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1 Abstract  11 

 12 

Robust prediction of extreme motions during wind farm support vessel (WFSV) operation is an important safety 13 

concern. In particular, it is important to study safety of operation in random sea conditions during WFSV docking 14 

against the wind tower, while workers are able to get on to the tower. Docking is performed by thrusting the vessel 15 

fender against the wind tower (the alternative docking maneuver by hinging is not studied here). In this paper, the 16 

finite element software AQWA has been used to analyze the vessel response due to hydrodynamic wave loads, acting 17 

on a specific maintenance ship under actual sea conditions. Excessive motions may occur during certain sea 18 

conditions, posing a risk to the crew transfer operation. The authors have primarily focused on the statistical analysis 19 

rather than the dynamics of the problem. 20 

This paper presents a novel method for estimating bivariate statistics, based on Monte Carlo simulations (or 21 

measurements if available). The bivariate average conditional exceedance rate (ACER2D) method is briefly outlined. 22 

The ACER2D method offers an accurate estimation of bivariate statistics, utilizing the available data efficiently. Two 23 

dimensional probability contours, corresponding to large return periods, are obtained by the ACER2D method. Based 24 

on the overall performance of the presented method, it is seen that the ACER2D method provides an efficient and 25 

accurate prediction of extreme return period contours.  26 

The described approach may serve as a useful tool for vessel design, facilitating optimization of boat parameters in 27 

order to minimize excessive vessel motions.   28 

 29 

 30 

 31 
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 35 

 36 

2 Introduction 37 

 38 

The offshore renewable wind energy market is expected to have a dramatic growth in the next decades. Operational 39 

costs and safety issues related to wind farm maintenance are among the most crucial issues for the renewable energy 40 

sector. For an onshore wind farm, the maintenance tasks can be carried out almost at any time when the weather 41 

conditions are not extreme. On the other hand, for an offshore wind farm (OWF) operation, a number of issues like 42 

transportation of maintenance personnel, equipment, spare parts, and access to the wind turbines from service vessels 43 

are restricted by sea conditions. Down time of wind turbines due to waiting for weather windows is one of the major 44 

contributors to the loss of electricity production and hence income. Innovative vessel and access concepts can help to 45 
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reduce the weather restrictions on the access operation and therefore decrease the downtime for offshore wind 46 

turbines. The latter implies that certain savings in costs and increase in operational safety can be obtained by 47 

optimizing vessel characteristics, especially on the design stage. 48 

An accurate modeling of the WFSV extreme motions during docking against the wind tower should be conducted in 49 

order to evaluate operational risks. Relatively few studies have been done in the latter direction, see e.g. 50 

Bondarenko(2015); Wu (2014) for the docking operation numerical analysis of the WFSV with a simple fender.  See 51 

also Zhang et al . (2014a) for a study of ooperation modelling of a WFSV using stochastic activity networks. 52 

 53 

 54 

A certain amount of research work has been done to study the motions of WFSV in waves, see e.g. Wu (2014); 55 

Zhang et al.  (2014a); Zhang et al. (2014b); Naess and Moan (2013); Price and Bishop (1974); Sandvik (2010);  56 

Phillips et al. (2014);  Phillips et al. (2015) for the WFSV docking operation with a fender system. Analyzing 57 

complex vessel motions during step-across-fender transfer are of importance for safety of operations, see Phillips et 58 

al. (2014);  Phillips et al. (2015). Statistics of extreme motions is a key issue for the safety and reliability analysis 59 

during offshore operations; see Bondarenko(2015); Naess and Moan (2013); Price and Bishop (1974) for the basics 60 

of the probabilistic theory for ships and offshore structures.  61 

It can be concluded from a study of the existing literature that there is no preferred methodology for prediction of the 62 

WFSV extreme motion statistics. Vessel heave and pitch are among of the most critical vessel motion types, having 63 

an important effect on the transfer safety during docking operation. This paper studies extreme value statistics of 64 

WFSV combined heave and pitch motions, during docking against a wind tower in random sea conditions.   65 

   66 

The aim of this paper is to develop a simple and general Monte Carlo (MC) based method, which is able to tackle all 67 

nonlinear effects without simplifications, except for those inherent in the hydrodynamic model itself. This goal has 68 

been achieved by combining standard MC simulations with a CPU time-saving extrapolation scheme Naess and 69 

Karpa (2015); Karpa and Naess (2015); Gaidai et al. (2016). 70 

As opposed to univariate statistical methods, the ACER2D method takes into account bivariate correlation, which 71 

may reflect important coupling effects. Due to only partial correlation between the vessel heave and pitch angles, 72 

application of the multivariate, or bivariate in the simplest case, extreme value theory is of practical interest. The 73 

bivariate ACER2D method is not the only approach that serves estimating bivariate statistics, see as example 74 

