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Abstract

Epidemic outbreaks affect the lives of people all around the world. The COVID-19 pan-
demic painfully demonstrates that despite the major medical achievements in the past
centuries, there is still a need for efficient responses to epidemics. Even for diseases
where there exists both effective vaccines and medications, such as cholera, epidemic
outbreaks occur and costs many lives every year. Efficient responses with a functioning
strategy are vital when dealing with epidemics, and this thesis aims to provide decision-
support both in advance of and during epidemic outbreaks on what response policy might
be most effective.

This thesis proposes a resource allocation model combined with a cholera epidemic
model. Together, the models aim to allocate medical intervention resources to save as
many lives as possible during cholera outbreaks, within the constraints of available med-
ical personnel and temporary medical facilities. The proposed resource allocation model
is solved using an approximate dynamic programming (ADP) approach with a neural
network as an approximation technique for the value function. The resource allocation
problem at the start of each time period is in turn solved heuristically using a local search
procedure. The cholera model combines and extends previous works to a multi-region,
multi-intervention Susceptible-Asymptomatic-Infected-Recovered-Bacteria (SAIR-B) model.
Environmental fluctuations are an important factor in spreading cholera, and it has been
linked to climatic conditions. Therefore, the bacteria dispersal rate between regions in
the SAIR-B model is included as a stochastic variable in the ADP model.

The epidemic model is calibrated to the 2010 cholera outbreak in Haiti, and a compu-
tational study is conducted on the calibrated epidemic model and on an alternative epi-
demic model with higher, but still realistic, bacteria excretion rate. The results indicate
that the value function approximation converges towards a consistent ADP policy, and
that this policy is robust to various bacteria dispersal rate distributions. The investiga-
tion regarding the availability of medical resources indicates that although rehydration
solution is essential to treat symptomatic cholera-infections, additional vaccines made a
larger impact on the total disease-induced fatalities. Increased availability of vaccines
also appeared to reduce the fatalities more than earlier arrival of vaccines. Decision-
makers should thus be aware that focusing on collecting reliable surveillance data to get
a sufficient overview of the entire outbreak situation, may prove more important than
requesting vaccines as rapidly as possible from the International Coordinating Group on
Vaccine Provision.
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Sammendrag

Epidemiutbrudd påvirker mennesker over hele kloden. COVID-19 pandemien viser at
til tross for store mediniske framskritt de siste tiårene, er det stadig behov for en effektiv
respons ved epidemiutbrudd. Selv for sykdommer som det finnes fungerende vaksiner og
medikamenter mot, som kolera, forekommer epidemiutbrudd som koster liv hvert eneste
år. Effektiv respons med en velfungerende strategi er essensielt når man skal respondere
på en epidemi. Målet ved denne oppgaven er å utvikle modeller for beslutningsstøtte til
valg av strategier som gir en mest mulig effektiv respons. Støtten kan gis både i forkant
av og under et epidemiutbrudd.

Oppgaven foreslår en ressursallokerings-modell kombinert med en kolera-modell. Mod-
ellene allokerer medisinske intervensjonsressurser for å redde så mange liv som mulig
under kolerautbrudd. Ressursene allokeres innenfor begrensningene gitt av tilgjengelig
medisinsk personnel og midlertidige medisinske fasiliteter. Den foreslåtte ressursal-
lokeringsmodellen er løst med en approksimert dynamisk programmerings-tilnærming,
med et nevralt nettverk som approksimeringsteknikk for verdifunksjonen. Ressursal-
lokeringsproblemet i begynnelsen av hver tidsperiode løses heuristisk med en lokal søk-
prosedyre. Kolera-modellen kombinerer og videreutvikler modeller fra eksisterende forskn-
ing til en multi-region og multi-intervensjons Susceptible-Asymptomatic-Infected-Recovered-
Bacteria (SAIR-B) modell. Variasjoner i lokalt klima og miljø er en sentral faktor ved
spredning av kolera. Derfor er bakteriespredningsraten mellom regioner i SAIR-B-modellen
inkludert som en stokastisk variabel i ADP-modellen.

Den epidemiologiske modellen er kalibrert etter kolerautbruddet på Haiti i 2010, og et
numerisk studie er gjennomført på både den kalibrerte modellen og en alternativ epidemi-
modell med høyere, men fortsatt realistisk, ekskresjonsrate av bakterier. Resultatet indik-
erer at den approksimerte verdifunksjonen konvergerer mot en konsekvent ADP beslut-
ningsregel, og at beslutningsregelen er robust for variasjoner i ekskresjonsrate-distribusjonen.
Undersøkelsen av tilgjengelighet av medisinske ressurser indikerer at selv om rehydreringsløs-
ninger er essensielt når man behandler kolera-pasienter med symptomer, så reduserte en
økning av vaksiner dødeligheten mer. Det viste seg også at en økning i tilgjengelighet
av vaksiner betydde mer for reduksjon av antall døde enn raskere tilgang på vaksiner
gjorde. Dette indikerer at beslutningstakere burde fokusere på å samle inn pålitelige data
om epidemispredningen for å få tilstrekkelig oversikt over utbruddet, framfor å forespørre
vaksiner så raskt som mulig fra International Coordinating Group on Vaccine Provision.
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Chapter 1
Introduction

Throughout human history, there has been a wide range of severe outbreaks of infec-
tious diseases, almost eradicating entire populations. As the world became more inter-
connected through trading routes, these diseases spread even more quickly. During the
cholera epidemic in London in 1854, John Snow became the modern-day father of epi-
demiology, when he connected the outbreak to a specific water pump on Broad Street
(Kanchanaraksa, 2008). Since then, there have been developed quantitative models aim-
ing to explain and predict the distribution and determinants of diseases among popula-
tions.

Today, the field of medicine and epidemiology ensures efficient response to epidemics
in many countries. Still, infectious diseases are spreading faster and further than ever
before (World Health Organization, 2018, pp. 17). During the past 20 years, we have
faced cholera outbreaks in Haiti and Yemen, Ebola outbreaks in the western parts of
Africa, the influenza pandemic swine flu in 2009 and the ongoing COVID-19 pandemic.
While the new outbreaks can be discouraging, there have been significant humanitarian
achievements in the past decades. In 1979 the World Health Assembly declared that
the devastating smallpox disease was eradicated (World Health Organization, 2019d) and
since the polio eradication initiative started in 1988, cases due to wild poliovirus have
decreased by more than 99% (World Health Organization, 2019b).

One reason for the eradication of diseases is the development of efficient vaccines. Even
with novel pathogens, the global medical community is quick to develop new vaccines,
thanks to the collective effort. However, even as vaccines are available in large propor-
tions of the world, diseases that could be vaccinated against and properly treated for, keep
devastating developing countries. An example of this is cholera, where, despite having
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Chapter 1. Introduction

both oral vaccines and proper medical treatment against it, the number of cases has re-
mained high the past decades, as seen in Figure 1.1. There are still explosive outbreaks
in regions with inadequate access to clean water and sanitation. While the progress in
medicine ensures proper vaccination and treatment of the population in industrial coun-
tries, it does not help the most vulnerable populations of financially weak developing
countries.

Figure 1.1: Officially reported cholera cases the past decades, modified from World Health Or-
ganization (2017c).

The substantial amount of research on epidemiological modeling has contributed to sig-
nificant improvements in epidemic control. Separately, within the field of operations
research, there has been considerable research on resource allocation during emergencies
and disasters. However, there has been limited work on combining these approaches to a
single decision-support tool for epidemic response. The goal of this thesis is to develop
an integrated epidemic and resource allocation model that efficiently allocates medical
resources during an infectious disease outbreak. The focus is on diseases with known
and well-researched prevention and treatment methods within financially weak regions.
A case study is conducted on cholera outbreaks in Haiti. The purpose of the model is to
help governments and non-government organizations (NGO) make informed decisions to
ensure an immediate, efficient response to an outbreak.

2



This thesis begins with an introduction to the different phases of an epidemic and the
transmission dynamics of cholera, in Chapter 2. In Chapter 3, a literature review is con-
ducted, focusing on previous emergency and epidemic logistics literature and epidemi-
ological modeling. Chapter 4 describes the relevant theory to understand the epidemic
model and resource allocation model presented in this thesis. The dynamic epidemic re-
sponse resource allocation problem is described in Chapter 5. Chapter 6 presents math-
ematical models aiming to solve this problem. In Chapter 7, different solution methods
for solving the problem are proposed. Chapter 8 reports the data used during the analysis
of the cholera outbreaks in Haiti. Chapter 9 presents and discusses the computational
results from applying the cholera outbreak case on the developed models. Finally, Chap-
ter 10 summarizes the findings of this thesis, identifies the weaknesses of the modeling
approach and proposes further research to better address these challenges in the future.

3
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Chapter 2
Background

This chapter describes relevant epidemiological and logistical aspects for response in
the case of an emergency, and epidemics in specific. First, Section 2.1 describes dif-
ferent characteristics of emergencies and various diseases. The different phases of an
emergency and the decisions typically made during each phase from the perspective of a
decision-maker, such as local government and NGOs, are described in Section 2.2. Then,
Section 2.3 describes the relevant transmission dynamics of a cholera epidemic. Lastly,
Section 2.4 describes different intervention methods to respond and contain cholera epi-
demics.

2.1 Characteristics of Emergencies and Diseases

In this section, characteristics for various emergencies and infectious diseases are dis-
cussed. Emergencies with varying characteristics require different response measures.
This should be reflected in the type of modeling approach taken when conducting re-
search. Thus, to understand what aspects of the current emergency logistics literature is
relevant, it is essential to understand the differences among distinct emergencies.

2.1.1 Emergency characteristics

According to the Cambridge Dictionary, an emergency is "a dangerous or serious situa-
tion, such as an accident, that happens suddenly or unexpectedly and needs immediate
action" (Cambridge Academic Content Dictionary, 2009). This definition stresses the ur-
gency of the situation. However, it does not clarify the magnitude of the event. Through-
out this thesis, the word emergency is used when referring to big-impact events, affecting

5



Chapter 2. Background

entire communities, and not individual emergencies, such as cardiac arrests and strokes.

All large-scale emergencies share certain characteristics. They happen abruptly and re-
sults in a sudden surge in demand for relief supplies and services. However, different
types of emergencies and disasters require different preparedness and response measures.

Certain emergencies can, to some extent, be anticipated and thus be better prepared
for. Hurricanes in the Atlantic Basin occur seasonally from June to November (Na-
tional Hurricane Center, 2020) and certain kinds of diseases also have seasonal attributes.
Cholera outbreaks in Bangladesh have, for instance, been connected to the monsoon sea-
son (Emch et al., 2008). Seasonality of emergencies can support the preparation, but
even though seasonal events happen within a certain time-frame, the exact location of
where the emergency occurs can be difficult to anticipate. For other kinds of emergen-
cies, it is the opposite. Large-scale volcano eruptions and earthquakes occur relatively
infrequently; however, due to geological constraints, the possible locations of such emer-
gencies are easier to anticipate. Volcano eruptions occur where there are active volca-
noes, and earthquakes usually, though not always, occur along tectonic plate interaction
zones. Certain emergencies are both temporally and spatially difficult to anticipate, such
as terrorist attacks.

The progression of an emergency is also a varying characteristic. An earthquake can
typically be felt for a few seconds (GNS Science, 2020), although aftershocks may oc-
cur. The earthquake may cause massive damage in several regions outside the epicenter,
but it does not evolve over extended periods of time. A hurricane strikes and moves
through several different regions. While hurricanes can be properly prepared for, there
is not possible to contain hurricanes and they will live through their life cycles indepen-
dent of human intervention. Other emergencies, such as epidemic and wildfire outbreaks,
evolves stochastically and can last for significantly longer than earthquakes and individ-
ual hurricanes. Epidemics and wildfires should be contained through human intervention,
if not, they can expand into drastically larger areas, causing significantly more damage.
Thus, while most emergencies require relief distribution, certain emergencies require an
immediate and efficient response to contain the emergencies and limit their extent.

2.1.2 Disease characteristics

The term disease may refer to a substantial amount of different phenomena and is de-
fined by the Cambridge Dictionary as "an illness caused by an infection or by a failure
of health and not by an accident" (Cambridge Learner’s Dictionary, 2007). Thus, it may
refer to non-communicable diseases, that is, diseases not transmissible directly between
individuals, such as Alzheimer’s disease. The term disease can also refer to communi-
cable diseases, also called infectious diseases, meaning they can be transmitted between
individuals. This thesis focus on response to diseases transmissible among people, and

6



2.1 Characteristics of Emergencies and Diseases

thus communicable diseases are of interest. If a communicable disease rapidly spreads to
a large number of individuals, the event is known as an epidemic. Large epidemics can
also evolve into pandemics, spreading into multiple large regions and continents.

Different diseases have different methods of transmission. Certain diseases transmit by
contact through air droplets from the respiratory system of the infected individual, with
influenza being a familiar example. Fecal-oral transmission is caused by the ingestion
of fecal material from an infected individual, for instance, drinking fecally contaminated
water. Examples of fecal-oral transmittable diseases include cholera and polio. Vector-
borne diseases are caused by pathogens living inside organisms other than humans, such
as insects, and typically transmits to humans through insect bites. Malaria and dengue
fever are both examples of vector-borne diseases transmitted through mosquito bites.
In addition, diseases such as HIV can be transmitted sexually, by blood and vertically,
meaning carried on from mother to child (Checchi, 2009).

Various pathogenic microorganisms, for instance, viruses, bacteria and parasites, may
cause infectious diseases (World Health Organization, 2016). The most efficient response
depends on the kind of pathogenic microorganism. For instance, antibiotics are antibac-
terial, and thus ineffective against viral infections. The symptoms of the specific disease
are also important when treating it. If the disease cause dehydration, then rehydration
treatment is necessary. In addition, supportive treatment, such as painkillers, can be ap-
plied to increase the quality of life for infected and symptomatic individuals.

Vaccines are substances developed to increase disease immunization by helping the hu-
man body’s immune system to recognize and fight pathogens (World Health Organi-
zation, 2019c). There are different methods of injecting vaccines. Intramuscular and
subcutaneous vaccines are injected using a syringe, scarification vaccines are injected
through a skin scratch and oral vaccines are mixed with drinking water and orally in-
gested. While all forms of vaccination require proper dosage, the latter does not require
medical personnel to properly inject the vaccine.

For certain diseases, efficient vaccines and specific medical treatment are not available.
While there is extensive research on developing an efficient malaria vaccine, there is yet
to be a commercially available vaccine (World Health Organization, 2017a), and although
there is an Ebola vaccine, there is no antiviral drug available in case of infection (Centers
for Disease Control and Prevention, 2019).

Diseases with both commercially available vaccines and treatment may still pose a threat.
Examples include pandemic influenza and cholera. These diseases may still pose a threat
due to lack of medication and vaccination production capacity, basic sanitation infras-
tructure and lack of market access, respectively (World Health Organization, 2018).

This thesis focuses on fecal-oral transmittable diseases, with some degree of anticipa-

7



Chapter 2. Background

tion of outbreaks due to seasonality or poor infrastructure, and existing treatment and
vaccines, though in scarce amounts. These factors affect both the epidemiological and
mathematical programming model presented in this thesis. However, through minor ad-
justments and extensions, the models may be used for other communicable diseases.

2.2 Epidemic Phases

The WHO describes the typical epidemic phases as introduction or emergence, localized
transmission, amplification and reduced transmission (World Health Organization, 2018,
pp. 28), as is shown in Figure 2.1. First, the disease is introduced to a community. During
the second phase, there are sporadic infections within the community. In the third phase,
the infections amplify and it turns into an epidemic. During this phase, the reproduction
number is high, that is, the expected number of new cases of infected generated by one in-
fected individual. Throughout the epidemic, the population develops increased immunity
due to effective interventions and recoveries from the disease, the reproduction number
falls, constituting the fourth and final phase, reduced transmission immunity. When the
reproduction number is consistently below 1.0, meaning each infected person on average
infects less than one other person, the epidemic fades out and ends.

Figure 2.1: Typical phases during an epidemic outbreak, reproduced from World Health Organi-
zation (2018).

To aid decision-makers and responders to an epidemic during the four phases, the WHO
has developed a general framework for epidemic responses that can be applied to several
different diseases. The Coordinating responders - Health Information - Communicating
risk - Health Interventions framework functions as a checklist to avoid overlooking es-
sential aspects during an epidemic outbreak (World Health Organization, 2018, pp. 31).

Coordinating responders: During an emergency, there are often several organizations
involved in responding. To ensure the best possible use of the available resources, a
well-coordinated response among the responders is essential. To achieve such effective
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coordination, the WHO proposes establishing a common emergency operation center,
developing a joint plan of action that is regularly updated and includes the distribution
of roles and responsibilities among the responders and tools to ensure communication
among the responders, such as contact information directories.

Health Information: The WHO defines two key types of information during an epi-
demic: surveillance of the disease and information on the interventions. In addition
to collecting the data, the framework stresses the importance of a common understand-
ing and definition is essential among the different responders. Questions that should be
answered include if the case definition is shared among all stakeholders, what the risk
groups are, what resources, both material and human, are available and how much is
required, and what are indicators of success.

Communicating risk: In addition to the actual epidemic, a new challenge has arisen
with the use of social media. The rapid spread of information cause what the WHO has
termed an infodemic: a rapid spread of both reliable and unreliable information in parallel
to the rapid spread of the actual disease. To ensure that citizens listen to the governments
and take the necessary precautions to avoid any escalation of the epidemic, proper risk
communication is essential. WHO stresses that this requires two-way communication,
quickly communicating protective measures that people can take through mass media,
but also listening to the concerns and perceptions of the population.

Health Interventions: Different diseases have different characteristics, and thus require
different interventions to ensure containment. The health intervention should ensure that
critical interventions needed to control the outbreak are both mapped and adequately
implemented, and how the interventions impact the epidemic spreading dynamics.

2.3 Cholera Transmission

Cholera is an acute diarrhoeal disease caused by the bacterium Vibrio cholerae and in-
dividuals are infected by ingesting food or water contaminated by the bacteria (World
Health Organization, 2019a). Once infected, the acute watery diarrhea causes dehydra-
tion and can be fatal within hours if the infected individual is not treated.

The incubation period, that is, the period between the individual is exposed to the pathogen
to the first symptoms are showing, is between 12 hours and 5 days. However, about 80%
of the individuals infected with cholera are asymptomatic, i.e. do not develop symptoms.
The bacteria are present in their body for up to 14 days and brought back to the environ-
ment through their feces (World Health Organization, 2018, pp. 165). Without proper
sanitation, the feces can contaminate the local water-source and the immediate surround-
ings, causing more infections. The infected individuals that do develop symptoms can
experience mild, moderate and severe dehydration (World Health Organization, 2019a).
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After recovery, a limited, natural immunity to the bacteria is developed, lasting from 6
months to several years, depending on the response of the individual’s immune system.

Today, cholera can be found around the globe in both endemic and epidemic states. The
WHO defines a cholera-endemic if the area has confirmed cholera cases the past 3 years
with evidence of local transmission, that is, it was not brought to the area through mi-
gration from elsewhere (World Health Organization, 2019a). Endemic areas can also
experience epidemic outbreaks, defined by the number of cases being higher than ex-
pected.

Cholera outbreaks can be both sporadic and seasonal. Outbreaks can occur as the result
of migration, but also through the water-source network. Given an outbreak in an area,
the water-source can have an increase in the concentration of cholera bacteria, which is
brought to other areas by rivers. The cholera bacterium can persist for long periods of
time in an aquatic environment. In addition, the bacteria can survive on fish, shellfish and
zooplankton (Colwell, 1996). If the fish is later eaten raw, it may cause cholera infections
that can develop into outbreaks. The cholera bacteria may also multiply and persist in
moist food for a long period of time (World Health Organization, 2018, pp. 163). The
seasonal cholera outbreaks can occur both in dry seasons and rainy seasons. During dry
seasons, the absence of many water-sources causes a single contaminated water-source
to infect a large number of people. While during rainy seasons, the rainfall can disperse
the contaminated feces into multiple water-sources (Olson et al., 2018, pp. 12).

While the cholera outbreaks can be tied to water-sources, human migration can also be
a significant factor. Chin et al. (2011) investigated the origin of the Haitian cholera out-
break in October 2010 and concluded that cholera was introduced to Haiti as a result of
human activity, likely from a distant geographic source.

The typical duration of a cholera outbreak depends on the population density and the
population number in the area. In urban settings, the duration can be between 2 to 4
months, reaching the peak number of infected after 2 to 8 weeks, while the duration in
rural settings typically is 3 to 6 months with the peak reached after 1 to 3 months. In
refugee camps, the typical epidemic duration is 1 to 3 months, with the peak reached
after 2 to 4 weeks (Olson et al., 2018, pp. 12).

2.4 Cholera Intervention

Cholera is often described as an important indicator of inequity and a lack of social de-
velopment (World Health Organization, 2019a). This is because there exist both effective
vaccines and medication to prevent and properly treat cases of cholera. Yet, there are still
outbreaks occurring in the most vulnerable regions, lacking basic sanitary infrastructure.
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This section describes the properties and typical applications of key intervention methods
in response to cholera outbreaks.

2.4.1 Sanitation infrastructure

The Global Task Force on Cholera Control (GTFCC) published a strategy to eradicate
cholera within 2030 and identified that while an emergency response to outbreaks reduces
the mortality and morbidity of an outbreak, it does not provide long-term prevention of
cholera (Global Task Force on Cholera Control, 2017, pp. 7). To prevent and eradicate
the disease, the development of basic water, sanitation and hygiene services (WASH) and
mass-vaccination with the oral cholera vaccine (OCV) is necessary. In the strategy, the
GTFCC declared that even though there exist measures to prevent and control cholera,
these measures are not used optimally in local contexts and are not supported with suf-
ficient financial and human resources, arguing that more than 80% of cholera-affected
countries have reported insufficient financing to meet WASH targets (Global Task Force
on Cholera Control, 2017, pp. 8).

Development of sanitation infrastructure is therefore essential to prevent cholera out-
breaks. However, being a long-term prevention strategy, not a short-term response to an
outbreak, sanitation infrastructure is not the focus of this thesis.

2.4.2 Outbreak alert

The combination of short incubation periods and a very short time until cholera can prove
fatal, cause the immediate response to an outbreak to be essential. The short incubation
period also causes cholera outbreaks to be particularly explosive, even if most individuals
exposed to the bacteria do not develop symptoms. The case-fatality rate (CFR), that is,
the ratio between the number of fatalities and cases, in untreated cases may reach 30-
50%, while the Global Task Force on Cholera Control (GTFCC) stated the cholera CFR
benchmark to be below 1% (Global Task Force on Cholera Control, 2004, pp. 7).

While there can be several reasons for diarrhea in an area, if the number of cases is es-
pecially high, a cholera outbreak should be suspected. Immediately after, the preparation
of an on-site investigation should be initiated. The investigation should be undertaken
within 24 hours of the alert and consists of taking samples of individuals with acute
diarrhea (Olson et al., 2018, pp. 19). It takes around two days to get results from labo-
ratories. However, the GTFCC advises not to delay the treatment of individuals showing
symptoms of cholera after the laboratory has confirmed the outbreak. There are no avail-
able rapid tests to measure the concentration of cholera bacteria in water. However, the
general quality of water sources can be measured during an on-site investigation with
results within minutes by measuring the pH, turbidity and concentration of free residual
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chlorine (Olson et al., 2018, pp. 36). An overview of the initial outbreak timeline with
investigation and vaccine requesting is shown in Figure 2.2.

Figure 2.2: Timeline from cholera suspicion to available vaccines. The vaccine requests are
elaborated in Section 2.4.4.

2.4.3 Cholera coordination committee

In countries where cholera is relatively common, a cholera coordination committee should
be appointed and ensure proper preparedness and response to outbreaks. The committee
works as the central decision-maker during the outbreak and should facilitate collabora-
tion between the different organizations responding to the outbreak. The GTFCC advises
that the committee meets at least once per week during an outbreak. Once an outbreak is
suspected, the committee should convene and initiate the immediate response to control
a cholera outbreak. The committee should make an inventory of available medical sup-
plies, setting up temporary treatment centers where needed, implementing measures to
control the spread, training medical personnel, collect and analyze the data on cases and
deaths, and inform and educate the public.

