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Abstract 

When the financial market is pricing an option, the only unknown parameter is the 

future volatility in the price of the underlying asset. The price of the financial asset 

shifts relatively slowly when market conditions are calm, and the price shifts faster 

when there is more news, uncertainty, and trading in the market. Hence, the volatility 

is said to be time-varying. Market actors that understand the time-varying volatility 

can have more reasonable predictions of the future prices of the asset and the 

associated risk exposure. 

The main objective of this paper is to build and evaluate a two-factor Stochastic 

Volatility model for the prediction of time-varying volatility in financial contracts for 

electricity. The paper seeks to answer if the volatility is a process of random 

information flow to financial markets for electricity, or if it the volatility can be 

predicted by a Stochastic Volatility model.  

The report builds on earlier proven time series methods. Building Semi 

Nonparametric (G)ARCH models to capture special characteristics of the front year 

and front quarter futures contracts, including volatility clustering, mean reversion, 

and asymmetry effects. A two-factor volatility model will be built based on the 

finding of the GARCH models to do step ahead volatility prediction.  

The results confirm several stylised facts from the volatility literature. The contracts 

show leptokurtosis features, mean reversion effects, volatility clustering and 

persistence, all contribute to strong data dependency and predictability for the 

volatility, making volatility not a process of a random walk. The quarter contracts 

show the strongest volatility clustering and persistence. A positive asymmetry effect 

where found for the year contracts. The predicted volatility from the SV model is 

compared with production mix, reservoir levels and temperature to better understand 

factors contributing to the time-varying volatility. The analysis indicates lower 

(higher) reservoir levels than the median level coincides with higher (lower) 

volatility. Less (more) nuclear and hydro power production, and more (less) wind 

and solar production coincides with higher (lower) volatility. Colder (warmer) 

temperature than the median coincides with higher (lower) volatility. These 

comparisons are not tested statistically, rather these are foundations for further 

research in the field of stochastic volatility models for financial electricity contracts. 
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Sammendrag 

Når finansmarkedene priser en opsjon, er det eneste ukjente parametere den 

fremtidige volatiliteten til det underliggende verdipapiret. Prisen til et verdipapir 

svinger relativt sakte når markedsforholdene er rolige, og raskere når det er mer 

nyheter, usikkerhet og handel i markedene. Markedsaktører som forstår 

tidsavhenging volatilitet kan oppnå mer realistiske forventninger til prisen på 

verdipapirene og tilhørende risikoeksponering.  

Hovedformålet med denne oppgaven er å bygge og evaluere en to-faktor Stokastisk 

Volatilitetsmodell for å predikere tidsavhengig volatilitet i finansielle kontrakter for 

elektrisitet. Oppgaven ønsker å besvare om volatilitet er et produkt av den tilfeldige 

informasjonsflyten til det finansielle elektrisitetsmarkedet, eller om volatiliteten kan 

predikeres gjennom en stokastisk volatilitetsmodell.  

Oppgaven bygger på tidligere empiriske metoder innen tidsserie økonometri. Det 

bygges semi-ikke-parametriske (G)ARCH modeller for å fange opp spesifikke 

karakteristika for front futures års- og kvartalskontrakter, inkludert 

volatilitetsklynger, reversjons- og asymmetrieffekter. En to-faktor stokastisk 

volatilitetsmodell bygges på de spesifiserte (G)ARCH modellene for å gjøre 

volatilitetsprediksjon. 

Resultatene bekrefter typiske karakteristika fra volatilitetslitteraturen. Kontraktene 

har leptokurtosis fordelinger, reversjonseffekter, volatilitetsklynger og 

volatilitetsutholdenhet. Dette bidrar til sterk dataavhengighet som kan brukes til 

prediksjon av volatilitet, og volatiliteten er dermed ikke et produkt av tilfeldig 

informasjonsflyt. Kvartalskontraktene viser sterkest volatilitetsklynger og 

utholdenhet. En svak positiv asymmetrieffekt ble funnet for årskontraktene. Den 

predikerte volatiliteten ble sammenlignet med produksjonsmiksen, reservoar nivåer 

og temperaturdata. Sammenligningen tyder på at lavere (høyere) reservoar nivåer enn 

medianen sammenfaller med høyere (lavere) volatilitet. Mindre (mer) kjernekraft og 

vannkraft, og mer (mindre) vind og solkraft sammenfaller med mer (mindre) 

volatilitet. Kaldere (varmere) temperaturer fra medianen sammenfaller med mer 

(mindre) volatilitet. Sammenligningene er ikke statistisk testet, men kan danne 

grunnlaget for videre forskning av finansielle elektrisitetskontrakter og stokastiske 

volatilitetsmodeller. 
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Introduction 

Many European countries restructured their electricity sectors around 1990. The 

restructuring led to a reorganization of the power supply into a competitive part for 

electricity production and retail, and a monopolistic part for transmission and 

distribution of the electricity in the grid. The restructuring was the starting point of 

the Nordic/Baltic Power market which Norway is part of today, where the market 

participants trade physical electricity at the Nord Pool Spot exchange and financial 

electricity contracts at the Nasdaq OMX exchange. The Nordic/Baltic Power market 

is one of the most liquid power derivates market in the world with an objective to 

reduce and minimize risk, increase transparency, and protect market participants. The 

risk landscape in the electricity market are more complex than other assets and 

commodities. There exist no technology enabling electricity to be stored or 

transferred for longer distances without efficiency losses. Hence, mismatches in 

supply and demand must be cleared directly, making short spikes in prices and 

volatility. Due to this non-storability, users of the financial electricity market trade 

on different contracts to lock in prices for their production or consumption. Hence 

the financial market for electricity (Nasdaq) is used for price hedging and risk 

management for the actors in the physical electricity market (Nord Pool Spot).  

Many years of international studies of prices in financial data have revealed the 

presents of stylised facts like skewness, excess kurtosis, volatility clustering and 

heteroscedasticity (Benoit, 1963) (Fama, 1965), and asymmetry effects (Tversky & 

Kahneman, 1979) (Barberis, et al., 2001). The price changing process in financial 

markets are known as volatility. Volatility is a statistical measure of the spread in 

returns around the mean of a given asset or market index. Standard deviation or 

variance (the squared standard deviation) is notations frequently used for volatility. 

When the observed price returns are tight around the mean value volatility is low, 

wider returns imply higher volatility and thus the assets value can be spread out over 

a larger range of values. Volatility models are used internationally to predict 

characteristics of future returns, including both absolute magnitude of returns, 

quantiles and complete densities. Modern portfolio theory (MPT) studies have 

revealed an increase in volatility leads to increased risk and reduced portfolio returns. 

Knowledge about the price dynamics and volatility for financial electricity contracts 
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are important for producers, retailers, consumers, and traders in the electricity 

market. 

This paper seeks to build and evaluate a two-factor Stochastic Volatility (SV) model 

for the prediction of volatility in financial contracts for electricity quoted on Nasdaq 

OMX market (Nasdaq, 2020). Stochastic volatility models have a simple structure 

and is useful for explaining common characteristics of returns in assets, 

commodities, and currencies. The price of a financial asset shifts relatively slowly 

when market conditions are calm, but the price shifts faster when there is more news, 

uncertainty, and trading in the market. Hence, the volatility in financial markets are 

non-constant and frequently changing - the volatility is said to be time-varying. The 

time-varying volatility in financial markets generates a time-varying risk exposure, 

making it natural to build stochastic models to understand historical evolution in 

volatility. The SV implementation seeks to describe how the volatility changes as 

time goes by. Volatility is an unobserved instrument and is non-traded, hence there 

exists no perfect estimates of the variable. Rather volatility can be understood as a 

latent variable modelled from its direct influence on the magnitude of returns. As 

time-varying volatility is widespread in financial markets, it is an associated risk to 

the constant changing volatility. Markets actors that understand the time-varying 

volatility can have more reasonable predictions of the future prices of the asset and 

the associated risk exposure. A better understanding of factors influencing volatility 

and precise forecasting of volatility is valuable for practitioners using futures and 

options for risk management, as higher levels of volatility can imply greater 

probability of substantial undesirable price changes. Higher (lower) volatility 

increases (decreases) the derivate prices, an increased knowledge about volatility will 

thus be beneficial in deciding whether to sell or buy put and call options. In a Black 

& Scholes option valuation model (Black & Scholes, 1973) the only unknown 

determinator is the future volatility (σ) in the underlying asset. By revealing factors 

influencing volatility in a market and establish methods for volatility prediction a 

more accurate pricing of options can be achieved. 

Providing additional knowledge of the volatility in the financial contracts for 

electricity is important not only for practitioners in the financial electricity market. 

Volatility in financial electricity contracts could obstruct investment in new and 

sustainable technologies for electricity productions, hindering companies, nations 
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and the global society reducing CO2 emissions and reaching the UN sustainable 

goals. Further, in a scenario where electricity prices are co-integrated with other 

energy and commodity prices, a volatile market can in such a scenario make 

prediction of raw material costs hard for consumers and businesses outside the 

electricity market1. Hence, the main purpose with this paper is to build a two-factor 

stochastic volatility model where volatility has its own stochastic process, enabling 

rational descriptions of the volatility in financial electricity contracts. 

The report will build on earlier proven time series methods to identify volatility 

characteristics and use a Stochastic Volatility model for volatility prediction and 

forecasting. Quarterly and Yearly Nordic electricity futures traded at Nasdaq OMX 

will be analysed with 5009 observations in the interval from 3rd of January 2000 to 

3rd of January 2020. The contracts are based on the Nordic System price of 1 MWh 

of electricity according to the daily Elspot system price for the Nordic region which 

is quoted and published by Nord Pool. For the two series (Quarter and Year), 

individual Semi-nonparametric (SNP) (G)ARCH models (Enger, 1982) (Bollerslev, 

1986) will be created and used to capture special characteristics of the chosen 

contracts, including volatility clustering and asymmetry effects. A C++ program for 

SNP models (Gallant & Tauchen, 1990 (Dec 2017)) is applied to specify the optimal 

model, the set of lag descriptions and model evaluation. The program includes 

features for prediction, residual analysis, plotting, and simulation used for analysis 

and interpretation. Shocks will be simulated to identify market behaviour for the two 

timeseries.  

A two-factor volatility model will be built based on the finding of the SNP models to 

do step ahead volatility prediction and describe relevance for the Nordic Electricity 

Future Market. The implementation of a two-factor stochastic model uses the Monte 

Carlo Markov Chain estimator proposed by Chernozhukov and Hong (2003), and the 

modelling strategy by Gallant and McCulloch (2011), and Gallant and Tauchen 

(1997) (2016). The implementation method uses Efficient Methods of Moments 

(EMM) written in a flexible C++ program (Gallant & Tauchen, 2016). Normalized 

values of the objective function in the optimal specified model is asymptotically 𝜒2 

 
1 Several international studies have investigated the argument for co-integration in energy and 
commodities markets, like gas oil and crude oil (Westgaard, et al., 2011), Gas and Power Spot prices 
(Jong & Schneider, 2009), and between different European energy exchanges (Veka, et al., 2012) 
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distributed with a given degrees of freedom enabling model fit evaluation and 

assessment. When an SV model is correct specified to the data, the applications 

expand into portfolio management, asset allocation, risk assessment, risk 

management strategies and derivative pricing purposes. By using the re-projected 

volatility from the Stochastic Volatility model, a more accurate pricing of option 

could be established using the Black & Scholes model. 

By applying the mentioned methodology, this paper seeks to answer if the volatility 

is a process of random information flow to financial markets for electricity, or if it 

the volatility can be predicted by a stochastic volatility model. Thus, is returns and 

volatility a correlated process, or just a random walk? 

In more detail the paper investigates three main topics in the follow order: The first is 

to identify relevant volatility properties of the front future financial contracts for 

electricity at Nasdaq OMX, compare quarterly and yearly contracts, capture volatility 

and simulate shocks. Second is to create and evaluate whether a two-factor stochastic 

volatility model is appropriate to do step ahead prediction of volatility in financial 

contracts. Third is to analyse trends in electricity production, reservoir levels and 

temperature to reveal whether there is some connection to the volatility. By 

addressing these questions, this paper seeks to help risk managers and other 

practitioners to better understand the properties of the unobserved volatility and add 

valuable insights to the Stochastic Volatility literature. 

This paper is to our knowledge the first to implement a two-factor stochastic 

volatility models for the financial contracts in the Nordic/Baltic power market. 

(G)ARCH models have been implemented in many different markets earlier. Paolella 

and Taschini (2006) concluded that GARCH models perform well for CO2 and SO2 

prices. Egeland & Haug (2016) used semi-nonparametric AR(1) GARCH(1,1) 

models to extract densities and conditional variances for 14 different financial 

markets. The GARCH-models seems to capture volatility clustering and asymmetry 

effects. Two-factor SV-models has been implemented in many different markets; 

Solibakke (2019) built and implemented a two-factor SV model to do step ahead 

volatility prediction and describe its relevance for equity markets with observations 

from FTSE100 spot index and the Equinor spot price. Solibakke (2015) used an 

AR(1) GARCH(1,1) model together with an two-factor stochastic volatility model to 
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forecast and extracting conditional moments for the Brent Oil futures market. Option 

prices were calculated using re-projected conditional volatility.  The same analysis 

where performed for the European Carbon Markets in Solibakke (2014) and for 

Front Year Futures Contracts on the European Energy Exchange AG in Solibakke & 

Dahlen (2012). Earlier research of other energy market prices is voluminous, 

however the combination of financial contracts for electricity and SV-models are 

unique, as similar studies have not been conducted on the Nordic Electricity Future 

contracts traded at Nasdaq OMX. To limit the scope, the paper is written from a 

Norwegian perspective. This perspective implies that this paper use Norway as an 

example to elaborate the restructuring of the electricity market in the 1990s. To limit 

the scope and due to lack of available data, only Norwegian reservoir levels and Oslo 

temperatures are reported. The production mix are reported from all the Nordic and 

Baltic countries. 

The report is built up the following way: The first chapter is an introduction to the 

Nordic/Baltic electricity market. First there is an introduction the physical market 

(Nord Pool) with descriptive information about market characteristics, production in 

the interval, trends in production mix and reservoir levels. Then an introduction to 

the financial market (Nasdaq OMX) for electricity is given. The third chapter look at 

relevant literature of the electricity market and the stochastic volatility (SV) model 

framework. The fourth chapter elaborate the methodology used, including 

econometric time series analysis, the Semi-Nonparametric (SNP) models and the 

two-factor Stochastic Volatility (SV) models. Chapter five gives firstly a description 

of the two time-series and secondly defines and evaluates the SNP (G)ARCH model 

used to identify and compare volatility characteristics, and thirdly to simulate shocks. 

Finally, the chapter end with defining and evaluating the two-factor SV model used 

for volatility prediction and forecasting. In chapter six the re-projected volatility 

from the SV model will be compared with variations in production mix, reservoir 

levels and temperature, to better link the physical and financial electricity market. 

The purpose of this comparison is to better understand the latent volatility in terms of 

the observed variables, such as production levels, production mix, reservoir levels 

and weather. The comparison will not be tested statistically. Chapter seven give 

implications for further research in the field of financial electricity contracts and SV 

models. Chapter eight summarizes the findings and conclude. 
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1. The Electricity Market 

The electricity market can be divided into a physical and a financial market. The 

physical market consists of a wholesale market including professional actors with 

concession and a retail market for private customers and companies. In the physical 

market the sellers must deliver the electricity, and the buyers are obligated to receive 

it. Thus, speculative trading is not possible on this exchange. In the Nordic and Baltic 

countries, the physical trading takes place on the electricity exchange Nord Pool 

Spot, while financial trading of power takes place on the Nasdaq OMX. The trading 

of electricity at Nasdaq is based on the Nordic System Price which is quoted and 

published by Nord Pool and is an independent auction market.  

 

1.1 Historical development 

Many countries in Europe restructured their electricity sectors around 1990. The 

restructuring led to reorganization of the power supply in a competitive part 

including generation and consumption and a monopolistic part including 

transmission and distribution. Open access to the grid is a necessity for efficient 

competition amongst actors (Wangensteen, 2006). In Norway, the restructuring came 

into force with the energy act of January 1st in 1991. A free market for electricity 

trade were introduced and the law reformed the energy sector from purely 

administration purposes into a more business friendly system. Until 1991 Norway 

was divided into many local energy markets, where local energy companies had both 

monopoly and duty to deliver electricity in the local area. A remedy to fulfil the 

principal objective of the law was to dissolve the bonds between producers and 

distributors of electricity and it led to important organisational changes. Norwegian 

Statkraft were divided into a production part, Statkraft SF and a distribution part with 

responsibility of the grid, Statnett SF (NVE, 2016).  
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1.2 Actors in a restructured system 

In the restructured and liberalized market, electricity becomes a commodity and both 

commercial and non-commercial actors are involved. 

 

1.2.1 Commercial actors 

The commercial actors on Nord Pool Spot are the producers, retailers and traders 

who choose to trade on the electricity exchange (Nord Pool Spot, 2011). Producers 

owns, runs, and sell electricity from their production facilities to the electricity 

exchange. Retailers buy electricity at the exchange and resell it to end users. The 

traders own the electricity during the trading process and buy electricity from a 

producer to sell it to a retailer. In addition, brokers can act on behalf of the 

commercial actors, these play an important role helping to clear the market.  

1.2.2 Non-commercial actors 

The non-commercial actors operate on a local level and a state level. The grid can be 

divided into a distribution grid and a transmission grid. At the local level, a local grid 

operator is handling the low-voltage grid (distribution grid) with distribution to end 

users. At state level, the high-voltage grid (transmission grid) is handled by the 

Transmission System Operator (TSO). The TSO is also responsible for the security 

and supply of electricity in its country. Thus, producers are not responsible for the 

physical delivery of the electricity to the end user. The TSO must be a non-

commercial organization which is independent of commercial players. In Norway, 

the TSO is Statnett which is state owned (Nord Pool Spot, 2011) . The local grid 

operator together with the national grid operator (TSO) have a monopoly in 

transferring electricity from producers to consumers, making grid operators regulated 

as non-commercial actors. 

The TSO is also responsible for keeping the frequency stable at 50 Hz. If the 

frequency drops below 50 Hz due to an increased consumption, the TSO must ensure 

that some producers delivers more electricity to the grid by buying excess generation 

capacity. This is called “up-regulation”. This is also the case if the supply of power 

excesses the demand, then the TSO sells electricity to the producers, which is called 

“down- regulation” (Nord Pool Spot, 2011). These trades which the TSO conducts 

with different market players to keep the grid stable is called regulating power. The 
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price setting in the regulation power market is dependent on the up and down 

regulation orders.  

