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patible goods, and a heterogeneous fleet of vehicles. In particular, we develop and study
four heuristic methods. The methods are compared and evaluated compared as decision
support tools in vehicle-driven distribution systems.
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Department of Industrial Economics and Technology Management), for his guidance and
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Abstract
The periodic multi-trip vehicle routing problem with time windows (PMTVRPTW), in-
compatible commodities, and a heterogeneous fleet arise when ASKO, a leading food-
service distributor in Norway, schedule their weekly operations. In advance of a planning
period, customers request a set of different commodities. Commodities are either dividable
across planning periods, or restricted to be delivered in one single period. The objective is
to minimize costs related to vehicle usage, i.e. driving time and fixed usage costs, while
reducing the amount of overtime incurred at the warehouse. This particular combination
of problem extensions is poorly covered in literature, and no solution methods are pro-
posed to solve this VRP class. A problem-solution both assigns sequences of customers
to vehicles in each planning period, and allocates commodities to each vehicle. Today,
ASKO schedules routes and allocates commodities sequentially. This thesis shows that a
simultaneous optimization approach can provide decision support for real-size instances
within a practical amount of time.

A mathematical model of the PMTVRPTW is presented. As exact methods are unable
to solve the problem for real-size instances, four different heuristic methods are devel-
oped. Inspired by the work in recent literature (e.g Vidal et al., 2012, Cattaruzza et al.,
2016a), we first propose a hybrid genetic algorithm (HGA) for the PMTVRTW. The multi-
periodic HGA (MPHGA) arises when the HGA is decomposed to solve the problem for
each planning period separately. Third, we propose a swarm-inspired multi-periodic arti-
ficial bee colony (MPABC) algorithm which adopts the decomposition structure. Finally,
the combinatorial journey-generating model (CJGM) is presented, which is a matheuristic
combining partial solutions generated by the MPABC and MPHGA, with an exact method.

A computational study is conducted to evaluate and compare the proposed heuristics.
Test instances are generated from real-life data provided by ASKO. All heuristics show mi-
nor deviations from the objectives obtained by an exact method on small-sized instances.
Results on real-size instances (i.e. up to 115 customers) show that the CJGM is the best
performing method in terms of ability to find quality solutions for all instance sizes, with
a low coefficient of variation. The MPHGA also scales well to real-size instances, but has
on average a larger coefficient of variation than the CJGM. The MPABC suffers from an
inefficient local search operator for larger instances. The HGA reports a large average de-
viation from solutions obtained by the CJGM across all instance sizes. The contribution of
incorporating an exact method which combines partial solutions obtained by the heuristic
methods in the CJGM is analyzed, and shown to improve solution quality on all customer
sizes, particularly for large instances. Thus, the CJGM is expected to serve as decision
support in dynamic planning procedures, when solutions for real-size instances must be
obtained rapidly without the need for complex calibration procedures.
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Sammendrag
Det periodiske multi-trip vehicle routing problemet med tidsvinduer (PMTVRPTW), inkom-
patible varer, og en heterogen kjøretøysflåte oppstår når ASKO, det ledende selskapet for
dagligvaredistribusjon i Norge, planlegger ukentlige kjøreruter. I forkant av hver planleg-
gingsperiode bestiller kunder en mengde forskjellige varer. Hver varemengde må enten
leveres i sin helhet på en leveranse, eller deles i flere leverenser på flere dager. En løsning
på problemet tildeler kunder en rekkefølge i en rundtur som gjennomføres av et kjøretøy,
for hver dag i planleggingshorisonten. I tillegg allokeres varer til hver rundtur. I dag op-
timerer ASKO ruteplanlegging og vareallokering sekvensielt. I denne oppgaven forsøkes
det å optimere rutene og vareallokeringen simultant. Objektivet er å minimere kostnader
ved bruk av kjøretøy, bestående av kjørekostnader og en fast kostnad for bruk, samtidig
som man minimerer antall overtidstimer på varelageret. Denne kombinasjonen av proble-
mutvidelser er sjelden i litteraturen, og ingen løsningsmetoder er foreslått.

En matematisk modell for ASKOs PMTVRPTW er presentert i denne avhandlingen.
Fordi eksakte metoder ikke er i stand til å løse problemet for reelle kundestørrelser, er fire
forskjellige heurisitiske metoder foreslått. Først presenterer vi en hybrid genetisk algo-
ritme (HGA), inspirert av tidligere arbeid fra blant annet Vidal et al. (2012) og Cattaruzza
et al. (2016a). Ved å dekomponerer problemet på periodenivå, kan hver enkelt periode
løses separat med en multiperiodisk HGA (MPHGA). Videre presenterer vi en sverm-
inspirert multiperiodisk artificial bee colony (MPABC) algoritme, som også benytter seg
av en periodisk dekomponering. Til slutt blir en kombinatorisk rutegenereringsmodell
(CJGM) presentert, som kombinerer deler av løsninger funnet av MPHGA og MPABC i
en eksakt løsningsmetode.

Et beregningsstudie er gjennomført for å evaluere de foreslåtte heurestikkene. Det
har blitt generert testinstanser basert på reel data fra ASKO. Alle heurestikkene viser lite
avvik fra objektverdiene funnet av en eksakt modell på instanser med få kunder. CJG-
Men rapporterer beste resultater for alle instanser, også de av reell størrelse (med opp-
til 115 kunder). I tillegg er CJGMen den mest stabile løsningsmetoden, med en lavest
variasjonskoeffisient. Effekten av å løse en eksakt metode ved å kombinere løsninger
funnet av heurestikker er analysert, og det viser seg at den klarer å forbedre løsninger
for alle instansstørrelser, hovedsakelig basert på løsninger funnet fra MPHGAen. For
kundestørrelser opp til 50 kunder klarer MPABCen å finne løsninger av høy kvalitet,
men lider av en ineffektiv lokalsøksoperator for større instanser. HGAen avviker mye
fra løsningene funnet av CJGMen for alle kundestørrelser. Generelt viser det seg at en
heuristisk fremgangsmåte som anvender en periodisk dekomponering i kombinasjon med
en eksakt løsningsmetode gir kvalitetsløsninger innen rimelig kjøretid, og skalerer bedre
til større instanser.
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Chapter 1
Introduction

The elongated and narrow Norwegian landscape makes nationwide distribution networks
challenging to operate efficiently. Persistent delivery services are threatened by widespread
demand and regional climatic varieties. Distribution of food and beverages is particularly
demanding, being fast-moving consumer goods required with a high frequency. Account-
ing for 60.5% of the Norwegian food and beverage industry, the grocery market is experi-
encing changes in the competitive environment by emergence of new operators and sales
channels. In 2019, online stores, border shops, and specialized stores have exceeded the
growth of the traditional grocery market (Norgesgruppen AS., 2019). In order to attract
customers and remain competitive, grocery stores are expanding the variety of products
they offer to their consumers. Consequentially, food and beverage distributors must de-
liver a wider range of products through their transportation network. To remain profitable
while adapting to market changes, efficiency in planning and route scheduling is signifi-
cant.

This thesis is written in collaboration with ASKO Norway AS. By operating ware-
houses which serve grocery retailers spread across the entire country, ASKO is the leading
foodservice distributor in Norway. ASKO is the wholesaler branch of Norgesgruppen,
which is the largest company within the Norwegian grocery retail market. Norgesgruppen
consists of 1800 grocery stores which belong to various grocery chains. As for 2019, their
stores are located in 88% of the Norwegian municipalities (Norgesgruppen AS., 2019).

ASKO is in control of a fleet of trucks used to connect one central warehouse to 13
regional warehouses and their corresponding customers. With more than 600 vehicles of
various types in use every day, ASKO is one of the largest transportation companies in
Norway (ASKO Norge AS). Their customers are essentially all the grocery store chains
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Chapter 1. Introduction

of Norgesgruppen, e.g. Kiwi, Meny, Spar, and Joker. Also, ASKO supplies Norwegian
convenience stores and catering sectors, e.g. hotels, canteens, gas stations, and kiosks. In
subsequent parts of this thesis, grocery stores and trucks are referred to as customers and
vehicles, respectively.

ASKO schedules deliveries ahead of a given planning horizon, which is composed of
multiple days, denoted as periods. In advance of the planning horizon, each customer
requests a set of orders to fulfil the demand for all types of goods. In the set of orders,
each order is a request for a specific commodity. A commodity is defined as a group of
goods with common properties. Goods which belong to the same commodity are located
in the same area at the customer. Such an area is referred to as a zone, and each customer is
uniquely divided into multiple zones. With this system, each zone maintains and displays
goods of one commodity type to the store visitors. The number of zones and corresponding
commodities for each customer varies, depending on the size of the store.

A commodity can be of two types: non-dividable or dividable. The former corre-
sponds to dry-goods, while the latter are frozen goods, refrigerated goods, and fruits and
vegetables. Dividable commodities can be split over multiple deliveries. In contrast, non-
dividable commodities must be delivered in one bulk, i.e. transported to the requesting
customer by the same vehicle in one period during the planning horizon. The rationale
behind forcing some commodities to be non-dividable is to simplify the internal distribu-
tion of goods after deliveries at each customer. By receiving goods which belong to only
a limited zone in the store, less workforce is needed.

Over the past decade, ASKO has experienced a significant increase in the amount of
volume they distribute to their customers. Their annual turnover has almost doubled dur-
ing this period, where operating income in 2019 amounted to approximately 90 billion
NOK. The customers of ASKO now receive 80% of the volume sold in their stores from
ASKO rather than from other external suppliers, which corresponds to a 20-30% growth.
Increased volume is in part caused by the growing number of different products being
offered in the grocery stores. Consequentially, a wider product range must be delivered
on the same transport vehicle. Also, ASKO’s regional warehouses are exposed to an in-
creased flow of goods, and the task of vehicle routing and scheduling in order to serve all
customers is growing in complexity. This complexity is associated with a higher cost level.
In particular, costs accrue when an increased amount of different products are assembled
at each warehouses before packed orders are loaded on to vehicles and delivered to cus-
tomers. Also, an increase in distributed volume might cause a need for extra vehicles,
which incurs additional costs for ASKO. If a vehicle is used in the planning period, it is
assigned one or several trips. Each trip starts and ends in the same warehouse, as shown in
Figure 1.1. A set of consecutive trips in the same period for a given vehicle type is referred
to as a journey, illustrated in Figure 1.2.

2



Depot 1 2 3 Depot

Figure 1.1: A trip is a consecutive sequence of customers visited by a specific vehicle type in a
specific period.

Depot 1 2 3 Depot DepotReload
4 5 6 Depot

Figure 1.2: A journey consists of a set of trips which can be assigned to a specific vehicle type in a
specific period.

In addition to the costs associated with vehicle usage, warehouse assembling is a
labour-intensive activity. Overtime is incurred due to deviations between tactical plan-
ning and demands. Overall, cost reduction act as an incentive for suppliers to invest in
improved route schedule optimization.

General routing problems are commonly modelled as vehicle routing problems (VRP)
in literature. Ever since Dantzig and Ramser (1959) introduced the VRP, it has been a ubiq-
uitous topic in operations research, logistics, communications, transportation, distribution,
and manufacturing (Elshaer and Awad, 2020). For several companies that are engaged in
the collection of goods or people, the VRP has been, and still is, of paramount importance.
There are also examples in the literature of real-world routing problems in the food distri-
bution industry which have been modelled as VRPs, e.g. Vidal et al. (2012) and Cattaruzza
et al. (2014a).

To broaden the usage area of the VRP in practical applications, various problem ex-
tensions are considered in literature. As an example, the problem setting faced by ASKO
allows vehicles to conduct multiple trips each day, as opposed to the classical VRP. The
resulting multi-trip vehicle routing problem (MTVRP) has, according to Paradiso et al.
(2020), been poorly covered in literature until recent years. However, research attention is
encouraged by the possibility of obtaining improved city logistics in problems where ve-
hicles are restricted to shorter driving distances and reduced capacities (Cattaruzza et al.,
2016a). By modelling such routing problems as MTVRPs, better exploitation of the entire
planning horizon, and improved utilization of the fleet can be obtained.

As new needs and usage areas frequently appear in real-life applications, the VRP
remains an interesting and challenging field of research. Crainic (2008) emphasize that
problem settings are more often subject to limited time available to make decisions. This
requires solution methods which are computationally efficient, while maintaining solution
quality. Also, the need for simpler, but robust and efficient methods arise, as they provide
added flexibility in practical use without the need for complex calibration procedures. For
these reasons, among others, heuristics have become the methodologies of choice in recent
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literature on VRP solution methods (Elshaer and Awad, 2020).

In Bakken et al. (2019), we proposed three exact methods to solve the problem studied
in this thesis. They struggled to find solutions for instances with more than 10 customers.
The purpose of this thesis is to develop and study different heuristic solution approaches
in order to solve the periodic multi-trip VRP with time windows (PMTVRPTW), incom-
patible commodities, and a heterogeneous fleet of vehicles, for real-sized instances.

The problem arises in tactical and operational route scheduling at ASKO, and our work
aims at serving as decision support in their planning operations. As for today, journey
schedules are optimized and determined before, i.e. independent of, the decision of which
commodities and their associated quantities the vehicles should transport on each journey.
However, compatibility dependencies between commodities can lead to poor utilization of
the fleet with this sequential planning scheme. A measure of journey quality cannot be
determined without knowing the optimal way of allocating quantities to each journey. On
the contrary, the best order allocation cannot be found without having the optimal journey
scheme. This thesis is therefore dedicated to investigate methods which simultaneously
optimize journey scheduling and order allocation.

Solution methods are developed and studied as follows. First, we implement the prob-
lem as a mixed integer program based on prior work (Bakken et al., 2019) to obtain exact
solutions on small benchmark instances. All instances are generated based on real-life
data, as there exist no benchmarks used in literature for the PMTVRPTW with incom-
patible commodities and a heterogeneous fleet. Then, to solve the problem for real-size
instances, we propose four different heuristic solution methods: two population-based ge-
netic algorithms (GA), one swarm-inspired artificial bee colony (ABC) algorithm, and
one hybrid matheuristic which combines GAs, ABCs, and an exact solution method to
efficiently solve for instances of a practical size. To the extent of our knowledge, solu-
tion methods for this particular VRP variant have not been proposed in previous litera-
ture. However, we know that heuristic solution approaches to solve similar VRPs have
performed superior to exact methods in terms of solution quality for real-sized instances
(Cattaruzza et al., 2014a).

The outline of this thesis is presented in the following. In Chapter 2, we provide an
overview of relevant literature within the field of operations research and vehicle routing.
A detailed problem description is given in Chapter 3, and a mathematical formulation of
the problem is presented in Chapter 4. The next four chapters are dedicated to describe
the proposed solution methods. Chapter 5 presents a heuristic based on the hybrid ge-
netic search framework proposed by Vidal et al. (2012). This heuristic is extended with
a periodic decomposition in Chapter 6. In Chapter 7, we describe an artificial bee colony
algorithm based on the concept of swarm-intelligence. Finally, a matheuristic is described
in Chapter 8, which combines solutions obtained by previously described heuristics us-
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ing an exact solver. In Chapter 9, test instances are described. A computational study is
conducted in Chapter 10 in order to evaluate and compare the behaviour of the proposed
methods. Chapter 11 concludes the thesis, whereas Chapter 12 presents suggestions for
future work.
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Chapter 2
Literature Review

In this chapter, we present a brief overview of relevant literature within the field of op-
erations research and vehicle routing. Section 2.1 introduces the vehicle routing problem
(VRP) with extensions relevant for the problem studied in this thesis, i.e. time windows,
multiple periods, and multiple trips. In Section 2.2, we review metaheuristic solution
methods proposed to solve relevant VRPs in previous literature. Finally, our contribution
to the field is summarized in Section 2.3.

2.1 The Vehicle Routing Problem and Relevant Exten-
sions

The VRP was first introduced as the ”Truck Dispatching Problem”, which is a generaliza-
tion of the traveling salesman problem (TSP), by Dantzig and Ramser in 1959. Given set
of cities to visit, the TSP searches for the shortest route that starts and ends in the same
city. The VRP is an extension of the TSP, which has been subject to thorough research in
subsequent years. In the classical VRP, cities are considered to be customers with given
quantity demands, and the following assumptions are made: there is a single depot which
a set of vehicles with limited capacities must depart from and return to, and each customer
must be served exactly once by a vehicle. As opposed to the TSP, the need for multiple
vehicles in the VRP arise when customers request certain quantities which must be served
by vehicles with limited capacities. Since the TSP is NP-hard, all extensions of it are also
NP-hard, including the VRP (Desaulniers et al., 2014).

In order to study and develop methods to solve the VRP in real-world applications,
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various problem extensions have been proposed in the literature. For a thorough overview
of the research development, the reader is referred to Laporte (2009) and Mor and Speranza
(2020). In the following, VRP extensions which are present in the problem studied in this
thesis are described. Note that in subsequent parts of this thesis, a trip is defined as a
sequence of consecutive node visits, starting and ending at the depot. A journey refers to
a set of consecutive trips taken by the same vehicle.

Time Windows

The problem is defined as a VRP with time windows (VRPTW) whenever nodes reject
visits outside a given time window. A visit must start within a given time window, but
can be finished after the end of the time window. Solomon (1984) was among the first to
study the VRPTW. Two ways of modelling the problem have been commonly studied in
subsequent literature: the VRPTW with hard or soft constraints (Desaulniers et al., 2014).
In the former, only solutions where no customer is visited outside its time window are
accepted. If time windows are modelled as soft constraints, however, solutions where visits
occur outside time windows are accepted, but penalized with a cost that is non-decreasing
with either late or early arrival time. A mix of soft and hard constraints has also been
proposed (e.g. Mouthuy et al., 2015). Several penalty functions have been considered in
the literature. In example, Cordeau et al. (2001) suggest to penalize late services, while
Ibaraki et al. (2008) instead penalize early services. We recommend the survey provided by
El-Sherbeny (2010) for a review of exact and heuristic solution methods for the VRPTW.

Multiple Periods

In a periodic VRP (PVRP), first introduced by Beltrami and Bodin (1974), the planning
horizon is composed of multiple periods where node demand can be served. Each node
can be visited in all periods, but often require to be visited in a certain number of periods.
Further restrictions on visits have also been proposed in the literature. Cordeau et al.
(1997) suggest that customers have their own visit frequencies that must be included in
the routing schedules. Gaudioso and Paletta (1992) instead propose to enforce a minimum
and maximum spacing between each visit.

Solving the PVRP differs from solving one VRP for each period separately, as each
node requires a set of orders or a total quantity which must be delivered during the entire
planning horizon rather than in specific periods. The PVRP is thus more flexible in the
process of constructing routes, as quantities can be interchanged between periods in order
to improve the objective value. An overview of the development of both exact and heuristic
solution methods for the PVRP is provided by Campbell and Wilson (2014).
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Multiple Trips

An extension of the standard VRP arises whenever each vehicle is allowed to conduct
multiple trips within a period (Cattaruzza et al., 2016b). In spite of the rather growing
relevance of MTVRPs in real-life applications, the literature is still scarce relative to other
VRP extensions (Cattaruzza et al., 2014a). Early MTVRP research was mostly concen-
trated on the modelling side of the problem, whereas recent studies have focused on de-
veloping efficient solution methods (Wassan et al., 2017). We recommend Mingozzi et al.
(2013) and Cattaruzza et al. (2014a) for further reference on exact and heuristic solution
methods, respectively.

Urban city logistics is among the fields where MTVRP research is emerging, as MTVRPs
often arise when customer demand exceeds vehicle capacity, or when distances between
customers are short (François et al., 2016). In urban cities, road restrictions often favor
the use of vehicles with smaller capacities, and the customers are physically closer to each
other. In practice, the duration of trips in urban cities are short relative to a regular work-
ing day, and the possibility to reload at the depot between trips is desirable. If multiple
trips are prohibited in such situations, an oversized fleet and poor exploration of the search
space can be costly consequences (Cattaruzza et al., 2014a).

2.2 Heuristic Solution Methods for the Vehicle Routing
Problem

Several papers have discussed different solution methods, both exact and heuristic, for
the VRP with the extensions presented in Section 2.1. However, exact methods are usually
limited in the size of instances they are able to solve for (Cattaruzza et al., 2014a). As real-
life applications of VRPs tend to be large in scale, heuristics and metaheuristics have been
the methodologies of choice in recent years (Elshaer and Awad, 2020). In addition, so-
called matheuristics, which combines exact and heuristic solution methods, have received
attention in VRP research. For a recent review of literature which propose matheuristics to
solve various VRPs, we recommend the survey provided by Archetti and Speranza (2014).

In order to reveal usage trends of different metaheuristics applied to VRPs, Elshaer
and Awad (2020) provide a taxonomic survey of metaheuristics developed and studied in
literature between 2009 and 2017. They suggest a classification scheme which divides the
methods into single-solution and population-based metaheuristics. The former generally
proceeds by modifying and improving a single incumbent solution, while the latter evolve
a set of solutions by recombining existing ones. Elshaer and Awad (2020) found that
among the 299 analyzed reviews, 386 different metaheuristics were suggested. 63.7% of
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the algorithms were single-solution based, while the remaining 36.3% were population-
based. In this section, we review previous research on single-solution methods (2.2.1) and
population-based methods (2.2.2) applied to VRPs with relevant extensions. We finish
the section with a discussion of the impact a sufficient diversity-management have on
algorithmic performance in the reviewed literature (2.2.3).

2.2.1 Single-Solution Metaheuristics

Several single-solution metaheuristics have been suggested for different variants of the
VRP, where tabu search (TS), variable neighbourhood search (VNS), and large neighbour-
hood search (LNS), in the stated order, have appeared most frequent in literature (Elshaer
and Awad, 2020). Single-solution metaheuristics are in general based upon the concept of
maintaining an incumbent solution, use a neighbourhood operator to define a set of simi-
lar neighbourhood solutions, and repeatedly transform the current solution into one of its
neighbours.

TS-algorithms are based upon exploring the search space by moving to the best neigh-
bour of the current solution, allowing for deterioration of the objective value. In order to
avoid cycling, certain tabu criteria and aspiration criteria, in combination with a memory
structure, are implemented. Solutions which fulfill the tabu criteria are prohibited from
being explored. However, exploration is still allowed if the aspiration criteria are fulfilled.

Shortly after the TS-framework was formalized by Glover in 1989, methods exploiting
the TS-concept were proposed in VRP-literature. In example, Gendreau et al. (1994)
suggested a TS-algorithm called Taburoute for the VRP with capacity and route length
restrictions. Taburoute proceeds by considering sequences of adjacent solutions that are
obtained by repeatedly remove nodes from one route and insert them into another route in
the current solution. The algorithm outperformed the current best heuristics in terms of
solution quality. Taillard et al. (1996) later proposed a multi-phase algorithm to solve the
MTVRP, where the first phase exploits tabu search to create initial routes. Second, VRP
solutions are generated, and a bin packing heuristic is finally applied to select routes and
assign them to vehicles to form a MTVRP solution. The study established a set of MTVRP
instances, which have been widely used as benchmarks in subsequent literature.

Variable neighbourhood search (VNS), first proposed by Mladenović and Hansen (1997)
in 1997, is another single-solution metaheuristic based upon assuming there exists a local
optimum in the neighbourhood of the incumbent solution. Subsequent to the local neigh-
bourhood search, a perturbation phase enables further solution improvement by altering
the nature of the neighbourhood or its parameters. This gives rise to exploitation of mul-
tiple neighbourhood operators, thereof the term variable. Solution acceptance and the
order of which neighbours are evaluated can be either deterministic or probabilistic. Re-

10



2.2 Heuristic Solution Methods for the Vehicle Routing Problem

cently, Wassan et al. (2017) proposed a two-level VNS algorithm to solve the MTVRP
with backhauls. The two levels, referred to as the outer and the inner layer, ensure search
diversification and intensification, respectively. At each cycle of the algorithm, the outer
layer utilize local search procedures to identify the local optimum in the neighbourhood
of the current candidate solution. The resulting best solution is carried further to the in-
ner level, where a variable neighbourhood decent phase is applied. Computational study
reports that where CPLEX has provided optimal solutions for small and medium-sized
instances, the algorithm solves to optimality at lower computational costs.

According to the survey by Elshaer and Awad (2020), large neighbourhood search
(LNS) is the third most frequently applied metaheuristic to solve VRPs in recent literature.
The concept was first introduced by Shaw (1998) in 1998. In LNS methods, solutions are
implicitly defined by destroy and repair phases. The former breaks down the current
solution with a certain element of randomness, while the latter re-builds it in a different
way. Typically, a probabilistic element in the destroy phase is implemented, which enables
different parts of the current solution to be explored. Note that multiple destroy-repair
operators can be proposed, but only one operator is randomly selected and applied in each
cycle. When applied to VRPs, new solutions are typically obtained by removing a number
customers from the current solution, and later reinsert them in another location. Among
others, Prescott-Gagnon et al. (2009) propose a LNS method to solve the VRPTW. The
algorithm succeeds to find several new best solutions to the benchmark instances provided
by Solomon (1987).

A popular extension of the LNS is the adaptive large neighbourhood search (ALNS).
It differs from the LNS by not randomly selecting which destroy-repair operator to ap-
ply in each iteration, but rather assigns each operator weights that are adapted through
performance feedback between iterations (Azi et al., 2014). Recently, Mancini (2016)
propose an ALNS algorithm to solve the multi-depot PVRP. Computational study is con-
ducted with instances of up to 75 customers, an reveals a stable capability of exploring a
large neighbourhood with low computational costs. With an average runtime of 400s, the
ALNS shows an average improvement with respect to initial solution of 55%, compared
to 22% for an exact solver. François et al. (2016) is another example from VRP literature
where the the ALNS framework is applied. In order to solve a multi-trip VRP, they de-
velop two ALNS algorithms which provide best known solutions for several benchmark
instances from Taillard et al. (1996).

2.2.2 Population-Based Metaheuristics

Population-based metaheuristics are based upon maintaining and improving a set of candi-
date solutions. In recent years, several population-based methods have become state-of the
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art for different VRP extensions (Vidal et al., 2012, Vidal et al., 2013a). Population-based
algorithms are particularly suitable when a diversified exploration of the search space is
desired, as they can simultaneously maintain a large set of solutions (Cattaruzza et al.,
2014a). In the following, we present two classes of population-based methods: evolution-
ary computation (EC) algorithms (2.2.2) and swarm-intelligence (SI) algorithms (2.2.2).

Evolutionary Computation Algorithms

According to Elshaer and Awad (2020), genetic algorithms (GA) represent the class of EC
algorithms which have received most attention in VRP literature. GAs are inspired by the
concept of natural evolution of biological organisms (Cattaruzza et al., 2014a). The class
of algorithms was first introduced late in the 1950s, but studied and developed towards
their present shape by Holland in 1975. The GA framework is based upon representing
solutions as individuals, and evolve a set of individuals (i.e. a population) until a suffi-
cient solution quality, a given time limit, or a maximum number of iterations is reached.
Improved solutions are obtained by recombining individuals, referred to as a crossover
procedure.

Vidal et al. (2012) suggest a hybrid metaheuristic for the PVRP based on the GA frame-
work, proposing several advanced features in solution evaluation, population management,
and crossover operations. Solutions are represented as a set of chromosomes, where a gi-
ant tour chromosome is a sequence of customer nodes without delimiters. This particular
way of representing solutions has been efficiently applied in several GAs for standard
VRPs (Vidal et al., 2013a). The resulting algorithm - a Hybrid Genetic Search with Adap-
tive Diversity Control (HGSADC) - performs superior to previous attempts in terms of
computational efficiency and solution quality on benchmark instances from Cordeau et al.
(1997).

In Vidal et al. (2013b), the HGSADC is further extended to solve for PVRPs with time
windows. Their work is inspired by Nagata et al. (2010), who introduce the idea of tem-
porarily allowing time window infeasible solutions in the population during the search.
By modelling time windows as soft constraints, a wider exploration of structurally dif-
ferent feasible solutions is enabled. The HGSADC extension proposed by Vidal et al.
(2013b) assumes that upon late arrival, time is paused until the time window is reached,
and a penalization is incurred accordingly. This relaxation scheme contributes to an effi-
cient evaluation of solution changes, where several classical neighbourhood search moves
can be evaluated in amortized O(1). The algorithm performs impressively in terms of
solution quality and computational efficiency compared to previous approaches on bench-
mark instances for any combination of multi-depot, periodic, site-dependent, and duration-
constrained VRPs with time windows.
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In recent years, population-based methods have gained attention in the context of
MTVRP literature. As one of the first authors to consider solution methods for the MTVRP,
Fleischmann (1990) established the mindset of separating route creation and route assign-
ment. This approach remained popular in MTVRP literature for several years (François
et al., 2016). In recent years, heuristics which simultaneously tackle both creation and as-
signment of routes have been proposed. This also encouraged the emergence of population-
based methods for MTVRPs.

