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The increase in the number of electric vehicles leads to an increased demand for residential charging.
While EV electric loads can have a negative impact on the power grid, they also represent a large poten-
tial for energy flexibility. This study proposes a methodology to describe charging habits, electricity load
profiles, and flexibility potentials of EV charging in apartment buildings. The input data used for the
method are generally available for buildings with multiple EV charge points: EV charging reports with
individual charging sessions and aggregated smart meter data. The case study is a large housing cooper-
ative in Norway, with a combination of private and shared charge points for the residents. The study com-
pares two charging power assumptions of 3.6 kW and 7.2 kW. The flexibility potential increases with
higher charging power. The study reveals a significant potential for residential EV charging flexibility
when private parking spaces have EV charge points.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction end-use of energy in a number of ways, by reducing (peak shaving),
1.1. Background

Electric mobility is growing rapidly, with China being the lead-
ing electric vehicle (EV) market, followed by Europe and the United
States [1]. In terms of EV shares, Norway was the global leader in
2019, with 13% EVs of the total stock and 56% market share [1].
The growth in the number of EVs has led to an increased demand
for residential charge points (CPs). Access to CPs has therefore
become a topic of discussion in many Norwegian apartment build-
ings. In a survey from 2019, 94% of the EV owners living in single
houses state that they charge at home weekly or more frequently,
while 67% of the residents in apartment buildings state the same
[2]. The Norwegian government has proposed to give apartment
owners in housing cooperatives a statutory right to charge at
home, under certain conditions [3]. However, local power grid
capacity can be a limiting factor for new charging infrastructure.
Facilitating for charging in housing cooperatives has become a grid
capacity challenge, but also an opportunity for charge point oper-
ators (CPOs) with electricity load sharing possibilities [4].

EV electric loads represent a large potential for energy flexibil-
ity [5,6] and EVs are frequently considered in demand side man-
agement (DSM) systems [7]. With DSM, it is possible to affect the
increasing (valley filling) or rescheduling (load shifting) the energy
demand [8]. Knezovic [9] defines EV flexibility services as a power
adjustment maintained from a particular moment for a certain
duration at a specific location, characterised by the direction, the
power capacity, the starting time, and the duration of the charging.
If the EV is not vehicle to grid (V2G) capable, the flexibility direc-
tion is always the same. For residential DSM, it is essential that
the comfort of the users is maintained [10]. Load shifting of EV-
charging should therefore preferably not reduce the access to the
cars, when needed by the residents.

EV charging infrastructure for residents in apartment blocks is
often situated at common parking facilities. Typically, the residents
share the general responsibility for the infrastructure. Even if the
operating costs are eventually paid for by the residents using the
CPs, the energy use is part of the common energy use in the hous-
ing cooperative, unlike energy use in apartments which usually are
metered and paid for individually. EV charging in housing cooper-
atives is therefore more easily available for energy flexibility since
it can be controlled by a single operator, compared to the energy
loads in apartments.

Current knowledge of the characteristics of residential EV load
profiles is limited [11,12]. More knowledge on charging habits,
energy charged, and charging power, will make buildings owners
more capable of utilizing the flexibility potential of EV charging,
e.g. to reduce power peaks. This knowledge is also useful for distri-
bution system operators (DSOs) and transmission system opera-
tors (TSOs), when evaluating the need for and alternatives to
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Nomenclature

AMS Advanced Metering System, Smart meters
BEV Battery Electric Vehicle
CCF Cross-Correlation Function
CP Charge point
CPO Charge point operator
DSM Demand side management
DSO Distribution System Operator

EV Electric Vehicle
IT230V 230 Volt IT system (distribution grid)
PHEV Plug-in Hybrid Electric Vehicle
SoC State of Charge of the battery
V2G Vehicle to Grid
# Number of
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future grid capacity expansions [13]. This paper proposes a
methodology for analysis of residential EV energy flexibility poten-
tial that can use input data that are generally available for building
owners with multiple EV CPs. CPOs are often involved when there
is a pool of public or private CPs from one or more manufacturers.
EV charging reports are typically made available for the charging
infrastructure owner, for the purposes of invoicing and data man-
agement. The reports include information such as plug-in time,
plug-out time, and energy charged, all linked to a user and a CP.
It is less common that the Norwegian charging reports contain
information on actual charging time or charging power. Smart
meter data is another available data source. In Norway, all DSOs
have been obliged to install advanced metering system (AMS) for
all customers by the Norwegian regulator (NVE) by 1.1.2019 [14].
This makes hourly electricity meter readings easily available.

The main research question of this work is: How can EV charg-
ing reports and smart meter data describe charging habits, electric-
ity load profiles, and flexibility potential of EV charging in
apartment buildings? The paper is structured as follows. Section 1.2
provides a brief literature review of real-world EV charging data
analyses, while Section 1.3 describes the contribution of this work.
Section 2 introduces the case study, and describes EV charging
power and charge characteristics of EV batteries. The methodology
is described in Section 3, while Section 4 presents the results and a
discussion of the findings with respect to EV charging habits, EV
energy loads and EV charging flexibility. Finally, the conclusion
of the paper is drawn in Section 5.

1.2. Literature review

A number of studies have analysed real world EV charging data
basedonEVchargingreports fromCPOs.Otherdata sourcesalso form
the basis for charging data analyses, includingmobility datasets (e.g.
[15–18]) or Global Positioning System (GPS) data from the EVs (e.g.
[19,20]). In addition, some articles have based theirwork on charging
assumptions or expected values for EV charging habits (e.g. [21]), or
EV information available from questionnaires (e.g. [22,23]).

The studies [24–26,12] analyse EV charging and flexibility based
on EV charging reports from public charging stations in the Nether-
lands. The research in these studies are based on charging session-
information with plug-in and plug-out times, charging times, con-
nection times, idle times with no charging, as well as energy or
power information. Sadeghianpourhamami et al. [24] have clus-
tered the arrival and departure time combinations for nearly
400,000 charging sessions, with the three clusters ‘‘Park to charge”,
‘‘Charge near home” and ‘‘Charge near work”. The cluster ‘‘Charge
near home” has arrivals in the afternoon/evening with departures
mostly in themorning the next day. This cluster was therefore iden-
tified as the best candidate for moving charging demand to night-
time. Gerritsma et al. [25] have categorized anonymous EV IDs for
8223 charging sessions according to local or visiting EVs, where
the local users charge more frequently and with longer connection
times. Analysing flexibility, the researchers found that 59% of the
aggregated EV demand could be delayed for more than 8 h. Further-
more, they found that local EVs charge longer and have a larger
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potential for flexibility, compared to visiting EVs, especially when
it comes to moving the evening peak to the night. Flammini et al.
[26] analysed 400,000 charging sessions in publicly accessible
charging stations. 1213 of the 1744 charging stations were found
to be localized next to roads categorized as residential, while the
remaining charging stations were located by four other road classi-
ficationswith higher vehicle capacity. The study found that connec-
tion and non-charging idle times were higher for EV charging in
residential areas, where the average connection time was about
7 h, compared to the other road classifications. They also found that
chargers in residential areas had a higher utilisation rate, which
suggests that drivers prefer charging close to their home. Both
[24,25] point out that there are few examples from literature where
EV flexibility has been analysed or quantified, e.g. by finding the dif-
ference between connection times and charging times.