As an example, imagine a need for a 400 MWh up-regulation in the market. 

Producers with available generation capacity can then place up-regulating orders. 

Consumers which can reduce consumption can place down-regulating orders. All the 

orders are submitted to the TSO which ranks them in an increasing order from the 

lowest to the highest price. Orders are then activated until 400 MWh is reached 

starting with the order which has the lowest price. The up-regulation price is set by 

the price of the last up-regulator order. The orders with a price below the settled up-

regulation earn a profit which equals the difference between the offered price and the 

up-regulating price. If a need for a down-regulation occur the same procedure is used 

(Nord Pool Spot, 2011). 

The electricity is bought and sold hourly and can be divided in a three-step process. 

First the purchase is made when a retailer places an order of a contracted amount on 

behalf of a customer to a supplier. Then is the “hour of operation” where the power is 

delivered and consumed. Finally, after the hour is completed the contract is settled 

when the retailer pays the supplier for the contracted amount. If the customer is not 

able to consume the full amount of the contract, the retailer has in practice sold the 

remaining power to the TSO since the TSO pays the retailer for the remaining power 

(Nord Pool Spot, 2011). 

The trade between the TSO and the retailer is called “balancing power” because it 

creates a balance between the retailer’s total trade and the customer of the retailer’s 

consumption. If a need for an up-regulation during the hour of operation occur, the 

TSO will pay the retailer the up-regulation price for the balancing power which is 

normally higher than the market price. If the TSO did a down-regulation during the 

hour of operation, the retailers will normally be paid a price which is below the 

market price. If the customer is consuming more power than specified in the contract, 

the TSO will invoice the retailer for the excess power (Nord Pool Spot, 2011). 
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1.3 The physical electricity market 

As mentioned, the trading platform for the physical market is Nord Pool. The typical 

participators on the exchange are power producers, suppliers, and traders. Some large 

end users are also buying power on the exchange and not through a supplier 

(NordPool Group, u.d.). The physical production market includes the Nordic 

countries Norway, Sweden, Finland and Denmark, and the Baltic countries Latvia, 

Lithuania, and Estonia. 

1.3.1 History 

The creation of Nord Pool as we know it today springs from the deregulation of the 

Norwegian electricity market in 1991. In 1993 the company “Statnett marked AS” 

(known as Nord Pool today) was established. The total volume in the first operating 

year was 18.4 TWh. In 1995, the framework of an integrated Nordic power market 

contract was purposed to the Norwegian parliament. Together with Nord Pool’s 

licence for cross-border trading, this made the foundation for spot trading at Nord 

Pool. In 1996 a joint Norwegian-Swedish power exchange was established and 

changed named to Nord Pool ASA. In 1998 Finland joins the exchange followed by 

Denmark in 2000. Estonia as the first Baltic country opens as bidding area in 2010, 

followed by Lithuania in 2012 and Latvia in 2013. (Nord pool group, 2019) 

1.3.2 Bidding areas  

Nord pool spot is divided in 15 bidding areas due to bottlenecks in the transmission 

and distribution grid. Norway has five different bidding areas while Sweden has four. 

Denmark has two areas and Latvia, Lithuania, Estonia, and Finland have one each. 

Bottlenecks occurs due to capacity restrictions in export and import both between 

bidding areas inside a country and cross border. The TSO in each country determine 

the trading capacity between the bidding areas and publishes the capacity for the next 

day at 10:00 AM (Nord Pool Spot, 2019). The exchange capacity between the 

countries differs amongst the members. For instance, Norway’s exchange capacity is 

around 20% of the installed production capacity (Energifakta Norge, 2019b).  

 

1.3.3 Pricing in the spot market 

Due to bottlenecks, two different prices are reported in Nord Pool Spot. The System 

price which is a theoretical price for the whole marked without bottlenecks on the 
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grid, and the area price which may vary between bidding area due to bottlenecks. 

When constraints occur electricity will always move from the low-price area to the 

high price area. This scheme prevents any benefits for market members on the 

bottlenecks (Nord Pool Spot, 2019). While the TSOs in their respective countries are 

handling the regulating and balancing power, the electricity in Nord Pool Spot is 

traded at Elspot which is Nord Pool Spot’s day-ahead auction market. Nord Pool 

calculates a price for each bidding area per hour for the following day. Actors who 

wants to buy and sell power must send their purchase orders to Nord Pool Spot 

before noon the day before the power is delivered to the grid. The market is cleared 

through a double auction process where buyers and sellers submit their supply and 

demand the coming day. To clear a particular bidding area, a software uses the 

submitted orders to calculate a market price, hence different prices can occur 

between bidding areas due to supply and demand conditions. The orders are flexible, 

and a retailer can for instance place a bid of 100 MWh where the amount purchased 

on the exchange or produced at his own generation facility can vary with different 

price levels (Nord Pool Spot, 2011). For two Nord Pool actors located in different 

bidding areas to be able to trade with each other, they can use the financial market 

for electricity where no physical delivery takes place. Hence the commercial actors 

can always trade electricity without taking bidding areas and bottlenecks into 

account. Nord Pool offers intra-day and day ahead trading. In 2019 a total volume of 

494 TWh was traded on the exchange. The largest part was in the Nordic/Baltic day-

ahead market with a share of 381.5 TWh (Nord Pool Group, 2020a). 

 

1.3.4 Electricity production in the Nord Pool area from 2000 to 2019 

In 2019 the total amount produced reached 403 627 737 MWh in the Nord Pool Spot 

market (Nord Pool Group, 2020b). Almost 96% of the total production was in the 

Scandinavian countries. Sweden was the largest producer with a share of 40.31% of 

total production. Norway followed with 91% of the total amount, the Baltic countries 

stood for a combined amount of 3,93% where Latvia stood for 1.52%, Estonia 1.51% 

and Lithuania produced 0.90% (Nord Pool Group, 2020b) 

To acquire a better understanding of the Nordic/Baltic electricity market, an 

overview of each members production in the studied interval has been analysed. The 
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data shows to some extent large fluctuations in yearly production. In addition, an 

increasing trend in electricity production from fossil fuels where prediction of 

production is easier, to an increased share of production from renewable sources 

where variations will occur as often as on an hourly basis is identified. This 

information will contribute to a better understanding when volatility analysis is 

conducted later in the report. 

Production numbers are reported on the base year of 2018 or 2019 dependent on 

which countries has released annual reports for 2019. The details in the reporting of 

each country depends on the information fullness of the published information from 

the official energy institutions. The numbers are based on electricity production in 

the country and not electricity consumption since consumption includes imported 

electricity outside Nord Pool as well. Not all the country's total produced amount is 

available to trade on Nord Pool, but it gives valuable information regarding the 

overall production mix and long-term trends in production fluctuations.  

Sweden 

Sweden’s electricity generation mix consist of hydropower, nuclear power, wind 

power, solar power and different kind of thermal power such as Combined heat and 

power (CHP), Industrial (CHP) and Gas turbines (Figure 1). In 2018 nuclear power 

was the largest source with a share of 41.41% while hydropower followed with 

38.39%. The others sources followed with wind power 10.47%, thermal power 

9.47% and solar Power 0.25% (Energi Føretagen, 2019). 

 

Figure 1:  Swedish electricity production from 2000 to 2018 in TWh  (Energiföretagen, 2019). 

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

TW
h

Swedish Electricity production from 2000 to 2018 in TWh

Total Production Hydro Power Wind Power

Nuclear Power Solar Power Thermal power (total)



12 

Total production reached the lowest level in 2003 with a production of 132.5 TWh 

followed by a similar dip in 2009 with a production of 133.6 TWh. In 2003 

Hydropower reached the lowest level in the interval with a market share of 40.08% 

while nuclear power totalled 49.41% of the mix. In 2009 the opposite occurs with a 

low share of nuclear 37.41% and a high share of hydro 48.86%. The highest level 

reported in the interval was in 2012 with a production of 162.4 TWh followed by 

160.5 TWh in 2017. The average yearly production in the interval is 148.9 TWh. An 

interesting observation is the large increase in wind power, illustrated by the orange 

line in figure 1. From a level of 2.42 % of the energy mix in 2010 to a level of 10.47 

% in 2018. 

Norway 

The production mix consist of hydropower, wind power and thermal power (figure 

2). In 2018, hydropower represented 95% of total production followed by wind 

power 2.36% and thermal power 2.64% (SSB, 2020). Hence, Norway has the highest 

amounts of renewables in the production mix. Norway has around 50% of the 

reservoir capacity in Europe and 75% of the Norwegian production capacity is 

adjustable (Energifakta Norge, 2019a). High mountains, numerous rivers and big 

amounts of snow and rain are geographical and metrological conditions giving 

Norway a comparative advantage in hydropower production. The power plants 

connected to the reservoirs has a high degree of flexibility and it is easy to adjust the 

production due to demand and supply conditions (Energifakta Norge, 2019a).  

 

Figure 2: Norwegian electricity production from 2000 to 2018 in TWh (SSB, 2020) 
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The lowest production level in the interval occurred in 2003 (similar with Sweden) 

with a low of 107.25 TWh followed by the second lowest production in 2004 with 

110.47 TWh. Production reached a maximum in 2017 (while Sweden had the 2nd 

highest production) with 149.40 TWh and the second-best year was 2016 with a 

production of 148.99 TWh. The production had a steady increase from 2013 until the 

peak in 2017. Average production in the period was 134.09 TWh. In 2000 hydro 

power contributed to 99.63% of total production, and 98.50% in 2008, represented 

by the blue line in figure 2. Wind power has increased a lot from 0.50 TWh (0.02%) 

in 2000 to 3.88 TWh (2.64%) in 2018, yet it still represents a small amount of annual 

production. The share of wind power is planned to increase in the future; Total 

installed capacity of wind power was 1695 MWh at the end of 2018 while in 2019 a 

total of 1100 MWh of new installed capacity was expected. For 2020 a new record of 

installed capacity is planned, with a new installation of 1200 MWh meaning the 

installed capacity will increase around 34% in two years (Vindportalen, u.d.). 

Finland 

The domestic production of electricity in Finland reached 67.53 TWh in 2018. The 

largest share was from renewable energy sources with a total of 46% (hydro 42%, 

wind 19%, and nearly everything of the remaining from wood-based fuels). The 

second largest source was nuclear power with a share of around 32%. In third place 

fossil fuels stood for around 16% and peat around 5% (Statistics Finland, 2020). 
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Figure 3: Finland total production from 2000 to 2018 in (TWh) (Statistics Finland, 2020) 

Total production (Figure 3) in the interval varied from 82.19 TWh in 2004 to 65.04 

TWh in 2017. In stark contrast to Sweden and Norway, production in 2003 recorded 

the 2nd highest production output with a strong peak in Fossil fuels and peat as 

production source. Nuclear power had a stable production in the whole period while 

fossil fuels have been reduced in favour for an increase in renewables since 2013 

(Statistics Finland, 2019). 

Denmark 

In 2018 Wind stood for 45.75% of total production, followed by other renewable 

sources 25.41% including solar, hydro, biomass (straw, wood, biooil, renewable 

waste) and biogas (Figure 4). The third largest source was coal with a share of 

21.63% followed by natural gas at 6.35% and oil in the 5th place with a share of 

0.86% (Energistyrelsen, u.d.). 
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Figure 4: Danish electricity production from 2000 to 2018 (TWh) (Energistyrelsen, u.d.) 

The average yearly production in the interval was 36.13 TWh. The lowest production 

was in 2015 with a production of 28.94 TWh followed by 2018 with a production of 

30.38 TWh. In contrast to Sweden and Norway, production peaked in 2003 with a 

production of 46.16 TWh followed with a new peak in 2006 with a production of 

45.60 TWh. Since coal has been an important production source the total production 

is heavily correlated with the use of coal as an energy source until 2015, represented 

by the green line in figure 4. There have also been large shifts in energy sources in 

the interval from fossil fuels to renewables. While fossil fuels (Oil, coal and natural 

gas Oil) totalled to 82.96% of total production in 2000 it was only 28.83% in 2018. 

Wind power has increased its share from 11.80% in 2000 to 45.76% in 2018 while 

other renewables has increased from 5.25% in 2000 to 25.41% in 2018. The 

reduction in fossil full production has exceed the increase in wind production, 

making overall reduction in production levels in Denmark. 

Estonia 

Estonia opened as a bidding area in Nord Pool in 2010. In 2018, the electricity 

production totalled at 12 TWh. The main source is Oil Shale which stood for around 

75% of total production, followed by Wood chips and waste 9.67% while shale oil 

gas and wind energy were around 5%.  Estonia has also many other sources in the 

production mix as listed in the graph below (Figure 5). 
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Figure 5: Electricity Production from 2000 to 2018 (TWh) (Statistics Estonia, 2020) 

Production varies from a bottom in 2001 with 8.48 TWh to a top in 2017 with a 

production of 13.05 TWh. Oil shale has remained the main source in the whole 

period while there has been a steady increase in wood chips and waste, shale oil gas 

and wind energy from around 2013 (Statistics Estonia, 2020). Trend analysis from 

figure 5 may be insufficient due to changing methods for reporting production in the 

interval. Until 2008 electricity production from renewables included wood, biogas 

and black liquor. Since 2009 data of electricity and heat produced from wood are 

shown separately and after 2013 production from biogas are shown separately. Other 

renewables sources are black liquor, biogas and animal waste.  

 

Latvia 

Total production in 2019 was approximately 6.18 TWh. The main sources are 

thermal and hydropower with a share of 2.82 TWh and 2.09 TWh respectively, 

indicated by the grey and orange line in figure 6. The remaining production mix 

consists of Biomass 0.39 TWh, Cogeneration 0.38 TWh, Biogas 0.32 TWh and Solar 
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0.001 TWh. (AST, 2020).  

 

Figure 6: Electricity production from 2017 to 2019 (AST, 2020) 

Reliable historical data about production level has only been available from 2017. 

Latvia’s total production in 2019 counts for 0.9% of the total production in Nord 

Pool.  

 

Lithuania 

Lithuania opened as a bidding area in Nord Pool spot in 2012. Electricity generation 

in Lithuania have dropped drastically the last 20 years. The main reason is the 

shutdown of nuclear reactor in 2009 which produced 70% of the electricity in the 

country (World Nuclear Assosiation, 2017). In 2019 the net electricity production 

amounted to 3,64 TWh. The largest production source was Wind Farms 40%, 

followed by Thermal power plants 20%, Kruonis HP SP (Pumped storage hydro 

power plant) 16%. Other renewable energy sources such as power plants operating 

on biomass and biogas, solar energy plants and waste incineration plants produced 

14.7% and Hydroelectric power plants produced 9.4% of the total amount (Litgrid, 

2019). 
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Figure 7: Electricity production from 2014 to 2019 (TWh) (Litgrid, 2019) 

Data from the interval shows a peak production in 2014 with 4.05 TWh and the 

lowest level was in 2015 with a production of 1,08TWh. Over the last five years 

wind farms have a substantial increase in the production mix from 15.7% in 2014 to 

39.9% in 2019, indicated by the orange line in figure 7. The overall electricity mix 

consist of a lot of renewables in Lithuania.  

Total production in the Nordic Countries. 

The total production in the Nordic countries in the interval varies between 366 TWh 

and 408 TWh with an average production of 390.41 TWh. Since the Baltics accounts 

for 4% of the total market, entered the market on different point of time and the 

historical data is a bit incomplete on these countries, the total production in the 

interval is reported without the Baltic countries (figure 8). Hydro power is by far the 

largest production source in the mix followed by Nuclear power. Hydro power 

production has larger fluctuations than overall total production in the interval 

indicating substitution effects with other energy sources.  
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Figure 8: Total Production in the Nordic countries (Excluding Baltics) from 2000 to 2018 in (TWh) 

 

Figure 9: Total production in the Nordic (excluding Baltics) without Hydro power from 2000 to 2018 in (TWh) 

0

50

100

150

200

250

300

350

400

450
TW

h

Total Production in the 

Nordic countries (Excluding Baltics) from 2000 to 2018 in (TWh)

Total Production Hydro Power

Thermal Power Wind power

Nuclear Power Solar Power

Coal Oil

Natural Gas Other Renewable sources

Conventional condensing power Combined heat and power, industry

Combined heat and power, industry

0

20

40

60

80

100

TW
h

Total production in the Nordic countries (Excluding Baltics) without Hydro 

power from 2000 to 2018 in (TWh)

Thermal Power Wind power
Nuclear Power Solar Power
Coal Oil
Natural Gas Other Renewable sources
Conventional condensing power Combined heat and power, industry
Combined heat and power, industry



20 

 

In figure 9 hydro power is removed from the production mix, enabling a better 

understanding of fluctuations in the other production methods. Wind power 

production is scaled up while coal and oil are downscaled. In the period from 2000 to 

2004 falling hydropower production and increased fossil production indicate a 

substitution effect. The opposite tendency is observed in 2015. 

 

1.3.5 Reservoir levels in Norway from 2000 - 2019 

The reservoir level is a measure of how much water is stored in the hydropower 

plants in the mountains. Electricity cannot be stored effectively with today’s 

technology, however having water stored in reservoirs enable producers to adjust 

their electricity production after demand and supply condition. Hence, reservoir 

levels are a measure of how much electricity suppliers can supply to the market in 

the future. Information about reservoir levels are accessible for market actors, hence 

it is reasonable to assume that participants in the financial electricity market take this 

information into account.  

To limit the scope and due to lack of available data, only Norwegian reservoir levels 

are included. This limitation is supported by the fact that Norway has approximately 

50% of the total reservoir capacity in Europe, information about Norwegian reservoir 

levels can influence their whole market. The maximum reservoir capacity pr. April 

2019 is 86.9 TWh (NVE, 2020a). The reservoir levels follow strong seasonal 

differences due to natural reasons. This trend is easily identified in the statistics. 

When winter sets in with colder temperatures the rainfall is stored in the mountains 

as snow reducing inflow to the reservoirs. High electricity consumption and 

production comes with the cold temperatures making reservoir levels decrease from 

around week 43 until spring. From around week 17 the spring arrives with warmer 

weather, snow in the high mountains melts and the water flows into the reservoirs. 

