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Abstract—This paper proposes a new representation of 

electrical circuit quantities based on three-phase dimensional 
space, in contrast to the conventional two-dimensional 
representation. It contributes to an alternative mathematical 
approach to display the voltage and current waveforms in three-
dimensional frame, in which an unbalance displacement angle 
becomes evident, and can be used as an unbalance metric. It is 
outside the scope of this paper to propose a new power theory, or 
state new definitions for the power terms. In fact, such electric 
power representation can be applied to different power theories. 
Finally, this paper exemplifies the three-dimensional 
representation through numerical and illustrative case studies.  
 

Index Terms—meta-theory, power theory, electrical circuit 
quantity, power property, unbalance. 

I.  INTRODUCTION 

ower theories have been subject of investigation for almost 
a century [1], pursuing to precisely describe the power 

properties of electrical circuits relating them to the physical 
phenomena, and mathematical expressions [2]. However, no 
power theory has fully succeeded, because there is always a 
proof of inconsistency. In view of this complex subject of study, 
this paper contributes with an alternative mathematical 
representation of voltage and current waveforms which may 
assist in this arduous task involving the power theories. 

Then, this paper proposes a novel representation of electrical 
circuit quantities based on three-dimensional space, in contrast 
to the conventional two-dimensional one. It contributes to 
display the voltages and currents in a three-dimensional frame, 
in which a novel unbalance displacement angle becomes as 
evident as the well-known displacement angle [3] caused by 
reactive power circulation in the two-dimensional space.  

The unbalance displacement angle is used to define an 
unbalance displacement factor (UDF) that quantifies the 
currents unbalance with respect to the three-phase voltage 
frame. Hence, it is a relative measure of unbalance between 
three-phase current and voltage signals, and it is not primarily 
intended to assess the inherently unbalanced nature of a single 
set of voltages or currents, as other unbalance metrics. 
Nevertheless, UDF could also capture the inherent degree of 
unbalance of a set of currents (or voltages) if calculated against 
a corresponding ideal (i.e., sinusoidal, symmetrical) set of 
voltages (or sinusoidal, balanced currents, respectively).  

Furthermore, as none of the existing metrics visually show 
the current unbalance with respect to voltage frame, because 
they are all based on a two-dimensional representation and 
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normally expressed in percentage values, they are less suitable 
than UDF for a visual Cartesian representation.  

Overall, the current paper does not aim at proposing a new 
electric power theory or set new definitions for power terms. It 
rather offers an alternative representation for electrical 
quantities. Actually, such representation can be applied to 
different power theories published in the literature, like the 
Conservative Power Theory (CPT) [4],[5], and the Current 
Physical Components (CPC) [6],[7],[8]. 

II.  CONVENTIONAL ELECTRIC POWER REPRESENTATION 

Periodic voltage and current quantities are commonly 
represented in two-dimensional space, as: 
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 . � + ��
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(1) 

such that k is the nth-harmonic order, ω is the angular frequency 
and θvk and θik represent the phase of each harmonic voltage and 
current, respectively. The voltage quantity is usually considered 
as the frame of reference, so that θv1 = 0. 

To simplify the presentation, all voltage and current 
waveforms are assumed to have zero mean values (�� = �� = 0). 
Moreover, there is substantial confusion on power definitions 
with unbalanced loads even under sinusoidal voltage 
conditions, and it is expected that investigations increase 
gradually in complexity to avoid inconsistent results, so this 
paper is restricted just to circuits with sinusoidal voltages. It is 
worth noting that, under such assumption, θi1, hereafter simply 
indicated as θ, represents the relative displacement angle 
between the (fundamental) current and the corresponding 
voltage, which is also known as reactive displacement (power) 
angle [9]. 

Let us define the bold variables as vectors, considering the 
three-phase quantities, as represented in (2).  

���� = �����������������   and    ��� = �����������������
!
 

