Revisiting Practical and Usable
Coercion-Resistant Remote E-Voting *

Ehsan Estaji', Thomas Haines?, Kristian Gjgsteen?, Peter B. Rgnne!,
Peter Y. A. Ryan', and Najmeh Soroush!

1 SnT & University of Luxembourg, Luxembourg {firstname.lastname}@uni.lu
2 Norwegian University of Science and Technology, Trondheim, Norway
{firstname.lastname}@ntnu.no

Abstract. In this paper we revisit the seminal coercion-resistant e-voting
protocol by Juels, Catalano and Jakobsson (JCJ) and in particular the
attempts to make it usable and practical. In JCJ the user needs to handle
cryptographic credentials and be able to fake these in case of coercion.
In a series of three papers Neumann et al. analysed the usability of JCJ,
and constructed and implemented a practical credential handling system
using a smart card which unlock the true credential via a PIN code,
respectively fake the credential via faking the PIN. We present several
attacks and problems with the security of this protocol, especially an
attack on coercion-resistance due to information leakage from the removal
of duplicate ballots.

Another problem, already stressed but not solved by Neumann et al, is that
PIN typos happen frequently and would invalidate the cast vote without
the voter being able to detect this. We construct different protocols which
repair these problems. Further, the smart card is a trusted component
which can invalidate cast votes without detection and can be removed by
a coercer to force abstention, i.e. presenting a single point of failure. Hence
we choose to make the protocols hardware-flexible i.e. also allowing the
credentials to be store by ordinary means, but still being PIN based and
providing PIN error resilience. Finally, one of the protocols has a linear
tally complexity to ensure an efficient scheme also with many voters.

Keywords: Electronic voting - coercion-resistance - usable security.

1 Introduction

One of the main threats in remote electronic voting is that they are inherently
susceptible coercion-attacks due to the lack of a voting booth. In their seminal
paper, Juels, Catalano and Jakobsson [10] gave a formal definition of coercion-
resistance and further devised a protocol (JCJ) satisfying this strong security
property. To achieve this, JCJ assumes a coercion-free setup phase where the voter
get a credential which is essentially a cryptographic key. To cast a valid ballot
this key needs to be entered correctly together with the vote. In case of coercion,

* This research were supported by the Luxembourg National Research Fund (FNR).

2 Estaji et al.

the voter can simply give a fake random credential to the coercer and even cast
a vote together with the coercer using this fake credential — the corresponding
vote will be removed in the tally process. The tally process of weeding out the
ballots with fake credentials and duplicates, however, suffers from a quadratic
complexity problem in the number of voters and cast ballots. Several paper are
devoted to reduce the tally complexity in JCJ, see e.g. [I82620], however, each
with their drawbacks. JCJ and similar constructions however also suffer from
usability deficits, see also [I4]. Especially, the voter intrinsically cannot directly
check if a cast ballot is valid and will be counted, see however [g].

Moreover the handling and storing of long credentials is a notorious usability
problem, getting even harder with a coercer present. The usability was analysed
by Neumann et. al. [I6I/I5/5] and led to a protocol using smart cards for handling
voter’s credentials. The stored credential is combined with a PIN code to produce
the full credential which will be compared with the credential stored by the
authorities on the bulletin board. In this paper we revisit this protocol and
present several attacks on coercion-resistance and verifiability, but also possible
repairs.

Whereas the the smart card provides a solution to the usability problem, it
also comes with strong trust assumptions and problems

— The smart card is generally needs to be trusted. A malicious card could e.g.
use the wrong credential invalidating the cast ballot without detection, and
we cannot let the voter check if the ballot is correct without introducing
coercion threats.

— The coercer can take the smart card away from the voter to force abstention.

— It is more expensive, less flexible and harder to update than a purely software
solution.

— One of the attacks that we found is that a coercer can use the smart card to
cast ballots on his own. This not only endangers coerced voter’s real vote,
but due to a leak of information in the weeding phase, the coercer can also
detect, with non-negligible probability, whether the coerced voter has cast
an independent ballot against his instructions.

In this paper we will present protocols that repair, or at least diminishes
the attack probability of, the last point by constructing new duplicate removal
methods in JCJ. Further, the protocols constructed in this paper are hardware-
independent: they could use a smart card, or they can be implemented using
combination of a digitally stored cryptographic length key and a PIN only known
by the voter. The long credential could be stored in several places — or even
hidden via steganography. At ballot casting time the software will take as input
the digital key and the password to form the credential submitted with the vote.
Depending on the level of coercion, the coerced voter can either fake the long
credential or, for stronger levels of coercion, the voter can reveal the the digitally
stored credential to the coercer, but fake the PIN. Due to our improved tally,
the coercer will not know if he got faked credentails or PINs.

Another major problem with the original construction, already discussed as
an open problem in [16], is the high chance of users doing a PIN typo error which

Revisiting Practical and Usable Coercion-Resistant Remote E-Voting 3

will invalidate the vote and remain undetected. Note that naively giving feedback
on the correctness of the PIN is not possible for coercion-resistance as it would
allow the coercer to check whether he got a fake PIN or not. Instead, we will
define a set of allowed PIN errors (e.g. chosen by the election administrator),
and we will consider a ballot as valid both if it has a correct PIN or an allowed
PIN error, but invalid for other PINs. We construct protocols which at tally time
secretly check whether a given PIN is in the set of allowed PINs and will sort
out invalid ballots. The protocols can accommodate general PIN error policies,
however Wiseman et. al. [22] studied usual errors in PIN entries. Two frequent
errors are transposition errors (i.e. entering “2134” instead of “1234”) and wrong
digit number errors (i.e. entering “1235” instead of “1234”). Correcting for both
of these errors is however problematic, as we will see, since the set of independent
PINs becomes small.