This leads to a sharp increase in the reservoir levels until it starts to flatten out again 

in week 35 (late august). Then the levels are quite stable until week 43 before the 

decline through the winter starts. 
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Figure 10: Reservoir levels Norway (NVE, 2020) 

The maximum (grey line), minimum (blue line) and median level (dotted line) in 

figure 10 is based on the last 20 years of observations. Based on the historical data, 

the median level reaches a bottom level with 31.3% in week 17 and a maximum level 

of 83.6% in week 37. Large fluctuations occur due to different weather from year to 

year, where more (less) snow in the mountains, warmer (colder) winters and wetter 

(drier) summers will increase (decrease) the reservoir level. The large fluctuations 

are visible in the dataset since the lowest level reported in week 17 is 18.1% while 

the highest level is 45.4%. 
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Figure 11: Reservoir levels Norway by week number from 2000 until 2019 (NVE, 2020) 

Figure 11 graph reservoir levels for the whole period in total, the seasonal trend is 

noticeably clear with large fluctuations between the different years. Another 

interesting observation is the difference shape of the curves regarding how quickly 

the reservoir levels increase after reaching the bottom level. For instance, year 2006 

flattens out at a level around 60% which is well below the median. This observation 

is also visible in the total production which has a large drop in 2006. 
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Figure 12: A selection from the interval: Reservoir levels by week number (NVE, 2020) 

Figure 12 graph a selection from the interval. The large production decline from late 

2002 (green line), during 2003 (blue line) and until 2004 (golden line) is very visible 

in the series with substantial deviations in reservoir levels from the median level 

(dotted line). Year 2006 (orange line) is quite unique with an early peak around week 

29, with relatively low reservoir that summer and autumn. 2010 (pink line) ended the 

year with even lower reservoir levels than 2002 and 2003. The low reservoir levels 

continued into 2011 (purple line), but the year ended with a lot of water in the 

reservoirs. These periods reveal relatively big deviations from the median reservoir 

level for the period. 2015 (grey line) follows the median until week 17, lies below 

until week 31 and above rest of the year. In 2017 (dark red line), the total production 

reached an all-time high with reservoir levels following the median trend. The 

selected reservoir levels will be further discussed together with volatility in chapter 

6.2 

 

1.3.6 Temperature trend Oslo from 2000 to 2019  

Temperatures is one of many factors influencing the electricity price. Temperature 

has a clear link to electricity spot prices as electricity is used as a primary heating 

source in many countries and cold weather increase the demand. Haugom et al. 
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(2018) observes a clear negative dependence between temperature and consumption. 

The news is often reporting record high electricity prices when the cold weather sets 

in. It is a known fact that the electricity prices follow seasonal trends with low prices 

in the summer (with lower demand) and high prices in the winter (with higher 

demand). This relationship permits temperature levels as a proxy for electricity 

consumption. Temperature information are accessible for market actors, making it 

reasonable to assume that participants in the financial electricity market take this 

information into account. Yet this information is restricted by the reliability and 

duration of the weather forecast. 

 

Figure 13: Median Temperatures Oslo from 2000 to 2020 (Norsk klimaservicesenter, 2020) 

 

Figure 13 shows median temperatures in Oslo from 2000 to 2020 week by week. The 

median temperature is an arithmetic average of the temperatures between 00:00 and 

24:00. The “Average Week Median” used as a basis is an average temperature based 

on the observed temperatures from 2000 until 2020. Interesting candidates for further 
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analysis are year 2001 with a strong deviation from the median from week 49 

through 52 continuing with large deviations from the mean into 2002. Further, 2007 

also has an interesting spike between week 49 and 52.  2010 also has a strong 

deviation from the mean continuing in the start of 2011.   

 

Figure 14: Median temperatures Oslo from 2000 to 2020 – A selection from the interval (Norsk 
klimaservicesenter, 2020) 

Figure 14 graph a selection from the interval which will be further discussed together 

with volatility in chapter 6.3. 
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Renewables 
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the price is above zero. In general, production occurs regardless of price but depends 

on weather conditions, hence most renewables are said to be non-adjustable energy 

sources. For producers which has the possibility to store water in reservoirs, other 

conditions must be considered. Shall they produce today, or hope for a better price in 

the future? The decision is based on the difference between todays price and the 

expected price in the future. It is a challenging exercise since it is difficult to predict 

water inflow which can vary locally, further it is difficult to predict consumption and 

development in the market (Energifakta Norge, 2019a). A thinkable worst-case 

scenario for a reservoir owner is when production is forced due to full reservoirs in a 

combination with bad market conditions such as low price (Energifakta Norge, 

2019a). Producers can use the financial market for electricity to lock in their 

production, making production nearly unaffected of fluctuations in the spot price. We 

will discuss the financial markets in the next chapter.  

Thermal power 

Thermal power uses sources such as natural gas, coal, nuclear power, and waste. 

Thermal power production has different production assumption then renewables. An 

advantage with thermal power is the possibility to produce independent of weather 

conditions. Production is profitable when the electricity price is above the production 

cost. The cost of production depends on which production source is used, but is 

mainly dependent on the price of coal, gas and emission allowances (Energifakta 

Norge, 2019a), implying higher variable costs. Nuclear power plants are expensive to 

build, but quite cheap to run due to relatively low variable costs. The economics of 

nuclear power involves capital costs, plant operating costs, external costs, and other 

costs such as system costs and nuclear specific taxes. On a lifetime basis, nuclear 

plants are an economic source of electricity production. Some of the advantages with 

nuclear power are high reliability and low greenhouse gas emissions. 

1.3.8 Market changing factors  

The power market has gone through large changes in the near past and is still facing 

different challenges ahead. The agenda of the energy industry is heavily affected by 

climates changes, regulatory and safety factors. Many industries (customers of the 

exchange) are opting to reduce emissions and the market needs to take that into 

account. It requires more use of renewable sources which can be challenging for the 

market. In earlier times where traditional energy sources where a larger part of the 
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mix, it was easier to predict, forecast and decide where to produce energy. Now a 

days, when renewables are a larger part of the mix it is more demanding to forecast 

and predict the production. Due to the changing weather conditions and forecasting 

problems, there can be large production fluctuations within the hour. The changing 

environment affects the Transmission system operators who is responsible for 

balancing the grid with a constant flow at 50 Hz. The trend from the Nord Pool 

members energy mix reveal large increases of renewables as production sources. 

Since electricity cannot be stored, and most renewables are non-adjustable new 

theoretical aspects arise. In periods with a lot of wind, rain and sun combined with 

low demand for electricity clearing the market suggests lower electricity prices. In 

periods with less wind, rain and sun combined with high demand for electricity 

clearing the market suggest higher electricity prices. If these aspects occur combined 

with fewer adjustable (nuclear, coal, natural gas, storable hydro) and more non-

adjustable (wind, sun, un-storable hydro) sources the volatility in the spot price 

might increase. This information is available for market participants, but to what 

extent it gives implications for the financial market for electricity is to our 

knowledge unidentified.   

 

1.4 The financial market for electricity 

In this chapter we will elaborate the financial markets for electricity contracts and 

different types of contract.  

1.4.1 Introduction to the financial market for electricity. 

The Nordic/Baltic power market is one of the most liquid power derivates markets in 

the world. All contracts are settled financially, therefor no power is physical 

delivered. To be granted permit to trade on Nasdaq OMX, actors must provide 

security for its exposure. Hence, the market is not public but limited mostly to 

institutional investors which can provide this security. Private persons who desires 

access to the market face stricter financial requirements than companies. The 

financial contracts are traded with a longer time span than the physical day-ahead 

contracts. The users of the financial electricity market trade on different contracts to 

lock in their price – hence the market is used for price hedging and risk management 

for actors in the Nordic/Baltic electricity market (Wangensteen, 2006). By locking a 
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specific future price, actors may reduce risk and reduce fluctuations in margins. A 

power producer can secure some of the production in the financial market to reduce 

fluctuations in margins. How big proportion of production secured in the financial 

market will vary with risk appetite and other financial factors in the focal firm. 

Retailers can use the financial market to secure operations after signing contracts of 

electricity delivery to end users. Large consumers operating in an energy intensive 

industry can use the financial market for risk management since the electricity price 

is a primary risk exposure impacting profitability of operations. A typical consumer 

participating in the financial electricity market are the aluminium producers in 

Norway. Traders and speculators participate in the financial market to catch price 

differences between spot prices and different contracts. These participators have an 

important role to increase liquidity and effective market clearing. 

A various number of contracts are available for trade at Nasdaq OMX such as 

Futures, DS Futures2 and Options. The length of the contract varies from day to 

week, month, quarter and year. Options in a combination with futures offers valuable 

strategies for managing risk associated with power trading. The benefits of using 

options for risk management is to limit the exposure to downside risk (loss) while 

maintaining the exposure to upside potential (profit). In this paper quarterly and 

yearly front future contracts are studied. 

 

1.4.2 Nordic electricity base futures  

A future contract is an agreement to buy (long) or sell (short) an asset at a specified 

future delivery date for a fixed price which is specified at the present moment 

(forward price).  

The contract type is a standardized electricity future contract with cash settlement. 

The contract is based on the Nordic System price of 1 MWh of electricity according 

to the daily Elspot system price for the Nordic region which is quoted and published 

by Nord Pool Spot. The contract base size is 1 MWh and the number of delivery 

hours for each series is specified in the trading system and the product calendar and 

may vary with the applicable delivery period. The contract size, which is expressed 

 
2Future product with no settlement during the trading period prior to the expire day. 
https://www.nasdaq.com/solutions/power-ds-futures 
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in MWh, will be a function of the applicable number of delivery hours and the lot 

size. The base load years normally vary between 8760 and 8784 hours. The trade lot 

is 1 MWh and the bank day calendar follow the bank days in Norway. The contracts 

are traded in Euro with a minimum ticker size of 0,01 EUR thus the contract price is 

expressed in EUR/MWh. The base load covers all hours of all days in the delivery 

period (Nasdaq, 2018). Settlement of future contracts involves both a daily mark-to 

market settlement and a final spot reference cash settlement, after the contract 

reaches its expiry date. Mark-to market settlement covers profit or loss from day to 

day changes in the daily closing price of each contract. Final settlement, which 

begins at delivery, covers the difference between the final closing price of the future 

contract and the system price in the delivery period  (Nasdaq, u.d.). The financial 

market cannot be used to trade one single kWh, as mentioned earlier. Instead, the 

financial market is utilized to manage prices and risks. We will illustrate this by an 

example:  

A producer and a retailer have agreed on a quarter future contract for electricity. The 

contract price is 45 Euro per MWh, and the contract size is 8 MWh. The delivery 

period is set to October 2020. Two scenarios can occur: 

1) Where the average system price for third quarter was 46 Euro per MWh. This 

higher price in the market is initially a disadvantage for the retailer and an 

advantage for the producer. However, since they have a future contract, the 

producer will compensate the retailer by 1 €/MWh * 8 MWh = 8 Euro is 

transferred from producer to retailer. 

2) Where the average system price for third quarter was 44 Euro per MWh. This 

lower price in the market is initially an advantage for the retailer and a 

disadvantage for the producer. However, since they have a future contract, 

the retailer will compensate the supplier by 1 €/MWh * 8 MWh = 8 euro is 

now transferred from retailer to producer. 

When clearing the contract, the contract price is compared to the average system 

price for the contract period. The money to be transferred between the actors is found 

by multiplying the price difference by the contract size.  
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1.4.3 Nordic Electricity Base Options  

An option differs from a future since it gives the holder a right, but not an obligation 

to buy or sell a specified amount of electricity, at a specified price by a stated 

expiration or maturity date. A buyer of an option has a right but not an obligation to 

buy, while the seller has a duty to sell. Options can either bought or sold (written). 

There are two kind of options, a call option and a put option. 

A call option gives the buyer a right, but not an obligation to buy a specified amount 

of electricity, at a specified price by a stated expiration or maturity. A duty is 

imposed on the seller to sell a specified amount of electricity, at a specified price by 

a stated expiration or maturity date. 

A put option gives the buyer a right, but not an obligation to sell a specified amount 

of electricity, at a specified price by a stated expiration or maturity. A duty is 

imposed on the seller to buy a specified amount of electricity, at a specified price by 

a stated expiration or maturity date. 

The type of contract is a standardized option contract on corresponding Contract base 

of “Nordic Electricity Base Quarterly Electricity Future Contract”. The contract base 

is quarterly/yearly future contracts with the same base and lot size as the futures. The 

option style is European option meaning the option can only be exercised on 

expiration date.  

 

1.4.4 Pricing of futures and options (Black Scholes model) 

The Black and Scholes (Black & Scholes, 1973) model is used for determining the 

market value of an option. The model is based on the following assumptions (Lumby 

& Jones, 2015): The option are European calls, no taxes or transaction costs are 

involved with option trading, option investors can lend and borrow at an interest rate 

equal to risk free rent, the underlying shares can be freely bought and sold even in 

fractional amounts, there are no dividends payable on the shares before the option’s 

expiry date and both the Risk free interest rate and the shares standard deviation 

remain constant over the life of the option. Even though some of the assumptions in 

the model is quite unrealistic, the basic model is a good predictor of option values 

and can be adjusted to apply for more realistic scenarios. 
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The following notation is used by Lumby & Jones (2015): 

C = The market value of a call option (i.e. the option premium). 

S = Current market price of the shares. 

X = Options exercise price. 

Rf= Risk-free rate of interest 

T= Time in years, until the option expires. 

𝜎 = Volatility (as measured by the standard deviation= of the share price. 

log𝑒 = Natural log. 

e = The mathematical constant 2.71828 

N = Cumulative area under the normal curve. 

The Black and Scholes Option valuation model: 

𝐶 = [ 𝑆 × 𝑁(𝑑1)] − [ 𝑋 ×  𝑒−𝑅𝑓 ×𝑇 × 𝑁(𝑑2)] 

Where the two adjustments factor are: 

(𝑑1 ) =  
log𝑒(

𝑆
𝑋) + (𝑅𝑓 × 𝑇)

𝜎 × √𝑇
+ (0.5 ×  𝜎 ×  √𝑇) 

and: 

(𝑑2) = (𝑑1) −  𝜎 × √𝑇 

The determinants of the market value of an option in the Black and Scholes model is 

based on a combination of the exercise price (X), the current market share price (S), 

the time to expiry (T), the volatility of the share price( σ ) and the annual time value 

of money (e−Rf ×T ). By assessing the determinants, it is necessary to highlight the 

only unknown determinator is the volatility of the underlying asset. With improved 

knowledge of the uncertainty regarding volatility in the financial contracts of 

electricity, practitioners undertaking risk management can make better decision 

based on the improved knowledge. The re-projected volatility numbers from our 

findings in chapter 5.3 can be inserted in the Black and Scholes model to calculate 

the option price. 

As every parameter except volatility is known, the Black and Scholes model can be 

reversed to calculate the implied volatility (Latane & Rendleman, 1976). This 

method uses the markets expectations in the options prices to calculate a volatility 

index, hence the method sets practicality over precision. More about Implied 

Volatility in the Nordic Power Market in Birkelund & Opdal (2014).  
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2. Literature review  

This chapter will look at different relevant literature for the research topic. The first 

part will look at relevant research of the electricity market, and the second part will 

look at research relevant for stochastic volatility models. 

2.1 References to the electricity market:  

Like in many other commodities markets, the research on electricity market is 

comprehensive. Many disciplines have done research trying to understand the 

dynamics in especially the system price in an electricity market. Research have been 

done to both understand and describe market characteristics, volatility dynamics, 

drivers behind price fluctuations and shock responses.  

Solibakke (2016) analysed the NordPool Spot system price volatility with an SNP 

(G)ARCH specification of 14.1.1.1.12.0.0.0. The system price volatility showed 

characteristics of mean-reversion effects with seasonal changes and volatility 

clustering. Further Solibakke (2016) report that large price changes from shocks 

gives high conditional volatility reaction. Whereas smaller price changes from 

shocks give fairly small responses in the volatility. Asymmetry is reported as low for 

small price changes (-5%< and <5%), but becomes big under big price changes (<-

10% and 10%<) (Solibakke, 2016). The persistence in the System Price is reported to 

approximately 12 days.  

Haugom, et al., (2017) analysed the forward premium in the Nordpool power market. 

Results concluded that the average spot price and deviation of water inflow from its 

usual level have significant positive impacts on the forward premium. A negative 

relationship between electricity consumption and temperature was also reported. 

Nevertheless, as the system spot prices is set through a closed double auction system 

once a day, modelling the system price is challenging. The auction system set the 

system prices based on the reported demand and supply of electricity in the different 

bidding areas to clear the market within and between the bidding areas. This process 

is conducted by the TSO, and the market participants i.e. the producers, the retailers 

and the consumers, act as a price taker. From as risk management point of view, 

looking at the financial markets for electricity contracts makes more sense. As the 
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research of volatility in Nordic futures market for electricity contracts are rather 

inadequate, looking at the methodology used in other markets seems appropriate.  

When looking at volatility in time series, the ARCH and GARCH framework is 

interesting. Paolella and Taschini (2006) looked at different forecasting methods, 

including analysis of supply and demand factors and spot-future parity. Such 

methods where proven to give misleading conclusions, due to market complexity. 

More effectively where statistical models relying on historical price information. The 

authors evaluated the performance of different statistical GARCH models for the 

prices of CO2 and SO2 certificates, both tail thickness for the unconditional 

distribution and conditional distribution where evaluated. This work where 

strengthen by Banz & Truck (2009), who used an AR(1) GARCH(1,1) to evaluate 

prices of CO2 certificates. Both analyses observe heteroskedasticity in the returns and 

found efficient model fit with conditional variances.  

Egeland & Haug (2016) used semi-nonparametric AR(1) GARCH(1,1) models to 

extract densities and conditional variances for 14 different financial markets, 

including stocks, stocks indices and commodities. The GARCH-models seems to 

capture volatility clustering and asymmetry effects. The paper found good evidence 

for asymmetry effects, where price decreases gave higher volatility than price 

increases. The strongest asymmetry effects were found in the stock indices, but 

where clearly present both in CO2 and Brent Oil financial market.  

 

2.2 References to stochastic volatility models:  

A stochastic volatility (SV) model has its own stochastic process and is therefore 

useful to model time varying volatility in financial markets. SV model 

implementation has been done to different equities and commodities. To what we 

have found, no one has implemented GARCH- and SV models for det Nordic futures 

market for electricity contracts.  

 

The stochastic volatility stream started with Andersen et al. (2002), where an SV 

diffusion process for an observed stock price 𝑆𝑡 is provided by 
𝑑𝑆𝑡

𝑆𝑡
= (𝜇 + 𝑐𝑉𝑡)𝑑𝑡 +

√𝑉𝑡𝑑𝑊𝑡, where the unobserved volatility process 𝑉𝑡 is either log linear or squared 
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root. Andersen et al (2002) estimated both versions of the SV model with S&P500 

data, however both versions where sharply rejected. 