(2) 

such that the superscript T means transpose. Then, the current 
vector (i) is decomposed into in-phase ( ∥) and quadrature ( #) 
current terms, and thereupon in positive (+) and negative (-) 
sequence components:  ��� =  ∥��� +  #���  ∥��� =  ∥$��� +  ∥%���  #��� =  #$��� +  #%��� (3) 

the instantaneous active (p) and reactive (q) power are 
calculated through the internal product as: 
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&��� = ��$ + �%� ∘ ( ∥$ +  ∥% +  #$ +  #%) = = �$ ∘  ∥$ + �% ∘  ∥%*++++,++++-.
+ �$ ∘  ∥% + �$ ∘  #% + �% ∘  ∥$ + �% ∘  #$*+++++++++++,+++++++++++-/0

 

1��� = ��2$ + �2%� ∘ ( ∥$ +  ∥% +  #$ +  #%) = = �2$ ∘  #$ + �2% ∘  #%*++++,++++-3 + �2$ ∘  #% + �2$ ∘  ∥% + �2% ∘  #$ + �2% ∘  ∥$*+++++++++++,+++++++++++-40
 

(4) 

The variable �2 is the phase shifted by 90º with respect to 
vector v on the xy-plane, and can be defined as the (unbiased) 
homo-integral of voltage [4]. Hence, the association terms     �$ ∘  #$ + �% ∘  #% and �2$ ∘  ∥$ + �2% ∘  ∥% are zero because of 
orthogonality properties.  

According to (4), the projection of i on v results in the 
average active power (P), while the projection of i on �2 is the 
average reactive power (Q). However, the interaction of 
voltages and currents from different sequences results in power 
oscillations, which can be split into in-phase and quadrature 
terms in relation to the voltage frame of reference, as: &0∥��� = �$ ∘  #% + �% ∘  #$ + �2$ ∘  ∥% + �2% ∘  ∥$ = 5&0∥5 sin�2��� &0#��� = �% ∘  ∥$ + �$ ∘  ∥% + �2% ∘  #$ + �2$ ∘  #% = ‖&0#‖ cos�2��� (5) 

where 5&0∥5 and ‖&0#‖ are the power oscillation magnitudes. 

III.  THREE-DIMENSIONAL REPRESENTATION OF ELECTRICAL 

CIRCUIT QUANTITIES 

Firstly, let us consider the three-dimensional space as (x,y,z) 
such that x-axis is the horizontal, y-axis is the vertical and z-axis 
is the depth. The proposed representation of electrical circuit 
quantities in three-dimensional space also considers the voltage 
as the frame of reference, which is plotted in the xy-plane. So, 
the voltage and current expressions are defined as: ���� = � ∙ sin���� ���� = �: sin��� + �� cos�;� + <�= sin��� + �� sin�;� (6) 

in which θ is the reactive displacement angle visible in the xy-
plane. Finally, Iy and Iz are the projections of the current 
magnitude onto the xy-plane and xz-plane, respectively, and ϕ 
is defined as the displacement angle between the voltage frame 
(i.e., xy-plane) and the current plane. Fig. 1 illustrates a half 
cycle waveform of voltage and current based on the proposed 
mathematical approach, in which the variable ϕ corresponds to 
the newly defined unbalance displacement angle and θ = 0 for 
simplicity. Observe that the unbalance displacement angle 
provides a global information on the degree of load unbalance 
in the three-phase system, hence for a single-phase system, the 
unbalance displacement angle is zero, and then it is identical to 
the conventional electric voltage and current representation. 

Then, on the basis of this representation, the m-phase 
instantaneous currents may be mathematically expressed in the 
three-dimensional frame as: 

�>��� = �>: ��� + <�>= ��� = �∥>: ��� + �#>: ���?@@@@A@@@@BC:%/D��E + < F�∥>= ��� + �#>= ���G?@@@@@A@@@@@BC=%/D��E
 (7) 

 
Fig. 1.  Three-dimensional representation of instantaneous voltage and current. 

such that the �>:  and �>=  are the projection of the m-phase 
instantaneous currents onto the xy- and xz-plane, respectively. 