Heffernan and Tawn (2004); Ewans (2014)  for the IFORM (inverse first order reliability method), or SORM (second 75 

order reliability method), see e.g. Zhao and Ono (1999). An advantage of the ACER2D method is that it does not rely 76 

on asymptotic assumptions and do not exclude non-linearities. 77 

 78 

 79 

 80 

3 Wave statistics 81 

Satellite based global wave statistics was used to obtain the wave scatter diagram in the Bohai bay area, where the 82 

wind farm is located. Specifically, commercial Global Wave Statistics Online data 83 

http://www.globalwavestatisticsonline.com/ was purchased. Table 1 presents directional probabilities of wind and 84 

waves in Bohai bay http://www.globalwavestatisticsonline.com/, Lv et al. (2014) averaged over the whole year 85 

(seasonal variations are averaged).  Fig. 1 presents annually averaged spatial distributions of wave height in Bohai 86 

bay Lv et al. (2014) ; Zhang  et al. (2018). 87 

 88 
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 89 

Fig. 1 Annually averaged spatial distribution of wave height in Bohai Sea,  Lv et al. (2014).  Star indicates 90 

WFSV location. 91 

 92 

 93 

Fig. 2 Environmental contour lines for Bohai bay area from http://www.globalwavestatisticsonline.com/.  94 

Contour numbers: fare parts per thousand. 95 

Fig. 2 presents environmental contour lines for the Bohai bay area, averaged annually and averaged over all eight 96 

wave directions. Due to the limitation of WFSV operating in the sea with significant wave height 𝐻𝑠 larger than 1.6 97 

m, sea states with wave height over 1.6 m were removed from the measured sea state dataset. Thus statistics has been 98 

made conditional on the operational safety requirement. Subsequently, an approximate sea state scatter diagram was 99 

estimated based on environmental contour lines data from Fig. 2. The modified scatter diagram (once the wave 100 

heights larger than 1.6m have been removed) has not been presented in this paper due to its low resolution, 101 

justifying it by the fact that the aim of the proposed paper was an illustration of statistical technique, and not 102 
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an accurate in situ engineering estimate. The zero crossing period from Fig. 2 is approximately linearly related to 103 

the spectral peak wave period 𝑇𝑝, see DNV rule DNV-RP-H103 (2011). 104 

Table 1 Directional probabilities of wind and waves in Bohai bay http://www.globalwavestatisticsonline.com/. 105 

Direction All Year 

North-East  14.89 %  

East  11.11 %  

South-East  10.01 %  

South  13.15 %  

South-West  7.65 %  

West  8.16 %  

North-West  14.21 %  

North  20.82 %  

 106 

Fig. 2 presents an environmental contour plot averaged over the eight wave directions, as authors did not want to 107 

present eight different directional  environmental contour plots. The separate wave statistics per each direction was 108 

available from  (http://www.globalwavestatisticsonline.com/). 109 

 110 

A three hour stationary storm simulation was run for each sea state of each directional sea state  (𝐻𝑠 , 𝑇𝑝) , 111 

approximately estimated based on Fig. 2. For each particular directional storm at a certain significant wave height the 112 

total of 8 random sea realizations (random seeds) have been generated, amounting to 𝑇𝑡𝑜𝑡 = 24 hours direct Monte 113 

Carlo simulation for each sea state, the latter 𝑇𝑡𝑜𝑡  is typical for offshore engineering applications, see e.g. Karpa 114 

(2015); Naess et al (2007). As an overview, Fig. 3 presents a flow chart for the methodology applied in this paper.   115 

The significant wave height in the simulation ranged from 0.6 m to 1.6 m with the bin size of 0.2 m. First 600 s 116 

simulation results have been discarded due to initial transient effects. 117 

 118 

 119 

Fig. 3 Flow chart for the described methodology. 120 

 121 

The random stationary sea states are specified by a JONSWAP wave spectrum, that is, the one-sided power spectral 122 

density (PSD) of the wave elevation 𝜂(𝑡), denoted by 𝑆𝜂
+(𝜔), is given as follows (𝜔 > 0) 123 
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, p  denoting the peak frequency in rad/s; and ,   and   being parameters related to the 125 

spectral shape; 0 07    when p  , 0 09    when p  . For the Bohai bay, the parameter   is 126 

chosen to be equal to 3.3, see Wang et al. (2012); the parameter   is determined from the following empirical 127 

relationship
2

2
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H

T
     , see DNV rules DNV-RP-C205 (2010); DNV-RP-H103 (2011). sH128 

is the significant wave height, and 2p pT    is the spectral peak wave period. 129 

 130 

 131 

4 Modelling of vessel motions during docking in waves, using AQWA   132 

 133 

AQWA software has been developed by ANSYS Inc. It is an efficient tool for simulating nonlinear wave loading on 134 

http://www.globalwavestatisticsonline.com/
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both floating and fixed rigid bodies, as well as nonlinear vessel responses, see AQWA users manual (2013). The 135 

latter is done by employing three-dimensional radiation/diffraction theory in regular waves in the frequency domain.  136 