Cattaruzza et al. (2014a) propose a population-based approach for the MTVRP which
outperform previous methods in the literature with respect to average solution quality.
Their study is motivated by a real-world application, where a set of supermarkets place
orders that must be delivered by a fleet of vehicles within a time horizon. Orders are
incompatible and must be delivered with separate vehicles. Their proposed algorithm is
largely based on the HGSADC introduced by Vidal et al. (2012). To include the multi-
trip aspect, a new local search operator that includes exploitation of potential improving
trip swaps is proposed. In the original HGSADC, the swaps considered are limited to
exploration of the order of which customers are visited inside each single trip. In addition
to an improved local search operator, Cattaruzza et al. (2014a) modifies the split-procedure
that constructs VRP solutions from giant tours in the original HGSADC. The new split-
procedure incorporates a labeling algorithm subsequent to the creation of trips, where
trips are selected and assigned to vehicles to form MTVRP solutions. In order to solve the
MTVRP with time windows (MTVRPTW), Cattaruzza et al. (2014b) extend the labeling
algorithm developed in Cattaruzza et al. (2014a) by incurring a penalty for time window
infeasibility. The proposed method is based upon an iterated local search method. Each
time a solution is created by the modified split-procedure, a local search operator is applied
to possibly improve solution quality. Computational study of the proposed method shows
that by enabling multiple trips as opposed to solving a single-trip VRP, the fleet size can
be reduced with as much as 50%.

In order to address large-sized instances of VRPTWs with various extensions more ef-
ficiently, several decomposition approaches have been proposed in literature (Vidal et al.,
2013b). Usually, problem decomposition is based on geometry (Ostertag, 2008, Bent and
Van Hentenryck, 2010), problem structure (Crainic et al., 2009), or temporal aspects (Bent
and Van Hentenryck, 2010). For population-based methods, Vidal et al. (2013b) propose
a decomposition framework which takes advantage of the maintained pool of solutions.
They develop a solution method to solve a PVRPTW, which implements a decomposition
phase solve the problem as multiple subproblems. In the decomposition phase, subprob-
lems accounting for problem dependencies which arise from both time window constraints
and the multi-period extension, are created. To incorporate the former when creating sub-
problems, a trip-based geometrical decomposition is applied. As for the latter, a structural
decomposition is applied by fixing orders to periods, and thus create one subproblem for
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each period. Vidal et al. (2013b) conduct a sensitivity analysis to measure the impact of
the decomposition phase on algorithmic performance, which confirms a significant contri-
bution, particularly in terms of solution quality and computing efficiency for large-sized
instances.

Swarm-inspired Algorithms

Swarm-inspired algorithms are in general based upon exploiting the collective, decentral-
ized intelligent behaviour of various types of organisms, e.g. ants, bees, and birds, in order
to find problem solutions. In general, SI-algorithms are based on movement and evaluation
in a solution space, where a position in the space represents a solution to the given prob-
lem. SI-algorithms were first applied to continuous optimization problems, but were later
adapted to handle discrete domain problems such as the job shop scheduling problem, and
the VRP (Krause et al., 2013). In discrete domain problems, a solution is often represented
as a position-vector in the solution space, which is updated when the candidate solution is
changed. However, for discrete combinatorial problems, such position updates can lead to
invalid solutions. In order to prevent invalid position updates, two different ways of rep-
resenting solutions have been proposed: direct and indirect representation (Krause et al.,
2013).

With a direct representation, the position vector of a solution in the solution space
explicitly holds the solution. With an indirect representation, an encoding scheme must be
applied in order to map the position vector from a continuous space to a discrete solution.
Various encoding schemes have been proposed. The most popular schemes are the sigmoid
function, which maps the continuous space into a binary vector based on the sigmoid
function (Banati and Bajaj, 2011), and the random-key encoding scheme proposed by
Chen et al. (2011). The random-key encoding scheme decodes the continuous position in
each dimension to an integer position. As a simple example, the candidate solution vector
~xi = (0.90, 0.35, 0.03, 0.21, 0.17) can be decoded as ~xi = (5, 4, 1, 3, 2). Other encoding
schemes are described in Krause et al. (2013).

Particle swarm optimization (PSO) is the most frequent applied SI-algorithm in recent
VRP literature (Elshaer and Awad, 2020). PSO (Kennedy and Eberhart, 1995) is based
upon representing candidate solutions as particle positions. Particles move around in the
search space, and their positions are guided by the continuously updated local and global
best known positions. The swarm is thus expected to move towards the best solutions.
Zhen et al. (2020) propose a PSO algorithm, which exploits the split-algorithm in Cat-
taruzza et al. (2014b) to transform the sequence of customer visits of a particle based on
a random key encoding scheme, into a MTVRPTW solution. Their study is motivated by
a real-world application within last-mile distribution in online shopping. The suggested
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algorithm is able to efficiently solve instances with up to 200 customers and 40 vehicles.

Ant colony optimization (ACO) is another SI-method which have gained recent atten-
tion in the context of real-world VRP applications (Rizzoli et al., 2007). ACOs are inspired
by the behaviour of ants during their search for food. As in general for SI-algorithms, so-
lutions are positions of ants in the search space. In each iteration, ants move towards better
positions by observing pheromone trails which were deposited in the previous iteration.
ACOs are commonly proposed to solve VRPs, as the movements of ants are suited to
represent vehicles, letting their food sources represent nodes (Yu et al., 2009). Yu et al.,
2009 propose an ACO which exploits a direct solution representation, where the amount
of pheromone on the edge between two nodes indicates solution quality. Edges are se-
lected based on a probability given by the pheromone density on the edges leaving the
customer. Matos and Oliveira (2004) proposed a two-phased ACO algorithm to solve the
PVRP for large-sized instances. They address the PVRP as a VRP by duplicating each
customer as many times as it has placed an order in the entire planning horizon. Finally, a
graph-coloring problem is solved in order to allocate trips to periods.

Artificial bee colony (ABC), first introduced by Karaboga (2005), was recently intro-
duced in VRP literature (Iqbal et al., 2015). Even though few authors have exploited the
ABC-framework to solve VRPs, it has proven to obtain quality solutions within a reason-
able amount of time for several other hard discrete combinatorial problems in literature
(e.g. the traveling salesperson problem (Agrawal et al., 2012), and the general assignment
problem (Baykasoglu et al., 2007, Iqbal et al., 2015). The idea is to simulate the foraging
behaviour of a honey bee swarm when searching for quality solutions. Solutions are repre-
sented by bee positions in the search space. The ABC analogy is based on bees exploring a
meadow (search space) with flower patches (positions), where bees collect nectar (solution
quality). The algorithm is composed of three phases. In the first phase, random positions
in the solution space are found. In the second phase, positions are evaluated to reveal their
quality. Finally, the most promising solutions are further explored in the third phase. Ex-
ploration is proceeded as a local neighbourhood search around the promising solutions in
the solution space. If an area has been explored for a given number of iterations without
improvement, it is abandoned.

Szeto et al. (2011) was first to apply an ABC algorithm to the standard VRP prob-
lem with limited vehicle capacities. When tested on 20 large-scale benchmark instances
(Golden et al., 1998), the proposed algorithm obtained an average deviation of 2.31% from
the best known result among previous suggested methods. Iqbal et al. (2015) applied the
ABC to a VRP with soft time window constraints. As an extension of the standard ABC
framework, they implement an additional step, denoted global exploration, dedicated to
enhance search diversity. The step is applied whenever the neighbourhood of a current
solution is explored, and is composed of two phases:
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• (1) Select two different routes and one customer in each of the routes, and swap the
two customers

• (2) Select a block of customers, and replace it with a random perturbation of itself

Experimental results show that the global exploration step reduces the run time of the
method. For the entire algorithm, computational studies reveal that high quality solutions
are obtained within a reasonable amount of time on benchmark instances (Solomon, 1987)
when compared to previous proposed heuristics.

2.2.3 The Importance of Diversity

A common denominator in the reviewed literature is the importance of a sufficient diversity-
management scheme for VRP solution algorithms to be efficient. Various approaches are
proposed to obtain the desired level of diversity.

One of the suggested approaches is based upon explicitly including a measure of di-
versity in the objective function. In example, Vidal et al. (2012) suggest a solution evalua-
tion mechanism which aims at providing broad access to reproduction material during the
population-based evolutionary search. The fitness score of an individual, which is used
whenever solutions are compared, is based upon both the cost of the solution and its con-
tribution to population diversity. Thus, high-cost solutions can still be used to create new
solutions. The proposed evaluation method is adopted by Vidal et al. (2013b), Cattaruzza
et al. (2014a), and Zhen et al. (2020).

A more common approach to implement search diversity is to include an algorithmic
step, subsequent to evaluation, where solutions are either accepted or rejected. In exam-
ple, François et al. (2016) suggest an ALNS algorithm which enhance solution diversity
whenever a candidate solution is either accepted or rejected with a given probability. Cat-
taruzza et al. (2014b) apply another diversity-management scheme, which is based upon
a frequent use of random solution perturbations. The swarm-inspired ABC proposed by
Iqbal et al. (2015) also implements random perturbations, i.e. the global exploration step,
as en extension of the ABC-framework in order to achieve enhanced search diversity.

The importance of diversity is explicitly tested in computational studies by several
authors. Experimental results in Iqbal et al. (2015) reveal that the global exploration
step improves both solution quality and computation time. In Vidal et al. (2012), they
state that the biased fitness evaluation is paramount for the suggested algorithm to obtain
quality solutions on literature benchmarks. Similarly, Vidal et al. (2013b) conduct a sen-
sitivity analysis which proves the significant contribution of diversity to the algorithmic
performance. Also, they prove the importance of including time window-infeasible solu-
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tions in the evolving population. Cattaruzza et al. (2014a) state that sufficient diversity-
management enables local search procedures to be efficient while avoiding premature con-
vergence, which is a common challenge in GAs.

2.3 Our Contribution

VRPs are widely studied, and various extensions have been proposed in order to model
problems of real-life applicability. However, as emphasized in Vidal et al. (2012), there are
significant differences in the amount of attention received by the different problem classes.
Most methodological developments tend to target single-attribute VRPs, e.g. VRPs with
time windows, or the traditional VRP with vehicle capacity restrictions. In this thesis,
we study a periodic VRP with multiple trips and time windows (PMTVRPTW), where
commodities are incompatible, and the fleet is heterogeneous. This particular combination
of VRP extensions is, to the extent of our knowledge, not covered in previous research.

In order to solve the problem for instances which compare to real-life problem sizes,
we propose four different heuristic solution methods. Various solution methods for VRP
classes with some of the relevant problem extensions have been studied in literature, par-
ticularly in the domain of heuristic and metaheuristic approaches. Two of the proposed
methods are based on the framework of genetic algorithms, whereas the third adopts the
concept of swarm-intelligence. Finally, the fourth method is a matheuristic, which is a
hybrid of the proposed heuristics and an exact method based on prior work (Bakken et al.
(2019)).

Genetic algorithms have emerged as promising in VRP research in recent years. Of par-
ticular interest is the hybrid genetic algorithm framework proposed by Vidal et al. (2012),
which yielded state-of-the-art results on different VRP classes. They suggest extending
their framework to new problem classes which include other combinations of VRP exten-
sions as a new area of research. As for algorithms inspired by swarm-intelligence, they
are less explored in the VRP context, but have successfully been applied to solve other
difficult discrete combinatorial problems (Iqbal et al., 2015).

In recent years, advantages in exact solution methods and hardware technology have
improved the ability of mixed integer linear programming (MIP) models to be solved to
optimality or close to optimality within a reasonable amount of time. Consequentially,
researchers have been encouraged to develop matheuristics, i.e. heuristics which em-
bed phases where MIP-techniques are exploited, to solve various VRPs. We propose a
matheuristic which iterates between (1) solving a decomposed problem heuristically to
generate a set of potentially quality solutions for each subproblem, and (2) applying a MIP
to identify the optimal configuration among the set of potential partial solutions to form a
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complete problem solution.

There are only a few papers in previous literature, e.g. Cattaruzza et al. (2014a) and
Cattaruzza et al. (2014b), which suggest solution methods to solve VRPs with commodity
incompatibilities. However, among these methods, the quantity fractions of each commod-
ity delivered in each period are treated as fixed, rather than as decision variables. Treating
quantities as decision variables is an essential characteristic of the problem studied in this
thesis. Therefore, the proposed solution methods contribute to the field with different
approaches to handle the problem of allocating commodity quantities to periods.

Even though the PMTVRPTW studied in this thesis is poorly covered in existing lit-
erature, the mathematical formulation and proposed solution methods can be adapted to
describe and solve other problems with similar characteristics. The work in this thesis is
motivated by the grocery industry in Norway, but is of general applicability for related
practical problems in other industries. Based on the review of similar approaches sug-
gested to solve other VRP classes in this section, we believe that our proposed methods
will both serve as decision support for ASKO, and provide valuable insight to future VRP
research.
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Chapter 3
Problem Description

In this thesis, a periodic multi-trip vehicle routing problem with time windows (PMTVRPTW),
incompatible commodities, and a heterogeneous fleet is studied. The one-to-many problem
consists of multiple customers and one warehouse, represented by nodes and one depot,
respectively. Each planning period is considered to be one day, and every customer has a
set of orders that needs to be fulfilled during a planning horizon of six days, i.e. Monday
to Saturday.

In a set of orders placed by a customer, each order is a quantity demand for a particular
commodity. There are two types of commodities: dividable and non-dividable commodi-
ties. Orders of a non-dividable commodity must be delivered as one unit in a single period.
Customers can receive at maximum one non-dividable commodity in each period. Divid-
able commodities can be split up and delivered in several periods during the planning
horizon. However, each customer has individual quantity and frequency restrictions on
deliveries of each dividable commodity. Thus, deliveries of a dividable commodity must
happen with a frequency within a pre-specified interval, and the quantity delivered must
be between a lower and upper bound.

A customer delivery can only be scheduled in periods where the particular customer
accepts visits. Potential delivery periods are determined by each customer in advance
of the planning horizon. Also, visits must be scheduled inside a customer specific time
window, and the unloading at a customer takes a fixed unloading time. Vehicles which
arrive in advance of a time window must wait until it opens before unloading. As long as
deliveries begin inside the time window, unloading does not need to be completed within
it.

The supplier is in possession of a heterogeneous fleet of vehicles which are used to
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execute trips in each period. A trips is a sequence of customer visits that must start end
end at the depot. Each vehicle can conduct multiple trips, i.e. a journey, during each
planning period. A maximum number of trips can be completed within a period for each
vehicle. The different vehicle types vary with respect to capacity, the fixed cost of usage
in a period, the loading time at the depot, and the driving costs. The supplier has a limited
number of vehicles available of each vehicle type during the planning horizon.

Orders are assembled and loaded into vehicles at the depot. Loading time is considered
fixed, as orders are assembled prior to loading. The required amount of working hours in a
period at the depot is a multiple of the total quantity delivered by the fleet in this particular
period. A cost per unit of overtime is incurred in a period whenever the number of working
hours exceeds a limit for this period.

The decision to make is, for each customer, in which period to schedule deliveries of
which commodities by which vehicle. For the dividable commodities, the distribution of
quantities to periods also needs to be determined. The objective is thus to minimize the
sum of the following costs:

1. Cost of using vehicles in the planning horizon

2. Cost of the total distance traveled by the fleet

3. Cost of overtime hours incurred at the depot

In summary, the goal is to find a set journeys, and assign journeys to vehicles such
that the number of vehicles used, the total distance traveled, and overtime labor costs
at the depot are minimized. By the end of the planning horizon, the demand for every
commodity requested by all customers must be delivered.
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Chapter 4
Mathematical Model

As presented in Chapter 3, this thesis studies a periodic multi-trip vehicle routing problem
with time windows (PMTVRPTW), incompatible commodities, and a heterogeneous fleet.
In this chapter, a mathematical model for this problem is formulated and described.

4.1 The Arc-Flow Model

The relation between customers, depo,t and arcs in the AFM is represented as a graph G.
Let the graph G = (N ,A) be defined by the set of nodesN connected by the set of arcsA.
Depot and customers are represented as unique nodes. The nodes i = 0 and i = |N | + 1

are defined as the start and end depot, respectively. The depots have identical locations.
Vehicles traverse arcs between nodes to conduct visits.

There are no incompatibilities between vehicles, arcs, and nodes, i.e. the network is
fully connected. To simplify notation, constraints are defined using sets of nodes even
though some constraints may contain combinations of indices i and j where the corre-
sponding variable, xpvrij , does not exist, e.g. when i = j, (i, j) = (|N | + 1, 0), or
(i, j) = (0, |N |+ 1). These variables can be assumed to take the value of zero.

The mathematical model for this problem is based on the 4-index MTVRP formulation
described by Cattaruzza et al. (2016a), which is the most common MTVRP formulation.
The formulation is extended with an index for each period, p ∈ P . In addition, an index
for commodity m ∈ Mi is used for each customer i ∈ N . To address the heterogeneous
fleet, a set of vehicle types H is introduced, with vehicle type-indexed capacities Qh,
driving costsCTh , and fixed usage costCFh . Overtime during a period is incurred whenever
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the upper limit for quantity leaving the depot, QOp , is reached. The cost of each unit of
overtime is defined as COp .

4.1.1 Definition of Sets, Indices, Parameters, and Variables

Definition of Sets:

P Set of periods

R Set of trip indices

N Set of customers excluding the depot

N 0 Set of customers including the depot, N 0 = N ∪ {0, |N |+ 1}
A Set of all arcs

H Set of vehicle types

V Set of vehicles

Vh Set of vehicles of a given vehicle type,

where all vehicles v ∈ Vh belong to vehicle type h ∈ H
MND

i Set of non-dividable commodities for customer i ∈ N
MD

i Set of dividable commodities for customer i ∈ N
Mi Set of all commodities for customer i ∈ N , whereMi =MD

i ∪MND
i

Definition of Indices:

d Period, where p ∈ P
r Trip index, where r ∈ R
i, j Customer, where i, j ∈ N and (i, j) ∈ A
v Vehicle, where v ∈ V
m Commodity, where m ∈Mi

h Vehicle type, where all v ∈ Vh have a corresponding vehicle type h ∈ H
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4.1 The Arc-Flow Model

Definition of Parameters

T pi Start of time window in period p ∈ P for customer i ∈ N
T pi End of time window in period p ∈ P for customer i ∈ N
Tij Time spent traversing the arc from customer i to customer j, (i, j) ∈ A,

where i 6= j

TH Maximum duration of a journey

TUi Fixed unloading time for customer i ∈ N
TLh Loading time at depot for vehicle h ∈ H
Qh Capacity for vehicle type h ∈ H
QNDim Quantity of non-dividable commodity m ∈MND

i

ordered by customer i ∈ N
QDim Quantity of dividable commodity m ∈MD

i ordered by customer i ∈ N

Q
D

im Maximum quantity of commodity m ∈MD
i delivered to customer i ∈ N

in period p ∈ P
QD
im

Minimum quantity of commodity m ∈MD
i delivered to customer i ∈ N

in period p ∈ P
QOp Upper limit on the total quantity of commodity leaving the depot

before overtime is incurred in period p ∈ P
COp Unit cost of overtime at the depot

CTh Traveling cost for vehicle type h ∈ H
CFh Fixed cost of using a vehicle of type h ∈ H in one period

Ipi Binary parameter, 1 if a customer i ∈ N must be visited in period p ∈ P ,

0 otherwise

F im Maximum number of deliveries of dividable commodity m ∈MD
i

for customer i ∈ N in the planning horizon

F im Minimum number of deliveries of dividable commodity m ∈MD
i

for customer i ∈ N in the planning horizon

|N | Number of customers

|R| Maximum number of trips a vehicle can take in one period

MX A large number, where the value of x differentiates different large numbers
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Definition of Variables

xpvrij =


1 if vehicle v ∈ V on trip r ∈ R traverse arc (i, j) ∈ A

in period p ∈ P
0 otherwise

ypvri =


1 if vehicle v ∈ V on trip r ∈ R visits customer i ∈ N

in period p ∈ P
0 otherwise

zpvr =

{
1 if vehicle v ∈ V uses trip r ∈ R in period p ∈ P
0 otherwise

upim =


1 if commodity m ∈Mi is delivered to customer i ∈ N

in period p ∈ P
0 otherwise

qpvrim Quantity of commodity m ∈Mi delivered to customer i ∈ N
with vehicle v ∈ V on trip r ∈ R in period p ∈ P

tpvri Time of visit if node i ∈ N 0 by vehicle v ∈ V on trip r ∈ R
in period p ∈ P

qOp Quantity of commodity distributed using overtime in period p ∈ P

4.1.2 Mathematical Formulation of the Ark-Flow Model

Objective Function:

Minimize
∑
p∈P

∑
h∈H

∑
v∈Vh

∑
r∈R

∑
(i,j)∈A

CTh Tijxpvrij+
∑
p∈P

∑
h∈H

∑
v∈Vh

CFh zpv(1)+
∑
p∈P

COp q
O
p

(4.1)

The objective (4.1) minimizes total costs, which is composed of three terms. The
first term represents the cost of traversing an arc between two nodes, where time used is
converted to a cost which depends on the vehicle type used. The second term is the fixed
cost of using a vehicle in a period, where a vehicle is considered used if it is assigned at
least one trip in the period. Third, a cost is incurred per unit of overtime at the depot in
each period.

In the following, constraints are presented and explained in groups based on their ap-
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plication.

Time Constraints:

T pi 6 tpvri 6 T pi, i ∈ N , h ∈ H, v ∈ Vh, r ∈ R, p ∈ P (4.2)

tpvri + Tij + TUi − tpvrj 6M1(1− xpvrij),
h ∈ H, v ∈ Vh, r ∈ R, i ∈ N , j ∈ N 0 \ {0}, p ∈ P

(4.3)

tpvri0 + T0j − tpvrj 6M2(1− xpvr0j),
h ∈ H, v ∈ Vh, r ∈ R, j ∈ N 0 \ {0}, p ∈ P

(4.4)

tpvr(|N |+1) + TLh zpv(r+1) 6 tpv(r+1)(0), r ∈ R \ {|R|}, h ∈ H, v ∈ Vh, p ∈ P
(4.5)

tpvr(|N |+1) 6 TH , h ∈ H, v ∈ Vh, r ∈ R, p ∈ P (4.6)

Constraints (4.2) ensure that all visiting times are within the time window for each
customer. Constraints (4.3) and (4.4) handle the time spent traversing an arc between
nodes. The difference between (4.3) and (4.4) is that unloading time should not be incurred
when traveling from the depot. These constraints are non-linear, and a linear formulation
will be presented in Section 4.1.3. Constraints (4.5) ensure that the vehicle depending
loading time are included in the time dependencies between two trips. Loading time is not
incurred if vehicle v does not use the next trip as a part of its journey. Constraints (4.6)
enforce the duration of a journey to be less than the maximum duration of a journey TH .

Capacity Constraints:∑
i∈N

∑
m∈Mi

qpvrim 6 Qh, h ∈ H, v ∈ Vh, r ∈ R, p ∈ P (4.7)

∑
h∈H

∑
v∈Vh

∑
r∈R

∑
i∈N

∑
m∈Mi

qpvrim 6 QOp + qOp , p ∈ P (4.8)
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Constraints (4.7) prohibit vehicles from transporting a quantity of commodities that
exceeds the capacity of the vehicle Qh. Constraints (4.8) ensure that overtime is incurred
at the depot if the amount of commodities transported during a period is above QOp .

Flow Constraints:∑
j∈N 0\{0}

xpvr0j = zpvr, r ∈ R, h ∈ H, v ∈ Vh, p ∈ P (4.9)

∑
i∈N 0\{|N|+1}

xpvri(|N |+1) = zpvr, h ∈ H, v ∈ Vh, r ∈ R, p ∈ P (4.10)

∑
j∈N 0\{0}

xpvrij = yvrpj , j ∈ N , h ∈ H, v ∈ Vh, r ∈ Rp ∈ P (4.11)

∑
i∈N 0\{|N|+1}

xvrpij = ypvri, i ∈ N , h ∈ H, v ∈ Vh, r ∈ R, p ∈ P (4.12)

∑
h∈H

∑
v∈Vh

∑
r∈R

ypvri = Ipi, i ∈ N , p ∈ P (4.13)

zpvr > zpv(r+1), r ∈ R \ {|R|}, h ∈ H, v ∈ Vh, p ∈ P (4.14)

∑
i∈N

ypvri 6M3zpvr, r ∈ R, h ∈ H, v ∈ Vh, p ∈ P (4.15)

∑
m∈Mi

qpvrim 6M4ypvri, i ∈ N , r ∈ R, h ∈ H, v ∈ Vh, p ∈ P (4.16)

Constraints (4.9) and (4.10) ensure that each trip must start and end in the depot. Con-
straints (4.11) and (4.12) handle the flow into and out of all customer nodes. Constraints
(4.13) ensure that a customer is visited in a period p if required, and prohibit visits in
other periods. Constraints (4.14) state that vehicle v cannot use trip r if trip r + 1 unused.
Constraints (4.15) prohibit a vehicle from visiting customers in trip r if the trip is unused.
Alternatively, it could be formulated by iterating over all customers outside of the con-
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straints. However, preliminary studies show that this has a marginal effect on the solution
time. Constraints (4.16) ensure that no commodities are delivered to a customer that has
not been visited.

Quantity Constraints:

∑
h∈H

∑
v∈Vh

∑
r∈R

qpvrmi = QNDmi upmi, p ∈ P, i ∈ N ,m ∈MND
i (4.17)

QD
im
upim 6

∑
h∈H

∑
v∈Vh

∑
r∈R

qpvrim 6 Q
D

imupim, p ∈ P, i ∈ N ,m ∈MD
i (4.18)

∑
p∈P

∑
h∈H

∑
v∈Vh

∑
r∈R

qpvrim = QDim, i ∈ N ,m ∈Mi (4.19)

∑
m∈MND

i

upim 6 Ipi, p ∈ P, i ∈ N (4.20)

∑
p∈P

upim = 1, i ∈ N ,m ∈MND
i (4.21)

∑
p∈P

upim > F im, i ∈ N ,m ∈MD
i (4.22)

∑
p∈P

upim 6 F im, i ∈ N ,m ∈MD
i (4.23)

Constraints (4.17) ensure that if a non-dividable commodity is delivered to customer i
in period p, the total quantity ordered of this commodity is delivered. Constraints (4.18)
state that if a dividable commodity is delivered in one period p, then the quantity of that
commodity must be within upper and lower bounds. Constraints (4.19) ensure that cus-
tomers receive all their requested orders during the planning horizon. Constraints (4.20)
allow at most one non-dividable commodity is to be delivered to customer i in period p.
Constraints (4.21) state that all non-dividable commodities are delivered within the plan-
ning horizon. Finally, Constraints (4.22) and (4.23) provide upper and lower bounds for
how many times a dividable commodity can be delivered during the planning horizon.
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Constraints on Variables:

xpvrij ∈ {0, 1}, p ∈ P, h ∈ H, v ∈ Vh, r ∈ R, (i.j) ∈ A (4.24)

ypvri ∈ {0, 1}, p ∈ Ph ∈ H, v ∈ Vh, r ∈ R, i ∈ N (4.25)

zpvr ∈ {0, 1}, p ∈ P, h ∈ H, v ∈ Vh, r ∈ R (4.26)

upim ∈ {0, 1}, p ∈ P, i ∈ N ,m ∈Mi (4.27)

qpvrim > 0, p ∈ P, h ∈ H, v ∈ Vh, r ∈ R, i ∈ N ,m ∈Mi (4.28)

qOp > 0, p ∈ P (4.29)

tpvri > 0, p ∈ P, h ∈ H, v ∈ Vh, r ∈ R, i ∈ N 0 (4.30)

4.1.3 Improvements to the Arc-Flow Model

A linearization of constraints (4.3) and (4.4) to obtain constraints (4.31) and (4.32) is done
according to Toth and Vigo (2002):

tpvri + Tij + TUi − tvrpj 6M1(1− xpvrij),
h ∈ H, v ∈ Vh, r ∈ R, i ∈ N , j ∈ N 0 \ {0}, p ∈ P

(4.31)

tpvr(0) + T0j − tpvrj 6M2(1− xpvr(0)j),
h ∈ H, v ∈ Vh, r ∈ R, j ∈ N 0 \ {0}, p ∈ P

(4.32)

In general, these constraints provide weak bounds when the formulation is linearly
relaxed, which is one of the main weaknesses of the 4-index MTVRP formulation. The
tightest possible bounds are:

M1 = T pi + Tij + TUi − T pj (4.33)

M2 = T p(0) + T(0)j − T pj (4.34)

This implies that T p0 = T p(|N |+1) = 0 and T p0 = T p(|N |+1) = TH , corresponding
to the time window at the depot. It should also be mentioned that in the case where
j = |N |+ 1, i.e. the end-depot, T(0)(|N |+1) is set to 0 in order to ensure a non-decreasing
start and end time at the depot for all trip indices in Constraints (4.32).