The current terms can be defined considering the power 
terms of (4) and (5) as: 

�∥>: ��� = H‖�‖I �> �#>: ��� = J‖�2‖I �K> (8.a) 

�∥>= ��� = 5&0∥5‖�‖I �> �#>= ��� = ‖&0#‖‖�2‖I �K> (8.b) 

or in terms of �> and ; with respect to the peak value of 
measured currents, Im. �∥>: ��� = �> ∙ cos��>� ∙ cos�;� ∙ sin��� + L>� �#>: ��� = �> ∙ sin��>� ∙ cos�;� ∙ cos��� + L>� �∥>= ��� = �> ∙ cos��>� ∙ sin�;� ∙ sin��� + L>� �#>= ��� = �> ∙ sin��>� ∙ sin�;� ∙ cos��� + L>� (9) 

where L> is the three-phase displacement angle, i.e., following 
the positive voltage sequence: 0º for phase a, -120º for phase b, 
and 120º for phase c, if voltages are symmetrically shifted. 

Then, the power terms could be defined on the basis of the 
displacement angle caused by reactive power (θ) and the 
proposed displacement angle caused by load unbalance (ϕ). 

The apparent power is calculated as usual: M = N ∙ O (10) 
and the other four power terms as: H = N ∙ O ∙ cos�;� ∙ cos��� J = N ∙ O ∙ cos�;� ∙ sin��� 5&0∥5 = N ∙ O ∙ sin�;� ∙ cos��� ‖&0#‖ = N ∙ O ∙ sin�;� ∙ sin��� (11) 

such that V and I are the collective rms values of voltage and 
current, P is the average active power, while Q is the average 
reactive power. 5&0∥5 and ‖&0#‖ are the power terms related to 
in-phase and quadrature unbalance, respectively. Thus, an 

unbalanced power term could be used as P/0 = Q5&0∥5I + ‖&0#‖I. 
A.  Proposed Unbalance Displacement Factor 

On the basis of the three-dimensional representation, the 
reactive displacement factor (RDF) could be calculated as RST = cos���. Note that this corresponds to the traditional 
displacement (power) factor and also coincides with the power 
factor, PF, under sinusoidal conditions. Here the unbalance 
displacement factor is introduced, which can be calculated as UST = cos�;�. Overall, the unbalance angle ; ranges from 0º 
to 90º, and consequently, UDF ranges from 1 (i.e., balanced 
system) to 0 (i.e., load currents with different sequence 
components from the voltages). 

In the literature, the definition of unbalanced power is not 
univocally defined [10], and then based on how the different 
power theories compute the unbalanced (N) power, in addition 
to active (P), reactive (Q) power terms, one could calculate the 
reactive (�) and unbalance (;) displacement angles as in (12) 
and (13), respectively. Equations (12) and (13) are generic and 
any power theory that identifies unbalanced power (N) can be 
used to set N. This would correspondingly change also the 
current projections on the xz-plane, given in (8.b). The reactive 
displacement angle is applied phase by phase or based on the 
equivalent three-phase quantities, whereas the unbalance 
displacement angle is strictly based on three-phase quantity. 

� = tan%� XJHY    [\   �> = tan%� XJ>H> Y , (12) 

; = tan%� ^ P_HI + JI`  . (13) 
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IV.  ILLUSTRATIVE CASE STUDIES 

Herein, some case studies are presented to supplement the 
best understanding of the three-dimensional representation of 
electrical circuit quantities. The graphic representation of the 
voltage and current waveforms is a tool that can be used as an 
unbalance quantifier irrespectively of the specific power theory 
used to deal with unbalanced systems. So, for the sake of 
explanation, two of the most recent power theories that define 
the required power terms are selected: 1) the CPT [4] that 
defines active (Pcpt), reactive (Qcpt), active unbalanced (Na) and 
reactive unbalanced (Nr) powers. The unbalanced power is 
calculated as P�/a = _P�I + PbI; 2) the CPC [7] that defines active 
(Pcpc), reactive (Qcpc), negative-sequence unbalanced (Sc�) and 
zero-sequence unbalanced (Sc=) powers. The unbalanced power 
is calculated as Sc = _Sc�I + Sc=I. 
A.  Asymmetrical Voltages with Balanced Resistive Load 

Independently of the voltage condition, the frame of 
reference is the instantaneous voltages. Then, the sinusoidal and 
asymmetrical voltages (�� = 139.7∠0°, �� = 127∠ − 120°, and �� = 114.3∠120°) are applied to the (balanced, resistive) circuit 
of Fig. 2. The three-dimensional representation of the 
instantaneous three-phase voltage and current waveforms is 
shown in Fig. 3. As can be seen, the unbalance displacement 
angle is zero (; = 0°, UDF = 1), and the current waveforms are 
proportional to the voltage ones and lay on the same xy-plane. 
Moreover, both power theories result in the same portray. 