To account for coupling between floating body dynamics and structural response, the AQWA software employs 137 

specific modules such as AQWA (diffraction model), AQWA WAVE (linking program), and ANSYS (structural 138 

finite element analysis). 139 

Unidirectional or multidirectional second order drift forces can be evaluated by the far-field, near field solution, or 140 

full quadratic transfer function (QTF) matrix. Free floating hydrostatic and hydrodynamic analyses in the frequency 141 

domain can be performed as well, see AQWA users manual (2013).   142 

The real-time motion of a floating body while operating in regular or irregular waves can be accurately simulated 143 

with AQWA, with nonlinear Froude-Krylov and hydrostatic forces being estimated under instantaneous incident 144 

wave surface. The real-time motion of a floating body while operating in irregular waves, can be simulated under 145 

first- and second-order wave excitations.  146 

 147 

 148 

 149 

 150 

Fig. 4 Fender docking operation of the maintenance ship against wind tower.  151 

Fig. 5 on the left corresponds to Fig. 4 and it shows the corresponding AQWA finite element model of the wind 152 

turbine tower and maintenance ship during fender docking against wind tower. As noted above, this paper considers 153 

the vessel thrusts with fender against the wind tower, as opposed to the vessel hinging to wind tower. 154 

 155 

Table 2 Some WFSV vessel parameters. 156 

Parameter Value Unit 

Length between perpendiculars 18.0 m 

Breadth 6.5 m 

Draft 1.3 m 

Displacement tonnage 42.0 tones 

Longitudinal center of gravity 8.0 m 

Vertical center of gravity 2.5 m 

 157 

 158 

Table 2 presents some basic WFSV vessel parameters. Both 1st and 2nd order forces are computed in AQWA by 159 

utilizing linear transfer function (LTF) and quadratic transfer function (QTF).  160 
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Fig. 5 on the right presents a top view of the fender during docking. Several different access/docking devices are 161 

typically employed between a service vessel and a wind turbine. In this paper the simplest type is modelled, namely a 162 

fender made of rubber or other materials. The bollard push force from the propulsion system keeps the ship bow 163 

attached to the wind turbine tower (foundation) while the personnel access the ladder on the tower from the bow.  164 

The punctual contact or friction force tends to restrict relative translational motions (surge, sway and heave) to 165 

almost zero, but does not assure that the relative angular motion (roll, pitch and yaw) between the two elements of 166 

the contact be zero. This is the way the roll motion of the maintenance ship is different to that of the wind turbine 167 

tower. The friction moment was neglected in the roll motion calculation. The fender friction force 𝐹𝑓 on the 168 

contacting surface was given by   𝐹𝑓 = 𝜇𝑇 , where 𝜇 is the friction coefficient, and 𝑇 is the normal compression 169 

reaction force. 170 

In this paper the AQWA-Drift time-domain simulation approach was adopted to model the vessel motions and the 171 

non-linear reaction forces between the fender and the wind turbine tower. The fender damping force 𝐹𝑑 was only 172 

applied in the direction of the fender compression force. A linear material damping model is adopted in AQWA, 173 

namely 𝐹𝑑 = 𝛽𝐾𝑓
𝑑𝐿𝑑

𝑑𝑡
, with 𝛽  being the damping coefficient and 𝐾𝑓  being the fender stiffness, and 𝐿𝑑  being the 174 

distance between the two contacting points of the fender, see AQWA theory manual (2013)  for details. 175 

Fig. 6 presents an example of the roll moment QTF in dimensional form, per unit length squared, in the beam sea: 176 

difference frequency (left) and sum frequency (right). As expected, the sum frequency QTF has sharp peaks, while 177 

the difference frequency QTF, which is responsible for vessel slow motions, is much less ‘peaked’.  178 

 179 

Fig. 5  Coupled panel model of the wind turbine tower and maintenance ship (on the left); a top view of fender 180 

during docking (on the right). 181 

The numerical simulation was based on AQWA-Line and AQWA-Drift models are utilized to perform the 182 

frequency-domain analysis and the time-domain analysis respectively. Thus AQWA-Line tool was used to generate 183 

vessel LFT and QTF transfer functions. Vessel current and wind force coefficients at different incident angles were 184 

calculated using commercial ANSYS Fluent software and applied in the AQWA-Drift model, see AQWA theory 185 

manual (2013).   186 

The fender and its wind tower interaction force were simulated in the AQWA-Drift (time-domain) model and the 187 

diameter of the fender was 0.2m. Bollard push force was put at the aft of the support vessel and its value was set to 188 

80kN. Table 2 presents some basic WFSV vessel parameters. 189 

 190 

The size of the mesh was chosen smaller than 1/7 of the shortest wave length; the time step was chosen smaller than 191 

1/10 of the smallest wave period, in accordance with AQWA requirements. The mesh size and time step ∆𝑡 were 192 

chosen in accordance with AQWA convergence criteria, to ensure accuracy of simulated results, particularly vessel 193 

motions in waves. For the sake of assuring convergence, time step ∆𝑡 has been halved for the one selected sea state, 194 

and numerical results have been found convergent with original simulation. 195 

 196 

Finally, a brief discussion follows regarding numerical modelling of physical phenomena, such as for example ship 197 

maneuvering, occurring during docking of the vessel to the platform. Employing a CFD solver to solve Navier-198 