The outline of paper is as follows. In Section[2] we present attacks and problems
of the orignal NV12 scheme. Our improved protocols are presented in Section
In Section [4] we make a preliminary analysis of how many independent PINs
exist when allowing certain PIN errors. Finally we conclude in Section

2 Analysis of NV12: Attacks and Problems

Neumann et al. [I6] carried out a usability analysis of JCJ and proposed a
new scheme (NV12) for handling the credentials and vote-casting. In [I5] a few
modification were made to prevent side-channel attacks and an efficiency analysis
was done, and finally [5] presented a prototype implementation and its efficiency.

2.1 The scheme:

In this subsection we give a brief overview of the NV12 scheme, we refer to [15]
and the JCJ/Civitas papers [10/] for more details. The entities participating
in the NV12 protocol are: A supervisor: who is in charge of running election
and declaring election authorities; The voter: who intends to cast her vote;
The voter’s smart card, reader and computer: which serves as interface
between the voter and the JCJ / Civitas system. The smart card reader has a
screen and PIN entry interface; A registrar: who administrates the electoral
register; A supervised registration authority and a set of registration
tellers: that provide the voter with her credential;

A set of tabulation tellers: that are in change of the tallying process; A
set of ballot boxes: to which voters cast their votes; A bulletin board, BB:
that is used to publish information. The ballot boxes will publish to BB.

The framework of the scheme is as follows

1. Setup Phase. This step is the same as JCJ/ Civitas; an election public key,
pk, will be computed and published.

2. Registration Phase. After offline and online registration phases, the voter’s
credential divided by the chosen PIN is stored on the smart card alongside
with a designated verifier proof.

4 Estaji et al.

3. Voting Phase. The voting procedure is split into two phases implementing
Benaloh challenges to the vote encryption
— Challenge: The smart card commits to an encryption of the vote by
displaying hash (enc(vote, pk,r)). The voter notes down this hash, and
if the encryption is challenged, the smart card releases the randomness
r to the voter’s computer, and the voter can verify the hash indeed
was consistent with the vote choice via a third device. This challenge
procedure can be reiterated.
— Cast: When the voter chooses to cast, she then enters the PIN. Now,
the ballot of the form ({CRD}pk, {vote}pk, o, @) is generated where o is a
zero-knowledge proof (ZKP) of well-formedness of the vote and ¢ is a ZKP
of knowledge of both the credential and vote. This is sent anonymously
to a ballot box. hash(({CRD}ux, {vote}pk, 0, ¢)) is displayed and written
down by the voter, and can be checked with the stored ballot in the ballot
box to ensure stored-as-cast verifiability.
4. Tallying Phase. This step is also the same as JCJ/ Civitas.

The important trust assumptions made in [I5] are

— For privacy it was assumed:

e Half of the remote registration tellers and the supervised registration
authority are trustworthy.

e Neither the smart cards nor smart card readers can be corrupted.

e The adversary is not able to corrupt a threshold set of tabulation tellers.

— For coercion-resistance we further need:

e There is a point in the voting phase, in which the adversary cannot
control the voter.

e The adversary cannot control the voter’s computer.

e The channel to the ballot boxes is anonymous

— For verifiability it was assumed:

e The adversary is not able to corrupt smart cards. With the Benaloh
challenges implemented this was reduced further to [16]: The adversary
cannot control the voting environment and the verification environment
at the same time.

2.2 Attacks

We will now present attacks and discuss how to repair these.

Benaloh challenge problem: The first attack is on individual verifiability. The
Benaloh challenge is available for the user to challenge whether the encryption of
the vote is done honestly. The smart card and reader commits to the hash of the
encryption via the screen of the smart card reader. The problem is that this hash
is not checked for the cast ballot. Instead, what is checked for the cast ballot is
that the hash of the full ballot including the encryption of the credential and
ZKPs matches what is received in the ballot box. This means that the smart

Revisiting Practical and Usable Coercion-Resistant Remote E-Voting 5

card can at first encrypt all votes honestly and commit to these. However, when
the PIN is entered to cast a ballot, it can encrypt its own vote choice and include
this in the ballot without being detected even if the verification environment is
honest — this violates the trust assumption above.

Repair: Both the hash of the vote encryption and the full ballot needs to be
compared with the values that can be calculated from the ballot received by
the ballot box. This however reduces usability as now two hashes needs to be
checked by the voter, a task which is not trivial. Particularly, the adversary can
precompute hashes that are hard to distinguish for the voter - e.g. matching on
the leading part. Another choice is to commit to the full ballot in the Benaloh
challenge, however this requires the voter to enter the PIN for each challenge.
Since it is a general problem in e-voting that verification checks are too infrequent
among real voters, having to enter a PIN for each challenge further undermines
the Benaloh challenge security. It might also happen that a voter would then
maximally challenge once, and hence an efficient strategy for the adversary would
be to cheat after the first challenge.