The formulation of the AFM can further be strengthened by introducing suitable values
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of M for Constraints (4.15) and (4.16). The left hand side of Constraints (4.15) cannot be
larger than |N |. The sum of quantities delivered by vehicle v in period d for customer i
can at most be equal to the capacity of the vehicle. Thus, the Constraints (4.15) and (4.16)
are changed to:

∑
i∈N

ypvri 6 |N |zpvr, r ∈ R, h ∈ H, v ∈ V, p ∈ P (4.35)

∑
m∈Mi

qpvrim 6 Qhypvri, i ∈ N , r ∈ R, h ∈ H, v ∈ Vh, p ∈ P (4.36)

Since all vehicles of one vehicle type are identical, the AFM formulation introduces
a lot of symmetry in the solution space, which is according to Cattaruzza et al. (2016a)
another weakness of the 4-index formulation. Each vehicle is modelled as unique in terms
of costs and capacity. It is worth mentioning that the time windows property by nature
remove some symmetry in the solution space since the order of customer visits are not
arbitrary compared to other VRP formulations. Symmetry breaking constraints can be
applied to reduce symmetry in the model formulation. Some suggestions are given below:

∑
r∈R

zpvr >
∑
r∈R

zp(v+1)r, h ∈ H, v ∈ Vh \ {|Vh|}, p ∈ P (4.37)

∑
r∈R

∑
(i,j)∈A

CTh Tijxpvrij >
∑
r∈R

∑
(i,j)∈A

CTh Tijxp(v+1)rij ,

h ∈ H, v ∈ Vh \ {|Vh|}, p ∈ P
(4.38)

∑
r∈R

∑
i∈N

ypvri >
∑
r∈R

∑
i∈N

yp(v+1)ri, h ∈ H, v ∈ Vh \ {|Vh|}, p ∈ P (4.39)

zpv(1) > zp(v+1)(1), h ∈ H, v ∈ Vh, \{|Vh|}, p ∈ P (4.40)

Constraints (4.37) ensure that the vehicle with the lowest index of its type is assigned
the most trips. Constraints (4.38) order vehicles based on travel cost, meaning that vehicles
with the lowest indices must incur higher travel costs than higher indexed vehicles of the
same type. Constraints (4.39) force vehicles with lower indices to use equally many or
more trips than higher indexed vehicles. Constraints (4.37) - (4.39) cannot be applied
at the same time, as this may remove optimal solutions. The final symmetry breaking
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constraints proposed are (4.40), where vehicle v+ 1 cannot be used in the planning period
if vehicle v is unused. Constraints (4.40) are compatible with the other symmetry breaking
constraints proposed. As all symmetry-breaking constraints are based on vehicle type
indices, combining constraints will result in the same vehicles being used.

In Bakken et al. (2019), combinations of these symmetry breaking constraints where
tested, and (4.37) and (4.40) in combination outperformed the other combinations. These
are therefore applied for all instances tested with the AFM in the computational study
(Chapter 10).
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Chapter 5
A Hybrid Genetic Algorithm

Exact solution methods are in literature proven to perform poor in terms of finding so-
lutions for real-size VRP instances (Cattaruzza et al., 2014a). Therefore, we propose a
heuristic solution method - the hybrid genetic algorithm (HGA) - inspired by recently de-
veloped VRP literature. The suggested method adopts the concept of genetic algorithms
(GA), which was first introduced by Holland (1975). In general, GAs are based upon
representing solutions as individuals, and evolve a set of individuals (population) by gen-
erating improved solutions (offsprings) through a recombination operator (crossover). The
hybrid genetic search algorithm with adaptive diversity control (HGSADC) metaheuristic,
first introduced by Vidal et al. (2012), has proven to be efficient for various VRP classes
(Vidal et al., 2013b, Cattaruzza et al., 2014a, and Cattaruzza et al., 2016a). The proposed
HGA is inspired by the HGSADC framework, and adapted to the periodic, multi-trip VRP
with time windows, incompatible commodities, and a heterogeneous fleet. This chapter is
initiated with a brief overview of the HGA in Section 5.1, followed by a description of its
components in Section 5.2 - 5.11.

5.1 Overview of the Algorithmic Framework

The general scheme of the metaheuristic is described in Algorithm 1. Overall, individuals
evolve through generations, where both feasible and infeasible individuals r are main-
tained in population R. Subsequent to initialization of R (line 1), the population is suc-
cessively expanded and reduced until a solution of sufficient quality is generated. The
population R is initialized with 4µ individuals, and expanded by applying a crossover-
procedure to yield λ new child individuals rc (offsprings) from parents rp1 and rp2 (line
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4). With a given probability ped, each offspring is in line 6 subject to education, where
different local search operators are applied to possibly improve solution quality. In line 7,
an order distribution mixed integer problem (OD-MIP) solver is applied with probability
pmip to improve the way orders are distributed to periods in each offspring. The offspring
is then, with probability ptrip, subject to a trip optimizer to further improve the solution
quality (line 8). In line 13, all infeasible individuals in the population are repaired with
probability prep.

When λ new individuals are created, a selection procedure is applied (line 15). Of
particular interest is the proposed solution evaluation procedure used during selection,
which takes in to consideration both the cost of the solution, and its contribution to the
population diversity (Section 5.11). The latter ensures a diverse population, which in
previous literature has proven to enhance algorithmic performance (Section 2.2.3).

When survivors are selected, each individual in R is given a possibility to adopt the
way orders are distributed to periods from other individuals to improve solution quality.
Evaluation of possible changes are based on calculations of a vehicle filling level fitness
(line 17), which is described in Section 5.10. If the best solution in the population has not
improved in Ndiv iterations, a diversification (line 20) phase, described in Section 5.11, is
applied.

Before the algorithm proceeds with a new iteration, the termination criteria are checked.
Termination occurs if either a maximum number of iterations is reached, or the number of
iterations without improvement has reached a given maximum,N it. The returned solution
is the best individual r in the current population R (line 20).

In subsequent sections, components of Algorithm 1 are described in detail. Initially,
the solution representation is presented in Section 5.2. The split-algorithm used to derive
multi-trip VRP solutions from the representation of an individual is described in Section
5.3. Solution evaluation is explained in Section 5.4, followed by a description of the
crossover-procedure used to generate new offsprings in Section 5.5. Each offspring is sub-
sequently subject to a local search procedure, i.e. education, which is presented in Section
5.6. Then, Section 5.7 describes a formulation of the OD-MIP applied to an offspring to
improve they way orders are allocated to periods and trips. The trip optimization operator
is presented in Section 5.8, followed by a description of the repair phase in Section 5.9.
The vehicle filling level fitness is described in Section 5.10. Finally, we present different
population management mechanisms in Section 5.11.
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Algorithm 1: HGA
Input: Problem instance

1 Initialize population R: |R| = 4µ
2 while number of iterations without improvement < N it and time < Tmax do
3 for ( i = 1...λ ) {
4 Create offsprings rc from parents (rp1 and rp2 ) (CROSSOVER)
5 With probability ped: EDUCATE rc
6 With probability pmip: apply the OD-MIP to rc
7 With probability ptrip: apply the TRIP-OPTIMIZER to rc
8 Add rc to population R
9 }

10 foreach r ∈ Rinfeasible do
11 With probability prep: REPAIR r
12 end
13 Select µ individuals to survive to the next generation
14 foreach r ∈ R do
15 Change order distribution for r based on VEHICLE FILLING LEVEL

FITNESS
16 end
17 if best solution is not improved for Ndiv iterations then
18 Diversify population
19 endif
20 end
21 RETURN the best feasible individual in R

5.2 Solution Representation

Solutions r ∈ R are characterized by how customer visits are allocated to periods and
trips, assignment of trips to vehicles, and the amount of each commodity that is delivered
on each trip. In the context of genetic algorithms, chromosomes are typically used to rep-
resent solutions. The analogy is inspired by the field of biology, where chromosomes are
unique organism identifiers. Solutions r are represented as a couplet of the following two
chromosomes: a giant tour chromosome GTC(r), and an order distribution chromosome
ODC(r). In subsequent parts of this chapter, individual and solution will be used inter-
changeably when referring to a (GTC(r), ODC(r))-couplet. The ODC(r) and GTC(r)

are further described in Section 5.2.1 and 5.2.2, respectively.

Note that a solutions is considered infeasible if either its GTC(r) or ODC(r) is in-
valid. A GTC(r) is considered infeasible if either customer time windows are neglected,
or the quantity delivered on any of the trips exceeds the vehicle capacity. An ODC(r)

is infeasible if commodity deliveries are scheduled to invalid delivery days, or delivery
frequency constraints are neglected.
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Let P be the set of periods andH be the set of vehicle types, where p ∈ P and h ∈ H.
A simple illustration of how individuals are represented for a problem with 2 periods, 5
customers, and 2 vehicle types is given in 5.1. Observe that individual r is represented by
a GTC(r) in the 4 uppermost squares, and an ODC(r) in the 2 rectangles below. Nodes
represent customers, where the blue color indicates that a customer has an order which
must be delivered in the particular period. In opposite, grey nodes represent customers
with no orders in the given period, and must therefore not be visited. As for the ODC(r),
green and red rectangles represent dividable and non-dividable commodities, respectively.
Note that multiple dividable commodities can be delivered in the same period, while each
period is restricted to deliver a maximum of one non-dividable commodity.
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Figure 5.1: Illustration of an individual, including a GTC at the top and an ODC at the bottom,
for two periods, five customers and two vehicle types. The green rectangles in the ODC represents
dividable orders, while the red rectangles represents non-dividable orders. Grey nodes are customer
which cannot be visited in the current period, while blue nodes are customers that must be visited in
the current period.

5.2.1 The Order Distribution Chromosome

The ODC(r) holds a particular allocation of commodity quantities to periods such that
all orders are delivered during the planning horizon. In contrast to the problems studied
in previous research which have adapted the HGSADC-structure (Vidal et al., 2012, Cat-
taruzza et al., 2014a, and Zhen et al., 2020), customer orders are not fixed to periods in the
problem studied in this thesis. Thus, in order to enable the desired flexibility in quantity
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assignment, individuals must have the possibility to change the ODCs they are mapped to
during the search. The mechanisms which ensure this flexibility, i.e. the OD-MIP and the
vehicle filling level fitness, are described in Section 5.7 and 5.10, respectively.

5.2.2 The Giant Tour Chromosome

The GTC(r) contains a sequence of customers without trip delimiters. The sequence
can be interpreted as the order of which customers are visited if they were to be served
by the same vehicle. The GTC(r) can be decomposed into an array-structure, where a
customer sequence without delimiters is defined for each (period, vehicle type)-couplet.
To ease the understanding of the reader, we define the following terminology in subsequent
parts of this chapter: GTC(r) refers to the concatenated sequence of customers for all
(period, vehicle type)-couplets for individual r, whereas Sp,h(r) refers to the sequence of
customers for one particular (period, vehicle type)-couplet in the GTC(r) for individual
r. Recall that P is the set of periods and H is the set of vehicle types, where p ∈ P and
h ∈ H. The structure of a GTC(r) is illustrated in the following:

GTC(r) =


Sp = 0, h = 0(r) . . . Sp = 0, h = |H|(r)

...
. . .

...
Sp = |P|, h = 0(r) . . . Sp = |P|, h = |H|(r)


Avoidance of delimiters in combination with the array-structure of the GTC(r) en-

ables improved efficiency during transmission of information between iterations (Prins,
2004). Recombination operators, i.e. crossover (Section 5.5), can operate on sequences
rather than explicitly accounting for individual trips (Vidal et al., 2013b). However, it
requires a separate procedure to divide customers in the GTC(r) into trips and allocate
those to vehicles. For this, we propose an adSplit-algorithm, which is explained in detail
in Section 5.3.

5.3 A Split-Algorithm for the Giant Tour

In order to turn a GTC(r) into a set of trips and assign those to vehicles, we propose a
procedure called adSplit. For an individual r, the algorithm takes both its GTC(r) and
ODC(r) as input. AdSplit is an adaption of the split-algorithm suggested by Prins (2004),
and later modified by Cattaruzza et al. (2014a) to include the multi-trip property, and
altered in Cattaruzza et al. (2014b) to solve for MTVRPs with time windows. However,
further modification is needed in order to incorporate a heterogeneous fleet of vehicles and
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include the objective of minimizing the number of vehicles used, i.e. incorporate the cost
of using a vehicle. The resulting adSplit-procedure is applied each time a new individual
is created, or when an existing individual is altered by changing its GTC(r) or ODC(r).
Recall that a GTC(r) is composed of |P|× |H| number of customer sequences, Sp,h. The
adSplit-procedure is applied to all Sp,h in theGTC(r) independently to obtain a complete
trip assignment for the individual r.

The AdSplit-procedure is composed of two phases: trip creation (5.3.1), where cus-
tomers are allocated to trips, and trip assignment (5.3.2), where trips are assigned to ve-
hicles. In the following, the two phases are described. A simple example is introduced in
Section 5.3.1, and used throughout the remaining parts of the section.

5.3.1 Trip Creation

The trip creation phase implicitly generates an auxiliary graph, where nodes represent
customers with indices based on their order in sequence Sp,h(r). The arc between node
i and j represents a trip serving all customers with index from i + 1 to j in Sp,h(r). Arc
costs, i.e. trip costs, are calculated by Equation (5.1), where the following three costs are
included: (1) driving cost, CTh ti,j , where ti,j denotes the driving time and CTh the driving
cost per time unit, (2) capacity overload, ωQqi,j , where qi,j = (qi,j −Qh)+ is the actual
overload,Qh is the capacity for vehicles of type h and qi,j is the quantity on the trip from i

to j, and (3) time warp cost ωT tWi,j , where tWi,j is the incurred time warp. Capacity overload
and time warp are adjusted with penalty parameter ωQ and ωT , respectively. Time warp
is defined as the amount of time exceeding the end of the time window of a customer in
the trip, and is adopted from Vidal et al. (2013b). One pays for time warp upon a late
arrival to a customer. Whenever time warp is incurred at a customer in a trip, the current
time is reduced to the end of the time window before time warp at subsequent customers
is evaluated. Note that the unloading time at the previous customer in a trip will also affect
the time warp incurred at the subsequent customer, as it delays the time of departure.

ci,j = CTh ti,j + ωQqi,j + ωT tWi,j (5.1)

The trip creation phase targets the least costly set of trips that visits all nodes in the
auxiliary graph, which is equivalent to the task of finding a shortest path solution. Thus,
all possible trips are iteratively considered to search for an improved way of splitting the
customer sequence into trips. As the auxiliary graph is acyclic, Bellman’s algorithm can
be applied to find the shortest path in O(n2).

A simple example with 4 customers for Sp,h(r) = [1, 2, 3, 4] and depot d is given in
Figure 5.2 and Figure 5.3. Time windows are shown in square brackets, demands are given
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in round brackets, and edge labels represent driving cost between customers in Figure 5.2.
Note that values are selected in order to provide understanding of the procedure, and do
not represent realistic instances.

1[2, 4], (10)

d

[0, 10], (0)

2

[4, 6], (20)

4 [6, 8], (5)

3

[6, 8], (15)

2

3 3

2

3

2

2

Figure 5.2: A simple example with 4 customers. Time windows are given in square brackets, and
demand is given in round brackets. Edge labels represent driving times between customers.

Figure 5.3 shows the auxiliary graph, where each arc represents a possible trip. Arc
costs are calculated according to Equation 5.1, where Qh = 30, ωQ = 2, and ωT = 5.
Unloading time at customers and depot are set to 1 and 0, respectively. For instance, the
arc between depot and node 2 represents the trip which starts in the depot, visits customer 1
and 2, and returns back to the depot. Arc cost cd,2 = (2+2+3)+2×(30−(10+20))++5×
0 = 7, where time warp is calculated as follows: Wd,2 = (2−4)++((2+2+1)−6)+ = 0.
The resulting shortest path is illustrated in Figure 5.4.

d 1 2 3 4
4

7
70

101

6

39 70

6

17

4

Figure 5.3: Illustration of the auxiliary graph based on the example in 5.2. Arc costs ci,j are
calculated according to Equation 5.1.

d 1 2 3 4

7

6 4

Figure 5.4: Illustration of the shortest path solution based on the example in Figure 5.2.
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5.3.2 Trip Assignment

When trips are generated as described in Section 5.3.1, a subsequent phase where they
are combined to journeys and allocated to vehicles must be applied in order to create a
complete problem solution. A journey is a set of consecutive trips that can be assigned to
vehicles of a given vehicle type in a given period. For this assignment task, we propose
the labeling procedure displayed in Algorithm 2. The algorithm is inspired by the work of
Cattaruzza et al. (2016a), where a single-period, multi-trip VRP with time windows and
release dates is studied. We propose a modified version of the algorithm, which includes
the objective of minimizing the number of vehicles used. In concrete, the label structure
is altered, where additional cost terms are incorporated.

The Label Structure

The procedure constructs labels to represent assignment solutions. Each label ι has |Vh|+1

entries, where Vh is the set of vehicles of type h. Figure 5.5 gives an illustration of the
label structure.

ι = [ v1 : [ t1, tW1 , tA1 , q1, T1 ]

v2 : [ t2, tW2 , tA2 , q2, T2 ]

...

v|Vh| : [ t|Vh|, t
W
|Vh|, t

A
|Vh|, q|Vh|, T|Vh| ] ]

Figure 5.5: Illustration of the label structure. All entries are values except Tv , which is a set of
trip-references.

The first |Vh| entries hold values for each vehicle v ∈ Vh, i.e. the total driving time
tv , time warp tWv , overload qτ = (qτ − Qh)+, and the earliest possible time of return
to depot tAv . Each vehicle entry also includes Tv , which is a set of trips containing the
trips allocated to the vehicle. Each time vehicle v is assigned a new trip τ , the values in
the associated entry are updated. Values are updated according to Equation (5.2) - (5.7),
where t(τ), tW (τ), tLv , tU (τ), and tS(τ) represent driving time, time warp, unloading
time, loading time, and latest possible start time respectively for vehicle v and trip τ . Note
that tUv (τ) includes waiting time at a customer if time of arrival is before the start of the
time window. Thus, value updates for vehicle entries depend on whether or not the vehicle
is already assigned other trips, i.e. if Tv 6= ∅ or Tv = ∅. All vehicles are initialized with
Tv = ∅ and TH represents the latest arrival time at the depot. The assignment of values
are in the order of the equations given below.
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tv ←

{
tv(τ), Tv = ∅
tv(τ) + tv, Tv 6= ∅

(5.2)

tWv ←

{
tW (τ), Tv = ∅
tW (τ) + (tAv − tS(τ))+ + tWv , Tv 6= ∅

(5.3)

tAv ←

{
tAv + tv(τ) + tU (τ), Tv = ∅
tAv + tv(τ) + tU (τ) + tLv , Tv 6= ∅

(5.4)

tAv > TH ⇒ tWv ← tAv − TH + tWv & tAv ← TH (5.5)

qv ←

{
(qτ −Qh)+, Tv = ∅
(qτ −Qh)+ + qv, Tv 6= ∅

(5.6)

Tv ← Tv ∪ τ (5.7)

The cost of a label, c(ι), is derived from the values stored in the vehicle entries of ι
by applying Equation (5.8), where CTv is the cost of one time unit, CFh is the fixed cost of
using a vehicle of type h in one period, and ωQ and ωT are the same penalty parameters as
used in Equation (5.1). Note that as the labeling algorithm operates separately on (period,
vehicle type)-couplets, CFh is similar for all vehicles v ∈ Vh. If a vehicle v has no trips
assigned in label ι, i.e. Tv = ∅, the usage cost CFh is not included in c(ι).

c(ι) =
∑
v∈Vh

CTv tv + ωQ
∑
v∈Vh

qv + ωT
∑
v∈Vh

tWv +
∑

v∈Vh|Tv 6=∅

CFh (5.8)

The Labeling Algorithm

Algorithm 2 displays the labeling procedure. The algorithm takes in a list Tph of generated
trips τ for a specific p and h, and returns a solution where each trip is assigned to a vehicle
v ∈ Vh.

The labeling-algorithm proceeds as follows. Sequentially, each trip τ ∈ Tph is allo-
cated to a vehicle v. Labels are constructed to represent partial assignment solutions. Two
sets are maintained to temporarily store labels which are not dominated during the search:
LtoExtend and Lextended. The former holds all labels that will be extended when a new
trip τ is allocated, while the latter is filled during the assignment of trip τ with all labels
that are not dominated. Thus, Lextended stores the labels that will be extended when the
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successor of τ is to be allocated to a vehicle.

Initially, label ι0 is created by assigning the first trip τ in Tph to the first vehicle in
ι (line 2). Then, ι0 is added to LtoExtend, whereas Lextended remains empty (line 3).
Then, labels are progressively extended from ι0 by assigning the remaining trips τ ∈ T to
vehicles in ι0 (line 5). Note that as a trip can be assigned to either used or unused vehicles,
a label can be extended in at most min{#vehiclesInUse + 1, |Vh|} ways. Note that the
number of trips assigned to a vehicle v can not exceed |R|, defined in Section 4.1.1, which
represents the maximum number of trips a vehicle can take in one period.

An extension of a label ι produces a new label ιnew. The vehicle entries in ιnew

inherit those in ι, updating only the entry for the vehicle which is assigned the new trip.
In addition, the value of c(ιnew) is updated. When the values in ιnew are updated, the
vehicles v in ιnew are sorted in decreasing order based on their earliest possible arrival
time at the depot. Next, ιnew is added to Lextended if it is not dominated by any other
label in the set. Dominance criteria are described later in this section. Similarly, labels in
Lextended which are dominated by ιnew are removed.

Before a new trip is extracted from Tph in order to be allocated to a vehicle, the content
of Lextended is copied into LtoExtend, and Lextended is cleared (line 6). Then, labels
in LtoExtend are successively extended, and each resulting label that is not dominated is
stored in Lextended (line 13). Finally, when every trip in Tph have been assigned to a
vehicle, the algorithm returns the label ιbest ∈ Lextended with the lowest label cost c(ι)
(line 18). The final assignment of trips is extracted from Tv in label ιbest.

Label Dominance

In order to speed up the labeling procedure in Algorithm 2, a dominance evaluation step
(line 11) is applied to reduce the total number of labels extended. Label dominance is
evaluated according to a dominance criteria, which is adopted from the work by Cattaruzza
et al. (2016a). Overall, a label ιi dominates ιj if and only if Inequality (5.9) holds. c(ιi)
is the label cost calculated by Equation (5.8). The δ-function calculates the difference
between earliest possible arrival time for vehicle v in label ιi and ιj , where ωT is the time
warp penalty parameter introduced in Equation 5.1. Note that the δ-function only accounts
for time differences for vehicle v if it has a later arrival time in ιi than in ιj .

c(ιi) + ωT
∑
v∈Vh

δv(ιi, ιj) 6 c(ιj) (5.9)

δv(ιi, ιj) = (tAv (ιi)− tAv (ιj))
+ (5.10)
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Algorithm 2: labelingAlgorithm
Input: List of trips from (p, h)-couplet, Tph
Result: Assignment of every trip to a vehicle, (Tv, v ∈ Vh)

1 Lextended ← ∅, LtoExtend ← ∅
2 Generate first label ι0 by assigning the first trip τ0 in Tph to the first vehicle v in ι0
3 Add ι0 to LtoExtend
4 Remove τ0 from Tph
5 foreach τ ∈ Tph do
6 Make LtoExtend ← Lextended and clear Lextended
7 foreach ι ∈ LtoExtend do
8 foreach v ∈ Vh do
9 Generate new label ιnew by extending ι and assigning τ to v in ιnew,

and updating entries for v
10 Sort the vehicles in ιnew in decreasing order based on earliest possible

arrival time, tAv
11 if ιnew is not dominated by any ι ∈ Lextended then
12 Eliminate any ι ∈ Lextended dominated by ιnew

13 Add ιnew to Lextended
14 endif
15 end
16 end
17 end
18 RETURN the assignment scheme (Tv, v ∈ Vh) for ι with lowest c(ι) in Lextended

The dominance criteria can be interpreted as follows. For the vehicles in ιi that arrives
later than the corresponding vehicles in ιj , a time warp cost is incurred. If c(ιi) with
the additional time warp, calculated by the δ-function (Equation 5.10) is less than c(ιj),
any extension of ιi will dominate ιj , and ιj is considered dominated. Sorting the vehicles
based on earliest possible arrival time at the depot will reduce the total difference in earliest
possible arrival time when comparing the vehicles of two labels, and hence reduce the
contribution of additional costs from the δ-function in Equation (5.9). This will improve
the efficiency of the dominance criteria, as emphasized by Cattaruzza et al. (2014a).

In order to illustrate the labeling procedure, we continue with the example presented
in Section 5.3.1 and illustrated in Figure 5.2. We assume that at least three vehicles are
available, and that remaining parameter values are unchanged. The labeling algorithm
is displayed in Table 5.1, where one label extension is incurred each time a new trip is
assigned to a new vehicle. When all trips are assigned, label 6, which uses all three vehicles
available, is found to be the best allocation of trips. The complete solution obtained by the
adSplit-procedure, i.e. from both trip creation and the labeling algorithm, is illustrated in
Figure 5.6.
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Table 5.1: Simulation of the labeling algorithm. In total, three trips are assigned, where only label 8
is dominated by label 5 and removed by domination. The best label with the lowest c(ι) is shown at
the bottom of the table. Note that the cost of using a vehicle of type h, CF

h , is included in c(ι). No
overload is incurred in any label, and max journey duration TH = 10, making the earliest arrival
time tAv no later than 10. In the dominated column, the number in parenthesis represents which label
it is dominated by.

Label Vehicle 1 Vehicle 2 Vehicle 3 Extended Cost Dominated
Number [t1, t

W
1 , tA1 , q1] [t2, t

W
2 , tA2 , q2] [t3, t

W
3 , tA3 , q3] Label c(ι)

1 [7, 0, 9, 0] [0, 0, 0, 0] [0, 0, 0, 0] - 27 NO

2 [6, 0, 10, 0] [7, 0, 9, 0] [0, 0, 0, 0] 1 53 NO
3 [13, 7, 10, 0] [0, 0, 0, 0] [0, 0, 0, 0] 1 103 NO

4 [10, 6, 10, 0] [7, 0, 9, 0] [0, 0, 0, 0] 2 117 NO
5 [13, 5, 10, 0] [6, 0, 10, 0] [0, 0, 0, 0] 2 109 NO
6 [6, 0, 10, 0] [7, 0, 9, 0] [4, 0, 9, 0] 2 77 NO
7 [17, 13, 10, 0] [0, 0, 0, 0] [0, 0, 0, 0] 3 167 NO
8 [13, 7, 10, 0] [4, 0, 9, 0] [0, 0, 0, 0] 3 127 Y ES(5)

6 [6, 0, 10, 0] [7, 0, 9, 0] [4, 0, 9, 0] 2 77 NO

1

d

2

4

3

v2v1

v3

Figure 5.6: Illustration of the trips from the shortest path solution in Figure 5.4 and the assignment
to vehicles by the labeling-procedure.

A Heuristic Dominance Criteria

The example in Table 5.1 shows that the number of labels may grow rapidly with each
additional trip assigned. In practice, several labels will be a lot worse than the current best
label, but not dominated according to the exact dominance criteria (Inequality 5.9). Label
7 in Table 5.1 serves as an example, where all of the three trips are assigned to the same
vehicle, which incurs a large time warp cost. The total cost of label 7 is more than twice
as large as label 6, and will most likely not be the optimal trip assignment.

Cattaruzza et al. (2016a) suggest a heuristic dominance criteria in order to improve
computational efficiency of the labeling algorithm. By introducing an indifference factor
γ > 1, the number of dominated labels will increase. Label ιi is said to weakly dominate
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label ιj if and only if Inequality (5.11) and Inequality (5.12) hold.

c(ιi) + ωT
∑
v∈Vh

δv(ιi, ιj) 6 γc(ιj) (5.11)

c(ιi) 6 c(ιj) (5.12)

Inequality (5.12) ensures that no label ιj is dominated by another label ιi with an ini-
tially larger label cost. If γ = 1, the heuristic dominance rule is equivalent to the exact
dominance rule in Inequality (5.9). A larger value of γ will result in a higher frequency of
dominance and hence improve computational efficiency. However, the risk of removing
potentially good solutions is increased, as labels with initially high cost can be removed,
even though they might be better than the dominant label when more trips have been as-
signed. Table 5.2 displays the steps in the labeling algorithm when the heuristic dominance
rule with γ = 3 is applied to the simple example in Figure 5.2. Observe that the number of
labels generated is reduced from 8 to 6, while the best label identified in Table 5.1 persists.

Table 5.2: Simulation of the labeling algorithm with heuristic dominance. The number of labels
dominated are increased, and the number of generated labels are reduced by 2 without removing
the best solution. In the dominated column, the number in parenthesis represents which label it is
dominated by.