2.4.4 Oral cholera vaccines

There are three recognized OCVs (Global Task Force on Cholera Control, 2017, pp. 8).
The OCVs can be applied as a long-term measure to eradicate cholera through mass-
vaccination, but a reactive vaccination strategy can also be implemented. Havumaki
et al. (2019) showed that a reactive vaccination strategy can prove efficient in controlling
cholera outbreaks in crowded areas, such as refugee camps. The OCV takes effect im-
mediately and provides protection against cholera for two to three years, thus working
as both an immediate response and long-term prevention measure (Global Task Force on
Cholera Control, 2017, pp. 10). In contrast to most vaccines, OCVs does not require
intramuscular injection and given av appropriate dosage, it can be taken orally with clean
water without the need of medical personnel. Because the OCVs are ingested orally, the
distribution of the vaccine is easier, thus differentiating the response strategy from other
communicable diseases. However, the OCVs also require refigration, thus they cannot be
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distributed to households long before it must be taken.

For Shanchol and Dukoral, two of the three available OCVs, there have been established
global stockpiles (Global Task Force on Cholera Control, 2017, pp. 8). The Interna-
tional Coordination Group on Vaccine Provision (ICG) manages the stockpile, which
is established for outbreak response purposes, both for reactive vaccination in cholera
outbreak areas and pre-emptive vaccination in areas with an increased risk of cholera
outbreaks (World Health Organization, 2013, pp. 17). ICG and its partners determine
the deployment of OCVs to cholera outbreak areas based on the severity of the outbreak,
the potential impact of vaccination and the local capacity to organize a vaccination cam-
paign. Even with the OCV stockpile, the GTFCC identified the insufficient availability
of vaccines as an important challenge in the cholera eradication strategy. In 2017, the
OCV production capacity was 25 million doses per year, but Vaccine Alliance estimated
a global demand of 76 million doses in 2020 (Global Task Force on Cholera Control,
2017, pp. 19).

Olson et al. (2018) estimate one week of preparation for the coordination committee
to request vaccines from the ICG. After receiving a vaccine request, the ICG reviews
it within two days, and if granted, the vaccine transportation takes around seven days.
If a double-dose vaccination strategy is used, which provides long-term immunity, two
doses must be taken with two weeks apart. Thus, the time from requesting vaccines to
providing lasting immunity for parts of a population may take several weeks. It is possible
to shorten the time and increase the coverage at the expense of long-term immunity by
administering single doses. This vaccination strategy provides short-term immunization
and can thus be efficient against the immediate outbreak.

If the vaccine supply is limited, the committee has to assess whether to employ a reactive
or pre-emptive vaccination strategy. That is, whether to provide vaccines to the popula-
tion currently affected by cholera or the population where the risk of new outbreaks is
the highest. The choice of strategy should be based on where the risk of cholera mor-
tality is the highest, what phase the outbreak is currently in and the availability of other
intervention methods (Olson et al., 2018, pp. 61).

2.4.5 Oral rehydration solutions

Independent of symptoms, individuals testing positive for cholera should be treated with
oral rehydration solutions (ORS), consisting of sugars and salts dissolved in clean water.
Without symptoms, an infected individual can ingest the ORS at home without surveil-
lance.

For mild and moderate dehydration, ORS and Ringer lactate (RL) is used under close
surveillance. Up to 6 liters of ORS is required for adults during the first day of the rehy-
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dration treatment (World Health Organization, 2019a). If a person is showing symptoms
of severe dehydration, ORS is used in addition to intravenous (IV) fluid therapy, RL and
antibiotics.

2.4.6 Antibiotics

Antibiotics can shorten the duration of the disease (Rahaman et al., 1976), but are only
used in the most severe cases due to increasing antimicrobial resistance (Global Task
Force on Cholera Control, 2004, pp. 29). According to Andrews and Basu (2011), an-
tibiotics may also decrease the rate of cholera bacteria excretion of infected individuals.

2.4.7 Clean water and disinfectant

If the local water source was the initial cause of the cholera outbreak, it is important
to disinfect it, either centrally or at the household level. Even if the water-source was
initially not contaminated, it might become so during the progression of an outbreak,
due to contaminated articles such as buckets and due to improper disinfectant of hands
and bodies of people, even those not showing symptoms, but still exposed to the cholera
bacteria. The water can be disinfected using a chlorine solution. For households, boiling
the water and disinfecting it using UV lamps are also possible methods. In addition to
disinfecting the water-source, the GTFCC advises a distribution of 20 liters of clean water
per person per day during a cholera outbreak.

2.4.8 Cholera treatment facilities

During a cholera outbreak, there are three health care facilities specifically for cholera
treatment: cholera treatment centers (CTC), cholera treatment units (CTU) and oral re-
hydration points (ORP) (Olson et al., 2018, pp. 34). The location of the cholera treatment
facilities is not necessarily static, and they can be redeployed as the epidemic evolves and
affects new areas. The cholera treatment facilities should have a prepositioned medical
supply buffer stock sufficient to treat the expected demand for around two weeks.

The CTC is the health facility with the largest treatment capacity, with around 50 to 200
beds, and requires constant staffing. The staffing requirements are 75 medical personnel
for 100 beds (MSPP and CDC, 2011, pp. 33). A CTC works as a treatment facility for
the most severe cases, where individuals with severe symptoms are relocated to the CTC
from more decentralized facilities, but also as a local treatment facility caring for infected
individuals showing only mild symptoms. A CTC should be established within or next
to an existing health care facility if available If not, a large community building can be
transformed into a CTC. The purpose of the CTC is to allow access to the largest possible
number of patients, and they should thus be centrally located. A CTC should always be
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accessible by road to avoid any mobility issues with ambulances and supply deliveries.
A CTC is split into a contaminated zone and a neutral zone. In the contaminated zone,
the cholera bacteria are expected to be present in large amounts, while the neutral zone is
reserved for staff and supplies. The two zones must be clearly, physically separated. In
addition to the separation, the flow of staff and patients should be strict to reduce the risk
of contamination of the neutral zone. Olson et al. (2018) propose a CTC separation and
flow shown in Figure 2.3.

Figure 2.3: Cholera treatment center zones, and staff and patient flows, reproduced from Olson
et al. (2018).

The CTU is a smaller health facility, but have the same location requirements as a CTC
and can also treat patients requiring IV, in addition to ORS treatment. The capacity is
typically 30 beds and CTUs also require constant staffing, with a total of 16 medical
personnel (MSPP and CDC, 2011, pp. 33).

The ORP is a small, decentralized facility that distributes ORS to the public and refers
to severe symptoms to CTUs or CTCs. An ORP needs only staffing 8 to 12 hours per
day. There are typically 3-4 kilometers between every ORP. They can be placed next to
existing health care facilities, but also easily accessible by the affected population, for
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instance, next to the main road. Both tents and empty buildings can be used and an ORP
can become operative within hours after the location is selected (Olson et al., 2018, pp.
115).
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Chapter 3
Literature Review

This chapter reviews the literature on epidemic response, control and logistics. Section
3.1 reviews epidemiological modeling, focusing on modeling cholera outbreaks. Sec-
tion 3.2 provides an overview of emergency logistics within the operations research (OR)
field. Section 3.3 reviews emergency logistics literature focusing on epidemic emergen-
cies. The individual subsections are summarized and gaps in the literature are identified
in Section 3.4.

3.1 Epidemiological Modeling

The field of epidemiological modeling is almost a century old, beginning when Kermack
and McKendrick (1927) introduced the Susceptible-Infected-Recovered (SIR) model, a
system of differential equations. Each differential equation represents a compartment,
that is, a homogeneous group of the overall population with similar traits. All individuals
inside a compartment have the same transition rates to other compartments. Figure 3.1
depicts a simple SIR-model, where individuals in the susceptible compartment transition
to the infected compartment with a given infection rate, and the infected individuals
recover and transition to the recovered compartment with a given recovery rate.

Since then, more complex models have been developed by including disease-specific
mechanisms, yet still relying on similar assumptions as in Kermack and McKendrick
(1927), such as a homogeneous population. For cholera, the environment is an particu-
larly important source of transmission. Capasso and Paveri-Fontana (1979) investigated
the relationship between the infected individuals and the bacteria concentration in the
aquatic reservoir. Codeço (2001) extended the model and introduced the Susceptible-
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Figure 3.1: Schematic diagram of the Susceptible-Infected-Recovered (SIR) compartmental
model.

Infected-Bacteria (SIB) model, which incorporated the environmental transmission factor
into the SIR model. By including a compartment for the cholera bacteria concentration
in the aquatic reservoirs, the transmission rates, i.e. the rate at which the susceptible pop-
ulation get infected, becomes explicitly dependent on the bacteria concentration in the
aquatic reservoirs. Thus, when a susceptible individual becomes infected, it contributes
to an increase in cholera bacteria in the reservoirs, which in turn will increase the rates at
which other susceptible individuals become infected.

Hyperinfectious bacteria state is another cholera-specific mechanism that can be incor-
porated into the epidemiological models. Hartley et al. (2005) extend the SIB model
by dividing the bacteria concentration compartment into a hyperinfectious and a non-
hyperinfectious state. It is assumed that hyperinfectious bacteria are excreted from hu-
man individuals, and that these decay and transform into a non-hyperinfectious state.

A large proportion of cholera-infected individuals develop no or mild symptoms. To this
end, certain models, such as the ones developed in Neilan et al. (2010) and Andrews and
Basu (2011), introduce an additional compartment to differentiate between symptomatic
and asymptomatic infections.

The models presented thus far assume homogeneous populations, that is, every individ-
ual in a population have the same chance of transitioning. Agent-based modeling (ABM)
relax this assumption. Crooks and Hailegiorgis (2014) apply ABM to model cholera
outbreaks in Kenyan refugee camps, modeling individuals as distinct agents making de-
cisions regarding their own behavior at each time step. They concluded that cholera
spreads radially from contaminated water sources and that seasonal rains may result in
cholera outbreaks, thus stressing the importance of environmental reservoirs.

The environmental reservoirs spread cholera bacteria between different regions. Bertuzzo
et al. (2008) investigated the spreading of cholera epidemics by explicitly modeling the
river networks. Each region is represented using a local compartmental model described
by the SIB model presented in Codeço (2001). However, the bacteria concentration in a
region would include a transmission rate between regions. The dispersal rate of bacteria
between regions depends on the flow direction of the river network, the degree of each
node in the river network and the aquatic reservoir size for each region. Mari et al.
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(2012) employ a similar modeling scheme, but include long-distance bacteria dispersal
through human mobility, by introducing a probability of migration based on population
in each region and the distance between the regions. The spatially explicit cholera model
is applied to the 2010 Haiti cholera epidemic in Bertuzzo et al. (2011). Here, human
mobility is included, but instead of adding an additional term to the bacteria concentration
department, the migration dispersal is implicitly modeled by redefining the probability
of dispersal. Instead of focusing solely on river networks, Bertuzzo et al. (2011) account
for the distance between regions and their populations.

Environmental variability can be introduced to better account for the uncertainty. Eisen-
berg et al. (2013) examined the relationship between rainfall and cholera outbreaks in
Haiti, and concluded that increased rainfall is significantly correlated with increased
cholera incidence for up to a week later. The importance of accounting for environmental
variability is also emphasized in (Allen, 2017), particularly for waterborne diseases, such
as cholera. King et al. (2008) incorporated the environmental fluctuations in cholera mod-
els by including a Gaussian white noise term to the infection rate. Azaele et al. (2010)
employed a similar approach, including a delta-autocorrelated Gaussian noise term for
the infected compartment, while Gazi et al. (2010) accounted for environmental fluctua-
tions by including Gaussian white noise for every compartment. Allen (2016) compared
the white noise approach to mean-reverting processes for a generic epidemic model, and
argued that mean-reverting processes are more biologically plausible because they cannot
drift towards infinity, but will instead move back to their asymptotic mean.

Control and intervention strategies can be incorporated in epidemic models. Certain in-
terventions can be incorporated as distinct compartments. Liu et al. (2019) proposed a
Susceptible-Infected-Quarantined-Recovered (SIQR) cholera model, where infected in-
dividuals would get quarantined with a certain rate. Although quarantine can be effective
against certain contagious diseases, the authors note that it is controversial due to inter-
fering with individual rights, and WHO has emphasized that it is unnecessary if it may
divert resources from other interventions (World Health Organization, 2010). Mwasa and
Tchuenche (2011) developed a cholera model that included compartments for educated
individuals, vaccinated individuals and treated individuals, in addition to quarantined in-
dividuals. Instead of defining a distinct vaccinated compartment, vaccinations may also
be modeled using the recovered compartment, as done in Tuite et al. (2011) and Wang and
Modnak (2011). However, the immunity duration of recovered and vaccinated individu-
als may differ, thus requiring distinct compartments. An example of such an approach is
Andrews and Basu (2011), which assumes that a recovered individual will, on average,
lose its immunity after 10 months, while a vaccinated individual will, on average, be
immune for 2 years.

Interventions can also be modeled as dynamic parameters. Wang and Modnak (2011)
included vaccination, therapeutic treatment and water sanitation. Vaccinated individuals
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transitioned to the recovered compartment. Therapeutic treatment is modeled as a pa-
rameter that increases the rate of recovery. Water sanitation is modeled as a death rate
for the bacteria concentration department. The vaccine efficacy and the exact treatment
given is not specified. Andrews and Basu (2011) model similar interventions: vaccina-
tion, clean water and antibiotic treatment. They accounted for vaccine efficacy, that is,
not all vaccinated individuals developed immunity. Instead of modeling water sanitation
as increasing the death rate of cholera bacteria, Andrews and Basu (2011) modeled the
intervention as a reduction in the susceptible population consuming contaminated water.
Both approaches are realistic and reasonable. An increase in death rate is reasonable
when the water is centrally disinfected, while a decrease in consumption of contaminated
water might be more appropriate when households are given disinfectant to clean their
own water. Lastly, Andrews and Basu (2011) modeled a specific treatment, antibiotics,
which they argued would both increase the recovery rate and decrease the excrete rate of
symptomatic individuals.

3.2 Emergency Logistics Overview

Emergency logistics spans a wide variety of problems. Different types of emergencies
requires varying responses, and are thus distinct problems. What all these problems have
in common, in contrast to the more traditional and heavily researched business logistics,
is the chaotic situation, possibly compromising the flow of information. While demand
is uncertain in a business logistics setting, the surge of demand following an emergency
and the disarray of the situation, entitles the need of research specifically on emergency
logistics.

Altay and Green III (2006) first surveyed operation research (OR) and management sci-
ences (MS) research on disaster operations management (DOM). Here, they identified
that during emergency situations, the duration and scale is uncertain, the problem envi-
ronment is chaotic and may change rapidly, and decisions must be taken promptly with
little or no, and possibly unreliable, data. Having identified how decision-making during
disasters differ from conventional decision-making, they set the stage for a wide variety
OR and MS research within the emergency and disaster logistics and management field,
some of which can be applied in epidemic logistics.

Emergencies can be divided into two phases: pre-disaster and post-disaster, which in turn
are typically divided into four activities: mitigation and preparedness, and response and
recovery (Coppola, 2006). The pre-disaster situation requires planning and consists of
mitigation and preparation of the emergency, involving decisions such as the location
of medical distribution centers and stock pre-positioning of medical supplies. The post-
disaster consists of response and recovery after the emergency has occurred. Relevant
decisions include effective and fair distribution of medical supplies and transportation of
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victims and casualties.

Caunhye et al. (2012) classified emergency logistics into three problem categories: facil-
ity location, relief distribution and casualty transportation. The facility location focuses
on the location of various types of facilities, typically to maximize coverage or minimize
response time. During mitigation, preparation, response and recovery, the location and
inventory of different types of facilities should be determined. The different facilities
to locate in all four emergency activities are shown in Figure 3.2, inspired by a similar
figure in Boonmee et al. (2017).

Figure 3.2: Facility location decisions at different stages of an emergency, modified from Boon-
mee et al. (2017).

Relief distribution concerns bringing relief, for instance, medical supplies, to the individ-
uals affected by the emergency. The problem of relief distribution can be approached as
a commodity flow problem, deciding what relief to be distributed across which routes.
Another approach to relief distribution is resource allocation, where the flow quantity
across routes is not determined. Instead, the focus is to allocate supplies at facilities to
best provide relief to the affected individuals and areas. While relief distribution concerns
bringing relief out to the affected areas, casualty transportation regards the transportation
of affected individuals from the emergency areas to safety, for instance, medical treat-
ment centers.

Several works combine the pre-disaster and post-disaster decisions. Mete and Zabinsky
(2010) developed a two-stage stochastic programming model combining facility location
and relief distribution. The first stage selected warehouse locations and inventory levels
at the warehouses. After the disaster scenario is observed and the post-disaster response
phase is entered, the recourse decisions are the amount of medical supplies to be trans-
ported from a warehouse to a hospital. Rawls and Turnquist (2010) also developed a
two-stage stochastic programming model, combining preparedness and response and fo-
cusing on hurricane emergencies. Similar to Mete and Zabinsky (2010), they have facility
location and pre-positioning of materials as first-stage decisions. In addition, Rawls and
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Turnquist (2010) included material destruction as a stochastic element in different scenar-
ios. The recourse decisions are thus to distribute the remaining pre-positioned supplies
to meet demand. The trajectory of a hurricane is uncertain, making it possible for several
disasters at different locations over time. Rawls and Turnquist (2012) extended the two-
stage model to a multi-stage model with chance constraints for demand coverage, thus
accounting for the several possible trajectories of the hurricane.

3.3 Epidemic logistics

Different emergencies have different characteristics, and as emphasized in Gupta et al.
(2016), the models should account for these differences and be cautious claiming they
work for any emergency or disaster type. After an earthquake has occurred, no or minor
earthquake events arise later on, it does not evolve like the spread of a disease during
an epidemic or the trajectory of a hurricane. Epidemics can also be contained using in-
tervention methods, while hurricanes are impossible to stop, thus requiring relief in the
recovery phase, not containment interventions in the response phase. This section focuses
on emergency logistics for epidemic outbreaks. First, the various problem formulations
and methodologies are identified in Section 3.3.1. Then, different objectives are investi-
gated in Section 3.3.2. In Section 3.3.3, the various interventions and resources allocated
in the existing literature are identified. Lastly, Section 3.3.4 identifies previous works
combining epidemic models with epidemic logistics models.

3.3.1 Methodologies

Becker and Starczak (1997) developed a deterministic linear program for optimal vac-
cine allocation for households in a community. Tanner et al. (2008) extends the work
by introducing chance constraints, that is, ensuring the constraints are satisfied with a
given probability. Tanner and Ntaimo (2010) developed a branch-and-cut algorithm and
applied it on the chance-constrained optimal vaccine allocation problem proposed in Tan-
ner et al. (2008). Although the resources allocated during outbreaks are discrete, several
works simplify the integer constraint. Arora et al. (2010) allocates ratios of the available
resources and Yarmand et al. (2014) relax the integer constraints, allowing for continu-
ous number of vaccines to be allocated. Most models include integer variables for the
resources, resulting in mixed-integer linear programs (MILP), such as Liu et al. (2015),
Anparasan and Lejeune (2017) and Büyüktahtakın et al. (2018), with integer medical
resources, medical personnel and treatment centers, respectively.

Certain works also include nonlinear formulations. Büyüktahtakın et al. (2018) proposed
a mixed-integer nonlinear program (MINLP). However, the nonlinearity arose from a
minimum-constraint and the constraint was linearized, resulting in a MILP formulation.
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Wang et al. (2009) proposed a MINLP for optimal material distribution with a nonlin-
ear objective. Arora et al. (2010) presented a quadratic program for resource allocation
during pandemics.

Anparasan and Lejeune (2017) and Arora et al. (2010) both propose static, single-period
models for resource allocation during epidemic outbreaks. However, as emphasized in
Arora et al. (2010); epidemic spread is inherently dynamic. Therefore, a wide range
of literature focus on dynamic formulations with multiple allocation periods. Zaric and
Brandeau (2001) and Zaric and Brandeau (2002) both proposed models allocating in-
tervention investments over short time horizons. Rottkemper et al. (2012) proposed a
rolling-horizon model for inventory relocation. Yaesoubi and Cohen (2011), Coşgun and
Büyüktahtakın (2018) and Long et al. (2018) all proposed approximate dynamic pro-
gramming (ADP) methods to solve resource allocation problems for dynamic epidemic
outbreaks.

3.3.2 Model objectives

In contrast to business logistics, the objective in emergency logistics and humanitarian
operations is not necessarily to minimize cost or maximize profits. Kovacs and Moshtari
(2019) identified the need for objectives aligning with real stakeholders in humanitarian
operations literature, focusing on saving lives and minimizing damages within a budget
constraint, not minimizing costs.

There are three broad variations in model objectives. First, several works apply the tra-
ditional business logistics objective with minimization of costs. Examples include Wang
et al. (2009) and Liu et al. (2015), both minimizing the transportation costs. Others
incorporate fatalities and human suffering in a cost-based objective, thus employing a
net monetary benefit approach. Zaric and Brandeau (2001), Zaric and Brandeau (2002)
and Brandeau et al. (2003) all used a quality-adjusted life years (QALY) objective, where
each epidemic compartment is assigned a quality, and the quality is maximized, summing
over all time periods and compartments, but employing a discount rate for later periods.
Yaesoubi and Cohen (2011) also had a net monetary benefit objective, maximizing the
difference between the decision-makers willingness to pay for health interventions and
the expected costs of implementing the intervention given the future disease spread. Both
Ludkovski and Niemi (2010) and Yarmand et al. (2014) minimized intervention costs, but
Ludkovski and Niemi (2010) also included the cost of having infected individuals, thus
accounting for social cost.

Several recent works have focused on objectives other than variations of cost-minimization,
such as maximizing demand coverage, that is, assist as many casualties as possible,
or minimizing infections or fatalities. Rachaniotis et al. (2012), Büyüktahtakın et al.
(2018) and Long et al. (2018) minimized total number of new infections, while Ren
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et al. (2013) minimized total number of fatalities. Coşgun and Büyüktahtakın (2018)
presented a multi-objective formulation, minimizing the weighted sum of HIV-infections,
AIDS-infections and fatalities. Anparasan and Lejeune (2017) also aligned their model
objective with real stakeholders, but instead of minimizing infections or fatalities, they
maximized demand coverage, that is, how many cholera infected individuals they treated.

Several works have also investigated the relationships among various objectives. Bran-
deau et al. (2003) compared the QALY objective with minimizing number of infections,
and proved that allocations made greedy in cost-effectiveness ratios and allocations made
greedy in infection growth provide different results. Rottkemper et al. (2012) studied the
trade-off between unsatisfied demand and operational costs, and found that in some cases
the unsatisfied relief demand could be reduced drastically, while only increasing the op-
erational costs slightly.

3.3.3 Interventions and resources

Different approaches to model interventions and resources include generic resources,
such as investments and funds (Zaric and Brandeau, 2001, 2002), and an unspecified
medical resource (Liu et al., 2015). Others also include a single intervention method, but
model a more specific resource. For instance, Arora et al. (2010) allocates antivirals for
pandemic relief and Anparasan and Lejeune (2017) allocates medical personnel for am-
bulance transportation of cholera-infected individuals. Hospital beds is used in several
works, such as Büyüktahtakın et al. (2018) and Long et al. (2018). Coşgun and Büyük-
tahtakın (2018) incorporates several joint interventions using a single budget allocation
variable and a binary variable for each mix of interventions employed. Some models
include single interventions, but allow for different strategies, and thus different effects.
Ren et al. (2013) allocate vaccines, but differentiates between vaccines allocated for a
ring vaccination strategy and vaccines allocated for a mass vaccination strategy.

