economics and require significantly more computing effort (Kant and
Alavalapati, 2014), yet makes up for it by being able to handle uncertainty properly.

The real option models are based on several assumptions, including the assumption of
the stochastic process describing the evolution of prices. A common assumption in most
of the early work is that the price in any time period is independent of any other period.
For instance, Brazee and Mendelsohn (1988) model the prices as independent draws from
a normal probability distribution, Haight (1993) assumes the price trend is drawn from a
triangular probability distribution, and Lohmander (1987) use a uniform probability dis-
tribution for the price. However, empirical evidence suggests that prices exhibit serial cor-
relation (Washburn and Binkley, 1990). As a result, researchers conduct statistical tests in
order to gain insight into the the behaviour of timber prices. Several studies find evidence
of stationarity in prices (Hultkrantz (1993) and Yin and Newman (1996), while others re-
ject it (Prestemon, 2003). In general, stationary prices, such as MR, have no predictable
patterns in the long-run, and the prices are roughly flat (although some cyclic behaviour
is possible). This is in contrast to non-stationary process such as GBM where there is a
drift over time. However, generally speaking the tests are inconclusive, primarily due to
the short span of the time series data available (Kant and Alavalapati, 2014). As a result,
the literature on the stochastic optimal rotation problem have investigated the implication
of various price processes, and can broadly be separated into two groups according to
the price process. The first group assumes a stationary price process, typically the mean
reverting Ornstein-Uhlenbeck process, while the second group employ a non-stationary
process such as a random walk or GBM.

Insley (2002) and Insley and Rollins (2005) compare and contrast option value and opti-
mal rotation age under the assumption of GBM and MR. The numerical approach taken in
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Insley (2002) is an implicit finite difference method in combination with a penalty method
(Zvan et al., 1998). The results show that MR yield a higher option value than GBM when
the current price is below the equilibrium, reflecting the eventual price increase towards
the equilibrium level. Furthermore, in the early years of forest growth, the MR process has
lower critical prices than GBM. Intuitively, there is steadily increasing prices under GBM,
and thus incentive for the forest manager to delay harvest while the forest is still growing.
Additionally, the uncertainty increases with time, leading to a greater value of waiting. In
the MR case, the forest manager takes advantage of prices above the mean by harvesting
immediately.

This study contributes to the forestry economics literature by developing a trinomial tree
model which is able to approximate both GBM and MR. The model is used to investigate
the implications of the stochastic process on the stand value and rotation age. Monthly
price data for Norway spruce is used to determine the parameters of a GBM- and MR-
process, presenting a new source of data. To the best of my knowledge, the trinomial
model is a novel approach in forestry economics. The trinomial model provides an extra
degree of freedom over the binomial model used by Thomson (1992). As a result, the
model can approximate more complex stochastic processes than GBM. Moreover, the tri-
nomial model is also more easily explained and accepted than alternatives such as finite
difference and simulation methods (Mun, 2002). Therefore, the trinomial model should
be an intuitively appealing tool to forestry practitioners, and potentially contribute to more
widespread use of real options analysis in the forestry industry. Note that the methodology
is not limited to GBM and the MR process, and can be applied to other processes where
a numerical approach is required. For instance, the long-run level to which prices tend
to revert is not necessarily static, and a natural extension could follow Pindyck (1999)
which incorporates shifts in the slope or level of the long-run level when forecasting en-
ergy prices. In addition to addressing the single forest rotation, I contribute to the forestry
economics literature by formulating a compound option model to address multiple forest
rotations. Furthermore, I develop a heuristic approach, which combines the option ap-
proach and the traditional Faustmann value. The heuristic approach should help foster the
adoption of compound option valuation techniques in forestry management.

7
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Chapter 3
Data

The data used in this study consist of yield data and historical price data for Norway
spruce. The yield data is presented in Section 3.1, and is used to fit a growth function
for a specific site index1 and thinning regime. The growth function is used to model the
volume available for harvest in the trinomial model. The historical price data for Norway
spruce is described in Section 3.2, and subsequently used in Subsection 5.1.3 to estimate
the parameters of a GBM- and MR-process and provide an application of the real options
model developed in this study to a real-world scenario.

3.1 Yield Data

Yield tables for Norway spruce (Picea abies (L.) H. Karst) is presented in Braastad (1975)
for different site indexes and thinning regimes. The data in Table 3.1 is for an initial stand
of 3000 Norway spruce trees per hectare at a site index of H40 = 232. The number of trees
is decreased to 900 per hectare through 5 thinnings.

The yield table gives the volume at a limited set of ages, and in order to interpolate the vol-
ume at the missing age values a function of the form y(t) = ea−b/t is fit to the data using
nonlinear regression. The functional form follows Payandeh (1973), and is similar to the
growth function used in Thomson (1992). The resulting function is y(t) = e7.52−69.79/t.
Prior to the initial thinning in year 30, I assume no merchantable volume, and in sub-
sequent years I assume 90% of the grown volume is merchantable. Since, in general,
empirical models are only appropriate within the range of data that was used for model
development, the constraint that volume does not increase after year 80 is imposed, which

1In forestry management, the site index describes the potential for trees to grow at a particular location or
“site”.

2A site index of H40 implies that the arithmetic mean height of the top 100 trees is 23 meters when the tree
age at breast height is 40 years. The age at breast height is the number of years since the tree reached ”breast
height”, which is 1.3m in most countries.
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is close to the range of data used. The growth function is formulated as:

Q(t) =


0, if t ≤ 30

Q(80), if t > 80

0.9e7.52−69.79/t, otherwise
(3.1)

Table 3.1: Yield table for Norway spruce (H40 = 23)

Volume (m3/ha)

Age Before thinning Thinning After thinning

23 84 - 84
26 135 - 135
30 216 26 190
34 267 38 229
38 308 44 264
42 343 34 309
46 385 48 337
49 390 - 390
53 459 - 459
57 526 - 526
61 589 - 589
65 649 - 649
69 707 - 707
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3.2 Historical Price Data
The historical price data for Norway spruce is from Skogfondsdatabasen3, which is main-
tained by the Norwegian Agriculture Agency. The prices are deflated using the monthly
consumer price index for Norway, and using 2020 as the base year. Further, the histori-
cal prices are reported for spruce sawlogs and spruce pulpwood. Sawlogs are generally
greater in diameter, and are the most financially valuable part of the trees, and is in con-
trast to other parts of the tree which are designated as pulpwood. A single spruce price is
calculated as the volume weighted average of the sawlogs and pulpwood price, in order to
simplify the real options approach by avoiding two correlated price processes. National
yearly harvest volumes from Skogfondsdatabasen are used to obtain the weights. The his-
torical volumes are shown in Figure 3.1, with the solid line representing share of total
volume sold as sawlogs. In general, most of the harvested timber is sold as sawlogs, and
the split between sawlogs and pulpwood has remained relatively stable over time.

Figure 3.1: Harvested volumes split by sawlogs and pulpwood

The price of both sawlogs and pulpwood have remained relatively stable since 2013 as
seen in Figure 3.2. In May 2020, the price of spruce sawlogs was 447 NOK/m3 and
spruce pulpwood was 294 NOK/m3. The weighted price was 376 NOK/m3 as implied by
a split between sawlogs and pulpwood of 54-46. Descriptive statistics for spruce prices
are shown in Table 3.2. Note that the standard deviation of the combined price process is
similar to the original time series. Hence, the correlation between pulpwood and sawlogs
is high, and our combined price process is unlikely to lead to severe valuation errors.

3All data can be found at https://www.landbruksdirektoratet.no/no/statistikk/skogbruk/tommeravvirkning/
tommeravvirkning-og-priser-2
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Figure 3.2: Evolution of spruce pulpwood prices, spruce sawlogs prices, and weighted spruce prices
from January 2013 to May 2020

Table 3.2: Descriptive statistics for Norway spruce prices

Mean Median St. IQR 25th 75th N
Dev. Percentile Percentile

Spruce sawlogs 489.0 492.2 31.8 55.7 460.6 516.3 89
Spruce pulpwood 270.2 252.5 44.0 56.5 237.5 294.0 89
Weighted spruce price 391.3 387.5 33.6 51.6 363.3 414.9 89
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Chapter 4
Methodology

In the following chapter, I introduce the methodology used to determine the value of a for-
est stand under stochastic prices. I begin by reviewing the dynamic programming method
in Section 4.1, and proceed by presenting the binomial model developed by Cox et al.
(1979), which was applied by Thomson (1992) to value a forest stand. As noted by Mun
(2002), industry acceptance of the real options approach has mostly been in the use of
binomial trees as they are easily explained to and accepted by management. Therefore,
the binomial model is included as an intuitive introduction to the approach. Subsequently,
the binomial model is extended to the trinomial model in Section 4.3, which can be used
to approximate more complex stochastic processes such as MR. Lastly, in Section 4.4, I
address multiple forest rotations, an example of a perpetual compound option, and develop
a heuristic approach which simplifies calculations.
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4.1 Dynamic Programming
Suppose the stochastic timber price at time t is Pt, the deterministic timber volume avail-
able for harvest is Qt, and C is a constant harvesting cost. The forestry manager seeks
to maximize the value of the forest stand, denoted by V in the following, by choosing a
sequence of actions. The actions available at every time step are harvest and wait, and as
such the problem of maximizing the stand value is a optimal stopping problem due to the
binary choice. The dynamic programming method is based on splitting decisions in parts
that comprise a sequence in time, and it aims to find the optimal path of decisions. The
idea behind this decomposition is stated in Bellman’s Principle of Optimality (Bellman,
1966):

”An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state re-
sulting from the first decision.”.