Label Vehicle 1 Vehicle 2 Vehicle 3 Extended Cost H.Cost Dominated
Number [t1, t

W
1 , tA1 , q1] [t2, t

W
2 , tA2 , q2] [t3, t

W
3 , tA3 , q3] Label c(ι) γc(ι)

1 [7, 0, 9, 0] [0, 0, 0, 0] [0, 0, 0, 0] − 27 81 NO

2 [6, 0, 10, 0] [7, 0, 9, 0] [0, 0, 0, 0] 1 53 159 NO
3 [13, 7, 10, 0] [0, 0, 0, 0] [0, 0, 0, 0] 1 103 309 Y ES(2)

4 [10, 6, 10, 0] [7, 0, 9, 0] [0, 0, 0, 0] 2 117 342 Y ES(6)
5 [13, 5, 10, 0] [6, 0, 10, 0] [0, 0, 0, 0] 2 109 327 Y ES(6)
6 [6, 0, 10, 0] [7, 0, 9, 0] [4, 0, 9, 0] 2 77 231 NO

6 [6, 0, 10, 0] [7, 0, 9, 0] [4, 0, 9, 0] 2 77 231 NO

5.3.3 Computational Complexity of the AdSplit-Algorithm

The adSplit algorithm is a prominent component of the HGA (Algorithm 1), as it is applied
each time an individual is created or altered. As run time analysis have affected design
choices in the HGA, a brief comment on the computational complexity of the adSplit-
procedure is given in the following. In the first phase of adSplit, the trip creation procedure
(Section 5.3.1) is implemented in polynomial time o(n2) (Vidal et al., 2012), where n is the
number of customers in the GTC(r) sequence. The computational time of the subsequent
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labeling-procedure in Algorithm 2 can in theory grow exponentially, whereas the number
of generated labels can more than double in each iteration. However, dominance criteria
will in practice reduce the number of label extensions performed. In any case, there are
incentives to limit the use of the adSplit procedure to a minimum, as it is computationally
expensive.

5.4 Solution Evaluation

In order to compare individuals when performing various selections, e.g. select parents
used to generate offsprings during crossover (Section 5.5) or select individuals to advance
to the next generation (Section 5.11), a method to evaluate individuals is needed. Such a
fitness score is often based upon the objective of the problem at hand (Vidal et al., 2012).

Thus, let fit(r) denote the fitness score of solution r, calculated by Equation 5.13 as
the sum of the costs associated with each journey in all (period, vehicle type)-couplets in
the solution. Recall that a journey j is a set of consecutive trips in the same period p for
a given vehicle type h, and that each solution is composed of a set of journeys, Jph, for
each (p, h)-couplet. As shown in Equation 5.13, each journey is associated with both its
objective cost, and its infeasibility costs. The objective cost is composed of the following
three terms: (1) the total driving time in the journey tj multiplied with the hourly driving
cost CTh , (2) the cost of using the assigned vehicle CFh , and (3) overtime cost at the depot
in each period p ∈ P , which sums the quantity delivered to all customers i ∈ N in period
p,

∑
i∈N qpi, and subtracts the the overtime limit Q

O

p . Note that qpi = 0 for customers
which are not visited in the period. The second part of fit(r) are the infeasibility costs,
which are composed of the following two terms: (1) the total vehicle overload qj , and
(2) the time warp incurred on the journey, twj . Overload and time warp are adjusted with
penalty parameters ωQ and ωT , respectively.

fit(r) =
∑
p∈P

∑
h∈H

∑
j∈Jph

[CTh tj + CFh + ωT tWj + ωQqj ] +
∑
p∈P

COp (
∑
i∈N

qpi −Q
O

p )+

(5.13)

As discussed in Section 2.2.3, a sufficient diversity-management in order to avoid pre-
mature convergence has proven to be a common denominator in successful heuristic solu-
tion methods for various VRP classes. Thus, inspired by Vidal et al. (2012), we propose
a second way of evaluating individuals, a biased fitness score, which is based upon (1)
the fitness score of r, fit(r), and (2) the contribution of r to the population diversity.
The biased fitness score is used as basis for selection of individuals to survive from one
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generation to the next, which is described in Section 5.11.

The biased fitness for individual r is calculated by Equation 5.14, where rankfit(r)
is the rank, i.e. the value relative to other individuals in R, of individual r with respect
to fit(r). The number of individuals in R that are guaranteed to advance to the next
generation is denoted by nelite, where nelite = el × µ. Let el be the proportion of the
total population that are considered as elite individuals, and µ be the number of offspring
generated each generation.

bfit(r) = rankfit(r) + (1− nelite

|R|
)× rankdiv(r) (5.14)

div(r) =
1

nclose

∑
ri∈N close

D(r, ri) (5.15)

The diversity contribution of an individual r to the population R is denoted as div(r),
and rankdiv(r) is the rank of div(r) among the remaining individuals inR. Equation 5.15
shows how div(r) is calculated, where nclose = nc × µ, where nc is a parameter which
represents the neighbourhood size as a proportion of the total population size, N close is the
set of the closest neighbours of r, and D(r, ri) is the distance between r and a neighbour
solution, ri. As suggested by Cattaruzza et al. (2014a), the measure of distance is the
broken pair distance, D(·, ·), which sums the number of pairs of adjacent customers in the
GTC(r) of r which are different in the neighbour solution ri. Thus, D(·, ·) provides a
quantification on the number of possible common arcs used for two solutions.

In subsequent parts of this thesis, solution fitness refers to Equation (5.13), while the
biased fitness of a solution refers to Equation (5.14).

5.5 Crossover

In order to generate offsprings from the population, a crossover procedure is applied.
Crossover is composed of two sequential phases: an order distribution crossover (5.5.1),
and a giant tour crossover (5.5.2). Both phases are based upon inheritance from the same
parent individuals, rp1 and rp2 , which are selected through a tournament procedure (Sec-
tion 5.11). In the following, the two crossover phases are described.
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5.5.1 Order Distribution Crossover

No offspring rc can be generated without having selected an ODC(rc) that is used when-
ever the journeys are created and assigned determined by the adSplit-procedure. We there-
fore propose a separate order distribution crossover in order to determine the ODC(rc) in
advance of the giant tour crossover.

The order distribution crossover takes the parent individuals rp1 and rp2, extracts
their order distributions ODC(rp1) and ODC(rp2), and creates a child order distribu-
tion ODC(rc) which inherits from its parent. Iteratively, the child distribution is con-
structed by inheritance of so-called order deliveries, each representing a commodity and
one particular realization of periods it is delivered in. If the commodity is dividable, the
order delivery includes multiple periods, each with a specified quantity of the particular
commodity. If the commodity is non-dividable, only one period is included in the order
delivery. A complete order distribution consists of order deliveries for all existing com-
modities.

The order distribution crossover initially divides all order deliveries into two equally
sized sets, O1 and O2. First, the child inherits all order deliveries in O1 from the first
parent. Second, it attempts to inherit all order deliveries in O2 from the second parent.
As a customer can only receive one non-dividable commodity in each period, some order
deliveries in O2 might result in an infeasible child distribution, i.e. ODC(rc), if they are
inherited. This situation occurs if parent one delivers a non-dividable commodity m1 to
customer i in period p, and parent two delivers another non-dividable commoditym2 to the
same customer i in the same period p. The order delivery from parent two thus makes the
resulting ODC(rc) infeasible, as customer i already receives a non-dividable commodity
in period p. In order to prevent creation of an infeasible ODC(rc), all order deliveries
which generate infeasibility are stored in a separate memory structure while the remaining
order deliveries are inherited. When all order deliveries are evaluated, commodities which
are not inherited from any parents are sequentially added to the available and valid period
with the least total delivery volume.

5.5.2 Giant Tour Crossover

The giant tour crossover takes parent individuals rp1 and rp2 , and the order distribution
for the offspring ODC(rc) generated according to Section 5.5.1, and completes the child
individual rc by generating GTC(rc).

The proposed algorithm is a periodic crossover with insertions (PIX), which is inspired
by Vidal et al. (2013b). PIX operates on (period, vehicle type)-couplets, where Ψ is the
set of all customer sequences, Sp,h(r). Algorithm 3 displays a pseudocode for the PIX
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procedure, which is composed of the following 4 steps: initialization is conducted in Step
0, Step 1 and 2 apply inheritance from parents, and Step 3 ensures that all customers are
visited in the child individual.

In Step 0 (line 1-6), all couplets in Ψ are randomly divided into three disjoint subsets,
Ψ1, Ψ2, and Ψmix, which correspond to the sets that will inherit from rp1 , rp2 , or a mix
of both, respectively. Generating random numbers n1 and n2 ensures that the crossover is
diversified, as the sizes of the sets will vary, and couplets are randomly selected.

In Step 1, (line 7-14), the new child fully inherits the customer sequences of the (period,
vehicle type)-couplets belonging to Ψ1 from parent 1. In addition, a random subsequence
is extracted from each (period, vehicle type)-couplet belonging to the set Ψmix from parent
1. This sequence is determined by the random numbers α and β, representing two indices
in the customer sequence. The offspring inherits all customers from α to β. Note that
if α > β, it will inherit from two intervals, [α, |Sp,h(P1)|] and [0, β]. If α = β, no
customers are inherited. Alternatively, whenever α = β, the offspring could have inherited
all customers from parent 1. However, in order to reduce the probability of the crossover
being biased by the order of inheritance where parent 1 always comes first, no customers
are inherited whenever α = β.

4 3 1 2 6 5

α β

4 3 1 2 6 5

αβ

Figure 5.7: Two different examples on how the α and β will determine which customers that will
be inherited from parent 1.

In Step 2 (line 15-22), inheritance from parent 2 is proceeded by inheriting from the
combined set (Ψ2 ∪ Ψmix). Each couplet is considered in a random order. When con-
sidering a customer sequence Sp,h(P2), it is important to check whether the customer has
already been inherited from parent 1, meaning that the customer is already visited in that
period. Figure 5.7 illustrates how different values for α and β affect which customers that
are inherited from the different parents.

When Step 1 and Step 2 are completed, some customers might not have been inherited
from any of the parents. Step 3 (line 23-29) takes these customers and inserts them at the
current optimal position, i.e. where the cost of insertion is minimized. For each missing
customer, the optimal insertion is identified during the following three steps: (1) apply
the adSplit-procedure (Section 5.3) to update the way rc is divided into trips, (2) insert
the current missing customer in every position in every trip and calculate the associated
altered solution cost, and (3) select the position with the least cost deterioration from the
original solution.

In order to evaluate insertions whenever a missing customer is re-positioned and a trip
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Algorithm 3: PIX
Input: Individual rp1 , Individual rp2 , Order Distribution o
Output: Individual rc

1 STEP 0: INITIALIZE SETS:
2 Initialize empty individual rc
3 Select two random numbers, n1 and n2, in interval [0, td], where td = |p| × |vt|.

Let n1 be the smallest of these two numbers.
4 Randomly select n1 (period, vehicle type)-couplets to form set Ψ1

5 Randomly select n2 − n1 (period, vehicle type)-couplets among the remaining
couplets to form set Ψ2

6 The td− n2 Remaining (period, vehicle type) couplets form set Ψmix

7 STEP 1: INHERIT FROM P1:
8 foreach (period, vehicle type) (p, h) ∈ Ψ1 do
9 Copy all customer visits from Sp,h(rp1) to Sp,h(rc)

10 end
11 foreach (period, vehicle type) (p, h) ∈ Ψmix do
12 Select two random numbers, α and β, in interval [0, |Sp,h(rp1)|]
13 Copy all customer visits from α to β from Sp,h(rp1) to Sp,h(rc)

14 end
15 STEP 2: INHERIT FROM P2:
16 foreach (period, vehicle type) ((p, h)) ∈ Ψ2 ∪Ψmix do
17 for customer c ∈Sp,h(rp2) do
18 if c /∈Sp,h′(rc) for all vehicle types then
19 Add c to the end of Sp,h′(rc)
20 endif
21 end
22 end
23 STEP 3: FILL REMAINING CUSTOMERS
24 foreach period p do
25 foreach missing customer c in p for Offspring rc do
26 adSplit(rc, o) for period p
27 Insert c at the position in Sp,h′(rc) which has lowest cost increase at

insertion for any vehicle type h′

28 end
29 end
30 RETURN: rc
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is altered, the deterioration of the fitness for the whole journey, rather than the altered trip
only, is evaluated. Thus, if a missing customer is inserted into a trip which, if isolated
from its associated journey, is improved with respect to its fitness score (Section 5.4),
the insertion can be rejected if it deteriorates the overall solution fitness of the affected
journey. Insertions based on single trip fitness, i.e. by first selecting optimal trips and then
concatenate them into journeys, journeys with much idle time, i.e. waiting time between
customers due to large gaps between time windows, can be generated. This is caused by
the time warp between trips, which is not incorporated when trips are evaluated isolated
from their associated journeys. Therefore, the adSplit procedure might split the GTC
into suboptimal trips, as it does take time warp between trips into consideration. For
this reason, the fitness of an insertion is evaluated based on the resulting journey that the
modified trip is included in, rather than the single trip which is altered.

Note that Step 3 operates separately for each period, but allows the insertion phase to
change the vehicle type that serves each customer. Periods cannot be swapped due to the
customer time windows, which are given for a specific period. Thus, if a customer has a
time window in a period, it must be served in this particular period for the individual to
remain feasible.

Figure 5.8 shows an example of a giant tour crossover for a single period with three ve-
hicle types. Note that as the figure illustrates the crossover for a single period, a complete
crossover would additionally include a similar procedure for all remaining periods. In the
example, Ψ1,Ψ2 and, Ψmix are of the same size. The (period, vehicle type)-couplets have
been distributed in Step 0 as follows: (p, h1) ∈ ψ1, (p, h2) ∈ ψmix, and (p, h3) ∈ ψ2.
The indices of α and β for the mix set couplet is α = 1 and β = 3. In Step 1, all customer
from Ψ1 and customers between α and β in Ψmix are inherited from parent 1. In Step 2,
customers from Ψ1 ∪ Ψmix are inherited from parent 2. Note that customer 6, 7, and 3
cannot be inherited as they already exist in the offspring chromosome. Finally, in Step 3,
the missing customers 9 and 10 are inserted at the position with the least cost deterioration.
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Figure 5.8: All Steps of the PIX crossover on giant tours for a single period with 3 different vehicle
types. The colors indicate the different vehicle types. The offspring first inherits from parent 1
before inheriting from parent 2. Afterwards, the customers that has not been inherited are inserted
at optimal positions.

5.6 Education

Subsequent to crossover, education is applied for each offspring with probability ped. The
education procedure is composed of a local neighbourhood search with different operators
that intend to enhance the fitness score of an individual. The neighbourhood is composed
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of the h nearest neighbours, where h = hn × |N |, and hn is in range hn ∈ [0, 1]. All
enhancements are performed on a periodic level, meaning that each customer cannot be
interchanged between periods, and journeys are only compared within the same period
during the search. Note that the same reasoning does not apply to vehicle types, as two
journeys allocated to different vehicle types within the same period can be compared.

For all customers in the giant tour sequence of an offspring, the proposed education
procedure is applied for (customer, neighbour)-pairs. Neighbourhoods are determined
based on the driving times between each customer and its neighbours. Thus, a (customer,
neighbour)-pair will be subject to education within a period p if they are both served
in p, and they are close with respect to driving distance. In order to avoid premature
convergence, neighbours of the current customer are evaluated in an arbitrary order.

Let t(u) denote the trip which contains customer u in individual r, and let v be a
neighbour of u. Note that v does not have to be served in t(u). Let x be the successor of u
in t(u), and y be the successor of v in t(v). Based on the suggested education procedure
in Vidal et al. (2012), nine different improvement operators are implemented:

• (M1): if u is a customer visit, remove u from r(u) and insert it after v in r(v)

• (M2): If u and x are customer visits, remove u and x from t(u), and insert u and x
after v in t(v)

• (M3):) If u and x are customer visits, remove u and x from t(u), then place x and
u after v in t(v)

• (M4): If u and v are customer visits, swap u and v

• (M5): If u, x, and v are customer visits, swap u and x with v

• (M6): If u, x, v, and y are customer visits, swap u and x with v and y

• (M7): If t(u) = t(v), replace (u, x) and (v, y) by (u, v) and (x, y)

• (M8): If t(u) 6= t(v), replace (u, x) and (v, y) by (u, v) and (x, y)

• (M9):If t(u) 6= t(v), replace (u, x) and (v, y) by (u, y) and (x, v)

M1-M3 correspond to insertions, and M4-M6 correspond to swap operations. These
moves can be applied to (customer, neighbour)-pairs where customer u and its neighbour
v are either within the same trip, or on different trips. Move M7-M9 are 2-opt swaps,
where M7 is intra-route, while M8 and M9 are inter-route. Note that any move is accepted
only if the fitness of the solution is improved.
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When the education procedure is applied, operators M1-M9 are evaluated in an arbi-
trary order, as proposed in Vidal et al. (2012). Each operator searches for improvements
among trips, but the evaluation of an improvement is in performed on the journey that the
trip is part of, as described Section 5.4. The rationale behind evaluating journeys rather
than single trips subsequent to trip modifications is to avoid a deterioration of journey fit-
ness when single trips are improved locally. In example, such a case might occur whenever
two short trips are assigned to the same vehicle, and an insertion of a new customer to one
of the trips results in an infeasible journey length such that an extra vehicle is needed.
The fitness of each trip is improved, but the need for an extra vehicle results in an overall
worsening of the solution fitness.

Note that as the adSplit-algorithm (Section 5.3) is never applied during education, the
search for enhancements is done locally among improvement of journeys. Avoidance of
adSplit is motivated by its computational complexity.

5.7 An Order Distribution Mixed Integer Program

The ODC-crossover in Section 5.5.1 is applied a priori to both the GTC-crossover (Sec-
tion 5.5.2) and the education-procedure (Section 5.6). Therefore, subsequent to these
mechanisms in the HGA (line 7 in Algorithm 1), the GTC of the offspring has been
subject to many changes, whereas its ODC has remained unchanged. In practice, this
means that way trips are created and assigned has been altered, but changes have been
restricted to deliver the same quantities in each period. In order to find an ODC which
fits better to the altered GTC, i.e. the fitness of the individual is improved, we propose an
exact mixed integer program (MIP), referred to as the Order Distribution Mixed Integer
Program (OD-MIP). The OD-MIP is applied with probability pmip, and is guaranteed to
find the optimal ODC with respect to both vehicle capacities, and overtime incurred at
the depot. The OD-MIP takes in the GTC and the associated trip split and journey as-
signment for the offspring found by adSplit, and identifies the optimal way of allocating
customer orders to each period in the planning horizon, accounting for all restrictions on
each of the commodity types. The resulting ODC will replace the one generated during
ODC-crossover. A formulation of the OD-MIP is provided in the following:
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5.7.1 Definition of new Sets, Indices, Variables, and Parameters

The following new sets, indices, variables, and parameters are defined to extend the nota-
tion from AFM, provided in Chapter 4.

Definition of Sets

Tph Set of trips τ ∈ Tph used in period p ∈ P with a vehicle of type h ∈ H
Nphτ Set of customers visited in period p ∈ P with vehicle type h ∈ H

in the same trip τ ∈ Tph

Np Set of customers not visited in period p ∈ P , equal to N \
⋃
h∈H

⋃
τ∈Tph

Nphτ

Definition of Indices

τ Trip, where τ ∈ Tph

Definition of Variables

upim =

{
1 if commodity m ∈Mi is delivered to customer i ∈ N in period p ∈ P
0 otherwise

qpim Quantity of commodity m ∈Mi delivered to customer i ∈ N , in period p ∈ P
qOp Quantity of commodity distributed using overtime in period p ∈ P

5.7.2 Mathematical Formulation

Objective Function:

Minimize
∑
p∈P

COp q
O
p (5.16)
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Constraints: ∑
i∈Nphτ

∑
m∈Mi

qpim 6 Qh, p ∈ P, h ∈ H, τ ∈ Thp (5.17)

∑
i∈N

∑
m∈Mi

qpim 6 QOp + qOp , p ∈ P (5.18)

qpim = QNDim upim, p ∈ P, i ∈ N ,m ∈MND
i (5.19)

QD
im
upim 6 qpim 6 Q

D

imupim, p ∈ P, i ∈ N ,m ∈MD
i (5.20)

∑
p∈P

qpim = QDim, i ∈ N ,m ∈Mi (5.21)

∑
m∈MND

i

upim 6 Ipi, p ∈ P, i ∈ N (5.22)

∑
p∈P

upim = 1, i ∈ N ,m ∈MND
i (5.23)

∑
p∈P

upim > F im, i ∈ N ,m ∈MD
i (5.24)

∑
p∈P

upim 6 F im, i ∈ N ,m ∈MD
i (5.25)

upim = 0, p ∈ P, i ∈ N p,m ∈MD
i (5.26)

Constraints on Variables:

upim ∈ {0, 1}, p ∈ P, i ∈ N ,m ∈Mi (5.27)

qpim > 0, p ∈ P, i ∈ N ,m ∈Mi (5.28)

qOp > 0, p ∈ P (5.29)

Objective (5.16) aims at minimizing overtime at the depot for all periods, where the
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cost per overtime unit is specific for each period. Constraints (5.17) prohibit vehicles
from delivering a quantity on a trip that exceeds its capacity. Constraints (5.18) ensure
that overtime at the depot is incurred when the total amount of quantity delivered ex-
ceeds the overtime limit for the period. Constraints (5.19) force the entire quantity of a
non-dividable commodity to be delivered, while Constraints (5.20) force the delivery of
a dividable commodity to be within the lower and upper bound. Constraints (5.22) en-
sure at each customer receives a maximum of one non-dividable commodity each period,
whereas Constrains (5.25) ensure that all non-dividable commodities are delivered within
the planning horizon. Constraints (5.24) and Constraints (5.25) enforce frequency require-
ments on dividable commodities. Finally, Constraints (5.26) prohibit delivery of dividable
commodities in periods where the customer is not visited.

5.8 Trip Optimization

In order to further improve offsprings generated, we propose a trip optimization phase,
subsequent to the OD-MIP, which aims at optimizing single trips by changing the order
customers are visited in. The work by Zhen et al. (2020) serve as inspiration, where a dif-
ferent variant of the reorder routine is suggested as an attempt to accelerate their proposed
hybrid GA. They conclude that the reorder routine significantly improves solution quality
and computational performance.

The proposed trip optimization routine works as follows. For an individual r, trip op-
timization is applied for each trip in its trip split solution found by adSplit, with a given
probability ptrip. In order to improve computational efficiency, only trips shorter than a
threshold value are subject to the trip optimization procedure due to the factorial growth
in permutations with additional customers. Thus, the procedure will only be applied to
a subset of all the trips that an individual consists of. For each trip where the procedure
is applied, every possible permutation of the customer sequence is evaluated, and the re-
sulting permutation which provides the best fitness score is selected. Fitness scores are
evaluated for journeys rather than single trips, as a trip might be improved, but still be part
of a journey which is inefficient due to time windows.

5.9 Repair

When offsprings are created in crossover and subsequently possibly improved by edu-
cation, the OD-MIP, and the trip optimizer, they are added to the population R (line 14
Algorithm 1). If enough offsprings are created such that the population has reached a
maximum size of µ + λ, all infeasible individuals are subject to a repair operator with a
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given probability prep. The repair operator attempts to create incentives for the infeasi-
ble individual to become feasible. Repair proceeds by iteratively increasing infeasibility
penalties, i.e. penalty parameters for time warp and overload, by means of multiplication
with a penalty multiplier. As suggested by Vidal et al. (2012), the multiplier is initial-
ized with a value of 10. In each iteration, both penalty parameters are multiplied with the
penalty multiplier. Then, the adSplit-algorithm (5.3) is applied in order to update the way
journeys are created and assigned, accounting for the increased penalty parameters. In
the end of the iteration, the individual is subject to an education-procedure as an attempt
to improve solution quality by means of local search. If infeasibility persists, the penalty
multiplier is multiplied with 10. Iterations proceed until the individual becomes feasible,
or the multiplier reaches a value of 1000. If the latter occurs, i.e. the individual remains
infeasible when the entire repair phase is completed, the modified individual is kept in the
population, but has its fitness value re-calculated with penalty parameters which are reset
to their initial values. In this manner, fitness values across individuals in the population
remain comparable.

5.10 Order Distribution Selection Based on Vehicle Fill-
ing Level

The choice of which ODC(r) that is mapped to an individual, i.e. the commodity quan-
tities delivered in each period, will impact the fitness score of the solution. As an attempt
to find an ODC(r) which fits better to the GTC(r) individual r is mapped to, i.e. pos-
sibly improve its fitness score, we propose a mechanism that gives each individual the
opportunity to change the ODC it is mapped to during the search.

Let all ODCs that are being mapped to an individual in the current population R

constitute a set of ODCs. If computational time was no concern, one could, for each
individual, test its GTC(r) in combination with all ODCs in the set by applying adSplit
(Section 5.3), and calculate the resulting fitness scorer. The combination with the lowest
fitness would reveal the ODC which is optimal for the individual in combination with its
GTC(r). However, applying the adSplit-procedure for each evaluation is computationally
demanding (see Section 5.3.3).

In order to evaluate different ODCs for an individual while avoid using the adSplit-
procedure, we propose a fitness evaluation method based on the concept of vehicle filling
level. The underlying motivation for using the filling level as performance measure is
based on the intuition of obtaining low-cost solutions whenever vehicle capacities are ef-
ficiently exploited. Also, ASKO uses the filling level of a vehicle, i.e. the percentage of
each vehicle which is filled with actual goods on a trip, as one of their performance mea-
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sures to characterize quality solutions. Filling level is measured as the ratio between the
volume in the vehicle which consists of products, and the total volume of the vehicle. The
calculation is conducted when a vehicle leaves the depot in advance of a trip.

As shown in Equation 5.30, the filling level for an individual r mapped to a given
ODC is calculated as the sum of the filling level on all trips assigned to each vehicle of
all vehicle types in every period. Let ωO and ωU denote penalty parameters for overload
and idle capacity, respectively. As overload generates solution infeasibility, idle capacity
is preferred. Thus, the ratio between the parameters ωO/ωU is set to 2.

fillr(ODC) =
∑
p∈P

∑
h∈H

∑
v∈Vh

∑
τ∈Tv

∆fill(τ,ODC) (5.30)

∆fill(τ,ODC) = ωO(
∑
i∈Nτ

qpi(ODC)−Qh)+ + ωU (Qh −
∑
i∈Nτ

qpi(ODC))+ (5.31)

The filling level fillr is calculated for all combination of r and each ODC in the
current pool of ODCs. Finally, argminODC{fillr} then determines the optimal ODC,
and the adSplit-algorithm is applied for r with the selected order distribution to update the
individual and its fitness score. If the resulting new fitness score deteriorates the original
fitness score of r, the changes made to the GTC(r) as a consequence of the new ODC(r)

are reversed, and the original solution is re-stored. Similarly, if an originally feasible
individual becomes infeasible due to the new ODC(r), no changes are made.

Note that the filling level is a subjective performance measure, and provides no guaran-
tee that quality solutions are obtained. Optimal filling levels does not necessary correspond
to optimal journey creation and assignment. For instance, whenever two vehicles operate
with low filling levels in a particular solution, the probability of reducing the fleet size in
subsequent iterations is increased as the changes needed to get rid of a vehicle and thus
reduce the fleet cost are smaller. Such a solution can be more cost efficient. For this rea-
son, the procedure only accepts changes which improve the fitness of an individual. The
suggested fitness measure based on filling level will therefore not deteriorate individuals.

5.11 Population Management

The population is composed of two sub-populations: feasible and infeasible individuals.
The giant tour crossover (Algorithm 3) generates λ new individuals, and adds them to the
corresponding sub-population based on their feasibility status. When all operators which
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modify the offsprings generated have been completed, both sub-populations are trimmed
down to size µ.

The rationale behind maintaining two sub-population, as proposed by Vidal et al.
(2012), is based on enhancement of population diversity. By letting infeasible and fea-
sible individuals be subject to the crossover-procedure together, i.e. they can be selected
as reproduction material for the same child offspring, new individuals can be created with a
larger range of new characteristics. Quality solutions often tend to be on the border of fea-
sibility, which an infeasible subpopulation can draw solutions toward (Vidal et al., 2012).
In addition, by operating with a divided population, it is straight forward to draw candi-
date solutions from the feasible sub-population without the need for a separate evaluation
phase.

5.11.1 Initialization

An initial population is generated by randomly creating multiple GTCs, and map each to
separate order distributions which are generated according to the explanation below. Ad-
Split is then applied to extract the trips for each solution, and the resulting individuals are
added to the subpopulation which matches its feasibility status. The procedure is repeated
until 4µ individuals have been created. Note that the initial giant tour chromosomes can
be either feasible or infeasible, but initial ODCs are generated in a way that guarantees
feasibility.

Generation of Feasible Order Distribution Chromosomes

For anODC to be feasible, the following must hold: orders must be delivered in customer-
specific viable periods, and frequency and volume requirements for every order must
be obeyed. These requirements only exists for the dividable commodities, as the non-
dividable commodities must be delivered as a whole in one single delivery.