Stokes equations is not unique, but one possible approach to simulate ship motions. For an overview of state-of-the-199 

art of ship motion modeling, see Reed and Beck(2016). However, including all relevant hydrodynamic components, 200 

such as e.g. lifting/ maneuvering forces and viscosity effects, was not a practical approach for a long-term simulation, 201 

since it would require prohibitively large computational costs. Besides, AQWA is computationally less expensive 202 

than, say solving directly the full Navier-Stokes equations. Note that AQWA is based on potential flow theory and it 203 

takes non-linear hydrodynamic forces as well as coupled multi-body interaction into consideration. Viscous damping 204 

coefficients were added in AQWA in order to compensate for the deficiency of the potential flow theory. Wind and 205 

current drag coefficients were also calculated by using ANSYS Fluent and added to AQWA.  206 
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The purpose of the maintenance ship is to transfer the personnel and equipment, and the process of transferring 207 

usually takes only minutes. Therefore the maneuvering is not of importance in this study, due to short duration of 208 

transferring.  209 

 210 

 211 

Fig. 6 Example of heave QTF amplitude: difference frequency (left) and sum frequency (right). 212 

 213 

Fig. 7 Example of pitch angle QTF amplitude: difference frequency (left) and sum frequency (right). 214 

Fig. 6 presents an example of the heave QTF (quadratic transfer function) amplitude in the 45° directional sea, Fig. 7 215 

presents an example of the pitch angle QTF; difference frequency (left) and sum frequency (right). The numerical 216 

simulation utilized AQWA-Line and AQWA-Drift models to perform frequency-domain and time-domain analysis 217 

respectively. The 1
st
 order and 2

nd
 forces have been computed in AQWA. The numerical simulation was based on 218 

AQWA-Line and AQWA-Drift models to perform the frequency-domain analysis and the time-domain analysis, 219 

respectively. Thus AQWA-Line FEM tool was used to generate vessel LTF (linear transfer function)  and QTF 220 

transfer functions. Vessel current and wind force coefficients at different incident angles were calculated in Fluent 221 

and applied in the AQWA-Drift model.   222 

The fender along with its wind tower interaction force were simulated in the AQWA-Drift (time-domain) model. The 223 

size of the mesh was chosen smaller than 1/7 of the shortest wave length; the time step was chosen smaller than 1/10 224 

of the smallest wave period, in accordance with AQWA requirements. The relevant experimental validation of 225 

AQWA numerical results, see Xu et al. (2019a);  Xu et al. (2019b) discussing experimental results on the FPSO 226 

(floating production storage and offloading unit) vessel, insures that AQWA is a proper and accurate tool to study 227 

complex vessel motions. Both WFSV transfer operation and FPSO offloading operation exhibit similar nature of 228 

combined wave motions and structural interactions. 229 

 230 

 231 

 232 

5 Statistical approach – the ACER2D method 233 

 234 

The Averaged Conditional Exceedance Rate (ACER2D) method has been applied to analyse vessel motion data in 235 

order to assess the extreme bivariate heave and pitch statistics. The major advantage of the ACER2D method is that 236 

it takes into account the full non-stationary data set, and it allows a pre-asymptotic behaviour, rather than relying on 237 

an ad-hoc asymptotic assumption. Note that both the stochastic processes (heave and pitch in this paper) are required 238 

to be synchronous in time, which allows an in-depth look into the long term correlation statistics and coupling 239 

effects. The brief decription of the bivariate ACER2D method is given in Appendix, for more details see Naess and 240 
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Karpa (2015); Karpa and Naess (2015); Gaidai et al. (2016). 241 

 242 

Fig. 8 Vessel COG heave (meters) versus synchronous pitch angle (degrees). 243 

 244 

Fig. 8 illustrates the vessel’s center of gravity (COG) heave displacement versus the synchronously recorded pitch 245 

angle. This would represent a sample of the long term bivariate distribution of heave and pitch, which clearly 246 

displays a significant correlation between the two random variables. 247 

 248 

 249 
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 250 

Fig. 9 Comparison between ACER2D surfaces for different degrees of conditioning. �̂�𝒌(𝝃, 𝜼) functions are 251 

plotted on a decimal logarithmic scale; 𝝃 is heave,  𝜼 is pitch angle. 252 

 253 

Fig. 9 presents the empirically estimated bivariate ACER2D functions ℰ̂𝑘(𝜉, 𝜂) for different conditioning values of 𝑘 254 

on a decimal logarithmic scale. ℰ̂𝑘(𝜉, 𝜂) with 𝑘 = 1 is represented by the upper surface, while the following surfaces 255 

that converge in the tail for 𝑘 ≥ 2. As it is seen from the Fig. 9, the cross-section of the surfaces at the high level of 256 