In other words, the principle suggest to consider the decision at time t separately from
all later decisions. The result of this decomposition is formally stated in the Bellman
equation, which relates the value at time t to the value at time t + 1. In the forestry set-
ting, harvesting yields an immediate payoff Ω(Pt, Qt) = (Pt−C)Qt, which is commonly
referred to as as the termination payoff. By waiting, the option to harvest remains alive,
which is referred to as the continuation value, and a similar choice is available one time
step ahead. By lettingEt denote the expectation calculated using the information available
at time t the Bellman equation can be written as:

V (Pt, Qt) = max

{
Ω(Pt, Qt),

1

1 + r
Et
[
V (Pt+1, Qt+1)

]}
, (4.1)

where r is the appropriate one period discount rate. Due to the dependence of V (Pt, Qt) on
the values one step ahead, future periods must be evaluated first. Assuming there is a finite
time horizon T , we can start at the end and work backward. In this specific application
to forestry, it is reasonable to assume a finite horizon due to the eventual decline of tree
growth rate, which prohibits postponing harvest indefinitely. At time T there is presumably
no value gained from waiting, and therefore the trees are harvested if prices are sufficiently
high. Assuming there is a single forest rotation, and ignoring any alternative value for the
land, the value at time T is given by:

V (PT , QT ) = max
{

Ω(PT , QT ), 0
}

(4.2)

Subsequently, the value can be calculated at time T − 1 as:

V (PT−1, QT−1) = max

{
Ω(PT−1, QT−1),

1

1 + r
Et
[
V (PT , QT )

]}
, (4.3)

which in turn enables calculation of V (PT−2, QT−2) and so on, until V (P0, Q0) is reached,
which is the present value of the forest stand.
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4.2 The Binomial Model
In general, the price of timber is assumed to be governed by a continuous stochastic pro-
cess. However, in practice, the forestry manager does not observe continuous prices but
rather monthly or daily. Therefore, a discrete approximation of the stochastic price pro-
cess is not only reasonable, but also reflects reality more accurately. The binomial model
discretizes the stochastic price process using a binomial tree where the nodes represent
potential future prices. Suppose the price starts at P0. In the next time period it will either
increases by a proportionate amount u or decrease by a proportionate amount d. The prob-
ability of an up move is πu, and the probability of a down move is 1− πu as illustrated in
Figure 4.1. The choice of parameters, u, d, and πu, depend on the stochastic process.

A stochastic process commonly used to model economic and financial variables is GBM
(Dixit et al., 1994), which is widely used in the forestry economics literature (Thomson
(1992) and Insley (2002)). The price of timber Pt is then assumed to satisfy the following
stochastic differential equation:

dPt = αPtdt+ σPtdzt, (4.4)

where α ≥ 0 is the percentage drift rate, σ ≥ 0 is the percentage volatility, and dzt is
the increment to a Wiener process at time t. By selecting appropriate parameters for the
binomial model, (4.4) can be approximated in discrete time. The parameters suggested by
Cox et al. (1979) are:

u = eσ
√

∆t, (4.5)

d =
1

u
, (4.6)

πu =
eα∆t − d
u− d

, (4.7)

where ∆t is the size of the time steps. By letting ∆t → 0 the binomial tree converges to
(4.4). Note that due to the reciprocal magnitude of the up and down factors ((4.5), (4.6))
the tree is recombining. As a result, the number of nodes increases linearly with the num-
ber of time steps as opposed to exponentially. This makes the problem tractable even when
the number of time steps is large.

Subsequent to constructing the price tree, a second tree is created where the nodes rep-
resent the option values at the various time steps. The value tree is populated using the
dynamic programming approach outlined in Section 4.1. In the following, I denote the
nodes of the price tree by Pt,j and the nodes of the value tree by Vt,j , where t is a posi-
tive integer indicating the time step and j is a positive integer indicating the number of up
moves leading to node t, j as illustrated in Figure 4.2. Furthermore, let Qt be the deter-
ministic volume of timber available for harvest at time t measured in cubic meters (m3),
and C a constant harvesting cost per m3.
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u2P0

uP0

P0 udP0

dP0

d2P0

πu

1− πu

Figure 4.1: Binomial price tree with two time steps

2, 2

1, 1

0, 0 2, 1

1, 0

2, 0

Figure 4.2: Notation used to denote the nodes

The Bellman equation introduced in Section 4.1 can be formulated using the prices and
transition probabilities of the binomial tree as:

V (Pt,j , Qt) = max

{
(Pt,j − C)Qt,

e−r∆t
[
πuV (Pt+1,j+1, Qt+1) + (1− πu)V (Pt+1,j , Qt+1)

]}
,

t ∈ Z : 0 ≤ t < T, j ∈ Z : 0 ≤ j ≤ t,

(4.8)

where r is an appropriate discount rate, and u, d and πu are the parameters given by (4.5),
(4.6), and (4.7), respectively. The first argument of the max function is value of immediate
harvest, and the second is the expected value of delaying harvest discounted by the factor
e−r∆t. For a given price Pt,j and available quantityQt harvest is chosen if the termination
payoff exceeds the expected continuation value. The present value, V (P0, Q0) is obtained
using backwards recursion from the finite horizon T . At the finite horizon, the value of the
terminal nodes are given by:

V (PT,j , QT ) = max
{

(PT,j − C)QT , 0
}
, j ∈ Z : 0 ≤ j ≤ T (4.9)

The recursion proceeds by using (4.8) until t = 0 is reached, and V (P0, Q0) is obtained.
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4.3 The Trinomial Model
The trinomial model is an extension of the binomial model, and is conceptually similar.
The trinomial model provides an extra degree of freedom by allowing three possible move-
ments of the price at each node. As a result, more complex stochastic processes including
MR can be approximated. At each node the price can move up by a proportional amount
u, remain the same, or move down by a proportional amount d. Similar to in the binomial
model, we require d = 1

u to ensure the tree is recombining. The corresponding transition
probabilities are denoted by πu, πm and πd, respectively. The general form of the tree for
two time steps is illustrated in Figure 4.3.

u2P0

uP0 uP0

P0 P0 P0

dP0 dP0

d2P0

πu

πm

πd

Figure 4.3: Trinomial price tree

The jump sizes and corresponding transition probabilities depend on the specific stochas-
tic process approximated. Subsection 4.3.1 presents the setup for GBM, and Subsection
4.3.2 introduces the more complex setup used to approximate MR.
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4.3.1 Geometric Brownian Motion
Suppose the continous time stochastic process is GBM. Again we discretize (4.4), however
to accommodate three branches we view a single step on the trinomial tree as a combina-
tion of two steps on the binomial tree of Section 4.2. Thus, the parameters for the trinomial
tree becomes:

u = eσ
√

2∆t, (4.10)

d =
1

u
, (4.11)

πu =

(
e
α∆t

2 − e−σ
√

∆t
2

eσ
√

∆t
2 − e−σ

√
∆t
2

)2

, (4.12)

πd =

(
eσ
√

∆t
2 − eα∆t

2

eσ
√

∆t
2 − e−σ

√
∆t
2

)2

, (4.13)

πm = 1− πu − πd (4.14)

Note that the choice of parameters is not unique, and there exists other choices which
also ensure convergence to (4.4) as ∆t → 0. For instance, Hull (2003) demonstrates that
by letting u = eσ

√
3∆t, d = 1/u and πm = 2/3, the trinomial tree model is equivalent

to an explicit finite difference approach. In general, any parameterization which ensures
that the expected change and variance over a time step in the trinomial tree matches that
of (4.4), and results in valid transition probabilities can be used.