A feasible ODC is generated as follows: for each customer, all orders are extracted.
Next, as many empty delivery packages are created as there are viable delivery periods
for the customer. A delivery package represents all commodities a customer receives on a
single customer visit. These delivery packages are then filled with dividable commodity
orders before they are assigned to a particular valid period for its corresponding customer.
Finally, non-dividable commodity orders are allocated to the delivery periods.

When dividable commodities are allocated to delivery packages, each order is initially
assigned a random frequency between upper and lower bounds. Based on this frequency,
delivery quantities are set to their minimum volume bound, which is allocated to every

58



5.11 Population Management

delivery package. The remaining volume for each commodity is then distributed randomly
between the delivery packages.

When delivery packages are filled with dividable commodities, they are assigned to vi-
able delivery periods. This is proceeded sequentially, where the package with the highest
volume is selected and assigned to the period with the lowest total volume until all pack-
ages are allocated to a period. In this manner, the total volume delivered in each period is
balanced, which seek to minimize overtime costs at the depot.

Finally, the non-dividable orders are allocated to periods. For each order, the viable
delivery period with the lowest total volume is selected in order to minimize overtime.
Also, note that a non-dividable commodity can only be assigned to a period if the customer
has a time window in the period, and no other non-dividable commodity is delivered in this
period.

5.11.2 Penalty Adjustment

Recall from Section 5.3 that when the adSplit-procedure splits customer sequences into
trips, it calculates the cost of a trip by applying Equation 5.1. Costs are incurred with trip
overload and time warp, and adjusted with penalty parameters ωQ and ωT , respectively.
These parameters are initially set to large values in order to obtain feasible solutions in
the beginning of the search. However, a desirable population contains both feasible and
infeasible individuals, as near-feasible individuals enhance population diversity and conse-
quentially reduce the probability of premature convergence (see Section 2.2.3). Therefore,
as proposed in Vidal et al. (2012), the penalty parameter values are dynamically adjusted
whenever 100 individuals have been altered by the adSplit-procedure (5.3) in order to
increase exploration.

Let ξREF be the target proportion of feasible individuals in population R, and let ξT

and ξQ be the proportion of feasible individuals among the 100 last individuals altered by
the adSplit-procedure (5.3) with respect to time warp and overload, respectively. Then,
adjustment of ωQ and ωT are performed according to Equation 5.32 and Equation 5.33,
where PAR ∈ {T,Q}. Note that the fixed values are directly adopted from Vidal et al.
(2012).

if ξPAR 6 ξREF − 0.05, then ωPAR ← ωPAR × 1.2 (5.32)

if ξPAR > ξREF + 0.05, then ωPAR ← ωPAR × 0.85 (5.33)
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5.11.3 Population Diversity and Elitism

Vidal et al. (2012) suggest several population management mechanism, in which comple-
ment the remainder of the proposed algorithm in preserving both elitism and population
diversity during the search for optimality. The former is the principle of memorizing char-
acteristics of quality solutions, and ensures that the best individuals advance to the next
generation. The latter is the concept of expanding the search space, i.e. generate new
genetic material. It is motivated by the desire to avoid premature convergence, which is
a common challenge in population-based approaches. In the following, we describe three
mechanisms implemented to improve the population management: a diversification phase,
a survival selection, and a tournament selection of parents during crossover.

Diversification phase

A diversification phase (line 18 in Algorithm 1) is adopted from Vidal et al. (2012), and
applied when Ndiv iterations are proceeded without improving the best individual in the
population. The diversification phase first eliminates all but the best µ/3 individuals for
both subpopulations. Then, 4µ new individuals are generated and added to the suitable
subpopulation, proceeded similarly as the initialization procedure described in Section
5.11.1. The diversification phase introduces a significant amount of new genetic material,
restoring the lost diversity of the population.

Survival selection/biased fitness

Whenever λ individuals are created by crossover, the µ individuals which will be carried
to the next generations must be selected. For this, we propose the survivor selection proce-
dure displayed in Algorithm 4. The procedure applies the biased fitness measure described
in Section 5.4. Individuals which are inferior in terms of biased fitness are iteratively dis-
carded, subsequently updating distances and biased fitness measures. The elitism property
of the survival selection procedure states that elite individuals, Relite, will advance to the
next generation (Vidal et al., 2012).

Algorithm 4: Survival Selection
Input: Subpopulation R

1 while |R| > µ do
2 Remove r ∈ R with the maximum biased fitness
3 Update distance and biased fitness measures
4 end
5 RETURN reduced subpopulation R
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Tournament selection

The parent selection procedure during crossover (Section 5.5) is also subject to a mech-
anism which enhances population diversity: tournament selection. The idea is to draw k

random individuals with uniform probability from the entire population, including both
feasible and infeasible individuals. The individual with the best biased fitness score (Sec-
tion 5.4) is selected. This procedure is repeated twice, once for each parent. If the same
parent is selected twice, a new selection procedure is conducted for one of the parents.
Tournament selection gives a preference to select individuals with the best biased fitness
scores, i.e. low-cost individuals which also contribute to population diversity. However,
all individuals can in practice be used as genetic material when creating new offsprings,
independent of their feasibility status and biased fitness scores. In this manner, solutions
are drawn towards the border of feasibility, where high quality solutions are expected to
be found (Vidal et al., 2012). Note that the larger value of k, the more greedy the selec-
tion procedure will be, as the probability of drawing individuals with good fitness values
increases. The selection procedure is a generalization of the binary tournament selection,
which is used in Vidal et al. (2012).
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Chapter 6
A Multi-Periodic Hybrid Genetic
Algorithm

In this chapter, we propose another heuristic solution method, the multi-periodic hybrid
genetic algorithm (MPHGA), in order to more efficiently solve practical-sized instances
of the problem studied in this thesis. The MPHGA is composed of multiple periodic HGAs
(PHGA). The PHGA adopts several mechanisms developed for the HGA in Chapter 5. In
addition, motivated by the work in Vidal et al. (2013b), the PHGA applies a structural prob-
lem decomposition, where the problem of creating journeys and assign them to vehicles
are solved separately for each period. Solutions for each periodic problem are combined
to form a complete problem solution.

The underlying motivation for applying a periodic decomposition is twofold. First, lit-
erature indicate that when solving a complex problem as a set of smaller problems, large-
sized instances can be solved more efficiency (Vidal et al., 2013b). Second, the means
of solution evaluation is altered when each period is treated as a separate problem, which
might improve solution quality. For a solution found by the HGA to be improved between
two generations, the sum of changes across all periods must be positive. This means that
if an impacting improvement in the solution journeys for one period is discovered while
journeys in other periods are deteriorated, the improved journeys are possibly discarded
as the solution is evaluated for all periods together. In contrast, when journeys are evalu-
ated for each period separately in the PHGA, periodic improvements can be detected and
carried to future generations.

The remainder of this chapter is structured as follows. In Section 6.1, the means of
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a periodic problem decomposition is discussed. Section 6.2 provides an overview of the
MPHGA, followed by a description of the PHGA in Section 6.3. Finally, Section 6.4 de-
scribes how the problem of assigning orders to periods is handled in the MPHGA frame-
work.

6.1 Introducing a Periodic Decomposition

A periodic problem decomposition is motivated by the work in Vidal et al. (2013b). They
suggest a population-based solution method to solve a periodic VRP with time windows,
including a decomposition phase, which is shown to improve method performance in terms
of solution quality and computational efficiency on large-sized instances. They assume
that order assignments are fixed to periods, and solve one smaller routing problem for
each period. As the assignment of orders to periods are treated as decision variables rather
than fixed in the problem studied in this thesis, the same procedure cannot be directly
applied.

However, observe that these variables, ensuring that each customer receives its total de-
mand throughout the planning horizon, are the only variables which connect periods. If a
fixed order assignment would be assumed, journeys in each period would be independent,
and the periodic problem decomposition suggested by Vidal et al. (2013b) could be ap-
plied. In practice, it means that one first determines the orders which are delivered in each
period, and subsequently, for each period separately, creates journeys and assigns them to
vehicles. However, if the fixed order assignment is poor, solution quality might suffer, as
journeys for each period are constructed based on the orders which are assigned to this
period. Characteristics of quality order assignments cannot be defined without knowing
the characteristics of quality journey schedules for each period, and vice versa. In order to
apply a periodic decomposition while reducing the risk of obtaining poor solution quality
if initial fixed order assignments are poor, the problem of constructing journeys for each
period, and the problem of allocating orders to periods, should be solved in an iterative
manner.

The proposed MPHGA iterates between finding journeys which fit to fixed order as-
signments, and updating these order assignments in order to avoid premature convergence.
The former is handled by solving multiple PHGAs, each being mapped to its own fixed or-
der assignment. Each PHGA can find journeys for every period separately, as periods are
independent when orders are fixed across the entire planning horizon. Section 6.4 is ded-
icated to describe mechanisms in the MPHGA which alter the order assignments mapped
to the PHGAs.
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6.2 The Multi-Periodic Hybrid Genetic Algorithm

In this section, the MPHGA is described. One iteration of the MPHGA is displayed in
Figure 6.1. In step 0, NPHGA PHGAs are initialized. Note that in contrast to the HGA
(Algorithm 1), each individual in populationRn in PHGAn is mapped to the same, global
ODCgn. The initial ODCgn is constructed as described in Section 5.11. Then, step 1-2 are
allocated a fixed amount of time, T it. Step 1 proceeds by solving each PHGA for a given
time. The PHGA is described in Section 6.3. In step 2, each PHGA passes its best found
solution, i.e. a set of journeys for each period, to the OD-MIP described in 5.7. The OD-
MIP finds the optimal way of assigning orders to periods, given the set of input journeys.
The new ODC takes place as the global order assignment, ODCg , for this particular
PHGA. Step 1 is repeated with the new ODCg for the remaining time for the iteration,
before the fitness score of the obtained solution is calculated according to Section 5.4.
Step 1 and 2 takes a total time of T it. Time is equally divided to solve the routing problem
before and after the ODCg update.

In step 3, the fitness score for each PHGA is used as basis to determine whether its
ODCg should be re-initialized or not in advance of the next iteration. Re-initialization is
enforced if one of the following two scenarios occur:

• (1) The fitness value of its obtained solution is not improved from the previous
iteration.

• (2) The fitness value of its obtained solution is improved from the previous iteration,
but the fitness value is not within a range of 1.4 times the current best found solution
by all PHGAs across all previous iterations.

These criteria ensure that solutions which do not appear as promising are discarded.
Note that all PHGAs which are selected for re-initialization are assigned different ODCs.
Section 6.4 is dedicated to describe how the new ODCs are selected. Step 1-3 complete
one iteration of the MPHGA. Successive iterations proceed until a maximum number of
iterations without improvements, N it, or a given time limit, Tmax, is reached.
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Figure 6.1: Illustration of the MPHGA, applying n PHGAs. Each PHGA is initialized in step 0,
and solved in step 1 for a T it/2 time. In step 2, journeys found in step 1 are passed to the OD-MIP,
which finds an optimal order allocation given the journey solutions found by each PHGA. Step 1 is
then re-run for T it/2 time. PHGAs which do not appear as promising are re-initialized with new
order distributions in step 3. Step 1-3 completes one iteration o the MPHGA.
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Figure 6.2: Illustration of the PHGA for n periods. The global order distribution is uses as basis for
journey creation in each periodic problem, and journey solutions from each period are combined to
form a complete solution.

6.3 The Periodic Hybrid Genetic Algorithm

In this section, we provide a description of the PHGA. It adopts several mechanisms de-
veloped for the HGA, which are described in Chapter 5. However, rather than solving the
problem of creating and allocating journeys for all periods combined, the PHGA solves
the problem for each period independently. Figure 6.2 provides a simple illustration of the
PHGA. It shows that a global order assignment is assumed to be fixed, and that the prob-
lem is decomposed to one problem for each period. The periodic solutions are gathered to
form a complete problem solution.

The PHGA is displayed in Algorithm 5. In general, it proceeds by assuming a global
ODCg as input, and solves the problem of creating and assigning journeys independently
for each period. The best solution found in each period are gathered and combined to
form a complete solution for the problem. For each period p, giant tours for individu-
als in population Rp are initialized according to the procedure described in Section 5.11
(line 2). Note that in contrast to the HGA (Algorithm 1), the population of individuals
is specific for each period p, denoted Rp. All individuals rp ∈ Rp are mapped to the
same global ODCg . However, they are mapped to different giant tours GTC(rp), which
hold customer sequences for period p only. Subsequent to initialization, the population
is expanded with µ offsprings by means of crossover (line 5). With given probabilities,
each offspring is subject to education (line 7) and trip optimization (line 8). Offsprings
are added to the population in line 9. Subsequently, repair is applied to all infeasible in-
dividuals with probability prep in line 12. Crossover, education, trip optimization, and
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repair are mechanisms adopted from the HGA and described in Section 5.5, 5.6, 5.8, and
5.9, respectively. Recall from Chapter 5 that these mechanisms are structured such that
they operate on each (period, vehicle type)-couplet independently. Therefore, they can be
adopted by the PHGA without modifications. When each periodic problem is solved for a
given amount of time, solution from each period with the best fitness score (Section 5.4)
are gathered (line 16) and combined to form a complete solution.

Note that the adaptive penalty adjustment described in Section 5.11 is adopted from the
HGA. It it is applied for each periodic problem independently, as the search may benefit
from the flexibility of having different penalty parameters in each period. However, when
complete solutions obtained by a PHGA are compared across generations, they are all
evaluated based on initial penalty parameters to ensure a fair comparison.

Algorithm 5: PHGA
Input: A global order distribution ODCg

1 do for all p ∈ P
2 Initialize population Rp: |Rp| =4µ
3 while time limit not reached do
4 for ( i = 1...λ ) {
5 Create offsprings (rpc ) from parents (rpp1 and rpp2 ) (GIANT TOUR

CROSSOVER)
6 With probability ped: EDUCATE Rpc
7 With probability ptrip: apply the TRIP-OPTIMIZER to rpc
8 Add rpc to population Rp

9 }
10 With probability prep: REPAIR any infeasible individuals in Rp

11 Select µ individuals to survive to the next generation
12 end
13 end
14 Gather the best solution from each period to construct a complete problem

solution: rcomplete

15 Return: solution rcomplete

6.4 Updating the Global Order Distribution Chromosomes

As discussed in Section 6.1, if theODCg which is used as basis for creation of journeys in
a PHGA remains fixed during the search, a poor initial ODCg might impose restrictions
on the journey creation such that poor solutions are obtained. Therefore, the MPHGA in
Figure 6.1 is composed of two mechanisms which enable the possibility of a PHGA to
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change the ODCg it is mapped to during the search.

One of the mechanism is implemented in step 2 of Figure 6.1. When each PHGA
is solved for a given amount of time, the OD-MIP described in Section 5.7 is applied to
generate a new ODC which is optimal for the best journey solution found in step 1. The
new ODC takes the place of the ODCg which was used in step 1, and the PHGA is re-
solved to obtain a new set of journeys. The second mechanism which enables changes of
ODCgs is found in step 3 in Figure 6.1, where some PHGAs are selected to have their
ODCg re-initialized based on evaluations of solutions obtained in step 2. The selected
PHGAs are re-initialized in an arbitrarily order. For each selected PHGA, re-initalization
of new ODCs is proceeded as follows:

1. GENERATE A SET OF NEW ODCs:
A set of new ODCs, denoted ODCnew, is generated according to the initialization
process described in Section 5.11. A total of |ODCnew| new ODCs are generated
ad subject to be selected for re-initialization. Recall that only feasible ODCs are
generated.

2. EVALUATE EACH ODC IN ODCnew :
Let ODCused be the set of all ODCgs generated by the OD-MIP in step 2 in
Figure 6.1, i.e. the set of all ODCgs which are mapped to any PHGA. Each
ODC ∈ ODCnew is assigned a diversity score, which is calculated as a sum of
how much it differs from each ODC in ODCused. The difference between two
arbitrary ODCs (e.g. ODCa and ODCb) is calculated according to Equation (6.1),
where qpi(ODCa) is the quantity delivered to customer i in period p for ODCa.

∆(ODCa, ODCb) =
∑
p∈P

∑
i∈N
|qpi(ODCa)− qpi(ODCb)| (6.1)

3. SELECT ONE ODC :
Finally, the most diverse ODC in ODCnew is assigned to the PHGA, and takes the
place as its ODCg in the next iteration.
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Chapter 7
A Multi-Periodic Artificial Bee
Colony Algorithm

In this chapter, we propose a multi-periodic artificial bee colony optimization algorithm
(MPABC) to solve the problem studied in this thesis. Artificial bee colony (ABC) opti-
mization is a swarm-inspired metaheurstic, first introduced by Karaboga (2005), inspired
by simulation of a honey bee swarm in the search for problem solutions. The ABC is
built on the concept of allowing brief exploration and quick abandonment of parts of the
solution space which do not seem promising. Literature has shown that when applied to
other hard discrete combinatorial problems, the ABC framework obtains quality solutions
within a reasonable amount of time (Iqbal et al., 2015).

This chapter is structured as follows. In Section 7.1, we describe how the MPABC
adopts the structure from the MPHGA described in Chapter 6. Finally, an overview of
the periodic ABC (PABC) algorithm, which is an important component of the proposed
MPABC, is provided in Section 7.2.

7.1 Adopting the Structure of the Mulit-Periodic Hybrid
Genetic Algorithm

The proposed MPABC adopts most of its core structure from the MPHGA described in
Section 6.2. Recall that the MPHGA is composed of 4 steps, as illustrated in Figure
6.1, where step 0 and 3 are adopted by the MPABC. The ODC-initializer in step 0 and
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step 3 is applied similarly. However, the MPHGA and MPABC are distinguished by two
elements: first, where the MPHGA is composed of solving multiple PHGAs (see Section
6.3) in parallel to find a set of problem solutions in step 1, the MPABC instead solves
multiple periodic ABCs (PABC). Similar as in the PHGA, the PABC exploits a periodic
decomposition to solve the problem of creating and allocating journeys independently for
each period. Secondly, where each PHGA applies the OD-MIP (5.7) once in one iteration
of the MPHGA (step 2), the OD-MIP is applied several times for each PABC during one
iteration of the MPABC. Thus, in the MPABC, step 1 and step 2 in Figure 6.1 are repeated
several times in one iteration, before the algorithm proceeds to step 3.

Note that one iteration of the PABC and PHGA are both limited to T it time, and both
the MPHGA and the MPABC are terminated if run time exceeds Tmax. The remainder of
this chapter is dedicated to describe the PABC, and assumes that the MPABC framework
is familiar to the reader.

7.2 The Periodic Artificial Bee Colony Algorithm

The PABC solves the problem of creating and allocating journeys separately for each pe-
riod in the planning period. Recall that similar as in the PHGA (Section 6.3), the periodic
problems are independent due to the assumption of a predetermined global ODCg . In
advance of the solution process, the problem for each period extracts the order distribution
from the ODCg for this particular period, and creates and allocates journeys such that
these quantities are delivered.

An overview of the PABC is displayed in Algorithm 6. It is composed of four main
phases: (0) initialization, (1) employee phase, (2) onlooker phase, and (3) scout phase.
Phase 1, 2, and 3 constitute one iteration, which is repeated NODC times before the OD-
MIP is applied by combining the best journey solutions found in each period. This is
repeated until run time exceeds T it. The algorithm applies two local search mechanisms:
the bee position update (BPU), and the local enhancement scheme (LES). In the remainder
of this section, we first describe how solutions are represented in the PABC, followed by
how mechanisms are adopted from the HGA proposed in Chapter 5. Then, a detailed de-
scription of the four algorithmic phases is provided. Finally, the local search mechanisms
exploited in the PABC, i.e. the BPU and the LES, are described.

7.2.1 Solution Representation

A complete problem solution must, for each period in the planning horizon, contain the
following information: the selected set of journeys, the customers that are visited in each
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Algorithm 6: PABC Algorithm
Input: ODCg

1 do for all p ∈ P
2 PHASE 0: INITIALIZATION

3 E ← Set of Nemployees employees
4 O← Set of Nonlookers onlookers
5 foreach e ∈ E do
6 initialize e’s position to random a position in solution space
7 end
8 for ( NODC iterations ) {
9 PHASE 1: EMPLOYEE PHASE

10 foreach e ∈ E do
11 Update its current position by the Bee Position Update (Equation 7.4)
12 and the Local Enhancement Scheme (Algorithm 7)
13 end
14 PHASE 2: ONLOOKER PHASE
15 foreach o ∈ O do
16 Inherit employee position using a roulette wheel (Equation 7.1)

selection based on employees fitness scores
17 Perform local search by a random perturbation (Equation 7.2) and the

Bee Position Update (Equation 7.4)
18 end
19 foreach e ∈ E do
20 Update e position to best found position in the local search update

trials for e (Function 7.3)
21 end
22 PHASE 3: SCOUT PHASE
23 foreach e ∈ E do
24 if number of trials for e exceeds limit then
25 Find Nscouts new positions in the solution space
26 Assign e the best position found among Nscouts new positions
27 endif
28 end
29 }
30 end
31 Combine best solutions found in each period P Return Best found solution
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journey, which vehicles that are assigned to each journey, and the quantity that is delivered
in each journey.

In the PABC, a solution is represented by a position in a continuous solution space,
as described in Section 2.2.2. Similar as Zhen et al. (2020), the PABC uses a random
key encoding scheme of the solution space, and a mapping procedure is applied to obtain
discrete solutions. Discrete solutions are represented as giant tours for each vehicle type,
i.e. customer sequences, as used in the HGA and described in Section 5.2. The continuous
search space has one dimension for each customer. The range of each dimension in the
position corresponds to the number of vehicle types. The range is therefore [0, |H|], where
H is the set of vehicle types, and the value in the dimension representing a customer
determines which vehicle type it is assigned to.

Figure 7.1 illustrates the representation of a solution for one period with 10 customers
and two vehicle types. The upper part of the figure shows the encoded continuous solu-
tion representation, and the lower part shows the decoded discrete solution. The contin-
uous solution is composed of two arrays, where the upper array corresponds to the IDs
of the customers to visit. The customer IDs corresponds to the customers visited in this
period. The lower array represents a position in the search space for the corresponding
customer. Blue and purple colors are used to differentiate between the two vehicle types.
The decoded discrete solution is represented as one giant tour per vehicle type. Each gi-
ant tour is composed of two arrays, where the upper array holds the customer ID. The
lower array contains, for the corresponding customer, a fractional number. The integer
part corresponds to which vehicle type the customer is assigned to, and the fractional part
corresponds to the order which the customer appears in the giant tour in the continuous
representation, i.e. the position in the search space.

In summary, the encoded solution represents a position, where the upper array holds
its dimension, and the position in the solution space is found in the lower array. When
decoded to a discreet solution, the upper array corresponds to giant tours, and the lower
array determines the order of which customers appear in the giant tour.

7.2.2 Mechanisms Adopted from the Hybrid Genetic Algorithm

When a position in the continuous search space is decoded into a discrete giant tour repre-
sentation, mechanisms that are developed to operate on discrete represented solutions for
the HGA (Chapter 5) and the PHGA (Chapter 6) can be adopted by the PABC. Solutions
are evaluated according to the fitness calculation described in Section 5.4.

The adSplit-procedure (Section 5.3) developed to transform the giant tour representa-
tion for a given vehicle type and period into a set of journeys in the HGA and PHGA, is
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Customer ID 1 3 5 6 7 10 13 15 16 18
Position 0.23 1.45 1.02 0.19 0.68 1.22 0.91 0.57 0.72 1.55

Encoded continuous solution representation:

6

Decoded discrete solution representation:

1 15 7 16 13
0.19 0.23 0.57 0.68 0.72 0.91

Giant for vehicle type 0

5 10 3 18
1.02 1.22 1.45 1.55

Giant tour for vehicle type 1

Figure 7.1: An illustration of a solution representation for one period with 10 customers and 2
vehicle types. The upper part shows the representation in the continuous space. The lower part
consists of the discrete solution representation for both vehicle types. Colors are used to highlight
that the giant tours in the discrete representation are representing one vehicle type each, where purple
represents vehicle type 0, and blue represents vehicle type 1.

adopted to create solutions from the discrete representation of bee positions in the PABC.
Recall that adSplit allows creation of solutions which are infeasible with respect to time
warp and overload, but penalizes infeasible solutions with costs that are multiplied with
penalization parameters ωT and ωQ, respectively. These parameters can, as explained in
Section 5.11, be adaptively adjusted according to initial target values for the proportion of
feasible solutions created, ξREF .

However, the efficiency of adaptive penalty parameter adjustment in the PABC is ques-
tionable, as there are less incentives to create infeasible solutions than in the HGA. Recall
that the motivation for creating infeasible solutions in the HGA is that quality solutions
often lie on the edge of feasibility. As new solutions are created by using existing ones,
having infeasible solutions in the population might be beneficial when creating new in-
dividuals during crossover (Section 5.5). In contrast, previous solutions obtained in the
PABC are not memorized, except from the global best solution found. Selection of new
positions to explore in the search space are therefore less affected by search history. We
dedicate the parameter tuning in Section 10.1 to investigate whether the adaptive penalty
adjustment should be implemented for the PABC, or if the penalty parameters ωT and ωT

should be fixed to large values in order to prevent creation of infeasible solutions.

7.2.3 The Algorithmic Steps Described in Detail

The following section describes the four phases presented in Algorithm 6.
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Phase 0: Initialization

The PABC is initialized with a set of randomly generated solutions, where each employee
bee is assigned a random position in the solution space. The current global best found
position is initialized as the position of a random employee in the first iteration.

Phase 1: Employee Phase

Each employee performs a local search near its current position in the solution space. The
local search consists of a bee position update (BPU) and a local enhancement scheme
(LES), both described in Section 7.2.4. If the local search yields an improved solution, the
position is updated. Finally, the employed bees recruit onlookers, as described in Section
7.2.3.

Phase 2: Onlooker Phase

The onlookers are dedicated to a more thorough exploration of the space near the positions
of the employed bees. During the onlooker phase, each onlooker updates its position, us-
ing a roulette wheel selection, to a position among the positions found in phase 1. Roulette
wheel selection is based on the fitness of the decoded solutions. The probability of se-
lecting an employee position is given by Equation 7.1, where pe

′
denotes the probability

of selecting the position of employee e′, and employees is the set of all employees in
the swarm. Note that the probability of being selected is larger for positions with lower
fitness values, meaning that good positions in the solution space will be explored more
thoroughly. This is motivated by the idea that better solutions can be found near already
good solutions.

pe
′

=

1
fitness(e)∑

e∈employees
1

fitness(e)

(7.1)

When an onlooker has selected which location to follow, its position is updated in two
steps. First, its position in each dimension i, xoi , is updated according to Equation 7.2.
This update is based on both the position of the employee it has selected to follow, xei , and
a random perturbation ρo. Let ρo be randomly selected in the range [−ρo, ρo], andRi be a
subspace of the solution space. The size of the subspace determines how many dimensions
that will be changed, and is tuned to balance the size of the local search. Second, the BPU
equation, described in Section 7.2.4, is applied in order to adjust the position according to
the globally best found solution, and a randomly selected neighbour.
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xoi = xei + ρo, i ∈ Ri (7.2)

When all onlookers have updated their positions, their decoded solutions are evaluated
based on the fitness calculation described in Section 5.4. Then, for each employee, the
fitness value of its position is compared with the best position found among the onlookers
that followed this particular employee. If the onlooker position improves the employee
position, the employee inherits the position found by the onlooker.

Phase 3: Scout Phase

The scout phase executes abandonment of poor positions and positions which have been
explored thoroughly enough to assume that no better solution can be found, and ensures
exploration of new positions in the search space. These mechanisms are enabled by as-
signing each employee a variable which keeps track of the number of trials that are used
to explore its position. In each trial, the employee registers a new fitness score for its posi-
tion (employee phase), and the onlookers which select to follow this employee (onlooker
phase) search for further improved positions in the area of the new employee position.
The resulting employee fitness is denoted fitnew. Equation 7.3 shows how the registered
number of trials for an employee is updated each time a new trial is incurred. If the fitness
score of the position found in a new trial, fitnew, is worse than the fitness of the best solu-
tion found among all previous trials, fitold, the number of trials is incremented with 1. A
similar increment is incurred if fitnew is less than fitold, but still worse than the globally
current best found solution, fitbest, multiplied with a parameter λgb, which is a number
larger than 1. Note that if this is the case, the fitness is still updated to fitnew and the
position is adopted by the employee. The reason for imposing a comparison requirement
with the fitbest is to abandon less promising solutions faster. If fitnew both improves
fitold, and is less than λgb × fitbest, the number of trials is reset to 0 and more trials will
be used to explore the position.

trialst+1 =


trialst + 1, if fitold < fitnew

trialst + 1, if fitold > fitnew and fitnew > λgb × fitbest

0, if fitold > fitnew and fitnew < λgb × fitbest
(7.3)

If the number of trials for an employee position reaches a maximum limit, the employee
and the onlookers followed the employee have been searching in an area near the initial
position for too long without finding sufficient improvements. This location is therefore
abandoned, and the employee is assigned a new position. To find a new position, a number
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of S scouts are sent out to each find a random position in the solution space. The best
found position is selected as the new position for the employee.