heave 𝜉 gives the univariate ACER2D functions of the pitch angle 𝜂, while the cross-section at a high pitch angle 257 

level represents the univariate ACER2D of the heave, respectively. Since the surfaces for 𝑘 ≥ 2 have converged in 258 

the tail and estimation of ℰ̂2(𝜉, 𝜂) is more accurate due more data availabile, one is to choose the function (and thus 259 

its surface) with the degree of conditioning 𝑘 = 2.  260 

 261 

Fig. 10 Left presents contour lines for the optimized Asymmetric logistic (AL) 𝒜𝑘(𝜉, 𝜂) and optimized Gumbel 262 

logistic (GL) 𝒢𝑘(𝜉, 𝜂)  models, optimally fit to the empirical bivariate ACER2D function ℰ̂𝑘(𝜉, 𝜂) , 𝑘 = 2 , see 263 

Appendix for GL and AL definitions. The negative numbers at the contour lines in Fig. 10 indicate probability levels 264 

of 𝑃(𝜉, 𝜂) from Eq. (1) in Appendix on a decimal logarithmic scale. Fig. 10 Left shows that the empirical bivariate 265 

ACER2D surface ℰ̂2 captures quite well the high correlation between the data. It is also seen that the optimaized 266 

models 𝒢2 and 𝒜2  give smooth complete contours. Note that if the bivariate data would be fully correlated, the 267 

contour lines would consist of only horizontal and vertical straight segments. Fig. 10 Left shows quite good 268 

agreement between the estimated bivariate ACER2D and the optimized AL and GL surfaces.  269 

 270 

 271 
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 272 

Fig. 10 Left: Contour plot of the empirically estimated �̂�𝟐(𝝃, 𝜼) surface (•), optimized Gumbel logistic 𝓖𝟐(𝝃, 𝜼) 273 

(∘) and optimized Asymmetric logistic 𝓐𝟐(𝝃, 𝜼) (－) surfaces. Negative numbers indicate probability levels on 274 

a decimal logarithmic scale. Right: Contour plot of the return periods for optimized Gumbel logistic 𝓖𝟐(𝝃, 𝜼) 275 

(∘) and optimized Asymmetric logistic 𝓐𝟐(𝝃, 𝜼) (－) surfaces. Boxes indicate return periods in days. 276 

 277 

Fig. 10 Right presents contours with return periods in days, 2, 5 and 365 days respectively per contour line. Return 278 

period of the order of years is of practical importance for the design of WFSV. It is known that correlation between 279 

heave and pitch motions is an important factor, and it has influence on the shape of bivariate coutour lines. 280 

 281 

 282 

6 Bivariate integral correction 283 

 284 

Apart from the obvious prediction of bivariate contours with a given extreme return period, one could mention 285 

another possible use, given high correlation between two studied univariate variables, namely vessel heave and pitch. 286 

Indeed Fig. 8 exhibits high cross-correlation between two univariate responses with correlation coefficient 𝑅corr = 287 

0.75. 288 

The bivariate correction is based on the ACER methodology. The latter involves both the univariate ACER functions 289 

as well as the bivariate ACER functions. The unique feature of the ACER functions is that they provide the 290 

possibility to portray the exact extreme value distribution inherent in the data time series, both the univariate as well 291 

as the bivariate, see Gaidai et al. (2019a); Gaidai et al. (2019b); Xu et al (2019b); Karpa (2015). For the sake of easy 292 

reference, the bivariate ACER methodology has been briefly outlined in the Appendix. 293 

 294 

This section presents a statistical bivariate integral correction that is based on the bivariate ACER method coupled 295 

with the Gumbel logistic model, see Karpa (2015). Note that this correction is not limited to only extreme value 296 

estimates, but it can be applied with appropriate bivariate models for any statistical values of interest, in order to 297 

improve their accuracy based on synchronously measured longer, highly correlated data records.  298 

To fix ideas, let 𝑄(𝑡) denote the hawser tension of interest, which has been recorded over a time interval of length �̃�. 299 

Assuming that �̃� is insufficient for accurately predicting the desired univariate extreme tension level with a target 300 

low probability of exceedance for a time period much longer than �̃�, e.g. 3 hours during a design sea state. Typically, 301 

an estimate of the tension level with a return period of 100 times longer may be desired as a design level. This would 302 

be formulated as follows: Let 𝑌 = max {𝑄(𝑡); (𝑡0, 𝑡0 + 3 hours), where 𝑡0 is a suitable reference time. The design 303 

return period level 𝜂∗ then satisfies the equation Prob{𝑌 > 𝜂∗} =  10−2.  304 

 305 

Let 𝑋 = max {𝑃(𝑡); (𝑡0, 𝑡0 + 3 hours), and let 𝐹𝑋𝑌(𝜉, 𝜂) = Prob(𝑋 ≤ 𝜉, 𝑌 ≤ 𝜂) be the joint bivariate cumulative 306 

distribution function (CDF) of (𝑋, 𝑌), and let F𝑋(𝜉) and F𝑌(𝜂) be the corresponding univariate marginal CDFs for 307 