Brute force attack: The second attack in on coercion-resistance for a coercer
demanding access to the smart card, alternatively on verifiability for a local
adversary who manages to get access to the smart card undetected. The adversary
could here simply try to guess the PIN and cast a vote. This is not detectable
by the voter due to anonymity of the vote casting. Unfortunately, the PIN
space cannot be scaled since it is upper bounded by the ability of the voter to
remember and enter PINs correctly. Hence, the probability of guessing the PIN
is not negligible. Further, the probability can be boosted by casting multiple
votes. Note also, whereas we can assume that it is in the interest of the voter to
use a correct smart card reader, the adversary can use a malicously constructed
reader. Thus the ballot casting can be automated and the PIN space can be
covered to get a probability of a valid cast vote to be 1. This is not impossible, e.g.
according to [5] vote casting took about 13 seconds including network time. The
theoretical value with network was around 8 seconds, and the value of modern
smart cards should be much lower. However, even with the 2014 timings, the
creation of the ballots (without sending) could be done in 22 hours. Note that
whether the ballot is counted in the end will depend on the vote update policy,
and when the voter is casting her own vote, however, here the adversary is free
to optimise his strategy, e.g. try to cast last.

Repair: The smart card could demand that a certain time has to pass between
each ballot cast. This time can however not be too long, otherwise a coercer
might detect it or utilise it for a forced abstention. Thus this repair can only
lower the probability for casting a ballot with correct PIN.

Leaky duplicate removal: This is an attack on coercion-resistance, but can
also be an attack on verifiability to boost the attack above. In the simplest form
the coercer uses the smart card to cast a vote with some trial PIN. The coercer
wants to determine if this trial PIN is a correct PIN. According to the protocol

6 Estaji et al.

the voter will cast her true vote using the correct PIN at some secret point
during the voting phase. However, in the tally phase credentials are weeded using
plaintext equivalence tests (PETSs) of the encrypted credentials directly on the
submitted ballotsEI If the coercer now sees an equivalence with his submitted trial
ballot, he can guess that it was the voter casting the other ballot, and probably
with the correct PIN. Thus he has determined the correct PIN and that the voter
defied his instructions in one go. To boost the attack he can simply try several
PINs[] In standard JCJ such an attack would not work since the submitted
trial credential would have the same probability of being identical to the coerced
voter’s credential as for it to be identical to any other voter’s credential, and
further the probability would be negligible.

A local adversary getting access to the smart card could also follow this

strategy to try to know the PIN and cast valid votes. This might actually be
detected by the voter if he checks the weeding on BB and sees a duplicate of
his own vote (note this was also mentioned in [I7]), but in the protocol the
voter is not instructed to do this. Thus the PIN is not really protecting against
unauthorized use of the smart card.
Repair: It is actually surprisingly hard to make a tally protocol which does
not leak information to prevent this attack. The original JCJ protocol relies on
the fact that guessing the real full credential can only happen with negligible
chance. A first repair could be to mix the ballots before doing weeding, but after
verifying the ZKPs. This makes it difficult to implement certain policies, like
the last valid vote counts; however, it fits nicely with the policy that a random
selection from the valid votes count. Unfortunately, this does not prevent the
attack. The coercer could mark his ballot by casting it a certain number of times
which is likely to be unique. He then checks if he sees this number of duplicates or
one more. Even if mix between each duplicate removal, which would be horrible
for an efficiency perspective, we do not get a leak-free tally. The distribution
of time until a PET reveals a duplicate will depend on whether the PIN was
correct or not. Especially the coercer could cast a lot of votes with the same trial
PIN which would make detecting this more visible. There are other methods to
limit the the information leak in the tally which we will present below. Further,
we will present a protocol that does not leak information about the number of
duplicates per voter, and does have linear tally complexity (compared to the
quadratic in JCJ), but which has an obfuscated form of participation privacy.

Fake election identifier: This is an attack on verifiability. As mentioned in the
original JCJ paper, the zero-knowledge proofs need to include a unique election

3 In general this is not good for coercion-resistance since a coercer might detect a voter
not following instructions across elections, see [§].

4 Note that the coercer does not have to let the voter know that he follows this strategy.
The voter only knows that the coercer has access to the card for some short time.
Based on this, she could also decide not to cast her true vote at all, but then the
protocol could not really be called coercion-resistant since the coercer has a very
efficient strategy to force abstention.

Revisiting Practical and Usable Coercion-Resistant Remote E-Voting 7

identifier. This identifier is announced by the election administrator and prevents
that ballots are copied from one election to another, i.e. the proofs would not
verify when the wrong identifier is used. However, the smart card needs to be
updated with this identifier before vote casting. However, we cannot trust this is
done correctly, i.e. an adversary e.g. controlling the voter’s computer could try
to provide a wrong credential.

Repair: The voter could enter the election identifier herself, but this is error
prone. The simplest solution is that the voter checks that the submitted ballot
has a zero-knowledge proof that verifies according to the real election identifier.
This could be done when the hash of the full ballot is checked, but will mean
that the voter has to wait a bit longer before being able to do this check.

Smart card removal: An obvious forced abstention attack is that the coercer
simply demand to hold the smart card during the election period.

Repair: This problem seems quite inherent to the smart card approach. We
could let the voter hold several smart cards. However, holding several cards would
be physical evidence which a voter with a local coercer probably would not want
to risk. Further, the number of cards allowed per voter could necessarily not be
bounded. If each voter were allowed to hold e.g. 5 cards, the coercer would simply
ask for five cards. If this is troublesome it seems better to leave the smartcard
only approach and allow the voter to also hold the credential as a piece of data
as in standard JCJ. This can more easily be hidden (steganography could be an
option here) even though theoretically this also has problems [19]. Our protocols
below can be implemented with or without smart cards.

2.3 Security Problems

In this section we discuss some problems with the protocol, that do not fall under
the category of attacks.