7.2.4 Local Search Mechanisms

The PABC Algorithm is based on the assumption that quality solutions can be found in
the neighbourhood of other quality solutions. The benefits of having a continuous solution
space makes the local search procedure simpler, as no positions within the dimension
bounds are invalid. We propose two local search mechanisms which are used to find new
positions and update the ones that are assigned to bees in the swarm during the search.
The mechanisms are described in the following sections.

The Bee Position Update Equation

When a position is updated by the bee position update (BPU) equation in Algorithm 6, the
adjustment is based on two positions: one being the globally best found position so far,
the other being the position of a random neighbour bee. The use of the globally best found
solution is inspired by the common way to update positions in particle swarm optimization
algorithms, as described in Section 2.2.2. By letting a random neighbour influence the
position update, search diversity is enhanced. The BPU is given by Equation 7.4.

xbi = ωn × (xni − xbi ) + ωgb × (xgbi − x
b
i ), i ∈ Ri (7.4)

where xbi is the position of a bee in the i’th dimension. Let xn be the position of a
random neighbour, and xgb the globally best found position so far. Also, ωn and ωgb
correspond to random weights in a given range, where ωn ∈ [−1/2kn, kn], which means
that a bee can possibly move away from its neighbour. Let ωgb be in the range ωgb ∈
[0, kgb], meaning that the bee can only move towards the globally best position. Ri is a
subspace of the solution space, containing the dimensions which are being updated. The
weights, as well as the size of the subspace, control the size of the neighbourhood of the
bee. Figure 7.2 shows a simple example of the BPU in two dimensions.

A Local Enhancement Scheme

In addition to the position update, a local enhancement scheme (LES) is applied in Al-
gorithm 7.2. The LES is only applied to the employee bees, as it is a computationally
expensive operation since the adSplit procedure in Section 5.3 is applied. The LES is a
greedy operation, which only accepts changes which improves the solution. The number
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xboldxgb

xn

xbnew

ωgb = 0.5

ωn = 0.6

Figure 7.2: An example of how a position for xb is updated by the BPU in two dimensions. Weights
ωgb and ωn shows how much xb is affected by the global best position xgb and a random neighbour
xn.

of operations used, k, is updated according to Algorithm 7.

The enhancement scheme consists of three operators: swap, reinsertion, and reverse.
For each operator, two random indices are selected, and the operation is applied for those
indices, as shown in Figure 7.3. The operators are only applied within the same vehicle
type. As in the education scheme proposed for the HGA (Section 5.6), only moves which
improves solution fitness are applied. In order to evaluate the fitness change when a solu-
tion is altered by any of the operators, the adSplit-procedure (see Section 5.3)is applied for
the given giant tour and vehicle type. Algorithm 7 displays the LES scheme for the PABC.
Note that the number of enhancements conducted depends on how many improvements
that are found.

3 1 6 2 4 8

1 6 2 3 4 8

Reinsertion

3 1 6 2 4 8

2 1 6 3 4 8

Swap

3 1 6 2 4 8

2 6 1 3 4 8

Reverse

Figure 7.3: Three local operators applied to a sequence of customers.

When LES is applied, the operators make changes to the solutions in their discrete
representation. More concretely, they alter the sequence of customers in the giant tours.
When the LES is finished, the altered discrete solutions, i.e. the updated bee positions, are
transformed back to the continuous space. Figure 7.4 illustrates the LES, where a solution
for 10 customers and 2 vehicle types is subject to a local enhancement, and subsequently
transformed back its representation in the continuous space. The colors are used to high-
light that for customer 4, its position is changed from .42 to .79 by the LES. Note that it
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Algorithm 7: Local enhancement scheme procedure for the PABC algorithm.
Input: Bee position arrays

1 for vehicle type h ∈ H do
2 S0 ← initial giant tour for vehicle type h
3 k ← 0

4 while k < nLES do
5 operator← random(swap, reverse, reinsertion)
6 S ← operator(S0)
7 if fitness(S) < fitness(S0) then
8 S0 ← S
9 k ← 0

10 endif
11 else
12 k ← k + 1
13 endif
14 end
15 end

remains served by vehicle type 0, as seen by the integer part of the position number.

Recall from Section 7.2.1 that a discrete solution is represented by two connected ar-
rays for each vehicle type. The upper array contains the customer sequence, and the lower
array contains fractional numbers where the integer part represents the vehicle type the
customer is visited by, whereas the fractional part holds the position of the customer in
the continuous space. Before the LES is applied to the discrete solution representation in
Figure 7.4, the upper array for vehicle type 0 contains the following customer sequence:
[1, 4, 3, 10, 2, 6]. When the LES operators have finished their enhancement, the new array
is [10, 3, 2, 1, 4, 6]. Note that the position array remains unchanged while the customers
sequence is changed. This means that when the order of customer visits is changed, each
customer inherits the position in the continuous solution space from the customer it re-
places in the sequence. Colors are used to illustrate that the position of customers after
they have been reordered are the ones who are used when the discrete solution is encoded
to the continuous space.
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1 4 3 10 2 6

0.23 0.42 0.49 0.61 0.79 0.90

Discrete representation before local enhancement:

7 8 5 9

1.13 1.54 1.66 1.98

10 3 2 1 4 6

0.23 0.42 0.49 0.61 0.79 0.90

Discrete representation after local enhancement:
Vehicle type 0: Vehicle type 1:

9 5 8 7

1.13 1.54 1.66 1.98

Customer ID 1 2 3 4 5 6 7 8 9 10

Position 0.61 0.49 0.42 0.79 1.54 0.90 1.98 1.66 1.13 0.23

Continuous solution representation after local enhancement:

Figure 7.4: The example illustrates the LES, where a solution for 10 customers and 2 vehicle types
is subject to a local enhancement, and subsequently transformed back its representation in the con-
tinuous space. Note that within a the solution representation for a vehicle type, the array of customer
sequences are changed, while the position arrays remains unchanged. Therefore, the LES changes
the positions which customers are mapped to. The colors are used to highlight that for customer
4, its position is changed from .42 to .79, while it remains served by vehicle type 0 as seen by the
integer part of the position number.
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Chapter 8
The Combinatorial
Journey-Generating Model

In order to improve the probability of obtaining quality solutions within a time limit which
is applicable to real-life planning, we propose another heuristic approach, the combi-
natorial journey-generating model (CJGM), to solve the problem studied in this thesis.
The CJGM is motivated by the idea of using mathematical programming models to im-
prove performance of heuristic solution methods, commonly referred to as matheuristics.
Matheuristics are successfully applied to solve VRPs in recent literature (Archetti and
Speranza, 2014).

Matheuristics use characteristics of solutions obtained by exact methods to guide the
heuristic search. Archetti et al. (2017) propose a matheuristic to solve an inventory rout-
ing problem (IRP), which share several properties with the problem studied in this thesis.
The IRP differs in that each customer requires a certain inventory level in each period,
accepting neither overstock nor stock-outs. Archetti et al. (2017) proceeds by first com-
paring journeys obtained from solving a relaxed exact journey-based formulation with the
frequencies of journeys which are generated by solving a heuristic method, and secondly
use the results to fix a set of variables when the journey-based formulation is re-solved.

The CJGM is based on a similar approach, iterating between two steps. First, it solves
multiple heuristic methods, i.e. PHGAs (Section 6.3) and PABCs (Section 7.2). Second,
the journeys from the best solutions with respect to fitness from each heuristic are extracted
and sent to an exact MIP, i.e. the journey-based model (JBM), introduced in Section 8.3.
The JBM solves the problem of finding the best journeys to form a complete solution to
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optimality. In this manner, the JBM generates a solution which is composed of journeys
found by different PHGAs and PABCs. This solution is used to guide the heuristic search
in the next iteration in the CJGM.

This chapter is structured as follows: in Section 8.1, the CJGM is described in detail
by means of an example of one iteration. We discuss the role of the exact JBM in Section
8.2, whereas a mathematical formulation of the JBM is formulated in Section 8.3.

8.1 Overview of the Combinatorial Journey-Generating
Model

The first iteration of the CJGM is illustrated in Figure 8.1, and proceeds as follows. In
step 0, a set of heuristics, composed of a number of PABCs (Algorithm 6) and PHGAs
(Algorithm 5), are initialized with one global ODCg each. Next, the solution methods
are run for a given amount of time in step 1. At this stage, each heuristic has generated
a set of journeys. Recall that both the PHGA and the PABC exploits a periodic problem
decomposition, and thus search for ways to create and allocate journeys independently for
each period. When a PHGA terminates, it holds one population for each period, where
individuals in each population represent a solution. Each solution is a set of journeys
for the particular period. When a PABC terminates, it holds a set of positions, where each
position represents a solution, which is a set of journeys for a particular period. Subsequent
to completion of the first phase in step 1, they each apply the OD-MIP (Section 5.7) which
finds the optimalODC for the identified best set of journeys. The algorithms are re-solved
with the new ODC, generating a new sets of journeys.

In step 2, the set of all feasible journeys in the Nsol best solutions for each heuristic
are selected based on fitness evaluations. This amounts to a total of NPHGA ×NSOL ×
|P|+NPABC ×NSOL×|P| solutions, where |P| is the number of periods, and NPHGA

and NPABC are the number of PHGAs and PABCs, respectively. The total number of
journeys depends on the number of journeys in each of the selected solutions. The jour-
neys are then passed to the JBM, which identifies the optimal subset to form a complete
problem solution. Note that the JBM is allowed to combine journeys to form new solutions
independent of which solution they were part of when generated in step 1. In addition to
generating a new combination of journeys, the JBM identifies the optimal ODC for this
particular set of journeys. The selected set of journeys and the new ODC are stored.

Selection of the NSOL best solutions is based on the fitness evaluation procedures de-
scribed in Section 5.4. Recall that the fitness score (Equation 5.13) of a feasible solution is
equal to the objective value, whereas the biased fitness score (Equation 5.14) incorporates
its contribution to solution diversity. When solutions are selected from PABCs, the regular
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fitness measure is used as basis. However, in order to enhance the diversity of the jour-
neys which are passed to the JBM, the biased fitness measure is applied when solutions
from PHGAs are evaluated. In addition, the best solution with respect to regular fitness in
each PHGA is included in NSOL. By ensuring that the best solution with respect to the
regular fitness measure from each PHGA are also sent to the JBM, the JBM is guaranteed
to generate at least an equally good solution as any of the heuristics if enough run time is
provided.

Finally, step 3 selects heuristics to have their ODCg re-initialized. They are selected
if either of the two scenarios described in Section 6.4 occurs, i.e. when insufficient so-
lution improvement is obtained from the previous iteration. The selected heuristics are
re-initialized in an arbitrarily order. One of the PABCs or PHGAs is re-initialized with
the ODC generated by the JBM. If more than one heuristic is subject to re-initialization,
they are initialized with new diversified ODCs generated according to the procedure de-
scribed in Section 6.4. Step 1-3 complete one iteration of the CJGM, where each iteration
is given T it time. Step 1-3 is repeated until either a maximum number of iterations without
improvement is reached, N it, or the run time exceeds a given time limit, Tmax.
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Figure 8.1: An example of one iteration of the CJGM, where the number of PHGAs and PABCs are
set to 3 and 2, respectively.
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8.2 Improving Heuristic Solutions with an Exact Journey-
Based Model

As shown in step 2 in Figure 8.1, the CJGM exploits an exact JBM which finds the best
combination of the journeys generated by PHGAs and PABCs in step 1, and simultane-
ously creates an optimal order distribution for these journeys. The purpose of using the
JBM to guide the search in the CJGM is twofold. First, as the best solutions found by
each PHGA and PABC are included in the subset of journeys which is passed to the JBM,
solutions obtained by the JBM can never deteriorate those generated by any heuristic in
step 1. Second, the JBM generates a newODC which is optimal for the selected journeys.
In step 3, this ODC replaces the ODCg for one of the heuristic methods.

A mathematical formulation of the JBM is provided in Section 8.3. As concluded in
Bakken et al. (2019), the JBM scales poorly with the number of journeys. When the JBM
is used as an exact method for the entire problem studied in this thesis, as in Bakken et al.
(2019), the number of journeys needed to ensure solution optimality grows exponentially
with the number of customers. However, by using fitness values of heuristic solutions to
extract the journeys which are most likely to be part of a quality solution, the JBM can be
solved more efficiently and thus improve the heuristic search in the CJGM.

8.3 Mathematical formulation of the Journey-Based Model

In this section, we present a mathematical formulation of the JBM. A JBM to solve the
PMTVRPTW problem was first introduced in Bakken et al. (2019). Modifications are
made in order to fit the application to this thesis, as this formulation is more efficient to
solve problems with a smaller number of journeys. The description extends the AFM
described in Chapter 4, and OD-MIP described in Section 5.7.

8.3.1 Definition of new Sets, Indices, Variables, and Parameters

The following sets, variables, and parameters are defined. Note that in contrast to the AFM
formulation, j does not represent a customer. For the JBM, j denotes a journey j ∈ Jph,
where h ∈ H represents a vehicle type, and p ∈ P represents a period.

87



Chapter 8. The Combinatorial Journey-Generating Model

Definition of Sets:

Jph Set of journeys that can be completed for vehicle of type h ∈ H
in period p ∈ P

Tj Set of trips τ ∈ Tj for the a journey j ∈ Jph
T Sp Set of unique trips, i.e. sets of customers, for a period p ∈ P
Nphjτ Set of customers visited in period p ∈ P with vehicle type h ∈ H,

in journey j ∈ Jph, and trip τ ∈ Tj
Np Set of customers not visited in period p ∈ P ,

equal to N \
⋃
h∈H

⋃
j∈Jph

⋃
τ∈Tj

Nphjτ

J Sphτ Set of journeys j for period p ∈ P and vehicle type h ∈ H, which all include a trip

where at least all customers i ∈ Nτ are visited. More formally, all j ∈ J Sphτ
have a trip τ ′ ∈ Tj where the set of customers Nτ ′ ⊇ Nτ

Definition of Parameters:

Aiphj Binary parameter, 1 if customer i ∈ N is visited by vehicle type h ∈ H
in period p ∈ P in journey j ∈ Jph, 0 otherwise

Qmax Capacity of the larges vehicle type h ∈ H.

Definition of Variables:

γphj =

{
1 if journey j ∈ Jph for vehicle type h ∈ H is completed in period p ∈ P
0 otherwise

upim =

{
1 if commodity m ∈Mi is delivered to customer i ∈ N in period p ∈ P
0 otherwise

qpim Quantity of commodity m ∈Mi delivered to customer i ∈ N , in period p ∈ P
qOp Quantity of commodity distributed using overtime in period p ∈ P
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8.3.2 Mathematical Formulation

A mathematical formulation of the journey-based model is given below.

Objective Function

Minimize
∑
p∈P

∑
h∈H

∑
j∈Jph

CJphjγphj +
∑
p∈P

COqOp (8.1)

Compared to the AFM in Chapter 4, the main difference in the objective function is
that arc costs and vehicle usage costs are replaced with a journey cost, which is the sum of
the cost of the arcs traversed in the journey, and the cost of using a vehicle of type h.

JBM Specific Constraints:∑
j∈Jph

γphj 6 |Vh|, h ∈ H, p ∈ P (8.2)

∑
h∈H

∑
j∈Jph

Aiphjγphj = Ipi , i ∈ N , p ∈ P (8.3)

∑
i∈Nτ

∑
m∈Mi

qpim +
∑
h∈H

∑
j∈J Sphτ

(
∑
i∈Nτ

Qmax −Qh)γphj 6
∑
i∈Nτ

Qmax, p ∈ P, τ ∈ T Sp

(8.4)

Constraints (8.2) ensure that the number of journeys allocated to vehicles of vehicle
type h is less or equal to the number of vehicles of that vehicle type. Constraints (8.3)
enforce visits in correct periods for each customer. Constraints (8.4) limit the amount of
commodities delivered on trip τ if journey j is selected, i.e. γphj = 1. Note that this
formulation is efficient when the number of trip configurations,

∑
p∈P |T sp |, is relatively

small and limited. For larger numbers of
∑
p∈P |T sp |, other formulations of the JBM are

more suitable, as the number of constraints of type (8.4) grows exponentially with the
number of trip configurations.

Constraints Adopted from the Order Distribution Mixed Integer Program:∑
i∈N

∑
m∈Mi

qpim 6 QOp + qOp , p ∈ P (8.5)
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qpmi = QNDim upim, i ∈ N ,m ∈MND
i , p ∈ P (8.6)

QDimupim 6 qpim 6 QDimupim, i ∈ N ,m ∈MD
i , p ∈ P (8.7)

∑
p∈P

qpim = QDim, i ∈ N ,m ∈Mi (8.8)

∑
m∈MND

i

upim 6 Ipi, i ∈ N , p ∈ P (8.9)

∑
p∈P

upim = 1, i ∈ N ,m ∈MND
i (8.10)

∑
p∈P

upim > U−im, i ∈ N ,m ∈MD
i (8.11)

∑
p∈P

upim 6 U+
im, i ∈ N ,m ∈MD

i (8.12)

upim = 0, p ∈ P, i ∈ N p,m ∈MD
i (8.13)

Constraints on Variables:

γphj ∈ {0, 1}, p ∈ P, h ∈ H, j ∈ Jph (8.14)

upim ∈ {0, 1}, p ∈ P, i ∈ N ,m ∈Mi (8.15)

qpim > 0, p ∈ P, i ∈ N ,m ∈Mi (8.16)

qOp > 0, p ∈ P (8.17)

(8.18)
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Chapter 9
Generation and Description of
Problem Instances

The different solution methods proposed in this thesis are evaluated based on comparisons
of test results on various instances in Chapter 10. This chapter gives an overview of the
instances used. Section 9.1 describes the real-life data which instances are generated from.
The different sets of instances and their applications in this thesis are described in Section
9.2.

9.1 Description of the Data used to Generate Instances

AsD1 andD2 serve customers in different geographic regions, the data sets have different
characteristics which might affect test results in computational study in Chapter 10. There-
fore, a small set of descriptive statistics for the two data sets is provided in Table 9.1. Let
ND be the set of customers in data set D, and di,j be the distance between customer i and
j. Further, let distavgD represents the average distance between a customer and its closest
neighbours in the data set D. The distance is calculated by Equation 9.1, where N (i) is
the neighbourhood of customer i. The neighbourhood consists of its N (i) = h · |ND|
closest customers in terms of distance between customer i and j, where h = 0.4 is the
proportion of customers defined as nearest neighbours used in Section 5.6. The average
quantity ordered per customer, qavgD , is calculated by simply adding the total order volume
for each customer, and divide the sum with the number of customers in the data set.
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distavgD =

∑
i∈ND

∑
i∈N (i) di,j

|ND| · |N (i)|
(9.1)

Observe from Table 9.1 that D1 is composed of customers with almost a doubled av-
erage distance to their closest neighbours compared to D2. In addition to larger distances,
the average customer volume in D1 is approximately 60% of the average total customer
volume in D2. These differences can provide valuable insight into the behaviour of the
solution methods in the computational study in Chapter 10.

Table 9.1: Description of the two data sets, D1 and D2, which are used to generate instances.
The metrics shown for each data set is the size, average distance between each customer and its
neighbours, and average volume per costumer

Metric D1 D2

Number of customers 75 118

distavg 0.662 0.404

qavg 33.893 51.747

9.2 Description of the Test Instances

Test instances are divided into 3 test sets, each containing a number of instances which
are generated to test different aspects of the methods. Each instance holds a subset of
the data provided by ASKO. Instances vary in size and complexity, and are characterized
by the data set they are generated from, the number of customers that are served, and
the number of vehicles available. The Instance ID is named such that ”01D1C10V5” is
instance number 1 in the instance set, extracted from data set 1, having 10 customers, and
5 vehicles. Note that instance size is used when referring to the number of customers in a
given instance.

When describing each instance, we also include the following two metrics which are
calculated in advance of the instance generation: the average distance from a customer
to its nearest neighbours, distavg , and the average volume ordered per customer, qavg .
The former is calculated according to an adaption of Equation 9.1, where the size of the
number of customers in the data set ND is replaced with the number of customers in the
particular instance. The latter is calculated by taking the sum of the total volume ordered
for each customer in the instance, and divide the sum with the number of customers in the
instance. The metrics are included as they might provide valuable insight into behaviour
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of the solution methods in the computational study in Chapter 10.

All instances are generated with a number of available vehicles which amounts to half
of the number of customers. First, this coincides with real-life data provided by ASKO,
where the size of the actual fleet used to serve customers is always less than half the num-
ber of the customers they serve. In addition, the number of vehicles available is determined
based on a discussion of the impact the number of vehicles available has on the behaviour
of the solution methods. If the number of available vehicles is too low, one might risk that
instances are infeasible, as the total vehicle capacity available is less than the total cus-
tomer demand. On the contrary, too many vehicles available increases the complexity of
the problem. Thus, the final value is a trade-off between the probability of obtaining feasi-
ble solutions, and increased problem complexity. Note that this is the number of available
vehicles, and does not need to coincide with the number of vehicles which are actually
used in a solution.

In the following, we describe the test set of small-sized instances (9.2.1), medium-sized
instances (9.2.2), and large-sized instances (9.2.3).

9.2.1 Small-Sized Test Instances

In order to compare the proposed heuristics with exact solution methods, 5 instances are
generated and described in Table 9.2. When comparing solutions found by exact and
heuristic methods on small instances (i.e. where exact methods find optimal solutions), a
basis for performance evaluation of the heuristics is obtained. If a heuristic method is able
to find close to optimal solutions for smaller instances, it might serve as an indication, but
no guarantee, that it obtains quality solutions for larger instances as well.

In Bakken et al. (2019) it was concluded that exact methods struggle to find solutions
for instances with more than 10 customers within a reasonable amount of time. Therefore,
the selected instances are all composed of 10 customers. In order to test the method be-
haviour on instances with different characteristics in terms of average distances between
customers and average ordered volume per customer, the instances are selected to have
various values of distavg and qavg .

93



Chapter 9. Generation and Description of Problem Instances

Table 9.2: Overview of small-sized instances, each consisting of 10 customers and 5 vehicles. Three
of the instances are from D1, and instances are from D2. The average distance between a customer
and its neighbours and average order volume is given.

Instance ID Data Set #Customers #Vehicles distavg qavg

01D1S57C10V5 1 10 5 0.714 35.754

02D1S97C10V5 1 10 5 1.223 29.195

03D1S80C10V5 1 10 5 0.647 42.969

04D2S89C10V5 2 10 5 0.420 55.253

05D2S01C10V5 2 10 5 0.412 66.129

9.2.2 Medium-Sized Test Instances

The heuristics proposed in this thesis have several parameters which must be tuned before
tests can be conducted to evaluate their performance. A set of medium-sized instances are
generated in order to tune parameters for all methods. The tuning process and the resulting
parameter values are described in Chapter 10. Note that the instances are, subsequent to
parameter tuning, used to evaluate and compare performance of the proposed heuristics.

The instances are described in Table 9.3. They have a diverse selection of values for
distavg and qavg in order to avoid parameters which are limited to be suited for instances
with certain characteristics.

Table 9.3: Overview of medium-sized instances, each consisting of 25 customers and 12 vehicles.
Two instance set contain two instances from each data set. The average distance between a customer
and its neighbours and average order volume is given.

Instance ID Data Set #Customers #Vehicles distavg qavg

01D1C25V12 1 25 12 1.002 28.205

02D1C25V12 1 25 12 0.7039 33.497

03D2C25V12 2 25 12 0.390 64.127

04D2C25V12 2 25 12 0.403 50.176

9.2.3 Large-Sized Test Instances to Compare the Heuristic Solution
Methods

In order to compare the heuristic methods proposed in this thesis, we generate a set of
real-sized instances. A description of the generated instances is provided in Table 9.4. The
instances consist of subsets of a data set of either 50, 75, 100, or 115 customers. Note
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that all instances of 100 and 115 customers are drawn from D2, as D1 only consist of 75
customers. As expected, distavg and qavg converge towards values for the entire data sets
(Table 9.1) when the number of customers approach their full sizes.

Table 9.4: Overview of large-sized instances, containing instances of sizes from 50 to 115 cus-
tomers, and 25 to 62 vehicles. The majority of the instances originate from D2 as D1 has total size
of 75 customers. Average distance from a customer to its neighbours and average order volume is
given.

Instance ID Data Set #Customers #Vehicles distavg qavg

01D1C50V25 1 50 25 0.701 31.911

02D1C50V25 1 50 25 0.625 33.479

03D2C50V25 2 50 25 0.383 48.252

04D2C50V25 2 50 25 0.387 55.572

05D1C75V37 1 75 32 0.662 33.893

06D2C75V37 2 75 32 0.428 53.447

07D2C75V37 2 75 32 0.395 50.480

08D2C75V37 2 75 32 0.395 52.212

09D2C100V50 2 100 50 0.418 52.275

10D2C100V50 2 100 50 0.421 53.569

11D2C100V50 2 100 50 0.417 50.767

12D2C100V50 2 100 50 0.401 49.859

13D2C115V62 2 115 62 0.399 52.591

14D2C115V62 2 115 62 0.410 51.400
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Chapter 10
Computational Study

This chapter contains a computational study of the four solution methods proposed in this
thesis: the HGA (Chapter 5), the MPHGA (Chapter 6), the MPABC (Chapter 7), and the
CJGM (Chapter 8). All methods are implemented in Java 8 with SDK 11.0.6 and Gurobi
version 8.1.1 is used as the commercial optimization solver. The computers that have
conducted the tests is a rack of Dell PowerEdge R640 running on Linux with a 2 x Intel
Xeon Gold 5115 with 20 cores at 3.2 GHz, 96 Gb of RAM and a 120GB SSD installed.

As the heuristics are non-deterministic, meaning that their behaviour can be different
with the same input on different runs. Therefore, reported results for all methods during
parameter tuning are for each tested parameter value reported as the average of 5 runs,
i.e. 5 samples. Remaining tests are reported as the average of 10 samples. In total, 2900
samples are solved and used as basis of the analysis presented in this chapter.

In order to enhance the understanding of this chapter, Figure 10.1 illustrates routing so-
lutions obtained by the CJGM for two different problem instances, both with 50 customers.
Figure 10.1a and 10.1b show the solution for an instance with customers in Trøndelag
(D1), whereas Figure 10.1c and 10.1d show the solution for an instance with customers
in Vestfold&Telemark (D2). Nodes are customers, and trips are indicated by blue lines.
Depot is represented by a red square.

This chapter is structured as follows. Section 10.1 describes parameter values and how
they were tuned. In Section 10.2, the heuristics are compared to solutions found by an
exact solver on small-sized instances. A discussion and comparison of the behavior of
the heuristics for medium and large-sized instances are given in Section 10.3. In Section
10.4, we study how different mechanisms in the CJGM contribute to method performance.
Finally, Section 10.5 provides a study of solutions obtained by the CJGM for full-size
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(a) Trøndelag (b) Trondheim

(c) Vestfold&Telemark (d) Tønsberg area

Figure 10.1: Two routing solutions obtained by the CJGM for Trøndelag (D1) and Vest-
fold&Telemark (D2) for a single period. Figure 10.1b and Figure 10.1d is zoomed in for the same
solutions given in Figure 10.1a and Figure 10.1c respectively. Blue nodes represent customers and
lines show trips. The location of the depot is marked by the red square. The example consists of 50
customers for each of the data sets.

instances, which discusses solution characteristics, and how they relate to the real-life
problem faced by ASKO.

10.1 Parameter Tuning

As performance of metaheuristics in general varies with the value of its parameters, we
have conducted a parameter tuning procedure in advance of the testing. Parameters should
in general be tuned in order to balance complementary properties of the search algorithms,
e.g. exploration and exploitation, and computational time and solution quality. In each of
the four proposed solution methods, there are several parameters which must be adjusted
in order to find the configuration which maximize their ability to find quality solutions
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within a reasonable run time for various instances.

The Tuning Procedure

In general, for each of the four solution methods, parameter tuning is proceeded as follows.
Initially, parameters which are calibrated in relevant literature are imported and assumed
to be fixed in advance of the tuning process. Next, the remaining parameters are tuned in
a sequential order. The test value range for a parameter is determined by computational
limits and reasonable bounds. The order of which parameters are tuned is selected based
on preliminary testing of their impact on method behaviour, i.e. how solutions are altered
when parameter values are changes. Dependencies between parameters have also affected
the order of which they have been tuned. For instance, parameters in the MPABC which
affect how a bee updates its position are determined before the number of bees of each
type are tuned.

Each parameter is tuned on the 4 instances dedicated to parameter testing described
in Section 9.2. Within the value range, a set of values are selected as potential parameter
values. All parameter values are based on 20 samples, 5 for each instance, and objective
values and run times are reported. The average value for all parameter values are calculated
for each instance, and are normalized across the parameter values tested. A complete
overview of all results, i.e. objective values and run times, given as normalized values, is
provided in Appendix A. Final values are selected based on the resulting objective values
and run times.