Yaesoubi and Cohen (2011) differentiates between medical and transmission reducing in-
terventions, where the medical interventions includes both vaccines and antiviral drugs,
while the transmission reducing interventions includes measures preventive measures
such as social distancing and mask use. Ludkovski and Niemi (2010) also includes mul-
tiple intervention methods, focusing on isolation and vaccines.

3.3.4 Combining epidemic and operations research models

Although Arora et al. (2010) assumed a static disease environment, they stressed that
the decisions made could affect future epidemic spread, and thus the uncertainties and
dynamics of disease diffusion should be accounted for. Dasaklis et al. (2012) surveyed
epidemics control and logistics literature, and called for a more multidisciplinary field,
drawing expertise not only form logisticians, but from epidemiologists as well.
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Zaric and Brandeau (2001), Zaric and Brandeau (2002) and Brandeau et al. (2003) were
early in including epidemiological modeling in mathematical programming models. They
focus on a generic disease, using a SIR epidemic model and a set of general interventions,
each with an associated effect on the epidemic parameters. Brandeau et al. (2003) com-
bines epidemic modeling with mathematical programming for multiple regions, although
the regions are independent, i.e. does not interact with each other.

Later works have applied the models on a specific disease, but kept the SIR model (Lud-
kovski and Niemi, 2010; Yaesoubi and Cohen, 2011; Rachaniotis et al., 2012; Ren et al.,
2013; Long et al., 2018). Wang et al. (2009) proposed a model for a general epidemic
setting, but included an exposed compartment representing the latent period, i.e. they
employed a SEIR-model. In addition, they modeled the SEIR-model as a delay differen-
tial equation (DDE). Yarmand et al. (2014) and Liu et al. (2015) also included an exposed
compartment in their epidemic modeling.

There is limited existing literature on including disease-specific mechanics in the epi-
demic modeling combined with an mathematical program. Coşgun and Büyüktahtakın
(2018) developed a Susceptible-Infected-AIDS-Death (SIAD) model for HIV response
and Büyüktahtakın et al. (2018) employed a Susceptible-Infected-Treated-Recovered-
Funeral-Buried (SITR-FB) model for Ebola outbreaks. Long et al. (2018) also investi-
gated Ebola outbreaks, but did not include the treated, funeral and buried compartments.
Instead, they proposed a SIR-model that included transmission across regions, modeling
human mobility as a possible dispersal method.

Yaesoubi and Cohen (2011) propose a dynamic health policy model for influenza using
medical treatment, such as vaccination and antiviral drugs, and transmission reduction
techniques, such as face masks and social distancing. They apply an ADP model using
a stationary discrete-time Markov chain (DTMC). Instead of assuming that the epidemic
states are known in advance, i.e. are stationary, Coşgun and Büyüktahtakın (2018) de-
velops an integrated stochastic compartmental model and ADP model, using a Markov
chain model with non-stationary transition probabilities. The model allocates a limited
intervention budget among HIV disease compartments to minimize the amount of HIV-
infected.

The epidemic models can introduce challenges arising from non-linearities in objectives
and constraints and no closed-form evaluations of objectives, and several works rely on
approximations to tackle these problems. Büyüktahtakın et al. (2018) propose a deter-
ministic MILP for resource allocation, but investigates the problem over a multi-period
horizon. Most epidemic-logistics model combining epidemic modeling with mathemati-
cal programming propose two separate models, where the epidemic model output are pa-
rameters in the mathematical programming model. Büyüktahtakın et al. (2018) combine
the two into a single model at the expense of simplifying the epidemic model. To avoid
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non-linearities, they assume the transition rate from susceptible to infected is independent
of the size of the susceptible population. Ren et al. (2013) also approximate an epidemic
model using Taylor expansions and assuming a constant transmission rate to develop a
closed-form solution for the number of infections, to include it in their mixed-integer
programming problem (MIP). In their myopic model, Long et al. (2018) approximated
their epidemic model by turning the differential equations into difference equations with
one-week time intervals. Linearizing the epidemic model is sufficient when having one
intervention method, but by introducing several intervention methods, each affecting the
different compartments in the epidemic model, the implicit effect of an intervention is
not captured if linearized, thus possibly resulting in ignoring certain interventions.

Coşgun and Büyüktahtakın (2018) include an epidemic model into their optimization
formulation, but does not make assumptions to ensure linearity. Instead, they apply a dy-
namic programming approach. They allocate budgetary resources across compartments
instead of regions, i.e. they investigate preventive, pre-emptive or reactive strategies, and
concluded that preventive measures are favorable to antiviral treatment.

3.4 Literature Review Summary

In light of the COVID-19 pandemic the past months, the field of epidemiology has gained
renewed attention, giving rise to novel examples of combining epidemiology with other
fields, such as machine learning. For instance, Dandekar and Barbastathis (2020) applied
a SEIR epidemic model with a neural network to extrapolate the effect of quarantine
measures from public data. Although the growing literature makes it more difficult to
review all current knowledge, the review performed throughout this chapter should be
sufficient to identify gaps in the literature and where future research can provide the most
impact.

Section 3.1 reviewed the literature on epidemic modeling. Providing a brief historic per-
spective on modeling epidemics using differential equations, the focus was on cholera
models. Codeço (2001) proposed an SIB-model, thus incorporating the environmental
transmission factor in the SIR-model. Her works have later been extended. Bertuzzo et al.
(2011) proposed a spatial model for different regions, taking bacteria dispersal through
both river networks and human mobility into account. Several approaches to interven-
tion modeling were reviewed. Andrews and Basu (2011) modeled vaccination, clean
water and antibiotic treatment, being three important intervention methods for cholera
epidemics.

In Section 3.2, an overview of the emergency logistics were provided. Important con-
siderations to make when developing emergency logistics is to identify if the model is
pre-disaster, post-disaster or both, if the focus is on emergency mitigation, preparedness,
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response or recovery, and what characteristics the specific emergency to be modeled have.
Different emergencies have differing properties and thus requires distinct models.

Lastly, Section 3.3 reviewed emergency logistics specifically for epidemic outbreaks.
Different methodologies and problem formulations were reviewed. Several works with
various objectives was identified. An important difference between business logistics and
emergency logistics is that the former will typically minimize cost or maximize profits,
while the latter focus on saving lives, minimize casualties or maximize demand cover-
age. Various intervention methods were also reviewed. Most literature, including recent
works, typically include a single intervention, either specific or general, when respond-
ing to epidemics. Rachaniotis et al. (2012) also employed a single-resource approach,
but mentioned multi-resource as an important direction of future research.

There are several epidemic control and logistics approaches that address specific chal-
lenges within the field, including spatial epidemic models, non-stationary transition rates
and operational constraints. For instance, both Büyüktahtakın et al. (2018) and Long
et al. (2018) address the need for explicitly considering the spatial spread of an epidemic
logistics model, that is, geographically varying transition rates. Coşgun and Büyüktah-
takın (2018) include non-stationary transition probabilities in their compartmental model,
but consider only a single population. Anparasan and Lejeune (2017) address the issues
of realistic operational constraints, with a thorough background and a realistic cholera
case-study, but consider a static situation. Long et al. (2018) employ an ADP strategy to
minimize the total number of infections during an Ebola outbreak, but allocate only one
resource and does not take the stochasticity of transmission across regions into account.

Table 3.1 provides a summary of recent, relevant literature for epidemic response and
resource allocation. Explanations for the abbreviations used are included in the nomen-
clature in Table 3.2. This thesis’ contributions to the OR and epidemiology literature
are:

(i) A stochastic dynamic programming model of the epidemic outbreak response
and control problem. The model is developed for multi-stage problems to meet
the actual decision-making cycles during epidemics. The model can be used to
compare policies in advance of outbreaks or in real-time by decision-makers re-
sponding to outbreaks, by supplying the available medical resources, demographic
data of the region and the initial or current number of infected, vaccinated and re-
covered individuals, and assumed bacteria concentration in the aquatic reservoir.
The model minimizes the total number of cholera-induced fatalities throughout the
finite planning horizon of the outbreak by allocating vaccines, rehydration solu-
tions, antibiotics and disinfectants to regions with current outbreaks and regions
with high risk of outbreaks.

(ii) A cholera-specific epidemic model, combining and extending the works of
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Bertuzzo et al. (2011) and Andrews and Basu (2011). The epidemic model
accounts for dispersal of bacteria across regions from both human mobility and
river networks, and models four intervention methods: vaccines, disinfectants, re-
hydration solutions and antibiotics. To the best of my knowledge, it is the first
time a cholera-specific model has been combined with a mathematical program-
ming model, and the first time all four interventions are included in an epidemic
model. It is also, to the best of my knowledge, the first proposed multi-resource
and multi-region resource allocation model combined with an epidemic model that
is solved using an approximate dynamic programming approach.

(iii) The resource allocation model is used to find optimal intervention strategies
for outbreaks similar to the 2010 cholera outbreak in Haiti. Note that the model
can be extended to similar situations, that is, epidemic outbreaks with limited in-
tervention resources. The compartmental model in this thesis is based on cholera,
but can be replaced with other compartmental models for other diseases.

28



3.4 Literature Review Summary

Table 3.1: Selected literature on epidemic response and resource allocation.

Article Disease Objective Methodology Epidemic model Stochastic
Multiple

intervention
resources

Multiple
outbreak
regions

This thesis Cholera Fatalities ADP SAIR-B Yes Yes Yes

Büyüktahtakın
et al. (2018) Ebola Infections MILP SITR-FB No No Yes

Coşgun and
Büyüktah-

takın
(2018)

HIV Infections
and fatalities ADP SIAD Yes No No

Long et al.
(2018) Ebola Infections ADP SIR No No Yes

Anparasan
and Lejeune

(2017)
Cholera Demand

coverage ILP NA No No Yes

Liu et al.
(2015) Influenza Transportation

cost MILP SEIR No No No

Yarmand
et al. (2014) Influenza Operational

cost SLP SEIR Yes No Yes

Ren et al.
(2013) Smallpox Fatalities MINLP SIR No No Yes

Rachaniotis
et al. (2012) Influenza Infections MILP SIR No No Yes

Yaesoubi
and Cohen

(2011)
Influenza

Net
monetary

benefit
ADP SIR Yes Yes No

Ludkovski
and Niemi

(2010)
Influenza

Operational
and social

cost
RMC SIR Yes Yes No

Wang et al.
(2009) General Transportation

cost and time MINLP SEIR Yes No No
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Table 3.2: Nomenclature for literature review summary.

Abbreviation Name

ADP Approximate Dynamic Programming

ILP Integer Linear Programming

MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer Nonlinear Programming

NA Not Applicable

RMC Regression Monte Carlo

SAIR-B Susceptible-Asymptomatic-Infected-Recovered-Bacteria

SIR Susceptible-Infected-Recovered

SEIR Susceptible-Exposed-Infected-Recovered

SIAD Susceptible-Infected-AIDS-Death

SITR-FB Susceptible-Infected-Treated-Recovered-Funeral-Buried

SLP Stochastic Linear Programming
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Chapter 4
Theory

This chapter presents the underlying theory required to understand the models developed
in this thesis. Section 4.1 describes methods for predicting evolution of an epidemic.
In Section 4.2, Markov decision processes (MDP), a mathematical framework for repre-
senting the state, possible actions and the corresponding transitions, is presented. Lastly,
Section 4.3 describes approximate dynamic programming (ADP) and techniques to effi-
ciently compute solutions leveraging the MDP framework.

4.1 Epidemic Modeling

Compartmental models in epidemiology consists of different compartments, i.e. homo-
geneous populations. Each individual in a compartment have the same transition prob-
ability, that is, the same probability of transitioning from their current compartment to
another.

The following model is a simple, deterministic compartmental model, based on the ex-
planation in Allen (2017). Let S(t), I(t) and R(t) denote the susceptible, infected and
recovered population, respectively. Further, assume no births or deaths and let the total
population size be N(t) = S(t) + I(t) +R(t). Then a disease with infection rate β and
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recovery rate γ can be described by the following system of differential equations:

dS

dt
= −βI S

N
(4.1)

dI

dt
= βI

S

N
− γI (4.2)

dR

dt
= γI (4.3)

Given an initial condition S(0), I(0) and R(0), the system of differential equations in
Equations 4.1-4.3 can be solved numerically.

The model defined by Equations 4.1-4.3 could also be described in terms of transition
probabilities, instead of rates. That is, in each time period, each individual can transition
with a certain probability. However, when the population size is large, the number of
transitions per time period are close to its expected value, due to the law of large numbers,
resulting in an epidemic evolution similar to the deterministic model, described by the
system of differential equations.

4.2 Markov Decision Processes

The following sections presents a mathematical representation framework for sequen-
tial decision problems where the decision is only dependent on the current state, not its
previously visited states.

4.2.1 Markov property

A stochastic process Xt has the Markov property if a consecutive state is only condition-
ally dependent on the current state. Formally, as described in Pinsky and Karlin (2010),

P(Xt+1 = j | X0 = i0, X1 = i1, . . . , Xt = it) = P(Xt+1 = j | Xt = it) (4.4)

Although previous decisions impacts the state you end up in, if the process have the
Markov property, there is no need for further information than the current state to make
future transitions.

4.2.2 System representation

This section describes the basic notation used for mathematically representing a system
of states, actions and transitions. Consider a system with discrete and finite state space
S = (1, 2, . . . , |S|). The system changes when an action, also called decision, is taken.
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At time t, let the feasible action space be denoted Xt, and let a feasible action be denoted
xt, where xt ∈ Xt.

Given a specific state St and an action xt at time t, the probability of transitioning to
state St+1 = s′ is denoted P(St+1 = s′ | St, xt), and henceforth referred to as the tran-
sition probability. Observe that the transition probability follows the Markov property,
because the transition probability entering state St+1, depends only on state St, not pre-
vious states, such as St−1. When an action xt is taken in the current state St, a cost
Ct(St, xt) is incurred. Depending on the problem, a positive cost can be desirable, and
is in that case often referred to as reward. The value of the current state St is calculated
using the value function, denoted Vt, and is evaluated as:

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γ

∑
s′∈S

P(St+1 = s′ | St, xt)Vt+1(s′)
)
, (4.5)

where γ is the discount rate. Equation 4.5 is often referred to as the standard form of
Bellman’s equation (Powell, 2007, pp. 49).

Because the transitions are stochastic, there is an implicit underlying stochastic variable
in Equation 4.5. Denote the stochastic variable asWt, its realization as ω and its outcome
space as Ωt. It is now possible to define a deterministic transition function:

SM : St ×Xt × Ωt → St+1, (4.6)

where given a state, action and realization, a specific state is St+1 = SM (St, xt,Wt+1)
(Range, 2019).

A policy π is an unambiguous rule of selecting an action xt given the state St. The goal
is to develop a policy that maximizes value at the current state, which considers either a
finite or infinite amount of future values as well. The optimal policy can be found through
backward recursion of Equation 4.5, given an initial condition.

4.3 Approximate Dynamic Programming

Building upon the MDP framework previously presented, this section describes the re-
sulting problems of the framework and possible solutions to efficiently solve an approxi-
mation of Bellman’s equation.

33



Chapter 4. Theory

4.3.1 Curse of dimensionality

The MDP framework can be used to find optimal policies for sequential decision prob-
lems. However, the problems can quickly become computationally intractable. Assume
that, at time t, the state space is I-dimensional, and that each dimension has L possible
values. Similarly, the action space is J-dimensional and each dimension has M out-
comes. Lastly, assume the stochastic variable is K-dimensional and can take N different
realizations per dimension. While the state space, action space and outcome space are of
significant size on their own, the state space at time t+1 is immensely huge. From Equa-
tion 4.6, the cardinality of this state space can be computed to be: |St+1| = LI ·MJ ·NK .
Even for moderate values of I , J and K, the new state space explodes, making it com-
putationally infeasible to evaluate all possible new states.

4.3.2 Approximate value function

The curse of dimensionality causes the value function described in Equation 4.5 to be
computationally intractable even for moderate-sized problems. Instead of solving it with
backward recursion, the value function is approximated and then iteratively updated
through forward recursion. This way, there is always an estimate for the second term
in Equation 4.5, meaning there is no need to enumerate every possible consequence of
the decision taken.

The approximation value function is denoted V̄ n
t , where t, as before, refer to the time

and n refer to the number of iterations for which the value function has been updated. A
possible approach for updating the approximate value function would be:

V̄ n
t (St) = max

xt∈Xt

(
Ct(St, xt) + γ

∑
s′∈S

P(St+1 = s′ | St, xt)V̄ n−1
t+1 (s′)

)
(4.7)

4.3.3 Exogenous information

In some problems, the transition from the current state St to another state St+1, is not
deterministic. The transition may also depend on exogenous information that is not
available at the time the decision is made. As in Equation 4.6, denote the exogenous
information as Wt being realized and first observable for the decision at time t. Further,
a possible outcome is denoted a scenario, the outcome space consists of all possible out-
comes at a time t and is denoted Ωt and the sample path or realization path is a path of
realizations across several time periods.

4.3.4 Value function approximation representation

The value function approximation V̄ n
t can be represented in different ways. The goal is

to provide a reasonable approximation of V n
t (St) (Powell, 2007, pp. 225).
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Look-up table: A conceptually simple way to represent V̄ n
t is as a look-up table. That is,

for each possible state, there is a mapping to an approximated value. The look-up table
representation can quickly become infeasible due to the first curse of dimensionality, a
large state space. In addition, if the state space is large, most states may never be visited,
even if the number of iterations n is high. Then the performance of the ADP algorithm
using V̄ n

t will depend drastically on the initial values of the look-up table. A solution to
this is aggregation, which updates similar states to the ones visited.

Linear regression: Due to the computationally complexity of representing the value
function approximation for high-dimensional state spaces, V̄ n

t can be represented using
regression models. The representation of the value function approximation is then de-
fined by:

V̄ n(S | β) = βn0 +
∑
i∈I

βni f(S), (4.8)

where n is not the power, but an index for the nth iteration, that is the regression param-
eter after n updates. The function f(·) refers to the basis function, extracting the features
from the state variable, and I refers to the features (Powell, 2007, pp. 237). For a more
rigorous explanation of linear regression, please see Section 4.4.1.

The linear regression representation of the value function approximation is linear in the
parameters, however, not necessarily in the state attributes, because of the basis function.
For example, if the value function approximation is quadratic in the available resources
R, it can be defined as:

V̄ (R | β) = β0

∑
a∈A

(β1aRa + β2aR
2
a), (4.9)

where Ra refers to the available resources with attribute a. Linear regression can thus
handle more than just functions linear in the state variable. However, the precise form
of the value function approximation might not be known in advance. When this is the
case, an alternative representation of the is using a neural network, a mathematical tool
explained in the following section.

4.4 Neural Networks

Neural networks (NN) are computing systems composed of interconnected neurons. Each
neuron is associated with an activation function and a set of weights. NNs are inspired
by biological neural networks, however, they are not designed to be perfect models of
the brain. Instead, NNs are used to approximate some mathematical function f(·). The
following sections are largely based on a similar description of neural networks in Olstad
and Verås (2019).
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4.4.1 Linear Regression

A linear regression model aims to model the relationship between one or more explana-
tory variables, and a real-valued prediction variable. Mathematically, a linear regression
model with explanatory variables x ∈ Rn takes the form

f(x) = β0 +

n∑
i=1

βixi. (4.10)

The coefficients βi are found my minimizing some statistical error. Examples of such
error statistics are the mean squared error (MSE), minimizing the square deviation from
the actual values, and mean absolute error (MAE), minimizing the absolute deviation
from the actual values. MSE and MAE can be mathematically expressed as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (4.11)

MAE =
1

n

n∑
i=1

‖yi − ŷi‖ (4.12)

Here yi denotes the actual value of observation i, ŷi is the predicted value and n is the
number of observations. MAE and MSE will be equivalent in the case where the differ-
ence between yi and ŷi is equal at all i. The main difference is that the MSE penalizes
large errors more than the MAE.

4.4.2 Perceptron

The perceptron is a binary classifier, and can be seen as a basic building block of a feed-
forward neural network (FFNN), also called Multilayer Perceptrons (MLP). A perceptron
computes the scalar product of an input vector x ∈ Rn and a weight-vector w ∈ Rn, adds
a bias term b ∈ R, and transforms it using the Heaviside step function seen in Table 4.1.
The entire perceptron can be described as

f(x;w, b) =

{
1, if xTw + b > 0

0, otherwise
(4.13)
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4.4.3 Feedforward Neural Networks

When the same input vector x is used for several perceptrons, with potentially different
weights, the perceptrons constitute what is called a layer. When the output from all
perceptrons in one layer is used to several other perceptrons in another layer, the result is
a multilayer perceptron model (MLP), which is a type of NN.

Figure 4.1: Example FFNN with two input neurons, one hidden layer with three neurons and an
output layer with one neuron.

When constructing FFNNs, there are several modeling decisions. The selection of appro-
priate activation, cost and output functions, as well as a functioning architecture and dif-
ferentiation algorithm is described in the following paragraphs. An example of a FFNN
is seen in Figure 4.1.

Activation function: The nonlinear function of the scalar product of the input x and
weights w does not need to be the Heaviside step function; it can be any nonlinear func-
tion f : R → R. The perceptron is thus called a neuron and the function is called an
activation function. Typical choices of activation functions include the Heaviside step
function, the rectified linear unit function (ReLU), the logistic sigmoid function and the
hyperbolic tangent function. These functions are shown in Table 4.1.

Table 4.1: Different activation functions for NNs.

Activation function Equation

Heaviside step f(x) =

{
1 if x > 0

0 if x ≤ 0

Rectified linear unit f(x) = max(0, x)

Sigmoid σ(x) = 1
1+e−x

Hyperbolic tangent tanh(x) = e2x−1
e2x+1

Cost function: The cost function, also called loss function, defines how to quantify the
prediction error for a NN. For regression problems, the cost function are the same as
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described for linear regression in Section 4.4.1, that is, MSE and MAE.

Output function: The output function is the activation function of the output layer. For
regression problems, a linear output function is common, which is the scalar product of
the layer weights and the output from the previous layer is passed on.

Architecture: The architecture of an FFNN refers to the number of hidden layers, the
amount of neurons in each layer, and how the layers are connected. The universal approx-
imation theorem states that given a wide range of activation functions, including ReLU, a
sufficiently large FFNN may approximate any function mapping from any finite discrete
space to another (Leshno et al., 1993). However, even if the FFNN may be able to repre-
sent the function to be approximated, the NN might not be able to learn it sufficiently fast
based on the available data. Thus, the architecture of the NN is an important decision to
ensure rapid learning and generalization.

Differentiation algorithm: An FFNN outputs a prediction based on some input features.
The input propagates forward through the network, in what is called forward propagation.
The training of the NN refers to the adjustment of the weights and biases at each layer.
A typical approach is to adjust the weights based on the gradient of the cost. To compute
the gradient, a differentiation algorithm is needed. The backpropagation procedure is
extensively used today, and the algorithm recursively applies the chain rule of calculus
(Goodfellow et al., 2016).

In a single-layered NN, given an output value and the true target, the cost E is calculated.
To update a weight wij in the network, that is, the weight between the ith neuron of the
previous layer and the jth neuron in the current layer, the partial derivative of the error
with respect to the specific weight must be computed. Let oj be the jth output neuron and
lj be the input to the jth output neuron, then Equation 4.14 describes how to recursively
apply the chain rule to compute the desired partial derivative:

∂E

∂wij
=
∂E

∂oj

∂oj
∂wij

=
∂E

∂oj

∂oj
∂lj

∂lj
∂wij

. (4.14)

Optimization algorithm: The internal optimization problem of an NN is to minimize
the generalization error, i.e., the cost function on previously unseen data, by varying the
weights and biases. In order to achieve a high performance of NN, large training sets
are often necessary. However, large training sets are also computationally expensive.
Instead of calculating the gradient based on all records of the training data, the gradient
can be calculated by uniformly draw a single data point or a minibatch, i.e., a small set
of samples from the data. The size of the minibatch typically ranges from a single record
to several hundred. Let L(w) denote the cost when using weights w, then the updated
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weights are:
w(k+1) := w(k) − γ∇L(w(k)), (4.15)

where γ is the learning rate, also called step-size, in the direction of the cost gradient
∇L(w(k)), and k is the update index.