Research groups in other countries have also analysed EV charg-
ing reports. Xydas et al. [27] (UK) describe an EV study, providing a
cluster analysis of 22,000 charging sessions from 255 public charg-
ing stations. The study investigates the charging impact on the dis-
tribution network. They conclude that DSM of EV charging can be
designed for charging habits in specific areas, e.g. dependent on if
the EV charging load is high during peak times or more randomly
distributed. The research by Quirós-Tortós et al. [28] is not based
on typical charging reports, since the available data are from a
research trial with onboard monitoring in EVs, but still with similar
type of data available, such as plug-in and plug-out times, as well as
initial and final state of charge (SoC). The research presents moni-
toring of 221 EVs and reports data from 68,000 residential charging
sessions, together with other residential electricity use. Neaimeh
et al. [29] combine charging data from onboard monitoring in 44
EVs with data from nearly 9000 residential smart meters, to study
the impact of EVs on electricity distribution networks. Khoo et al.
[30] describe charging reports from a trial in Australia, involving
121 households and 57 corporate participants. The study found that
each charging session in the households lasted in average 2.5 h and
consumed 6 kWh. The researchers in [31] present data from 2000
non-residential EVs in California, US, with plug-in/plug-out times
corresponding with typical working hours. The study compares
the benefits of smart charging from an EV charging service provi-
der’s perspective to the benefits from a DSO’s perspective.

Several researchers have analysed EV charging based on energy
measurements. Studies such as [32] (US), [33] (US) and [34] (Nor-
way/US) quantify EV charging and flexibility using a top-down
approach, analysing electricity metering data for many households
with or without EVs. However, few bottom-up analyses are identi-
fied, where hourly meter values are combined with other data
sources available for the building owner. Apartment buildings typ-
ically have several AMS-meters measuring electricity use in com-
mon areas [6], where it is not unusual that a meter measure
aggregated EV charging mainly.

1.3. Contribution of this work

Even though several articles recognize the flexibility potential of
residential EV charging, few studies analyse real data from residen-
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tial EV charging in apartment buildings. This paper aims to fill this
gap, by proposing a methodology that combines information which
is commonly available for building owners: EV charging reports
from the CPO and hourly smartmeter data from the DSO. These data
sources are generally available for apartment buildings in Norway,
which makes wide scale use of this methodology possible. Specifi-
cally, the methodology introduced in this work provide:

� Flexibility potential of residential charging:
Fig. 1. Example of apartment blocks in case study.

Table 1
Key information on the case study.

# Apartments 1113
The bottom-up analysis of EV charging and flexibility uses
commonly available data sources. Daily profiles for charging
load and flexibility are provided per user, which is useful e.g.
when estimating future charging loads with an increasing
number of EVs or charging loads in other locations.

� Distinctions of ownership of chargers:
in 121 building blocks
in 1 tall building block

1058
55

# Residents in 121 building blocks 2321
Total heated apartment area (m2) 96,254
Specific electricity use (kWh/m2)
Share, el use in common areas/apartments

56.7
13%/87%

Specific heat delivery (kWh/m2) 139
EV charging is analysed for users with their own CPs at indi-
vidual parking spaces or shared CPs available for all the res-
idents. How charging habits depend on CP location and
ownership has not been studied in the literature identified
in the review.

� Correlation between plug-in/plug-out times and local hourly
traffic data:
A link between plug-in/plug-out times and local hourly traf-
fic data is analysed, and thus provides new possibilities for
planning and simulations of residential charging. The review
of the literature has not identified other bottom-up studies
focussing on this link.

2. Introduction to case study, EV charging power and charge
characteristics of EV batteries

2.1. Introduction to case study: Risvollan housing cooperative

Norway has a high share of EVs, compared to the EV share in
other countries [1]. EV charging experiences and data from Norway
can therefore be useful also for other countries in Europe and
worldwide. This is especially relevant for apartment buildings,
where there is a lack of data on aggregated residential charging
in the literature, even though the flexibility potential is recognized.
Besides serving as s a case study for the developing a new method-
ology, the numeric findings from the case study may also be useful
in a wider context. The case study chosen represents apartment
buildings with newly installed EV charging infrastructure, and an
increasing number of EV users. With an increasing share of EVs
worldwide, lessons learned from this case study may be relevant
for many other building estates in a similar situation.

The case study is located in Trondheim, Norway, in a suburb
that is located 6 km from the city centre. Risvollan housing coop-
erative has about 2400 residents living in 1113 apartments, where
95% of the apartments are located in 121 similar apartment blocks
(Fig. 1). Space heating and domestic hot water (DHW) are provided
by district heating. Table 1 summarizes building data and informa-
tion about energy use in Risvollan housing cooperative, based on
an energy analyses of 95% of the apartments in 2018 [6,35].

During the first 11 months of 2018, it was possible to charge
approximately 55 EVs in the garages of the housing cooperative.
A new infrastructure for EV charging was installed in December
2018, making it possible to activate up to 764 CPs in the garages.
The charging infrastructure balances the EV loads in each garage,
to make sure the aggregated charging power is below the power
limit. The CPO registers all charging sessions including plug-in
times, plug-out times, and charged energy. From December 2018
to January 2020, 6878 charging sessions were registered by 97 dif-
ferent user IDs; 82 of these IDs appeared to be still active at the end
of the period. The EVs were parked in 24 different parking loca-
tions, each with an AMS-meter measuring the aggregated EV-
3

charging at that location. Table 2 summarises charging information
available from Risvollan. Fig. 2 shows hourly energy use aggre-
gated in 22 of the 24 garages. The number of EV users is increasing
from zero to 82 during the period, with in average 53 users. The
number of EV users shown is EV users registered per day, with
new EV users added and inactive users deactivated (see Sec-
tion 3.1). For January 2020, the figure shows the total number of
EV users active during the last month, which is 82.

The price structure for charging in the case study is not
expected to influence charging habits or timing. The users pay
for the electricity charged, using the same spot-market-based elec-
tricity tariffs as for the electricity use in the housing cooperative
(this varies typically between 1 and 1.5 NOK/kWh). The energy
cost for charging at shared and private CPs is the same, but resi-
dents using shared CPs are encouraged to park for <3 h. Typically,
home charging has a lower price, compared to paid non-residential
charging. However, workplace charging can be free of charge, but is
often limited.

2.2. EV charging power and energy

For residential charging of EVs, both the onboard charger in the
EV and the available AC power can be limiting factors for the EV
charging power. Fig. 3 shows nominal onboard charger capacity
(kW AC) for battery electric vehicles (BEVs) and plug-in hybrid
electric vehicles (PHEVs) on the market, based on an overview of
EVs from [36,37]. The plot includes new models of BEVs and PHEVs
as well as earlier models for the most typical BEVs on the Norwe-
gian market. There are five typical levels for the onboard charger
capacities: 3 to 3.7 kW, 6.6 to 7.4 kW, 11 kW, 16.5 kW and
22 kW. Charging capacity for most BEVs is between 3.3 and
11 kW. For PHEV, the onboard charger capacity is typically
between 3.3 and 3.7 kW.

In Norway, residential customers are normally connected to a
type 230 Volt IT system. Power use during residential EV charging
is typically 2.3 kW when using a household power plug (10 A) and
3.6 kW or 7.4 kW when using a Type 2 connector (16 or 32 A). For
some charging systems, it is possible to activate 3-phase charging
on IT230V, increasing the charging power. In the case study,
7.4 kW is available for all customers and 11 kW is available if acti-
vating 3-phase charging.

Fig. 3 also shows typical gross battery capacities for BEVs and
PHEVs. For BEVs on the market from 2018 to 2020, most batteries



Table 2
Data sources for EV charging information.