In the following, we describe the parameters for the genetic algorithms (i.e. the HGA
and the MPHGA), the MPABC, and the CJGM. Time limits are set to 10 minutes (600
seconds). All methods are subject to an early stopping criteria, forcing termination if the
number of consecutive iterations without improvement N it reaches 20. This number is
determined based on preliminary testing.

10.1.1 Parameters in the Genetic Algorithms

The performance of genetic algorithms rely on the configuration of input parameter values
(Vidal et al., 2012). As an attempt to identify a good configuration, Vidal et al. (2012)
applied a meta-calibration approach, which has proven to perform well in calibration for
other genetic algorithms. Their approach proceeds by applying an independent calibration
phase for each of the VRP problem classes they studied, and generate a final set of param-
eters which can be applied independent of problem class. We assume that the parameter
values adopt to both the HGA and the MPHGA, and consider these values as fixed when
the remaining parameters are tuned. An overview of the imported parameters, their fixed
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Table 10.1: Parameter values adopted from and calibrated by Vidal et al. (2012) used in the HGA,
MPHGA, and CJGM.

Parameter Selected Value Description

µ 25 Population size (Algorithm 1)

el 0.4 Proportion of elite individuals (Section 5.4)

nc 0.2 Proportion of close individuals (Section 5.4)

ped 1.0 Probability for education (Algorithm 1)

prep 0.5 Probability for repair (Algorithm 1)

hn 0.4 Neighbourhood size (Section 5.6)

ξREF 0.2 Reference proportion of feasible individuals (Section 5.11)

values, and a brief description of their purpose, is presented in Table 10.1. A detailed
description of their usage areas are found in Vidal et al. (2012).

Table 10.2 provides an overview of the parameters which have been subject to a tuning
process, with a brief description of the parameters, selected values, a list of the tested
values, and which solution method they appear in. These values are subject to a tuning
process based on two considerations: (1) preliminary testing showed that values given in
literature are not applicable, or (2) no values are proposed in literature. We assume that the
same configuration of shared parameters applies to both the HGA and the MPHGA, and
therefore conduct tests for their common parameters with the HGA only. In the following,
we provide a brief justification for how test results, i.e. run times and objective values, are
used to select the final parameter values.

Vidal et al. (2012) emphasize that the best value for the number of offsprings gener-
ated, λ, may vary considerably between different VRP classes. Test results reveal that by
increasing λ, objective values are reduced at the cost of increased run times. We consider
objective values as more important than run times, as the latter in most cases are far from
the maximum time limit. Therefore, the value of 80 is selected.

The value of heuristic dominance criteria, γ, represents a trade-off between obtained
run time and the probability of obtaining an optimal way of combining trips into journeys
which are assigned to vehicles in the adSplit-procedure (Section 5.3). By assessing test
results, the best objective is obtained with γ = 1, and is selected, even though it is at the
expense of more computational time. Observe that this makes the the labeling procedure
in adSplit (Section 5.3) exact, as discussed in Section 18.

For the probability of applying trip optimization, ptrip, we know that the trip optimizer
operator (5.8) modifies trips in a deterministic manner, and therefore makes individuals
more similar. Thus, increasing ptrip results in less diversity, which in turn increases the
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Table 10.2: Parameter values tuned for the Genetic Algorithms. All values are determined by values
found in Appendix A.

Parameter Value Description Tested Values Model

λ 80 Offsprings generated (Algorithm 1, 5) [40, 80, 120, 160, 200] HGA, MPHGA

γ 1 Heuristic dominance criteria (Inequality 5.9) [1, 2, 3, 4, 5] HGA, MPHGA

ptrip 0.25
Probability of trip optimization (Algorithm 1,
5)

[0, 0.25, 0.5, 0.75, 1] HGA, MPHGA

pmip 0.75 Probability of ODC-MIP (Algorithm 1, 5) [0, 0.25, 0.5, 0.75, 1] HGA

|ODCnew| 12
Number of ODCs generated during re-
initialization (Equation 6.1)

[3, 6, 9, 12, 15] MPHGA, MPABC

k 2 Tournament size (Section 5.11) [2, 3, 4, 5, 6] HGA, MPHGA

probability of premature convergence (see Section 2.2.3). As test results provided marginal
differences in run times, ptrip is set to 0.25 based on obtained objective values. For the
probability of applying the OD-MIP, pmip, an increased probability value strictly improves
the objective value, but at the expense of increased run times. A reasonable computational
efficiency is obtained for pmip = 0.75.

The value of |ODCnew| is set to 12, as the best results are obtained with respect to both
run times and objective values. A larger value of |ODCnew| generates more diverse order
distributions each time a PHGA has its ODC re-initialized in the MPHGA. Therefore, a
value of 12 implies that enhanced search diversity is preferred, which coincides with the
discussion of the importance of diversity in Section 2.2.3. The same reasoning applies to
why the optimal value of the tournament size k is 2, based on both objective values and run
times. With k = 2, the selection procedure is identical to the binary tournament selection
applied in Vidal et al. (2012). Among the tested values, k = 2 evaluate population diversity
the most, as it assigns the highest probability of selecting poor individuals to survive to the
next generation.

10.1.2 Parameters in the Multi-Periodic Artificial Bee Colony Algo-
rithm

Table 10.3 provides an overview of the parameters which have been tuned for the MPABC,
including their selected values. Each parameter has been tuned separately, and the order
is determined based on dependencies. In particular, the optimal position update policy is
found first, i.e. the parameters determining how employees and onlookers perform local
search. Afterwards, the size of the bee colony is determined, followed by the parameters
which affect the ODC-update policy. As the MPABC, to the extent of our knowledge, is
not proposed to solve similar problems as the one studied in this thesis in literature, no
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parameter values are adopted from previous work. In the following, a brief comment on
the selected values for some of the parameters listed in Table 10.3 is given.

The reader must be aware that Ri, ρo, and NODC are multiples of the number of
dimensions, i.e. number of customers, as the parameters must scale with the problem
size. Results obtained for different values of ρo unambiguously indicate that it should be
set to 0. The fact that a continuous space is used to represent solutions can explain why
the random perturbation of the onlooker position should be removed. Small changes of a
continuously represented solution can result in significant changes when it is mapped to
a discrete representation. Even if the random adjustment by ρo only slightly moves the
onlooker position in the continuous space, the discreet translation can be amplified.

As for the number of local enhancements nLES , the best value is found to be 3. As the
LES-operator cannot deteriorate the objective value, one would think that nLES should be
as large as possible. A likely explanation for why 3 is optimal according to the test results,
is that LES is a computationally expensive operation, as it requires the adsplit-procedure to
evaluate the quality of the changed solution. Therefore, this parameter represents a trade-
off between the number of searches each MPABC can perform within given time limit,
and the number of LES operations applied.

Nonlookers andNemployees have been tuned simultaneously, as they together represent
a balance between search exploration and exploitation. A large number of employees will
result in an increased amount of exploration of the entire solution space, while a large
number of onlookers represents a high level of exploitation in the local solution space
around employees. With limited computational power, a balance between these factors is
paramount. Test results showed that the best balance is obtained by having 20 employees
and 8 onlookers per employee, i.e. 160 onlookers.

As discussed in Section 7.2, ξREF is tested for a range of suitable values. The MPABC
is also tested without penalty adjustment, indicated by −. Even though larger values of
ξREF report better performance in terms of run times, no adaptive penalty adjustment
yields the best results in terms of objective values. Therefore, adaptive penalty adjustment
is not applied for the MPABC.
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Table 10.3: Parameter values for MPABC. All values are based on results given in the tables reported
in Appendix A

Parameter Value Description Tested Values

kn 1 Range for weight ωn of random neighbour
position (Equation 7.4) [0.25, 0.50, 0.75, 1]

kgb 0.75 Range for weight ωgb of global best position
(Equation 7.4) [0, 0.25, 0.50, 0.75]

Ri 0.4 Dimensions changed in position update
(Equation 7.4) [0.1, 0.4, 0.7, 1]

ρo 0 Onlooker random adjustment (Equation 7.2) [0, 0.1, 0.2, 0.3, 0.4]

nLES 3 Number of enhancements (Algorithm 7) [0, 1, 2, 3, 4, 5, 6]

λgb 1.3 Allowed range from best solution for trials
reset (Equation 7.3) [1.0, 1.1, 1.2, 1.3, 1.4, 1.5]

Nonlookers 8 Number of onlookers per employee (Algo-
rithm 6) [3, 5, 8, 10]

Nemployees 20 Number of employees (Algorithm 6) [5, 10, 15, 20]

Nscouts 50 Number of scouts (Algorithm 6) [25, 50, 75, 100]

NODC 4 Number of iterations per ODC (Algorithm
6) [2, 4, 6, 8, 10]

ξREF -
Reference proportion of feasible individuals
ODC (Algorithm 6). (-) denotes no adjust-
ment

[0.7, 0.75, 0.80, 0.85, 0.90, - ]

10.1.3 Parameters in the Combinatorial Journey-Generating Model

For the CJGM, the parameter which balances the number of PHGAs and PABCs solved
in parallel, (step 1 in Figure 8.1) must be tuned. Note that the MPHGA and MPABC are
tuned in advance, such that the optimal balance of PHGAs and PABCs is decided when
they both are calibrated sufficiently. Figure 10.2 illustrates the objective values (y-axis)
obtained when the number of PHGAs ranges from 0 to 6 (x-axis), i.e. from 0% to 100%.

Results indicate that the set of heuristics solved in the CJGM should be composed of
both PHGAs and PABCs. As similar solution methods are more likely to create journeys
with similar characteristics, the probability of obtaining a larger set of journeys is increased
if the CJGM exploits a mix of PABCs and PHGAs. When the JBM-solver in the CJGM
(Section 8.3) is provided with more journeys to construct a solution from, the probability
of of obtaining better solution quality is increased. Based on results shown in Figure 10.2,
the number of PHGAs is set to 4 out of 6, i.e. 66.67%.

The Nsol parameter is not subject to tuning, as more journeys in the JBM will, as
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Figure 10.2: Deviation from mean when tuning the fraction of PHGAs in the CJGM. Full table can
be found in Appendix A.

already stated, increase the chance of obtaining quality solutions. However, if too many
journeys are passed to the JBM (8.3), the solution time will drastically increase. This
will reduce the time dedicated to PHGAs and PABCs in the CJGM to find good solutions.
Therefore,Nsol = 3, and the time limit for the JBM is set to 3 minutes (180 seconds). This
gives the JBM a total of 18 complete solutions of journeys to choose from when creating
a solution. The time for one iteration of solving PABCs and PHGAs in the MPHGA,
MPABC, and the CJGM, T it, is increased proportionally with the number of customers
for the instance solved. This is motivated by a the increase in computational time needed
in the PABC and PHGA operators, as instances grow in size.

10.2 Comparing Exact and Heuristic Methods on Small-
sized Instances

In this section, we present and discuss results obtained by solving instances in Table 9.2
with the exact arc-flow model (AFM) (Chapter 4), and the four heuristics proposed in this
thesis: the HGA, MPHGA, MPABC, and CJGM.

The time limit for the AFM is set to 8 hours (28800 seconds). The heuristic methods
are solved with a time limit of 30 minutes (1800 seconds), and an early stopping criteria
if no improved solution is found after 20 iterations. Recall that in the HGA, one iteration
is considered solving Algorithm 1. In the MPHGA, step 1-3 in Figure 6.1 amount to one
iteration. The same applies to the MPABC, which adapts the framework of the MPHGA
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as described in Section 7.1. For the CJGM, one iteration is composed of step 1-3 in Figure
8.1.

Objective values for all methods on the 5 small-sized instances in Table 9.2 are reported
in Table 10.4. The mixed integer programming (MIP) gap is reported for each instance
solved by the AFM. The MIP-gap is by Gurobi calculated as |ObjBound − ObjV al|/
|ObjV al|, where ObjV al is the MIP objective bound, and ObjV al is the incumbent solu-
tion objective. Gurobi considers a solution as optimal whenever the gap is below 0.01%.
For all instances where the obtained MIP-gap is non-zero, the model was terminated by the
time limit. For the heuristics, best and average values are reported as the deviation (in %)
from the best primal solution obtained by the AFM. Objective values for the heuristics are
given as % of the exact solutions, where the best found solution and the average solution
are reported.

Table 10.4: Results showing how the different solution methods perform compared to the best ob-
jective solution found by an exact solver. All mean entries are based on 10 runs, and the best instance
is given in the best-columns. The percentages given represents the methods average deviation from
the objective value found be the exact solver.

Instance ID AFM HGA MPHGA MPABC CJGM

Obj Gap
(%)

Mean
(%)

Best
(%)

Mean
(%)

Best
(%)

Mean
(%)

Best
(%)

Mean
(%)

Best
(%)

01D1C10V5 6,005 33.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

02D1C10V5 6,834 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

03D1C10V5 6,056 26.5 0.03 0.00 − 0.17 − 0.21 − 0.17 − 0.21 − 0.18 − 0.21

04D2C10V5 5,936 46.9 0.71 0.08 0.04 0.02 0.04 0.02 0.02 0.00

05D2C10V5 6,509 7.21 9.71 0.80 0.60 0.28 0.26 0.02 0.36 0.17

Average 2.09 0.18 0.10 0.02 0.03 − 0.03 0.04 − 0.01

Table 10.5 shows average run times and standard deviations (in seconds) for all heuris-
tics on the 5 small-sized instances in Table 9.2. For all instances except from 02D1C10V5,
the non-zero MIP-gap indicates that the time out limit was reached. Run times are there-
fore not reported in the table. For 02D1C10V5, 58 minutes (3480 seconds) were used to
find the solution.

The results show that the AFM is unable to find solutions with no optimality gap within
the given time limit on all instances, except for 02D1C10V5. Note that test instances
dedicated to find benchmarks by the AFM, were generated based on results obtained in
prior work by Bakken et al. (2019), where an average optimality gap of instances with 10
customers were close to 0.2%. However, larger gaps for similar sized instances reported
in Table 10.4 might be a consequence of differences in the data which test instances are
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Table 10.5: The table shows the mean and standard deviation for the run time for each solution
method, given in seconds.

Instance ID HGA MPHGA MPABC CJGM
Mean (s) SD (s) Mean (s) SD (s) Mean (s) SD (s) Mean (s) SD (s)

01D1C10V5 123 32.8 485 119 232 35.0 467 301

02D1C10V5 125 13.8 391 9.97 216 20.0 324 319

03D1C10V5 172 42.9 573 163 246 46.8 1014 663

04D2C10V5 103 45.2 731 207 409 82.9 1000 780

05D2C10V5 122 73.4 1099 1037 280 89.6 862 577

Average 125 41.6 656 156 290 54.9 733 528

generated from. In Bakken et al. (2019), a data generator was constructed to create test
instances, whereas this thesis solves for instances generated from real-life data. A brief
comparison reveals that customers in instances generated from real-life data have more
frequent visits with larger volumes, and therefore tend to be more difficult to solve. In
addition, the problem studied in this thesis is solved for one more period than in Bakken
et al. (2019), in order to include Saturday as a delivery day.

With a non-zero MIP-gap, it is not possible to determine with certainty whether the
AFM finds optimal solutions. However, the HGA, MPHGA, MPABC, and CJGM in gen-
eral tend to deviate only slightly from the objective obtained by the AFM. Except for the
HGA on instance 05D2C10V12, all methods obtain a mean deviation of less than 1% from
the AFM solution on all instances. The heuristic methods are in fact all able to find the
same solution as the AFM for instance 01D1C10V5 and 02D1C10V5. The latter is par-
ticularly important when evaluating solution quality, as the AFM guarantees optimality by
having a gap of 0.00%.

For instance 03D1C10V5, the MPHGA, MPABC, and CJGM performs better in terms
of objective values than the exact method. As the optimality gap for the solution found by
the AFM is non-zero and thus provides no optimality guarantee, these results are plausi-
ble. However, an interesting observation is that the heuristic methods find different best
solutions. One possible explanation is that the characteristics of instance 03D1C10V5,
which relative to the other instances has average values for volume and distances between
customers (Table 9.2), enable multiple solutions to be considered of similar quality.

The MPABC performs better than the CJGM with respect to both average solution, and
best found solution on instance 03D2C10V5 and instance 05D2C10V5. Recall that the
MPABC and the MPHGA are build on solving multiple PHGAs or PABCs, respectively.
The CJGM combines journeys generated by both PHGAs and PABCs. Therefore, the
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CJGM should find solutions which are at least as good as those obtained by the PABCs
and PHGAs it is composed of. One possible explanation for this behaviour is that the
PHGA and PABC are both non-deterministic, and therefore not guaranteed to find the
same solutions in each run. Another possible explanation is that there are differences in
how the methods distribute their run time. The MPHGA and MPABC are able to execute
more iterations than the CJGM, as they do not need to solve the exact JBM (Section 8.3)
to find new order allocations between iterations.

The CJGM reports a larger average run time in Table 10.5 than both the MPABC and
the MPHGA. A larger run time is expected, as it combines solutions found by PHGAs
and PABCs when solving an exact journey-based model (Section 8.3). Table 10.5 also
shows that the CJGM reports the largest standard deviation with respect to run time. When
compared to the HGA, MPHGA and, MPABC, the CJGM is less dependent on obtaining
quality journeys in the same run, as it is allowed to combine journeys from multiple runs in
one iterations (i.e. PHGAs and PABCs) to construct a solution. Therefore, the probability
of finding a good solution in the first iteration is larger for the CJGM when compared to
the remaining methods. However, as the length of one iteration in the CJGM often exceeds
those in the MPHGA and MPABC due to exploitation of the exact JBM, the total run time
grows rapidly when multiple iterations are needed.

10.3 Comparing Methods on Medium and Large-Sized
Instances

This section presents and discusses results obtained on test instances in Table 9.3 and
9.4, described in Chapter 9. All methods are tested on 18 instances in total, and detailed
results are reported in Table B.1 in the Appendix. The methods are terminated if either
of the following two criteria is fulfilled: completing a maximum of 20 iterations without
improvement, or reaching a time limit of 30 minutes (1800 seconds). Note that most
samples where terminated because the time limit was reached, except for instances of 25
customers for the HGA. This might indicate that further improvement could have been
obtained if the methods were given more run time.

A brief comment on how parallelization is exploited in each of the solution methods
is provided. Recall that the HGA solves the entire problem for all periods simultaneously,
whereas the PHGA and the PABC solve the problem for each period separately. As the
MPHGA and MPABC solve multiple PHGAs and PABCs in parallel, respectively, while
the CJGM solves a combination of both, the HGA is the only method which does not ex-
ploit any level of parallelization. Therefore, the HGA uses less of the available computing
power than the other three methods. When doing comparisons, the reader should be aware
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that the HGA is subject to this disadvantage. The maximum number of iterations without
improvements, N it, is set equal to 20 for all methods. As suggested by Vidal et al. (2012),
the number of generations without improvement before diversification of the population,
Ndiv , is set to 0.4N it for the HGA.

10.3.1 Run Time Analysis on Medium-Sized Instances

In Figure 10.3, development of objective values (y-axis) found by all methods are illus-
trated for four instances with 25 customers. The x-axis represents run time (in seconds). In
all examples, the HGA terminates before Tmax is reached, which means that the algorithm
has performedN it iterations without improvement. The other methods are terminated due
to the time limit.

For all instances except 01D1C25V12, the CJGM consistently finds quality solutions
within the first 500 seconds. The MPABC and the MPHGA seem to need more iterations to
obtain solutions with similar quality. As the CJGM is allowed to combine solutions found
by various heuristics, it is reasonable that it has a larger probability of finding quality
solutions in earlier iterations. As shown in Figure 10.3, the MPABC often finds a good
initial solution compared to its final best solution. However, it seems to struggle finding
solution improvements, which is particularly clear for instance 03D2C25V12.

In general, the HGA tends to initially find solutions which are worse than those found
by the other methods. A plausible explanation is that the periodic decomposition exploited
in all algorithms except from the HGA makes it easier to obtain good quality solutions in
early iterations, as improvements in one period rather than in all periods is more easily
adopted to update the current best solution. Without periodic decomposition, improvement
of an individual in the HGA in one period may be offset by a degeneration in another
period, making the improvement less likely to be included in solutions which are carried
to the next generation.

The HGA seems to most rapidly update its current best found solution. This is likely
resulting from the fact that it more often evaluates new solutions, compared to the periodic
algorithms, which only evaluate solutions when each periodic problem is solved in one
iteration. The sudden drops for the HGA probably indicate that a new best solution is
found, where the fleet size is reduced by one vehicle. Another interesting observation
is that the HGA obtains significantly worse solutions compared to the other methods on
instances from data set 2 (D2), i.e. 03D1C25V12 and 04D2C25V12. This tendency is
also supported by Table B.1, where the HGA reports poor solutions on instances generated
from D2 compared to the other methods, which is not observed for instances from D1.

Plausible explanations for this behaviour can be found by comparing characteristics of
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(a) Instance 01D1C25V12 (b) Instance 02D1C25V12

(c) Instance 03D2C25V12 (d) Instance 04D2C25V12

Figure 10.3: Illustration of the run time development of all algorithms for 4 different instances, all
consisting of 25 customers. Figure 10.3a and Figure 10.3b are from data set D1 and Figure 10.3c
and Figure 10.3d are from D2. The objective value for a given time is reported.

the different data sets. As described in Chapter 9, D2 has a lower average driving distance
between customers, but higher average quantity delivered per customer when compared
to D1. Recall that solutions in the HGA are assigned one order allocation each, which,
as described in Section 5.5.1, 5.7.2, and 5.10, are continuously evaluated and updated
during the search. In contrast, order allocations are less frequently updated for the methods
exploiting a periodic decomposition. Consequentially, the HGA might suffer from having
the flexibility in moving orders around more frequently, which can explain its reduced
performance on instances fromD2. Quality journey solutions often need several iterations
to be found, and changing the order distribution frequently might be a distortion rather
than an advantage when more volume must be delivered.
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10.3.2 Scalability of the Methods

In order for a method to be valuable as decision tool for ASKO when they schedule jour-
neys ahead of a planning period, its ability to obtain quality solutions for real-size instances
is important. Thus, the methods are compared on how they scale with an increasing num-
ber of customers. Figure 10.4 shows the average deviation (in %) from the best objective
found across all methods, on medium and large-sized instances for the HGA, MPHGA,
MPABC, and CJGM. A detailed explanation of how values are calculated is provided in
the following. First, the average for each instance by any model is calculated. Secondly,
all values are normalized based on all averages from every method for each customer size.
Lastly, the deviation from the best found solution across all methods is reported for each
method. These values are reported in Figure 10.4. As the CJGM on average finds the best
solution for all instances, the average deviation from the average CJGM solution for all
instance sizes for the HGA, MPHGA, and the MPABC are reported in Table 10.6.

Observe that solutions obtained by the MPHGA are approaching those reported by
the CJGM as the deviation for the MPABC grows with the number of customers. This
indicates that the exact JBM exploited in the CJGM selects journeys obtained by PHGAs
rather than PABCs when constructing solutions for larger instances. These observations
are reasonable, as the PABC probably generates solutions which are inferior compared to
the PHGA for large instance sizes based on its poor scaling abilities of the MPABC when
the number of customers exceeds 50, as shown in Figure 10.4. Table 10.6 confirms these
observations, where the MPABC deviation is quadrupled from instances with 50 to 100
customers.

A possible explanation is found by assessing the scalability of the local search op-
erators applied in the MPABC and the genetic algorithms (the HGA and the MPHGA).
Recall that the genetic algorithms exploit a local search operator denoted education (5.6),
which is applied for all solutions with a given probability ped = 1 in each iteration. In
the MPABC, the only operator which is greedy during the search, i.e. guarantees solution
improvements, is the local enhancement scheme (LES) (Section 7.2.4). However, the LES
applies the adSplit-procedure (5.3) to evaluate improvements. As discussed in Section
5.3.3, adSplit is a computational expensive procedure. For this reason, design choices in
the MPABC are made such that the LES is applied for a limited number of the explored
solutions in each iteration. Note that differences between the MPHGA and the MPABC
are less substantial on smaller instances, as adSplit grows exponentially in run time with
the number of customers.

Figure 10.4 also shows that the HGA finds poor solutions on medium-sized instances
compared to all other methods. It reports a solution which is more than three times the
second worst performing method on instances with 25 customers. Also, its deviation is
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Figure 10.4: Comparison of deviation from the objective of best obtained solution for the instance
for all methods and the different instance sizes. The objective deviation is given in (%) of higher
objective value than the best solution.

strictly growing with the number of customers. In contrast, the MPHGA finds solutions
close to the best objective obtained across all methods for medium-sized instances, and in
fact reports lower deviation from 100 to 115 customer instances.

As the the MPHGA and the HGA are differentiated by the periodic problem decompo-
sition, results might indicate that decomposition contributes to improved ability of finding
quality solutions. Recall that by decomposing the entire problem into smaller problems for
each period, the search for solutions is structurally altered, as changes are evaluated on a
periodic level rather than for all periods as one. Without decomposition, solution changes
for a period can be offset by poor solutions in other periods. Therefore, results shown in
Figure 10.4 indicate that better solutions can be obtained when each period is allowed to
optimize journey schedules independently.

Table 10.6: Deviation, given in %, from the average value obtained by the CJGM for all customer
sizes for all solution method.

Instance Size HGA (%) MPHGA (%) MPABC (%)

C25 17.31 2.52 5.01

C50 22.49 2.46 10.67

C75 23.76 9.86 25.54

C100 25.44 7.77 42.66

C115 31.49 1.96 46.77

Average 24.10 4.92 26.13
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10.3.3 Stability of the Methods

To assess the stability of the algorithms, the coefficient of variation (CV) is calculated and
averaged for instances with the same number of customers. CV (in %) for each method
on a given instance size, is calculated by dividing the standard deviation of its objective
value from all samples by their mean. The lower CV, the more stable the method is. Note
that CV does not provide any insight into solution quality. It is simply a measure of how
consistent a method is in obtaining solutions within the same value range.

Table 10.7 displays the CV (in %) for all instance sizes and all methods. The CJGM
is the most stable method on average, having the lowest CV for all instance sizes except
from 50 customers. An overall tendency is that the CV is increased when the instance size
grows. This trend is most significant for the MPABC. A possible explanation is that when
new areas in the solution space are explored in the MPABC, these areas are randomly
selected. Thus, there are no guarantee that areas are not re-visited during the search. The
CJGM and the HGA seem to be the most resistant against instability when instances grow
in size. Overall, the stability performance of all methods are considered good, as average
CVs are all below 3%.

Table 10.7: Average coefficient of variation in % for each solution method based on instance size.
Average across all methods for given instance size is given, as well as average CV for each method

Instance Size HGA (%) MPHGA (%) MPABC (%) CJGM (%) Average (%)

C10 0.16 0.01 0.01 0.01 0.05

C25 3.14 3.27 2.14 1.33 2.47

C50 4.18 3.29 1.75 1.96 2.80

C75 4.29 4.88 2.38 1.74 3.32

C100 2.01 3.69 6.12 1.91 3.43

C115 2.16 3.47 4.99 2.19 3.20

Average 2.79 2.72 2.32 1.45 2.32

10.4 A Detailed Study of Mechanisms in the Combinato-
rial Journey-Generating Model

Based on results discussed in Section 10.2 and 10.3, the CJGM appears superior to the
other methods in terms of ability to find quality solutions within early iterations, scala-
bility on real-size instances, and solution stability. Therefore, this section is dedicated to
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investigate detailed characteristics of the CJGM. Two topics are investigated: the origin
of the journeys which are selected in the final solution, and the contribution to solution
improvement which is provided by the exact JBM (Section 8.3).

Figure 10.5 shows where the journeys, which are used in the final solution obtained by
the CJGM, originate from. The x-axis shows the percentage of solutions obtained from
the PHGA, PABC or both, and the y-axis denotes different instance sizes. Recall that the
CJGM solves 6 heuristics, i.e. 2

3 PHGAs and 1
3 PABCs, determined by parameter tuning in

Section 10.1. The percentage reported in Figure 10.5 represent the average values among
all samples for each customer size. In some cases, both methods find the same journeys
used in the final solution. This is denoted as PABC&PHGA.

The majority of journeys in the CJGM solution originate from PHGAs for all instance
sized, as can be seen in Figure 10.5. Particularly, when the number of customers exceed 75,
97% of all journeys originate from PHGAs. These observations match the results shown in
Figure 10.4, where the MPABC scales poor with the number of customers. On small-sized
instances, the JBM exploits a combination of solutions obtained by either only PHGAs and
PABCs, or identical journeys generated by both methods. This indicates that the PABC
and the PHGA find solutions with different characteristics, which both prove to be of high
quality for smaller instances. As the PABC is able to generate journeys which the PHGA
cannot find, the PABC has a positive contribution on the CJGM solution. This motivates a
further improvement of the PABC to improve its scalability for larger instances, in order
for more diverse quality journeys are passed to the JBM. On the other hand, the PHGA
can diversify its search so that it finds the journeys which only the PABC finds. A larger
variety of solutions to select from when constructing a final solution improves the search
diversity for the CJGM.
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Figure 10.5: Development of where journeys originate from in the CJGM. PABC&PHGA denotes
journeys which were found in both a PHGA and a PABC.