B.  Positive-Sequence Voltages Supplying Negative-Sequence 
Currents 

To highlight the meaning of the proposed unbalance 
displacement angle and the metric UDF, in Fig. 4 the loads (i.e., 
ideal current sources) draw only negative-sequence currents 
(�� = 6.82∠0°, �� = 6.82∠120°, and �� = 6.82∠ − 120°) from the 
supply voltage that has only positive-sequence components 
(�� = 127∠0°, �� = 127∠ − 120°, and �� = 127∠120°). 
According to (11-13) such condition represents a circuit with 
only unbalanced current terms circulating in the three-phase 
system, while active and reactive power are null. Fig. 5 shows 
the voltage and current waveforms represented in the three-
dimensional frame, where the voltage waveforms are in the xy-
plane and currents in the xz-plane. The UDF is zero as ϕ = 90º.  

C.  Symmetrical Voltages with Unbalanced Load – Four-Wire 
and Three-Wire Circuits 

In this section only the CPT was used. The instantaneous 
voltage and current waveforms of the circuit shown in Fig. 6 are 
displayed in the three-dimensional frame, as shown in Fig. 7. 
Note that the reactive displacement angle is zero, �> = 0, and 
the unbalance displacement angle is ; = 35.28°. This result 
indicates an unbalanced circuit but without reactive power 
circulation, as expected for three-phase four-wire circuits with 
resistive loads. On the other hand, if the load is purely inductive, 
it is expected zero active power, and only reactive and 
unbalanced power terms. The electric circuit and the waveforms 
are shown in Figs. 8 and 9, respectively. The values of angles 
(� and ;), and RDF and UDF are shown in Table I.  

If the same circuit of Fig. 6 is therefore re-drawn with three 
wires, as shown in Fig. 10, the phase voltage and line current 
waveforms in the three-dimensional representation are shown 
in Fig. 11. Note that the m-phase currents are not in-phase with 
their corresponding m-phase voltages (�� = −30° and  �� =30°), despite the absence of energy storage elements. Such m-
phase shift is caused by the reference point of voltage 
measurement in three-phase three-wire circuit, and it is 
quantitatively analyzed in Table I. 

Table I shows the values of power based on the CPT. Then, 
the proposed unbalance displacement angle, ϕ, and the 
conventional reactive displacement angle, θ, can be computed 
for the circuits of Figs. 2, 4, 6, 8 and 10. The values for the four-
wire circuit are: ; = 35.26° and � = 0°, while for the three-
wire circuit are: ; = 45° and � = 0°. These numbers result in 
RDF equals to zero, which means null reactive power 
circulation in both circuits; and UDF equals to 0.816 and 0.707, 
respectively, indicating that the three-wire circuit is more 
unbalanced than the four-wire one. 

D.  Symmetrical Voltages with Unbalanced RL Load 

This case study is the same circuit used as example in [7]. 
Considering the circuit of Fig. 12, the corresponding values of 
power terms are shown in Table II applying both the selected 
power theories: CPT – [4] and CPC – [7]. Therefore, Fig. 13 
shows the three-dimensional representation of the 
instantaneous three-phase symmetrical voltages and currents. 

 

 
Fig. 2.  Asymmetrical voltages with balanced resistive load (case study #1). 

 
Fig. 4.  Symmetrical voltages with negative-sequence currents (case study #2). 

 
Fig. 3.  Three-dimensional representation of the asymmetrical voltages with 
balanced resistive load (case study #1). 

 
Fig. 5.  Three-dimensional representation of the symmetrical voltages with 
negative sequence currents, four-wire circuit (case study #2). 
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Fig. 6.  Symmetrical voltages with unbalanced 
resistive load, four-wire circuit (case study #3). 