To increase efficiency in the optimization, momentum can be included. With momentum,
the learning rate increases if the direction of the gradient is the same over consecutive
steps. If the gradient points in several different directions, the learning rate is decreased
to avoid overshooting the optimum. Adaptive learning is another technique to increase
optimization efficiency of the NN, which assigns a learning rate to each parameter in the
model, and adjusts the learning rate throughout the training. Adam is an optimization
algorithm that combines the concept of adaptive learning rates and momentum. It is a
widely used optimization algorithm and it is robust to different hyperparameters (Good-
fellow et al., 2016, pp. 309).
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Chapter 5
Problem Description

In this chapter, the problem of allocating multiple types of medical resources to different
regions within a country during the response phase of an epidemic outbreak is described.
The problem is applicable to diseases where outbreaks can be anticipated, e.g. due to
seasonality, and thus prepared for. It is applicable for outbreaks lasting a few months,
and located in regions with limited medical resources, and thus limited availability of
supplies, such as vaccines. In addition, the post-disease consequences must be negligible
compared to the consequences of being infected, similar to cholera, which can prove fatal
within hours unless treated, but typically have no long-term consequences. The modeled
disease must also be contagious and it must spread through human migration and en-
vironmental mediums, such as rivers. The focus is on allocating the limited resources
available at the national level to the country’s regions.

When an epidemic outbreak has occurred, the immediate response is establishing tem-
porary medical facilities. The different facilities provide particular sets of interventions.
When a facility is established, the region it covers can receive medical resources. As the
epidemic progresses, additional medical resources can be allocated.

In epidemic emergencies, when the consequences of being infected are critical and the
post-disease consequences are negligible, the overarching objective is to minimize the
number of fatalities caused by the outbreaks, given the medical resources available.

To respond to an outbreak, demographic data for the affected and neighboring regions
is required and is typically updated periodically with every census the country performs.
The information concerning the immediate availability of medical resources and the ini-
tial number of infected and vaccinated individuals must be gathered. The demand for
medical resources in each region is uncertain and is estimated. Information regarding
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the lead times initial stocking and transportation times for the distribution of resources
between regions and the resource capacity for various types of facilities are also required.

For resources to be allocated to a region, a facility with available capacity must have
been established. The number of medical facilities established in a region is limited by
the number of available facility locations for the respective facility types. Establishing a
facility requires sufficient available medical personnel. The distribution of resources to
regions must account for transportation times, and in addition, certain types of resources
can have lead times before being available for distribution at all. Different resources
affect future demand in distinct ways, and the resources are limited, and thus possibly
not sufficient to properly treat all infected individuals.
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Chapter 6
Mathematical Models

In this chapter, the mathematical models used to solve the problem and estimate the de-
mand described in Chapter 5 are presented. Section 6.1 presents a schematic and math-
ematical description of the compartmental epidemic model. In Section 6.2, the resource
allocation model is mathematically formulated and presented.

6.1 Epidemic Model

The epidemic model used for demand estimation can be interpreted as a network of mutu-
ally dependent compartmental models for each region, where cholera bacteria are trans-
ported through river networks and human migration. The modeling of interventions is
inspired by Andrews and Basu (2011) and the modeling of the interaction between re-
gions is based on Bertuzzo et al. (2011). While the epidemic model presented here is
designed specifically for cholera, similar models can be developed for other infectious
diseases. This can be done by including or excluding compartments, change the trans-
mission mechanics between regions and change the intervention methods, for instance,
if there are no available vaccine for the particular disease.

The key assumptions for the epidemic model are:

(i) The rate at which susceptible individuals become infected depends on the contam-
ination of the environment, i.e. the concentration of cholera bacteria in the water
reservoir.

(ii) The amount of bacteria dispersal from a region to another decreases with the dis-
tance between them and is proportional to the source region’s bacteria concentra-
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tion times the population size of the destination region (Bertuzzo et al., 2011).

(iii) Recovery from cholera and vaccination provide lasting immunization. While this
is not a realistic assumption in endemic areas, it is sufficient for epidemic out-
breaks lasting a few months, which are the outbreaks of interest in this thesis. The
assumption can be relaxed by introducing immunization fading parameters from
the recovered and vaccinated populations to the susceptible population.

(iv) All populations are homogeneous, thus factors such as age and blood type are not
taken into account when considering infection and recovery rates. The assump-
tion is widely used in epidemic modeling with compartmental models, but can be
relaxed by including additional compartments.

The epidemic model is a set of 6|I| ordinary differential equations, where |I| is the num-
ber of regions included. A region consists of six compartments: susceptible S, asymp-
tomatically infectedA, symptomatically infected I , recovered and vaccinatedR, cholera-
induced fatalities M and Vibrio cholerae concentration in water reservoir B. Figure 6.1
shows the epidemic model for a single region, excluding the natural birth and death rates
to increase readability.

For each region i ∈ I, the epidemic model for that region is described by the following
system of differential equations:

dSi
dt

= µ(Ni − Si)− τνi − βi
Bi

κ+Bi
Si (6.1)

dAi
dt

= pβi
Bi

κ+Bi
Si − γAi − µAi (6.2)

dIi
dt

= (1− p)βi
Bi

κ+Bi
Si − µC

(
φi + (1− φi)χ

)
Ii − γ

(
(1− θi) + θiλ

)
Ii − µIi

(6.3)
dRi
dt

= τνi + γ
(
Ai +

(
(1− θi) + θiλ

)
Ii

)
− µRi (6.4)

dMi

dt
= µC

(
φi + (1− φi)χ

)
Ii (6.5)

dBi
dt

=
ρA
Wi

A+
ρI
Wi

(
ψθi + (1− θi)

)
Ii − µBBi − l

(
Bi −

|I|∑
j=1

Pij
Wj

Wi
Bj

)
(6.6)

A definition of all the parameters are found in Table 6.1.

Equation 6.1 describes the changes to the size of the susceptible population in region i.
The first term accounts for net birth and death in the region, whereNi = Si+Ai+Ii+Ri,
i.e. the total population of the region. The birth and death rates are assumed to be the
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Figure 6.1: Schematic depiction of the epidemic model for a single region with each compartment
population and the transition rates among the different compartments. In addition to the rates
shown, compartment S has a natural birth rate µN , where N is the population in the region,
compartments S, A, I and R have a natural death rate µ and compartment B has transition rates
for transmission across regions, which has been discarded in this figure for simplifying purposes.

same and are denoted µ. While this is often not the case, due to the short time horizon
of a few months, the differences in the birth and death rates are negligible. The second
term in Equation 6.1 captures the vaccination dynamics; τ is the efficacy of the vaccine
and νi is the absolute number of individuals vaccinated per unit time. The last term refers
to the rate of infection, depending on the rate of contaminated water consumption in the
region, βi, and the probability that an individual consuming contaminated water becomes
infected. κ is the half-saturation constant, defined as the bacteria ingested for which the
probability of becoming infected is 50%.

The changes in the asymptomatic population are described in Equation 6.2. Among the
individuals becoming infected, the proportion p of the total population in the region does
not develop symptoms, although they can still possibly infect others. The asymptomatic
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population recovers with the recovery rate γ and dies of causes other than cholera with
the natural death rate µ.

Equation 6.3 describes the changes in the symptomatic infected population. The propor-
tion (1 − p) of infected individuals develop symptoms. In region i the proportion φi of
the symptomatic individuals receive rehydration solution. If an individual receives such
treatment, the death rate due to cholera is µC . However, if no rehydration treatment is
received, the cholera-induced death rate is expedited to χµC . If a symptomatic individ-
ual receives antibiotics, the recovery rate increase from the natural rate γ to rate λγ. The
number of recoveries of symptomatic individuals also depends on the current amount of
symptomatic individuals and the proportion receiving antibiotics θi. As with the other
compartments, symptomatic individuals can also die of other causes that cholera with
rate µ.

The changes in the recovered and vaccinated population in region i is described by Equa-
tion 6.4. The first term describes the transitions from susceptible population getting
vaccinated, the second term is recovering individuals from both the symptomatic and
asymptomatic populations. The last term describes the number of deaths not related to
cholera.

Equation 6.5 describes the increase in cholera-induced fatalities. Transitions are only
possible from the symptomatically infected compartment. The equation is not necessary
to solve the system of differential equations, but is used in the resource allocation model,
and thus included.

The last equation in the system, Equation 6.6, describes the changes in cholera bacteria
concentration in the water reservoir in the region. The asymptomatic and symptomatic
infected individuals are assumed to excrete bacteria with rate ρA and ρI , respectively.
The first term describes the bacteria excreted to the environment by asymptomatic indi-
viduals. The second term describes the same, but for symptomatic individuals, as well
as differentiating on whether the symptomatic individuals receive antibiotics or not. Re-
ceiving antibiotics are assumed to reduce the bacteria excretion rate with a factor ψ. The
concentration of bacteria decays naturally with a net rate µB . The last term in Equation
6.6 describes the transmission between regions and is based on Bertuzzo et al. (2011).
The bacteria disperse between regions at rate l, and the total dispersal between two re-
gions depends on the current concentration of cholera bacteria in the water sources for
the two regions, as well as the relative size of the water sources. Bacteria dispersal from
region i to region j occur with the following probability:

Pij =
Nje

−
dij
D∑|I|

k 6=iNke
− dik

D

, (6.7)
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where dij is the dispersal distance between regions i and j, and D is the mean dis-
persal distance. To decrease the computation time significantly, the population size is
assumed constant throughout the epidemic when calculating the bacteria dispersal prob-
ability. This is a reasonable assumption, expecting the epidemic is responded to, and
that the natural birth and death rates are insignificant due to the relatively short hori-
zon, thereby making the total number of fatalities small compared to the original total
population.

Table 6.1: Parameter definitions, values and references.

Parameter Definition

νi Rate of vaccination

βi Proportion of individuals consuming contaminated water

φi Proportion of individuals receiving rehydration treatment

θi Proportion of individuals receiving antibiotics

Wi Water reservoir size

τ Vaccine efficacy

κ Half-saturation constant

p Proportion of infected being asymptomatic

γ Rate of recovery

ρA Rate of excretion, asymptomatic individuals

ρI Rate of excretion, symptomatic individuals

χ Relative rate of cholera-induced death, not receiving rehydration treatment

λ Relative rate of recovery, receiving antibiotics

ψ Relative rate of excretion, receiving antibiotics

µ Rate of birth and non-cholera induced death

µB Net rate of cholera bacteria decay

µC Rate of cholera-induced death

l Mean rate of regional bacteria dispersal

Most parameters in the epidemic model can be set from the literature, such as the half-
saturation constant, or be estimated with similar methods from the literature, such as the
water reservoir size in a region. Other parameters have been calibrated to historical data,
and thus might not be applicable in other regions. The rate of cholera bacteria dispersal
between regions l is based on the parameter value in Bertuzzo et al. (2011), where it
was calibrated to best fit the cumulative cholera cases. However, the dispersal is likely
affected by environmental fluctuations, such as local climatic conditions. To capture the
parameter uncertainty and environmental variability, l is modeled as a stochastic param-
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eter following some specified distribution. The parameter is assumed to be realized on
a weekly basis for each time period. Furthermore, it is assumed given when solving the
system of differential equations in Equations 6.1-6.6.

6.2 Resource Allocation Model

The resource allocation model is described using the Markov decision process (MDP)
framework. In the following sections, the key assumptions are presented, before the
model is formulated to analyze problems of the type described in Chapter 5. The full
notation and model is included in Appendix B.

6.2.1 Assumptions

Besides the assumptions given in the problem description, the additional assumptions
listed are made to facilitate a mathematical programming model:

(i) The model has a finite planning horizon, assuming the epidemic is eventually elim-
inated. The planning horizon is divided into a number of discrete time periods, and
decisions are made periodically at the beginning of each time period.

(ii) The resource allocation focus is on the national level. The model considers ag-
gregate capacities at the national and regional level and assumes that the decision-
makers within the region coordinate the allocation of personnel and intervention
resources. A region is also considered a single demand point, thus deployment of
intervention resources within a region ignores the intraregion transport times.

(iii) The number of personnel and intervention resources available at the national level
is assumed to be given, but intervention resources can arrive throughout the plan-
ning horizon. The medical personnel is considered homogeneous. Medical person-
nel is also assumed to be immune to the disease, and thus the amount of personnel
is constant throughout the planning horizon.

(iv) The transportation capacities and times are ignored in the model. Transportation is
assumed to be immediately available to the decision-makers or available through
local aid form the population.

6.2.2 State variables

Given sets of regions I, medical facility types N and intervention methodsM, the state
of the system at time t is described by St = (Rt, Dt,Mt), which captures the total supply
of medical resources, the demand for different medical resources in the regions and the
cumulative cholera-induced fatalities. The state St is observed before any decisions are
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made in time period t. The resource vector Rt = (Rtm)m∈M represents the amount
of medical resources allocated for intervention type m available at time t. The vector
Dt = (Dtim)(i,m)∈I×M describes the demand for medical intervention type m in region
i at time t. The scalarMt =

∑
i∈IMti is the sum of cumulative cholera-induced fatalities

over all regions.

6.2.3 Decision variables

The primary decision to be made is the allocation of medical resources to regions. How-
ever, the allocation of resources is restricted by the capacity of the established medical
facilities and the available personnel in the region. The primary decision variable xt =
(xtim)(i,m)∈I×M determines the number of resources for intervention type m allocated
and deployed in region i at time t. The supporting decision variable yt = (ytin)(i,n)∈I×N
corresponds to the number of facilities of type n open in region i at time t. Lastly, the
supporting decision variable zt = (zti)i∈I determines the number of personnel allocated
to region i at time t.

At the country level, there cannot be deployed more resources than available and re-
sources at the regional level can not exceed the demand:∑

i∈I
xtim ≤ Rtm, ∀t ∈ T , ∀m ∈M (6.8)

xtim ≤ Dtim, ∀t ∈ T ,∀i ∈ I,∀m ∈M (6.9)

In order to deploy resources to region i, there must be sufficient facility capacity to store
and apply interventions. Each facility of type n has capacity Bnm for intervention type
m:

xtim ≤
∑
n∈N

Bnmytin, ∀t ∈ T , ∀i ∈ I, ∀m ∈M (6.10)

Each intervention type m takes the fraction workload Um during the time period. The
total amount of work given the deployment of medical resources must be covered by the
available personnel in the region:∑

m∈M
Umxtim ≤ zti, ∀t ∈ T ,∀i ∈ I (6.11)

Establishing a medical facility of type n requires a minimum amount of personnel Qn,
thus there must be enough medical personnel allocated to the region to operate all the
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established facilities within the time period:∑
n∈N

Qnytin ≤ zti, ∀t ∈ T ,∀i ∈ I (6.12)

The number of medical facilities of type n established in a region is restricted by the
availability of locations Lin:

ytin ≤ Lin, ∀t ∈ T ,∀i ∈ I,∀n ∈ N (6.13)

The number of medical personnel allocated to the regions cannot exceed the nationally
available amount of medical personnel P :∑

i∈I
zti ≤ P (6.14)

Finally, the variables are non-negative integers:

xtim ∈ Z+, ∀t ∈ T , ∀i ∈ I, ∀m ∈M (6.15)

ytin ∈ Z+, ∀t ∈ T , ∀i ∈ I, ∀n ∈ N (6.16)

zti ∈ Z+, ∀t ∈ T , ∀i ∈ I (6.17)

The set of feasible solutions at time t is denoted Xt, where each solution (xt, yt, zt)
satisfies Constraints 6.8-6.17.

6.2.4 Information process

During time period t, the exogenous information ω is revealed. The information impacts
the demand and fatalities in the next period. However, the future demand is also depen-
dent on the decisions made in period t. Let Wt+1 refer to the exogenous information
realized during time t and thus first available at time t+1, where ω occurs with probabil-
ity P(Wt+1 = ω). When combined with the epidemic model, the exogenous information
is defined to be the bacteria dispersal rate between regions, previously denoted l.

6.2.5 Transition function

The transition function for a state St is divided into three distinct transition functions,
one for each state component. Transitioning from time t to t+ 1 yields the state St+1 =
(Rt+1, Dt+1,Mt+1). After making decisions in time period t and after the exogenous
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information is realized, the state transitions. The resource transition function, that is, the
function determining the effect of applying a decision on the resources, is given by:

Rt+1 =
(
Rtm −

∑
i∈I

xtim + wtm

)
m∈M

, (6.18)

that is, allocated resources are withdrawn and utilized. However, new resources may also
arrive. Resources of type m, arriving during time period t are denoted wtm and included
in the resources at time t+ 1.

The demand is highly uncertain and depends both upon the decisions taken within the
respective time period and the exogenous information. The demand is estimated using the
epidemic model developed in Section 6.1. Let DE(·) refer to the estimated demand from
numerically solving the epidemic model for the next period, then the demand transition
function is:

Dt+1 = DE(Dt, xt,Wt+1) (6.19)

The cumulative cholera-induced fatalities transition function increments the current value
with the new fatalities occurring over the next time period. The new fatalities within a
time period is estimated using the epidemic model developed in Section 6.1. Let CE(·)
be the numerically solved estimated number of lives lost due to cholera within a time
period from the epidemic model:

Mt+1 = CE(St, xt,Wt+1) (6.20)

6.2.6 Cost function

The cost function refers to the immediate cost or benefit from taking an action xt. At
each time period, the epidemic outbreak cost lives. The number of lives lost due to the
outbreak, within a time period, is estimated using the epidemic model. The lives lost
depends on, among other things, the bacteria concentration in the water reservoir, and
thus include the realization of the exogenous information during time period t and first
observed at time t + 1, previously defined as Wt+1. As defined above, CE(·) estimates
number of lives lost within a time period. Thus the cost function is:

Ct = CE(St, xt,Wt+1) (6.21)

6.2.7 Objective function

The objective is to minimize the expected number of cholera-induced fatalities through-
out the planning horizon. This is achieved by identifying the policy π, i.e. the decision
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rule given a state, that minimizes the number of fatalities. Let xπt denote the resource
allocation decision made at time t, employing policy π. The objective is to find the pol-
icy π that minimizes the excepted cholera-induced fatalities over the planning horizon,
formally denoted as:

min
π∈Π

E
{∑
t∈T

CEt (St, x
π
t ,Wt+1)

}
. (6.22)

52



Chapter 7
Solution Methods

This chapter presents solution methods to solve the problem presented in Chapter 5, us-
ing the epidemic model (EM) and resource allocation model (RA) described in Chapter
6. Section 7.1 describes the necessary transformation for the RA and EM to communi-
cate. Section 7.2 describes the approximate dynamic programming (ADP) method and
its central components, which is the overarching solution algorithm. In this approach,
the resources are allocated for all regions at each time period, and the solution algorithm
is referred to as stage decomposition. Section 7.3 presents strategies to solve the sub-
problem arising from the ADP approach. Lastly, Section 7.4 describes an alternative to
the stage decomposition solution scheme: a regional decomposition approach, where the
solution algorithm is applied for each region individually.

The structural difference between stage and regional decomposition is illustrated in Fig-
ure 7.1. The medical resources need to be distributed over regions and over time. The
stage decomposition approach divides the planning horizon into time periods, and allo-
cate medical resources to all regions for each time period. The regional decomposition
aims to decrease run time by allowing parallelization by region, but possibly at the cost of
performance. The approach divides available resources among the regions, before each
region employs a stage decomposition strategy for their allocated resources.

A flowchart of the solution algorithm is illustrated in Figure 7.2. The epidemic model is
used to supply the resource allocation model with demand parameters and to calculate
its objective. The value function approximation (VFA) is updated iteratively in the ADP
framework. After a predetermined number of updates, the problem is solved using the
VFA. With stage decomposition, the solution method shown in Figure 7.2 is run at the
national level. With regional decomposition, there is one such model for each region.
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Figure 7.1: Illustration of stage and regional decomposition. Stage decomposition allocates
resources to all regions at each time period. Regional decomposition allocates the resources at
the beginning, and let each region decide at which time period to employ the resources.

Figure 7.2: Flowchart of solution algorithm using decomposition by stage. Abbreviations used:
Resource allocation model (RA), Epidemic model (EM), Value function approximation (VFA).
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7.1 Epidemic and Resource Allocation Model Interaction

When the resource allocation model and the epidemic model interacts with each other, the
compartmental populations in the epidemic model are transformed into demand for the
resource allocation model, and the decisions made by the resource allocation model are
translated into parameters for the epidemic model. These transformations are explained
in the following paragraphs.

7.1.1 Demand transformation

The compartments in the epidemic model provides demand parameters as input to the
resource allocation model. Which compartments constitute demand depends on the inter-
vention method. Vaccines and disinfectants are applied to the susceptible compartment,
and therefore the number of susceptible individuals in a region is defined as the demand
for vaccines and disinfectants in the respective region. Similarly, rehydration treatment
and antibiotics are applied to symptomatic infected individuals, hence the demand in the
region corresponds to the number of symptomatic infected in the region. Resources are
sent in kits, and therefore the demand is ceiled, i.e. rounded up. For instance, if there are
800 infections in a region and the kit size is 1000, the demand for rehydration solutions
and antibiotics is 1.

7.1.2 Decision transformation

The decisions made in the RA model determine the number of resources, the number
of medical personnel and the number of medical facilities to establish in each region.
The resources sent impact the future evolution of the epidemic model by changing the
parameters in the epidemic model. After the decisions are made in the resource alloca-
tion model, the decision-dependent parameters in the epidemic model are immediately
changed. Although this is not practically reasonable, the resources would, nevertheless,
be distributed shortly after the decision is made, thus making the effects of the assumption
negligible.

With the exception of vaccination, the decision-dependent rates in the epidemic model
are defined in terms of the proportions receiving treatment. For instance φit is the pro-
portion of symptomatic infected individuals receiving rehydration solutions in region i
at time t. Because the resources last one week and are sent in kits, the resources sent
can exceed the actual number of infections. If this is not adjusted for, the proportion of
symptomatic infected individuals receiving rehydration solutions may exceed 1, which is
not reasonable practically. The demand can also increase throughout the week, reducing
the proportion. The rates are set daily to ensure numerical stability. Let q be the kit size,
Ii(t) the number of symptomatic infections in region i at time t, and the number of ORS
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kits sent to region i for time t, xti,ORS , the rehydration treatment rate is:

φit =

{
max(q · xti,ORS , 1), if Ii(t) 6= 0

0, otherwise
(7.1)

7.2 Stage Decomposition

This section presents the ADP framework used to temporally decompose the problem.
First, the original objective is reformulated in Section 7.2.1. Then, the value function
approximation learning strategy is presented in Section 7.2.2. Lastly, Section 7.2.3 de-
scribes the VFA modeling choices.

7.2.1 Objective reformulation

The optimization problem presented in Section 6.2 concerns minimizing the number of
cholera-induced fatalities throughout the epidemic outbreak. The optimal solution can
be found using dynamic programming, which is more clear when the objective, stated in
Equation 6.22, is reformulated to Bellman’s equation, with stochastic immediate costs.
The resulting equation can be solved recursively:

Vt(St) = min
xt∈Xt

E
{
CE(St, xt,Wt+1) + Vt+1(St+1)|St

}
. (7.2)

Finding an exact solution requires enumerating every possible permutation of decisions,
states and outcomes over time, which, due to the curse of dimensionality, quickly be-
comes computationally infeasible. Instead of directly calculating the expected cost of
being in state St+1, the future cost is approximated, that is, the true value function Vt(·)
is approximated by V̄t(·). Thus, at each time period, the cost of transitioning from state
St with decision xt and the future expected incurred cost of making xt is accounted for.
The objective is reformulated to:

V̄ k
t (St) = min

xt∈Xt

E
{
CE(St, xt,Wt+1) + V̄ k−1

t+1 (St+1)|St
}
. (7.3)

The optimization is now reduced to sequentially solving a resource allocation problem
for each time period, where the consequences for future decisions are penalized with the
VFA V̄ k

t (·). The index k refer to the number of times the VFA has been updated. The
ADP solution algorithm is based on a value iteration approach and described in Algorithm
1.

