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Abstract—Unbalanced geometric structure caused by varia-
tions with deformations, rotations and outliers is a critical issue
that hinders correspondence establishment between image pairs
in existing graph matching methods. To deal with this problem, in
this work, we propose a dual calibration mechanism (DCM) for
establishing feature points correspondence in graph matching. In
specific, we embed two types of calibration modules in the graph
matching, which model the correspondence relationship in point
and edge respectively. The point calibration module performs
unary alignment over points and the edge calibration module
performs local structure alignment over edges. By performing
the dual calibration, the feature points correspondence between
two images with deformations and rotations variations can be
obtained. To enhance the robustness of correspondence establish-
ment, the L2,p-norm is employed as the similarity metric in the
proposed model, which is a flexible metric due to setting the
different p values. Finally, we incorporate the dual calibration
and L2,p-norm based similarity metric into the graph matching
model which can be optimized by an effective algorithm, and
theoretically prove the convergence of the presented algorithm.
Experimental results in the variety of graph matching tasks such
as deformations, rotations and outliers evidence the competitive
performance of the presented DCM model over the state-of-the-
art approaches.

Index Terms—Calibration mechanism, graph matching, simi-
larity metric

I. INTRODUCTION

Graph matching, which aims to establish correspondences
between two geometrical graphs, is an important problem in
computer vision and pattern recognition tasks such as object
classification [1] [2], shape matching [3] [4] [5], surface
registration [6] [7], target tracking [8] [9] [10] , person re-
identification [11] and networks alignment [12]. Essentially, a
graph structure consists of a set of vertices and a set of edges, in
which the vertices represent the unary feature information, and
the edges represent the local geometric structure relationship
between points. Thus, given two graphs, the purpose of
graph matching can be viewed as establishing correspondence
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between their vertices sets and keeping the consistency between
the edges sets simultaneously. In general, the graph matching
can be derived to the quadratic assignment problem (Lawler’s
QAP [13]) which is known as a NP-hard problem and difficult
to obtain the global optimum due to the non-convexity of the
objective function and the discreteness of the solution space.
Therefore, many studies focus on finding approximate solutions
or local optimum by relaxing the original problem.

Regarding how to find an acceptable approximate solution or
a reasonable local optimum for the graph matching problem, we
can divide the graph matching algorithms into three categories.
The first category of algorithms use graph embedding methods
to relax the objective functions of matching models. The main
idea is that the graphs vertices can be mapped onto the feature
space, and the mapped vertices in the feature space can be
matched to approximately represent the matching of graphs
vertices. For instance, Luo et al. [14] use EM algorithm and
singular value decomposition and propose a structural graph
matching model to solve this problem. In which the graphs with
different levels of structural corruption can be matched. Bai et
al. [15] initially embed the vertices of the structure graph into
the low-dimensional Euclidean space by using the manifold
learning method, and then adopt the semi-positive definite
programming optimization algorithm to realize the matching
between point sets in the low-dimensional Euclidean space.
The method is easy to implement and has strong practicability
in real application. However, it is not guaranteed to find the
global optimal solution. Tang et al. [16] propose a general
graph matching method based on the joint embedding model,
in which a collaborative representation framework is employed
to embed and match the graph vertices. Feng et al. [17] use
a multiplicity matrix to model the spectral-multiplicity of the
graph, and then propose an alternating optimization algorithm
to solve the multiplicity matrix and the permutation matrix.
In addition, many other embedding based methods such as
equidistance embedding [18] [19], subpattern embedding [20]
and prototype embedding [21] also have been widely used
in graph matching. These methods embed the graphs vertices
into the high-dimensional feature space, and then transform
the graph matching problem into the points sets matching in
the feature space.