The main usability and verifiability problem with the protocol is that PIN
entry is error prone, as was already stressed in the papers by Neumann et al. An
obvious solution is to have a PIN check, e.g. a checksum check. However, this
would mean that only certain PINs are valid PINs, and in order for a voter to
present a fake PIN to a coercer, she would first have to prepare a valid fake PIN,
which is less usable.

An option with higher usability is to have a policy of allowed PIN errors and
accept full credentials that corresponds to the PIN being entered with allowed
errors. This is the approach we will essentially follow in this paper, however our
solutions will also work for checksum checks.

If JCJ had a method of verifying the cast votes, we would also be able to at
least detect such PIN errors. Such a verification mechanism was suggested in
[8] using the Selene approach. However, this check can only be made after vote
casting has ended, thus too late to update a PIN typo.

Another problem is the assumption that the smart card is trustworthy. This
does not seem like a valid assumption, at least for important election. The smart

8 Estaji et al.

card could simply use a wrong credential in a ballot, which would invalidate the
vote. Further, this cannot be detected since the smart card is the only holder of
the credential. At least the encryption of the PIN could be Benaloh tested, but
not the credential. Further, the smart card reader is also trusted. However, this
might not be enough in practice. As an example, if the middleware on the reader
allows the voter’s computer or the network to display messages on the screen,
e.g. to say it is waiting for a connection, then it could e.g. try to display fake
hash values. A corrupted smart card could also easily break privacy by using
the encryption choice as a subliminal channel for the vote choice. In light of this
the smartcard can also be seen as a single point of failure. We will thus focus on
hardware-independent protocols.

3 Protocol Description

In this section we will present two protocols which tolerate PIN errors and
prevents leak of information in the deduplication phase.
In our voting scenario the voter has two keys: a long key which is stored on
her device (smart card or another device) and a short PIN, which is memorized.
To efficiently evaluate whether a PIN is allowed we will use polynomial
evaluation. To this end, given a user’s PIN a, we generate an ErrorList, = {a; =
a,as,...,a} of allowed PINs. Note the number of PINs here is constant for
every voter and might contain duplicates. From this, we generate a polynomial,
polypin(z) = Hf:l(x —a;) = Zfzopixi which has all Errorlist, members as
its root. In order to check the validity of the PIN, typed by the voter, it is
then sufficient check whether the polynomial value on this PIN is equal to zero
or notE| It is obvious that this polynomial should kept secret otherwise an
adversary can recover the PIN by factorizing the polynomial. Therefore we have
to work with encrypted polynomials and a main challenge is the polkynomial
evaluation under this encryption. Assume we have Enc(polypiy(z)) = > i cp; @’
and CTpiny = Enc(a), we need to find a way to efficiently compute Enc(polypy(a)).
The next challenge is to find a way to prove publicly that the individual voter’s
polynomial are correctly evaluated without endangering the coercion-resistance.
This would e.g. rule out voters evaluating the polynomials on voter side only.
Further, while solving this problem, we will also focus on efficient protocols
to obtain a practical JCJ scheme with (almost) linear tally time in the number
of voters.To obtain this we need to sacrifice perfect privacy. In the first scheme
we only have participation privacy by obfuscation inspired by [6/TT]. Here ballots
are submitted with an ID and homomorphic Paillier encryption can then be
used to evaluate the polynomial. Everybody, e.g. also a separate authority, can
cast votes labelled with ID which will later be discarded as invalid. Thus the
actual participation of the voter is obfuscated and the voter can deny having
participated in the election. Optionally, we could also follow the JCJ alternative

® Note there is a small problem here since we are in composite order groups and the
polynomials might have more roots than the allowed PINs. However, the probability
in general is negligible.

Revisiting Practical and Usable Coercion-Resistant Remote E-Voting 9

method in [6] to achieve perfect privacy, however the cost will be that the voters
twice have to defy the coercer and interact with the voting system. In the second
scheme using BGN encryption, the information leak from duplicate removal will
not be negligible, but bounded, and this scheme does not satisfy linear tally
efficiency.

Due to space limitations, we will just explain the basic building blocks and their
algorithm and suppress some details about ballot integrity and non-malleability
from the zero-knowledge proofs, e.g. the inclusion of election identifiers and the
correct form of the Fiat-Shamir transformations. Also, for simplicity, we describe
the protocol with a single trusted party, but it is possible to distributively run
this protocol. We will also not specify all parts of the distributed registration
phase and the Benaloh challenges, this can be implemented as in the NV12
scheme with some obvious modifications and with the repairs mentioned above.

3.1 Paillier Instantiation

The first instantiation relies on the Paillier public-key cryptosystem which is a
partially homomorphic and its security is based on the hardness of the decisional
composite residuosity assumption. A ciphertext on message m € Z, has the
form CT = (g™ -7 mod n?) which n = pg and p, ¢ are two same-length prime
numbers, and g is a proper member of group Z},. Its homomorphic property
allows us to evaluate the polynomial without decrypting the coefficients of the
polynomials. Further it allows an efficient multi-party computation protocol to
compare and (and hence sort) ciphertexts by plaintext values without decryption
[13]. This algorithm is linear in the bit length, i.e. logarithmic in the security
parameter, and can be made public verifiable [12]. Using this technique allows us
to do the weeding process secure and efficient, but at the cost of all ballots being
submitted with a voter identifier. To achieve participation privacy, obfuscating
votes needs to be cast too.

eVoting Protocol with Paillier instantiation: In Set-Up phase, CA gen-
erates the pair of keys, for Paillier cryptosystem: pk = (n = pq, G, g), sk = (p, q)

1. Registration Phase: For voter Viq4 the registrar, does the following steps:
— Long credential: Pick crd < Z,, , store crd on voter’s device.
— Short credential: Pick random PIN a € PIN-Set and send it to voter Viq.
— Compute the error list for a based on the election policy: ErrorList, =

{a1 = a,aq,...,a;} and set poly;y = Hle(:t —crd —a;) = Zf:o pixt

— Encrypt polynomial coefficients: For i = 0, ...k : cp, = Enc(p;)
— Provide a designated proof of validity for the ciphertexts, cp;, i =0, ... k.
— Publish Viq4 : (CP = (cpy, ..., cpy), Enc(crd)) on bulletin board.