 

Later Chernov et al. (2003) added a jump component to the basic SV model from 

Andersen et al (2002), which improved det model fit radically. This refinement gave 

characteristics of tick non-Gaussian tails and persistent time-varying volatility 

(volatility clustering). A two-factor volatility model out performed one-factor 

models, as one of the volatility factors (𝑉1𝑡) are extremely persistent to capture 

volatility clustering, and the other (𝑉2𝑡)  is strongly mean-reverting to fatten tails. 

Another extension is to enable correlation between the mean (𝑤1𝑡) and the two SV 

factors (𝑤2𝑡, 𝑤3𝑡). This extension is crucial to enable the asymmetry effect (the 

correlation between return innovations and volatility innovations). 

 

Solibakke (2015) used an AR(1) GARCH(1,1) model together with a two-factor 

stochastic volatility model to forecast and extracting conditional moments for the 

Brent Oil futures market. The paper report risk measures, conditional one-step-ahead 

moments, forecasts of one-step-ahead conditional volatility and evaluate shocks from 

conditional variance functions. Option prices were calculated using re-projected 

conditional volatility. The paper gave insights how to build up valid scientific 

commodity market models. The same analysis where performed for the European 

Carbon Markets in Solibakke (2014) and for Front Year Futures Contracts on the 

European Energy Exchange AG in Solibakke & Dahlen (2012). In Solibakke (2019) 

a two-factor volatility model where built and implemented to do step ahead volatility 

prediction and describe its relevance for equity markets. The paper used observations 

from nine years of the FTSE100 spot index and the Equinor spot price. The paper 

outlined the stylised facts from the volatility literature, like density tails, persistence, 

mean reversion, asymmetry and long memory, all contributing to systematic data 

dependencies. State vectors, conditional distribution and step ahead predictions 

where outlined as well. The stochastic volatility models performed well and where 

fruitful to understand more of the price processes in these financial markets.  
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3. Data 

As the electricity system prices is set through a closed double auction system once a 

day, modelling the system price is challenging in the short run. Due to bottlenecks 

and bidding areas, different system prices can occur, making modelling even harder. 

On the other hand, the financial contracts for electricity is traded continuously in one 

market with one price for the whole Nord Pool area, making it more convenient for 

modelling. In this paper we are interested in the longer financial contracts as these 

contracts are mainly used for hedging and risk management. The raw data consist of 

observations of both front quarter and front years futures contract’s prices, spanning 

from 3. January 2000 to 3. January 2020 traded at the Nasdaq OMX exchange. The 

data set contains 5009 observations of each contract. The raw data prices will be 

transformed into returns, an explanation why will be provided in the next section. 

Returns are a logarithmic transformation of the change in price from day to day. By 

using front year and front quarter contracts, we do not mix up the different maturity 

of the contracts. In other words, we cannot take the returns (logarithmic price 

change) between 30.09.2019 and 01.10.2019 for quarter contracts. The contract 

traded 30.09.2019 is a 2019Q4 contract, whereas the contract traded 01.10.2019 is a 

2020Q1 contract – the two contracts are different products. By using front contracts, 

we avoid the problem with mixing the price of different products. In the analysis a 

dummy variable will be added to simulate different shocks on the markets. Hereafter, 

the data set for the front quarter futures contracts is referred to as QUARTER, and 

front year futures contracts as YEAR. 
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4. Methodology 

This chapter will start by defining the basic definitions for time series analysis in 

econometrics. A time series is generated when having repeated observations of the 

same variable over a given time interval (Bjørnland & Thorsrud, 2015). Highly all 

data in macroeconomics and finance can be described as time series, it exists time 

series of GDP, stock prices, exchange rates, commodity prices, and interest rates. In 

notations, when a variable is denoted 𝑦𝑡, the subscript t referred to the period for the 

observation of the variable 𝑦. 

The behaviour of a time series is the sum of four additive factors: trend, cycle, 

seasonal components and noise (Bjørnland & Thorsrud, 2015). The trend refers to if 

the timeseries trend upwards or downwards over time (non-stationary), the cycle the 

series follow some cyclic patterns, the seasonal components the time series follow 

some seasonal structure. Example of a seasonal trend is the power consumption, and 

thus the prices, tend to be lower in the summer than in the winter. Lastly, the noise or 

white noise is an important feature in econometric models, denoted as  𝜀𝑡, which is a 

sequence of independent and random variables with a distribution  

𝑢𝑡 ~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎2) 

That is, 𝑢𝑡 has mean of zero and a constant variance of 𝜎2, denoted as normal 

distribution. (Bjørnland & Thorsrud, 2015). The term iid refer to 𝑢𝑡 as identical and 

independent distributed. When 𝑁(0,1) then 𝑢𝑡  is said to be standardized normal 

distributed denoted 𝑍𝑡 ~𝑁(0,1) 

 

4.1 Normality 

Normality, or normal distribution, is important in statistics in order to test hypothesis. 

In a least squared regression, the regressor 𝑦𝑡 partly depends on the error term 𝑢𝑡, 

then it can be stated if 𝑢𝑡 is normally distributed, then 𝑦𝑡 will also be normally 

distributed (Brooks, 2008). Further, the least squared estimators are linear 

combinations of random variables, i.e. 𝛽̂ = ∑ 𝑤𝑡𝑦𝑡, here 𝑤𝑡 are weights. As the 

weighted sum of a normal random variable is also normally distributed, it can be 

stated that the coefficient estimates are also normally distributed. 

 

To identify if a random variable is normally distributed a few factors are controlled. 

First the two moments of the distribution are checked – the mean and the variance as 
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stated earlier should be zero and constant (i.e. 𝑢𝑡 ~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎2)). Further the third 

and fourth moments known as the skewness and kurtosis are checked. The skewness 

measure whether the distribution is symmetrical around the mean, if the random 

variable is normal the skewness has a value around zero. The kurtosis measure how 

fat the tails of the distribution are, and a value of three represent normality. The 

curve of the normal distribution is said to be mesokurtic. In financial data a 

leptokurtic distribution is often found, this implies fatter tails and more peakness in 

the mean compared to the normal distribution – i.e. kurtosis is larger than three.  

 

A test used to check whether the coefficients of skewness and kurtosis are jointly 

zero are the Jarque-Bera test (Jarque & Bera, 1980). The test statistic follows a 𝜒2 

distribution under the null hypothesis that the variable is symmetric and mesokurtic. 

Opposite properties of the variable result in a rejection of the null with a conclusion 

of non-normality.  

 

4.2 Stationarity 

As mentioned earlier, the price in a time series can have different behaviours related 

to its trend. The time series can be stationary or non-stationary. A stationary time 

series will over longer intervals move around its mean – known as mean-reverting. 

The opposite of a stationary time series is a non-stationary time series, here the price 

can follow a positive or negative trend over time. 

In many statistical analyses an important property is stationary time series. Whether a 

time series is stationary or not is important due to several motives (Brooks, 2008): 

• Stationarity or not can strongly impact the time series behaviour and properties. 

To illustrate this, a shock in the time series is used. With a stationary timeseries, 

a shock will gradually fade out, implying when a shock in time t occurs, one will 

see a smaller effect in time t+1, and a smaller effect again in time t+2 and so on. 

In a non-stationary time- series, the shock in time t will be as big in the periods 

t+1, t+2 and so on. Hence the shock is persistence and the effect will stay in the 

time series longer. 

• Regressing non-stationary variables which are independent and random of each 

other can with standard technics give significant coefficients and high 𝑅2. These 
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results are useless as the two variables are independent of each other, such a 

regression will be called spurious regression.  

• With non-stationary variables, the standard assumption for asymptotic analysis 

will not be applicable, implying that t-statistics will not follow t-distributions, F-

statistics will not follow F-distribution and so on. Hence, the outcome from the 

hypothesis testing is not valid when regressing non-stationary variables with 

standard regression technics. 

 

To make time series stationary, this paper uses returns instead of prices in the data 

set. Returns are found by taking todays price of the contract, divided by yesterday’s 

price of the contract. This ratio is taken logarithmic and multiplied by 100: 

𝑟𝑒𝑡𝑢𝑟𝑛𝑠 = 𝑦𝑡 = 𝑙𝑛 (
𝑝𝑡

𝑝𝑡−1)
) ∙ 10 

To test if the dataset is a stationary time series, the Augmented Dickey-Fuller (ADF) 

test (Dickey & Fuller, 1979), the Phillip-Perron (PP) test (Phillips & Perron, 1986) 

and the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test (Kwiatkowski, et al., 

1992) are applied. The null-hypothesis in the ADF and PP-test is that the time series 

is unit-root, i.e. non-stationary. A rejection of the null hypothesis conclude that the 

time series is stationary. The KPSS-test applies opposite of the ADF and PP-test, i.e., 

the null is that the time series is stationary – a fail to reject the null confirm stationary 

time series.  

  

4.3 Autocorrelation 

The next step is to define whether it exists autocorrelation or not in the time series. A 

stationary time series will have a constant variance in the interval, known as no-

autocorrelation. In case of a shock, the prices will move significant (due to the 

shock), but after short time the price will revert to its long-term mean value. In 

stationary time series, stochastic shocks only have a temporary effect on the price.  

 

When a time series is non-stationary (not mean reverting), the time series will have a 

non-constant variance and autocorrelation properties. Such properties imply that after 

a stochastic shock in the price, the price will move from this new level – known as 

autocorrelation. 
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If autocorrelation is present, there are some dependency in the time series. The use of 

lags makes it possible to integrate this dependency and to build a good model that 

explain the time series. When the residuals in our well specified models show no 

autocorrelation, it confirms that the models we build managed to integrate the 

dependency that exist in the dataset. In other words, the residuals in the models are 

roughly white noise. The Ljung Box test (Q) is applied (Ljung & Box, 1978) to test 

the null hypothesis of no autocorrelation. A rejection of the null hypothesis conclude 

that the variables are not autocorrelated. 

 

4.4 Independence 

The BDS test (Brock, et al., 1996) is another test for goodness of fit. The test detects 

nonlinear structures and serial dependence in the estimated residuals from the 

specified model. The null hypothesis is that residuals are independent and identically 

distributed (iid), in other words there are no repeated patterns in the residuals and the 

model is well specified. Rejection of the null hypothesis indicate presence of 

structures in the time series not included in the fitted model. Such structures can be 

nonlinear or serial dependency; consequently, the model is not optimal specified 

when the null is rejected. 

 

4.5 ARMA Models 

When doing statistical analysis of time series, autoregressive-moving-average 

(ARMA) models are useful for describing stochastic processes. The ARMA-model 

consist of two polynomials: 

1) The autoregression (AR): Involves regressing the variable on its own lagged 

(past) values, in other words it seeks to explain the momentum and mean 

reversion effects in the time series. Letting 𝑢𝑡 be a white noise term, an 

autoregressive model of 𝑝 orders can be expressed with sigma notations as 

𝑦𝑡 = 𝜇 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + 𝑢𝑡 

This shows that in an AR process the current value of 𝑦𝑡 depends on previous 

periods value of 𝑦𝑡 plus an error term. 
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2) The moving average (MA): This part seeks to model the error term as a linear 

combination of error terms occurring simultaneously and at various times in the 

past. In other words, it tries to explain the effect of a shock observed. Letting 

𝑢𝑡  (𝑡 = 1, 2, 3. . . 𝑛) be a white noise process with E(𝑢𝑡) = 0 and var(𝑢𝑡 = 𝜎2). 

Then an 𝑞th order moving average model, denoted MA(q) can be expressed by 

sigma notations as: 

𝑦𝑡 = 𝜇 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝑢𝑡−𝑖 + 𝑢𝑡 

This shows that a MA process is a linear combination of white noise processes, 

making that 𝑦𝑡 depends on both present and previous values of a white noise 

disturbance term (Brooks, 2008).  

By merging the AR(p) and the MA(q) models, an ARMA(p,q) model with of p 

orders of the AR part, and q orders of the MA part is obtained. The ARMA model 

states that today’s value of the time series 𝑦𝑡 depends linearly on its own previously 

values and the combination of today’s and previously values of a white noise error 

term. 

 

4.6 A step into non-linearity land 

In most qualitative methods and econometrics classes taught in undergraduate and 

graduate level the focus is at linear models. In a linear model, there is one parameter 

that is multiplied by each variable in the model (Brooks, 2008). Many non-linear 

models can be made linear by transforming the data (using e.g. logarithms).  

However, not all relationship in finance are necessary linear. Campbell et al. (1997) 

highlighted that options payoff non-linear in some input variables, and that investors 

accept the trade-off between risk and returns non-linear. These points motivate for 

non-linear models, in addition financial data has some common features that require 

non-linear models (Brooks, 2008): 

o Leptokurtosis: The observed returns from financial markets tend to not fit 

well with the normal distribution. Often the return distribution exhibit 

properties of additional peakness at the mean and fatter tails compared to the 

normal distribution, making the kurtosis higher than three. 
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o Volatility clustering: In financial markets the volatility tends to occur in 

clusters. One can expect to see large returns are followed by large returns, and 

small returns are followed by small returns – of both signs (Benoit, 1963) 

(Fama, 1965). A possible explanation behind this dynamic is the information 

flow to the market, which drive price changes, tend to appear in clusters 

rather than being evenly spread out in time.  

 

When testing for volatility clustering, there are two main test-statistics to use, 

the Ljung-Box test statistics for squared returns (𝑄2) and the ARCH 

statistics. In case of significant statistics, there are some autoregressive 

conditional heteroskedasticity in the data implying that the variance of the 

error term today is a function of previous error terms – namely volatility 

clustering.  When volatility clustering is present one says that the volatility 

exhibits persistence, Autocorrelation in residuals is a sign of misspecification 

of the model, whereas autocorrelation in volatility is a sign of data 

dependency which makes a foundation for volatility forecasting. 

 

o Asymmetry: the phenomena in financial markets known from the prospect 

theory (Tversky & Kahneman, 1979) (Barberis, et al., 2001) where volatility 

tend to rise more after a large price drop than after a price jump of the same 

size. Negative price shocks have a larger impact on the volatility than positive 

price shocks, i.e. positive and negative shocks might not have the same 

impact on volatility. This asymmetry is called both a leverage effect and a 

risk premium effect (Engle & Patton, 2000). As the price of an asset decline, 

the companies become more leveraged since the relative value of their debt 

rises relative to that of their equity. As a result, it is expected that the stock 

becomes riskier and more volatile. This is referred to as the leverage effect 

(Ait-Sahalia, et al., 2011). The risk premium effect is that due to risk 

aversion, the demand for a stock will decrease when news of increased 

volatility occurs. The effects of asymmetry can be different in markets with 

different characteristics. Negative (positive) asymmetry effects can be 

indicated by negative (positive) skewness. 

 



42 

To test for non-linear relationships the Ramsey Regression Equation Specification 

Error (RESET) test (Ramsey, 1969) is applied. The test is used for linear regression 

models, as it tests if non-linear combinations of the explanatory variables help 

explaining the response variable. If the model rejects the null hypothesis then the 

model has some non-linear relationships not considered, i.e. the model is mis-

specified.  

 

4.7 The (G)ARCH techniques 

In financial time series, volatility clustering is a well-established phenomenon, 

implying that volatility one day tend to correlate positively with the volatility the day 

after. To model time series with volatility clustering, ARCH and GARCH models are 

widespread. ARCH/GARCH models can be shown to be an ARMA model for the 

conditional variance function (Brooks, 2008)). 

 

The ARCH (Autoregressive Conditional Heteroscedastic) (Enger, 1982) model uses 

earlier observations to estimate the variance one period ahead. The model has a lag 

configuration where the squared residual (𝜀𝑡−𝑗
2 ) of the last observation is used to find 

volatility (𝜎𝑡
2) the next day.  

ARCH (p):  

 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑡

𝑝

𝑗=1

𝜀𝑡−𝑗
2  

An expansion of the ARCH framework is the GARCH (Generalized Autoregressive 

Conditional Heteroscedastic) model (Bollerslev, 1986), where both the squared 

residual (𝜀𝑡−𝑗
2 ) of the last observation and the last period forecast is included (𝜎𝑡−𝑗

2 ), 

when finding next period volatility (𝜎𝑡
2). 

GARCH (p,q): 

 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑡

𝑝

𝑗=1

𝜀𝑡−𝑗
2 + ∑ 𝛽𝑡

𝑞

𝑗=1

𝜎𝑡−𝑗
2  

Where an ARCH model only takes the squared residual from last period when 

modelling the next period’s variance, the GARCH model include the last period 

squared residual and the last period forecast of the volatility. The effect of this 

expansion makes the GARCH model handle the persistence in a shock better than an 
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ARCH model. A GARCH(p,q) model consist of p orders of last periods residual 

observations and q orders of last period forecast observations.  

 

GARCH-models is useful for forecasting volatility (Brooks, 2008) as it describes the 

changes in the conditional variance of the error term 𝑢𝑡. It can be proven that 

 

𝑣𝑎𝑟(𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, … ) = 𝑣𝑎𝑟(𝑢𝑡|𝑢𝑡−1, 𝑢𝑡−2, … ) 

 

This shows the conditional variance of 𝑦𝑡, according to its prior values, is the same 

as the conditional variance of 𝑢𝑡  according to its prior values. This relationship its 

quite useful, by modelling  𝜎𝑡
2 we will have models and forecast for the variance of 

𝑦𝑡 as well. When doing a regression where the dependent variable 𝑦𝑡 is the return of 

an asset, a forecast of  𝜎𝑡
2 will in fact be a forecast of future variance of 𝑦𝑡 (Brooks, 

2008). Forecasting volatility is usefull in pricing of financial options as volatility is 

part of the pricing model. 

 

4.8 SNP Model fitting. 

When selecting the model, including to many parameters will cause overfitting of the 

model. The Bayesian Information Criterion (BIC) (Schwarz, 1978) indicate the best 

fitted model given the data set when using the maximum likelihood function 

𝑓(𝑦|θ ̂k) . When the number of parameters increases, the penalty term (𝑘 ln 𝑛) 

increases. As models with lower BIC value is preferred over higher BIC values 

(Schwarz, 1978), the BIC criterion reduces the risk of overfitting the model.  

 

The BIC is specified as: 

𝐵𝐼𝐶 = −2 ln 𝑓(𝑦|θ ̂k) + 𝑘 ln 𝑛 

Here y is the observed data set, 𝜃̂𝑘 is the parameter value that maximizes the 

likelihood function, k is number of parameters used in the estimation, and n is total 

number of observations.  
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4.9 The semi-nonparametric method for nonparametric time series analysis 

When working with stationary and multivariate time series, the one-step-ahead 

conditional density represents the process of the time series. The conditional density 

captures a number of properties from the time series, like conditional 

heteroskedasticity, non-normality, time irreversibility and other forms of 

nonlinearities found in financial data (Gallant & Tauchen, 1990 (Dec 2017)).  