The second category relaxes the binary constraint to provide
an approximate model for graph matching. For example,
Leordeanu et al. [22] propose a spectral relaxation-based
model. It establishes a new assignment graph, where the points
represent the potential matching relationships and the weights
of the edges represent the pairwise consistency among the
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potential matching relationships. The global optimal solution
of the relaxation model is obtained by calculating the principal
eigenvector from the affinity-matrix based on the assignment
graph. Zhang et al. [23] relax the binary constraints to soft
matching and propose a K-nearest neighbor pooling matching
model. In which the graph matching problem is modeled as a
quadratic function and can be solved by relaxing the integer and
matching constraints. Nie et al. [24] use the high-order clique
relations to develop a hyper-clique graph matching model. The
proposed model can be optimized by the affinity-preserving
reweighted random walks method and the obtained solution is
further converted into a binary permutation matrix by Hungarian
method. In [25], the matching problem of two given graphs
is taken as the point sorting and selection problem, and a
reweighted random walks algorithm is proposed to drive the
point sorting and selection. In [26], authors adopt the alternating
direction method of multipliers, and propose a decomposition
model to address the graph matching involving constraints
with arbitrary order and potentials. In addition, Jiang et al.
[27] propose a Lagrangian relaxation-based graph matching
model, in which the double random constraints of the graph
matching problem are embedded into an objective function,
and the multivariate multiplier optimization algorithm is used
to solve the relaxation model. Khan et al. [28] perform a
bidirectional uniform graph matrix sampling to deal with the
scalability problem, and use the low-rank CUR decomposition
to solve the correspondence of graphs. Egozi et al. [29] combine
spectral relaxation and probability framework, and propose a
probabilistic graph matching algorithm.

The third category methods are based on discrete model to
directly search matching solutions in the discrete space. Lee
et al. [30] utilize the spectral properties of affinity matrix and
propose a data-driven Markov Chain Monte Carlo framework
to solve the general graph matching problem. Yan et al.
[31] propose a discrete model to deal with the hypergraph
matching problem, in which the high-order assignment problem
is reduced to a first-order linear assignment problem in the
iterative process. In each iteration, the gradient assignment
algorithm is used to find the optimal assignment matrix. In
[32], Yan et al. design an adaptive relaxation mechanism to
ensure that the proposed discrete model converges to a fixed
solution. Suh et al. [33] propose a robust graph matching
algorithm based on Sequence Monte Carlo framework which
can effectively explore the solution space under the one-to-one
matching constraint. In [34], Adamczewski et al. transform the
graph matching problem into the equivalent weighted maximum
clique problem of the corresponding association graph and
propose a penalized association graph framework.

It is worth noting that these methods have excellent per-
formance when dealing with the graph matching problem
with balanced geometric structures. However, establishing
correspondence between two graphs remains the challenge
because of the unbalanced geometric structure caused by
variations with deformations, rotations and outliers. Therefore,
it is necessary to consider: how to propose a graph matching
model to address these variations and enhance the matching
performance. To deal with this problem, some works using
transformation strategy are proposed such as the variants of

iterative closest point [35] [36], Mobius transformation [37]
and adaptive transformation [38]. However, the DCM differs
from these transformation methods and we make up for their
deficiency in the following aspects. 1) Chui et al. [35] adopt a
mapping function to perform non-rigid transformation of points,
and the thin-plate spline is used to fit the mapping function
between two point sets. Coherent point drift (CPD) [36] first
considers the alignment of two point sets as a probability
density estimation problem and embeds the transformation
into the log-likelihood function. These methods require a good
initial estimate of the transformation and only use point features
for graph matching. 2) The Mobius transformation in [37] is
used as a relaxation strategy to obtain the simple estimation,
but it restricts the unbalance characteristic of general graphs.
3) The adaptive transformation in [38] is introduced to graph
matching from the perspective of functional representation. In
which the graph matching is formulated as transformation from
one point set to the space spanned by another point set, and
the pairwise edge features of graphs are directly represented
by unary point features. Therefore, it does not consider the
important role of edge transformation in graph matching.