AMS-meters Hourly electricity measurements in 22 locations (kWh/h)
EV charging report from CPO Per address/charger ID/user ID:

Plug-in time, Plug-out time, Charged energy (kWh)
Data collection period From December 21, 2018 to January 31, 2020
# addresses/garages 24
Ownership of the CPs Private Shared Total

Dec18 Jan20 average Dec18 Jan20 average Dec18 Jan20 average
# CPs 0 58 25 0 12 8 0 70 33
# User IDs 0 58 35 0 24 18 0 82 53
# Charging sessions 5466 1412 6878

Fig. 2. Hourly energy use in 22 of the 24 garages (aggregated) and the increasing
number of EV users during the period.
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have nominal capacities between 40 and 100 kWh. Due to charging
efficiency, energy use for charging is higher than the charged
energy. The efficiency vary, and [38,39] have found energy losses
between 12% and 40%.
2.3. Charge characteristics of EV batteries

Later in this study, it is assumed that the energy charged each
hour is constant, independent of type of EV, battery SoC, etc. How-
ever, this is a simplification, and this section gives an introduction
to charge characteristics of EV batteries.

Lithium-ion (Li-ion) batteries are the market leader for use in
EVs, mainly because of their high specific energy cycle life and high
efficiency [40]. The Li-ion battery pack in an EV consists of a large
number of single battery cells, arranged in serial, parallel or hybrid
forms [41]. Typical charging characteristics for a single battery cell
is shown in Fig. A1 in the Appendix, described as constant current –
constant voltage (CC-CV). The charging capacity is gradually
increasing with a constant current, until the battery reaches the
maximum charging voltage. The current then drops to maintain
Fig. 3. Nominal onboard charger capacity and gross ba
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this charging voltage while preventing overcharging the cells
[43]. A battery management system is needed to monitor, manage
and protect the Li-ion battery charging [44]. Charging and dis-
charging within the ideal operating range of the SoC, i.e. 20%-
90%, is a topic within such management [42].

Fig. A2 in the Appendix shows charging characteristics of two
example charging sessions by two EVs in the case study. The car
types for the two EVs are marked in Fig. 3, as example EV mid-
range and long-range. The nominal onboard charger capacity of
the cars is 7.2 kW for the mid-range EV and 11 kW for the long-
range EV. However, since 3-phase charging is not activated for
the cars, the long-range EV is limited to 1-phase charging power
of 7.4 kW. The nominal battery capacity is 36 kWh for the mid-
range EV and 75 kWh for the long-range EV. The charging sessions
last for about three hours, where both of the EVs charge around
20 kWh. The current for both cars is reduced by about 8% during
the charging sessions, while the voltage is constant. The reduction
in current is less than presented as typical charging characteristics
in Fig. A1. However, the current reduction is EV and SoC depen-
dent. For the long-range EV, the constant current could be
explained by the owner’s statement that the charging is normally
discontinued automatically at 80% battery capacity. For the
middle-range EV, [22] found that for this type of EVs, the charging
ends instantly when the battery has reached its full charged level.
3. Methodology

The suggested methodology in this article is developed to
describe charging habits, electricity load profiles and flexibility
potential of EV charging in apartment buildings. The main data
sources are: EV charging reports with 6878 individual charging
sessions, hourly AMS data from 22 garages, and local hourly traffic
data. The data was collected from 21 Dec 2018 to 31 Jan 2020.

A flow chart of the methodology is shown in Fig. 4. First, EV
charging reports are used for analysing charging habits. Secondly,
EV charging and flexibility potential are estimated. The results
are validated using hourly AMS data. The data are analysed using
the statistical computing environment R [45].
ttery capacity for BEVs and PHEVs on the market.
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3.1. Data preparation

The EV charging reports include plug-in times, plug-out times,
and charged energy per charging session. Each charging session
is connected to a user ID, a charger ID, and an address. The charger
IDs are either private or shared, since the CPs are either located on
the residents’ private parking spaces or on shared parking areas
available for all residents. The original charging reports have
7245 charging sessions. The main steps of initial data cleaning
include removing unrealistic charging sessions (1 charger with
29 charging sessions removed) and charging sessions with no
energy charged (338 charging sessions removed). If the plug-out
time is too early when compared to energy charged and maximum
11 kW charging power available, the plug-out time is removed (set
to NA), since this indicates that the value is incorrect (relevant for
34 charging sessions). Further, there is quality assurance to assure
correct data time zones/daylight saving time (DST), before calendar
data is added, such as weekdays and months.

Hourly electricity data from 22 of the 24 AMS-meters in the gar-
ages are provided by the DSO. The two missing AMS-meters are
connected to four EV users only, with in total 4500 kWh charging
energy from 353 charging sessions (5% of all charging sessions).
Each of the AMS-meters measures the aggregated EV-charging on
that location. Hourly energy estimates provided by the DSO are
removed from the data (4% of the hourly values), since inaccurate
hourly values may influence the results.

Hourly traffic data from five nearby locations are provided by
[46]. Hourly counts are available for vehicles with different sizes.
The hourly count of small cars (<5.6 m) is used in the analysis, as
an average of the trafficmeasured by the five nearest traffic stations.

3.2. Analysing EV charging habits

EV charging habits are analysed showing the daily distribution
of EV plug-in and plug-out times during weekdays and weekends,
and histograms for connection times (related to plug-in time) and
energy charged (related to plug-in time and connection time). EV
charging habits are analysed separately for private and shared CPs.

The daily distribution of plug-in and plug-out times is com-
pared to hourly traffic data from nearby locations. The correlation
between plug-in/plug-out times and local hourly traffic data is
explored by using the cross-correlation function (CCF), which is a
function used to evaluate the correlation between time series.
CCF is a ‘‘wrapper” function calling the autocorrelation function
(ACF), as described by [47], page 390–392]. To find the correlation,
the function ccf() is used in R [48]. CCF examines the cross-
correlation between the number of plug-ins or plug-outs each hour
and the hourly number of cars, where the maximum value for cor-
relation is 1. Before calculating the CCF, the dataset is split into
charging sessions using private and public CPs, respectively.
Fig. 4. Flow chart outlining the methodology. Green boxes show data sources, red boxes
colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Estimating EV energy load and flexibility potential

The energy loads and flexibility potential of EV charging are esti-
mated as follows. The differences between the plug-in and plug-out
times of the charging sessions provides the duration of the EV con-
nection time (Eq. (1)). The actual charging times and charging power
are not known. In the method, two alternative charging powers
(Pcharging) are assumed: 3.6 or 7.2 kWh/h, representing typical levels
for the onboard charger capacities as described in Section 2.2. The
assumed charging power is the average charging power during an
hour.When estimatinghourly EV energy loads for a specific charging
session, the synthetic charging time is first calculated, bydividing the
actual charged energy (Echarged from the EV charging report), on the
assumed charging power (Eq. (2)). The hourly charging loads equal
the assumed charging powermultiplied by time (Eq. (3)). For the first
hour, the maximum charging time is calculated as the number of
minutes after the plug-in time. For full hours after the initial hour,
the hourly charging load equals the assumed charging power. For
the last hour, the charging load equals the remaining energy
difference, so total energy chargedduring the charging sessionequals
the actual charged energy, known from the EV charging report. The
method provides a synthetic charging time and energy load, given
immediate charging after plug-in. Average daily charging load pro-
files are shown for different weekdays and holiday periods.