𝑋 and 𝑌, respectively. As discussed in the previous section, in this paper it is assumed that the bivariate couple 308 

(𝑃(𝑡), 𝑄(𝑡)) has been observed over a period of time 𝑡 ∈ [0, �̃�], where the observation duration �̃� is not long enough 309 

for accurately predicting the  univariate extreme response levels with a target low probability of interest. Now, 310 

consider the case when a 'long' record of 𝑃(𝑡) is available over a time 𝑡 ∈ [0, 𝑇], with 𝑇 ≫ �̃�, with a corresponding 311 

estimated CDF  𝐹𝑋
long(𝜉) of the CDF 𝐹𝑋(𝜉), which has a probability density function (PDF) 𝑝𝑋 = F𝑋

′ . Then for any 312 

𝑌- response level of interest 𝜂∗, with ∆→ 0, 313 

 314 



11 

 

   𝐹𝑌(𝜂∗) =  𝐹𝑋𝑌(, 𝜂) = ∫ Prob(𝑌 ≤ 𝜂∗|𝑋 = 𝜉)
+∞

0
𝑝𝑋(𝜉)𝑑𝜉 = 315 

 316 

∫
Prob(𝑌≤𝜂∗,𝑋∈[𝜉,𝜉+∆])

Prob(𝑋∈[𝜉,𝜉+∆])

+∞

0
𝑝𝑋(𝜉)𝑑𝜉 =  ∫ 𝐹𝑋𝑌,𝑋

′ (𝜉, 𝜂∗)
+∞

0
𝑑𝜉,                                                                             (A) 317 

 318 

with 𝐹𝑋𝑌,𝑋
′ (𝜉, 𝜂∗) denoting the derivative of 𝐹𝑋𝑌(𝜉, 𝜂∗) with respect to 𝜉.  319 

 320 

The following copula model for the bivariate extreme value distribution is referred to as the Gumbel logistic model 321 

Karpa (2015) 322 

 323 

                       𝐹𝑋𝑌(𝜉, 𝜂) = exp {−[(−ln F𝑋(𝜉))
𝑚

+ (−ln F𝑌(𝜂))
𝑚

]
1/𝑚

}                                                                  (B) 324 

 325 

This bivariate extreme value model has been verified to be a useful model for practical applications provided the 326 

marginal extreme value distributions are estimated using the univariate ACER method instead of standard asymptotic 327 

extreme value distributions, see Karpa (2015). If Eq. (4) is differentiated with respect to , and substituted into the 328 

integrand of Eq. (A), it is obtained that 329 

 330 

                       𝐹𝑋𝑌,𝑋
′ (𝜉, 𝜂∗) = 𝐹𝑋𝑌(𝜉, 𝜂∗)[1 + (ln F𝑌(𝜂∗)/ln F𝑋(𝜉))

𝑚
]

1

𝑚
−1 𝑑

𝑑𝜉
ln 𝐹𝑋 (𝜉)                                              (C) 331 

 332 

The numerical estimate �̂�𝑌(𝜂∗) of 𝐹𝑌(𝜂∗) based on the available time series of recorded data, is obtained by using the 333 

following expression, 334 

 335 

         �̂�𝑌(𝜂∗) = ∫ �̂�𝑋𝑌(𝜉, 𝜂∗) [1 + (ln �̂�𝑌 (𝜂∗)/ln �̂�𝑋
𝑙𝑜𝑛𝑔(𝜉))

𝑚

]

1

𝑚
−1

𝑑

𝑑𝜉
ln �̂�𝑋

𝑙𝑜𝑛𝑔(𝜉)
+∞

0
𝑑𝜉                                                   (D) 336 

 337 

 338 

By applying suggested bivariate correction, the accuracy of extreme response prediction was greatly improved, as 339 

discussed here under.  340 

The “long” 3-hour record was chosen as the reference; then the relative ratio of the prediction based on the  “short” 341 

0.3 hours observation 𝑥short  has been divided by the prediction 𝑥long based on longer 3 hours observation. The results 342 

are summarized in the following table. 343 

 344 

Table 3 Bivariate correction results (long term analysis). 345 

 heave pitch 

𝑥short/𝑥long 0.81 0.80 

𝑥corrected/𝑥long 1.05 1.06 

 346 

 347 

Table 3 shows that there is a practical advantage in applying the bivariate correction introduced in this paper, as it 348 

brings shorter prediction quite close to the longer prediction, thus greatly improving accuracy of the extreme value 349 

prediction. Note that as mentioned above, a high correlation between two processes is the key requirement for the 350 

described correction in order to achieve improved prediction accuracy.      351 

 352 

 353 

7 Conclusions 354 

 355 

This paper presents a study of the combined motion statistics of a wind farm support vessel, during fender docking 356 

against a wind tower in actual random seas.  357 

The state-of-art bivariate ACER method has been described and applied to study the vessel coupled motions, 358 

specifically heave and pitch, simulated synchronously in  time. Low probabilities (high quantiles) contours for the 359 

bivariate extreme value distribution have been obtained by adopting bivariate copula models. 360 