The box plot in Figure 10.6 shows the improvement (in %) of solutions found by the
heuristics, which is obtained when solving the JBM with these solutions as input. The plot
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is created based on objective values for all samples for different customer sizes, based on a
total of 1850 data-points. Data-points are values extracted from each iteration of the CJGM
when the JBM is applied (see Figure 8 in Section 8.2). The improvement is measured by
(objSOL − objJBM )/objSOL), where objSOL is the objective of the best solution found
by PABCs and PHGAs during the previous iteration, and objJBM denotes the objective
value for the solution obtained by the JBM. The percentage improvement thus shows how
much the fitness is reduced from the best solution found in that iteration.

Figure 10.6 shows that the impact of the JBM strictly increases with growth in instance
size. For instances with 115 customers, the average contribution to solution improvement
caused by the JBM is approximately 4%, corresponding to a 30% increase from its contri-
bution for instances with 25 customers. Recall that Section 10.3 showed that the MPHGA
and the MPABC, and thus the PHGA and PABC, are both able to find quality solutions for
smaller instances. Therefore, when solutions obtained by the heuristics are already good,
the JBM on average obtains less improvement when combining those solutions. This is
shown by the large box for instances of 25 customers, where the 25th percentile is close
to 0. Note that in some cases, the JBM has a large impact on these instances, where it
contributes with a 10% improvement. This might be a consequence of a poorly initialized
order distribution in advance of the first iteration. It is important to be aware that solutions
found by the JBM are not guaranteed to be of high quality, even if they are improved from
the input journeys generated by PHGAs and PABCs. If the input journeys are of poor
quality, the combination of them will probably remain poor.
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Figure 10.6: Box plot of the improvement the JBM yields to the solutions found by the PHGAs and
PABCs in (%). Top and bottom whisker correspond to lowest and highest percentage. The bottom
and top of the box corresponds to the 25th and 75th percentile, meaning 50% of all data points lies
within the box. The line in the box correspond to the median, and the diamond marks the mean for
each customer size.
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10.5 A Detailed Study of Full-Sized Solutions

In this section, solutions obtained by the CJGM for full-size instances with a time limit
of 2 hours (7200 seconds), i.e customer size 75 for D1 and 118 for D2, are studied. The
differences in characteristics of solutions obtained for the two data sets are highlighted,
and their metrics are compared to the real-life problem setting faced by ASKO.

Both solutions have no overtime at the depot, which implies that the CJGM has found
an allocation of orders such that the overtime limit is not exceeded in any period. In
general, the best solutions tend to have a minor cost of overtime, often a cost of zero, as
the OD-MIP and JBM often manage to allocated the orders efficiently. In terms of driving
cost and vehicle usage cost, the objective value in these solutions are composed of roughly
10% traveling cost, and 90% vehicle usage cost. When the CJGM is used as decision
tool in real-life planning, the user should carefully consider where the costs are actually
allocated: overtime at the depot, vehicle driving time, or fixed costs related to vehicle
usage. Skewed cost distribution can make the solution favor minimizing the fleet rather
than minimizing driving costs.

For the solutions found by the CJGM, all vehicles are of the smallest vehicle type.
These vehicles have shown to be most cost efficient for these problem instances. In ad-
dition, the inclusion of time windows in the problem is undoubtedly in favor of small
vehicles, as time windows already restrict how many customers a vehicle can serve in
sequence before returning to the depot.

Table 10.8 describes how the periodic solutions for each data set differ. Observe that
the number of vehicles used in each period are on average 7.8 and 14.6 for data set D1 and
D2, respectively. These values are lower than expected, as ASKO usually operates a fleet
of roughly 30 vehicles in Trøndelag. Three plausible explanations for this behavior are
provided: first, an optimal allocation of order throughout the planning period may reduce
the number of vehicles needed. Second, the conversion from quantities to volume might be
too optimistic, in addition to missing orders for external suppliers, which are not provided.
Third, the customers in the problem data are all grocery stores, while ASKO also supplies
other customers, such as restaurants and canteens.

Note that all values are lower for period 6 compared to the other periods in Table 10.8.
This is expected as period 6 represents a Saturday, which has less demand due to reduced
workforce both at the warehouse, and at the grocery stores. In addition, as customers need
to stock up before the weekend, and restock afterwards, period 1 and 5 have the highest
number of visits. An interesting observation is that an increased number of visits does not
lead to a higher number of trips in these periods. Instead, the number of trips are higher for
period 2-4, in D2. As the order quantities are equally distributed throughout period 1-5,
with a lower quantity targeted for period 6, the trips for period 2-4 have a larger volume
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Table 10.8: Periodic behavior for D1 and D2.

Metric Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Average

Data set 1

Vehicles used 9 8 9 9 9 3 7.8

Trips 15 15 14 14 14 4 12.7

Customers visited 69 59 60 61 71 21 57.8

Data set 2

Vehicles used 19 14 16 14 17 8 14.6

Trips 35 37 36 36 35 8 31.2

Customers visited 117 106 113 105 114 64 103.2

per delivery. The vehicle capacity can be a limiting factor, meaning that more trips are
used in order to meet customer demand. Therefore, in periods with many customer visits
and lower quantities delivered per customer, fewer trips are used as each trip visits more
customers than in periods with fewer customer visits. In periods with fewer customer
visits, the vehicle capacity is more restricting, as the volume per delivery is larger. The
same tendency is not present in D1, as the commodity volume per customer is on average
lower compared to D2, which can be seen in Table 9.1.

Table 10.9 shows the distribution of the number of trips that visit a given number of
customers for each solution provided by the CJGM. The solution for D2 visits on average
a lower number of customers than the solution for D1. This is expected, as D2 has a
larger average volume of orders delivered per customers, increasing the need to return to
the depot for loading. Table 10.10 shows the distribution of how many trips which are
included in a journey in each solution. The solution for D2 is composed of journeys with
a larger average number of trips. To summarize, it is a clear tendency that the solution for
D1 has few but rather longer trips per journey, while the solution for D2 has shorter trips,
but more trips per journey.

Table 10.9: Distribution of trips visiting a given number of customers. No trips have more than 11
customers visited. The weighted average is the average number of customers visited for all trips

Number of trips visiting a given number of customers

#Customers 1 2 3 4 5 6 7 8 9 10 11 Weighted Average

#Trips for D1 5 5 13 16 12 12 10 2 0 0 1 4.57

#Trips for D2 21 46 45 36 24 6 2 6 1 0 0 3.31
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Table 10.10: Distribution of number of trips used in a journey. No journey have more than 4 trips.
The weighted average is the average number of trips for all journeys.

Number of journeys with a given number of trips

#Journeys 1 2 3 4 Weighted Average

#Journeys for D1 26 13 8 0 1.61

#Journeys for D1 17 40 25 3 2.16

Table 10.11 displays aggregated information of solutions for D1 and D2. An inter-
esting result is that the average idle time per journey, i.e. the time a vehicle waits at the
customer site before the start of its time window, is almost twice as large for D2 as for D1.
The solution for D2 is considered more robust, as deviations in traveling time and unload-
ing times can be offset by additional waiting time at the customer. The 20.0% journeys
which are planned with no idle time in the solution for D1 are more sensitive to devia-
tions, as all deliveries must be completed according to schedule, in order to deliver goods
on time. However, much waiting time may be inefficient, especially if deviations from
schedules seldom happen.

Note that the average length of a journey and its standard deviation is higher for the
D1 solution, compared to the solution for D2. This coincides with the fact that D1 is
consisting of several customers concentrated in Trondheim near the depot, while the other
customers in D1 are widely spread throughout Trøndelag. Large variations in journey
duration therefore arise naturally. In contrast, Vestfold&Telemark consists of several larger
cities which are located with a more even distance from the depot, and is in general less
sparsely populated. The average number of periods a vehicle is used is almost equal for
both solutions.

ASKO states that a normal filling level in a vehicle is between 35% to 40%, and that
they have an overall goal of 45%. Recall that the filling level is measured as the ratio
between the space in the vehicle which consists of commodities, and the total space in the
vehicle. ASKO considers a filling level of 55% and above as good. In the solutions for D1

and D2, a filling level of 79.6% and 77.4% are obtained, which are substantially higher
than the filling levels reported by ASKO. The filling levels obtained by the CJGM can be
a result of simultaneously optimizing both journeys and order allocations, which differs
from how ASKO schedules their weekly operations today.
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Table 10.11: Metrics for the two full-sized solutions of D1 and D2. Values are aggregated as
averages for each data set.

Metric description D1 D2

Average idle time per journey 35 min 68 min

Percentage of journeys with no idle time 20.0% 9.7%

Average journey length (minutes) 255 min 201 min

Standard deviation of journey length (minutes) 156 min 83 min

Average driving time per trip (minutes) 160 min 109 min

Standard deviation of driving time per trip (minutes) 134 min 48 min

Average number of periods a vehicle is used 4.2 4.4

Average filling level of a vehicle 79.6% 77.4%
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Concluding Remarks

This thesis has studied the periodic multi-trip vehicle routing problem with time windows
(PMTVRPTW), incompatible commodities, and a heterogeneous fleet. The problem arises
when ASKO schedules routes and order allocations, which today are planned sequentially,
to serve their customers.

Four different heuristic solution methods are developed, studied, and tested on in-
stances generated from real-life data. For small-sized instances, all methods find solutions
with minor deviations from the objective reported by an exact method. For medium and
large-size instances, the combinatorial journey-generating model (CJGM) performs supe-
rior to the other methods, obtaining solutions with the best average objective values for all
instance sizes. The CJGM is also the most stable method, as it reports the lowest average
coefficient of variation. The exact journey-based model (JBM) exploited in the CJGM
is shown to significantly improve solutions obtained by heuristics (periodic artificial bee
colony algorithms and periodic hybrid genetic algorithms) for all instance sizes. The aver-
age contribution of the JBM increases with larger instance sizes. For 115 customers, a 4%
average improvement is reported, corresponding to a 30% increase from its improvement
on instances with 25 customers. The JBM is also shown to benefit from being provided
with a diverse set of journey solutions.

For other types of the PMTVRPTW, there might be several variables connecting the
planning periods, rather than just how commodity quantities are allocated. This is likely to
increase the complexity of the problem solved by the exact method in the CJGM, such that
run time needed to find solutions with sufficiently low optimality gaps exceeds what is con-
sidered to be applicable in real-life planning. To solve these problems, the multi-periodic
hybrid genetic algorithm (MPHGA), the multi-periodic artificial bee colony (MPABC) al-
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gorithm, and the hybrid genetic algorithm (HGA) should be considered.

Among the three methods, the MPHGA shows the best performance, and deviates on
average only 2% from the CJGM solutions for the largest instances. The MPABC tends
to find better initial solutions than the MPHGA for medium-sized instances. However, it
is not able to find solutions with the same quality as the MPHGA when the number of
customers exceeds 50. Two possible explanations are discussed: the MPABC exploits less
information from search history than the MPHGA, and applies a less efficient greedy im-
provement operator. The HGA finds better solutions than the MPABC for larger instances.
However, it is unable to consistently obtain quality solutions for small and medium-sized
instances, especially when the volume ordered per customer grows.

Different approaches to simultaneously optimize journeys and order distributions are
studied in this thesis. The HGA creates and assigns journeys, and updates the way orders
are assigned to periods, for all periods in the planning horizon together. The remaining
methods instead fix an initial order assignment, which is used to find journey solutions
for each period independently. Iteratively, the fixed order assignment is updated, and new
journeys are created and assigned to fit the new way order quantities are allocated to peri-
ods.

The former approach more frequently updates the way orders are allocated to periods
during the search, whereas the latter dedicates more run time to optimize journeys which
fit given order allocations. For the problem studied in this thesis, the methods applying
the latter approach are shown to find quality solutions with fewer iterations. This property
is particularly valuable when considering real-life implications for ASKO. Their planning
process is a dynamic activity, where changes in input data occur frequently within a time
frame of minutes. Therefore, decision tools must provide quality solutions in a short
amount of time, without the need for complex calibration procedures.

For PMTVRPTW variants, the feasibility of order allocations might be more dependent
on the way journeys are created and assigned to vehicles. For example, if there are com-
patibility restrictions between commodities and vehicles, finding order allocations which
have feasible journey solutions can be difficult. For these problems, fixing order alloca-
tions and subsequently search for feasible journeys is inefficient. Instead, the approach
used in the HGA might be more suitable, as it explores a larger set of order allocations
during the search.

This thesis has shown that for practical routing problems where order assignments are
treated as decision variables rather than fixed, simultaneous optimization of both journeys
and order allocations should be considered. Solutions obtained by the CJGM on real-size
instances perform well on metrics used by ASKO to quantify solution quality. This indi-
cates that decision-makers at ASKO and other companies facing related practical problems
can benefit from using solution methods developed in this thesis.
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Future Research

The solution methods developed in this thesis are subject to aspects which provide interest-
ing areas for future research. For instance, the proposed methods can be adapted to solve
other practical problems with similar characteristics. The PMTVRPTW can be extended
with attributes which often arise in real-world routing problems, e.g. multiple depots,
site-dependencies, or dynamic customer orders. If stock-level demands are incorporated,
the inventory routing problem arises. As real-life routing problems often rely on param-
eters which are stochastic, e.g. travel times and order volumes, incorporating stochastic
elements opens an interesting field of research. Robust solutions may be of interest, as
customer demand can deviate from scheduled order volume during the planning horizon.

The PMTVRPTW can also be adapted to include multiple objectives. For instance,
time windows are often negotiable for customers. For many distribution networks in prac-
tice, delayed or early customer visits can be desirable if costs are reduced. Generating a
Pareto front of solutions can provide decision-makers valuable problem insight and deci-
sion support.

Another area of research is to improve the performance of the proposed solution meth-
ods. We have shown that the CJGM benefits from the ability to select from a diverse set
of journeys when constructing the final solution with an exact solver. For instance, the
PABC and the PHGA can be further developed. The local search mechanism in the PABC
can be improved, as the local enhancement scheme is the only greedy operator which
guarantees improved solutions. This operator scales poorly with an increasing number of
customers, as it applies the computationally expensive adSplit-procedure whenever a solu-
tion is evaluated. For instance, the PABC can benefit from adopting a structure similar to
the education-procedure (Section 5.6), which is a greedy operator that does not make use
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of the adSplit. Scalability of the PABC can also be enhanced by developing mechanisms
which better exploit search history to guide the choice of new search areas in the solution
space.

To generate more diverse solutions from the PHGA, another decomposition scheme
could be exploited to create subproblems with other properties. For instance, the geometric
time window decomposition proposed by Vidal et al. (2013b) could be applied.

Besides studying improvements of the current heuristics exploited in the CJGM, it
would be interesting to investigate other methods to efficiently generate quality journeys,
e.g. by heuristic column generation, or tabu search, as proposed by several authors for
problems with similar characteristics (Taillard, 1999, Archetti et al., 2017). Finally, the
CJGM can also be extended to further enhance feedback from the exact solver to mod-
ify solutions found by the heuristics. Solutions found by the exact method may contain
information which indicates what characterizes quality solutions. For instance, their char-
acteristics can be used to update fitness evaluations of those generated by heuristics in
subsequent iterations, or prevent identical journeys from being generated.
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Appendix A
Detailed Results From Parameter
Tuning

The numerical values obtained during the parameter tuning section are given below. Each
entry is the mean based on 5 runs, normalized for all parameter values for given instance.
The aggregated columns shows the mean for all instances for a given parameter value,
serving as the values on which decisions have been made. Parameter selection is deter-
mined based on a discussion of both objective values and run times.

Table A.1: Offsprings generated (Algorithm 1, 5)

λ 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

40 1.026 0.343 1.03 0.319 1.084 0.208 0.999 0.375 1.035 0.311

80 0.995 0.747 0.982 0.645 1.026 0.577 1.009 0.621 1.003 0.648

120 0.987 0.908 1.002 1.056 0.989 1.002 1.006 0.939 0.996 0.976

160 0.988 1.256 0.985 1.038 0.973 1.525 1.002 1.022 0.987 1.211

200 1.005 1.746 1.002 1.942 0.928 1.687 0.983 2.042 0.979 1.854
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Table A.2: Probability of trip optimization (Algorithm 1, 5)

ptrip 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0 1.001 0.923 1.009 0.877 1.024 0.804 1.01 0.769 1.011 0.844

0.25 0.969 1.203 0.988 0.871 0.962 0.921 0.974 1.023 0.973 1.005

0.5 0.998 1.009 1.022 0.811 1.035 1.11 1.018 1.055 1.018 0.996

0.75 1.016 0.857 0.981 1.212 0.943 1.134 0.976 1.181 0.979 1.096

1 1.016 1.009 1.001 1.228 1.036 1.03 1.022 0.972 1.019 1.06

Table A.3: Probability of ODC-MIP (Algorithm 1, 5)

pmip 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0 1.044 0.188 1.172 0.219 1.342 0.244 1.27 0.282 1.207 0.233

0.25 1.014 0.631 1.007 0.538 0.953 0.575 0.976 0.509 0.988 0.563

0.50 1.001 0.926 0.962 1.147 0.91 0.921 0.935 0.883 0.952 0.969

0.75 0.989 1.266 0.938 1.202 0.92 1.209 0.911 1.465 0.94 1.286

1 0.952 1.989 0.921 1.894 0.875 2.051 0.908 1.861 0.914 1.948

Table A.4: Heuristic dominance criteria (Inequality 5.9)

γ 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

1 1.003 1.016 0.988 1.11 0.991 1.129 0.991 1.168 0.993 1.106

2 1.001 1.155 1.004 1.14 0.991 1.122 1.002 0.902 1 1.08

3 1.002 0.943 1.015 1.095 1 0.967 1 1.091 1.004 1.024

4 1 1.035 1.002 0.776 0.993 0.978 0.998 0.817 0.998 0.902

5 0.994 0.851 0.992 0.88 1.025 0.805 1.009 1.022 1.005 0.889
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Table A.5: Tournament size (Section 5.11)

k 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

2 0.987 0.836 0.993 0.817 1.003 0.833 0.989 1.148 0.993 0.909

3 1.009 1.17 0.996 0.971 1.005 1.021 1.015 1.21 1.006 1.093

4 1.009 1.072 1.021 1.198 0.995 1.138 0.992 0.75 1.004 1.039

5 0.987 0.782 1.001 0.963 1.006 1.09 1.007 0.811 1 0.911

6 1.009 1.14 0.988 1.051 0.991 0.919 0.997 1.081 0.996 1.048

Table A.6: Number of newODCs during re-initialization (Equation 6.1)

NODC 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

3 1.009 1.03 0.968 1.008 0.997 1.002 1.024 0.996 0.999 1.009

6 0.986 1.015 1.019 0.998 1.024 1.023 1.047 1.001 1.019 1.009

9 0.987 0.984 0.981 1.02 0.984 0.985 1.021 0.996 0.993 0.996

12 1.017 0.992 0.949 0.975 1.015 0.999 0.989 1.001 0.992 0.992

15 1.002 0.978 1.084 0.999 0.979 0.992 0.919 1.005 0.996 0.994

Table A.7: Range for weight ωn of random neighbour position (Equation 7.4)

kn 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0.25 1.096 0.996 1.053 1 1.051 0.984 1.02 1.023 1.055 1.001

0.50 1.05 1.081 1.007 0.996 1.015 0.98 1.007 0.961 1.02 1.004

0.75 0.963 0.938 0.975 1.005 0.965 1.032 0.987 1.054 0.973 1.007

1.00 0.891 0.985 0.965 0.999 0.968 1.004 0.986 0.962 0.953 0.988
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Table A.8: Range for weight ωgb of global best position (Equation 7.4)

kgb 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0.00 1.051 1.082 1.051 0.926 1.029 1.001 1.03 0.991 1.04 1

0.25 1.041 0.925 1.02 1.044 1.015 1.038 1.007 1.001 1.021 1.002

0.50 1.005 0.993 0.986 1.045 0.99 0.972 0.982 0.99 0.991 1

0.75 0.904 1 0.942 0.984 0.966 0.989 0.982 1.019 0.948 0.998

Table A.9: Dimensions changed in position update (Equation 7.4)

Ri 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0.1 0.99 0.972 0.993 0.96 1.051 0.947 1.019 1.03 1.013 0.977

0.4 1.01 1.087 0.995 0.965 0.993 1.028 0.984 0.963 0.995 1.011

0.7 1.006 0.946 1.002 0.998 0.987 0.988 0.986 1.022 0.995 0.988

1.0 0.995 0.995 1.009 1.077 0.969 1.038 1.011 0.985 0.996 1.024

Table A.10: Onlooker random adjustment (Equation 7.2)

ρo 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0.0 0.886 1.025 0.951 1.058 0.952 0.966 0.967 1.038 0.939 1.022

0.1 0.998 0.924 1.021 0.975 1.018 0.967 1 0.95 1.009 0.954

0.2 1.028 1.009 1.024 0.937 1.004 0.984 1.012 1.024 1.017 0.988

0.3 1.049 0.984 0.999 1.027 1.006 1.042 1.007 0.936 1.015 0.997

0.4 1.039 1.057 1.004 1.004 1.02 1.042 1.013 1.052 1.019 1.039
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Table A.11: Allowed range from best solution for trials reset (Equation 7.3)

λgb 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

1.0 1.011 0.941 1.007 0.938 1.015 1.024 1 1.068 1.008 0.993

1.1 1.001 1.064 1 1.041 0.992 0.955 1.005 0.934 0.999 0.998

1.2 0.991 1.065 1.002 1.012 0.999 1.03 0.988 1.104 0.995 1.053

1.3 0.992 0.945 0.998 0.933 0.995 1.021 1 1.027 0.996 0.982

1.4 1.006 0.863 1.003 0.987 1.007 0.927 1.001 0.923 1.004 0.925

1.5 1.01 1.064 0.997 1.027 1.007 1.067 1.007 1.012 1.005 1.042

Table A.12: Number of onlookers per employee (Algorithm 6)

Nonlookers 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

3 1.026 0.971 0.999 0.996 1.002 1.019 1.006 0.981 1.008 0.992

5 0.992 1.065 1.004 1.011 1.015 0.983 1.005 0.989 1.004 1.012

8 0.986 0.986 0.992 0.971 0.986 0.992 0.993 1.02 0.989 0.992

10 0.996 0.978 1.005 1.022 0.997 1.007 0.996 1.01 0.999 1.004

Table A.13: Number of employees (Algorithm 6)

Nemployees 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

5 1.052 0.94 1.046 0.94 1.084 0.934 1.041 0.967 1.056 0.945

10 0.991 0.965 0.995 1.065 1.013 1.011 0.996 1.024 0.999 1.016

15 0.99 1.068 0.982 1.02 0.964 1.024 0.98 1.024 0.979 1.034

20 0.967 1.026 0.977 0.975 0.939 1.031 0.982 0.985 0.966 1.004
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Table A.14: Number of scouts (Algorithm 6)

Nscouts 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

25 0.994 0.969 1.006 1.016 0.996 0.997 1 0.952 0.999 0.983

50 0.992 1.061 1.008 1.019 0.991 1.038 0.999 1.022 0.998 1.035

75 1.01 0.993 0.995 0.978 1.016 1.007 0.993 1.01 1.004 0.997

100 1.004 0.976 0.99 0.988 0.996 0.959 1.008 1.016 1 0.985

Table A.15: Reference proportion of feasible individuals ODC (Algorithm 6), - denotes no adjust-
ment

ξREF 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0.70 1.035 0.74 1.049 1.032 1.032 1.036 1.06 0.913 1.044 0.93

0.75 1.012 0.786 1.016 1.021 1.011 1.056 1.029 0.908 1.017 0.943

0.80 1.005 0.774 0.998 1.025 1.014 0.772 0.997 0.883 1.003 0.863

0.85 1.001 0.764 1.015 0.746 0.998 0.763 0.992 0.887 1.002 0.79

0.90 1.007 0.877 1.012 0.75 0.988 1.051 0.977 0.886 0.996 0.891

- 0.939 2.058 0.91 1.427 0.956 1.321 0.944 1.524 0.937 1.582

Table A.16: Number of iterations per ODC (Algorithm 6)

NODC 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

2 0.999 1.063 1.006 0.924 1.016 0.992 1.004 0.963 1.006 0.986

4 0.997 1.021 1.007 0.964 1.001 1.043 1.002 0.985 1.002 1.003

6 0.987 0.961 1.001 0.994 0.995 0.934 1.01 0.982 0.998 0.968

8 1.007 0.943 0.998 1.049 1.007 0.988 0.993 1.037 1.001 1.004

10 1.011 1.013 0.988 1.069 0.981 1.042 0.992 1.033 0.993 1.04
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Table A.17: Number of enhancements (Algorithm 7)

nLES 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
Obj Time Obj Time Obj Time Obj Time Obj Time

0 0.988 1.065 0.998 1.045 1.029 0.975 1.011 0.93 1.006 1.004

1 0.986 0.911 0.998 1.045 0.974 1.054 0.996 1.008 0.989 1.004

2 0.999 0.989 0.999 1.073 0.989 0.958 0.995 1.021 0.995 1.01

3 1.005 1.037 0.996 0.928 0.985 1.017 0.987 0.982 0.993 0.991

4 1.001 1.029 0.996 0.928 1.007 0.981 1.011 1.004 1.004 0.986

5 1.009 0.963 0.991 1.012 1.006 1.028 0.993 1.015 1 1.004

6 1.011 1.007 1.021 0.969 1.01 0.987 1.007 1.04 1.012 1.001

Table A.18: Balance between PHGAs and PABCs in the CJGM. The mean comes from normalizing
all runs from the 4 test instances, and finally average these means.

CJGM 01C25V12T 02C25V12T 03C25V12VT 04C25V12VT Aggregated
PGA% Obj Time Obj Time Obj Time Obj Time Obj Time

0.00% 1.166 0.955 1.088 1.031 1.162 1.012 1.067 1.015 1.121 1.003

16.7% 1.074 1.004 0.969 0.9 1.1 1.014 1.088 1.031 1.058 0.987

33.3% 0.957 0.996 0.97 1.052 0.945 0.972 0.969 0.975 0.96 0.999

50.0% 0.925 1.011 0.973 1.111 0.94 0.984 0.953 0.99 0.948 1.024

66.7% 0.941 0.941 0.963 0.971 0.913 1.016 0.963 0.992 0.945 0.98

83.3% 0.985 1.079 1.006 0.981 0.975 1.021 1.028 1.024 0.998 1.026

100% 0.953 1.013 1.03 0.954 0.964 0.982 0.933 0.973 0.97 0.98
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Appendix B
Detailed Results for Medium and
Large-Sized Instances

Table B.1 shows the mean and best found objective value for each model with ten samples
run for each instance. A total of 18 instances of customers varying from 25 to 115 cus-
tomers are tested. All methods had a timeout of 30 minutes. The results are the basis for
the computational study in Chapter 10. Each instance has been tested for every solution
method.
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Table B.1: All results from a total of 18 test instances. both the mean and the best found objective
value is given for each solution method. All instances have been run a total of 10 times for each
solution method.

Instance ID HGA MPHGA MPABC CJGM
Mean Best Mean Best Mean Best Mean Best

01D1C25V12 12,505 12,083 11,883 11,591 12,074 11,755 11,789 11,587

02D1C25V12 11,890 11,631 11,418 11,126 11,624 11,285 11,154 11,087

03D2C25V12 14,311 13,817 11,135 10,939 11,127 10,882 10,589 10,569

04D2C25V12 13,584 13,165 11,264 10,617 11,982 11,683 11,042 10,628

01D2C50V25 25,313 23,551 20,296 19,879 22,303 20,873 19,925 19,231

02D2C50V25 27,498 25,593 21,766 20,566 22,585 22,205 20,767 19,968

03D1C50V25 22,763 21,420 20,032 19,296 22,286 21,974 19,870 19,298

04D1C50V25 22,646 21,393 20,061 19,274 21,565 21,098 19,623 19,263

05D1C75V37 33,182 31,081 27,791 26,881 31,528 28,548 27,759 26,728

06D2C75V37 42,836 40,650 34,262 32,566 43,923 43,317 34,227 32,855

07D2C75V37 41,720 40,941 39,724 33,403 43,565 42,485 33,988 33,204

08D2C75V37 40,594 39,745 38,772 35,129 41,589 40,788 31,960 31,052

09D2C100V50 55,115 53,723 43,389 42,347 54,534 53,283 42,638 41,311

10D2C100V50 56,589 55,363 51,769 50,505 64,812 63,175 45,525 43,928

11D2C100V50 55,945 53,901 45,643 43,792 65,488 52,874 43,956 42,040

12D2C100V50 51,614 48,001 47,583 44,252 64,529 52,457 42,680 41,909

13D2C115V62 67,819 65,320 50,276 49,575 73,682 72,412 49,944 48,398

14D2C115V62 63,770 61,819 51,764 51,049 73,198 71,154 50,131 47,670
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