EV connection time: tconnection = tplug�out � tplug�in ð1Þ

EV charging time: tcharging = Echarged/Pcharging ð2Þ

EV load hour i: Eloadð iÞ = tð iÞ�P charging where
P

(Eloadð iÞ) = Echarged ð3Þ

EV idle time: tidle = tconnection � t charging ð4Þ

EV idle capacity hour i: EidleðiÞ = tidleð iÞ�Pcharging ð5Þ
The difference (non-charging idle time) between the EV connec-

tion time and the synthetic charging time reflects the flexibility
potential for the charging session (Eq. (4)). The idle capacity is the
energy which could potentially have been charged during the non-
charging idle times. The idle capacity is analysed for the assumed
charging power of 3.6 and 7.2 kWh/h. To calculate the hourly idle
capacities for hours with non-charging idle time, the hourly idle
times are multiplied by the assumed charging power (Eq. (5)).

Initially, the database includes synthetic estimates for all charg-
ing sessions separately. Only hours with charging loads or idle
capacities are included. An hourly aggregated database is created
by grouping the data per hour. Hours with no charging or idle
capacities are added to the aggregated database, to assure a full
hourly timeseries for the period, from mid-December 2018 to
end-January 2020.
show processes, and blue boxes show results. (For interpretation of the references to
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Since the number of EV users is increasing during the measure-
ment period, energy and power results are also presented normal-
ized per user. The users are classified as active from the date of
their first charging session (user has value NA before and 1 after
first connection). In addition, some users become inactive, if they
for example move or if a user with shared CP becomes a user with
private CP. Users with NA values towards the end of the measure-
ment period are classified as inactive and not included in the num-
ber of EV users. The change of classification takes place after their
last charging session, from their first inactive date. However, dur-
ing the last month (January 2020), only users not charging at all
during the month were classified as inactive, to avoid wrong clas-
sification of users that are travelling, etc.

The classification of active users makes it possible to divide the
hourly aggregated values for charging loads and idle capacities on
the current number of users, to get e.g. typical average load profiles
per user. When analysing selections of the dataset, such as users
with private/shared CPs, hours with no charging are added to the
data to assure full hourly time series. Before their first charging
session (and after their last charging session, if becoming inactive),
energy values are set to NA during hours with no charging, while
energy values are zero after the first charging session. This is done
to assure correct average values.

3.4. Validation of the methodology

The synthetic hourly EV energy loads are compared to AMS data
per garage. AMS data are available from 22 of the 24 garages (95%
of the charging sessions). Some differences between the total AMS
data and the total charging energy from the charging reports can
be expected, since there may also be other electricity use metered
in the garages. For 20 of the garages in the case study, the total
energy charged is <10% different from the AMS data in the specific
garage, while the AMS data is 20% higher in one garage. For the last
garage, the AMS data is 50% higher, but this garage includes the
user which was removed in the initial data cleaning. It can there-
fore be concluded that in the case study garages, there is little elec-
tricity use measured by the AMS-meters other than EV charging.

The charging infrastructure in the case study has the possibility
to balance the EV loads in each garage, when the aggregated EV load
is high. However, a similar load balance is not included in the syn-
thetic loads. Some differences may therefore be expected in the
hourly aggregated loads per garage, especially when the loads are
high.

Fig. 5 shows an example from a garage (Bl2) for four days,
where synthetic hourly EV energy loads are compared to AMS data.
For the garage shown, the total AMS data is 28.2 MWh during the
measurement period, which is only 4% higher than the total charg-
ing energy reported for the same garage. The figure highlights
examples of individual charging sessions, marked with a square.
When there is one charging session only, the highlighted charging
sessions in the figure show an agreement between the hourly mea-
sured charging power and the hourly estimates, with a charging
power close to 7.2 kW (November 2nd) and 3.6 kW (November
5th). When there are several charging sessions aggregated, the
measured charging power is often between the two estimates.

4. Results and discussion

4.1. EV charging habits

This section aims to answer how EV charging reports can
describe EV charging habits for residents. Figs. 6 and 7 show how
the plug-in and plug-out times are distributed during weekdays
and weekends, for private and shared CPs, as well as the daily dis-
6

tribution of cars in near-by traffic. The plug-in time for the charg-
ing (Fig. 6) is mainly in the afternoons during workdays, both for
the private and the shared CPs. There is a peak around 16:00, with
around 15% of the plug-ins during the day, which corresponds to
when the workdays typically end in Norway. An afternoon peak
is also present in the near-by traffic density. During the weekends,
the plug-ins are more evenly distributed during the day, corre-
sponding to the nearby traffic. For plug-out times (Fig. 7), private
CPs have a peak in the morning, between 07:00 and 08:00, corre-
sponding to the start of a typical workday. This peak is also present
in the traffic density. For shared CPs, the morning peak is less sub-
stantial, indicating that the users move their car sooner after fin-
ishing the charging. The residents using the shared CPs are
encouraged to charge for <3 h.

The case study results indicate that the hourly plug-in/plug-out
times correspond well to local traffic data. Fig. 8 describes the CCF
values between thenumberof plug-in (left) or plug-out (right) times
each hour and the hourly number of cars. Each lag is equivalent to
1 h. In the figure, a seasonality of h = 24 is observed, with a strong
dependence between the plug-in/plug-out times and the local traf-
fic. The CCF correlation coefficients at lag 0 and1 are 0.296 and 0.363
respectively for plug-in/local traffic and 0.345 and 0.278 for plug-
out/local traffic. Such correlations provide possibilities for develop-
ing newmodels to estimate EV charging loads at different locations,
where local hourly traffic data can be used as input.

The histograms in Fig. 9 show connection times for charging ses-
sions. The histograms confirm that residents using shared CPs often
have shorter connection times than residents with private CPs. For
private CPs, the average connection time is 12.8 h, while 90% are
connected for <22.6 h. For shared CPs, the equivalent connection
times are 6.5 h on average, and 14.3 h for 90% of the charging ses-
sions. The histograms show a twin peak in the connection times,
which can be explained by the plug-in time for the charging ses-
sions. The first peak occurs for charging sessions with <5 h of con-
nection time, where typically the plug-in time is in the daytime,
afternoon, or early evening. The second peak is for charging sessions
with connection time between 8 and 15 h (longer for private CPs),
with plug-in time typically in the evening and connection through
the night. The average connection time differs according to the
weekday when the charging started, where especially Sundays
stand out for residents with private CPs. When plugged in during
weekdays, 73% of the charging sessions are longer than three hours.
The corresponding share for plug-in during Sundays, is 84%.

Figs. 10 and 11 show histograms for energy charged per charg-
ing session, divided according to private and shared CPs. The his-
tograms are the same, but the colours in Fig. 10 are related to
plug-in time, while the colours in Fig. 11 are related to connection
time. The average energy charged per session is 11.2 kWh for users
using private CPs and 14.7 kWh for shared CPs. For 90% of the
charging sessions, energy charged is below 22.0 kWh per session
for the private CPs and 39.5 kWh per session for the shared CPs.
The explanation for why users with shared CPs charge more
energy, may be that these users wait to charge until the battery
has a lower SoC compared to users with private CPs at their own
parking space, and the shared CP users therefore charge less fre-
quently. This is confirmed by the average number of daily charging
sessions per user: The users with private CPs have an average of 4.4
charging sessions per week, which is a factor of about 3.5 higher
than the users with shared CPs, where the average is 1.2 charging
sessions per week. Fig. 11 shows that there is no direct relationship
between energy charged and connection time. Private CPs often
have a longer connection time than shared CPs, for the same
amount of energy charged. The outcome of this is a longer non-
charging idle time for private charging sessions, which results in
a higher potential for flexibility.



Fig. 5. Validating the methodology for four days in garage Bl2. Synthetic hourly EV energy loads are compared to smart meter data. Three individual charging sessions are
highlighted with grey squares.