Algorithm 1 determines a set of decisions, one decision for each time period t, given the
planning horizon to allocate for, the initially available resources and immediate demand,
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Algorithm 1: STAGEDECOMPOSITION(S0, T , K)
Input : Initial state S0,

Planning horizon T ,
Value function update iterations K.

Output: Best found decisions (xt)t∈T .

1 for k = 1, . . . ,K do
2 Initialize state path, StatePath← [];
3 Initialize cost path, CostPath← [];
4 Draw realization path,

(W1,W2, . . . ,WT +1) ∼ EXOGENOUSPROBABILITYDISTRIBUTION();
5 for t = 0, . . . , T do
6 Get decision, xt ← TRAININGDECISION(St);
7 Observe exogenous information from realization path, ω ←Wt+1;
8 Update state path, StatePath[t]← St;
9 Update cost path, CostPath[t]← COST(St, xt, ω);

10 Transition to new state, St+1 ← TRANSITION(St, xt, ω);

11 for t = T , . . . , 0 do
12 Get visited state, St ← StatePath[t];
13 Calculate value of state, CumulativeCost←

∑T
τ=tCostPath[τ ];

14 Update with true value, V̄ k
t (St)←

UPDATEVALUEAPPROXIMATIONFUNCTION(St, CumulativeCost);

15 Draw realization path,
(W1,W2, . . . ,WT +1) ∼ EXOGENOUSPROBABILITYDISTRIBUTION();

16 for t = 0, . . . , T do
17 Get decision, x∗t ← POLICYDECISION(St);
18 Observe exogenous information, ω ←Wt+1;
19 Transition to new state, St+1 ← TRANSITION(St, x

∗
t , ω);

20 return Decisions for each time period, x∗ = (x∗t )t∈T ;
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i.e. the initial state S0 and the number of simulations to perform to update the VFA be-
fore determining the final solutions. Steps 1-14, constitute the learning of the VFA. First,
the paths are initialized, which are later used to calculate the true value of being in a
state when updating the VFA. During VFA learning, K planning horizons are simulated.
After each planning horizon simulation, steps 5-10, the VFA is updated in steps 11-14.
The exact update procedure is elaborated in Section 7.2.3. A decision for the upcoming
time period is determined using the procedure TRAININGDECISION(St), The actual re-
alization of the exogenous information Wt+1 is observed, the paths are updated and the
state is transitioned based on the decision and the observed information. Note that Wt+1

is a realization during time period t, but first available for decision making in time period
t + 1. Thus, the exogenous information realized during the last time period WT +1 is
defined.

The final phase of Algorithm 1, steps 16-19, concerns solving the actual problem, where
decisions are made using the POLICYDECISION(St) procedure. The distinction between
decisions chosen during the VFA learning and in the final phase is made because of
varying objectives. The goal during the final phase is to solve Equation 7.3, while during
the VFA learning, the goal is to determine a satisfactory approximation of the true value
function.

7.2.2 Epsilon-greedy learning strategy

To adequately approximate the value function, a sufficient number of different states
must be visited. If too few are visited, the algorithm risks getting stuck in local optima.
Because of the stochastic realizations of different bacteria dispersal rates, the value of
being in a state is not necessarily the same in every realization. To ensure a good estimate
for the value of a state, this state or similar states should be visited multiple times.

To ensure exploration, the policy procedure TRAININGDECISION(St) is introduced. It
is not only incentivized to minimize the objective in Equation 7.3, but to explore new
states. This is achieved by employing a three-phased epsilon-greedy strategy. During the
first 10% of the iterations, the decisions are made randomly. The second phase consists
of selecting a random decision with probability ε, a greedy decision with probability ε2

or an ADP decision with probability 1−ε−ε2, i.e. employing the POLICYDECISION(St)
procedure described in Section 7.3. The third and final phase consists of the last 5% of
the iterations, in which only ADP decisions are made. By employing this strategy, the
focus is initially on exploration. The second phase ensures randomized greedy policies
more similar to the ADP policy than the purely random policy. This warrants local ran-
domization, but are decisions still similar to that of the ADP policy. Lastly, the ADP
policy is followed for several iterations to ensure good estimates of the states typically
visited when employing the policy. A detailed description of TRAININGDECISION(St)
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is found in Algorithm 7 in Appendix C.

The problem in Equation 7.3 is a mixed-integer nonlinear program (MINLP) when us-
ing the feasible region Xt defined in Section 6.2.3. Although the problem is solved for
a single time period only, not for the entire horizon, the optimization problem is still
computationally demanding. Selecting a random decision from the set of all feasible
decisions uniformly would require computing every feasible solution. As the solution
space is large, this would make the random decision procedure slow. To avoid enu-
merating every solution and still ensure sufficient exploration, a pseudo-uniform random
solution generator is applied. The procedure uniformly draws the amount of resources to
be allocated and then allocates resources to the regions in a random order. The amount
allocated to each region is uniformly drawn from the remaining resources at the time.
Detailed pseudocode for the procedure is available in Algorithm 8 in Appendix C.

7.2.3 Value function approximation implementation

The VFA is modeled as a neural network. The network aims to learn the cumulative
future cost of being in a state, conditional on some policy being followed. Due to the
curse of dimensionality, discussed in Section 4.3.1, a look-up table would be computa-
tionally impractical. The curse of dimensionality can be somewhat mitigated by using
state aggregation. However, linear regression or neural networks allows for updates of
the entire function, not just neighboring states, when using look-up tables. Because the
exact functional form of the value function is not known, the neural network is employed
as VFA representation, instead of linear regression with basis functions. With a neural
network, the entire VFA is updated when the value of a decision taken in a given state is
realized, not just the single state or state similar to it, as is the case of state aggregation.
The value function approximation is updated using the procedure UPDATEVALUEAP-
PROXIMATIONFUNCTION(·). The procedure applies neural network backpropagation at
the end of each planning horizon iteration. To reduce bias that would arise from estimat-
ing V̄ k

t (St) using the estimate V̄ k−1
t+1 (St+1), the target is the realized cumulative costs,

not the value function estimates.

An issue with neural networks, particularly deep neural networks with a significant num-
ber of parameters, is the slow learning from each data point. To overcome this challenge,
each data point from the most recent iterations are used as training data. Each update it-
eration, several minibatches are drawn, i.e. random traning points from the training data
to learn from. Therefore, the neural network might train on the same data point several
times, making it possible to learn sufficiently from each observation.

By adjusting the training data each iteration, the convergence should also be more effi-
cient, only learning on data from the recent policy, not the exploratory policy from earlier
iterations. To avoid overfitting of the last realization of dispersal rates, the training data
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consists of the past three iterations, not only the last one.

The state used as input to the neural network is as presented in Section 6.2.2. However,
because the demand for vaccination and disinfectant is the susceptible population and the
demand for rehydration solution and antibiotics is the symptomatic infected population,
the state will have redundant, replicate demand values. These are removed to ensure
an efficient state representation and faster learning. In addition, to further increase the
learning efficiency, the states are scaled to zero mean and unit variance, more formally:

x′ =
x− x̄
σx

, (7.4)

where x′ is the scaled feature, x is the original state value, x̄ is the mean value and σx
is the sample standard deviation. The standardization scaling avoids issues with large
differences in feature range and ensures weighting each feature in the state equally in the
beginning. The scaling is based on the training data, as described above.

7.3 Subproblem Solution Method

The following sections describe different approaches to solve the MINLP arising from
Equation 7.3 at each time step t, thus resulting in different versions of the procedure
POLICYDECISION(St). Section 7.3.1, Section 7.3.2 and Section 7.3.3 present three poli-
cies not utilizing the VFA. The solution approach presented in Section 7.3.4 is a local
search heuristic employing the VFA to balance the need for immediate response with the
need of resources for future responses, and may be regarded as the main POLICYDECISION(St).

7.3.1 Greedy demand approximation

When an epidemic outbreak has occurred and the number of infections and fatalities
rises, one possible is to allocate as many resources as needed to decrease the number
of infected and fatalities, and to try to contain the epidemic as quickly as possible. The
greedy policy aims to do this by satisfying all the immediate demand. If this is not
possible, the available resources are allocated based on infection ratios.

Algorithm 2 takes the current state and the kit size as inputs and outputs a feasible deci-
sion for time period t, with resources allocated greedily based on infection ratio. First, the
immediate demand is observed. The kit size is accounted for and the demand is ceiled,
i.e. rounded up, to ensure that it is satisfied. Further, the total demand for each inter-
vention type and the infection ratio is calculated. The available resources are computed,
and the resources are allocated based on the infection ratio. Because the resource kits
are integer and the infection ratios are not, an allocation where regions receive the same
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Algorithm 2: GREEDYPOLICYDECISION(St, I, q)

Input : State St,
Current number of symptomatic infected in each region, I ,
Kit size q.

Output: Feasible decision xt.

1 Observe immediate demand and calculate ceiled demand, D ←
⌈
St.demand

q

⌉
;

2 Calculate infection ratio for all regions and interventions, di ← Ii(t)∑
j∈I Ij(t) ,∀i ∈ I;

3 for intervention type m ∈M do
4 Calculate total demand, DTOT

m ←
∑

i∈I Dim;
5 Calculate resources to be allocated, Rm ← min(DTOT

m , St.resources[m]);
6 Allocate integer resources to based on infection ratios,

xtm ← ROUNDING((di)i∈I , Rm);

7 while not ISFEASIBLE(xt) do
8 Calculate marginal costs, MC−,MC+ ← MARGINALCOST(xt);
9 Identify resource with least impact, (i,m)← arg min(i,m)∈I×M(MC−);

10 Reduce decision where it is most efficient, xtim ← xtim − 1;

11 return Decision in time period t, xt;

resource ratio as infection ratio is not necessarily achievable. Therefore, a rounding pro-
cedure is employed. Although the demand is satisfied, capacity constraints may restrict
the decision made, thus feasibility is checked. If the decision is infeasible, the expected
marginal cost of removing one resource of each type in each region is calculated, and
resource where the least lives are saved, i.e. the resource having the highest marginal
cost, is removed.

The procedure MARGINALCOST(xt), returns the marginal cost of decreasing and in-
creasing one unit of resource of type m in region i, for all intervention types and re-
sources. That is, MC− = (MC−im)(i,m)∈I×M, where MC−im is the expected difference
in objective value by decreasing resource type m in allocated to region i by one unit.
Similarly, MC+ = (MC+

im)(i,m)∈I×M, measures the expected difference in objective
value by increasing one unit resource of type m to region i. Note that for the greedy
algorithm, the marginal cost is not calculated using the VFA, only the immediate cost
defined by CE(·). If the kit size is small, the number of resources removed per iteration
in the while loop can be adjusted to take larger steps.

The procedure ISFEASIBLE(xt), controls that if given a resource allocation xt, does a
personnel allocation and available facilities exist, such that the decision is feasible. The
variable of interest is the resource allocation xt, within the constraints of available medi-
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cal facilities and personnel, being the supporting decision variables, yt and zt. Therefore,
the actual allocation of personnel and establishment of medical facilities are beyond the
scope of this thesis.

checks that given a resource allocation, xt, does there exist a personnel allocation and
available facilities, such that the decision is feasible. The interest is the resource al-
location, within the constraints of available personnel and medical facilities, being the
supporting decision variables, thus the actual allocation of personnel and establishment
of medical facilities is not of interest in this thesis.

7.3.2 Naive horizon allocation approximation

In countries that have previously experienced cholera outbreaks, the epidemic model can
be used as a probable approximation of the outbreak timeline without major adjustments
of parameters as the outbreak unfolds. Thus, a medical resource allocation based on the
forecast demand throughout the planning horizon can be used. The problem with this
approach is that it neither takes into account the realizations of the dispersal rate nor
the consequences of allocating the resources. Therefore, outbreaks late in the planning
horizon may have been avoided if additional resources were allocated early on. The sim-
ulated outbreaks must also assume a strategy when simulating, and for the naive policy
the strategy is to do nothing.

Algorithm 3: NAIVEPOLICYDECISION(S0, l̂)

Input : Initial state S0,
Assumed dispersal rate l̂.

Output: Decisions for all time periods, x = (xt)t∈T .

1 Set epidemic model decision-parameters to no intervention, ν, β, φ, θ ← (0, 1, 0, 0);
2 Set bacteria dispersal rate to desired value, l← l̂;
3 Project symptomatic infected at each week, I ← SIMULATEEPIDEMIC(S0);
4 Calculate infection ratio, dti ← Ii(t)∑

t∈T
∑

i∈I Ii(t)
;

5 Allocate integer resources to based on infection ratios, xm ← ROUNDING(d,Rm)
return Decision for entire planning horizon, x;

Algorithm 3 takes the current state St and the desired dispersal rate l̂ as input, and returns
resource allocation decisions for all time periods and regions. First, it ensures no inter-
ventions are employed and assumes a dispersal rate in the epidemic model. Furthermore,
it projects the infections at each week and calculates the infection ratio by simulating the
epidemic using the assumed dispersal rate. Based on the infection ratios of each region
for each time period, the resources are allocated using a rounding procedure.
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7.3.3 Myopic allocation

The myopic allocation algorithm is inspired by the forecasting approach in Long et al.
(2018). However, it is not the same allocation algorithm as their proposed myopic al-
gorithm. In this thesis, the myopic policy projects the demand for the upcoming week,
and allocates based on the projected demand, instead of the immediate, observed de-
mand that GREEDYPOLICYDECISION() does. The benchmark policy ignores demand,
personnel and facility feasibility to provide insights on performance when large number
of resources are allocated early.

Algorithm 4: MYOPICPOLICYDECISION(St, q)

Input : State St,
Kit size q.

Output: Decision xt.

1 Project demand and infections in upcoming week,
D̃, Ĩ ← SIMULATEEPIDEMIC(St);

2 Calculate ceiled demand, D̃ ←
⌈
D̃
q

⌉
;

3 Calculate infection ratio for all regions, di ← Ĩi(t)∑
j∈I Ĩj(t)

,∀i ∈ I;

4 for intervention type m ∈M do
5 Calculate total demand, D̃TOT

m ←
∑

i∈I D̃im;
6 Calculate resources to be allocated, Rm ← min(D̃TOT

m , St.resources[m]);
7 Allocate integer resources to based on infections ratios,

xtm ← ROUNDING((d̃i)i∈I , Rm);

8 return Decision in time period t, xt;

Algorithm 4 take the current state St and a kit size q as input and returns a decision for
time period t. The demand for the upcoming week is projected. Based on this demand,
the resources are allocated in a similar manner as the greedy policy. Although the myopic
policy projects future costs, and therefore looks further than the current state, it only does
so for one week, hence the name myopic.

7.3.4 Local search heuristic

Using the ADP approach presented with Algorithm 1, Equation 7.3 is solved with a local
search heuristic. The initial solution is based on the greedy strategy presented in Section
7.3.1. Algorithm 5 presents the procedure LOCALSEARCHPOLICYDECISION(St), used
in step 17 in Algorithm 1.

Algorithm 5 takes the current state St, the kit size for bundling medical resources q and
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Algorithm 5: LOCALSEARCHPOLICYDECISION(St, q,∆)

Input : State St,
Kit size q,
Impact factor ∆.

Output: Best found, feasible decision xt.

1 Get feasible initial decision, xt ← GREEDYPOLICYDECISION(St, q);
2 Calculate marginal costs of decreasing and increasing unit resource,

MC−,MC+ ← MARGINALCOST(xt);
3 while min{MC−} < −∆ do
4 Get index of lowest marginal cost, (i,m)← arg min{MC−};
5 Remove resource from index with lowest marginal cost, xtim ← xtim − 1;
6 Calculate new marginal costs, MC−,MC+ ← MARGINALCOST(xt);

7 Get best resource transfer indices, (i, j,m)← arg mini,j,m(MC+
im +MC−jm);

8 while MC+
im +MC−jm < −∆ do

9 Increase resource allocation, xtim ← xtim + 1;
10 Decrease resource allocation, xtjm ← xtjm − 1;
11 if ISFEASIBLE(xt) then
12 Calculate new marginal costs, MC−,MC+ ← MARGINALCOST(xt);

13 else
14 Prevent revisit to resource increase, MC+

im ← +∞;
15 Revert to feasible allocation, xtim ← xtim − 1;
16 Revert to feasible allocation, xtjm ← xtjm + 1;

17 Get new best resource transfer indices,
(i, j,m)← arg mini,j,m(MC+

im +MC−jm);

18 return Decision in time period t, xt;
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an impact factor ∆, as input, and outputs a feasible decision for time t. When marginal
costs are calculated in the local search, the VFA costs are included, in contrast to the
previous algorithms. In this way, the future cost of decisions are accounted for in the
decisions made at time t.

The first part of the algorithm, steps 3-6, performs marginal cost descent, reducing the
resource of type m in region i as long as the resource is more useful, i.e. reduce more
fatalities, in later time periods. The VFA will have some inaccuracy in its predictions,
especially as the output can be thousands of fatalities. Thus, to reduce the risk of re-
moving resources that have insignificant effect on the objective, the impact factor ∆ is
introduced, to ensure removal or transfer of resources that provides significant impact on
the objective value. If the impact factor is set too high, the ADP policy will imitate the
greedy policy, while if it is set too low, a significant number of redundant changes to the
decision may occur.

In the steps 7-17, the regions and intervention type where a transfer of resources decreases
the cholera-induced fatalities the most, are identified. When there exists a transfer that
reduces the fatalities with a certain level ∆, the transfer of one unit resource of type m
from region j to region i is performed, given that it is feasible. If it is not, the marginal
cost of increasing resources of type m in region i is set such that the same indices will
not be revisited. Feasibility is only checked for the transfer and not for the marginal cost
descent, i.e. first part of the algorithm. This is because the initial decision is feasible
and thus reducing resources allocated cannot induce infeasibility. The transfer, however,
might require opening an additional facility in the region receiving more resources. Due
to facility location constraints and personnel constraints, the solution might be infeasible,
and therefore the feasibility must be evaluated.

7.4 Regional Decomposition

When the number of regions increases, the number of possible, resource allocation de-
cisions increases. The search space becomes very large, resulting in a more difficult
approximation of the value function and the epidemic simulations become more compu-
tationally demanding. To limit this, the problem is decomposed by region, where each
region is solved as its own, distinct ADP problem, thus requiring its own VFA. This ap-
proach introduces problems regarding the bacteria dispersal. Since the regions are solved
independently in parallel, the dispersal between them are not calculated and must be
provided in advance, reducing the accuracy of the epidemic model.

Algorithm 6 presents an alternative solution method, replacing Algorithm 1. The algo-
rithm uses the same ADP framework and procedures defined in previous sections, but to
increase readability, details regarding the value function updates are omitted. In contrast
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to the stage decomposition approach, in Algorithm 6, the resources are allocated across
regions at the beginning of the planning horizon. With a smaller search space, the VFA
should be easier to learn for each region, albeit at the expense of the need for an initial
resource allocation procedure, reducing response flexibility. After the initial allocation,
the problem can be solved in parallel using a similar approach as in Algorithm 1.

The initial allocation procedures should leverage as much information as possible. In
the first iteration, there is no available information guiding the allocation. Therefore,
the outbreak is simulated without interventions and resources are allocated based on the
number of fatalities. In all consecutive iterations, the allocation is based on marginal
benefit computed based on results from previous iterations.

The procedure REALLOCATION() transfers resources between the regions where the
marginal benefit is the highest and lowest, in terms of resources per fatality. The ra-
tionale of this procedure is that resources should be spent where they save the most lives.
Assuming diminishing marginal benefit, the reallocation should converge towards a sim-
ilar marginal benefit level across all regions. For detailed pseudocode describing the
REALLOCATION() procedure, see Algorithm 9 in Appendix C.
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Algorithm 6: REGIONALDECOMPOSITION(T , R, I,K,H)

Input : Planning horizon T ,
Initial resource pool R,
Regions I,
Value function update iterations K,
Reallocation iterations H .

Output: Best found decisions x.

1 for each reallocation iteration h = 1, . . . ,H do
2 if h = 1 then
3 Calculate fatalities in each region i without interventions;
4 rh ← Allocate resources R to each region i based on fatalities;

5 else
6 rh ← REALLOCATION(R, I, rh−1, S);

7 Initialize all states, S0,i.resources← rhi ,∀i ∈ I;
8 Set bacteria dispersal in all states based on bacteria concentration in previous

iteration or 0 if first iteration;
9 for each update iteration k = 1, . . . ,K do

10 Draw realization path,
(W1,W2, . . . ,WT +1) ∼ EXOGENOUSPROBABILITYDISTRIBUTION();

11 for each region i ∈ I do
12 for each time period t = 0, . . . , T do
13 Get decision, xti ← TRAININGDECISION(Sti);
14 Observe exogenous information from realization path, ω ←Wt+1;
15 Transition to new state, St+1,i ← TRANSITION(Sti, xti, ω);

16 Update value function,
V̄ k
ti ← UPDATEVALUEFUNCTIONAPPROXIMATION(Sti, V̄

k−1
ti )

17 Draw realization path,
(W1,W2, . . . ,WT +1) ∼ EXOGENOUSPROBABILITYDISTRIBUTION();

18 for each region i ∈ I do
19 for each time period t = 0, . . . , T do
20 Get decision, x∗ti ← POLICYDECISION(Sti);
21 Observe exogenous information from realization path, ω ←Wt+1;
22 Transition to new state, St+1,i ← TRANSITION(Sti, x

∗
ti, ω);

23 return x∗ = (x∗ti)(t,i)∈T ×I ;
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Chapter 8
Case Data

This chapter provides an overview of the 2010 Haiti outbreak, being the case studied in
this thesis. Section 8.1 presents the background and data regarding the operational capa-
bilities in Haiti. Section 8.2 presents the parameter values used in the epidemic model,
determined from previous literature or otherwise estimated. The purpose of the case
study is not to compare the strategies from the solution methods presented in this thesis
with the strategies used during the actual outbreak. For that, the data on the exact contain-
ment strategies in each case is too scarce. Rather, it is to apply the solution methods in
this thesis on a realistic case, thus providing both a decision-support tool and evaluation
tool for future epidemic outbreaks, where the data on containment strategy is available.
The data is collected from different sources, mainly major health and humanitarian or-
ganizations, such as World Health Organization (WHO), United Nations Office for the
Coordination of Humanitarian Affairs (OCHA) and Medecins Sans Frontieres (MSF), as
well as government websites.

8.1 Haiti Cholera Outbreak in 2010

In January 2010 a devastating earthquake hit Haiti with magnitude 7.0 on the Richter
scale. Only months later, in October 2010, a cholera epidemic broke out in the small
Caribbean country still recovering from the earthquake. The epidemic would come to
cost almost 10 000 lives and affect of 820 000 people (Pan American Health Organiza-
tion, 2020a). The suspected cholera cases started on October 16 along the upper Arti-
bonite River. October 20, the Haitian government confirmed the cases and declared the
cholera outbreak, an epidemic (United Nations, 2011). The initial response focused on
the Artibonite and Centre departments of Haiti. Although the cholera bacteria starting the
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outbreak in Haiti originiated from a distant geographic source and was a result of human
activity (Chin et al., 2011), there are today still cases occurring, making the outbreak
relevant when developing response policies for future outbreaks.

8.1.1 Geographic and demographic data

Haiti consists of 10 departments, i.e. first-level administrative regions. The population
in each department is based on Institut Haitien e Statistique et d’Informatique (2015),
a government report from 2015, but corrected for assuming a 1.67% yearly population
growth, reported in Pan American Health Organization (2017). The distance between
each department is calculated based on the coordinates of each department capital, similar
to the approach in Long et al. (2018). A map of Haiti and its departments is shown in
Figure 8.1.