Once the stochastic price process is discretized, the dynamic programming approach is
used to solve for the stand value. The Bellman equation for the trinomial model is formu-
lated as:

V (Pt,j , Qt) = max

{
(Pt,j − C)Qt,

e−r∆t
[
πuV (Pt+1,j+1, Qt+1) + πmV (Pt+1,j , Qt+1)

+ πdV (Pt+1,j−1, Qt+1)
]}
,

t ∈ Z : 0 ≤ t < T, j ∈ Z : −t ≤ j ≤ t,

(4.15)

where Pt,j is the price of timber at node t, j, Qt is the quantity available, r is the discount
rate, and πu, πd, πm are the transition probabilities given by (4.12), (4.13), and (4.14),
respectively. The values at the terminal nodes are given by:

V (PT,j , QT ) = max
{

(PT,j − C)QT , 0
}
, j ∈ Z : −T ≤ j ≤ T (4.16)

The recursion starts by calculating the terminal nodes using (4.16), and proceeds back-
wards using (4.15).
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4.3.2 Mean Reversion
Although GBM is commonly used in the forestry economics literature it embodies certain
unrealistic implications for timber prices. For instance, the price is allowed to rise indef-
initely. As noted by Schwartz (1997), basic microeconomic reasoning suggest that when
the price of a commodity is high, new producers will enter the market, thus increasing the
supply and lowering the prices. Similarly, when prices fall, producers will exit and as a
result prices will increase. In the short-run, timber prices might fluctuate due to adverse
weather conditions or one-off events such as wildfires. However, in the long-run the price
ought to stabilize at the marginal cost of harvesting. Therefore, timber prices might be
more appropriately described by a mean reverting process.

A simple yet reasonable mean reverting process is the Ornstein-Uhlenbeck process:

dPt = η(µ− Pt)dt+ σdzt, (4.17)

where η is the speed of reversion, µ is the equilibrium price, that is the level to which
P tends to revert, σ ≥ 0 is the volatility, and dzt is the increment to a Wiener process
at time t. To approximate (4.17) in discrete time using a trinomial tree it is necessary to
modify the standard branching pattern used everywhere in the tree for GBM. By allowing
the branching pattern to vary depending on the price, a more complex tree geometry can
be achieved. For most of the nodes the typical branching pattern is appropriate, which I
refer to as branching pattern A. Branching pattern A is shown in Figure 4.4. To capture
mean reversion we restrict prices from decreasing further when they are low relative to the
equilibrium by using branching pattern B, which is shown in Figure 4.5. Similarly, when
the price is relatively high compared to the equilibrium, they are restricted from increasing
further by employing branching pattern C, which is shown in Figure 4.6.

Figure 4.4: Branching pattern A

Figure 4.5: Branching pattern B

19



Figure 4.6: Branching pattern C

The branching pattern is determined based on the the number of up and down moves that
have occurred on the path from the start node to the current node. Moreover, how quickly
the branching pattern switches depend on the speed of reversion, and will become more
clear below.

The first step in approximating the MR process is to construct a separate tree for the vari-
able P ′t which is initially 0, and follows the process

dP ′t = −ηP ′tdt+ σdzt, (4.18)

where η is the speed of reversion, σ ≥ 0 is the volatility, and dzt is the increment to a
Wiener process at time t. Hull (2003) suggests the relationship between the space and
time step to be:

∆P = σ
√

3∆t (4.19)

Note that this differs from the trees constructed for GBM where proportionate jump sizes
are set as the jumps are now additive. In the following, let node t, j denote the node
reached after t time steps and j up moves, where t again is a positive integer, and j is a
positive or negative integer. This is similar to the trinomial tree for GBM, but note the
subtle difference in how j is now allowed to be negative compared to how it was defined
as a positive integer in the binomial setup. This enables us to more easily define the switch
between branching patterns in the following.

The tree for P ′t is constructed by initially following branching pattern A. Assuming η > 0,
the branching switches to pattern C when j reaches the integer jmax, and to pattern B
when j reaches the integer jmin. As suggested by Hull (2003), setting jmax = d 0.184

η∆t e
1

ensures valid transition probabilities. Further, we set jmin = −jmax in order to have a
symmetrical tree which makes the tree construction process more efficient. The transition
probabilities πu, πm, and πd are found by matching the expected change and variance of
the Ornstein-Uhlenbeck process (4.18) to the expected change and variance over time step
∆t in the tree. The expected change of P ′t is −ηP ′t∆t and the variance is σ2∆t. Thus,
for branching pattern A we require the expected change and variance over time step ∆t to
match:

πAu ∆P − πAd ∆P = −ηj∆P∆t, (4.20)

πAu ∆P 2 + πAd ∆P 2 = σ2∆t+ η2j2∆P 2∆t2, (4.21)

and that the probabilities sum to unity:

πAu + πAm + πAd = 1 (4.22)
1dxe denotes the ceiling function which takes a real valued number, x, and returns the least integer greater

than or equal to x.
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Using ∆P = σ
√

3∆t, Hull (2003) shows that the equations are satisfied by setting

πAu =
1

6
+

1

2
(η2j2∆t2 − ηj∆t), (4.23)

πAm =
2

3
− η2j2∆t2 (4.24)

πAd =
1

6
+

1

2
(η2j2∆t2 + ηj∆t) (4.25)

Similarly, matching the expected change and variance over time step ∆t for branching
pattern B yields:

πBu =
1

6
+

1

2
(η2j2∆t2 + ηj∆t), (4.26)

πBm = −1

3
− η2j2∆t2 − 2ηj∆t, (4.27)

πBd =
7

6
+

1

2
(η2j2∆t2 + 3ηj∆t) (4.28)

Lastly, for branching pattern C:

πCu =
7

6
+

1

2
(η2j2∆t2 − 3ηj∆t), (4.29)

πCm = −1

3
− η2j2∆t2 + 2ηj∆t, (4.30)

πCd =
1

6
+

1

2
(η2j2∆t2 − ηj∆t) (4.31)

Figure 4.7 shows three time steps of a trinomial tree constructed for P ′t with jmax = 2,
and illustrates how the branching switches from pattern A to pattern B at the second time
step when the node with value −2∆P is reached, and similarly from pattern A to pattern
C at the node with value 2∆P .

2∆P 2∆P

∆P ∆P ∆P

0 0 0 0

−∆P −∆P −∆P

−2∆P −2∆P

Figure 4.7: Trinomial tree for P ′ with jmax = 2
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The trinomial tree for P ′t is subsequently transformed into a tree for our variable of interest,
Pt. This is done by displacing the nodes P ′t,j to adjust for the proper drift. In Hull (2003)
the trinomial tree is constructed for an interest rate, and the purpose of the displacement is
to fit the initial term structure by using the available forward rates. Kijima and Nagayama
(1994) argue that the displacement is simply the expected value of the future interest rate,
which makes the tree building process much more efficient. In our case, the underlying
variable is the price of timber, and displacing the nodes of the tree using the expected
value of the Ornstein-Uhlenbeck process is, therefore, reasonable. The expected value of
the Ornstein-Uhlenbeck process in the discrete model form is given by Dixit et al. (1994):

E[Pt|Pt−1] = µ+ (Pt−1 − µ)e−η∆t (4.32)

The tree for Pt is thus obtained by setting the value of each node to Pt,j = P ′t,j +
E[Pt|Pt−1]. That is, each node P ′t,j is displaced by an amount E[Pt|Pt−1], which ac-
counts for the proper mean reverting drift. The resulting tree is then used in combination
with the dynamic programming approach to calculate the option values. A key difference
compared to the dynamic programming on the GBM tree is the dependence of the tran-
sition probabilities on the nodes. As such, the Bellman equation can be seen to take a
different form depending on the value of j and can be formulated as:

V (Pt,j , Qt) =


V A(Pt,j , Qt), if jmin < j < jmax

V B(Pt,j , Qt), if j = jmin

V C(Pt,j , Qt), if j = jmax,

(4.33)

where

V A(Pt,j , Qt) = max

{
(Pt,j − C)Qt, e

−r∆t[πAu V (Pt+1,j+1, Qt+1)

+ πAmV (Pt+1,j , Qt+1) + πAd V (Pt+1,j−1, Qt+1)
]}
,

(4.34)

V B(Pt,j , Qt) = max

{
(Pt,j − C)Qt, e

−r∆t[πBu V (Pt+1,j+2, Qt+1)

+ πBmV (Pt+1,j+1, Qt+1) + πBd V (Pt+1,j , Qt+1)
]}
,

(4.35)

V C(Pt,j , Qt) = max

{
(Pt,j − C)Qt, e

−r∆t[πCu V (Pt+1,j , Qt+1)

+ πCmV (Pt+1,j−1, Qt+1) + πCd V (Pt+1,j−2, Qt+1)
]}
,

(4.36)

and the transition probabilities are given by (4.23) through (4.31). Note that the expression
for the value of immediate harvest is the same in (4.34), (4.35), and (4.36). However, the
expression for the expected continuation value differs due to the specific transition prob-
abilities involved, and the prices that can be transitioned to over the next time step. For
instance, if the branching pattern emanating from a specific node is pattern A, (4.34) is
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used and the price one step ahead might increase, decrease or remain the same. In con-
trast, if the price is already well below the equilibrium level, branching pattern B emanates
from the node. As such (4.35) is used, and the price one step ahead can either be higher or
remain the same, but it is restricted from going lower.