Motivated by the above limitations, we propose a dual cali-
bration strategy, which models the correspondence relationship
in point and edge respectively. It should be noted that the idea
of calibration has been widely used in robotics and automation,
such as lidar calibration [39] and camera calibration [40]. In
[39], Jiao et al. make use of three linearly independent planar
surfaces, and propose an automatic algorithm to calibrate dual
lidars without any additional sensors and artificial landmarks. In
[40], an effective and flexible calibration approach is proposed
for dual-camera system. In which the space intersection method
is adopted to calculate 3D coordinates and the reconstruction
error is used to optimize the calibration parameters. Different
from these calibration methods, we employ two calibration
modules to perform unary alignment over points and local
structure alignment over edges, respectively. The framework of
calibration mechanism is listed in Fig. 1. In addition, robustness
is a key issue in machine learning and computer vision. The
robust similarity metric has been commonly used in many
tasks such as feature extraction [41] and dimensional reduction
[42], but it is rarely considered in graph matching problem.
Thus, presenting a robust similarity metric is significant in the
task of graph matching. In this work we propose a novel
robust similarity metric to better establish correspondence
between two geometrical graphs. In particular, we adopt the
L2,p-norm to replace L2-norm as the similarity metric in the
proposed graph matching algorithm. As a consequence, it can
improve the robustness of the algorithm. Recently, the L2,1-
norm based methods such as [43] [41] [42] have been widely
applied to computer vision and pattern recognition to improve
the robustness, but they don’t have sufficient flexibility to
accommodate different types of data sources. Different from
L2,1-norm, L2,p-norm can be effectively applied to different
types of data sources due to the flexibility of setting p value.
Finally, the L2,p-norm based similarity metric and the dual
calibration mechanism are incorporated into a joint framework.
The main contributions of this work involve:
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Fig. 1. The framework of calibration mechanism. Note that Graph A is an original image, and Graph B is a rotated and deformed image. It is not easy to
directly establish the correspondence of feature points between Graph A and Graph B. We employ dual calibration modules on Graph B to perform unary
alignment over points and local structure alignment over edges, then Graph B is transformed to Graph C. Obviously, establishing correspondence between
Graph A and Graph C is easier than between Graph A and Graph B..

• A dual calibration strategy which performs unary align-
ment over points and local structure alignment over edges
is proposed to deal with deformations and rotations for
improving the performance of the algorithm.

• The similarity metric is no longer using L2-norm, but
instead L2,p-norm is used in the proposed model to
measure the points and edges similarities, which can
improve the robustness of the algorithm in graph matching
with unbalanced geometric structures.

• The L2,p-norm based similarity metric and the dual
calibration mechanism are incorporated into an objective
function, and an efficient iterative algorithm is proposed
to solve the objective function.

The remainder of this paper is organized as follows. Section
II introduces the notations and states the graph matching
problem. Section III presents the proposed dual calibration
model for graph matching, and derives an efficient algorithm
to optimize the model. In Section IV, the proposed model is
evaluated on the benchmark databases of both synthetic and
real-word images. Finally, we draw the conclusion and discuss
the future work in Section V.

II. PROBLEM STATEMENT

In this paper, the column vector is represented by bold
lowercase letter, e.g. x. The matrix is represented by bold
uppercase letter, e.g. X. The i-th column of matrix X is
represented as xi, the i-th row and j-th column element of
matrix X is represented as xi,j . XT represents the transposed
matrix of X.

Given two graphs G1 = (V1, E1,H1,F1) and G2 =
(V2, E2,H2,F2), extracted from the model and target images
respectively. Here V1 and V2 are point sets, and the correspond-
ing point numbers are n1 and n2, respectively. E1 and E1 are
edge sets, and the number of edges are m1 and m2, respectively.
H1, H2, F1, and F2 are four point-edge incidence matrices,
which are defined as [44]. The goal of graph matching is to
find the correspondence relationship of the point sets in G1 and

G2. Supposing the elements of X are made up of 0 or 1, the
graph matching problem can be converted to find an n1 × n2
dimensional binary matching matrix X. If point v1i1 ∈ V1
is matched with point v2i2 ∈ V2, then xi1i2 = 1, otherwise
xi1i2 = 0. On the other hand, assuming the unary similarity
of a point pair is sVi1i2 and the similarity of an edge pair is
sEk1k2

, then the graph matching problem can be formulated as
the maximization of the following objection function:

J(X) =
∑
i1,i2

sVi1i2xi1i2 +
∑

i1 6=j1,i2 6=j2
a1
i1k1

b1j1k1
=1

a2
i2k2

b2j2k2
=1

sEk1k2
xi1i2xj1j2

= xTSx, (1)

s.t.


∑n1

i1
xi1i2 ≤ 1, ∀ i2 = 1, 2, · · · , n2∑n2

i2
xi1i2 = 1, ∀ i1 = 1, 2, · · · , n1

xi1i2 ∈ {0, 1}, ∀ i1, i2
where x denotes the vectorized replica of the matching matrix
X, and the matrix S ∈ Rn1n2×n1n2 represents the global
similarity, which is calculated as:

si1i2j1j2=


sVi1i2 , if i1 = j1 and i2 = j2

sEk1k2
, if

i1 6=j1,i2 6=j2 and
h1
i1k1

f1
j1k1

h2
i2k2

f2
j2k2

=1

0, otherwise

Generally, the model in (1) is regarded as a quadratic assign-
ment problem [13] [45], and it is a NP-hard problem due to
the combinatorial property of xi1i2 ∈ {0, 1}. To deal with the
problem, many methods based relaxation strategies [25] [46]
are proposed to seek an approximate solution in the continuous
domain.