When it comes to safety and reliability of WFSV operations, the mulivariate analysis is a more appropriate approach, 361 

than the typically used univariate aproach. The presented methodology has the following important advantages: 362 

 363 

 Unlike IRORM or SORM, the ACER2D do not simplify non-linearities, inherent in the model.   364 

 Any kind of coupled data can be analysed: either measured or obtained by Monte Carlo simulation. 365 

 Non-stationary data can be analysed.  366 
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 Unlike asymptotically based methods (Gumbel, Pareto, Weibull, Peak over threshold etc.) the presented method 367 

can accommodate pre-asymptotic behaviour, which means that the data set can be analysed more accurately and 368 

efficiently.  369 

 A bivariate correction can be done based on the bivariate statistical analysis for two highly correlated variables. 370 

The latter can have practical applications at the design stage.  371 

 372 

It should be acknowledged that in order to deliver solid and reliable design analysis for industrial operational 373 

purposes, one has to conduct physical tests, and validate numerical simulation results versus experimental. This 374 

paper however has been focused on developing an efficient statistical methodology, rather than on hydrodynamic and 375 

structural interaction aspects.    376 

 377 

  378 

8 Appendix: bivariate ACER2D method (in brief) 379 

 380 

 381 

This paper analyzes bivariate random process 𝑍(𝑡) = (𝑋(𝑡), 𝑌(𝑡)), consisting of two scalar component processes 382 

𝑋(𝑡), 𝑌(𝑡), measured or simulated synchronously, over certain period of time (0, 𝑇). It is assumed that samples 383 

(𝑋1, 𝑌1), … , (𝑋𝑁 , 𝑌𝑁) are recorded at N time equidistant discrete instants 𝑡1, … , 𝑡𝑁 within (0, 𝑇). Note that the latter 384 

assumption of equidistant time sampling surves convenience purpose and does not limit the described methodology.  385 

This Appendix studies the joint cumulative distribution function (CDF) 𝑃(𝜉, 𝜂): =  Prob (�̂�𝑁 ≤ 𝜉, �̂�𝑁 ≤ 𝜂) of the 386 

maxima vector (�̂�𝑁 , �̂�𝑁), with �̂�𝑁 = max{𝑋𝑗  ; 𝑗 = 1, … , 𝑁}, and  �̂�𝑁 = max{𝑌𝑗  ; 𝑗 = 1, … , 𝑁}. In this paper 𝜉 and 𝜂 387 

are the heave and pitch angle correspondingly, recorded synchronously at the vessel COG. 388 

Following non-exceedance event is defined 𝒞𝑘𝑗(𝜉, 𝜂): = {𝑋𝑗−1 ≤ 𝜉, 𝑌𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜉, 𝑌𝑗−𝑘+1 ≤ 𝜂}  for 389 

1 ≤ 𝑘 ≤ 𝑗 ≤ 𝑁 + 1. According to the definition of CDF 𝑃(𝜉, 𝜂)   390 

 391 

 

𝑃(𝜉, 𝜂) =   Prob (𝒞𝑁+1,𝑁+1(𝜉, 𝜂))

=   Prob (𝑋𝑁 ≤ 𝜉, 𝑌𝑁 ≤ 𝜂 | 𝒞𝑁𝑁(𝜉, 𝜂)) ⋅ Prob (𝒞𝑁𝑁(𝜉, 𝜂))

= ∏  

𝑁

𝑗=2

  Prob (𝑋𝑗 ≤ 𝜉, 𝑌𝑗 ≤ 𝜂 | 𝒞𝑗𝑗(𝜉, 𝜂)) ⋅ Prob (𝒞22(𝜉, 𝜂))

 (1) 

 392 

The target CDF 𝑃(𝜉, 𝜂) can be reprrsented as in Naess and Karpa (2015); Karpa and Naess (2015); Gaidai et al. 393 

(2016) 394 

 395 

 𝑃(𝜉, 𝜂) ≈ exp {− ∑  𝑁
𝑗=𝑘 (𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))} ;  𝜉, 𝜂 → ∞   (2) 

 396 

for sufficiently the large conditioning order parameter 𝑘 with 𝛼𝑘𝑗(𝜉; 𝜂) ≔  Prob (𝑋𝑗 > 𝜉 | 𝒞𝑘𝑗(𝜉, 𝜂)), 𝛽𝑘𝑗(𝜂; 𝜉) ≔397 

Prob (𝑌𝑗 > 𝜂 |𝒞𝑘𝑗(𝜉, 𝜂)) , 𝛾𝑘𝑗(𝜉, 𝜂) ≔ Prob (𝑋𝑗 > 𝜉, 𝑌𝑗 > 𝜂 | 𝒞𝑘𝑗(𝜉, 𝜂)). 398 

From Eq. (2) shows that accurate estimate of the bivariate CDF  𝑃(𝜉, 𝜂)  requires accurate estimate of functions 399 