 
Fig. 8.  Symmetrical voltages with unbalanced 

inductive load, four-wire circuit (case study #4). 

 
Fig. 10.  Symmetrical voltages with unbalanced 
resistive load, three-wire circuit (case study #5). 

 
Fig. 7.  Three-dimensional representation of the 
symmetrical voltages with unbalanced resistive 
load, four-wire circuit (case study #3). 

 
Fig. 9.  Three-dimensional representation of the 
symmetrical voltages with unbalanced inductive 
load, four-wire circuit (case study #4). 

 
Fig. 11.  Three-dimensional representation of the 
symmetrical voltages with unbalanced resistive 
load, three-wire circuit (case study #5). 

 

TABLE I 
Power terms values based on CPT [4] and power quality metrics. 

Quantities Case 
#1  

Case 
#2 

Case #3 
(4-wire) 

Case #4 
(4-wire) 

Case #5 
(3-wire) 

Acpt [kVA]  3.02 2.60 2.45 2.45 2.12 
Pcpt [kW] 3.02 0.00 2.00 0.00 1.50 

Qcpt [kVAr]  0.00 0.00 0.00 2.00 0.00 
Na [kVA] 0.00 1.837 1.415 0.00 1.061 
Nr [kVA]  0.00 1.837 0.00 1.415 1.061 
N [kVA]  0.00 2.60 1.415 1.415 1.50 

Pacpt [kW] 1.21 0.866 1.00 0.00 0.75 
Pbcpt [kW] 1.00 -0.433 1.00 0.00 0.75 
Pccpt [kW] 0.81 -0.433 0.00 0.00 0.00 

Qacpt [kVAr]  0.00 0.00 0.00 1.00 -0.433 
Qbcpt [kVAr]  0.00 0.750 0.00 1.00 0.433 
Qccpt [kVAr]  0.00 -0.750 0.00 0.00 0.00 

θ 0º 0º 0º 90º 0º 
RDF 1.00 1.00 1.00 0.00 1.00 

Proposed unbalance metrics 
ϕ 0º 90º 35.28º 35.28º 45º 

UDF 1.00 0.00 0.816 0.816 0.707 

 
Fig. 12.  Symmetrical voltages with unbalanced RL load (case study #6). 

 
Fig. 13.  Three-dimensional representation of the symmetrical voltages with 
unbalanced RL load (case study #6). 

TABLE II 
Power terms based on [4] and [7] for Fig. 12 under symmetrical voltages. 

CPT – [4] CPC – [7] 
Acpt [kVA]  55.73 Scpc [kVA]  54.18 
Pcpt [kW]  36.0 Pcpc [kW]  36.0 

Qcpt [kVAr]  12.44 Qcpc [kVAr]  12.0 
Na [kVA]  36.70 Dz

u [kVA]  38.0 
Nr [kVA]  17.6 Dn

u [kVA]  7.2 
N [kVA]  40.70 Du [kVA]  38.68 
θ 19.06º θ 18.43º 

RDF 0.945 RDF 0.949 
Proposed unbalance metrics 

ϕ 46.90º ϕ 45.54º 
UDF 0.68 UDF 0.70 

 

On the basis of Table II, the conventional reactive 
displacement angle, θ, and the proposed unbalance 
displacement angle, ϕ, can be calculated through the power 
theories using (12) and (13), respectively. Considering [4]:  ; = 46.90° and � = 19.06°; while considering [7]: ; =45.55° and � = 18.43°. Despite the difference in the numerical 
values, this proves that the mathematical tool proposed can be 
applied to different power theories. 

V.  CONCLUSIONS 

This paper proposed a mathematical expression of electrical 
circuit quantities in three-dimensional frame, (6), and a voltage 
and current waveforms representation in three-dimensional 
space, Fig. 1. Finally, on the basis of the three-dimensional 
representation, the unbalance displacement angle, ;, becomes 
visually evident, which can be used to define an unbalance 
displacement factor, UDF. The mathematical and graphic 
representations, as well as the unbalance displacement factor, 
were exemplified through numerical and illustrative case 
studies considering different power theories, i.e., CPT and CPC. 
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