Note that this graph matching model has high computational
cost when addressing the matching problem of large graphs. To
handle this problem, Zhou et al [47] divide the global similarity
matrix S into six small/sparse matrices, which are unary and
edge-pair similarity matrices and four point-edge incidence
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matrices. The factorization can be computed as:

S = diag(vec(SV)) + (H2 ⊗H1)diag(vec(SE))(F2 ⊗ F1)
T ,
(2)

here ⊗ is the Kronecker product and vec(·) denotes the vector
form of a matrix. SV ∈ Rn1×n2 represents the similarity matrix
of point pairs, and the element of the i1-th row and the i2-th
column is sVi1i2 . SE ∈ Rm1×m2 denotes similarity matrix of
edges, which is constructed by sEk1k2

(k1 = 1, 2, · · · ,m1 and
k2 = 1, 2, · · · ,m2). Putting (2) into (1), the graph matching
problem can be formulated with the following objective
function:

max
X

J(X) = tr(ST
VX) + tr(ST

EY) (3)

s.t.


∑n1

i1
xi1i2 ≤ 1, ∀ i2 = 1, 2, · · · , n2∑n2

i2
xi1i2 = 1, ∀ i1 = 1, 2, · · · , n1

xi1i2 ∈ {0, 1}, ∀ i1, i2
here Y = (HT

1 XH2 � FT
1 XF2) ∈ {0, 1}m1×m2 is an

auxiliary matrix. Each element of the matrix yc1c2 represents
the correspondence relationship between the edges in graph G1
and graph G2. That is, if the c1-th edge in G1 and the c2-th
edge in G2 are matched, yc1c2 = 1, otherwise yc1c2 = 0. The
symbol � is the Hadamard product.

III. PROPOSED JOINT FRAMEWORK AND ALGORITHM

In this section, we introduce the details about the proposed
method for graph matching. The main content will be separated
into the following several parts including dual calibration
mechanism, an alternatively iterative algorithm, convergence
and computational complexity analysis.

A. Dual Calibration Mechanism

As mentioned above, establishing correspondence relation-
ship between two graphs with the unbalanced geometric
structure caused by variations with deformations and rotations is
difficult. In addition, the task of graph matching suffering from
outliers is also a challenge. Using the model (1) and (3) directly
to handle these graph matching problems is limited. Therefore,
in this section, we propose a dual calibration strategy to reduce
the influence of deformations and rotations, and employ the
joint L2,p-norm to measure the points and edges similarities
for improving the robustness.

We assume V1 = [v1
1,v

1
2, · · · ,v1

n1
]T ∈ Rn1×d and

V2 = [v2
1,v

2
2, · · · ,v2

n2
]T ∈ Rn2×d are point feature matrices

which are taken from point sets V1 and V2, respectively. E1 =
[e11, e

1
2, · · · , e1m1

]T ∈ Rm1×d and E2 = [e21, e
2
2, · · · , e2m2

]T ∈
Rm2×d are edge feature matrices whose elements are taken
from edge sets E1 and E2, respectively. In this paper, we
consider the two calibration modules are f1(·) and f2(·),
respectively. After performing calibration strategy, the point and
edge features with deformations and rotations can be adjusted.
The adjusted point and edge features are then computed as
f1(v) = vW1 + p1 and f2(e) = eW2 + p2, respectively.
Here W1 and W2 are two d × d dimensional calibration
matrices, and p1 and p2 are two d dimensional vectors. Assume
Q1 = [W1;p1] ∈ Rd+1×d and ṽ = [v, 1] ∈ R1×d+1, then
we have f1(v) = ṽQ1. Similarly, we have f2(e) = ẽQ2 if

Q2 = [W2;p2] ∈ Rd+1×d and ẽ = [e, 1] ∈ R1×d+1. This
way, the point similarity sVi1i2 and edge similarity sEk1k2

can
be defined as:

sVi1i2 = Sim
(
v1
i1 , f1(v

2
i2)
)
, (4)

and
sEk1k2

= Sim
(
e1k1

, f2(e
2
k2
)
)
. (5)