Figure 8.1: Departments of Haiti, also referred to as regions in this thesis. The capital, Port-au-
Prince, is located in the department of Ouest.

8.1.2 Number of infections

Although previously available and reported in e.g. Bertuzzo et al. (2011), the government
reports on number of cholera infections in 2010 is no longer available at the Haiti Min-
istry of Public Health (MSPP, 2020). The Pan American Health Organization (PAHO),
the regional WHO in the Americas, released weekly situation reports during the first
months of the cholera outbreak. The cumulative cholera cases are reported in cases per
10 000 inhabitants, at a national level and for the most affected departments (Pan Amer-
ican Health Organization, 2020b).
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8.1.3 Treatment facilities

Accessed through the Humanitarian Data Exchange, the United Nations Office for the
Coordination of Humanitarian Affairs (OCHA) shared the number of health facilities in
Haiti, differentiating between hospitals, medical centers and dispensaries, as well as own-
ership and purpose, such as public, private and non-profit (OCHA Haiti, 2019). The type
of facility is only available for the Ouest, Artibonite, Nord and Centre departments, but
the total number of facilities in each department is reported nonetheless. To estimate the
number of available facilities of each type in each department, all public and non-profit
health facilities are assumed to be available for cholera treatment facilities during an epi-
demic. The ratio between for-profit, and public and non-profit facilities is calculated for
the reported departments, and used to estimate the available facilities in the remaining de-
partments. To estimate the number of CTCs, CTUs and ORPs available in the remaining
regions, the ratio between hospitals, medical centers and dispensaries is calculated for
the regions where reported. The mean ratios are used to estimate the number of CTCs,
CTUs and ORPs in the remaining regions.

The treatment capacities are weekly capacity to treat or distribute resources. The CTC
and CTU is assumed to have a treatment capacity of 100 and 30, respectively, based on the
available beds described in Section 2.4.8. Therefore, the capacity for treatment resources,
ORS and antibiotics, are assumed to be 100 and 30 for the CTCs and CTUs. ORPs are
assumed to not treat with antibiotics, but have a buffer ORS treatment bed with capacity
for two, for treatment until the patients can be transferred to a CTC or CTU. Distribution
of vaccines and disinfectants is assumed to be the same for all facility types, being 1000.
The unit time spent on distributing vaccines and disinfectants per allocated personnel
is assumed to be 0.001, corresponding to spending 10 minutes on distributing a single
resource. For ORS and antibiotics the unit time is assumed to be 0.07, corresponding
to around 12 hours, because patients are hospitalized in a facility, requiring supervision,
although not constantly.

The number of personnel required to operate a CTC, CTU and ORP is assumed to be 76,
16 and 2, respectively, based on the requirements described in Section 2.4.8.

8.1.4 Medical personnel

The PAHO emphasizes that Haiti lacks reliable data for personnel in health-related pro-
fessions. In 2016, the Haitian Ministry of Heath assessed the available health profession-
als. According to the report, there are 15 980 health professionals in the public sector
and 7 364 in the private sector (Pan American Health Organization, 2017). Assuming
all medical personnel are mobilized during a national health crisis, this results in 23 344
available medical personnel.
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8.1.5 Medical resources

According to OCHA, the medical resources available for containing the outbreak were
tetracycline, an antibiotic, for 100 000 cholera treatments, rehydration salt for 200 000
treatments (OCHA, 2010a). The next day, OCHA also reported that 50 million chlo-
rine tablets were available for water purification (OCHA, 2010b). Assuming each tablet
purifies one liter of water and each person requires 20 liters of clean water per day, as
described in Section 2.4.7, the chlorine disinfectant is sufficient for 2.5 million daily
treatments, which corresponds to around 360 000 weekly treatments.

Early during the epidemic, the World Health Organization advised against oral cholera
vaccines (OCV) as an emergency response (Pan American Health Organization, 2010a).
Instead, they suggested mobilizing the response with rehydration treatment and improve
water conditions. If vaccination were to be used, the WHO preferred a pre-emptive
strategy over a reactive strategy, that is, they preferred vaccinating high-risk regions yet
to have outbreaks instead of vaccinating susceptible people in the regions with active
outbreaks. During the Haiti outbreak, the OCV stockpile had yet to be established, which
can explain the reluctance to any vaccination campaigns. However, after the stockpile
was established, 400 000 doses of OCV were allocated to Haiti in 2014 (Pan American
Health Organization, 2014). A similar number is assumed to be available, were a new
outbreak to occur.

8.1.6 Planning horizon

The planning horizon is assumed to be 120 days with weekly decisions, in accordance
with the practice described in Section 2.3 and Section 2.4.3. The first decision is taken
when the epidemic is official, and is thus made at t = 0. With weekly decisions, the
number of stages is 18.

8.1.7 Medical kit size

In practice, medical resources will be sent in kits, not individual units. The kit size is the
number of resources packaged together and is assumed to be 1000 units per kit for all
resources. Further, it is assumed that kits consist of a single resources, e.g. vaccines and
antibiotics are not placed together in the same kit.

8.1.8 Bacteria dispersal distribution

Bertuzzo et al. (2011) calibrated its epidemic model to the 2010 Haiti outbreak and found
the bacteria dispersal rate to be l = 0.025. This is assumed to be the mode dispersal
distribution. The two other scenarios is high rainfall, increasing the dispersal rate to l =
0.25 or drought, decreasing the dispersal rate to l = 0.0. Setting a reasonable distribution
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is difficult without estimating it based on seasonal outbreaks, tying it to environmental
factors such as weather.

8.2 Epidemic Parameters for the Haiti Case

Most parameters of the epidemic model can be determined from the literature. Cholera-
specific parameters, such as the half-saturation constant, is set from a consensus observed
in the literature. Case-specific parameters, such as the dispersal rate between regions, are
set using the parameters from Bertuzzo et al. (2011), which studied the 2010 Haiti cholera
outbreak and on which the network component of the epidemic model proposed in this
thesis is based on. The values for the epidemic parameters used in the computational
study are summarized in Table 8.1. For a more detailed explanation of each variable, see
the model definition in Section 6.1.

The rate of vaccination, proportion of individuals consuming contaminated water, pro-
portion receiving rehydration treatment and proportion receiving antibiotics are all pa-
rameters that depends on the decision from the resource allocation model, and thus do
not have a given value. If no resources are allocated, the rate of vaccination and pro-
portions receiving rehydration solutions and antibiotics would be 0, while the proportion
ingesting contaminated water would be 1, since no disinfectant is allocated.

The water reservoir size is estimated in the same way as in Andrews and Basu (2011),
except for transforming the metric to milliliters. The relative rate of cholera-induced
death, when not receiving rehydration treatment is estimated based on information from
World Health Organization (2018). Considering that the fatality rate of cholera in some
untreated outbreaks is up to 50% and that symptomatic cholera can prove fatal within 12
hours, the cholera-induced death rate is calculated to 1.0 per day. Assuming the cholera-
induced death rate when being treated with rehydration solution is 4.0 · 10−3 per day, as
in Bertuzzo et al. (2011), the increased fatality rate factor when not receiving rehydration
treatment is assumed to be 250.
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Table 8.1: Parameter definitions, values and references.

Parameter Definition Value Reference

νi Rate of vaccination Decision-dependent -

βi
Proportion of individuals

consuming contaminated water Decision-dependent -

φi

Proportion of individuals
receiving rehydration

treatment
Decision-dependent -

θi
Proportion of individuals

receiving antibiotics Decision-dependent -

Wi Water reservoir size 15 ·Ni · 365 · 103 ml Andrews and Basu (2011)

τ Vaccine efficacy 0.82
World Health Organization

(2017b)

κ Half-saturation constant 106 cells/ml Lemos-Paião et al. (2017)

p
Proportion of infected being

asymptomatic 0.80
World Health Organization

(2018)

γ Rate of recovery 0.2 day−1 Hartley et al. (2005)

ρA
Rate of excretion,

asymptomatic individuals 1.3 · 108 cells/day Andrews and Basu (2011)

ρI
Rate of excretion,

symptomatic individuals 1.3 · 1011 cells/day Andrews and Basu (2011),
Kaper et al. (1995)

χ

Relative rate of
cholera-induced death, not

receiving rehydration
treatment

250
Estimated from World Health

Organization (2018)

λ
Relative rate of recovery,

receiving antibiotics 2.3 Andrews and Basu (2011)

ψ
Relative rate of excretion,

receiving antibiotics 0.52 Andrews and Basu (2011)

µ
Rate of non-cholera induced

death 4.6 · 10−5 day−1 Bertuzzo et al. (2011)

µB Rate of cholera bacteria decay 0.03 day−1 Andrews and Basu (2011)

µC Rate of cholera-induced death 4.0 · 10−3 day−1 Bertuzzo et al. (2011)

D Mean dispersal distance 9.0 km Bertuzzo et al. (2011)

l
Rate of regional bacteria

dispersal 2.5 · 10−2 day−1 Bertuzzo et al. (2011)
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Chapter 9
Computational Study

The purpose of this thesis is to develop a decision-support tool to efficiently respond to
epidemic outbreaks. This chapter investigates to what extent applying the solution meth-
ods described in Chapter 7 fulfills the thesis’ purpose. Section 9.1 presents the calibration
of the epidemic parameters to fit the Haiti case presented in Chapter 8. Next, Section
9.2 presents the hyperparameter tuning of the value function approximation (VFA) and
the convergence results.. The efficiency of different medical resource allocation policies
applied to the calibrated epidemic model is investigated in Section 9.3. An alternative
epidemic outbreak is constructed and analyzed in Section 9.4. Lastly, Section 9.5 inves-
tigates the impact on policy selection when varying key parameters in the epidemic and
resource allocation models.

The solution methods are implemented in Python 3.7.6. The data is handled using Numpy
1.18.2 and Pandas 1.0.3, the differential equations defined in Section 6.1 are solved using
Scipy 1.4.1, feasibility is checked using OR-tools 7.7 and the neural network used for
VFA is implemented with PyTorch 1.4.0. All computations are performed on an Intel R©

CoreTM i7-8700T 2.40GHz CPU with 16GB RAM. An overview of the code structure is
presented in Appendix A.

Chapter 7 proposes two different approximate dynamic programming (ADP) approaches,
one with a single, complex VFA, solving the problem combined for all regions at each
stage, and the other approach allocates resources to regions at the beginning of the out-
break, letting each region allocate their resources over the planning horizon. In the latter
approach, there is one VFA for each region, allowing for parallelization, at the cost of
flexibility, not allowing for reallocation between regions as the bacteria dispersal rate is
realized. Throughout the computational study, the ADP policy refers to the policy using
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the stage decomposition approach. After the methods were developed, a significant im-
provement in the computational performance of the epidemic model was implemented,
by assuming constant population size when calculating dispersal probability between two
regions, as described in Section 6.1. This improvement thereby removed the original mo-
tivation for the regional decomposition approach.

9.1 Epidemic Model Calibration

All suspected cholera cases should be treated, but a large-scale response to the outbreak
occur shortly after an cholera outbreak is confirmed. The first available data on cumu-
lative cases of infections for the 2010 Haiti outbreak is from October 28, 2010, more
than a week after the Haitian government declared an epidemic on October 20. By then,
a large-scale response should already have been begun, thus, it is insufficient to be the
initial condition. On October 21, the Pan American Health Organization (PAHO) issued
a press release on the cholera outbreak, reporting 1500 cases of symptomatic cholera in
the department of Artibonite (Pan American Health Organization, 2010b). This is suffi-
ciently close to the epidemic confirmation date for it to be a natural starting point for a
large-scale response to the epidemic, and is thus set as the initial condition at time t = 0.
Being the day after laboratory confirmation, any available vaccines are expected to arrive
at time t = 13, according to the International Coordinating Group on Vaccine Provision
(ICG) timeline described in Section 2.4.4.

In the literature, the initial concentration of cholera bacteria in the water of region i,
Bi(0), is typically calibrated to the case. However, the calibrated value is rarely reported.
To get a realistic initial condition, Bi(0) is estimated using the cumulative cholera cases,
both at the national level and in the regions with reported data. How the bacteria were
introduced in the first place and reached the level of Bi(0) is not investigated further
and considered outside the scope of this thesis. The subject of interest is the response,
beginning when the cholera outbreak is official.

Note that the real cumulative cholera infections are a result of the actual response to the
outbreak. The decision-dependent parameters in the epidemic model would therefore
vary during the actual outbreak. Calibrating each decision-dependent parameter at every
time period is very difficult, would be very computationally demanding. Therefore, a
constant strategy is assumed when calibrating the initial condition to the data. As men-
tioned in Section 8.1.5, the WHO advised against vaccines, and as explained in Section
2.4.6, antibiotics is not applied as treatment except for the most severe cases, to avoid an-
tibiotic resistance. Therefore, vaccines and antibiotic treatment are ignored when fitting
the data. It is further assumed that 10% have access to completely uncontaminated water
and oral rehydration solution (ORS) is accessible to all reported symptomatic infected.
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The outbreak began in Artibonite and quickly spread to regions close to the Artibonite
River, being Centre and Ouest, Nord and Nord-Ouest. The initial bacteria concentra-
tion for these regions are found using the Nelder-Mead simplex algorithm from Scipy
1.4.1. The quality of fit is measured using the sum of squared errors (SSE). The initial
conditions for the non-zero cholera concentration regions is reported in Table 9.1.

Table 9.1: Initial conditions for epidemic model for non-zero cholera concentration regions.

Parameter Artibonite Centre Nord Nord-Ouest Ouest

Si(0) 1 590 230 686 929 982 364 670 886 3 709 447

Ai(0) 6000 0 0 0 0

Ii(0) 1500 0 0 0 0

Ri(0) 0 0 0 0 0

Mi(0) 138 0 0 0 0

Bi(0) 4873 3003 634 849 1911

With the parameters determined based on the literature and calibration, and assuming a
constant bacteria dispersal rate, l = 0.025, as calibrated in Bertuzzo et al. (2011), the
estimated epidemic evolution compared to collected data of cumulative reported symp-
tomatic cases are shown in Figure 9.1. Observe that early reported cases are consistently
below the estimated cases, and late cases are above.

A possible explanation for predicting too many cases early, is inadequate reporting at
the beginning of the outbreak, resulting in many unrecorded cases. It is difficult to get
an overview of every case, especially in rural areas, because certain cholera symptoms,
such as diarrhea, are not uncommon and and plausibly caused by other phenomena and
diseases, such as the norovirus or rotavirus. However, another explanation is that too few
variables are described. The model fails to provide an initial exponential growth that is
both typical at the beginning of outbreaks and observed in the data. A possible solution
is to include more variables in the calibration, i.e. increase the degrees of freedom.

The results of the parameter calibration are restricted by the quality of the data the pa-
rameters are tuned on. The data quality is sufficient, but questionable. For instance, in the
reported data, the cumulative cases in Centre decrease form one week to another, which
should not be possible. This is adjusted for by discarding the first data point, under the
assumption that recent data is more accurate due to better overview of the outbreak. The
purpose of the epidemic model is not to perfectly predict the 2010 Haiti outbreak, but
rather produce realistic outbreak scenarios that the VFA can learn from. Based on the
findings in Figure 9.1, the parameters partially fulfills this purpose, i.e. are sufficiently
reasonable and realistic.
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The epidemic model aims to produce realistic outbreak scenarios for the resource alloca-
tion model, but not to perfectly predict the 2010 Haiti outbreak. Based on the findings in
Figure

Figure 9.1: Estimated and actual cumulative symptomatic infections in Haiti and departments
where data is available during the 2010 cholera outbreak.

To further support this claim, Figure 9.2 shows the predicted progression of the epidemic
in the Haitian departments. In the beginning, the departments of Artibonite and Ouest
have a significant increase that lasts throughout January 2011. The Ouest outbreak is
large, but the region still has less absolute cumulative symptomatic cases than Artibonite,
the latter of which which has a significantly smaller population. The simulated epidemic
spreads rapidly, reaching eight of the ten departments in four days. The southwestern de-
partments remain relatively isolated from the outbreak, but as is shown in Figure 9.3, the
projected epidemic reach all regions by December 2, 2010. During the actual outbreak
all regions were reached between November 14 and 21 (Pan American Health Organiza-
tion, 2020b). Although the epidemic does not spread identically, they are similar, thus
fulfilling the purpose of the epidemic model of realistic disease spread.

Note that it is difficult to make a realistic comparison with the actual response to the 2010
Haiti outbreak in terms of fatality, because the epidemic is not calibrated to fatalities, due
to lack of data. Thus the parameters defining the transition rate from symptomatic to
fatality, might be wrong. The more realistic both the number of infections and fatalities
are, the better. However, as the primary purpose is to compare an ADP policy with other
benchmark policies, not the actual outbreak response, the lack of calibration to actual
fatalities is not considered a substantial issue.
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Figure 9.2: Projected cumulative symptomatic infections at various dates.

Figure 9.3: Departments with projected symptomatic infections at various dates.
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9.2 Value Function Tuning and Convergence

The following subsections present the results from the hyperparameter tuning, reported
in Section 9.2.1, and the results when investigating the ADP policy’s convergence in
Section 9.2.2.

9.2.1 Hyperparameter tuning

This section calibrates selected hyperparameters of the neural network used to represent
the value function approximation (VFA). The hyperparameters tuned are the learning rate
and the network architecture, in terms of the number of hidden layers and the neurons
in each layer. The other hyperparameters and modeling choices are set using default
best-practice values or empirical trials and are reported in Table 9.2. The number of
minibatches drawn per update, i.e. the epochs, is set to 10. Although this is a low
value, a too high value could overfit the VFA, due to the training data only being values
of recently visited states, as explained in Section 7.2.3. If the VFA is having trouble
converging, increasing the number of update iterations K, is a more robust approach.

Table 9.2: Hyperparameters

Hyperparameter Value
Activation function ReLU

Loss function MSE
Optimization function Adam

Output function Linear
Minibatch size 32

Epochs 10
Impact factor ∆ 500

VFA update iterations K 200

The results from the hyperparameter tuning are summarized in Table 9.3. The tuning
took about 74 000 seconds, thus the average training time of the VFA is 7 400 seconds,
slightly more than 2 hours.

While the training loss may indicate performance, it is the out-of-sample test loss that
is of interest when evaluating the generalization performance. For the learning rate, the
learning rate of 0.1 provides the lowest test loss. A learning rate of 1.0 provides severely
worse performance, which can be explained by oscillation due to a too large step size.
The loss minimum may be steep, thus the too large learning rate will step over it. An un-
expected result is for a learning rate of 0.01, where the loss is significantly higher than for
0.001 and 0.1. A significantly higher test loss compared to training loss would typically
indicates overfit. Because the training loss is on the same scale as for other learning rates,
while the test loss is significantly higher than for similar learning rates, overfiting does
not appear to be the case. The policy changes over the learning iterations, thus the VFA
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Table 9.3: Mean squared error (MSE) loss in millions for various hyperparameters on training
and test data.

Hyperparameter Value Loss
Training Test

Learning rate

0.0001 2.82 3.93
0.001 1.77 3.56
0.01 1.75 26.7
0.1 2.14 1.69
1.0 3.25 111

Architecture

[] 2.06 1.98
[10] 2.81 2.07

[20, 10] 1.82 2.53
[30, 20, 10] 3.72 1.58

[40, 30, 20, 10] 2.42 2.20

could become stuck for some states, predicting values based on previous realizations,
but not what would occur with the current policy. To avoid this, the number of learning
iterations could be increased above K = 200 when investigating the convergence.

The architecture test loss is similar for various architectures. The minimum loss appears
to be for architectures with three hidden layers, with 30, 20 and 10 neurons in the layers
respectively. The training error for the 30, 20, 10 architecture is higher than the test loss,
thus overfitting does not appear to be an issue. In the following sections, the architecture
used is [30, 20, 10]. The policy convergence is tested with a learning rate of both 0.001
and 0.1 and the number of update iterations are increased to K = 500.

9.2.2 Policy convergence

Using the hyperparameters found above, the convergence of the resulting ADP policy is
investigated. The VFA is conditioned on some policy. As it learns it should provide more
accurate predictions as to how many fatalities will occur if the policy is followed, thus
the prediction loss should decrease. In addition, the predictions should decrease as the
policy improves. Eventually, it is expected to converge, providing consistent predictions
given a state with low prediction loss.

Figure 9.4 shows the predicted cost, i.e. the future cholera-induced fatalities, given the
initial state, when using the ADP policy, as well as the loss of the prediction measured as
the mean squared error (MSE). Thus, the VFA predicts the total cholera-induced fatalities
throughout the planning horizon, when following the ADP policy. The number of learn-
ing iterations are K = 500, the learning rate is 0.001 and 0.1, and the other parameters
are set as in the hyperparameter tuning.

For the first 50 iterations, the VFA is trained purely on random decisions, as explained
in Section 7.2.2. As it learns, the prediction loss drastically decreases, until about 100
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iterations for a learning rate of 0.001 and almost immediately for a learning rate of 0.1.
After the first 50 iterations, the number of random decisions are still high, but decisions
are made using the ADP and greedy policy as well. With a learning rate of 0.001, the
loss remains low after the 100 iterations, and the predicted fatalities decreases, thus con-
firming that the ADP policy is in fact changing towards the better. Between iterations
200 and 500, the predictions are relatively stable, and in this interval more and more
decisions are made using the ADP policy. In contrast, with a learning rate of 0.1, the
predictions oscillate significantly during most of the iterations. The last 25 iterations
are made purely with the ADP policy, which explains why the oscillations are reduced
further for both learning rates, at the end. Observe that the loss remains small, and mi-
nor increases are further reduced as the iterations increase. Although less iterations are
required to decrease the initial loss with learning rate 0.1, the learning rate appears too
large to converge properly during most of the iterations. Both the investigated learning
rates appear to converge towards around 20 000 predicted fatalities, hence there are no
major performance differences. Therefore, learning rate 0.001 is used when training the
models for the rest of the computational study.

Overall, the ADP policy appears to converge, especially with a learning rate of 0.001.
It consistently predicts a little below 20 000 cholera-induced fatalities throughout the
planning horizon and the prediction loss is small. However, the decisions made with
the ADP policies at each stage are not necessarily optimal. Thus, even though the VFA
converges to making consistent decisions, it does not necessarily mean the policy reached
is optimal.

(a) Learning rate 0.001 (b) Learning rate 0.1

Figure 9.4: Value function approximation (VFA) fatalities prediction and average loss for the
initial state of the 2010 Haiti outbreak, for each VFA update iteration, using a learning rate of (a)
0.001 and (b) 0.1.
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9.3 Resource Allocation Policies Efficiency

In the following sections, unless otherwise specified, the models are applied to the case
described in Chapter 8, henceforth referred to as the base case.

The exogenous information process, i.e. the stochastic bacteria dispersal rate, ensures
different realized epidemic outbreaks. Therefore, it is not sufficient to conclude on per-
formance based on a single realization. Instead, the policies are simulated multiple times
to approximate expected performance. The mean performance for the ADP, greedy, naive
and myopic approaches across 100 simulations are shown in Figure 9.5. The 95th and
5th percentiles are also included. In Figure 9.6, histograms of the fatalities under the dif-
ferent policies are included. The realization paths explored are the same for all policies
in the histograms. Note that the impact factor used is decreased to ∆ = 20, due to less
time constraints. The value is based on empirical trials, balancing the trade-off between
employing the VFA in the local search and making redundant changes to the decision
due to minor inaccuracies in the VFA.

Figure 9.5: Mean cumulative fatalities under the ADP, greedy, naive and myopic resource alloca-
tion policies, across 100 epidemic realizations. The interval edges are the 95th and 5th percentiles
performance of the respective policy.

Naive policy: The naive policy simulates the epidemic with a given dispersal rate when
no interventions are made, and allocate resources based on the demand in a specific region
at a specific point in time over the planning horizon.