 

The SNP method is parametric, however it includes properties from nonparametric 

models, making it referred to as semi-nonparametric. The semi-nonparametric 

method is an extension of Hermite functions, used for estimating the conditional 

density in time series analysis. This expansion makes the SNP model a method that 

nets the Gaussian VAR model, the semiparametric VAR model, the Gaussian ARCH 

model, the semiparametric ARCH model, the Gaussian GARCH model and the 

semiparametric GARCH model. Fitting of the SNP model is solved by conventional 

maximum likelihood combined with a model selection strategy to set the correct 

order of expansion.  

 

The SNP model is written as a C++ program which include features for prediction, 

residual analysis, plotting, and simulation used for analysis and interpretation. 

Predicted values and residuals, are useful for diagnostic analysis and measurements 

of fit. Density plots are useful for visualising asymmetries and heavy tails. 

Simulations, like Monte Carlo analysis is used for bootstrapping. Reprojection, a 

way of Kalman filtering, is useful for forecasting the volatility process of a 

continuous-time stochastic volatility model (Gallant & Tauchen, 1990 (Dec 2017)).  

The SNP program thus enabling efficient model specification and shock simulation 

relevant when analysing the time-series.  

Letting z refer to an M-vector, the Hermite density has the form ℎ(𝑧)𝛼[𝑃(𝑧)]2Ø(𝑧), 

where 𝑃(𝑧) is a multivariate polynomial of degree 𝐾𝑧 and Ø(𝑧) is the density 

function of the multivariate Gaussian distribution with a mean of zero. The 

conditional density, which is given by the entire past, depends only on the 𝐿 lags 

from the past. The tuning parameter 𝐾𝑧 is used to control to what degree the model 

separates from normality – the degree of polynomials in z, and the 𝐾𝑥 is used to 
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control to what degree these separations vary during the history of the process 

(Gallant & Tauchen, 1990 (Dec 2017)).  

The SNP method include a set of distinct lag descriptions, where total number of lags 

is denoted as 𝐿. The model includes the parameters 𝐼𝑧 and 𝐼𝑥, but those has no effect 

in univariate timeseries (Gallant & Tauchen, 1990 (Dec 2017)). The following 

notation is used for lags:  

𝐿𝑢: Number of lags in VAR 

𝐿𝑔: Number of lags in GARCH 

𝐿𝑟: Number of lags in ARCH 

𝐿𝑝: Total number of lags in the x part of the polynomial 𝑝(𝑧, 𝑥) 

𝐿𝑣: Lags in the leverage effect in GARCH 

𝐿𝑤: Lags in additive level effect 

If one or several of the lag operators above is set to zero, the model will give strong 

restrictions to the process of 𝑦𝑡, as given below: 

Table 1: Restrictions when choosing lag operators (Gallant & Tauchen, 1990 (Dec 2017)) 

Restrictions when choosing lag operators 

Parameter setting Classification of 𝑦𝑡 , 

𝐿𝑢 = 0 𝐿𝑔 = 0 𝐿𝑟 ≥ 0 𝐿𝑝 ≥ 0 𝐾𝑧 = 0 𝐾𝑥 = 0 Iid Gaussian 

𝐿𝑢 > 0 𝐿𝑔 = 0 𝐿𝑟 ≥ 0 𝐿𝑝 ≥ 0 𝐾𝑧 = 0 𝐾𝑥 = 0 Gaussian VAR 

𝐿𝑢 > 0 𝐿𝑔 = 0 𝐿𝑟 ≥ 0 𝐿𝑝 ≥ 0 𝐾𝑧 > 0 𝐾𝑥 = 0 Semi-parametric VAR 

𝐿𝑢 ≥ 0 𝐿𝑔 = 0 𝐿𝑟 ≥ 0 𝐿𝑝 ≥ 0 𝐾𝑧 = 0 𝐾𝑥 = 0 Gaussian ARH 

𝐿𝑢 ≥ 0 𝐿𝑔 = 0 𝐿𝑟 ≥ 0 𝐿𝑝 ≥ 0 𝐾𝑧 > 0 𝐾𝑥 = 0 Semiparametric ARCH 

𝐿𝑢 ≥ 0 𝐿𝑔 > 0 𝐿𝑟 ≥ 0 𝐿𝑝 ≥ 0 𝐾𝑧 = 0 𝐾𝑥 = 0 Gaussian GARCH 

𝐿𝑢 ≥ 0 𝐿𝑔 > 0 𝐿𝑟 ≥ 0 𝐿𝑝 ≥ 0 𝐾𝑧 > 0 𝐾𝑥 = 0 Semi-parametric GARCH 

𝐿𝑢 ≥ 0 𝐿𝑔 ≥ 0 𝐿𝑟 ≥ 0 𝐿𝑝 > 0 𝐾𝑧 > 0 𝐾𝑥 > 0 Nonlinear nonparametric  

The process of building an SNP model start by adding one lag in the VAR model, 

later an extension with two lags are included. Further, the best fitted ARCH model is 

set, followed by fitting the GARCH model. The last steps are to control if the 

asymmetry effect and additive level are significant (Gallant & Tauchen, 1990 (Dec 

2017)).  
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4.10 Stochastic volatility 

In the previous section we described the procedure for fitting a statistical model to 

explain our time series. The next step is to build and implement a scientific stochastic 

volatility (SV) model for the same time series, using a Bayesian Markov Chain 

Monte Carlo Simulation method for estimation and assessment of an SV model, as 

proposed by Chernozhukov and Hong (2003). Under time-varying volatility in 

financial markets, the Stochastic Volatility is the main way of modelling such a 

property. This part seeks to introduce how to build scientific model where the 

volatility has its own stochastic process, which well-specify volatility in electricity 

forward contracts.  

 

The stochastic volatility (SV) and (G)ARCH models have several parallels and 

illuminate many of the same facts, however the main advantages of a direct volatility 

modelling are convenience and a more natural presentation. The SV model has its 

own stochastic process, without connections to the implied one-step-ahead 

distribution draw from an arbitrary yet convenient time interval used in the 

(G)ARCH estimation.  

 

We start by looking at an SV diffusion process by Andersen et al. (2002) for an 

observed stock price 𝑆𝑡 is provided by 
𝑑𝑆𝑡

𝑆𝑡
= (𝜇 + 𝑐𝑉𝑡)𝑑𝑡 + √𝑉𝑡𝑑𝑊𝑡, where the 

unobserved volatility process 𝑉𝑡 is either log linear or squared root. Andersen et al 

(2002) estimated both versions of the SV model with S&P500 data, however both 

versions where sharply rejected. Later Chernov et al. (2003) added a jump 

component to the basic SV model which improved the model fit radically. This 

refinement gave characteristics of tick non-normal tails and persistent time-varying 

volatility (volatility clustering). A two-factor volatility model outperform one-factor 

models, as one of the volatility factors (𝑉1𝑡) are extremely persistent to capture 

volatility clustering, and the other (𝑉2𝑡) is strongly mean-reverting to fatten tails. 

Another extension is to enable correlation between the mean (𝑤1𝑡) and the two SV 

factors (𝑤2𝑡, 𝑤3𝑡). This extension is crucial to enable the asymmetry effect (the 

correlation between return innovations and volatility innovations). A logarithmic SV 

model with two stochastic volatility factors for the Nordic electricity forward 

contracts is specified as: 
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𝑦𝑡 = 𝑎0 + 𝑎1(𝑦𝑡−1 − 𝑎0) + exp(𝑉1𝑡 + 𝑉2𝑡) ∙ 𝑢1𝑡  

𝑉1𝑡 = 𝑏0 + 𝑏1(𝑉1,𝑡−1 − 𝑏0) + 𝑢2𝑡  

𝑉2𝑡 = 𝑐0 + 𝑐1(𝑉2,𝑡−1 − 𝑐0) + 𝑢3𝑡  

𝑢1𝑡 = 𝑊1𝑡   

𝑢2𝑡 = 𝑠1(𝑟1 ∙ 𝑊1𝑡 + √1 − 𝑟1
2 ∙ 𝑊2𝑡   

𝑢3𝑡 = 𝑠2(𝑟2 ∙ 𝑊1𝑡 +
𝑟3−(𝑟2∙𝑟1)

√1−𝑟1
2

∙ 𝑊2𝑡 + √1 − 𝑟1
2 − (

𝑟3−(𝑟2∙𝑟1)

√1−𝑟1
2

)

2

∙ 𝑊3𝑡  

where 𝑊𝑖𝑡, 𝑖 = 1, 2, 3 are basic Brownian motions (random variables). The parameter 

vector is 𝜌 = (𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑠1, 𝑠0, 𝑐0, 𝑐1, 𝑟1, 𝑟2, 𝑟3), where the 𝑟’s are correlation 

coefficients (Gallant & Tauchen, 2016).  

 

4.11 Motivation for Stochastic volatility models 

Applying an SV model for a financial asset is motivated from the assumption in the 

SV model that the volatility at day 𝑡 is partly given by unpredicted events the same 

day. As the amount of news items is continuously changing from one time to 

another, the volatility will continuously change. With a stochastic stream of 

information to the market, a stochastic volatility model seems appropriate. From the 

SV model a volatility forecast can be estimated. The volatility forecast cannot be 

assorted with the implied volatility, as the latter is the market actors excepted 

volatility calculated via the Black and Scholes model. In this paper the volatility 

forecast is referred to as the re-projected conditional volatility, as we i) estimate an 

GARCH model for the volatility, ii) simulate an SV model from the findings of the 

GARCH model, and iii) re-project the volatility from the SV model back to the 

GARCH model. The re-projected volatility at time 𝑡 is a forecast estimated from the 

data series up to time 𝑡 − 1, using only information available at time 𝑡 − 1. This 

estimation method let us obtain no look-ahead bias in the estimation of the predicted 

volatility. The last available volatility forecast can be plotted directly into the Black 

& Scholes model to get more precise option prices for the contracts. The calculated 

option price can be compared with the option prices found in the market, making a 

starting point for innovative risk and portfolio management strategies  
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4.12 SV computational methodology 

Efficient Method of Moments (EMM) is the computational method for statistical 

analysis of an SV model, projected by Gallant & Tauchen (2016), and Gallant & 

McCulloch (2011) and designed as a flexible C++ program. By applying the 

Metropolis-Hastings (M-H) algorithm, parallel computing and Bayesian Markov 

Chain Monto Carlo (MCMC) simulation the EMM calibrate the volatility 

innovations in an SV model against the return innovations from a statistical model. 

To calibrate the model, we use the statistical model from the SNP framework, i.e., 

the (G)ARCH models. The EMM matches the SV model by using a score generator 

from the statistical (G)ARCH model. EMM is a simulation-based moment matching 

procedure, where the moments matched are the scores from the statistical model – 

the score generator. If the score generator approximate the distribution of the data 

well, the estimated parameters in the SV-model are also efficient (Gallant, et al., 

1997). The output of the EMM method is a volatility simulation for forecasting, 

which with a volatility filter can be re-projected back to the original data. This can be 

implemented in the (G)ARCH model, giving us a new scientific model, which uses 

observations in prices today to predict something about where volatility goes 

tomorrow. The EMM implementation can be summed up the following way: 

 

The SNP model, the Metropolis-Hasting algorithm, together with parallel computing 

is applied to estimate the stochastic volatility model and the parameter estimates: 

𝜃 = (𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1𝑠1, 𝑠2, 𝑟1, 𝑟2, 𝑟3). The by-product is a 250 000 simulated 

realization of the vector. From the 250 000 vector simulations, a reduced form 

auxiliary SNP model is established with a likelihood function. The SNP gives a 

useful description of the one-step ahead conditional variance. At the end, moving 

backwards to understand the unobserved state vector from the observed process as 

implied by the model. The Nonlinear Kalman filter generate a new SNP model for 𝑦̂𝑡 

(the SV-model simulated data) and obtain 𝜎̂𝑡
2 of 𝑦̂𝑡+1 given {𝑦̃𝜏}𝜏=1

250 000. The next is 

to run an Ordinary Least Squared regression of the volatility factors 𝑉̂𝑖,𝑡, 𝑖 = 1,2 on 

𝜎̂𝑡
2 , 𝑦̂𝑡 and |𝑦̂𝑡|. The last step is to evaluate the SV-model function on the observed 

data series {𝑦̃𝜏}𝜏=1
𝑡  which gives predictive values for 𝑉̃𝑖,𝑡, 𝑖 = 1,2 at the actual 

observed data points.  
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4.13 SV Model Fitting and Evaluation. 

When evaluating the SV model fit, two aspects are evaluated. The first one is the 

individual posterior score from the simulations, and the second is to evaluate the 

normalized mean SNP score vector with associated standard deviations and quasi-t-

ratios.  

 

When running the 250 000 simulations, each simulation received its individual 

posterior score. The objective is to pick the simulation which receive the highest 

score, thus represent the lowest distance between the model and what we observed.  

The highest posterior score is found through an iteration process. The frequently 

changing factor score indicate that the simulations are searching for the optimal 

solution, a stationary simulation chain would indicate misconfiguration of the model. 

The highest posterior score is put into a Chi squared test (Pearson, 1900). Under 

correct specification of the structural model, the normalized value of the optimized 

EMM objective function follows the asymptotically χ2 distribution with the degrees 

of freedom equal to the length of 𝜃 minus the length of p minus one (the last account 

for the SNP normalization rule that A(1,1)=1) (Gallant & Tauchen, 2016) . The 

purpose is to test whether there is a statistically significant difference between the 

expected frequencies and the observed series. Hence, the null hypothesis is no 

difference between the distribution and the alternative is a difference between the 

distributions. If the test is not significant, the null hypothesis is not rejected, i.e. there 

are no statistical difference between the expected and observed series. The SV model 

is therefore an acceptable approximation of the score statistics (SNP model). 

 

The EMM report the normalized mean SNP score vector (parameter), and the 

associated unadjusted standard deviations are the squared roots of the diagonal 

elements. The quasi-t-ratios are the normalized mean score divided by the unadjusted 

standard deviations. Because the quasi-t-ratios only take the arbitrariness in 𝜃𝑛, while 

treating 𝜌̂𝑛 as if it were a fixed value of 𝑝0, the quasi-t-ratios are not asymptotically 

N(0,1). Despite that, the quasi-t-ratios are helpful to evaluate the model fit and the 

underlying causes of a statistically significant chi-squared statistics. A quasi-t-

statistic over 2 indicate failure to fit the corresponding score (parameter) (Gallant & 

Tauchen, 2016). Hence, t-statistics under 2 implies that the SV model manage to 

match the respective parameter from the SNP model. 
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5. Empirical Results 

This chapter will present empirical results. Starting with a description of the two 

time-series. Next is to present the findings from the SNP modelling following by the 

findings from the SV modelling. 

5.1 Description of the time series 

In this section an evaluation of the descriptive properties of the two time-series will 

be performed individually.  

 

5.1.1 Front Year Futures Contracts (YEAR) 

The dataset consists of daily returns of the front year futures contracts spanning from 

3. January 2000 until 3. January 2020. As contracts are only traded during 

Norwegian bank days, there are 5009 observations. Characteristics of the YEAR 

dataset is reported in table 2.  

Table 2: Statistics for Front Year Futures Contracts 

Statistics for Front Year Future Contracts (YEAR)        

Mean / Median 

Maximum 

/ Moment Quantile Quantile Jarque- 

  

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Bera test Q(12)  Q2(12) 

0.0260 0.0000 16.354 6.8945 0.1769 8.8524 9899.7 58.203 2727.1 

0.0000 1.5916 -12.262 -0.0509 0.0528 0.0120 {0.0000} {0.0000} {0.0000} 

BDS-Z-statistic (e = 1) KPSS PP Augmented ARCH 
VaR 2.5%   

m=2 m=3 m=4 m=5 (i+trnd) (i+trnd) DF-test (12) CVaR2.5% 

15.658 19.830 23.658 27.790 0.1235 -66.831 -51.222 1072.9 -0.0327 

{0.0000} {0.0000} {0.0000} {0.0000} {0.11} {0.0000} {0.0000} {0.0000} -0.0466 

The numbers in braces are P-values for statistical significance 

Rejection rate are 5%, implying P-values less than 5% reject the null hypothesis. 

 

The mean is positive, and the standard deviation is 1.59. It is reported a maximum 

(minimum) value of 16.35 (-12.26). The data reports a small skewness (0.05), 

indicating a small asymmetry effect. The kurtosis is 9.89 – where values over 3 is 

named leptokurtosis and is characterised by heavy tails and peakness above the 

mean. The Jarque-Bera test clearly conclude by rejected the null-hypothesis of 

normality, the time series is non-normal distributed. The KPSS accept the null 

hypothesis of stationarity and the Augmented-Dickey-Fuller (ADF) and Phillips-

Perron (PP) reject the null hypothesis of non-stationarity. These tests confirm that 

transforming the prices to returns made the time-series stationary. The BDS Z-

statistics reject the null hypothesis of independence in the data, clearly there are 

some dependency and structure in the data, and the Q and Q2 both rejected the null 
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hypothesis of no autocorrelation and volatility clustering. The ARCH-test rejected 

the null hypothesis of constant variance – ARCH effects. By that we confirm 

presence of data dependence in the time series, i.e. volatility clustering. Figure 15 

shows the price and the returns (price change), the former is appearing non-stationary 

and the latter is clearly stationary and show tendency to volatility clustering during 

several periods of the time series. Figure 16 graph the Kernel density distribution of 

the returns, indicating some peakness above the mean. 

 

Figure 15: Front Year Futures Contract returns and prices 03.01.2000 – 03.01.2020 

 

Figure 16: Distribution Returns Front Year Futures Contracts from 2000 to 03.01.2020 
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5.1.2 Front Quarter Futures Contracts (QUARTER) 

The dataset consists of daily returns of the front quarter futures contracts spanning 

from 3. January 2000 until 3. January 2020. As contracts are only traded during 

Norwegian bank days there are 5009 observations. Characteristics of the QUARTER 

dataset is reported in table 3.  