Employing a robust similarity metric to achieve better
performance is significant in graph matching. Generally, L2-
norm is used to measure the similarity. However, it is not robust
to graph matching with unbalanced geometric structures. In
addition, the L2,1-norm has been widely used as the similarity
metric due to the robustness, but it does not have sufficient
flexibility to accommodate different types of data sources.
Different from L2,1-norm, L2,p-norm can be effectively applied
to different types of data sources due to the flexibility of setting
p value. We therefore employ L2,p-norm as the similarity
metric, and define the point similarity and edge similarity as:

sVi1i2 = −‖v1
i1 − f1(v

2
i2)‖

p
2, (6)

and
sEk1k2

= −‖e1k1
− f2(e2k2

)‖p2 (7)

where 0 < p ≤ 2. Combining (6), (7) and (3), we can develop
a robust model as follows:

max
X,Q1,Q2

J(X,Q1,Q2) =

n1∑
i1

n2∑
i2

−‖v1
i1 − ṽ2

i2Q1‖p2xi1i2

+ µ1

m1∑
k1

m2∑
k2

−‖e1k1
− ẽ2k2

Q2‖p2yk1k2

+ µ2〈1,Y〉 (8)

s.t.


∑n1

i1
xi1i2 ≤ 1, ∀ i2 = 1, 2, · · · , n2∑n2

i2
xi1i2 = 1, ∀ i1 = 1, 2, · · · , n1

xi1i2 ∈ {0, 1}, ∀ i1, i2
here µ1 is a trade-off parameter that controls the importance
and influence between the point and edge consistency. µ2 is
a tuning parameter. The first term of the robust model in (8)
aims to maximize the point similarity after performing point
alignment. Combination of the second and third terms is to
align the edges and exploit the correspondence relationship
between the edges in the graph G1 and graph G2.

B. Optimization Algorithm

In this section, we develop a two steps iteration algorithm
to solve the proposed graph matching model. First, we fix Q1

and Q2 to compute the matching matrix X, then fix X to
update calibration matrices Q1 and Q2. Iterating the two steps
until the convergence of the proposed model is reached.

We first set the initial calibration matrices as Q1 = I1 and
Q2 = I2. After fixing Q1 and Q2, and by the simple algebra,
the proposed graph matching model in (8) becomes

max
X

J(X) = tr(ST
VX) + µ1tr(ST

EY) + µ2tr(1TY) (9)

s.t.


∑n1

i1
xi1i2 ≤ 1, ∀ i2 = 1, 2, · · · , n2∑n2

i2
xi1i2 = 1, ∀ i1 = 1, 2, · · · , n1

xi1i2 ∈ {0, 1}, ∀ i1, i2
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As can be noticed, the objective function in (9) is non-convex.
However, it can be relaxed to a convex-concave problem and
then be optimized by the path-following algorithm presented
in [47].

Conversely, when the matching matrix X is computed,
〈1,Y〉 and matching constraints are constants and can be
ignored. The graph matching is then reduced to minimize the
following function:

J(Q1,Q2) =

n1∑
i1

n2∑
i2

‖v1
i1 − ṽ2

i2Q1‖p2xi1i2

+ µ1

m1∑
k1

m2∑
k2

‖e1k1
− ẽ2k2

Q2‖p2yk1k2 . (10)

By simple algebra, we get
n1∑
i1

n2∑
i2

‖v1
i1 − ṽ2

i2Q1‖22‖v1
i1 − ṽ2

i2Q1‖p−22 xi1i2

=

n1∑
i1

n2∑
i2

tr
[
(v1

i1 − ṽ2
i2Q1)

T (v1
i1 − ṽ2

i2Q1)
]
z1i1i2xi1i2

=

n1∑
i1

n2∑
i2

tr
[
v1
i1

T
v1
i1 − 2QT

1 ṽ
2
i2

T
v1
i1

+QT
1 ṽ

2
i2

T
ṽ2
i2Q1

]
z1i1i2xi1i2 , (11)

where z1i1i2 = ‖v1
i1
− ṽ2

i2
Q1‖p−22 . Suppose Z1 is an n1 × n2

dimensional matrix, and the element of the i1-th row and the
i2-th column is z1i1i2 . Defining K1 = Z1 �X. In addition, we
also denote two diagonal matrices A1 and B1, of which the
diagonal elements are computed as

a1i2i2 =

n1∑
i1

z1i1i2xi1i2 , (12)

and

b1i1i1 =

n2∑
i2

z1i1i2xi1i2 . (13)

Combining the above representations, we have
n1∑
i1

n2∑
i2

‖v1
i1 − ṽ2

i2Q1‖p2xi1i2

= tr
[
VT

1 B1V1 − 2QT
1 Ṽ2

T
KT

1 V1 +QT
1 Ṽ2

T
A1Ṽ2Q1

]
.