When there is little resource scarcity, the naive policy is expected to perform well. In
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(a) ADP policy (b) Greedy policy

(c) Naive policy (d) Myopic policy

Figure 9.6: Frequency of cholera-induced fatalities for different bacteria dispersal realization
path when employing the different policies, for 100 simulations.

that case, there are enough resources to satisfy all demand, thus ensuring both contain-
ment and treatment of later infections. However, as the scarcity increases, focusing on
containing the epidemic by allocating more resources early, might be a better strategy.
More resources early can reduce the number of infections, and thus reduce the overall
magnitude of the outbreak. This early containment strategy is captured by the greedy
policy. From Figure 9.5, the naive policy appears to allocate less resources than the
greedy. Similar to the ADP policy, the naive thus have worse performance during the
first days. However, at the final days the fatalities with the naive keeps increasing, while
it stays close to constant for the ADP policy, indicating that the ADP policy better iden-
tifies what resources to save for later use, compared to the naive policy. The histogram
in Figure 9.6c supports this. Although the distribution looks bimodal, the mass is dis-
tributed more evenly than both the ADP and greedy policy. The naive policy determines
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the allocation based on a simulation prior to the outbreak, and thus does not adjust to the
outbreak. A lack of adjustment increases the sensitivity to stochasticity, which explains
the more uniform mass distribution. Another explanation for the bimodal appearance of
the naive policy is too few simulations. The 100 simulations may not be sufficient to
provide a reliable mean performance.

Greedy policy: The majority of the fatalities under the greedy policy occurs in the first
week. The initial outbreak started with only infected individuals in Artibonite, therefore,
resources are only allocated to this region. However, during the first week, the epidemic
spread to several other regions. Without oral rehydration solutions (ORS) allocated to
these regions, the cholera-induced death rate is very high. Although the known symp-
tomatic cases were in Artibonite, it is possible that there were already other infected
individuals in other regions. With more information from other regions, the greedy pol-
icy would capture this and ensure a lot fewer fatalities. Starting the response at an earlier
point in time, before the epidemic is announced, would give a better overview of the
number of symptomatic infected in other regions. Thus, the greedy policy would have
sufficient information to allocate more resources early on, and possibly perform better by
avoiding the drastic increase during the first week, as seen in Figure 9.5.

In terms of robustness, the greedy policy ensures consistent results on the base case, as
seen in Figure 9.6b. The mean is about 14 500 fatalities, and only a few realization paths
leads to more fatalities. Due to focusing on containing the outbreak, instead of ensuring
sufficient resources if the outbreak reemerged, the greedy seems to be succeeding in the
containment. If that is the case, it also explains the robustness of the greedy policy,
because of the outbreak is contained, then the later realizations of bacteria dispersal are
negligible, leading to consistent performance in terms of fatalities.

Myopic policy: The myopic policy forecasts the demand for the upcoming week and
allocates greedily based on symptomatic infections in each region. The initial fatalities
are reduced drastically, as it projects what regions will receive infections throughout the
week. Although it provides a more rapid response to the outbreak, and greatly reduces
the number of fatalities early on, the resources are depleted very early, resulting in a surge
in fatalities later on.

Due to its lack of resources later on, the myopic policy fails to adjust to any changes
in bacteria dispersal. This is seen in Figure 9.6d, where the mass distribution is more
uniform compared to the ADP and greedy policy. Due to its low performance and thus
relevance, and to increase the readability of future plots, the myopic policy is omitted
wherever deemed necessary. However, its performances are included in tables for refer-
ence and in plots in Appendix D.

ADP policy: For the base case, the ADP policy performs consistently worse than the
greedy policy. A possible explanation for this, is that there are no reemerging outbreaks
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throughout the planning horizon. Thus, after making similar decisions in the beginning,
the resources saved for later usage are rarely utilized. Were outbreaks to reemerge, the
performance would possibly improve, because the saved up resources can be allocated to
treat a higher proportion of the infected. However, if the greedy policy is in fact close
to optimal, then, ideally, the ADP policy would capture this and converge towards the
greedy policy, instead of saving resources for later usage.

The distribution of fatalities given different bacteria dispersal realization paths seem bi-
modal, as seen in Figure 9.6a. This is unexpected and could be due to too few realizations.
Due to time constraints, more realizations are not run. The current number of iterations
does not seem to be enough to draw conclusions concerning the true distribution of fatal-
ities under various policies, but it does seem to be sufficient to conclude that the greedy
policy performs consistently better than the ADP policy, which in turn performs better
than the naive and myopic policies. The greedy mean is 14 500, the range of ADP is 15
000-20 000, the naive policy range is 22 000-27 000, and the myopic is 83 000-87 000.

Similar to the greedy policy, most of the fatalities under the ADP policy occur during the
first week. This is likely due to the lack of information on initial cases in other regions.
Since the initial number of symptomatic infections in Artibonite is already high, and the
bacteria concentration in the water reservoirs are significant, it is likely that there are
other cases in other regions already. The model does not capture this during the first
decision, due to the demand constraint. Delaying the response a single day allows the
model to estimate the likely number of infected people in other regions, ensuring a more
efficient response. This is confirmed in Figure 9.7, which shows a drastic decrease in
fatalities under the ADP and greedy policies, compared to the immediate response in
Figure 9.5. Instead of delaying the response and assuming zero infections in all regions
except Artibonite, because there was no suspected cases there at the time, the initial
number of symptomatic and asymptomatic infections in the regions could be included as
variables in the calibration of the epidemic model. Observe that although the naive also
performs better at the beginning in Figure 9.7, it appears to not sufficiently contain the
epidemic, causing an increase in fatalities later on.

9.4 Alternative Epidemic Outbreak

For the Haiti case, the resource allocation model starts the response at the time an out-
break is occurring. The following section assumes a different epidemic setting. The
same operational conditions as in the base case are assumed, but a higher bacteria ex-
cretion rate for both asymptomatic and symptomatic infected individuals is used, that is,
ρA = 7.3 · 108 and ρI = 7.3 · 1011, respectively. The increase from ρA = 1.3 · 108

and ρI = 1.3 · 1011 is large, but still within the range from 1011 to 1013, identified for
symptomatic infected individuals with acute cholera in Kaper et al. (1995). This results
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Figure 9.7: Mean cumulative fatalities under the ADP, greedy and naive policies. The interval
edges are the 95th and 5th percentiles performance of the respective policy for 100 simulations.

in significantly larger and more unstable outbreaks, because each infected person ex-
cretes more bacteria, which in turn increases the likelihood of other individuals getting
infected. The cumulative cases from the first decision t = 0 under the same assumptions
as in Section 9.1, are shown in Figure 9.8. The mean cumulative fatalities, as well as the
95th percentile, across 100 iterations for the different policies are shown in Figure 9.9.
In the following sections the VFA is trained using the same hyperparameters as the base
case, except for an increase in the impact factor to ∆ = 1000, to adjust for the increase
in realized costs. The increase causes larger inaccuracy in the VFA predictions, thus a
too low value will make redundant changes to the decision. The value is again set using
empirical trials, balancing the trade-off between employing the VFA in the local search
and making redundant changes to the decision due to inaccuracies in the VFA.

The alternative epidemic outbreak is more sensitive to realizations of the bacteria dis-
persal rate, compared to the base case analyzed in Section 9.3. In particular, the ADP,
greedy and naive policies have larger intervals for the 95th and 5th percentiles at the end
of the planning horizon, compared to Figure 9.5. Investigating the frequency of fatalities
for the different dispersal realization paths, the ADP policy seems more robust than the
greedy policy. Figure 9.10. By rationing resources for later utilization, the ADP get con-
sistent results around 90 000 fatalities. In a few realizations, the reemerging outbreak is
very large and the ADP policy depletes its resources too early and the fatalities increase
drastically. The greedy policy have a more uniform mass distribution, suggesting that it
adjusts worse to the bacteria dispersal realization. The realization paths are the same for
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Figure 9.8: Cumulative cases in alternative epidemic outbreak with same assumptions as in base
case.

Figure 9.9: Comparison of policies with mean cumulative fatalities across 100 epidemic realiza-
tions. Intervals are 95th and 5th percentiles of the respective policy.

the ADP and the greedy policies, thus it is clear that there are several realization paths
that cause drastic increases in fatalities for the greedy policy, that the ADP policy robustly
responds to.
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(a) ADP policy (b) Greedy policy

Figure 9.10: Frequency of cholera-induced fatalities for different bacteria dispersal realization
path when employing the different policies for 100 simulations.

Although the greedy policy performs best for almost the entire planning horizon, the
mean cumulative fatalities are fewer for the ADP approach at the end. As the excre-
tion rate of symptomatic and asymptomatic infections are higher, there is an increased
probability for reemergence of the outbreak.

The allocation of medical intervention resources aggregated for all the regions, for the
ADP and greedy policy, are shown in Figure 9.12. The allocation of disinfectants and
vaccines are close to identical. The ADP policy allocates some vaccines later. The most
notable difference is the allocation of ORS resources. The ADP policy allocates signif-
icantly less than the greedy policy for the third week. The following weeks, the ADP
allocations are also noticeably less. The ADP policy also allocates less at the beginning
of the reemerging outbreak in week 13, and instead wait until week 16 to allocate the
most ORS. In this specific realization of the epidemic, the ADP policy decreased the
total fatalities with as much as 29%, from about 129 000 to about 97 000 fatalities.

Table 9.4 shows the allocation of rehydration and antibiotics employing the ADP and
greedy policy in weeks 2, 13 and 16. Having established from Figure 9.11a that the
ADP reduces the allocation of ORS early to allocate later, note that the ADP policy, in
contrast to the greedy policy, does not allocate as many resources to Ouest initially. Even
when the epidemic is reemerging in week 13, the ADP policy holds off a large allocation,
ensuring it has enough rehydration solutions to allocate throughout the last week of the
epidemic as well. Ouest has the highest population of all the regions in Haiti. A possible
explanation as to why the ADP policy keep the allocations to Artibonite, but reduces the
resources allocated to Ouest, is that the percentage infected of the regional population is
higher in Artibonite than Ouest. Thus, if the resources are scarce, it might be preferable
to allocate based on percentage infected instead of absolute infected in the region.
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(a) ADP policy (b) Greedy policy

Figure 9.11: Aggregated allocation of intervention resources across regions in one realization
path for (a) the ADP policy and (b) the greedy policy.

Table 9.4: Rehydration solutions allocated for week 2, 13 and 16 for different policies (ADP /
Greedy) for one realization path.

Regions Week 2 Week 13 Week 16
Artibonite 2 / 2 2 / 3 3 / 1

Centre 1 / 1 1 / 1 1 / 1
Grande Anse 0 / 0 1 / 0 1 / 0

Nippes 1 / 1 1 / 0 1 / 1
Nord 0 / 1 2 / 4 0 / 1

Nord-Est 1 / 1 0 / 1 1 / 0
Nord-Ouest 1 / 1 2 / 0 2 / 0

Ouest 0 / 2 3 / 5 6 / 1
Sud 0 / 0 1 / 0 0 / 0

Sud-Est 0 / 1 1 / 3 3 / 1

Overall, on the alternative epidemic outbreak, the ADP policy provides a robust policy
with the least fatalities. However, the greedy performs best throughout most of the hori-
zon. If additional resources are received throughout in the planning horizon, the greedy
policy might outperform the others. If the reemerging outbreak is more explosive, the
greedy policy runs out of resources and quickly increase the number of fatalities. Al-
though the naive policy outperforms the ADP policy in some scenarios, the ADP policy
better adjusts to the actual realizations of the dispersal rate, and thus, on average, outper-
forms the naive policy.

9.5 Sensitivity Analysis

The following sections varies key parameters for the resource allocation model. Section
9.5.1 investigates the effect of reduced kit sizes for the medical resources. The analysis
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is performed on the base case on the 2010 Haiti outbreak data, due to the kit size not
being connected to the epidemic evolution. In Section 9.5.2, the arrival and availability
of medical resources are varied and investigated. Because the greedy approach seemed to
contain the outbreak when using the epidemic model based on the 2010 Haiti outbreak,
the more unstable, alternative epidemic model is employed. For the same reason, the
alternative epidemic model is used when various bacteria dispersal probability distribu-
tions are investigated in Section 9.5.3. Lastly, Section 9.5.4 investigates the performance
when the planning horizon is extended.

9.5.1 Reduction in resource kit size

In the base case, the resources are sent in kits of 1000. As explained in Section 7.3,
the demand are ceiled, e.g. if the demand for ORS in a region is 1600, two kits will
be sent. Treatment will be available for 2000 throughout the week, thus if the demand
increases up to 2000, it can still be satisfied. However, this also implies that too many
resources may be sent. The smaller the kit size, the more accurate the demand is met, but
it may also increase the computational time of training the VFA and employing the ADP
policy. Too small kit sizes are unrealistic, because sending single doses of for example
vaccines, would be too expensive and impractical. In the following sections reductions
in kit sizes are investigated. Although an increase in kit size is also possible, it would
be unreasonable in practice. With an increase to, for instance 10 000 resources per kit,
allocating and utilizing a single resource would exceed the capacity in some regions.

The mean performance of the policies with kit sizes of 500 and 100 are shown in Figure
9.12a and Figure 9.12b, respectively. There is a noticeable difference in performance
compared to a kit size of 1000, seen in Figure 9.5. With a decreasing kit size, the naive
policy performs better, while both the ADP policy and the greedy policy performs worse.
The solution time, not including the time it takes to train the VFA, for the different kit
sizes are reported in Table 9.5. As expected, a decreasing kit size will increase the solu-
tion time. However, the increase in solution time may be neutralized by employing more
sophisticated step sizes in the local search.

With a kit size of 500, the fatalities with the greedy and naive approach are similar, as
seen in Figure 9.12a. Given a realization path of the expected dispersal rate of 0.025 ev-
ery week, the cholera-induced fatalities are about 15 000 and about 16 000 for the greedy
and naive policy, respectively. The decision employing the greedy and naive policies are
shown in Table 9.6. Although the total number of fatalities employing the different poli-
cies are similar, the allocation differs significantly. While the greedy algorithm allocates
the vaccines immediately, the naive approach is still distributing them at the beginning of
week 10. Even though the total fatalities are similar, the allocations between the policies
differ with a kit size of 500.
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(a) Kit size 500 (b) Kit size 100

Figure 9.12: Mean performance in terms of cumulative cholera-induced fatalities and 95th and
5th percentiles after 100 simulations, for various policies with kit size (a) 500 and (b) 100.

Table 9.5: Best, mean and worst solution time in seconds for the ADP policy on 100 different
dispersal realizations, with various kit sizes.

Kit size Metric Solution time

1000 (base case)
Best 53s
Mean 83s
Worst 106s

500
Best 87s
Mean 102s
Worst 151s

100
Best 88s
Mean 184s
Worst 217s

Table 9.6: Resource allocations for different policies (Greedy / Naive), with kit size of 500 and
expected dispersal rate as realization path for selected weeks. The resources are in multiples of
500.

Region Week 2 Week 10
Vac. Dis. ORS Ant. Vac. Dis. ORS Ant.

Ouest 171 / 38 0 / 34 3 / 19 3 / 9 0 / 7 0 / 6 1 / 3 1 / 1
Sud-Est 57 / 8 0 / 7 1 / 4 1 / 2 0 / 5 0 / 4 1 / 3 1 / 2

Nord 57 / 9 0 / 8 1 / 5 1 / 3 0 / 5 0 / 4 1 / 2 1 / 1
Nord-Est 57 / 1 0 / 1 1 / 0 1 / 0 0 / 2 0 / 2 1 / 1 1 / 0
Artibonite 229 / 40 0 / 35 4 / 20 4 / 10 0 / 5 0 / 4 1 / 2 1 / 1

Centre 114 / 11 0 / 10 2 / 5 2 / 2 0 / 1 0 / 2 1 / 1 1 / 1
Sud 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Grande Anse 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Nord-Ouest 57 / 8 0 / 7 1 / 4 1 / 2 0 / 3 0 / 2 1 / 1 1 / 0

Nippes 58 / 0 0 / 0 1 / 0 1 / 0 0 / 0 0 / 0 1 / 0 1 / 0
Total 800 / 115 0 / 102 14 / 57 14 / 28 0 / 28 0 / 24 8 / 13 8 / 6
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Interestingly, in Figure 9.12b, both the ADP and the greedy policy perform worse, but the
naive policy performs better, compared to the original kit size of 1000, shown in Figure
9.5. Even though the total fatalities when employing the naive and greedy policies are
similar, the allocations are dissimilar, the improvement of the naive policy and the decline
of the ADP and greedy policy can be explained as independent phenomena. A possible
explanation for the greedy and ADP policies performing worse is the buffering effect of
ceiling the demand. When the kit size is large, the demand is not only covered, but an
larger buffer is included for the following week. As the kit size is reduced, the buffer is
reduced, and the performance worsens. This cannot, however, explain the improvement
of the naive policy. The naive policy allocates resources based on an infection ratio across
the planning horizon. Ideally, each region would receive the same resource ratio as its
infection ratio. However, this is not always feasible, because the resources are integer.
When the kit size is large, the number of integer resources are low, but as the kit size
decreases, it is easier to allocate resources closer to the infection ratio. For instance,
given 10 available vaccines, the number of vaccine resource kits would be 10 with a kit
size of 1 and 1 with a kit size of 10. In this case it is easier to divide 10 than 1 fairly among
three recipients. In the former case all three recipients receive at least three resources. In
the latter, only one recipient receive a kit, leaving nothing left for the others.

9.5.2 Impact of availability of resources and arrival time

When an epidemic outbreak has occurred, a fast response is essential. Even in a re-
gion where outbreaks occur seasonally, the response resources might not be immediately
available. Vaccines, being allocated from a global stockpile, must be applied for, as de-
scribed in Section 2.4.4. In the base case, the vaccines arrive and are allocated two weeks
after the outbreak began. This section investigates the effect the arrival time of vaccines
and other intervention resources have on the alternative epidemic outbreak. The effect
of various availability of resources are also investigated, such as an increase in available
vaccines or rehydration solutions.

Vaccination: The effects of receiving vaccines earlier than in the base case are shown in
Table 9.7. The effect of early vaccination seems to be negligible for the ADP, naive and
myopic policies. However, it seems to be significant for the greedy policy. Investigating
the individual decisions, the allocation of vaccines is the same for the greedy and the ADP
policy. The vaccine allocations are the same, however, the effect of them are different,
suggesting that the allocations of other intervention resources impact the benefit of earlier
vaccination. The base case analysis revealed that the ADP and the naive policies allocate
more resources later in the planning horizon, to better adjust if the epidemic reemerges.
The greedy policy allocates to satisfy the immediate demand as much as possible, and
is thus more sensitive to reemergence of the epidemic. The impact of a reemergence
is reduced the earlier the vaccines are allocated, thus the marginal benefit of early vac-
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cination allocation is higher for the greedy policy, compared to the ADP and the naive
policies. This is a possible explanation for the noticeable improvement for greedy policy
with early availability of vaccines, compared to the ADP and naive policies, particularly
in the worst-case scenarios.

Table 9.7: Best, mean and worst performance of policies for various scenarios of resource avail-
ability and arrival for 100 epidemic simulations. Number of fatalities in thousands.

Resource scenario Metric ADP Greedy Naive Myopic

Two week vaccines (base case)
Best 74 85 89 171
Mean 100 132 107 178
Worst 160 176 119 185

One week vaccines
Best 70 86 87 170
Mean 98 125 106 178
Worst 159 167 128 183

Immediate vaccines
Best 69 78 89 170
Mean 100 115 107 177
Worst 161 158 118 179

Although the arrival time of the vaccines, did not have a significant impact on the ADP
and the naive policies, the increase in vaccines did. The performance for various number
of vaccines are shown in Table 9.8. The overall trend is a reduction in fatalities when the
availability of vaccines increase.

In the 600 000 vaccine scenario, the best performance for the ADP does not change.
However, the performance for the greedy policy change noticeably. As 800 000 vaccines
are available, the performance is improved further for all policies. Lastly, when 1 million
vaccines are available, all performances improve, except the greedy worst-case. However,
that could be due to an outlier realization path not explored during the other vaccine
cases. The consistent improvement in performance, regardless of the additional amount
of vaccines, indicates that a high availability of vaccines, even if they arrive two weeks
after the initial outbreak, may provide significant improvement in containment. In terms
of vaccination strategy employed, the ADP, the greedy and the naive policies all employ
a reactive strategy, allocating vaccines to regions already having outbreaks. The greedy
and naive do this by default, but the ADP does not change the strategy through its local
search.

Overall, the number of available vaccines seems to reduce fatalities more than earlier
arrival of vaccines. When applying to the International Coordinating Group on Vaccine
Provision (ICG) for vaccines, the focus should thus be on collecting reliable surveillance
data on infections and spread to ensure as many vaccines as possible, instead of applying
as quickly as possible to get the vaccines earlier.

Rehydration solution: In Section 9.4 it was identified that a possible explanation for
the ADP and naive policy performing better than the greedy is that the greedy policy
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Table 9.8: Best, mean and worst performance of policies for various scenarios of resource avail-
ability and arrival for 100 epidemic simulations. Number of fatalities and vaccines in thousands.

Resource scenario Metric ADP Greedy Naive Myopic

400 vaccines (base case)
Best 74 85 89 171
Mean 100 132 107 178
Worst 160 176 119 185

600 vaccines
Best 80 78 83 164
Mean 93 116 101 171
Worst 133 164 112 180

800 vaccines
Best 66 68 76 157
Mean 86 99 94 165
Worst 129 134 105 176

1000 vaccines
Best 63 66 68 150
Mean 80 91 88 160
Worst 115 145 100 172

depletes its rehydration solution resources the earliest. ORS is essential to treat symp-
tomatic cholera-infections, thus the depletion cause a rise in fatalities. If that is the case,
increasing the number of ORS treatment should significantly decrease the fatalities when
employing the greedy policy. This does seem to be the case for the greedy policy, when
increasing the available ORS with 100 000 units to 300 000 units. For the mean- and
worst-case performance, the fatalities are reduced from 132 000 to 112 000 and from
176 000 to 143 000, respectively, as seen in Table 9.9. The best-case performance only
improves marginally for the greedy policy. A possible explanation is that the reemerging
outbreak is sufficiently small to be covered with the original amount of ORS. The increase
in fatalities is then explained by an increase in infections, that even with treatment, will
increase the number of fatalities somewhat. Increasing the ORS with 200 000 units to
a total of 400 000 units does not seem to reduce fatalities further, when employing the
greedy policy.

Table 9.9: Best, mean and worst performance of policies for various scenarios of resource avail-
ability and arrival for 100 epidemic simulations. Number of fatalities and rehydration solutions
in thousands.

Resource scenario Metric ADP Greedy Naive Myopic

200 ORS (base case)
Best 74 85 89 171
Mean 100 132 107 178
Worst 160 176 119 185

300 ORS
Best 81 77 119 171
Mean 102 112 136 179
Worst 137 143 158 184

400 ORS
Best 84 81 133 171
Mean 110 114 158 178
Worst 147 145 188 184

Similar to the greedy policy, the ADP policy improves its worst-case performance when
an additional 100 000 ORS are available. However, when it is further increased to 400
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000 ORS treatments, the performance is actually worse. This could plausibly be ex-
plained by statistical inaccuracy from 100 simulations. Table 9.10 shows the aggregated
allocation of ORS in the worst-case performance with 200 000 and 400 000 available
ORS. Note that the realization paths of the dispersal rate are not necessarily the same,
between resource cases. In the beginning the ORS allocations are similar, but as the epi-
demic progresses, and particularly in the last weeks of the planning horizon, the ADP
allocates more ORS in the additional ORS scenario. When the epidemic reemerges,
which it does in both the worst-case performances, the ADP policy does not have to ra-
tion the resources in the additional ORS scenario, but can instead allocate in accordance
with demand, utilizing 251 ORS kits instead of 200. Thus, the decrease in fatalities for
the worst-case performance is in fact due to the increase in ORS resources.

Table 9.10: Worst-case aggregated ORS allocation for the ADP policy for the base case with 200
000 ORS treatments and the case with additional ORS, i.e. 400 000 ORS treatments.