Table 3: Statistics for Front Quarter Future Contracts 

Statistics for Front Quarter Future Contracts (QUARTER)   

Mean / Median 

Maximum 

/ Moment Quantile Quantile Jarque- Serial dependence 

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Bera test Q(12) Q2(12) 

-0.0047 0.0000 23.028 5.6643 0.16290 5.5415 6680.2 42.929 1673.3 

0.0000 2.4480 -15.649 0.0167 -0.00188 {0.0626} {0.0000} 0.0000 0.0000 

BDS-Z-statistic (e = 1)  KPSS PP Augmented ARCH VaR 2.5%  

m=2 m=3 m=4 m=5 (i+trnd) (i+trnd) DF-test (12) 

CVaR 

2.5% 

8.5040 10.243 11.466 12.883 0.1526 -66.412 -66.412 667.64 -0.0496 

{0.0000} {0.0000} {0.0000} {0.0000} {0.07} {0.0000} {0.0000} {0.0000} -0.0716 

The numbers in braces are P-values for statistical significance. Rejection rate are 5%, implying P-

values less than 0.05 reject the null hypothesis.  

 

The mean is negative and the standard deviation 2.45. It is reported a maximum 

(minimum) value of 23.028 (-15.649). The data reports a skewness closed to zero 

(0.02), indicating a marginal positive asymmetry effect. The kurtosis is 5.66, where 

values over three is named leptokurtosis and is characterised with heavy tails and 

peakness above the mean. The Jarque-Bera test clearly conclude by rejecting the 

null-hypothesis of normality, the time series is non-normal distributed. The KPSS 

accept the null hypothesis of stationarity and the Augmented-Dickey-Fuller (ADF) 

and Phillips-Perron (PP) reject the null hypothesis of non-stationarity. These tests 

confirm that transforming the prices to returns made the time-series stationary. The 

BDS Z-statistics reject the null hypothesis of independence in the data, clearly there 

are some dependency and structure in the data, and the Q and Q2 both rejected the 

null hypothesis of no autocorrelation and volatility clustering. The ARCH-test 

rejected the null hypothesis of constant variance – ARCH effects. By that we 

conclude that there exists some data dependence in the time series, i.e. volatility 

clustering. Figure 17 shows the prices and the return (price change) series, the 

former is seeming non-stationary and the latter is clearly stationary and show 

tendency to volatility clustering during several periods of the time series. Figure 18 

shows the Kernel density distribution of the returns, indicating some heavy tails and 

peakness above the mean.  
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Figure 17: Front Quarter Futures Contracts returns and prices 03.01.2000 – 03.01.2020 

 

 

Figure 18: Distributions Returns Front Quarter Futures Contracts from 2000 to 2020 
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5.2 SNP Model Evaluation 

In this section the SNP estimation and model fitting will be explain, followed by an 

evaluation of the two SNP models individually.  

 

5.2.1 SNP estimation and model fitting 

This section will present the specification of the best fitted model to our time series. 

For model selection and fitting the BIC-criterion is used. The first SNP run is done 

with polynomial of degree 4. We run the SNP again with polynomial degree of 6 and 

8. The best fitted model is the SNP model with the lowest BIC. After running the 

SNP model with several polynomial degrees, the best fitted model has det 

configuration of 

(𝐿𝑢, 𝐿𝑔, 𝐿𝑟 , 𝐿𝑝, 𝐾𝑧 , 𝐼𝑧 , 𝐾𝑥, 𝐼𝑥) = (11116000) 

 

This model has 1 lag in Var (𝐿𝑢), GARCH (𝐿𝑔), ARCH (𝐿𝑟) and x part of the 

polynomial 𝑝(𝑧, 𝑥) (𝐿𝑝). The optimal degree of polynomials in z (𝐾𝑧) is 6. The SNP 

model tends to set 𝐾𝑧 unreasonably high in some applications, and models for 

financial markets with a 𝐾𝑧 > 6 is recommended to be avoided (Gallant & Tauchen, 

1990 (Dec 2017)).  This supports the result of 𝐾𝑧 = 6 as correct. 𝐼𝑧 , 𝐾𝑥, 𝐼𝑥 are all set 

to zero. In addition, we use 1 lag in both the leverage effect of GARCH (𝐿𝑣) and the 

additive level effect (𝐿𝑤). This model, a GARCH(1,1) 

(𝐿𝑟,𝐿𝑔) with one lags in VAR(𝐿𝑣) and six Hermite polynomials (𝐾𝑧) yields the 

lowest BIC for both time series, reported in table 4. 

Table 4: Optimal SNP Model Specifications 

Time series 𝑳𝒖 𝑳𝒈 𝑳𝒓 𝑳𝒑 𝑲𝒛 𝑰𝒛 𝑲𝒙 𝑰𝒙 𝑳𝒗 𝑳𝒘 BIC 

QUARTER 1 1 1 1 6 0 0 0 1 1 1.265 

YEAR 1 1 1 1 6 0 0 0 1 1 1.241 

 

The SNP model report a semi-nonparametric GARCH(1,1) model with one lag in 

VAR as the best fitted model for both the QUARTER and YEAR series, BIC scores 

are 1.265 and 1.241. 
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5.2.2 SNP model evaluation YEAR 

As stated earlier, we choose to use a semi-nonparametric (SNP) GARCH(1,1) model. 

The residual statistics for the optimal SNP GARCH model are reported in table 5. 

When an optimal model is specified, the residual should be normally distributed 

N[0,1] and non-significant. When these properties are fulfilled the model capture the 

structure in the data efficiently, making data left in the residual roughly white noise. 

Table 5: Residual Statistics for Front Year Future Contracts 

Residual Statistics for Front Year Future contracts         

Mean / Median / 

Maximum 

/ Moment Quantile Quantile Jarque- Serial dependence 

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Bera Q(12) Q2(12) 

0.0003 0.0003 4.8669 4.4725 -0.0015 0.0249 460.73 20.927 10.831 

  0.9999 -6.1134 -0.1132 0.0064 {0.9876} {0.0000} {0.0510} {0.5430} 

BDS-statistic (e=1)  ARCH RESET     

m=2 m=3 m=4 m=5 (12) (12;6)     

-0.7262 -1.6060 -1.8307 -1.4485 10.977 22.548     

0.4677 0.1083 0.0672 0.1475 {0.5308} {0.001}       

The numbers in braces are P-values for statistical significance 

Rejection rate are 5%, implying P-values less than 5% reject the null hypothesis 
 

Table 5 report that in the residual statistics the mean is approximately zero (0.0003) 

and the standard deviation is close to one (0.99), referring to the standardized normal 

distribution 𝑁(0, 1). Further, the Kurtosis has fallen from 6.89 to 4.47 and the 

Jarque-Bera statistic confirms that the residual statistics are closer to a normal 

distribution with a reduction from 9899.7 to 460.7. The Q2 and the ARCH-test has p-

values of 0.54 and 0.53, both fail to reject the null hypothesis about no volatility 

clustering in the residuals (no ARCH-effects). The Q and BDS-test fail to reject the 

null hypothesis for all lags, i.e. there are no dependency in the residuals. For the 

RESET test we reject the null hypothesis regarding linear relationship, i.e. the fitted 

model’s residuals show some non-linear relationships. There seem to be some 

parameters that is not completely stable, and that the SNP GARCH model has minor 

structures in the data not considered. Specifying the model perfectly with normally 

distributed residuals is demanding, an implication further studies is the obtain a 

perfect specified model. 

Table 6 report the statistical SNP Model parameters for YEAR. The first 6 

parameters are the 6 polynomials used. Parameter 8 are a non-significant constant. 

Parameter 9 are the parameter for the first lag. Parameter 10 is the constant for the 

variance term, 11 is for the ARCH term which capture volatility clustering, 
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parameter 12 capture that historical volatility has a strong impact at today’s 

observations. 13 is for the asymmetry effect, where a positive value indicates a 

positive effect, i.e. the volatility shows stronger responses to positive than negative 

shocks. Parameter 14 is used to configurate how strong the volatility influences the 

parameters. Parameter 9 to 14 are all statistically significant, where parameter 12 

stands out with a very strong value. The eigenvalue of the variance function is 

0.9996. 

Table 6: Statistical SNP Model parameters for YEAR 

Index theta std error t-statistic  descriptor 

1 0.01409 0.01718 0.81975  a0[1]   1 

2 -0.06631 0.23226 -0.28551  a0[2]   2 

3 -0.00856 0.01400 -0.61145  a0[3]   3 

4 0.08081 0.04560 1.77206  a0[4]   4 

5 -0.00459 0.00994 -0.46195  a0[5]   5 

6 -0.00371 0.09018 -0.04112  a0[6]   6 

7 1.00000 0.00000 0.00000  A(1,1)  0 0 

8 -0.01835 0.02333 -0.78637  b0[1] 

9 0.05122 0.01502 3.40906  B(1,1) 

10 0.05264 0.02223 2.36805  R0[1] 

11 0.27970 0.11582 2.41507  P(1,1)  s 

12 0.95990 0.00381 252.24270  Q(1,1)  s 

13 0.18746 0.08429 2.22391  V(1,1)  s 

14 0.21637 0.10938 1.97806  W(1,1)  s 

Largest eigenvalue of variance function P & Q companion matrix = 0.999639 

 

Figure 19 graph the projected conditional volatility for the time series as an index. It 

seems like the volatility change randomly, but there seems to be periods with more 

volatility than others – i.e. volatility clustering. There are periods with more 

volatility; winter 2003, in 2006, from 2008 to 2010, in 2016 and 2018. Other periods 

have lower volatility like 2000, in 2004, in 2007, from 2012 to 2016 and 2017. The 

volatility seems to be mean reverting to a slightly increased long-term value around 

25. 
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Figure 19: Projected Benchmark Index Volatility YEAR 

Figure 20 graph the projected conditional volatility together with a moving average 

for m=4 and m=15 lags for the squared residuals of an AR(1) model for the returns. 

There seems to be a good fit between the projected volatility and the moving average 

processes for 4 and 15 lags.  

 

Figure 20: Projected YEAR Conditional Volatility and Residuals (AR1) Moving Average (m=4 and 15) 
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Figure 21 graph an index for the one-step-ahead densities for the volatility at the 

mean, conditional to the values for 𝑥𝑡−1 (unconditional mean). In other words, given 

yesterday volatility were at the mean (0.0), where will todays volatility (conditional 

mean) be? The conditional densities are compared to a normal distribution. The 

figure shows the conditional densities for YEAR time-series have non-normal 

features; including peakness in the interval −
1

2
 and +

1

2
 standard deviation from the 

mean, a smaller distribution in the interval ±
1

2
  to ±2 standard deviations from the 

mean, and fatter tails from ±2  standard deviations. Such properties are known as 

leptokurtosis and are frequently found when analysing financial data. This confirms 

correctness of using Hermite polynomials to move away from the normal distribution 

when describing the densities for the time-series.  

 

Figure 21: Index one-step-ahead densities (xt-1 = unconditional mean) YEAR 

 

Figure 22 shows the one-step-ahead densities when adding a shock to the time series. 

The shock is added to yesterday’s mean (𝑥𝑡−1 = 𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛), and the 

graph show the frequency distribution for the conditional mean today (𝑥𝑡 =

𝑐𝑜𝑛𝑑𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛). Shocks are added ranging from −20% to +20% and the 

baseline profile showing the mean of the densities (𝑚 = 0.035). When evaluating 

the densities after different shocks to the baseline profile, we see that the densities 

after the shock is clearly wider. The widest densities are found for the biggest shocks 
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(±20%), and the densities becomes smaller with smaller shocks. An interesting 

observation is that there are hard to see any clear differences in the width between 

the positive and the negative shocks. This is in contrasts with the findings in Egeland 

& Haug (2016) which found clearer difference in the width of positive and negative 

shocks, however the differences where biggest in the stock indexes, and smaller in 

the commodities (especially for Brent oil front month futures contrast). When having 

a closer look at the figure, the densities for the negative shocks tend to be more 

peaked than the positive shocks, indicating wider densities for the positive shocks. 

This indicate positive shocks imply a higher degree of uncertainty to the volatility 

than negative shocks.  

 

Figure 22: YEAR One-step-ahead density fK(yt|xt-1,q) xt-1 = -20,-10,-5,-2.5,-1,0,m,+1,+2.5,+5,+10,+20% 

 

Figure 23 visualize the connection between the one-step-ahead conditional variance 

and the percentage change in the unconditional mean. This connection is referred to 

as the asymmetry effect, some disciplines uses “leverage effect” and “risk premium 

effect”. We can interpret the graph as showing how the conditional variance function 
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reacts to a surprisingly shock to the system. The figure confirms what the previous 

figure indicated, i.e. that positive shocks tend to giver bigger effects than negative 

shocks to the volatility. However, this asymmetry effect is opposite and clearly 

weaker than the effects found in the financial markets for stocks (S&P500, DJIA+) 

and commodities (oil, carbon, salmon) in Egeland & Haug (2016).  

 

Figure 23: Front YEAR Index: Conditional Variance Function ("Asymmetry") 

 

5.2.3 SNP model evaluation QUARTER 

As stated earlier, we choose to use a semi-nonparametric (SNP) GARCH(1,1) model. 

The residual statistics for the optimal SNP GARCH model are reported in table 7. 

When an optimal model is specified, the residual should be normally distributed 

N[0,1] and non-significant. When these properties are fulfilled the model capture the 

structure in the data efficiently, making data left in the residual roughly white noise. 

Table 7: Residual Statistics for Front Quarter Future Contracts 

Residual Statistics for Front Quarter Future contracts         

Mean / Median / 

Maximum 

/ Moment Quantile Quantile Jarque Serial dependence 

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Bera test Q(12) Q2(12) 

-0.0024 -0.0121 5.1960 5.6334 0.0762 1.9034 1480.2 28.231 18.531 

  1.0001 -7.5447 -0.2184 0.0289 {0.3861} {0.0000} {0.0050} {0.1010} 

BDS-statistic (e=1)  ARCH RESET     

m=2 m=3 m=4 m=5 (12) (12;6)     

-1.0864 -2.2393 -2.3173 -2.1462 19.2877 7.2235     

{0.2773} {0.0251} {0.0205} {0.0319} 0.0818 {0.3007}       

The numbers in braces are P-values for statistical significance 

Rejection rate are 5%, implying P-values less than 5% reject the null hypothesis 
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The table report that in the residual statistics the mean is approximately zero (0.0024) 

and the standard deviation is approximately one (1.0001), referring to the normal 

distribution 𝑁(0, 1). The Kurtosis has marginally declined from 5.66 to 5.63 and the 

Jarque-Bera statistic confirms that the residual statistics are closer to a normal 

distribution with a reduction from 6680.2 to 1480.2. The Q2 and the ARCH-test has 

p-values of 0.10 and 0.08, both fails to reject the null hypothesis about no volatility 

clustering in the residuals (no ARCH-effects). The Q and BDS-test only fail to reject 

the null hypothesis for the first lag, there are no dependency in the time-series. Rest 

of the lags in the BDS test reject the null hypothesis and conclude that there is some 

dependency in lags 2 to 5. The RESET test fails to reject the null hypothesis 

regarding no non-linear relationships. There seem to be some parameters that is not 

completely stable, and that the SNP GARCH model has minor structures in the data 

not considered. Specifying the model perfectly with normally distributed residuals is 

demanding. An implication further studies would be to expand the GARCH(1,1) 

model to a GARCH(1,2) model. Including several lags could give significant values 

in the Q and BDS tests, giving normally distributed residuals and a well-specified 

model.  

Table 8 give the statistical SNP Model parameters for QUARTER. The first 6 

parameters are the 6 polynomials used. Parameter 8 are a non-significant constant. 

Parameter 9 is the parameter for the first lag. Parameter 10 is the constant for the 

variance term, 11 is for the ARCH term which capture volatility clustering, 

parameter 12 capture that historical volatility has a strong impact at today’s 

observations. 13 is for the asymmetry effect, where a positive value indicates a 

positive effect, i.e. the volatility shows stronger responses to positive than negative 

shocks. Parameter 14 is used to configurate how strong the volatility influences the 

parameters. Parameter 9 to 12 are all statistically significant, where parameter 12 

stands out. Parameter 13 and 14 is not significant. The eigenvalue of the variance 

function is 1.04769. 
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Table 8: Statistical SNP Model Parameters QUARTER 

 Statistical SNP Model Parameters QUARTER 

Index theta std error t-statistic  descriptor 

1 0.0239 0.0130 1.8356  a0[1]   1 

2 -0.1337 0.0149 -8.9801  a0[2]   2 

3 -0.0048 0.0077 -0.6294  a0[3]   3 

4 0.0549 0.0070 7.8664  a0[4]   4 

5 0.0199 0.0076 2.6198  a0[5]   5 

6 -0.0865 0.0080 -10.8497  a0[6]   6 

7 1.0000 0.0000 0.0000  A(1,1)  0 0 

8 -0.0314 0.0184 -1.7068  b0[1] 

9 0.0541 0.0145 3.7344  B(1,1) 

10 0.0900 0.0120 7.4902  R0[1] 

11 0.3847 0.0177 21.6981  P(1,1)  s 

12 0.9485 0.0036 266.8388  Q(1,1)  s 

13 0.0008 282382.9000 0.0000  V(1,1)  s 

14 0.0000 4500.6163 0.0000  W(1,1)  s 

Largest eigenvalue of variance function P&Q companion matrix = 1.04769 

 

Figure 24 show the projected conditional volatility for the time series as an index. It 

seems like the volatility change randomly, but there seems to be periods with more 

volatility than others – i.e. volatility clustering. There are periods with more 

volatility; winter 2003, winter 2004, in 2006, from 2008 to 2010, 2015-2016 and 

2018. Other periods have lower volatility like 2000, summer 2004, from 2012 to 

2016 and 2017. The volatility seems to be mean reverting to an increased long-term 

value around 38. An interesting finding is the volatility seems to be more volatile for 

the QUARTER series than YEAR – as there are more and bigger changes. The long-

term mean reverting value for quarter seem to be higher as well.  

 

Figure 24: Projected Benchmark Index Volatility QUARTER 
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Figure 25 graph the projected conditional volatility together with a moving average 

for m=4 and m=15 lags for the squared residuals of an AR(1) model for the returns. 

There seems to be a good fit between the projected volatility and the moving average 

processes for 4 and 15 lags.  

 

Figure 25: Projected QUARTER Conditional Volatility and Residual (AR1) Moving Average (m=4 and 15) 

 

Figure 26 show an index for the one-step-ahead densities for the volatility at the 

mean, conditional to the values for 𝑥𝑡−1 (unconditional mean). In other words, given 

that yesterday’s volatility where at the mean (0.0), where will todays volatility 

(conditional mean) be. The conditional densities are compared to a normal 

distribution. The figure show that the conditional densities for QUARTER time-

series have non-normal features; including peakness in the interval −2 and +2 

standard deviation from the mean, a smaller distribution in the interval ±2  to ±7 

standard deviations from the mean, and fatter tails from ±8  standard deviations. 