Fig. 6. Plug-in times: Average daily distribution of EV plug-in times during weekdays (left) and weekends (right), for private and shared CPs, as well as average daily
distribution of cars in near-by traffic.

Fig. 7. Plug-out times: Average daily distribution of EV plug-out times during weekdays (left) and weekends (right), for private and shared CPs, as well as average daily
distribution of near-by traffic.
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4.2. EV energy load

This section aims to answer how information in EV charging
reports can be translated into synthetic hourly EV energy loads.
To answer this question, information about plug-in times and
energy charged from the charging reports is combined with charg-
ing power assumptions.

The monthly energy charged per user is estimated from January
2019 to January 2020, as shown in Fig. A3 in the Appendix. For the
7

monthly distribution, a charging power of 3.6 kW is assumed. The
charging power assumption is especially relevant for charging ses-
sions with a plug-in time late in a month and a plug-out time in
the following month. Since monthly energy charged vary between
the users, the results are shown in boxplots. In the boxplots, 50%
of themonthly values are in the boxeswithin the first (Q1) and third
(Q3) quartile, with the median monthly value in the middle. The
vertical lines represent the least and greatestmonthly value exclud-
ing outliers. Black dots show outliers, which are defined as values



Fig. 8. CCF between the number of plug-ins and number of cars in nearby traffic (left) or plug-outs and number of cars (right) each hour.

Fig. 9. Histogram for connection time related to plug-in time, for private (left) and shared (right) CPs. Binwidth is 1 h, showing the first 48 h only.

Fig. 10. Histogram for energy charged related to plug-in time, for private (left) and shared (right) CPs. Binwidth is 1 kWh.
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extending 1.5 times the interquartile range (IQR = Q3-Q1) out from
the box. The red dots represent the average values. The data are
divided into users with private or shared CPs. For users with private
CPs, the monthly values during the first two months are lower than
the average. The reason for thismay be that a large share of the users
is registered in the middle of the month, resulting in less monthly
days available for charging. There are also values that are lower than
average in July, which is the main holiday month in Norway.

For users with private CPs, the average monthly energy use dur-
ing the period is 179 kWh per user, or about 2150 kWh per year.
For users with shared CPs, the average monthly energy use is
125 kWh per user, or about 1500 kWh per year. Assuming an aver-
age driving efficiency of 5 km/kWh, this corresponds to, on aver-
age, 10,700 km for users with private CPs or, on average,
7500 km for users with shared CPs. As a comparison, the average
yearly driving distance for EVs in Norway was 12,631 km in
2019 [49]. However, as stated in the introduction, it is expected
that the EVs are not being charged at their home address only.
8

The estimated annual driving distances confirm an expectation
that users with shared CPs charge less at home, compared to users
with private CPs at their parking space.

The synthetic hourly aggregated peak power values each month
are shown in Fig. 12, assuming a charging power of 3.6 kW and
7.2 kW, respectively. The figure shows the hourly aggregated
max peak loads per month, as well as the 99th and 90th percentiles
of the hourly load values. The total aggregated power is increasing
during the period (left figure), since also the number of users is
increasing. However, the peak power per user is reduced with
increasing number of users (right figure), due to a lower coinci-
dence factor. The coincidence factor is defined as the ratio between
maximum load for the aggregated data studied and the sum of
each users’ maximum load [50]. For example, for the 20 users in
March 2020, the coincidence factor was 0.43, decreasing to 0.25
for the 82 users in January 2020, assuming charging power 3.6 kW.

For the aggregated load (left figure), the monthly max. peak for
the charging power of 7.2 kW is a factor 1.1 to 1.5 higher than the



Fig. 11. Histogram for energy charged related to connection time, for private (left) and shared (right) CPs. Binwidth is 1 kWh.
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max. peak for the charging power of 3.6 kW. The max. power peaks
are not so frequent, shown by the difference between the peak
loads, 99th and 90th percentiles. For the charging power of
7.2 kW, themax. peak power eachmonth is a factor 1.6 to 3.3 higher
than the 90th percentile. Equivalent, for the 3.6 kW charging power,
the max. peak power each month is a factor 1.6 to 2.2 higher than
the 90th percentile. When utilizing the potential EV charging flex-
ibility, the operator often wishes to reduce the highest aggregated
EV power peaks, getting values closer to the 99th percentile, the
90th percentile, or even lower, towards the average power.

The average load profile forweekdays shows an increased energy
use in the afternoons and evenings, with the highest load occurring
from about 16:00 to midnight. The weekend profile is quite similar,
but without the afternoon peak. For the average values, the hourly
load for the 7.2 kW charging power is up to a factor 1.3 higher than
for 3.6 kW charging power. This happens during afternoons/eve-
nings when many users have recently plugged in their EVs, with
the largest difference occurring from 15:00 to 17:00 on weekdays,
and from 13:00 to 20:00 on weekends. During the night/morning,
from 23:00 to 12:00, the hourly load for the 3.6 kW charging power
is higher than for the 7.2 kW charging power, since the cars with
higher charging power finish charging earlier.

The average values shown in Fig. 13 do not illustrate how EV
charging typically varies during the year. For example, holiday
periods tend to deviate from the average values. Assuming a charg-
ing power of 3.6 kW, Fig. 14 shows the average daily charging load
profiles for an average weekday, Saturday and Sunday. The average
charging need during the week is 37.5 kWh per user. Most week-
days have similar charging needs, with Tuesdays somewhat lower
(�7%) and Thursdays (+4%) and Fridays (+5%) somewhat higher
than the weekly mean values. Saturdays have�13% lower and Sun-
days +8% higher values, compared to the weekly mean values.
Fig. 14 also illustrates the daily load profiles during holiday peri-
Fig. 12. Estimated hourly aggregated peak power (left) and power per user (right), w
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ods. During July, the energy demand is lower than for the average
profile (ref. Fig. A3), but otherwise quite similar to the average. For
the holiday week in October, the charging need at Sunday evenings
increase when residents come home from travelling. For Christ-
mas, there is an increased charging need during the day before
Christmas (Monday 23 December), while the residents charge ear-
lier on Christmas Eve (Tuesday 24 December) than on an average
Tuesday. The charging power is shown per number of users during
the different periods: 57 users in average, 33 in July, 59 in October
and 75 during Christmas 2019.

In addition to charging the battery, EVs can use energy to pre-
heat the battery and cabin. This is not taken into account in the
methodology, but it is not expected to significantly affect the daily
charging load profiles in the case study, since most EVs are parked
in garages.
4.3. EV charging flexibility

This section aims to answer how non-charging idle times can be
translated into energy flexibility potential. From the charging
reports, the EV connection times (the difference between plug-in
and plug-out times) and charged energy are known per charging
session. Two alternative EV charging times are calculated, assum-
ing different levels of charging power (3.6 or 7.2 kW). The non-
charging idle time between the EV connection time and the charg-
ing time reflects the flexibility potential for a charging session.
Fig. 15 shows an example of a single charging session, with charg-
ing power 3.6 or 7.2 kW. Energy charged and connection time is
the same in both figures (11.3 kWh and 13.5 h connection time),
and has quite typical values as shown in Figs. 9 and 10. The flexi-
bility potential in the figures, termed idle capacity, is the energy
which could potentially have been charged during the non-
charging idle times. However, since the actual energy charged dur-
ith increasing number of users, assuming charging power 3.6 kW and 7.2 kW.
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ing a charging session is the same, the idle capacity is higher with
higher charging power. For the example session in Fig. 15, the idle
capacity is a factor 2.3 higher when the charging power is 7.2 kW,
than when it is 3.6 kW.