The dynamic programming uses backwards recursion from the finite horizon T as before.
The number of terminal nodes depend on the value of jmax and T . If T is sufficiently
high, then the price will have reached the ceiling implied by jmax and floor implied by
jmin, and there are 2jmax+1 terminal nodes. Otherwise, there are 2T +1 terminal nodes.
The values at the terminal nodes are given by the maximum of harvesting and abandoning
as before:

V (PT,j , QT ) = max
{

(PT,j − C)QT , 0
}
,

j ∈ Z : −max{jmax, T} ≤ j ≤ max{jmax, T}
(4.37)

The recursion proceeds using (4.33) until the single node at t = 0 is reached.
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4.4 The Multiple Rotations Problem

The multiple rotations problem extends on the single rotation problem addressed in the
preceding sections. The difference arise from the choice made available to the forestry
manager after harvesting. Once the trees are harvested, a new choice has to be made be-
tween replanting and abandoning. Suppose the cost of replanting is R, and ignoring any
abandonment value, the solution is again by approximating the timber prices in discrete
time and solving for the option value using dynamic programming. In this case, the imme-
diate payoff from harvesting depends on the value of subsequent rotations. As such, this is
a compound real option. The forestry manager has the option at any time step to exercise
by paying the harvesting cost, and receive the value of the timber. However, by paying the
additional replanting cost, the option to harvest the second tree rotation is made available,
and this continues in perpetuity. I address the multiple rotation problem by using a naive
approach in Subsection 4.4.1. The naive approach recognizes the similarity between the
harvest decision with multiple rotations and the compound American call option, and con-
sequently applies the methodology introduced for the single rotation recursively. Although
correct, the approach is computationally expensive. Therefore, a heuristic approach is de-
veloped in Subsection 4.4.2, which simplifies calculations significantly.

4.4.1 The Compound Option Approach

Geometric Brownian Motion

Suppose the price of timber Pt follows GBM, and is approximated using the trinomial tree
presented in Subsection 4.3.1. Let Pt,j denote the price of timber at node t, j, and let Qk
denote the available timber k time steps into the current rotation. As such, initiating a new
rotation by replanting causes Qk to transition to Q0. Furthermore, as there could be an
infinite number of rotations, a finite maximum is set to be Z ∈ Z+ to enable backwards
recursion. A general rule of thumb in forestry is that the value of any future rotations are
roughly 5% − 15% of the initial rotation due to the effect of discounting. Therefore, it is
reasonable to restrict Z in the compound option approach to a low number, say 2 or 3. A
restriction is put on the rotation age by imposing the constraint that k ∈ Z : 0 ≤ k ≤ K.
This is done in order to establish a finite horizon, and solve the problem by dynamic
programming. The naive approach to calculate the value involves comparing three dif-
ferent values at each step. The first is the value of immediate harvest and abandonment.
The second is the value of immediate harvest and subsequent replanting. The third is the
discounted expected continuation value achieved by delaying harvest. Consequently, the
Bellman equation can be formulated as:

V (Pt,j , Qk, z) = max

{
(Pt,j − C)Qk,

(Pt,j − C)Qk −R+ V (Pt,j , Q0, z + 1),

e−r∆t
[
πuV (Pt+1,j+1, Qk+1, z) + πmV (Pt+1,j , Qk+1, z)

+ πdV (Pt+1,j−1, Qk+1, z)
]}
,

(4.38)
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where z is a positive integer denoting the current rotation number, and πu, πd, and πm are
given by (4.12), (4.13), and (4.14), respectively. The first argument to the max function is
(Pt,j−C)Qk and represents the value of immediate harvest, and subsequent abandonment.
The second argument, (Pt,j − C)Qk − R + V (Pt,j , Q0, z + 1), is the value of immedi-
ate harvest, and subsequent replanting. By replanting, the option to harvest the following
rotation becomes available and is captured by the V (Pt,j , Q0, z + 1) term. The last argu-
ment is the discounted expected continuation value. Hence, to calculate V (Pt,j , Qk, z),
the value of subsequent nodes must be calculated first in addition to the option values of
any subsequent rotations. Therefore, the backwards recursion begins at the final rotation
Z, where the value at the end of the final rotation is given by the maximum of harvesting
or abandoning, and no subsequent replanting is allowed. This value is given by:

V (Pt,j , QK , Z) = max
{

(Pt,j − C)QK , 0
}
,

t ∈ Z : 0 ≤ t ≤ T, j ∈ Z : −T ≤ j ≤ T
(4.39)

The recursion proceeds backwards to calculate the value at all nodes of the final rotation
Z where the choice is either to harvest or wait:

V (Pt,j , Qk, Z) = max

{
(Pt,j − C)Qk,

e−r∆t
[
πuV (Pt+1,j+1, Qk+1, Z) + πmV (Pt+1,j , Qk+1, Z)

+ πdV (Pt+1,j−1, Qk+1, Z)
]}
,

t ∈ Z : 0 ≤ t ≤ T, j ∈ Z : −t ≤ j ≤ t, k ∈ Z : 0 ≤ k < K,

(4.40)

which in turn enables calculation of all the terminal nodes of prior rotations:

V (Pt,j , QK , z) = max
{

(Pt,j − C)QK ,

(Pt,j − C)QK −R+ V (Pt,j , Q0, z + 1)
}
,

t ∈ Z : 0 ≤ t ≤ T, j ∈ Z : −t ≤ j ≤ t, z ∈ Z : 0 ≤ z < Z,

(4.41)

The recursion proceeds via (4.38) until the single node V (P0,0, Q0, 0) is reached.

An intuitive way to view the above is through the simpler methodology presented for the
single rotation case in Section 4.3.1, with the modification that whenever the decision to
harvest is considered, a new single rotation model is initiated from the price at the current
node to calculate the option value of a potential next rotation. This continues until all Z
rotations have been considered.
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Mean Reversion

Suppose the price of timber Pt follows MR, and is approximated using the trinomial tree.
Now let Pt,j be the price of timber at time t after j up jumps, and accounting for the
proper drift as described by the MR trinomial tree presented in Subsection 4.3.2. As
above, Qk denotes the available timber k steps into the current rotation, and z the current
rotation number. As before, the constraint that Z and K is finite is imposed. As such T is
implicitly defined because the largest number of time steps that can possibly occur in the
model is Z rotations of age K. The difference in formulating the MR model compared
to the previous GBM model is due to the dependence of the transition probabilities on j,
and the different branching patterns, similarly to the single rotation case. I formulate the
Bellman equation as:

V (Pt,j , Qk, z) =


V A(Pt,j , Qk, z), if jmin < j < jmax

V B(Pt,j , Qk, z), if j = jmin

V C(Pt,j , Qk, z), if j = jmax,

(4.42)

where

V A(Pt,j , Qk, z) = max

{
(Pt,j − C)Qk,

(Pt,j − C)Qk + V (Pt,j , Q0, z + 1),

e−r∆t
[
πAu V (Pt+1,j+1, Qk+1, z)

+ πAmV (Pt+1,j , Qk+1, z) + πAd V (Pt+1,j−1, Qk+1, z)
]}
,

(4.43)

V B(Pt,j , Qk, z) = max

{
(Pt,j − C)Qk,

(Pt,j − C)Qk + V (Pt,j , Q0, z + 1),

e−r∆t
[
πBu V (Pt+1,j+2, Qk+1, z)

+ πBmV (Pt+1,j+1, Qk+1, z) + πBd V (Pt+1,j , Qk+1, z)
]}
,

(4.44)

V C(Pt,j , Qk, z) = max

{
(Pt,j − C)Qk,

(Pt,j − C)Qk + V (Pt,j , Q0, z + 1),

e−r∆t
[
πCu V (Pt+1,j , Qk+1, z)

+ πCmV (Pt+1,j−1, Qk+1, z) + πCd V (Pt+1,j−2, Qk+1, z)
]}
,

(4.45)

and the transition probabilities are given by (4.23) through (4.31). The recursion proceeds
backwards from the terminal nodes of the final rotation:

V (Pt,j , QK , Z) = max
{

(Pt,j − C)QK , 0
}
,

t ∈ Z : 0 ≤ t ≤ T,
j ∈ Z : −max{jmax, t} ≤ j ≤ max{jmax, t},

(4.46)
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via the prior nodes of the final rotation:

V (Pt,j , Qk, Z) =


V A(Pt,j , Qk, Z), if jmin < j < jmax

V B(Pt,j , Qk, Z), if j = jmin

V C(Pt,j , Qk, Z), if j = jmax,

(4.47)

where

V A(Pt,j , Qk, Z) = max

{
(Pt,j − C)Qk,

e−r∆t
[
πAu V (Pt+1,j+1, Qk+1, Z)

+ πAmV (Pt+1,j , Qk+1, Z) + πAd V (Pt+1,j−1, Qk+1, Z)
]}
,

(4.48)

V B(Pt,j , Qk, Z) = max

{
(Pt,j − C)Qk,

e−r∆t
[
πBu V (Pt+1,j+2, Qk+1, Z)

+ πBmV (Pt+1,j+1, Qk+1, Z) + πBd V (Pt+1,j , Qk+1, Z)
]}
,

(4.49)

V C(Pt,j , Qk, Z) = max

{
(Pt,j − C)Qk,

e−r∆t
[
πCu V (Pt+1,j , Qk+1, Z)

+ πCmV (Pt+1,j−1, Qk+1, Z) + πCd V (Pt+1,j−2, Qk+1, Z)
]}
,

(4.50)

and next via the final nodes of prior rotations:

V (Pt,j , QK , z) = max
{

(Pt,j − C)QK ,

(Pt,j − C)QK −R+ V (Pt,j , Q0, z + 1)
}
,

t ∈ Z : 0 ≤ t ≤ T, j ∈ Z : −t ≤ j ≤ t, z ∈ Z : 0 ≤ z < Z,

(4.51)

and proceeds using (4.42) until V (P0,0, Q0, 0) is reached.
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4.4.2 The Heuristic Option Approach
A challenge with compound option approach is that the number of nodes that needs to
be evaluated grows exponentially with Z. To put it into perspective, consider the single
rotation case with 100 time steps. The number of nodes are then 1 + 3 + 5 + ...+ 201 =
101(1+201)/2 = 10, 2012. In the compound option approach each of these 10,201 nodes
requires the calculation of a complete new trinomial tree consisting of 10,201 nodes in
order to evaluate the value of the particular node in the first tree, and in turn each of these
requires a 10,201 nodes to be evaluated. Even with the number of rotations restricted to,
say Z = 3, the number of nodes in the problem space is 10, 2013 = 1, 061, 520, 150, 601,
compared to the modest 10, 201 in the single rotation case. Consequently, I propose a
heuristic approach in the following where the value of the first rotation is calculated using
the single rotation option approach, and the value of subsequent rotations are approxi-
mated using the deterministic Faustmann value (Faustmann, 1849). This simplification
significantly reduces the computational complexity of valuation in the multiple rotations
case.

Geometric Brownian Motion

Suppose the stochastic process is GBM. Then the Bellman equation for the heuristic ap-
proach is formulated by incorporating the value of any rotations after the initial one by
using the Faustmann value:

V (Pt,j , Qt) = max

{
(Pt,j − C)Qt, (Pt,j − C)Qt + F ∗(Pt,j)−R,

e−r∆t
[
πuV (Pt+1,j+1, Qt+1) + πmV (Pt+1,j , Qt+1)

+ πdV (Pt+1,j−1, Qt+1)
]}
,

(4.52)

where Pt,j is the price of timber at node t, j, Qt is the quantity available, r is the discount
rate, and πu, πd, πm are the transition probabilities given by (4.12), (4.13), and (4.14),
respectively. F ∗(·) denotes the Faustmann value. The Faustmann value of a rotation of
length t is given by:

F (t;P ) =
(P − C)Q(t)−R

ert − 1
, (4.53)

and F ∗(·) is given by maximizing (4.53) with respect to t:

F ∗(P ) = max
T

{
(P − C)Q(T )−R

erT − 1

}
(4.54)

The option at the final age involves the choice between harvesting, and subsequently be-
tween replanting or not. The values at the final nodes can thus be expressed as:

V (PT,j , QT ) = max
{

(PT,j − C)QT , 0, F
∗(PT,j)−R

}
,

j ∈ Z : −T ≤ j ≤ T,
(4.55)

2Initially there is a single node, and in the second time step there are 3 nodes, in the third there are 5 and so
on. This forms an arithmetic progression where the difference between any two successive numbers is 2. The
sum of the sequence is found by taking the the number of terms and multiplying by the sum of the first and last
term and dividing by 2.
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and the problem solved by backwards recursion using (4.52). Note, that if the price at T
is sufficiently low F ∗(PT,j) < R, and a new rotation will not be initiated. In the Faust-
mann formula, replanting is required at the end of each rotation. The heuristic approach
thus takes into consideration the value of flexibility in the decision between replanting or
abandoning.

Mean Reversion

The formulation when prices follow MR are similar, but as before, the transition probabili-
ties in the MR tree are dependent on the node, and the prices transitioned to. Consequently,
the Bellman equation is formulated as:

V (Pt,j , Qt) =


V A(Pt,j , Qt), if jmin < j < jmax

V B(Pt,j , Qt), if j = jmin

V C(Pt,j , Qt), if j = jmax,

(4.56)

where

V A(Pt,j , Qt) = max

{
(Pt,j − C)Qt, (Pt,j − C)Qt + F ∗(Pt,j)−R,

e−r∆t
[
πAu V (Pt+1,j+1, Qt+1)

+ πAmV (Pt+1,j , Qt+1) + πAd V (Pt+1,j−1, Qt+1)
]}
,

(4.57)

V B(Pt,j , Qt) = max

{
(Pt,j − C)Qt, (Pt,j − C)Qt + F ∗(Pt,j)−R,

e−r∆t
[
πBu V (Pt+1,j+2, Qt+1)

+ πBmV (Pt+1,j+1, Qt+1) + πBd V (Pt+1,j , Qt+1)
]}
,

(4.58)

V C(Pt,j , Qt) = max

{
(Pt,j − C)Qt, (Pt,j − C)Qt + F ∗(Pt,j)−R,

e−r∆t
[
πCu V (Pt+1,j , Qt+1)

+ πCmV (Pt+1,j−1, Qt+1) + πCd V (Pt+1,j−2, Qt+1)
]}
,

(4.59)

and the transition probabilities are given by (4.23) through (4.31). The expression for the
values at the terminal nodes are similar to under GBM:

V (PT,j , QT ) = max
{

(PT,j − C)QT , 0, F
∗(PT,j)−R

}
,

j ∈ Z : −max{jmax, T} ≤ j ≤ max{jmax, T},
(4.60)
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Chapter 5
Results and Discussion

This chapter is split into two sections; the results from a single forest rotation is introduced
in Chapter 5.1, and the results from multiple forest rotations is presented in Chapter 5.2.

5.1 Single Rotation Valuation
As a point of departure I follow Insley (2002), and compare the option value under GBM
and MR to the static harvest value for a single forest rotation in Chapter 5.1.1 and Chapter
5.1.2. I do this in order to demonstrate the applicability of the trinomial model, and con-
firm that the model behaves as expected. Next, in Chapter 5.1.3 the parameters of a GBM-
and MR-process is estimated from historical price data, and the trinomial model is applied
to a “real-world” scenario assuming a single forest rotation.

In the following the discount rate is set to r = 0.04. This follows the rate used in expro-
priation cases in Norway (NORSKOG, 2015). Most private forestry practitioners employ
a discount rate between 2.5% and 4% in their internal calculations (SkogsNorge, 2014),
where the higher rates is used when the investment perspective is long, as is the case with
a freshly planted forestry stand. Furthermore, the cost of harvesting is set to 150 NOK/m3,
which was provided on a confidential basis and assumed to reflect a typical harvest cost
in most parts of Norway. The growth function is given by (3.1). The step size in the tree
models is set to 1 year, and the finite horizon to 100 years. Decreasing the step size or
increasing the finite horizon was found to have a negligible impact on the results.
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5.1.1 Geometric Brownian Motion
Figure 5.1 shows the value of the option to harvest as a function of the timber price for dif-
ferent stand ages. The solid line represents the value of immediate harvest, and the dashed
line represents the value under GBM with volatility σ = 0.05, and drift rate α = 0.01.
Critical prices are indicated on the plots where they exist. The critical price is the level at
which harvest would be optimal for a specific stand age. In other words, should the price
in the given year reach the critical price or any price above it, the stand will be harvested.