Such properties are known as leptokurtosis and are frequently found when analysing 

financial data. This confirms correctness of using Hermite polynomials to move 

away from the normal distribution when describing the densities for the time-series. 

The conditional one-step-ahead densities for the QUARTER time-series have a 
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clearly wider density than the YEAR, indicating that tomorrows volatility is more 

unknown for Quarter. 

 

Figure 26: Index for the one-step-ahead densities for the volatility at the mean, conditional to the values for xt-1 
(unconditional mean) 

Figure 27 graph the one-step-ahead densities when adding a shock to the time series. 

The shock is added to yesterday’s mean (𝑥𝑡−1 = 𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛), and the 

graph show the frequency distribution for the conditional mean today (𝑥𝑡 =

𝑐𝑜𝑛𝑑𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛). There are added shocks ranging from −20% to +20% and the 

baseline profile showing the mean of the densities (𝑚 = 0.035). When evaluating 

the densities after different shocks to the baseline profile, we see that the densities 

after the shock is clearly wider. The widest densities are found for the biggest shocks 

(±20%), and the densities becomes smaller with smaller shocks. An interesting 

observation is that there are hard to see any clear differences in the width between 

the positive and the negative shocks. This is in contrasts with the findings in Egeland 

& Haug (2016) which found clearer difference in the width of positive and negative 

shocks, however the differences where biggest in the stock indexes, and smaller in 

the commodities (especially for Brent oil front month futures contrast). When having 

a nearer look at the figure, one cannot see any difference in peakness for the positive 

and negative shocks either, which indicate the same degree of uncertainty for the 

volatility after both positive and negative shocks.  
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Figure 27: One-step-ahead density fK(yt|xt-1,q) xt-1 = -20,-10,-5,-2.5,-1,0,m,+1,+2.5,+5,+10,+20% 

When comparing the one-step-ahead densities for the different shocks between 

QUARTER (figure 27) and YEAR (figure 22), there are some clear differences. 

First, the densities for quarter are wider and less peaked than the year, indicating 

more uncertainty after shocks for the quarter-contracts than the year-contracts. The 

second difference are related to the difference in peakness between the positive and 

negative shocks for the two contracts. Where the year-contracts had wider and flatter 

densities for the positive shocks, indicating more uncertainty in volatility after 

positive shocks than negative shocks, no such difference where found for the quarter-

contracts.  

Figure 28 visualize the connection between the one-step-ahead conditional variance 

and the percentage change in the unconditional mean. This connection is referred to 

as the asymmetry effect, some disciplines uses “leverage effect” and “risk premium 

effect”. We can interpret the graph as showing how the conditional variance function 

reacts to surprisingly shocks to the system. The figure confirms what the previous 

findings for QUARTER has indicated, i.e. that neither positive (negative) shocks 

tend to giver bigger effects than negative (positive) shocks to the volatility - there are 

no asymmetry effects for the time-series.  
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Figure 28: Front QUARTER Index: Conditional Variance Function ("Asymmetry") 

Where the analysis found a small positive asymmetry effect for the YEAR (figure 

23), no asymmetry effects where found for QUARTER (figure 28). These results 

stand in sharp contrast to the findings in research for other energy markets, equities 

and commodities (Solibakke, 2014) (Egeland & Haug, 2016) (Solibakke, 2020) 

 

5.3 Stochastic Volatility model Evaluation 

The stochastic volatility model is estimated using the Efficient Methods of Moments 

(EMM), and the estimated model makes a connection between the statistical and 

scientific model. For model evaluation, the number of observations and simulations 

are logged, and the optimal model is found by the BIC-criterion and the lowest 

posterior score which is tested with a chi squared test. The method gives a 

reprojection of the latent volatility which is split into two volatility factors; V1 which 

capture volatility clustering and V2 which capture mean reverting effects.  

 

5.3.1 SV model evaluation YEAR 

Figure 29 illustrate the iterative factor process leading to the optimal iterative 

posterior score for the SV model. The frequently changing factor score indicate that 

the simulations are searching for the optimal solution, a stationary simulation chain 

would indicate misconfiguration of the model. The optimal model produces the 

highest iterative posterior score of -3.7628 with the associated Chi-square test 
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statistic of 0.2882 at 3 degrees of freedom. The degrees of freedom are found by 

taking the 12 parameters from the SNP model minus the 8 parameters in the SV 

model minus 1. The null hypothesis fails to be rejected, hence there are no statistical 

difference between the expected and observed series. The SV model is therefore an 

acceptable approximation of the score statistics (SNP model). 

 

Figure 29: Iterative Factor (YEAR) 

The parameters for the optimal model from the EMM estimations is reported in table 

9. We recall from earlier that a quasi-t-statistics below two implies that the SV model 

manage to match the respective parameter from the SNP model. We notice that every 

parameter is significant with quasi t-ratios less than 2, however parameter 2 is barely 

over with 2.05. The first 6 parameters are the 6 polynomials used, parameter 8 is a 

constant, parameter 9 are the parameter for the first lag and parameter 10 is the 

constant for the variance term. Parameter 11 for the ARCH term which capture 

volatility clustering and parameter 12 that capture historical volatility having a strong 

impact on today’s observations. Parameter 13 is for the asymmetry effect, where a 

positive value indicates a positive effect, i.e. the volatility shows stronger responses 

to positive than negative shocks. The positive asymmetry coefficient suggest that the 

YEAR contracts show higher volatility from large price increases. This is in line with 

findings from the SNP-model for YEAR, and are opposite of research in other 

energy markets, equities and commodities (Solibakke, 2014) (Egeland & Haug, 

2016) (Solibakke, 2020). Parameter 14 is used to configurate how strong the 

volatility influences the parameters. 
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Table 9: Score Diagnostics: Parameters Scientific Model Front Year Future Contracts 

Score diagnostics: Parameters Scientific Model Front Year Future Contracts 

Index φ Mean unadjusted standard errors quasi-t-ratios 

1.00 a0[1] -0.93016 1.98295 -0.46908 

2.00 a0[2] 4.08756 1.98546 2.05875 

3.00 a0[3] -0.22982 1.94380 -0.11823 

4.00 a0[4] -0.80993 2.02666 -0.39964 

5.00 a0[5] 2.45620 3.18444 0.77131 

6.00 a0[6] -0.71330 7.90094 -0.09028 

7.00 A(1,1) 0.00000 0.00000 0.00000 

8.00 b0[1] -0.65248 1.61105 -0.40500 

9.00 B(1,1) -0.21183 0.94321 -0.22458 

10.00 R0[1] 3.30761 2.49069 1.32799 

11.00 P(1,1) 5.35768 4.47406 1.19750 

12.00 Q(1,1) 25.21551 22.61630 1.11493 

13.00 V(1,1) 1.82583 1.83584 0.99455 

14.00 W(1,1) 0.33892 0.38106 

 

0.88941 
 

 

Distributed Chi-square (no.of.freedom) 
 

Posterior at the mode -3.7628 

Chi-squared test statistics {0.2882} 

The numbers in braces are P-values for statistical significance 

Rejection rate are 5%, implying P-values less than 5% reject the null hypothesis 

 

The next is to run a regression of Vi at 𝜎̂𝑡
2, 𝑦̂𝑡  and |𝑦̂𝑡|, this gives us predicted values 

of 𝑉𝑖𝑡|{𝑦𝜏}𝜏=1
𝑡  on the observed dataset. Figure 30 report the two latent volatility 

factors for the time series of YEAR. The plot indicate that V1 is a slowly moving 

factor showing volatility clustering and persistence. Volatility factor V2 is moving 

faster and shows strong mean reverting characteristics, i.e. it absorbs shocks fast. The 

leptokurtosis feature of the return distribution is due to the two factors;  V1 is moving 

around the long term mean (~0.5), making it responsible for the many observations 

around the mean of the distribution, and V2 is jumping far away from the mean 

(~0.0) making it responsible for the fatter tails in the distribution. For the YEAR, V1 

is traversing frequently between 0.4 and 0.8 and V2 is traversing between 0.04 and 

0.2. The ordinary least square R2 is 0.845 for V1 and 0.14 for V2, by that we conclude 

that the slowly moving and persistence volatility factor V1 is the main contributor to 

the volatility.  
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Figure 30: Front Year Futures Contracts two re-projected Volatility Factors 

 

Figure 31 reports the returns and the re-projected conditional volatility together. The 

re-projected volatility has a long term mean around 20 and seem to fit the returns 

well. There seems to be peaks in the volatility in the end of 2002, end of 2008, early 

2017 and late 2018. Calmer periods around 2000, between 2004 and 2006, summer 

2007, between 2011 and 2016, 2017 and autumn 2019  
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Figure 31: Front Year Futures Contracts Returns and Re-Projected Volatility 

 

Figure 32 graph the re-projected volatility from the SV model together projected 

volatility from the SNP 11116000 model and the residual (AR1) moving average 

(m=4 and 15). The re-projected volatility at time 𝑡 is a forecast estimated from the 

data series up to time 𝑡 − 1, using only information available at time 𝑡 − 1 obtains no 

look-ahead bias in the estimation of the predicted volatility. The last available 

volatility forecast can be plotted directly into the Black & Scholes model to get more 

precise option prices. 
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Figure 32: Projected Front Year Conditional Volatility and Residual (AR1) Moving Average (m=4 and 15) 

 

Figure 33 reports the autocorrelation plot for the re-projected volatility with 40 lags. 

In day 25 the autocorrelation falls below 0.5. The plot reveals the strong data 

dependency, YEAR shows substantial persistence in volatility. 

 
Figure 33: Reprojected Volatility YEAR Autocorrelation plot (40 lags) 
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5.3.2 SV model evaluation QUARTER 

Figure 34 illustrate the iterative factor process leading to the optimal iterative 

posterior score for the SV model. The frequently changing factor score indicate that 

the simulations are searching for the optimal solution, a stationary simulation chain 

would indicate misconfiguration of the model. The optimal model produces the 

highest iterative posterior score of -1.1679 with the associated Chi-square test 

statistic of 0.79 at 3 degrees of freedom. The degrees of freedom are found by taking 

the 12 parameters from the SNP model minus the 8 parameters in the SV model 

minus 1. There is a failure to reject the null hypothesis, hence there are no statistical 

difference between the expected and observed frequencies. The SV model is an 

acceptable approximation of the score statistics (SNP model). 

 

 

Figure 34: Iterative factor (QUARTER) 

 The parameters for the optimal model from the EMM estimations is reported in 

table 10. We recall from earlier that a t-statistics under 2 implies that the SV model 

manage to match the respective parameter from the SNP model. Every parameter is 

significant with quasi t-ratios less than 2. We recall that the first 6 parameters are the 

6 polynomials used, parameter 8 is a constant, parameter 9 are the parameter for the 

first lag and parameter 10 is the constant for the variance term. Parameter 11 for the 

ARCH term which capture volatility clustering and parameter 12 that capture 

historical volatility having a strong impact on today’s observations. Parameter 13 is 

for the asymmetry effect, a value of 0 indicate no asymmetry effects. This is in line 

with findings from the SNP-model for QUARTER, and are opposite of research in 

other energy markets, equities and commodities (Solibakke, 2014) (Egeland & Haug, 
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2016) (Solibakke, 2020). Parameter 14 is used to configurate how strong the 

volatility influences the parameters.  

Table 10: Score diagnostics: Parameters Scientific Model Front Quarter Future Contracts 

Score diagnostics: Parameters Scientific Model Front Quarter Futures Contracts 

Index Φ mean unadjusted standard errors quasi-t-ratios 

1.00 a0[1] -0.22838 1.93717 -0.11789 

2.00 a0[2] -0.01312 1.96802 -0.00667 

3.00 a0[3] -1.98503 2.15286 -0.92204 

4.00 a0[4] 1.65459 2.36876 0.69850 

5.00 a0[5] -0.77219 2.37633 -0.32495 

6.00 a0[6] 1.68834 2.28501 0.73888 

7.00 A(1,1) 0.00000 0.00000 0.00000 

8.00 b0[1] 0.35841 1.99092 0.18002 

9.00 B(1,1) -0.86979 1.28088 -0.67906 

10.00 R0[1] -1.78391 6.48042 -0.27528 

11.00 P(1,1) -1.59358 9.38754 -0.16975 

12.00 Q(1,1) -6.55925 38.54152 -0.17019 

13.00 V(1,1) 0.00000 0.00000 0.29446 

14.00 W(1,1) 0.00000 0.00001 

 

-0.05470 
 

Distributed Chi-square (no.of.freedom)    

Posterior at the mode   -1.1679 

Chi-squared test statistics  {0.7607} 

The numbers in braces are P-values for statistical significance 

Rejection rate are 5%, implying P-values less than 5% reject the null hypothesis 

 

 

The next step is to run a regression of Vi at 𝜎̂𝑡
2, 𝑦̂𝑡  and |𝑦̂𝑡|, this gives us predicted 

values of 𝑉𝑖𝑡|{𝑦𝜏}𝜏=1
𝑡  on the observed dataset. Figure 35 shows the two latent 

volatility factors for the time series QUARTER. The plot indicate that V1 is a slowly 

moving factor showing volatility clustering and persistence. Volatility factor V2 is 

moving faster and shows strong mean reverting characteristics, i.e. it absorbs shocks 

fast. The leptokurtosis feature of the return distribution is due to the two factors;  V1 

is moving around the long term mean (~0.6), making it responsible for the many 

observations around the mean of the distribution, and V2 is jumping far away from 

the mean (~0.0) making it responsible for the fatter tails in the distribution. V1 is 

traversing between 0.4 and 1.0 and V2 between 0.05 and 0.5. The ordinary least 

square R2 is 0.98 for V1 and 0.074 for V2, by that we conclude that the slowly 

moving and persistence volatility factor V1 is the main contributor to volatility.  
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Figure 35: Front Quarter Futures Price two Re-projected Volatility Factors 

 

Figure 36 report the returns and the re-projected conditional volatility together. The 

re-projected volatility has a long term mean around 22 and seem to fit the returns 

well. There seems to be peaks in the volatility in the end of 2002, autumn 2006, 

summer 2008, winter 2010, winter 2011, autumn 2016 and summer 2018. The 

conditions where calmer summer 2002, winter 2005, summer 2007, autumn 2010, 

between 2011 and 2015, autumn 2018 and autumn 2019. 

 

Figure 36: Front Quarter Futures Price Movements and Re-projected Volatility 
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Figure 37 shows the re-projected volatility together projected volatility from the SNP 

11116000 model and the residual (AR1) moving average (m=4 and 15). The re-

projected volatility at time 𝑡 is a forecast estimated from the data series up to time 

𝑡 − 1, using only information available at time 𝑡 − 1 obtains no look-ahead bias in 

the estimation of the predicted volatility. The last available volatility forecast can be 

plotted directly into the Black & Scholes model to get more precise option prices. 

 

Figure 37: Projected QUARTER Conditional Volatility and Residual (AR1) Moving Average (m=4 and 15) 

 

Figure 38 shows the autocorrelation plot for the Re-projected Volatility with 40 lags. 

After 40 days, the autocorrelation is over 0.6. The plot reveals the strong data 

dependency, QUARTER shows substantial persistence in volatility. 
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Figure 38: Re-projected Volatility QUARTER Autocorrelation plot (40 lags) 

 

Both series indicates when returns becomes wider (narrower) volatility increases 

(decreases).  When comparing the two series and the associated volatility factors, we 

see that the slowly moving and persistence volatility factor V1 is the main contributor 

to the volatility with the ordinary least square R2 of 0.845 for YEAR and 0.98 for 

QUARTER. Volatility factor V2 has R2 of 0.14 and 0.074 respectively. The long 

term mean of V1 is approximately 0.5 and 0.6 for YEAR and QUARTER. Both 

volatility factors seem the be more volatile for the QUARTER time series than the 

YEAR time series. For the re-projected volatility figures, the YEAR series is 

traversing around a mean of 20 and the QUARTER around 22, There is a clear 

difference in the re-projected volatility movement seen by the graphs. QUARTER 

have more frequent and bigger movements than YEAR, where YEAR has 4 spikes 

above 25, the QUARTER has 13. In addition, QUARTER has 4 spikes over 30. The 

autocorrelation plots captured the strong volatility clustering and high persistence in 

the re-projected volatility, where QUARTER shows the strongest autocorrelation. 

Overall, we can conclude that the re-projected time series captures the more volatile 

volatility in the QUARTER than the YEAR.  
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6. Volatility and market factors. 

The output from last chapter was an optimal SV-model for modelling the latent 

volatility. The volatility is said to be latent as it is not a directly observed instrument, 

rather it can be understood as a variable modelled from its direct influence on the 

magnitude of returns. From the SV-modelling a conditional volatility forecast were 

generated, named as the re-projected volatility. The literature regarding factors 

affecting volatility in the financial electricity contracts are quite sparse. The purpose 

of this chapter is to analyse observable variables influencing the electricity spot price 

in the light of the modelled volatility forecast. There is a consensus that supply and 

demand-side variables influencing the spot electricity price, but can changes (shocks) 

in these supply and demand-side variables be identified in the conditional volatility 

forecast?  

Re-projected volatility forecast will be compared with production mix, reservoir 

levels and temperature. The production mix is chosen since it represents the supply 

side in the spot electricity market. In addition, the production mix has been in a 

change last 20 years. Now we see less adjustable production sources (like coal and 

nuclear) and more un-adjustable renewables (like solar and wind), making it natural 

to look for any observable effects in volatility. Reservoir levels are chosen since the 

production mix has a large share of hydropower, and unlike other energy sources a 

large part of the hydropower is storable in reservoirs. Reservoir levels is a supply-

side variable. It is thinkable that the adjustable production reserve will affect 

volatility. Temperature is another factor which has a direct effect on the spot price. 

Temperature can be used as a proxy for electricity consumption, making it a demand-

side variable.  

As market actors take information from the real life into account when pricing 

contracts, will the latent volatility react to this information flow? We look for outliers 

or deviations from some long-term median level in the supply and demand-side 

variables, and if these correspond to outlier values for the re-projected volatility 

forecast in the same period. The analysis is based on the graphical observations of 

the variables, making the results not empirical evidences. One should bear in mind 

some challenges throughout this analysis. Firstly, the financial worlds are complex, 

we know certain markets and events are inter-connected, yet not all connections are 

established. Secondly, many events in the timespan is not filtered out, such as the 

financial crisis in 2008. Thirdly, one should have in mind look-ahead biases in the 
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sample as it is challenging to know which information was available at a certain 

time. Despite some weaknesses in the sample and the methodology, these analyses 

can be a starting point for further research in the financial electricity market. 