2. Casting ballot: Voter chooses her candidate m, and enter her choice of PIN,

a. The voting algorithm runs the following steps:

— Encrypt m and long credential, CTyote = Enc(m), CT¢g = Enc(crd)

— Fori=1,...,k compute cp} = cp([”crd)z -ri™ and CT; = Enc((a + crd)?)

%

for random number r;, r;*. Provide a proof, mpaiot, (also proof of knowledge)

10 Estaji et al.

for the following relation:

1:){ballot = {({,C,’LU),LL' = (CTvote7 CTerq, CT;, CP = (Cpi)ie[k]vcp* = (Cp:)ie[k])

w = (VOte; rvote> &7 Cl’d, rcrda {I’i, r;‘k}ie[k]) .

CTyote = g7t - A= vote € List of candidats,CT = ¢ . pfe,

i=1,...,k:CT; = g(dtd)" pri cpr = cplerdta)’ . hr:}

This proof can be implemented efficiently using Sigma protocols and will
rely on the DDH assumption, and will be given in a long version of the
paper. They can be made non-interactive using the strong Fiat-Shamir
heuristic. Note that the hash should contain all parts of the ballot.

— Cast balloty = (CTerd; CTvote, {€PT, - - -, CP}}, Thalior) With her ID.

— Obfuscate: Everybody can cast (invalid) votes with any voter ID. This
will obfuscate whether voter ID participated in the election as in [6/11]

3. Tally Phase: Using the Paillier encryption scheme, allows us to efficiently
sort ciphertexts based on plaintext values without decrypting them, see [13].
This techniques can be done in a multi-party computation which provide
privacy for the e-voting protocol. MPC,,;,, the algorithm that takes as input
the ciphertexts ct; = Enc(mq), cta = Enc(ma), ..., ct: = Enc(m;) and outputs
the index i* such that ct;» = Enc(m+) : mi= = min{mq,...,m:}. We use
this algorithm in the Tally phase:

— Ballot Validity check: In the first step, we remove exact ballot copies
and all ballots with invalid proof 7paet. In the next step we need to
remove extra ballots for each voter, making sure a valid ballot is kept, if
existing.

— Weeding: Since each voter will be associated with possibly more than
one ballot, we need to weed them. We make sure a valid ballot is chosen - if
existing. Assume there are ¢ ballots with the same ID, balloty, ..., ballot,,
We now homomorphically combine the public ciphertext cp, with the
submitted encryptions to obtain an encrypted polynomial evaluation for
each ballot: Enc(poly,4(crd; + @;)) = cpy - H§=1 cpj,i =1,...q. Denote
by t; = poly;4(crd; + @;) and note this is zero if the ballot has a valid
credential and pin. We now verifiably mix the pairs Enc(¢;), Enc(vote;) and
run the MPC,,;, algorithm on the first ciphertexts to determine the one
with the minimal ¢;. We only keep this ciphertext and the corresponding
encrypted vote and discard the rest. Note that this will select valid ballots
having t; = 0 if they existﬁ

— Ballot anonymization: We delete the ID, run all the remaing pairs
Enc(t), Enc(vote) through a verifiable parallel mixnet for re-encryption
and permutation.

— Final PIN and Credential validity check: Finally, for each ballot, we
decrypt the polynomial evaluation. All ballots with non-zero polynomial

5 This will give a random correct vote. The policy “Last valid vote counts” can be
implemented by adding the received order to t;.

Revisiting Practical and Usable Coercion-Resistant Remote E-Voting 11

evaluation will be discarded. We need to do this step without revealing
any information about t¢; for non-zero evaluation. Thus the tally tellers
first jointly and verifiably multiply some random number onto ¢; and
then decrypt. We accept ballots with output zero and discard the rest.

— Vote decryption: Decrypt the remaining vote ciphertexts and compute
the voting result.

Error tolerance property of the scheme: Note the following computation:

_ i n * (d-i—crd)i *N * a+crd)'p; /m
cp; = g% 1’ cp] =cp; 1" = opf = glre D
k .
:>Cp0 . Hcp;k _ gzizo(a+crd) Pi M — gPolyjd(crdJra) S
=1

Decrypting this gives us the polynomial evaluation. Note that this evaluation
will only check if @ + crd is valid. This should be sufficient for security. However,
to check that both the credential is corrected and the PIN is in the allowed space,
we can use a distributed plaintext equivalence test [2I] between the submitted
credential and the registrered credential and add the outcome under encryption
to the polynomial evaluation.

Security analysis: The main advantage of this instantiation is sorting the cipher-
texts without decrypting them. Note that poly;4 pry has the range in nonnegative
integers. Therefore if there is any ballot with valid credential and PIN, the output
of MPC,,in, will be a valid ballot. On the other hand, it does not reveal whether
any ballot has a valid pin or not, thus sidestepping the attack on the standard
duplicate removal.