Fig. 16 shows an example of charging load and idle capacity for
aggregated EV charging in a garage (Bl2) during a week, with
assumed charging power 3.6 or 7.2 kW. During the week, there
are 78 charging sessions in the garage, charged by 17 users. Energy
charged is the same in both figures (around 930 kWh), while the
idle capacity is 1200 kWh for the charging power of 3.6 kW and
3100 kWh for the charging power of 7.2 kW. Comparing the two
charging levels during the week, the hourly aggregated charging
peaks increase with a factor 1.2, going from 3.6 to 7.2 kW charging
power, assuming immediate charging after plug-in. During the
same week, the idle capacity for charging power 7.2 kW is a factor
2.6 higher than for charging power 3.6 kW. However, for idle capac-
ity, the periods after the charging peaks are normally of most inter-
est, since charging loads can be delayed in time. Also, idle capacity
during other periods can be relevant, such as times with locally
available RES. For the example week in Fig. 16, there is high idle
capacity during night-time and a potential for moving afternoon-
and evening charging loads to night-time, for both charging powers
of 3.6 and 7.2 kW, respectively. If charging loads are moved to the
daytime, for example to utilize photovoltaic (PV) solar energy, the
idle capacity during the day is higher during the weekend than on
weekdays. Comparing the two charging power levels in the selected
Fig. 13. Synthetic daily average charging load profiles per user, during weekdays and wee

Fig. 14. Synthetic daily charging load profiles per user, for the aggregated EV charging du
(black/grey/orange lines), assuming a charging power of 3.6 kW. (For interpretation of the
this article.)
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week, the 7.2 charging power has a higher potential for daytime
charging than does the 3.6 kW charging power.

Synthetic average daily charging load profiles and idle capacity
profiles per user are shown in Fig. 17, for the aggregated EV charg-
ing during weekdays, assuming immediate charging after plug-in.
The figures show the profiles with the 3.6 kW charging capacity
(top) and the 7.2 kW charging capacity (bottom). The boxplot illus-
trates the distribution of hourly load values. As in Fig. 13, the aver-
age aggregated charging load is similar for the two charging
capacities. The average daily idle capacity differs, with higher val-
ues when the charging capacity is 7.2 kW, than when it is 3.6 kW.
For example, the daily idle capacity for private CPs during week-
days is 2.3 times higher with the 7.2 kW charging capacity than
it is with the 3.6 kW charging capacity. Also in Fig. 17, the daily
charging load profiles are based on the period with 30 to 82 users,
with the number of users using private CPs is increasing from 18 to
58, and users using shared CPs are increasing from 12 to 24. In the
Appendix, Figs. A4–A7 shows the same figures also for Saturdays
and Sundays. The weekend data show that the charging demand
is higher on Sundays than on Saturdays. This is as expected in Nor-
way, since there is a culture for travelling during the weekends. For
private CPs, the average idle capacity is nearly double from 09:00
to 16:00 during the weekends, compared to during the week, since
more cars are parked then.

Average profiles give a quick overview of the flexibility potential,
but since idle capacity is connected to the individual cars, the poten-
kends. (Based on data with 57 users on average, using both private and shared CPs).

ring weekdays and weekends, showing annual average (red line) and holiday periods
references to colour in this figure legend, the reader is referred to the web version of



Fig. 15. Single charging session. Charging load and idle capacity, assuming charging power 3.6 (left) or 7.2 kW (right).

Fig. 16. EV charging in garage Bl2 during a week. Aggregated charging load and idle capacity, assuming charging power 3.6 (left) or 7.2 kW (right).
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tial for moving charging loads in time depends on the length of the
individual charging sessions. Average aggregated loads and idle
capacity do not contain such information. Table A1 in the Appendix
provides additional insights into the charging habits and non-
charging idle times for private CPs during weekdays. The table is
based on 3278 charging sessions during a data period with an aver-
age of 45 users (increase from 18 to 58 users). The orange column
with hourly charging loads, is especially useful e.g. when estimating
charging needs in building estates. The share with idle times can be
read as following: e.g. during daily hour 03:00–04:00, all of the
charging load can be charged (0.06 kWh/user), but none of charging
has to happen immediately (50% can be delayed 1 to 2 h and 50% 7 to
11
8 h). If desired, also the charging load in the hour before can be
delayed and charged during this hour (0.09 kWh/user), as well as
other energy loads marked green from previous hours (total
3.9 kWh/user), limited by the maximum charging load during the
hour in the blue column (2.65 kWh/user). The capacities and loads
are presented per user, and should therefore be multiplied by the
number of registered EV users in an apartment building or garage.
Also in the Appendix, Table A2 provides a table with correspond-
ing data for weekends, based on 1096 charging sessions and on
average 44 users. Table A3 and Table A4 contain information
from the shared CPs, based on 905 charging sessions during
the weekdays, 407 charging sessions during the weekends, and



Fig. 17. Synthetic daily average charging load profiles and idle capacity profiles per user, showing private CPs (left) and shared CPs (right), with estimated charging power
3.6 kW (top) or 7.2 kW (bottom).
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on average 18 users. In practice, to fully utilize the flexibility
potential, it is necessary to know the expected connection times
of the residents, as well as the required energy to be charged.
This requires information from the users themselves (expected
connection times) and energy or battery status information,
preferably from the car to the charger.

5. Conclusions and future work

To prevent EV charging from having a negative impact on the
power grid, it is essential to understand EV charging behaviour in
different situations and premises. The literature review has
identified a gap, with few studies analysing real data from residen-
tial EV charging in apartment buildings. This study proposes a
methodology for using EV charging reports to describe charging
habits, electricity load profiles, and flexibility potential of EV
charging. The required input data are generally available for apart-
ment buildings in Norway, which makes wide scale use of the
methodology possible. Moreover, there is no need for new logging
equipment or personal information about the residents. It is also
possible to use the methodology for building categories other than
apartment buildings. Data and hourly predictions from this study
are available for other research groups.

The EV charging reports are used as a basis to describe EV
charging habits for residents. Field data from a large housing coop-
erative in Norway are analysed in the case study, with 6878 EV
charging sessions registered by 97 user IDs. The study finds a dif-
ference in residential charging habits when users have private
12
CPs at their own parking space, compared to when they use a
shared CP. For private CPs, the average connection time is 12.8 h,
while it is 6.5 h for shared CPs. The average connection time for
charged CPs is similar to the value for publicly accessible CPs found
by [26], where the average was 7 h. The users with private CPs
have on average 4.4 charging sessions per week, which is about
3.5 times more frequently than the users with shared CPs. There
is a longer non-charging idle time for private charging sessions,
which results in a higher potential for flexibility.

A correlation is found between plug-in/plug-out times and local
hourly traffic data, thus providing possibilities for improved plan-
ning and simulation of residential charging. The authors aim to
study this correlationmore explicitly in futurework, with EV charg-
ing reports and traffic data frommore locations. The correlation can
be part of a new model for EV charging loads and flexibility.

Information about energy and plug-in times from the EV charg-
ing reports are translated into hourly energy charging, assuming
two different levels of charging power. The study compares the
two charging power assumptions of 3.6 kW and 7.2 kW, respec-
tively. In real life, EVs in a garage typically have a mix of charging
power levels. By combining a lower and a higher charging power
assumption when calculating the synthetic charging load, the true
load can be expected to lie between the two synthetic levels.