There are no critical prices when the stand is less than 50 years old. The option value
line can be seen to above the harvest value everywhere in Figure 5.1a and 5.1b. In year
50, there is a critical price of 717 NOK/m3, which is not indicated in Figure 5.1c as it falls
outside the range of prices that are shown in the plot. The absence of any critical price
in the early years can be attributed to two factors. First, the stand is assumed to follow
a s-shaped curve as evident from the growth function (3.1). As such, the growth is still
rapid when the stand is young, and decreases with time. Therefore, there is incentive for
the forestry manager to delay harvest until the growth has slowed down. Second, under
GBM the timber price is expected to steadily increase over time due to the positive drift
rate and volatility. The uncertainty creates an option value of waiting, which in turn makes
it optimal to wait longer for more information. Therefore, it is optimal to delay harvest
pending a higher price at a later time. When the stand is 60 years, the critical price has
dropped to 293 NOK/m3, meaning that if this price is realized in year 60, the stand will be
harvested. The critical price decreases steadily towards 212 NOK/m3 by year 80, where
the stand has stopped growing by definition of the growth function. If the prices were
assumed to be deterministic, the stand would be harvested in year 80 for any price above
the cost of harvesting, as there is no value in waiting. In contrast, under GBM even when
the price is above the assumed 150 NOK/m3 cost of harvesting, there is incentive to delay
harvest due to the expected price increase, and chance of realizing a sudden price surge
due to the volatility.

It is well established in the financial option literature that an increase in volatility leads
to an increase in option value. Figure 5.2 shows the option value in year 50 as a function
of volatility and timber price. It is clear that an increase in volatility leads to a higher op-
tion value, also in the forestry setting. The effect of increasing volatility is most profound
for a high timber price. This reflects the proportionate volatility in GBM. Moreover, it
is expected that an increase in the drift rate of the GBM process implies a higher option
value. This is confirmed in Figure 5.3, which illustrates the sensitivity of the option to the
drift rate. Similar to the effect of volatility, the increase in option value due to the drift is
most profound for a high timber price, and reflects the nature of the GBM process, where
the drift is proportionate to the price.
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(a) Stand age 35 (b) Stand age 40

(c) Stand age 50 (d) Stand age 60

(e) Stand age 70 (f) Stand age 80

Figure 5.1: Comparison of immediate harvest value against GBM (σ = 0.05, α = 0.01). The
vertical lines indicate critical prices.
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Figure 5.2: Option value in year 50 under GBM as a function of volatility and timber price. The
drift rate is α = 0.01.

Figure 5.3: Option value in year 50 under GBM as a function of drift rate and timber price. The
volatility is σ = 0.05.
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The traditionally prescribed harvest age for a single rotation is the age at which the growth
rate falls below the discount rate (Clark, 2010). Intuitively, once the growth is lower than
the discount rate, the forestry manager is better off selling the timber and achieving a better
return elsewhere. With the growth function used in this article (3.1) the traditional “de-
terministic” harvest age is 42 years. The option model developed in this article is capable
of calculating the expected harvest age simultaneously as calculating the option values in
the trinomial tree. This is done by initially setting the expected harvest age at each final
node to T . Next, the tree is traversed backwards and at each node the expected harvest
age is set to the node’s time step t if harvest is optimal, and to the probability weighted
expected rotation age of all nodes one time step ahead otherwise. This expected harvest
age is analogous to fugit in mathematical finance, which is the expected date to exercise
an American option.

Figure 5.4 shows the expected harvest age under GBM with α = 0.01 for a freshly planted
forest stand. The solid line represents the deterministic harvest age, the dashed line the ex-
pected harvest age when σ = 0.05, and the dotted line represents the expected harvest age
when σ = 0.10. The harvest age under GBM is found to be higher than in the deterministic
case, and it increases with volatility. As the initial price is increased the expected harvest
age gradually falls towards year 49 in the low volatility case, and towards year 50 in the
high volatility case. Intuitively, even when the growth rate has fallen below the discount
rate, there is incentive to delay harvest under GBM as prices are expected to be higher in
the future. Moreover, when the volatility is high the chance of realizing an exceptionally
high price at some point in the future increases, and therefore, the forestry manager has an
postpone harvest. This result would seem to suggest that in practice, many forest stands
are harvested prematurely, based on the assumption of deterministic prices. Clearly, prices
are not deterministic, and hence the option model could be an impactful decision support
tool in forestry if used alongside the more “traditional” harvest rules to ensure economic
efficiency.

Figure 5.4: Comparison of determinstic harvest age against expected harvest age under GBM with
volatility σ = 0.05, and σ = 0.10. The drift rate is α = 0.01.
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5.1.2 Mean Reversion
Figure 5.5 shows the option value under MR with speed of reversion η = 0.05, volatility
σ = 0.05 and the equilibrium µ = 300. The solid line represents the value of immediate
harvest, and the vertical line indicates a critical price.

In contrast to GBM, there is a critical price even in the early years when the forest is
still growing quickly. This reflects that under MR, any prices well above the equilibrium
should be taken advantage of by harvesting immediately before it reverts. Figure 5.5a
shows that the option value significantly exceeds the value of immediate harvest when the
timber price is low in year 35. As the price is increased towards the equilibrium of 300
NOK/m3 the option value falls towards the harvest value, and coincides at 369 NOK/m3.
The critical price eventually declines to 232 NOK/m3 by year 80 as seen in Figure 5.1f.
This critical price is below the equilibrium because the forest has stopped growing, and
the value of waiting until the price eventually reverts to the equilibrium does not outweigh
the opportunity cost of doing so.

Figure 5.6 shows the sensitivity of the option value to volatility and timber price in year
50. The effect of volatility is most profound for prices below the equilibrium. This reflects
that for low prices it is optimal to await a reversion to the equilibrium, and the volatility
might lead to a more rapid reversion. In contrast, when the price is above the equilibrium,
immediate harvest is optimal to ensure a high price before it reverts. Figure 5.7 illustrates
the effect of the speed of reversion on the option value. The option value is most sensitive
to an increase in speed of reversion from a low level. For instance, increasing the speed of
reversion from 0.05 to 0.10 leads to a notable increase in option value. However, increas-
ing the speed from 0.30 to 0.35 has a negligible impact. This is because once the speed of
reversion is sufficiently high, the reversion to the equilibrium is swift, and the opportunity
cost of waiting for any potential price spike in the future is too high to justify delaying
harvest.
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(a) Stand age 35 (b) Stand age 40

(c) Stand age 50 (d) Stand age 60

(e) Stand age 70 (f) Stand age 80

Figure 5.5: Comparison of immediate harvest value against MR with speed of reversion η = 0.05,
σ = 0.05, and µ = 300. The vertical lines indicate critical prices.
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Figure 5.6: Option value in year 50 under under MR as a function of volatility and timber price.
The speed of reversion is η = 0.05 and equilibrium µ = 300.

Figure 5.7: Option value in year 50 under under MR as a function of speed of reversion rate and
timber price. The volatility is σ = 0.05 and equilibrium µ = 300.

38



Figure 5.8 shows the expected harvest age of a freshly planted stand under MR. When
the price of timber is above the equilibrium of µ = 300, the expected rotation age is
higher than under deterministic prices. This is because the price is expected to revert
to the equilibrium in the future, and consequently, the value of delaying harvest is large.
Moreover, the expected harvest age is higher when the speed of reversion is low, compared
to when it is high. This reflects 1) that it takes longer for the price to eventually revert
to the equilibrium, and 2) that any exceptionally high prices realized due to volatility is
likely to persist longer than under a high speed of reversion. For an initial price below the
equilibrium, the expected rotation age is lower than in the deterministic case. Intuitively,
the forestry manager will seek to take advantage of any unusually high prices, and harvest
as soon as the growth has somewhat slowed down. This is in contrast to the GBM case,
where the forestry manager still expects steadily increasing prices, and therefore, delays
harvest. As the initial price is increased, the expected harvest age appears to stabilize at
around 39 years when the speed of reversion is low and around 34 years when the speed
of reversion is high.

Figure 5.8: Comparison of determinstic harvest age against expected harvest age under MR with
speed of reversion η = 0.01, and η = 0.05. The volatility is σ = 0.05.
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5.1.3 Comparing Geometric Brownian Motion and Mean Reversion
Using Historical Price Data

In order to assess implications of GBM and MR, as well as provide an application of the
real options model to a real-world scenario, I compare the option value and critical price of
the two using parameters estimated from the historical prices of Norway spruce introduced
in Chapter 3.2.

I begin by employing the Augmented Dickey-Fuller (ADF) test to check for the the pres-
ence of a unit root in the historical prices as a means to obtain insights into the proper
model specification. The presence of a unit root implies that GBM is more appropriate,
whereas the absence of a unit root implies a non-stationary process such as MR.