3.2 BGN Instantiation

The second instantiation is based on composite order groups introduced by [3] and
the Groth-Sahai NIWI-proof system [7] with security are based on the Subgroup
decision assumption.

The main point of using those in this instantiation are, BGN is a homomorphic
encryption scheme which can be efficiently implemented in a bilinear group.
Having bilinear map allows us to do the polynomial evaluation in an efficient and
secure way and also having the efficient NIWI-proof system.

Definition 1. BGN Cryptosystem works as follows. Its Key-Generation al-
gorithm, KGen outputs a pair of keys: (pk =(n,G,Gr,e,g,h = g¢'?),sk = (p, q))
which G = (g) and Gr are two groups of order n and the secret key consists
of two primes p,q such that n = pq. e : G x G — Gr is bilinear (Va,b €
Z,g €G:e(g® g") = e(g,9)™), non-degenerate (G = (g) = e(g,9) # lg,) and
commutable map. A ciphertext on message m € [T], for T < q has the form
CT =g™h" € G for some random number r. Decryption: raise the ciphertext to
power p and compute the discrete log.

12 Estaji et al.

BGN E-voting Protocol:

1. SetUp Phase: The central authority runs the BGN key-generation algorithm
to generate (skegn = p,q, pkgey = (n,G,Gr,e,g,h). Then chooses four
random group elements f1, fa, f3, f4 € G. Note that G = (g) is a cyclic group
so there exists a unique integers z;,4 € [4] such that f; = ¢g*. Set the secret
key of election as SKejection = (P, f1, f2, f3, f1) and public key of election as
PKelection = (n, G, Gr, e, g, h). Publish PKgjection 0n the bulletin board.

2. Registration Phase: Registrar, R, for voter V does the following steps:

— Generate credential and pin: crd, a as in the Paillier instantiation.

— Generate the list of errors, ErrorList, = {a1 = a,as,...,a;}. Then com-
pute poly, = [Ti_,(z — a;) = S2F_, piz’ and the following ciphertexts:
i € [k] : cp; = Enc(p;) = gPih", cpy = gP° - f£h" = Enc(pg + crd x z1).
Note that, technically cp, is the encryption of pg + crd x z;. Although
z1 is not a known value to any parties, the registrar can compute cp,
without knowing its value.

— Generates a designated proof of validity of the polynomial poly, and all
cp,, for i =0,... k.

— Store CP = (cpy,cpy, - - -,cpi), CRD = g in the user device and publish
Enc(crd) = ¢ - h", CP on bulletin board.

3. Casting ballot: Voter V chooses her candidate vote, and enter her choice of
PIN, a. The voting algorithm runs the following steps:

— Compute, CTyote = Enc(vote) and CT¢q = Enc(crd) = CRD - A".

— PIN encryption: For i = 1,...,k compute CA; = Enc(a?).

— Re-randomize cp; for ¢ = 0,...,k by multiplying in a random R to
generate cp; .

— Set CA = (CA,,...,CA;),CP* = (cpg,...,cp;) and provide a proof
(Proof of knowledge), mpaliot for the following relation, including a joint
proof of plaintext-knowledge for all the other ciphertexts in the ballot
and include the rest of the ballot in the hash for non-malleability. This
proof can be generated using the Groth-Sahai technique.

Rialiot = {(:c,w),x = (CTvote, CTed, CA),w = (vote, fvote, CRD, ferd, @, {ri}ie[k]) :
CTyote = g™ - K" vote € List of candidats,

CTaa = CRD - A, {CA; = g@" - A}y i}

— Cast ballot = (CTyete, CTcrp, CA, CP*, Thaiiot)

Revisiting Practical and Usable Coercion-Resistant Remote E-Voting 13

Polynomial evaluation: The following computation shows how to evaluate the
polynomial on the input value a, the PIN that was used by the voter:

e(CTe, f1) 7" - e(cpy, 9) - e(cpt, CAr) - - - e(cpy, CAy) =

e(CRD - A", f1)~" - e(g™ (f1)"h", g) - e(g" h™, g™ h) - ... e(gP*h™, g** ") =
e(CRD, f1) ™ - e(h, f1) "e(g™ fI9h", g) - e(gP R, g¥ BY) - .. e(gPht, g) =
e(CRD, f1) te(fi,h")e(f1,CRD)e(g*h™, g) - e(g"* h”,g“ih%’) . .e(gp’“h"“,g“kh'”") =

=0

k k k k
e,) ([T el 9% - ([T elg n7)) - ([T g™, ([elh™, 1))
1=0 1=0 1=0

e(g, g=1=0Pi%)) - e(g, h") = e(g, ¢ @) - e(g, h")

Hence, if we raise above term to power p, if poly,(a) = 0 the result is equal to 1
and otherwise not. Due to the secret fi; and zero-knowledge proofs, malicious
voters cannot construct a zero-evaluation dishonestly.

e Tally Phase: First, we check the validity of the proofs, mpajiet. In case any
of any failure, the ballot will be discarded.