 

6.1 Production mix in Nord Pool and Volatility 

In this section we will look at how the total production and the production mix align 

with the volatility for YEAR and QUARTER. We use data from chapter 2.3.5, 

spanning from 2000 to 2018. We use one graph for Total production, including the 

different methods used to produce electricity. As Hydro power stands for around 

50% of the total production, another graph without hydro power is included. For 

volatility, we plot in returns and re-projected volatility (Repro) into a graph, 

presenting their development in the interval. By this, we can look at how changes in 

production mix align with the re-projected volatility. Total production is interesting 

because it represents the supply side in the economy, where cut in production can 

lead to increased prices due to inelastic demand for electricity in the short run. In 

longer run the demand is more elastic as consumers can substitute electricity 

consumption to other energy sources. More about this in Halvorsen (2012). 

Figure 39 indicate a dip in hydro production (orange line) in 2002 and 2003, this is 

traced by an increase in re-projected volatility for both contracts to an all-time high, 

where YEAR (figure 41) peaked at 38 and QUARTER (figure 42) peaked at 42. In 

2006 the hydro production had another dip, followed by new spikes in volatility. In 

the period between 2008 and 2011 the hydro power where overall at a relatively low 

level, the same period had clearly a lot of volatility, with several spikes. (One should 

remember the global financial crisis of 2008 as a possible driver to some of this 

volatility). The dip in hydro production from 2012 to 2013 is not easy to see in the 

volatility. For the period from 2013 to 2015 the hydro power production rose, and the 

volatility where calm for the period. From 2015 the hydro power production had a 

small reduction in the same period we see several periods with volatility clustering 

and spikes.   
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Figure 39: Total Production in the Nordic countries (Excluding Baltics) from 2000 to 2018 in (TWh) 

 

In figure 40 we exclude hydro power to better visualize changes in the other 

production technologies. The nuclear production (grey line) had a dip in 2002 and 

2003, just as the hydro power and the volatility where all-time high. From 2007 to 

2009 there where a large decrease in nuclear production, and the volatility where 

high the same period. Further the hydro production had a dip in 2009. (one should 

remember the global financial crisis of 2008 as a possible driver to this volatility). 

The nuclear power had a new dip in 2015, the time after 2015 had several periods 

with volatility clustering and spikes. An interesting observation is that 2015 is the 

year where wind production in Nord Pool reaches over 30 TWh. 

Where hydro reservoir production and nuclear production can be adjusted due to 

market condition like supply and demand, the wind and solar production is fully 

controlled by meteorology. A hypothesis for further research is to investigate if the 

increased wind production the last years have led to an increase in volatility for 

financial contracts for electricity. 
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Figure 40: Total production without Hydro power from 2000 to 2018 in (TWh) 

 

Figure 41: Front Year Futures Contracts Returns and Re-projected Volatility 
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Figure 42: Front Quarter Futures Contracts Returns and Re-projected Volatility 

 

6.2 Reservoir level in Norway and Volatility. 

In this section we will look at how the Norwegian reservoir level for eight different 

years (Figure 43) align with the volatility for YEAR (Figure 44) and QUARTER 

(Figure 45). The water in the reservoirs are related to the supply side in the economy, 

as water is an input factor when producing electricity. When there exists scarcity in a 

resource the price tends to change, both for the input and for the final good. When 

there are low reservoir levels and thus little supply of water to produce electricity, the 

electricity price (the system price) and the financial contracts rises in prices – and 

thus the volatility. When the supply of water in the reservoir are rich, the prices and 

thus volatility drops.  

We use reservoir levels from chapter 2.3.5. Norway’s has 50% of Europe’s reservoir 

capacity, making Norwegian reservoir levels substantial in the market. Sweden and 
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perspective partly to set limitations and partly due to lack of open sources to 

reservoir levels outside Norway. The different years in the interval are chosen 

because they deviate from the long run median revoir level. Whereas 2017 is chosen 
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deviation from the seasonal patterns for reservoir levels align with the re-projected 

volatility. 

2002, represented by the green line, started with high reservoir levels in Norway, 

reaching around 88% in week 31. The re-projected volatility (green line) were at a 

very low value in the same period, this is especially clear for the QUARTER series 

which spanned around 22. The end of 2002 ended significantly different than the 

other years, where the reservoir levels fell earlier and steeper. The same period show 

dramatically increases in volatility both for YEAR and QUARTER, reaching all-time 

high levels at 38 (41) for YEAR (QUARTER). The low reservoir levels and high 

volatility continued into 2003 (light blue line).  

2004 (golden line) show no clear trend. 2006 (orange line) is another interesting year, 

it started with very high reservoir levels and low volatility. During the summer the 

water disappeared fast from the reservoirs, and in week 34 the level is very low and 

far away from the median level (dotted line). The volatility (orange line) picked up 

drastically in the same period, particularly visible in the QUARTER contracts 

reaching volatility over 30. The reservoir levels picked up and reached the median 

level in the end of 2006, the volatility went down simultaneously.  

Year 2010 (pink) ended with the lowest reservoir level, and the volatility is clearly 

present both in YEAR and QUARTER contracts. The low reservoir levels and 

relatively high volatility continued into the beginning of 2011 (purple line). During 

the spring, the reservoirs level strengthens, and reached the median level in week 23, 

then followed and increased to the end of the year. The volatility level (purple) had a 

negative trend from the beginning to the end of the year, ending below 20 for both 

contracts at the end of 2011. 2015 (grey line) follows the median until week 17, lies 

below until week 31 and above rest of the year. Some volatility spikes are observed 

in the spring and summer time in 2015. One single spike is observed in the autumn 

2015 when reservoir levels where high. In 2017 (dark red), the reservoir levels were 

relatively close to the median level, with falling volatility (dark red).  

When looking at reservoir levels, a reasonable hypothesis could be that there is not 

the actual amount of water in the reservoir at a particular time that generates 

volatility. Reservoir levels follows seasonal trends, often with lowest level in 

March/April, and highest level in September/October. Rather, one can think that a 
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deviation from the long-term median level (the black dotted line) of reservoir level is 

what contributes to volatility in the financial markets for electricity contracts. 

Interesting implications for further studies could be test empirically if there are a 

correlations and causality between deviations in reservoir levels and volatility.  

 

Figure 43: A selection from the interval: Reservoir levels by week number (NVE, 2020b) 
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Figure 44: Annual Front Year Futures Price Movements and Re-projected Volatility 

 

Figure 45: Annual Front Quarter Futures Price Movements and Re-projected Volatility 
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6.3 Temperature and Volatility 

As mentioned in chapter 1.3.6 temperature is one of many factors influencing spot 

prices. Electricity is used as primary heating source in many countries and the 

electricity price is usually following seasonal trends where cold weather increases the 

demand and spot price for electricity. Temperature can be a proxy for electricity 

consumption, and thus reflect the demand side of electricity. The news is often 

reporting “record high prices” when cold periods occur. A visual inspection of 

Figure 46 and Figure 47 which report the re-projected volatility for the yearly and 

quarterly contracts will be compared with temperature to look for indications of 

connections between temperature and volatility. 

 

Figure 46: Annual Front Year Futures Price Movements and Re-projected Volatility 
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Figure 47: Annual Front Quarter Futures Price Movements and Re-projected Volatility 

The median temperature in 2001 (Figure 48) is balancing around the average median 

until week 50 where it has a sharp decline and the year ends with a few cold weeks.  

In week 52 the temperature is 6.5 degrees below the median in the interval. The 

volatility is very calm in the end of the year and a visual connection between 

temperature and volatility is not possible to observe.  As we learned from the last 

section the reservoir level is ending at the 6th highest level in the interval. 

 

Figure 48: Median temperature Oslo – 2001 (Norsk klimaservicesenter, 2020) 
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end of the year with a temperature below the average median from week 38 with 

especially large variations between week 40 until 42 and 50, 51 and 52.  The 

volatility is quite stable both in the YEAR and QUARTER until  03.10.2020 (week 

40) which is around the same time as the temperatures starts deviating from the 

median and the reservoir level drops below average. The largest spike occurs on the 

5th of December (end of week 49) which is corresponding with the largest 

temperature drop from the median. It is interesting to observe both large deviations 

in temperature and reservoir level in a year with very high volatility 

 

Figure 49: Median temperature Oslo – 2002 (Norsk klimaservicesenter, 2020) 
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Figure 50: Median temperature Oslo – 2003 (Norsk klimaservicesenter, 2020) 
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Figure 51 - Median temperature Oslo – 2007 (Norsk klimaservicesenter, 2020) 
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the average median in the interval. Further it is another year with large temperature 

deviations and low reservoir level. 

  

Figure 52: Median temperature Oslo – 2010 (Norsk klimaservicesenter, 2020) 
 

2011 starts with the continuing cold temperature from 2010 (Figure 53).  From week 

5 to 9 the temperature is well below the average and many volatility spikes are 

visible in the quarter contracts. The largest spike is observation 52 (start of week 11) 

with a volatility of 26 and the reservoir level in the start of this year is at the lowest 

value in the interval. 

 

Figure 53: Median temperaure Oslo – 2011 (Norsk klimaservicesenter, 2020) 
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7. Implications for further studies 

This study is restricted to financial market for electricity contracts, namely quarter 

and year front futures contracts in the Nordic/Baltic market. The main result from 

this study is that two-factor Stochastic Volatility models perform well for the chosen 

market, and thus gives valuable results to the discipline of Stochastic Volatility 

modelling. Suggestion for further research is to apply SV models to other financial 

markets for equities and commodities.  

We recall from empirical analysis of the GARCH (1,1) model, where RESET test 

(YEAR) and BDS test (QUARTER) show significant residuals. An implication for 

further research is to add more lags in the model to incorporate more information 

from the time series. A good result from such a study would be if all tests shows non-

significant residuals. 

This study only applied graphical analysis when considering the re-projected 

volatility against production mix, reservoir levels and temperature. A topic of interest 

is to do empirical analysis of the relationship between volatility and these market 

factors. If doing such an analysis, one should consider using moving average to 

calculate mean values of production mix, reservoir levels and temperatures to make 

sure no look-ahead bias occur. Future research can also investigate whereas the 

reservoir levels influence the effect from temperature on the volatility in financial 

electricity contracts. 

One highly relevant research problem is to consider the growth in renewable energy 

sources (mainly solar power and windmills) the last years have led to increased 

volatility in financial electricity contracts. This comes from the fact that solar power 

and windmills are non-adjustable production technics where the energy cannot be 

stored to periods with higher prices – in contrast to hydro power production with 

reservoirs where energy can be stored. If such a problem is confirmed it can give 

implications to future policy making and production mix investments.  
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8. Summary 

The Norwegian society is in a change, fossil energy sources could be replaced with 

greener and more sustainable sources to reduce Norway’s CO2 emissions. Electricity 

is part of the solution, where petrol cars, diesel ferries, and wood and oil for indoor 

heating are getting replaced with alternatives running on renewables. However, to 

reduce the CO2 emissions through electrification, Norway should continue to invest 

in sources for sustainable electricity production. Hydro power plants, windmills and 

solar power are some of the sources to a more renewable electricity production. 

Volatility in prices for electricity is a challenge for producers, retailers, consumers, 

and investors involved in the Nordic/Baltic power market. In short run volatility can 

complicate prediction of raw material costs. In the long run volatility and/or 

increased prices can hinder investment and economic growth to occur. Adding 

information about the price dynamics behind financial contracts for electricity can be 

useful when scaling up both consumption, production, and investment in electricity.  

This paper started with an overview to the physical electricity market. Due to 

bottlenecks and different bidding areas in the physical market, trading and risk 

management of the spot price between actors is not possible. The financial electricity 

market enables market actors located in different bidding areas to trade with each 

other to do risk management operations. Market speculators contributes to increasing 

market liquidity in the futures, DS-futures and options contracts in the financial 

electricity market. 

From the introduction, we recall that the main purpose of this paper was to build a 

two-factor stochastic volatility model where volatility has its own stochastic process, 

enabling rational descriptions of the volatility in financial electricity contracts. The 

paper seeks answer if the volatility is a process of random information flow to 

financial markets for electricity, or if it the volatility can be predicted by a stochastic 

volatility model. Thus, is returns and volatility a correlated process, or just a random 

walk? In more detail the paper has investigated three main topics in the following 

order.  

The first was to identify relevant volatility properties of the front future financial 

contracts for electricity at Nasdaq OMX, compare quarterly and yearly contracts, 

capture volatility and simulate shocks. Both series had leptokurtosis features with 
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excess kurtosis and heavy tails - properties often found in financial time series. This 

non-normality where confirmed by the Jarque-Bera test. The series was converted 

from prices into returns to make stationary time series, confirmed by the KPSS, ADF 

and PP tests. By the BDS, Q, Q2 and ARCH testes the time series for quarter and 

year show data dependency and volatility clustering. Further on an optimal SNP 

GARCH model were specified by the framework of Gallant & Tauchen (1990 (dec 

2017)). Despite some non-linear relationship in YEAR and some lag dependency in 

QUARTER, most residuals were normally distributed and non-significant, i.e. the 

models were optimal specified. The QUARTER time series tend to be more volatile 

than YEAR, with more and higher spikes and a higher long-term mean reverting 

value at 38 against 22. When analysing the unconditional one-step-ahead densities, 

QUARTER show clearly wider densities than YEAR, indicating that tomorrows 

volatility is more unknown for QUARTER than YEAR. In the next we looked at the 

Conditional One-step-ahead densities, where different shocks were added to the 

yesterdays (unconditional) mean to see the density distribution in todays 

(conditional) mean. When comparing the one-step-ahead densities for the different 

shocks between QUARTER and YEAR, there were some clear differences. First, one 

can see that the densities for QUARTER are wider and less peaked than YEAR, 

indicating more uncertainty after shocks for the quarter-contracts than the year-

contracts. The second difference were related to the difference in peakness between 

the positive and negative shocks for the two contracts. Where the year-contracts had 

wider and flatter densities for the positive shocks, indicating more uncertainty in 

volatility after positive shocks than negative shocks, no such difference where found 

for the quarter-contracts. These results where strengthen by the Conditional Variance 

Function, where the purpose was to highlight any asymmetry effects. Where the 

analysis found a positive asymmetry effect for the YEAR, implying that positive 

price shocks increases volatility, no asymmetry effects where found for QUARTER. 

This result stands in sharp contrast to research in other energy markets, equities and 

commodities (Solibakke, 2014) (Egeland & Haug, 2016) (Solibakke, 2020) where 

negative asymmetry effects where found. Differences in asymmetry effects might 

come from who participate in these financial markets, and how these actors react to 

price changes.  
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The second and main topic was to create and evaluate whether a two-factor 

stochastic volatility model is appropriate to do step ahead prediction of volatility in 

financial contracts. From the optimal SNP models, a two-factor stochastic volatility 

model where calibrated after the EMM method of Gallant & Tauchen (1990) (2016). 

Optimal models where found through an iterative factor process, tested with the Chi 

squared test and quasi-t-ratios. When comparing the two series and the associated 

volatility factors, we saw that the slowly moving and persistence volatility factor V1 

was the main contributor to the volatility with the ordinary least square R2 of 0.845 

for YEAR and 0.98 for QUARTER. Volatility factor V2 which is rapidly mean 

reverting to fatten tails has R2 of 0.14 and 0.074 respectively, i.e. it is absorbing 

shocks fast. The leptokurtosis feature of the return distribution is due to the two 

factors;  V1 is moving around the long term mean, making it responsible for the 

many observations around the mean of the distribution, and V2 is jumping far away 

from the mean making it responsible for the fatter tails in the distribution. Both 

volatility factors seem the be more volatile for the QUARTER time series than the 

YEAR time series. This result is strengthened by the re-projected volatility graph, 

QUARTER has more frequent and bigger movements than YEAR. Further, YEAR 

has 4 spikes above 25, the QUARTER has 13 spikes. In addition, QUARTER has 4 

spikes over 30. The autocorrelation plot shows more persistence and data 

dependency for QUARTER. Overall, we can conclude that the re-projected time 

series captures the more volatile volatility in the QUARTER than the YEAR. The 

series shows that when returns become wider (narrower) volatility increases 

(decreases). 

Third topic was to analyse trends in electricity production, reservoir levels and 

temperature from the Nordic and Baltic region to reveal whether there is some 

connection to the re-projected volatility. There seem to be some connection between 

production levels and mix and the volatility levels, where high volatility levels arise 

in the same periods as low production volumes occur. Interesting application for 

further studies is to look for correlation and causality between the increase in non-

adjustable production methods for electricity (mainly windmills and solar panels) last 

6-7 years and the increased volatility in financial electricity contracts the last 5-6 

years. Further, we saw indication of connection between Norwegian reservoir levels 

and the re-projected volatility. In periods where the reservoir levels had larger 
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negative deviations from the long-run median level, the financial electricity contracts 

had more volatility, this was strongest in the QUARTER contracts. The visual 

inspections of temperature have led to a few interesting observations where low 

temperatures have corresponded with volatility spikes in both the quarterly and 

yearly contracts. These observations have been especially visible when the reservoir 

levels are low. However, all these findings should be tested empirically before 

conclusions are made.  

This paper intended to answer whether the latent volatility is a process of random 

information flow to financial markets for electricity, or if it the volatility can be 

predicted by a stochastic volatility model. Thus, is returns and volatility a correlated 

process, or just a random walk? The main objective for this paper was to implement 

optimal two-factor stochastic volatility model with the capability to predict and 

capture stylized features of financial markets. Such features include serial correlation 

in the mean, asymmetry effects and volatility clustering. When such features are 

found in a time series it indicates significant data dependency in the volatility, which 

is a foundation for forecasting. All these features where found in the re-projected 

volatility for QUARTER and YEAR, the data dependency indicate that the latent 

volatility can be predicted by a stochastic volatility model. This result seems 

remarkable; yet price processes are barely predictable as prices respond differently to 

the information flow and unpredictable events in the market. However, the variance 

of the forecast error is time dependent and can be estimated by the means of past 

observed variations. Regardless of markets and contracts, observed volatility 

clustering suggest that unconditional return distributions are not normally distributed, 

a result at odds with the hypothesis of normally distributed price changes. By this we 

can conclude that returns and volatility is a correlated process, and not a process of 

random work. For empirical financial data analysis, stochastic volatility models 

perform well as a practical descriptive and forecasting device for risk managers and 

other practitioners. This result applies as much for participant in the financial market 

for electricity as in other financial markets. The SV method adds information about 

conditional mean and volatility, forecasting conditional volatility (through filtering), 

conditional variance functions (asymmetries) and mean reversion (persistence) 

analysis.  
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