Assuming that prices follow GBM:

dPt = αPtdt+ σPtdzt, (5.1)

it follows from Itô’s lemma that the logarithm of prices follow Brownian motion with drift.
Thus, we have that

dpt = (α− 1

2
σ2)dt+ σdzt (5.2)

where pt denotes the logarithm of prices at time t. This can be approximated in discrete
time as

pt − pt−1 = (α− 1

2
σ2)∆t+ σεt

√
∆t (5.3)

where εt ∼ N(0, 1). The ADF test involves running the regression

pt − pt−1 = a+ bt+ γpt−1 + δ1∆pt−1 + ...+ δl−1∆pt−l+1 + εt, (5.4)

where a = (α − 1
2σ

2)∆t, b = σεt
√

∆t, and l denotes the lag order of an autoregressive
process. The inclusion of lagged variables is done to account for serial correlation. The
lag order has to be predetermined when applying the test. For the price data for Norway
spruce, the lag length is set to 1, which is found to minimize the Akaike information
criterion. Consequently, the test runs the regression:

pt − pt−1 = a+ bt+ γpt−1 + δ1∆pt−1 + εt, (5.5)

where a = (α − 1
2σ

2)∆t, and b = σεt
√

∆t. The ADF test is then carried out under the
null hypothesis H0 : γ = 0 (non-stationary) against the alternative hypothesis H1 : γ < 0
(stationary).

The ADF test statistic is -2.016 and the critical values are -4.066, -3.462, and -3.157 for
the 1%, 5%, and 10% significance level, respectively. Hence, I cannot reject H0 at any of
the significance levels. Although I cannot reject the null hypothesis, it does not prove that
the alternative hypothesis is correct. Hence, I proceed to estimate the parameters of both
GBM and MR.
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To model the price using GBM the drift rate α and volatility σ needs to be estimated.
I do this using the ratio between Pt and Pt−1. This ratio is lognormally distributed (Hull,
2003). Consequently, the sample mean of the normal distribution is given by:

P̄ =
1

n− 1

n−1∑
t=1

log
( Pt
Pt−1

)
, (5.6)

and the sample standard deviation by:

σ =

√√√√ 1

n− 2

n−1∑
t=1

(
log(

Pt
Pt−1

)− P̄
)2

(5.7)

The standard deviation is used as an estimator for the volatility, and the drift is given by:

α = P̄ +
1

2
σ2 (5.8)

The obtained estimates are annualized and I find that α = 0.006, and σ = 0.067.

Next, I estimate the parameters of a MR process, specifically the Ornstein-Uhlenbeck
process:

dPt = η(µ− Pt)dt+ σdzt (5.9)

where η is the speed of reversion, µ is equilibrium price, σ ≥ 0 is the volatility, and dzt is
the increment to a Wiener process at time t.

The continous time (5.9) can be approximated in discrete time as

Pt − Pt−1 = ηµ∆t− ηPt−1∆t+ σεt
√

∆t (5.10)

where εt ∼ N(0, 1). Letting a = ηµ∆t, and b = −η∆t, (5.10) can be rewritten as

Pt − Pt−1 = a+ bPt−1 + εt (5.11)

where εt ∼ N(0, 1). To estimate the parameters, the values Pt − Pt−1 are regressed
against the values Pt−1, and the parameters are given by: µ = −a/b, η = −b/∆t, and
σ = σε/∆t, where σε is the standard deviation from the regression. As the historical data
are monthly, I set ∆t = 1/12, and obtain the annual parameters: η = 0.325, µ = 396 and
σ = 0.067.

In comparing the option value under GBM and MR, the growth function is again given
by (3.1), the cost of harvesting is set to 150 NOK/m3, and the discount rate is 4% as be-
fore. Table 5.1 shows the critical prices for various stand ages, and Figure 5.9 presents the
option values as a function of initial prices. The value under MR significantly exceeds the
GBM value when prices are below the equilibrium for all stand ages, and the difference is
largest for the lower prices. This is due to the strong mean reversion at prices low relative
to the equilibrium. Notably, even for an initial price of zero, the option value is non-zero
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under MR. In contrast, the option value is zero under GBM for an initial price of zero.
This reflects the different nature of the two stochastic processes. Specifically, under MR,
the price is expected to revert to the equilibrium, even if it hits zero. However, under GBM
it is evident from the GBM equation (4.4), that if the price ever reaches zero, it will remain
there forever, and hence, lead to a worthless option.

In the early years, the option value is higher under MR than GBM for prices below the
equilibrium. Moreover, there are no critical prices under GBM in the early years. This is
due to the long perspectives in forestry, and the large impact of the drift on the valuation
and harvesting decision. In Figure 5.9c, it can be seen that the critical price under GBM
has declined below the critical price under MR, and this remains the case for all later years.
This indicates that under the assumption of MR the forest is more likely to be harvested
in the early years, and confirms the results of (Insley, 2002). Furthermore, it demonstrates
that the choice of stochastic process has a large impact on the optimal harvesting decision.
For instance, say the price is 376 NOK/m3 in year 50, which was the weighted spruce
price in May 2020; if the forestry manager assumes that GBM is the appropriate process
to describe timber prices, then the stand is harvested because the current price is above the
GBM critical price of 296 NOK/m3. In contrast, if MR was assumed to be the appropriate
process, harvest would be suboptimal because the price is below the MR critical price of
387 NOK/m3.

The comparison between GBM and MR demonstrates the applicability of the real op-
tions approach to a real-world scenario. Furthermore, it shows that the the choice of a
particular stochastic process has a large effect on the option value, and optimal harvesting
decision. As noted by Manley and Niquidet (2010), option valuation approaches are diffi-
cult to apply in forestry because of the difficulty in determining the appropriate stochastic
process, and subsequently, estimate its parameters. In estimating the parameters above,
price data from the past 7 years was used. If the prices are all well below some hypothet-
ical equilibrium level, and GBM is assumed to be the appropriate stochastic process, the
estimated drift is possibly too high. Moreover, the ADF test would likely suggest a non-
stationary process. However, longer time series might reveal that the 7 year of positive
drift were partially offset by 7 years of negative drift, and result in a MR process being a
better fit. Therefore, it is perhaps most appropriate to use economic intuition to determine
the appropriate stochastic process, and subsequently set the parameters based on industry
knowledge in the absence of any long time series and conclusive statistical tests.

Table 5.1: Critical prices for a single forest rotation under GBM and MR (NOK/m3)

35 40 50 60 70 80

GBM (α = 0.006, σ = 0.067) - - 296 238 222 202
MR (η = 0.325, σ = 0.067, µ = 396) 412 399 387 379 375 365
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(a) Stand age 35 (b) Stand age 40

(c) Stand age 50 (d) Stand age 60

(e) Stand age 70 (f) Stand age 80

Figure 5.9: Comparison of immediate harvest value against MR (η = 0.325, σ = 0.067, µ = 396)
and GBM (α = 0.006, σ = 0.067). Vertical lines indicate critical prices.
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5.2 Multiple Rotations Valuation
I compare the heuristic approach and the compound option approach in Subsection 5.2.1
to demonstrate that the heuristic approach is accurate, despite its simplifying assumptions.
I proceed by presenting an application of the heuristic approach using the parameters esti-
mated from historical data in 5.2.2.

In the following the cost of harvesting is set to 150 NOK/m3, and the replanting cost
to 10,000 NOK/ha based on soil scarification at 2,500 NOK/ha and replanting 3,000 trees
at 2.5 NOK/plant. Further, the initial price is set to 376 NOK/m3, which was the weighted
average Norway spruce price in May 2020. As before, the discount rate is set to 4%.

5.2.1 Comparing the Heuristic Approach and the Compound
Option Approach

Table 5.2 shows the value of of a freshly planted stand on one hectare of land calculated us-
ing the compound option approach with Z rotations, the value obtained using the heuristic
compound approach, and the Faustmann value calculated using the traditional Faustmann
formula1 (Faustmann, 1849) under five different stochastic processes. The cost of plant-
ing the first rotation is ignored. The stand value is seen to be higher when the prices are
stochastic as evident by the value from the compound option approach and the heuristic
compound approach, which exceeds the Faustmann value. Furthermore, the impact of
increasing the volatility is higher under GBM than under MR. Intuitively, if the price devi-
ates from the equilibrium under MR due to the volatility, it is expected to quickly revert. In
contrast, the volatility and drift rate can potentially lift the price under GBM indefinitely.
By changing the equilibrium level to reflect the initial price of 376 NOK/m3, the option
value falls slightly under MR. However, it is still larger than the Faustmann value.