Non-charging idle times are translated into energy flexibility
potential, or idle capacity. While the daily average charging load
profiles are similar for the two charging capacities, the average idle
capacity differs, with higher values when the charging capacity is
7.2 kW, than when charging capacity is 3.6 kW. For example, the
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average idle capacity for private CPs during weekdays is 2.3 times
higher with the 7.2 kW charging capacity than with the 3.6 kW
charging capacity. The study provides tabulated values for addi-
tional insights into charging habits and non-charging idle times
for private and shared CPs, for weekdays and weekends.

The study finds a significant potential for residential EV charg-
ing flexibility when private parking spaces have a CP. Also, the
results support the theory that EV charging is a main source of flex-
ible electricity use in apartment buildings. This is an important
take-away for policy and decision makers, which can provide
incentives for CPs at private parking spaces, as well as for charging
energy management systems.

CRediT authorship contribution statement

A.L. Sørensen: Conceptualization, Methodology, Investigation,
Data curation, Writing - original draft, Writing - review & editing.
K.B. Lindberg: Conceptualization, Writing - review & editing,
Supervision. I. Sartori: Conceptualization, Writing - review & edit-
ing, Supervision. I. Andresen: Conceptualization, Writing - review
& editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The work presented in this paper was developed within the
Institute PhD grant (272402) at SINTEF, financed by the Research
Council of Norway. Contributions from Risvollan housing coopera-
tive, EV owners in Risvollan, NTE Marked, TrønderEnergi Nett, Zap-
Tec, Enoco, Fosen Innovasjon and Meshcrafts are highly
appreciated. The study is part of the Research Centre on Zero Emis-
sion Neighbourhoods in Smart Cities (FME ZEN). The authors grate-
fully acknowledge the support from the ZEN partners and the
Research Council of Norway. A sincere thank you to Nancy Eik-
Nes for proofreading the manuscript.

Appendix
Fig. A1. Typical characteristics of the lithium-ion battery charging, from [42].

Fig. A2. Examples of charging characteristics of EV batteries from two charging
sessions in the case study. Nominal charging power of the mid-range EV is 7.2 kW
(session 943, user Bl2-4), while the long-range EV is limited by the available AC
power of 7.4 kW (session 1158, user Bl2-3).
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Fig. A3. Boxplots for monthly energy charged per user, divided according to users with private or shared CPs.

Fig. A4. Private CPs with estimated charging power 3.6 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 18 to 58 users).

Fig. A5. Private CPs with estimated charging power 7.2 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 18 to 58 users).
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Fig. A6. Shared CPs with estimated charging power 3.6 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 12 to 24 users).

Fig. A7. Shared CPs with estimated charging power 7.2 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 12 to 24 users).

Table A1
Private CPs during weekdays: Average hourly charging load and idle capacity per user and share of plug-in, plug-out and non-charging idle times. Estimated
charging power is 7.2 kW.
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Table A2
Private CPs during weekends: Average hourly charging load and idle capacity per user and share of plug-in, plug-out and non-charging idle times. Estimated charging power is 7.2 kW.

Daily hour Shareplug-
in (%/h)

Shareplug-
out (%/h)

Available charging capacity *, if
perfect foresight (kWh/h/user)*
Sum of charging load and idle
capacity

Charging load, if
immediate
charging (kWh/
h/user)

Share with idle time of # hours

<1 1 < 2 2 < 3 3 < 4 4 < 5 5 < 6 6 < 7 7 < 8 8 < 9 9 < 10 10 < 11 11 < 12 12 < 18 18
�

00–01 2.3% 0.6% 2.34 0.26 8% NA NA NA 12% 4% NA 4% 12% 16% 12% 4% 28% NA 100%
01–02 1.4% 0.7% 2.34 0.16 7% NA NA NA NA 7% 7% 20% 7% NA 7% 27% 20% NA 100%
02–03 0.7% 0.2% 2.36 0.12 NA NA NA NA NA 25% 13% 25% NA NA 13% NA 25% NA 100%
03–04 0.7% 0.1% 2.38 0.09 13% 13% NA NA 13% NA NA 13% 38% NA NA NA 13% NA 100%
04–05 0.2% 0.3% 2.39 0.07 50% NA NA NA NA 50% NA NA NA NA NA NA NA NA 100%
05–06 0.4% 0.3% 2.39 0.03 25% NA 25% NA NA 25% NA 25% NA NA NA NA NA NA 100%
06–07 0.5% 6.7% 2.39 0.03 NA NA NA 20% NA NA 20% 20% 20% NA NA NA NA 20% 100%
07–08 0.5% 17.6% 2.33 0.02 17% 17% 33% NA 17% NA 17% NA NA NA NA NA NA NA 100%
08–09 0.7% 5.3% 2.31 0.04 38% 13% 13% 38% NA NA NA NA NA NA NA NA NA NA 100%
09–10 0.8% 5.7% 2.18 0.05 44% 11% NA NA NA 22% NA NA NA NA NA NA NA 22% 100%
10–11 1.1% 6.1% 1.93 0.04 25% 25% 8% NA NA 8% NA 8% 8% NA NA NA NA 17% 100%
11–12 2.3% 5.5% 1.69 0.06 40% 16% 8% NA NA 8% NA NA 8% NA NA NA 4% 16% 100%
12–13 4.4% 5.1% 1.53 0.11 25% 13% 15% NA 6% NA 2% NA 2% NA NA 4% 10% 23% 100%
13–14 7.5% 5.5% 1.47 0.18 18% 15% 10% 7% 2% 2% NA NA NA NA 1% NA 10% 34% 100%
14–15 8.0% 4.9% 1.53 0.28 18% 13% 7% 6% 1% 3% 1% NA 2% 1% NA NA 23% 25% 100%
15–16 11.8% 5.2% 1.65 0.41 16% 9% 4% 5% 4% 2% NA 1% 1% 2% 2% 2% 22% 30% 100%
16–17 8.8% 5.7% 1.70 0.44 19% 9% 4% 2% 1% NA 1% 1% 1% 2% 2% 2% 27% 28% 100%
17–18 10.4% 6.9% 1.86 0.50 17% 4% 4% 4% 2% 3% 1% 1% NA 2% 4% 4% 36% 19% 100%
18–19 9.9% 5.7% 1.94 0.51 11% 6% 1% 2% 1% 2% 2% 3% 4% 6% 6% 6% 29% 21% 100%
19–20 8.9% 3.7% 2.10 0.55 8% 4% 1% 4% 2% 1% NA 3% 2% 7% 11% 11% 26% 19% 100%
20–21 6.2% 2.5% 2.24 0.54 7% 3% 3% 3% 6% 3% 3% NA 4% 12% 16% 4% 16% 19% 100%
21–22 4.7% 2.8% 2.37 0.45 6% 4% 2% NA 2% 2% 8% 4% 10% 29% 8% NA 16% 10% 100%
22–23 5.0% 1.8% 2.47 0.39 7% 2% NA NA 2% 5% 4% 16% 11% 15% 2% 13% 16% 7% 100%
23–24 2.9% 1.1% 2.50 0.30 6% 6% NA 3% NA 13% 3% 16% 9% 6% 13% 3% 22% NA 100%
Total 100% 100% 50.4 5.6
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Table A3
Shared CPs during weekdays: Average hourly charging load and idle capacity per user and share of plug-in, plug-out and non-charging idle times. Estimated charging power is 7.2 kW.