— Step 1: Compute the encrypted polynomial evaluation as above and provide
a proof of its validity (efficient using the Groth-Sahai technique). Call this
Encp(t) with ¢ being the polynomial evaluation which can be seen as an
encryption in the target space. Note that this is computed from the ballot
alone. Now verifiably mix the tuples (CTcd, CTyote, Ency(t)). For each ballot
we now create Encr(crd + ¢) and remove duplicates ballot having the same
crd + ¢ which basically means same credential and same error-equivalent PIN
for honest ballots. We will do this via PETs. If we have a small number of
voters, we can mix between each duplicate removal. For a larger number we
suggest to split the board in two, remove duplicates separately, then mix
and do duplicate removal again. This will decrease the information from
the distribution of confirmed duplicates to a coercer carrying out the ”leaky
duplicate removal attack” mentioned in Sec. 2]

— Step 2: We now want to select eligible valid votes. We mix the above list and
the list of registered encrypted credential. Then we perform PETSs between
each registered credential and the submitted credential and homomorphically
add the polynomial value to this before decrypting the result. This will be
one if the credential is correct and the polynomial evaluation is correct. When
we get a positive test result we do a further PET against the credentials.
This will reveal malicous authorities creating valid polynomial evaluations
on their own. If this is positive too, we decrypt the vote and continue to the
next registered credential.

4 PIN Space Coverings

Our voting protocol ensures that the voter’s credential is validated even if they
make certain typos in their PIN. This could e.g. be a transposition error or a
single wrong digit.

14 Estaji et al.

The interesting question from a security viewpoint is now how much this
reduces the entropy of the PINs. To have a precise research question, we investigate
how many PINs an attacker needs to try to cover the whole PIN space. This is
related to the brute force attack of an attacker holding the real credential e.g.
in the smart card. We will not solve this exactly in generality, but give some
upper and lower bounds. Note also, that users generally are not good at choosing
random PINs as revealed in PIN frequency analyses. We thus recommend that
the PIN should be generated uniformly at random and not chosen by the voter.

We first focus on the case where we allow PIN swaps and an error in one
digit. Let us denote the PIN by p1ps - - - px. We first compute the number of PINs
covered by a PIN try. Let us start with the case k = 2. By [p1p2], we mean the set
of numbers covered by this PIN. Clearly [p1p2] = {p1p2, p2p1, p1*, *p2 }, where * €
{0,1,2,...,9}. After removing the repeated cases we will have |[p1p2]| = 20 for the
case p1 # p2 and it will be 19 for the case p; = ps. Actually, for 2r distinct digits
P1,---,Por, one can verify that the r 2-digits numbers p1p2, p3p4, - - -, P2r—1P2r
will cover a total of 20r — 2(;) PINs. The formula can also be used to give an
upper bound of PINs cover by r PIN trys, and thus it shows that the attacker
needs at least 8 PINs to cover the entire PIN space of all 2-digits numbers.
Since the attacker is trying to cover the PIN space with the minimum number
of attempts, a good strategy seems to be to add PINs with distinct digits as
much as possible to the basis. In the case there is no possible new PIN with
distinct digits, we will then add a PIN which increase the size of current basis
the most, and so forth until the PIN space is covered. We have implemented an
algorithm in Python following this idea, but using random sampling to find the
next optimal element for efficiency. For the case of 2-digits PIN, a basis of size 9
was found which is close to the theoretical lower bound.

Let us now consider the case of 3-digit PINs. For any PIN p;psp3 the maximum
size of all covered PIN, |[p1p2ps]| is 30. Therefore 34 will be an lower bound for
the size of basis of PIN space in this case.

Assume that only swapping errors are tolerated. For 2-digit PINs, finding a
basis is equivalent to finding a basis for upper triangular matrices. There the
basis size is 55 which the Python code also finds. For k > 3, an upper estimate
of the cover of a single PIN is k (including itself) thus 10* /k is a lower bound.

We collect the lower theoretical bounds and the upper bounds resulting from
our Python code for PIN lengths between 2 and 5 in Table [Tl We ran the code
1000 times in the case of 2,3 and 4 and just one time for the case 5.

PIN Length 2 3 4 5
S+W Lower Bound 8 34 250 2000
S+W Upper Bound 9 78 713 6490

S Upper Bound 55 465 4131

Table 1. S+W means the system accepts swapping errors and wrong digit errors, where
S means a system that just tolerate swapping errors.

https://github.com/Ehsan-ESTAJI/JCJ-Pin

Revisiting Practical and Usable Coercion-Resistant Remote E-Voting 15

5 Conclusions and Outlook

In this paper we have presented attacks and repairs on the NV12 scheme, espe-
cially, we have also presented protocols which are resilient to human errors in the
form of PIN typos. It is interesting to notice that the digitally stored key could
be combined or replaced with a key derived from biometric data. An important
future direction is to make the error correction here so efficient that we can allow
using noisy biometric data without fuzzy extraction.

For the Paillier-based system that we have presented it would be natural
to add the tally system from Ordinos [I2] since this is also based on Paillier
encryption. Ordinos will only reveal the winner or the ranking of the candidates
in the election, and will thus help for coercion-resistance in the case where there
are candidates which expected to only get few or no votes. Another method that
could used in both protocols is the risk-limiting tally method described in [9]
which gives plausible deniability for the voter.

The PIN space analysis might be of general interest, and more precise results
should be found. Interestingly, the one-digit error in k-digit PINs is related to
Rook-polynomials, [, in a k-dimensional chessboard.

Finally, some socio-tehcnical research questions are: 1) Which type of PIN
errors do voters do when the are in a vote setting and do not get any feedback
on the correctness of the PIN. 2) Related to this, what it the optimal PIN policy
that corrects as many PIN typos while still keeping the entropy of the PIN space
sufficiently high. 3) If we do not use a smart card, or use both a smart card and
key storage: how well can voters be trained to handle, fake and hide secret keys.