{(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))}𝑗=𝑘
𝑁 . Let one intdoduce 𝑘-th order bivariate average conditional exceedance rate 400 

(ACER2D) functions 401 

 ℰ𝑘(𝜉, 𝜂) =  
1

𝑁 − 𝑘 + 1
 ∑  

𝑁

𝑗=𝑘

(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂)) ,    𝑘 = 1, 2, … (3) 

Then, when 𝑁 ≫ 𝑘, one has  402 

 403 

 
𝑃(𝜉, 𝜂) ≈ exp{ − (𝑁 − 𝑘 + 1) ℰ𝑘(𝜉, 𝜂)} ;   𝜉, 𝜂 → ∞ 

(4) 

Estimation of bivariate ACER2D functions ℰ𝑘(𝜉, 𝜂) for the simulated/observed stationary/non-stationary time series 404 

constitutes counting of exceedance events. For the detailed estimation of the bivariate ACER2D functions, see Naess 405 

and Karpa (2015); Karpa and Naess (2015); Gaidai et al. (2016). 406 

In the above, no assumption about stationarity has been made. Hence, it also applies to long term time series. 407 

However, in this case it is often expedient to reformulate the expressions. Given the scatter diagram consisting of 408 

𝑚 = 1, . . , 𝑀 sea states (long term statistics), each sea state having an individual probability 𝑝𝑚, with the obvious 409 

equality ∑ 𝑝𝑚
𝑀
𝑚=1 = 1 . Then it is natural to rewrite the ACER2D function definition as follows  ℰ𝑘(𝜉, 𝜂) =410 

∑  ℰ𝑘(𝜉, 𝜂, 𝑚)𝑀
𝑚=1 𝑝𝑚, with  ℰ𝑘(𝜉, 𝜂, 𝑚) being the ACER2D function estimated for an individual 𝑚-th stationary sea 411 

state. This provides a practical expression for the long term ACER2D function.  412 

 413 
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For any couple of random variables (𝑋, 𝑌)  with marginal CDFs 𝐹𝑥(𝜉)  and 𝐺𝑦(𝜂) , the joint CDF 𝐻𝑥𝑦(𝜉, 𝜂) =414 

 Prob (𝑋 ≤ 𝜉, 𝑌 ≤ 𝜂) can be represented by the bivariate copula 𝐶(𝑢, 𝑣) as 𝐻𝑥𝑦(𝜉, 𝜂) = 𝐶(𝐹𝑥(𝜉), 𝐺𝑦(𝜂)), cf. e.g. 415 

Balakrishnan and Lai (2009); Sklar (1959); Nelsen (2006); Yue et al. (1999); Yue and Wang (2004); Hougaard 416 

(1986); Tiago de Oliveira (1984). The latter is a general theoretical result that holds for any bivariate extreme value 417 

distribution. 418 

In this paper two types of Pickands dependence function have been applied: The optimized Gumbel logistic (GL) 419 

Gumbel (1960a);  Gumbel (1960b);  Gumbel (1961)  and the optimized Asymmetric logistic (AL), Coles and Tawn 420 

(1991); Coles and Tawn (1994); Coles (2001); Tawn (1988); Balakrishnan and Lai (2009); Sklar (1959); Nelsen 421 

(2006); Pickands (1981); Gudendorf and Segers (2010). 422 

 423 

It is now assumed that the marginal extreme value distributions (EVD) are represented by the univariate ACER 424 

functions, see Naess and Karpa (2015); Karpa and Naess (2015); Gaidai et al. (2016)   425 

 426 

 
𝐹𝑥(𝜉) ≈ exp{−(𝑁 − 𝑘 + 1)𝜀𝑘

𝑥(𝜉)} , 𝜉 ≥ 𝜉1 

𝐺𝑦(𝜂) ≈ exp{−(𝑁 − 𝑘 + 1)𝜀𝑘
𝑦

(𝜂)} , 𝜂 ≥ 𝜂1 
 (5) 

 427 

with 𝜀𝑘
𝑥(𝜉) = 𝑞𝑘

𝑥 exp{−𝑎𝑘
𝑥(𝜉 − 𝑏𝑘

𝑥)𝑐𝑘
𝑥

} and similar definition for 𝜀𝑘
𝑦

(𝜂).  428 

 429 

The detailed optimization procedure for estimation of parameters 𝑎𝑘
𝑥, 𝑏𝑘

𝑥, 𝑐𝑘
𝑥 , 𝑞𝑘

𝑥, 𝑎𝑘
𝑦

, 𝑏𝑘
𝑦

, 𝑐𝑘
𝑦

, 𝑞𝑘
𝑦

 is outlined in Naess 430 

and Karpa (2015); Karpa and Naess (2015); Gaidai et al. (2016).  431 

 432 

The choice of copula model is now determined by the accuracy obtained by fitting 𝐻𝑥𝑦(𝜉, 𝜂) to the empirical 𝑃(𝜉, 𝜂). 433 

 434 
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