Table 5.2: Stand values (NOK/ha) for multiple forest rotations under GBM and MR

Compound
(Z=2)

Compound
(Z=3)

Heuristic
option

Faustmann

GBM (α = 0, σ = 0.05) 14,181 14,364 14,410 14,052
GBM (α = 0, σ = 0.10) 15,260 15,567 15,601 14,052
MR (η = 0.01, σ = 0.05, µ = 396) 14,522 14,628 14,730 14,052
MR (η = 0.01, σ = 0.10, µ = 396) 14,660 14,718 14,919 14,052
MR (η = 0.01, σ = 0.10, µ = 376) 14,162 14,195 14,430 14,052

The computational complexity of the compound option approach grows exponentially
with Z. However, due to the effect of discounting, the present value of future rotations
decrease the further into the future they occur. For instance, increasing Z from 2 to 3,
leads to a modest increase in value of 1.3% under GBM with 0.05 volatility. Increasing Z
any further was found to have an even less impact on the calculated value. Consequently,

1As a reminder, the formula is presented in (4.54)
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restricting the number of rotations considered in the compound option approach is rea-
sonable. Notably, the difference between the stand value calculated using the compound
option approach and the heuristic approach is small. The heuristic approach runs in poly-
nomial time, whereas the runtime of the compound option approach grows exponentially
with Z. Moreover, the heuristic approach requires significantly less memory than the com-
pound option approach, as it only constructs a single trinomial tree as opposed to Z trees
in the compound approach. Therefore, it has the potential to be a valuable decision sup-
port tool for forestry practitioners. The models developed in this study are implemented
in Python, and the heuristic approach uses only seconds on cases where the compound
approach takes upwards of 10 minutes. Despite the simplifying assumptions the heuristic
approach entails, it is relatively accurate in approximating the stand value. Concomitantly,
it explicitly models the option like nature of the first rotation, the option to abandon instead
of replanting if prices are low, and it incorporates the value of future rotations using the
Faustmann value at different future prices as opposed to simply the current price, thereby
capturing the value of flexibility in the presence of price uncertainty.
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5.2.2 An Application of the Heuristic Approach
The heuristic approach is used to calculate stand value and the expected rotation age under
the parameters estimated for historical prices in Chapter 5.1.3. The stand value is the value
of a freshly planted stand on one hectare of land, ignoring the cost of planting the first rota-
tion. The results are summarized in Table 5.3, and are for a current price of 376 NOK/m3
which was the weighted average Norway spruce price in May 2020. The rightmost column
gives the value of a single forest rotation calculated using the option approach developed
for the single rotation for comparison.

Table 5.3: Expected rotation ages and stand values for multiple forest rotations under GBM and MR
using estimated parameters. Single rotation included for comparison.

Rotation age
(years)

Stand value
(NOK/ha)

Single rotation
value

(NOK/ha)

Faustmann 41 14,052 13,273∗

GBM (α = 0.006, σ = 0.067) 73 22,380 20,081
MR (η = 0.325, σ = 0.067, µ = 396) 42 14,464 14,448

* The Faustmann formula calculates the value of infinite rotations, and is not applicable to a single rotation. The
single rotation value listed here is calculated by assuming that harvest occurs when the growth rate declines to
the discount rate.

Under GBM the calculated stand value is significantly higher than the Faustmann value,
and the rotation age is 73 years. In contrast using the Faustmann rule, the prescribed ro-
tation age is 41 years. This is slightly lower than the 43 years traditional rules prescribe
in the single rotation, and reflects the opportunity cost of delaying future rotations. The
increase in value and rotation age is unsurprising. Intuitively, even when the forest is no
longer growing rapidly, there is benefit to delay harvest and future rotations as the prices
are expected to steadily increase. Figure 5.10a shows the value as a function of volatility
and drift rate. The X on the surface marks the point which corresponds to the parameters
estimated from the historical data. The value increases rapidly as the volatility and drift
rate is increased. Note that when the volatility and drift rate is low the stand value co-
incides with the Faustmann value, which assumes deterministic prices. Similarly, Figure
5.10b shows how the rotation increases with volatility and drift.

The value and rotation age is found to be significantly lower under MR than GBM. The ex-
pected rotation age is 42 years under MR. This reflects that when 42 years have passed the
price is expected to have reverted from the initial 376 NOK/m3 to the equilibrium of 396
NOK/m3. The chances of realizing any price significantly above the equilibrium thereafter
are slim, consequently, the stand is harvested to initiate a new rotation and benefit from
the rapid growth in the early years. Due to the strong speed of reversion estimated from
the historical prices the stand value is found to be independent of the current price. This is
evident from Figure 5.11a which shows the stand value as a function of speed of reversion
and initial price. When the speed of reversion is low the value increases with the price.
However, when the speed of reversion is high, the value is seen to be unaffected by the
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price. Similarly, the rotation age is found to be independent of the current price for a suffi-
ciently high speed of reversion, as seen in Figure 5.11b. Under high speed of reversion, the
forestry manager can confidently determine the price far in the future as it has stabilized at
the equilibrium. After it has stabilized, the chance of realizing a significantly higher price
is low, and therefore the stand is expected to be harvested once the equilibrium is hit, and
the growth rate has declined.
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(a) Stand value (1000NOK/ha) (b) Rotation age (years)

Figure 5.10: GBM: Stand value and expected rotation age as a function of volatility and drift rate.
X marks the point which represents the parameters estimated from historical data (α = 0.006, σ =
0.067).

(a) Stand value (1000NOK/ha) (b) Rotation age (years)

Figure 5.11: MR: Stand value and expected rotation age as a function of speed of reversion and
initial price. X marks the point which represents the parameters estimated from historical data
(η = 0.325, σ = 0.067, µ = 396).
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Chapter 6
Conclusion

This paper introduced a real options approach to value a forest stand and determine the
optimal harvest age for both single- and multiple forest rotations. The approach used a
trinomial tree to approximate stochastic timber prices, and subsequently, a dynamic pro-
gramming approach to calculate the stand value and expected harvest age. The benefit
of this approach is its conceptual simplicity and transparency, in addition to its ability to
approximate both GBM and MR.

A heuristic approach was developed to simplify calculations in the case of multiple forest
rotations using an option approach for the initial rotation, and the Faustmann value for
subsequent rotations. The heuristic approach was demonstrated to have a high degree of
accuracy. The heuristic approach should enhance the practical validity of the real options
approach for multiple rotations in forestry (1) by reducing the mathematical complexity
compared to continuous-time analytical option pricing models, finite difference and sim-
ulation methods, and (2) by significantly reducing the number of computational steps to
value a perpetual compound option using a tree-based model. The approach should, there-
fore, be of practical applicability, and yet remain palatable to forestry practitioners.

In a series of numerical examples, the value of a single forest rotation was shown to be
significantly affected by the choice of stochastic process. Moreover, the expected harvest
age was shown to be higher under GBM than the traditionally prescribed deterministic
harvest age. In contrast, the expected harvest age under MR was found to be lower than
the deterministic case for prices above the equilibrium level, and conversely, lower than
the deterministic case for prices above the equilibrium. Historical price data for Norway
spruce was used to estimate the parameters of GBM and MR. The value under MR was
found to be higher than under GBM when the current timber price is below the equilib-
rium. For prices above the equilibrium, GBM yields a higher value in the early years of
the rotation, but coincides with the MR value as the stand grows older. The critical price
under MR is lower than under GBM in the early years of the forest rotation, and conversely
higher than under GBM in the later years. This indicates that under the assumption of MR,
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the stand is more likely to be harvested while it is still growing rapidly, and confirms the
results of Insley (2002).

Furthermore, the estimated GBM and MR processes were used to calculate the stand
value for multiple forest rotations using the heuristic option approach. The stand value
was demonstrated to be higher under GBM than MR. Moreover, it was found that the
value and rotation age was higher under both GBM and MR than in the Faustmann setting.
The stand value and rotation age were shown to be independent of the current timber price
for a sufficiently high speed of reversion MR process. The results suggest that the choice
of a particular stochastic process has a significant effect on the stand value and rotation
age, also in the case of multiple rotations. Hence, the choice of an appropriate stochastic
process is a crucial aspect in determining the stand value and in making optimal decisions
in forestry management.

There are certain limitations to the proposed option approach. First, the results are sensi-
tive to the step size set in the trinomial tree. Because the finite horizon was set relatively
high in this article, decreasing the step size had little impact on the results. However, if
the model is used with a shorter horizon or different growth function, care should be taken
when determining the appropriate step size to ensure convergence. Second, approximating
the price process in discrete time comes at a cost. Estimating the parameters of the price
process is challenging, and as demonstrated, the option value and rotation age is highly
sensitive to the choice of parameters. This, however, is not necessarily unique to the real
options method proposed in this study and would remain a challenge regardless of the ap-
proach when price uncertainty is taken into consideration.

A direction for future work is to incorporate a division between the sawlogs and pulp-
wood resulting from harvest by modelling two separate price processes and account for
the evolution of each product type in the growth function. As a result, this would help
alleviate practical concerns regarding the use of a weighted price, as was done to simplify
analysis in this article. Moreover, it would be of value to forestry practitioners to con-
sider flexibility in other aspects of forestry management. For instance, an extended model
formulation could include the option to use fertilizers resulting in increased growth or in-
corporate the option to choose a specific thinning regime resulting in a dynamic growth
function.
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