Daily hour Shareplug-
in (%/h)

Shareplug-
out (%/h)

Available charging capacity *, if
perfect foresight (kWh/h/user)*
Sum of charging load and idle
capacity

Charging load,
if immediate
charging (kWh/
h/user)

Share with idle time of # hours

<1 1 < 2 2 < 3 3 < 4 4 < 5 5 < 6 6 < 7 7 < 8 8 < 9 9 < 10 10 < 11 11 < 12 12 < 18 18
�

00–01 1.3% 1.9% 0.44 0.21 8% NA NA 33% 8% 17% 17% NA 8% NA 8% NA NA NA 100%
01–02 0.3% 1.0% 0.45 0.16 NA NA NA 33% 33% 33% NA NA NA NA NA NA NA NA 100%
02–03 0.2% 0.4% 0.46 0.12 NA NA NA NA 50% NA NA NA NA NA 50% NA NA NA 100%
03–04 NA 0.1% 0.47 0.08 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 100%
04–05 0.1% 0.1% 0.47 0.04 NA NA 100% NA NA NA NA NA NA NA NA NA NA NA 100%
05–06 0.2% 0.6% 0.47 0.02 50% 50% NA NA NA NA NA NA NA NA NA NA NA NA 100%
06–07 0.1% 6.2% 0.43 0.01 100% NA NA NA NA NA NA NA NA NA NA NA NA NA 100%
07–08 2.0% 8.3% 0.31 0.01 72% NA 17% NA NA 6% NA 6% NA NA NA NA NA NA 100%
08–09 2.3% 5.2% 0.25 0.05 76% NA NA 5% NA 10% 5% 5% NA NA NA NA NA NA 100%
09–10 1.5% 2.7% 0.24 0.07 71% 7% NA NA 14% 7% NA NA NA NA NA NA NA NA 100%
10–11 2.9% 4.1% 0.22 0.09 35% 23% 27% 12% 4% NA NA NA NA NA NA NA NA NA 100%
11–12 4.0% 3.9% 0.22 0.11 39% 22% 11% 17% 3% NA NA NA NA NA NA NA NA 8% 100%
12–13 3.4% 3.3% 0.25 0.13 45% 26% 16% 3% 6% NA NA NA NA NA NA NA NA 3% 100%
13–14 4.5% 2.5% 0.25 0.13 44% 27% 17% 5% NA 2% NA NA NA NA NA NA 2% 2% 100%
14–15 8.2% 5.0% 0.27 0.16 36% 36% 14% 4% 3% 1% NA NA NA NA NA NA 4% 1% 100%
15–16 11.0% 5.9% 0.28 0.18 65% 16% 8% 4% 2% NA 1% NA NA 1% NA NA 2% 1% 100%
16–17 10.4% 4.3% 0.37 0.27 60% 17% 3% 2% 2% 4% 2% 1% NA 2% NA 1% 4% 1% 100%
17–18 6.9% 8.8% 0.37 0.24 37% 19% 13% 6% 2% NA 3% NA 2% NA 3% 3% 10% 2% 100%
18–19 8.0% 8.4% 0.36 0.22 50% 8% 8% 1% 4% 8% NA 1% 4% 6% NA 1% 6% 1% 100%
19–20 10.6% 6.2% 0.37 0.24 26% 10% 8% 5% 6% 8% 5% 4% 7% 2% 3% 3% 8% 2% 100%
20–21 8.3% 5.4% 0.42 0.28 20% 15% 11% 11% 4% 4% 7% 9% 4% 1% 5% NA 8% 1% 100%
21–22 5.6% 6.0% 0.44 0.27 6% 16% 16% 12% 6% 2% 10% 8% 4% 8% 4% 2% 8% NA 100%
22–23 5.2% 5.5% 0.43 0.26 6% 6% 4% 11% 9% 4% 9% 9% 17% 15% 6% NA 4% NA 100%
23–24 2.9% 4.3% 0.42 0.24 4% NA 8% 12% 8% 8% 23% 8% 19% 4% 8% NA NA NA 100%
Total 100% 100% 8.7 3.6
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Table A4
Shared CPs during weekends: Average hourly charging load and idle capacity per user and share of plug-in, plug-out and non-charging idle times. Estimated charging power is 7.2 kW.

Daily hour Share
plug-
in (%/
h)

Share
plug-
out (%/
h)

Available charging capacity *, if
perfect foresight (kWh/h/user) * Sum
of charging load and idle capacity

Charging load, if
immediate
charging (kWh/h/
user)

Share with idle time of # hours

<1 1 < 2 2 < 3 3 < 4 4 < 5 5 < 6 6 < 7 7 < 8 8 < 9 9 < 10 10 < 11 11 < 12 12 < 18 18
�

00–01 3.4% 0.5% 0.38 0.20 NA NA 36% NA 7% 7% 7% 14% 7% 7% NA NA 14% NA 100%
01–02 0.2% 0.5% 0.39 0.17 NA NA NA NA NA NA NA 100% NA NA NA NA NA NA 100%
02–03 NA 0.2% 0.39 0.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 100%
03–04 0.5% 0.2% 0.39 0.09 NA NA NA 50% 50% NA NA NA NA NA NA NA NA NA 100%
04–05 NA NA 0.41 0.07 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 100%
05–06 NA 0.7% 0.41 0.05 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 100%
06–07 NA 4.2% 0.41 0.03 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 100%
07–08 NA 5.2% 0.39 0.02 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 100%
08–09 1.5% 3.9% 0.38 0.03 67% NA NA 33% NA NA NA NA NA NA NA NA NA NA 100%
09–10 2.0% 4.9% 0.34 0.05 25% 50% NA NA NA 13% 13% NA NA NA NA NA NA NA 100%
10–11 4.4% 3.9% 0.30 0.06 22% 28% 22% 6% NA 6% 6% NA NA NA NA NA NA 11% 100%
11–12 5.9% 5.4% 0.29 0.09 54% 17% 8% 8% NA NA NA NA NA NA NA NA NA 13% 100%
12–13 6.9% 3.4% 0.29 0.11 46% 29% 4% 7% NA 4% NA NA NA NA NA NA 7% 4% 100%
13–14 5.9% 7.4% 0.32 0.15 38% 25% 13% NA NA 4% NA NA NA 4% NA NA 8% 8% 100%
14–15 9.1% 4.9% 0.33 0.14 46% 19% 11% 5% 3% NA NA NA NA NA NA NA 16% NA 100%
15–16 9.1% 7.9% 0.36 0.18 38% 32% 8% NA 3% NA 3% 3% NA NA NA 3% 8% 3% 100%
16–17 6.6% 7.1% 0.38 0.18 52% 19% NA 7% NA NA NA NA 4% NA 4% NA 15% NA 100%
17–18 12.3% 6.1% 0.38 0.21 46% 6% 12% 2% 2% NA 8% 4% 4% NA 2% 4% 4% 6% 100%
18–19 9.3% 5.9% 0.46 0.26 47% 18% 3% 5% NA 5% 3% 3% NA NA 3% NA 13% NA 100%
19–20 6.1% 5.9% 0.50 0.30 40% 12% 20% 4% 4% NA NA 8% NA 4% 4% 4% NA NA 100%
20–21 5.4% 5.7% 0.48 0.27 36% 9% NA NA NA 5% NA 5% NA 14% 5% 5% 23% NA 100%
21–22 5.9% 5.7% 0.47 0.27 17% 8% 8% NA 8% 13% 4% 13% 8% 4% 4% NA 13% NA 100%
22–23 3.4% 6.4% 0.45 0.25 7% 7% NA NA NA NA 14% 36% 14% 7% NA 7% 7% NA 100%
23–24 2.0% 3.9% 0.43 0.22 NA NA NA NA NA NA 25% 25% NA NA 13% 25% 13% NA 100%
Total 100% 100% 9.3 3.5
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