Of course a main missing part is to provide proofs of security for our protocols.

Acknowledgments. This work was supported by the Luxembourg National
Research Fund (FNR) and the Research Council of Norway for the joint project
SURCVS and by the FNR CORE project FESS.

References

1. R.B.J.T. Allenby and A. Slomson. How to Count: An Introduction to Combinatorics,
Second Edition. Discrete Mathematics and Its Applications. Taylor & Francis, 2011.

2. R. Aratjo, A. Barki, S. Brunet, and J.s Traoré. Remote electronic voting can be
efficient, verifiable and coercion-resistant. In International Conference on Financial
Cryptography and Data Security, pages 224—232. Springer, 2016.

3. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In In
TCC, pages 325-341, 2005.

4. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting system.
In 2008 IEEE Symposium on Security and Privacy, 18-21 May 2008, Oakland,
California, USA, pages 354-368. IEEE Computer Society, 2008.

5. C. Feier, S. Neumann, and M. Volkamer. Coercion-resistant internet voting in
practice. In E. Pléodereder, L. Grunske, E. Schneider, and D. Ull, editors, /4.
Jahrestagung der Gesellschaft fir Informatik, Informatik 2014, Big Data - Kom-
plexitdt meistern, 2014, volume P-232 of LNI, pages 1401-1414. GI, 2014.

16

7.

8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Estaji et al.

P. Grontas, A. Pagourtzis, A. Zacharakis, and B. Zhang. Towards everlasting
privacy and efficient coercion resistance in remote electronic voting. In International
Conference on Financial Cryptography and Data Security, pages 210—231. Springer,
2018.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. Electronic Colloquium on Computational Complezity (ECCC), 14, 01 2007.
V. Iovino, A. Rial, P.B Rgnne, and P. YA Ryan. Using Selene to verify your vote
in JCJ. In International Conference on Financial Cryptography and Data Security,
pages 385—403. Springer, 2017.

Wojciech Jamroga, Peter B Roenne, Peter YA Ryan, and Philip B Stark. Risk-
limiting tallies. In International Joint Conference on Electronic Voting, pages
183-199. Springer, 2019.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Towards Trustworthy FElections, pages 37-63. Springer, 2010.

O. Kulyk, V. Teague, and M. Volkamer. Extending helios towards private eligibility
verifiability. In R. Haenni, R. E. Koenig, and D. Wikstrém, editors, E-Voting and
Identity, pages 57-73, Cham, 2015. Springer International Publishing.

R. Kiisters, J. Liedtke, J. Mueller, D. Rausch, and A. Vogt. Ordinos: A verifiable
tally-hiding e-voting system. IACR Cryptol. ePrint Arch., 2020:405, 2020.

H. Lipmaa and T. Toft. Secure equality and greater-than tests with sublinear online
complexity. In F. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors,
Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, 2013, Proceedings, volume 7966 of Lecture Notes in Computer
Science, pages 645—656. Springer, 2013.

A. Silva Neto, M.Leite, R.Aratijo, M. Pereira Mota, N. Sampaio Neto, and J. Traoré.
Usability considerations for coercion-resistant election systems. In M. Mota,
B. Serique Meiguins, R. Prates, and H.Candello, editors, Proceedings of the 17th
Brazilian Symposium on Human Factors in Computing Systems, IHC 2018, Brazil,
2018, pages 40:1-40:10. ACM, 2018.

S. Neumann, C. Feier, M. Volkamer, and R. Koenig. Towards a practical jcj/civitas
implementation. INFORMATIK 2013-Informatik angepasst an Mensch, Organisa-
tion und Umuwelt, 2013.

S. Neumann and M. Volkamer. Civitas and the real world: Problems and solutions
from a practical point of view. In Seventh International Conference on Availability,
Reliability and Security, Prague, ARES 2012, Czech Republic, August 20-24, 2012,
pages 180-185. IEEE Computer Society, 2012.

Peter B. Roenne. JCJ with improved verifiability guarantees. In The International
Conference on Electronic Voting E-Vote-1D 2016, 2016.

P. B Rgnne, A. Atashpendar, K. Gjgsteen, and P. YA Ryan. Coercion-resistant
voting in linear time via fully homomorphic encryption: Towards a quantum-safe
scheme. arXiv preprint arXiv:1901.02560, 2019.

Adi Shamir and Nicko Van Someren. Playing ‘hide and seek’with stored keys. In
International conference on financial cryptography, pages 118—124. Springer, 1999.
O. Spycher, R. Koenig, R.and Haenni, and M. Schlépfer. A new approach towards
coercion-resistant remote e-voting in linear time. In International Conference on
Financial Cryptography and Data Security, pages 182—-189. Springer, 2011.
Pei-Yih Ting and Xiao-Wei Huang. Distributed paillier plaintext equivalence test.
I J. Network Security, 6(3):258-264, 2008.

S. Wiseman, P. Cairns, and A. Cox. A taxonomy of number entry error. In
Proceedings of the 25th BCS Conference on Human-Computer Interaction, pages
187-196. British Computer Society, 2011.

	Revisiting Practical and Usable Coercion-Resistant Remote E-Voting
	Introduction
	Analysis of NV12: Attacks and Problems
	The scheme:
	Attacks
	Benaloh challenge problem:
	Brute force attack:
	Leaky duplicate removal:
	Fake election identifier:
	Smart card removal:

	Security Problems

	Protocol Description
	Paillier Instantiation
	BGN Instantiation

	PIN Space Coverings
	Conclusions and Outlook