Week Base case Additional ORS
0 2 2
1 9 9
2 12 12
3 13 13
4 14 14
5 13 12
6 12 13
7 10 13
8 12 10
9 9 12

10 11 12
11 15 16
12 15 19
13 20 23
14 17 22
15 15 10
16 1 17
17 0 22

Total 200 251

An unexpected result is the performance for the naive policy, which actually performs
worse when additional ORS is available. The difference is too large to be caused by sta-
tistical inaccuracy. When investigating the particular allocations made, the naive policy
fails to allocate any ORS to Sud, Grande Anse and Nippes early, because those regions
have late or no outbreaks when using the calibrated bacteria dispersal rate. The ADP
policy does allocate to these regions, proving they have more critical outbreaks when
the dispersal rate is stochastic. This explains why the ADP policy ensures less fatalities
than the naive policy, but not why the naive policy performs worse. The regions having
outbreaks with a deterministic, calibrated dispersal rate receive more ORS. The increase
could cause certain infected individuals to survive longer, excreting more bacteria, which
in turn cause more explosive outbreaks in the regions that are never responded to using
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the naive policy. While saving lives in the regions with more fatalities, the increased
bacteria concentration in regions that do not receive any ORS cause a net increase in
fatalities.

An increase in the ORS can improve the performance, particularly for the greedy policy.
The ADP is not as sensitive to reemerging epidemics, due to rationing the ORS earlier
in the planning horizon, but in the most explosive reemerging epidemics, additional ORS
also improves the ADP policy performance. For both the ADP and greedy policies, an
additional 100 000 ORS treatments seems to be sufficient.

9.5.3 Dispersal probability distribution

Cholera outbreaks have been tied to environmental fluctuations (Olson et al., 2018, pp.
12). During drier periods, the dispersal of bacteria through river networks could be close
to zero, causing the original outbreak region to be even more severely affected, but re-
ducing the spread to neighboring regions. During periods of particularly large rainfalls,
the bacteria dispersal by river networks might be drastically higher than normal, damp-
ening the outbreak in the originating region, but increasing the probability of outbreaks
in other regions. As seasonal outbreaks occur, the magnitude of the outbreaks can be
tied to weather data and used to obtain better estimates of the dispersal rate probability
distribution. This section investigates the effect of various bacteria dispersal distribu-
tions. The different distributions used are shown in Table 9.11. Note that the calibrated
value distribution is deterministic and based on the dispersal rate reported in Bertuzzo
et al. (2011). Projected cholera-induced fatalities under various policies for the different
dispersal distributions are summarized in Table 9.12.

Table 9.11: Possible weekly dispersal rates and their probability of occurring for the different
dispersal distributions.

Dispersal distribution Metric Value Expected value

Base case distribution Dispersal rate (0.0, 0.025, 0.25) 0.075Probability (0.25, 0.50, 0.25)

Calibrated value Dispersal rate (0.025) 0.025Probability (1.0)

Low variance Dispersal rate (0.0, 0.025, 0.25) 0.045Probability (0.10, 0.80, 0.10)

High variance Dispersal rate (0.0, 0.025, 0.25) 0.092Probability (0.333, 0.333, 0.333)

Low maximum dispersal Dispersal rate (0.0, 0.025, 0.050) 0.025Probability (0.25, 0.50, 0.25)

The distributions with the lowest expected values, the calibrated value and the low max-
imum dispersal distribution, seem to have the lowest fatalities, indicating that a lower
dispersal rate is preferable. A low dispersal rate, for instance due to drought, may result
in more explosive outbreaks, but isolated to the regions they originated in. The results
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Table 9.12: Mean, best and worst performance of policies for various scenarios of bacteria dis-
persal rate distributions across 100 simulations. The calibrated value scenario is deterministic.
Number of fatalities in thousands.

Dispersal distribution Metric ADP Greedy Naive Myopic

Base case distribution
Best 74 85 89 171
Mean 100 132 107 178
Worst 160 176 119 185

Calibrated value - 81 88 94 180

Low variance
Best 71 82 89 172
Mean 88 112 101 179
Worst 153 171 116 184

High variance
Best 77 87 89 171
Mean 110 135 110 177
Worst 166 170 120 185

Low maximum dispersal
Best 68 76 89 179
Mean 87 89 98 181
Worst 108 151 121 184

in Table 9.12 indicates that it is more efficient to respond to explosive outbreaks in a
single or a few regions, compared to smaller outbreaks in many regions. As the expected
dispersal rate increases, the fatalities also consistently increase. This is likely due to
the instability resulting from a high bacteria excretion rate. If bacteria are dispersed to
several regions early, a high bacteria concentration is quickly built up, ensuring more
sources for future spread, but also enough excretion to sustain a high concentration and
create outbreaks in the regions already having symptomatic infections.

The ADP policy ensures on average less fatalities compared to all other policies investi-
gated across all distributions. The best-case performance is also consistently better for the
ADP policy. If working correctly, the VFA in the ADP policy should be able to account
for future possible dispersal that could affect the performance, and aims to minimize the
expected number of fatalities. Since the average performance is consistently best for the
ADP policy across various distributions, it seems that the VFA does capture and accounts
for the stochasticity in the dispersal rate.

The ADP and greedy policies seem to be more dependent on the dispersal distribution
than the naive and myopic policies. A possible explanation for this is that the ADP and
greedy policy are better at containing the outbreaks early. Thus, if the dispersal rate is
low, the likelihood of reemergence is low, and large allocations early on are the most
effective strategies. The ADP approach aims to find the expected cost, thus balancing the
likelihood of reemergence with the effect of containment, explaining its dependency on
dispersal distribution.

The mean performance for the greedy policy seem more sensitive to the distributions than
the ADP policy. For instance, when going from the deterministic calibrated value case
to the high variance case, the fatalities increase by 36%, from 81 000 to 110 000, for the
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ADP policy and 53%, from 88 000 to 135 000, for the greedy policy. The ADP policy is
trained on the distribution, thus learning the probability of larger reemerging outbreaks
occurring and accounting for that when allocating resources early in the planning hori-
zon. Therefore, the higher adaptability for the ADP policy compared to the greedy policy
is expected. The ADP policy performance is also relatively consistent in the worst-case
scenario. However, when the maximum dispersal rate is low, the performance is signif-
icantly better than with the other distributions in the worst-case scenario. This indicates
that the ADP policy performs better when responding to outbreaks in fewer regions or
when the outbreaks in other regions are more gradual.

The expected value of the dispersal rate is higher than the calibrated value for the base
case distribution, low variance distribution and the high variance distribution, as reported
in Table 9.11. For the base case and high variance distribution, the naive policy per-
forms better than the greedy. The fatalities employing the greedy policy is reduced when
the expected dispersal rate decreases, as is the case in the low variance distribution, the
calibrated value distribution and the low maximum distribution. In Section 9.4, an ex-
planation for the great decline in performance of the greedy policy late in the planning
horizon was due to a reemerging outbreak. If the dispersal rate is higher, more bacteria
can be transported in shorter time, thus the outbreaks can reemerge more rapidly and
be more challenging to contain. However, the greedy policy consistently has a better
performance in the best-case, compared to the naive policy, and almost a consistently
worse performance in the worst-case, except for when the maximum dispersal is low or
always equal to the calibrated value. A low dispersal realization path is possible in every
distribution, while a high is possible in every distribution except the calibrated and low
maximum distribution. Thus, the performances indicate that the naive policy is more
robust to higher dispersal rates compared to the greedy policy.

When the dispersal rate is low, the outbreaks in specific regions can be more explosive,
and is one explanation why drought can cause cholera outbreaks. However, the ADP and
the greedy policies seem to perform better when the bacteria dispersal between regions is
low. The ADP policy shows some adaptability, as expected. However, the performance
of the remaining policies seems dependent on the dispersal distributions, thus getting
better estimates of the true distribution is worthwhile. For instance, if choosing between
the greedy and the naive policies, the naive is more robust to reemerging outbreaks, and
thus preferable when the expected dispersal rate is high. However, if the probability of
reemerging outbreaks are low, the greedy policy is superior to the naive.

9.5.4 Increased planning horizon

A cholera outbreak typically lasts between 2 and 4 months, as described in Section 2.3.
The alternative cholera model causes the outbreak to reemerge. Given the four-month
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planning horizon employed in the base case, the ADP algorithm seems to perform the
best, as seen in Figure 9.9. However, if the epidemic reemerges, the evaluation of re-
source allocation policies becomes more difficult. Since the epidemic reemerges, one
could apply the model again, with a new initial response time t = 0, arguing that the
two outbreaks are distinct. However, the response to the first outbreak might impact the
magnitude of the reemerging outbreak, therefore, evaluating the policy choice jointly by
increasing the planning horizon may be more reasonable.

Figure 9.13: Comparison of policies with mean cumulative fatalities across 100 epidemic realiza-
tions when planning horizon is 150 days. Intervals are 95th and 5th percentiles of the respective
policy.

The evaluation for the various policies employed on the alternative epidemic outbreak
with the base case resources for a planning horizon of 150 days, or about five months, is
shown in Figure 9.13. Observe that the ADP and greedy policies have increased fatal-
ities as the outbreak reemerges. As previously identified, due to saving more resources
early on, the ADP policy better responds to the reemergence. However, if the reemerg-
ing outbreak is large, the naive policy eventually surpasses the performance of the ADP
policy. If the reemerging outbreak is smaller, the ADP policy saved a sufficient amount
of resources to keep the fatalities relatively low and performs significantly better than all
other policies, as seen in the lower interval of the ADP policy in Figure 9.13.

A notable case is the myopic policy, which, after depleting its resources early, has a
drastic increase in fatalities, which eventually stagnates. This can be explained by the
increased excretion rate. By providing oral rehydration solutions, the infected individ-
uals keep introducing more bacteria to the water reservoir. However, if there is a lot
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of fatalities early on, less bacteria is introduced, and the bacteria decay eventually con-
tains the epidemic. In the case with higher excretion, the model seems to fail to account
for a boundary condition ending the epidemic. Additional disinfectants and antibiotics
could mitigate the effect, by reducing the bacteria concentration in the water reservoir
and decrease the excretion rate, respectively.

Although the excretion rate is within reasonable bounds determined from epidemiolog-
ical literature, the set of parameters selected may together not be sufficiently realistic.
For instance, the relative cholera-induced fatality rate when not receiving rehydration
treatment χ, estimated to be 250, could be too high. If the parameter is decreased, symp-
tomatic individuals not receiving treatment would survive for longer, increasing their
bacteria contribution to the water reservoir. This would in turn increase the infection
rate and increase the likelihood for reemerging outbreaks even if the fatalities are high
earlier, thus negatively impacting the myopic performance. Another possible explana-
tion is the upper bound of the proportion of the population ingesting contaminated water.
If no disinfectants are allocated, this is assumed to be the entire population. However,
some individuals may have sanitation infrastructure with advanced filtering systems, en-
suring cholera-free water even without disinfectants. By reducing the upper bound of
the proportion ingesting contaminated water, the reemerging outbreak would not be as
explosive, and possibly stagnate and stabilize earlier, i.e. behaving more as expected.
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Chapter 10
Concluding Remarks

This chapter concludes this thesis and identifies opportunities for improvement and future
research. Section 10.1 presents the thesis conclusion, and the future research opportuni-
ties are identified and discussed in Section 10.2.

10.1 Conclusion

The purpose of this thesis was to develop decision-support tools for responses during epi-
demic outbreaks for diseases with known treatment methods in financially weak regions
and to investigate the efficiency of various policies during such outbreaks. To provide
this decision-support, a combined epidemic and resource allocation model for multiple
regions and multiple intervention methods was developed.

The decision-support is aimed at the allocation of medical resources, while also satis-
fying the medical personnel and temporary medical facility constraints. The literature
review revealed that there is a lack of decision-support models combining multi-region
and multi-intervention epidemic and resource allocation models, as well as a lack of
cholera-modeling within an approximate dynamic programming (ADP) framework. The
proposed epidemic model is a Susceptible-Asymptomatic-Infected-Recovered-Bacteria
(SAIR-B) model for cholera. The model combines previous works on spatially explicit
cholera models with intervention modeling for epidemic diseases, and extends the work
by including oral rehydration solutions (ORS) as an additional intervention parameter.
Furthermore, the proposed resource allocation model is developed within an ADP frame-
work to account for the effect of immediate decisions on future epidemic spread, thus
providing a holistic view, balancing the need to contain the epidemic early with possible
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reemerging outbreaks later. The resources allocated are: vaccines, disinfectants, rehydra-
tion solutions and antibiotics.

The ADP resource allocation model employs a neural network as its value approximation
function. Using realistic, simulated epidemic outbreaks, the neural network aims to learn
the value, or cost, of making a decision, for future disease-induced fatalities throughout
the epidemic. The model can be used to simulate various policies before an epidemic, or
it can be used as a decision-support tool during an epidemic, updating the parameters in
both the cholera model and the epidemic model as the outbreak progresses. In addition
to the ADP approach, three other policies were developed for comparison: a greedy, a
myopic and a naive one.

In the computational study, the performance of the different epidemic response policies
in various situations is investigated. The results indicate that the ADP and greedy poli-
cies are sensitive to the bacteria dispersal distributions, but if the excretion rate is high,
the ADP policy is robust and consistently ensures the least fatalities. However, when
the bacteria excretion rate is low, the probability of reemergence is significantly lower,
and the greedy policy performs best. In that case, the ADP policy also performs well,
although not as good as the greedy. Overall, considering the uncertainty in the dispersal
rate, the ADP policy seems the best policy option among the investigated policies, when
employing the alternative epidemic model.

Resources are sent in kits, because sending individual resources, e.g. vaccines, would be
both impractical and expensive. Although one might expect that smaller kit sizes would
improve performance due to meeting the demand more accurately, the fatalities when
employing an ADP or greedy policy increase with smaller kit sizes, indicating a buffer
effect. A smaller kit size improved the naive allocation policy, likely due to increased
accuracy in meeting the demand. By adjusting the initial condition for regions with a
high likelihood of infections, even if there are no specific suspected cases there yet, may
mitigate the need for a buffer.

Additional ORS did not improve the average and best-case performance for the ADP and
greedy policies. However, if the epidemic reemerged, and the second outbreak was large,
both the ADP and greedy policies would eventually deplete their ORS resources. In such
cases, some additional ORS resources would improve performance. Therefore, having
a buffer stock of ORS and ensuring a functioning replenishment of it throughout the
outbreak is important. Nevertheless, in order to further decrease the fatalities, vaccines
should be the main focus.

The International Coordinating Group for Vaccine Provision (ICG) manages a global
stockpile of oral cholera vaccines, distributing them as epidemic outbreaks occur. Be-
cause applying for vaccines occurs after the outbreak has begun, the decision-makers
might be tempted to apply as early as possible to ensure the earliest possible arrival of
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the vaccines. However, additional vaccines seemed to have a more significant impact
on reducing the total number of cholera-induced fatalities compared to earlier arrival.
Therefore, it is advised to focus on sufficient surveillance of the outbreak to convince the
ICG of a larger allocation of vaccines, instead of applying as early as possible.

10.2 Future Research

The objective of the resource allocation model is to minimize the total number of cholera-
induced fatalities throughout the planning horizon. The objective is evaluated by numer-
ically solving the epidemic model, giving rise to a mixed-integer nonlinear programming
(MINLP) problem. Although the ADP policy appeared to converge towards a policy,
it solved the resource allocation problem at each time period heuristically. In the Haiti
base case, the greedy approach consistently performed the best. If the proposed ADP
policy worked ideally, and the greedy policy is in fact optimal in the Haiti base case, the
ADP policy should have converged towards the greedy policy, instead of saving resources
for later. Thus, employing more sophisticated heuristics than the local search procedure
to solve the resource allocation problem for each time period, may further improve the
performance of the ADP approach.

Comprehensive background research was conducted to arrive at the formulated operation
constraints presented in Section 6.2. The case study performed in this thesis focused
on the 2010 Haiti outbreak. Ignoring distribution time to the regions in Haiti may be
a reasonable assumption in a small country or region, but as the size of the country
increases, distribution time should eventually be accounted for, and can be included in a
future formulation. Furthermore, the medical personnel is assumed to be homogeneous,
e.g. there is no differentiation between physicians and nurses. This formulation assumes
that it is more important that casualties receive help, than who administers it. However,
differentiating between medical professions may be more realistic and thus included in a
future formulation.

Instead of relying too heavily on parameters from the literature, a more extensive cal-
ibration with higher degrees of freedom may be conducted on the 2010 Haiti outbreak
or other epidemic outbreaks. Such a calibration may provide more realistic simulations
for the resource allocation to learn from, increasing the validity of the model. However,
the purpose should be to provide realistic parameter values to learn more about response
to future outbreaks, not to perfectly fit historical outbreaks. If data on disease-induced
fatalities are available, the relative increase in fatality rate when not receiving rehydration
solutions may also be better estimated. Additionally, when increasing the planning hori-
zon, there were realization paths using the alternative epidemic model with increased ex-
cretion rate where the reemerging outbreaks were significant. A possible explanation and
future improvement of the model is the assumption regarding disinfectants. The assumed
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proportion ingesting contaminated water to some degree, when no disinfectants are allo-
cated, is the entire population. Even with sanitation infrastructure, water sources can get
contaminated and cause cholera, but by including the proportion ingesting contaminated
water in the epidemic model calibration, an upper bound may be found, resulting in more
realistic epidemic simulations.

Cholera outbreaks can be caused by environmental fluctuations and findings in the sen-
sitivity analysis suggested that different bacteria dispersal distributions greatly affected
the different policies’ performance, measured as the number of cholera-induced fatali-
ties. The dispersal distribution is a key parameter to the resource allocation model, and
increasing the certainty of which the bacteria disperse under various climatic conditions
is worth considering. For instance, the dispersal rate may be correlated with local rainfall
data in regions with seasonal cholera outbreaks.

Finally, the generalizability of the findings to other diseases than cholera should be inves-
tigated. Although the modeling framework presented in this thesis could be extended to
other communicable diseases, it would require different epidemic models, and possibly
other intervention resources, depending on the disease of interest. Therefore, to test the
generalizability of the results of this thesis, the findings on the vaccine provision from
the ICG could be investigated for diseases like meningitis and yellow fever, for which the
ICG also have vaccine stockpiles.
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Appendix A
Implementation Structure

This appendix illustrates the file hierarchy for the implementation of the thesis’ solution
methods. The implementation is attached as a .zip-file, in addition to the written thesis.
To run the code, see the README.md document.

tio4905
README.md
data
figures
models

cholera_model
Case.py
Region.py

resource_allocation_model
MarkovDecisionProcess.py
State.py
ValueApproximationFunction.py

trained_vfa_models
Instance.py
main.py
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Appendix B
Resource Allocation Model

Table B.1: Sets used in the resource allocation model.

Set Definition

T Set of time periods

I Set of regions

M Set of intervention types

N Set of facility types

Table B.2: Indices used in the resource allocation model.

Index Definition

t Time period t ∈ T

i Region i ∈ I

m Intervention type m ∈M

n Facility type n ∈ N
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Table B.3: Parameters used in the resource allocation model.

Parameter Definition

Rtm Number of resources of type m available at time t

Dtim Demand for resource m in region i at time t

Bnm Stock capacity of intervention type m for facility type n

Um Deployment and utilization capacity per available personnel per time period for intervention type m

Qn Minimum number of personnel required to establish one facility of type n

Lin Number of available locations for facilities of type n in region i

P Number of available medical personnel

Table B.4: Variables used in the resource allocation model.

Variable Definition

xtim Number of resources of type m allocation to region i at time t

ytin Number of facilities of type n established in region i at time t

zti Number of medical personnel allocated to region i at time t
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Figure B.1: Resource allocation model solved each time period t.

min
xt∈Xt

E
{∑
t∈T

CEt (St, xt,Wt+1)

}
(B.1)

s.t.
∑
i∈I

xtim ≤ Rtm ∀m ∈M (B.2)

xtim ≤ Dtim ∀i ∈ I, ∀m ∈M (B.3)

xtim ≤
∑
n∈N

Bnmytin ∀i ∈ I, ∀m ∈M (B.4)∑
m∈M

Umxtim ≤ zti ∀i ∈ I (B.5)∑
n∈N

Qnytin ≤ zti ∀i ∈ I (B.6)

ytin ≤ Lin ∀i ∈ I, ∀n ∈ N (B.7)∑
i∈I

zti ≤ P (B.8)

xtim ∈ Z+ ∀i ∈ I, ∀m ∈M (B.9)

ytin ∈ Z+ ∀i ∈ I, ∀n ∈ N (B.10)

zti ∈ Z+ ∀i ∈ I (B.11)
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Appendix C
Solution Method Procedures

This appendix contains pseudocode for the procedures not included in Chapter 7 for
readability purposes. The pseudocode is not meant as an exact description of the coded
algorithm, but rather describing the key aspects necessary to understand the solution
methods.

Algorithm 7: TRAININGDECISION(St, ε)

Input : State St,
Random decision probability ε.

Output: Feasible decision xt.

1 Draw random number, ξ1 ∼ U(0, 1);
2 if ξ1 < ε then
3 Get random decision, xt ← RANDOMDECISION(St);

4 else
5 Draw random number, ξ2 ∼ U(0, 1);
6 if ξ2 < ε then
7 Get greedy decision, xt ← GREEDYPOLICYDECISION(St);

8 else
9 Get ADP decision, xt ← LOCALSEARCHPOLICYDECISION(St);

10 return xt;
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Algorithm 8: RANDOMDECISION(St)

Input : State St.
Output: Feasible decision xt.

1 Initialize infeasible solution, xt ← (+∞)(i,m)∈I×M;
2 while not ISFEASIBLE(xt) do
3 Draw random, feasible resources to be allocated,

availableResources ∼ RANDOMINTEGER(0, St.resources);
4 Shuffle iteration order of regions, J ← SHUFFLE(I);
5 for intervention type m ∈M do
6 for i = 1, . . . , |J | − 1 do
7 Allocate random amount of available resources,

xtim ∼ RANDOMINTEGER(0, availableResources[m]);
8 Update available resources,

availableResources[m]← availableResources[m]− xtim;

9 Allocate remaining resources to last region,
xt|J |m ← availableResources[m];

10 return Random decision, xt;

Algorithm 9: REALLOCATION(R, I, r, S, α)

Input : Initial resource pool R,
Regions I,
Previous initial allocation r,
Previous states S,
Transfer step-size α.

Output: Initial resource allocation to all regions.

1 for each region i ∈ I do
2 for each intervention type m ∈M do
3 Calculate marginal benefit, eim ← rim

ST i.fatalities

4 Get best resource transfer indices, (i, j,m)← arg maxi,j,m(eim − ejm);
5 Transfer resources from region i, rim ← rim − α;
6 Transfer resources to region j, rjm ← rjm + α;
7 return New resource allocation, r = (rim)(i,m)∈I×M;
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Appendix D
Cumulative Costs

The following figures show the cumulative fatalities plots for all scenarios included in
the computational study. All plots include all four policies investigated.
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(a) Base case, calibrated epidemic model (b) Delayed, calibrated epidemic model

(c) Kit size 500, calibrated epidemic model (d) Kit size 100, calibrated epidemic model

Figure D.1:
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(a) Base case, alternative epidemic model
(b) One week vaccine arrival, alternative epi-
demic model

(c) Immediate vaccine arrival, alternative epi-
demic model

(d) 600 000 vaccines, alternative epidemic
model

Figure D.2:
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(a) 800 000 vaccines, alternative epidemic
model

(b) 1 000 000 vaccines, alternative epidemic
model

(c) 300 000 rehydration solutions, alternative
epidemic model

(d) 400 000 rehydration solutions, alternative
epidemic model

Figure D.3:
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(a) Calibrated dispersal rate, alternative epi-
demic model

(b) Low variance dispersal distribution, alter-
native epidemic model

(c) High variance dispersal distribution, alter-
native epidemic model

(d) Low maximum dispersal rate distribution,
alternative epidemic model

Figure D.4:

(a) 150 day horizon, alternative epidemic
model

127