(14)

Similarly, we compute z2k1k2
= ‖e1k1

− ẽ2k2
Q2‖p−22 and

assume Z2 is an m1 ×m2 dimensional matrix with elements
z2k1k2

(k1 = 1, · · · ,m1; k2 = 1, · · · ,m2). Moreover, we also
define two diagonal matrices A2 and B2, of which the diagonal
elements are computed as

a2k2k2
=

m1∑
k1

z2k1k2
yk1k2

, (15)

and

b2k1k1
=

m2∑
k2

z2k1k2
yk1k2

. (16)

Algorithm 1 DCM algorithm
Input: Two graphs G1 = {V1, E1,H1,F1} and G2 =
{V2, E2,H2,F2}.
Output: Matching matrix X.
1: Initialize Q1 = I1 and Q2 = I2;
2:while Not convergent do
3: Update the matching matrix X in (9) via the

path-following algorithm;
4: Calculate Z1, Z2, A1, A2, K1 and K2;
5: Calculate calibration matrices Q1 and Q2

using (19) and (20).
6: end while

With these definitions and denoting K2 = Z2 �Y, we have

m1∑
k1

m2∑
k2

‖e1k1
− ẽ2k2

Q2‖p2yk1k2

= tr
[
ET

1 B2E1 − 2QT
2 Ẽ2

T
KT

2 E1 +QT
2 Ẽ2

T
A2Ẽ2Q2

]
.

(17)

Putting (14) and (17) into (10), we have

J(Q1,Q2) = tr
[
VT

1 B1V1 − 2QT
1 Ṽ2

T
KT

1 V1

+QT
1 Ṽ2

T
A1Ṽ2Q1

]
+ µ1tr

[
ET

1 B2E1

− 2QT
2 Ẽ2

T
KT

2 E1 +QT
2 Ẽ2

T
A2Ẽ2Q2

]
. (18)

Now we consider how to solve the calibration matrices Q1

and Q2 of the model in (18). We aim to get the calibration
matrices Q1 and Q2 by minimizing the objective function. It
can be seen that K1, A1, B1 are relative to Q1, and K2, A2,
B2 are relative to Q2. Therefore, it does not have closed-form
solution. Here we employ an alternatively updating strategy.
First, we fix Q2 to update Q1. In this process, we utilize the
last updated Q1 to compute K1, A1 and B1. That is, Kt

1,
At

1 and Bt
1 are known in the (t+ 1)-th iteration, then we can

compute Q1 by minimizing the model (18). Conversely, we
adopt the same strategy to update Q2. Finally, performing the
derivative of J(Q1,Q2) with respect to Q1 and Q2 as zero,
respectively, we have

Q1 = (Ṽ2
T
A1Ṽ2)

−1(Ṽ2
T
KT

1 V1), (19)

and

Q2 = (Ẽ2
T
A2Ẽ2)

−1(Ẽ2
T
KT

2 E1). (20)

The pseudo code of optimizing the proposed graph matching
model in (8) is listed in Algorithm 1.

C. Convergence Analysis

In this section, we prove the convergence of the proposed
algorithm. First, we re-write the graph matching model and
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have the following equivalent objective function:

J(X,Q1,Z1,Q2,Z2)

=

n1∑
i1

n2∑
i2

tr
[
(v1

i1 − ṽ2
i2Q1)

T z1i1i2xi1i2(v
1
i1 − ṽ2

i2Q1)
]

+ µ1

m1∑
k1

m2∑
k2

tr
[
(e1k1

− ẽ2k2
Q2)

T z2k1k2
yk1k2(e

1
k1
− ẽ2k2

Q2)
]

− µ2tr(1TY). (21)

Then we have
Proposition: At each iteration of Algorithm 1, we have

J(Xt+1,Qt+1
1 ,Zt+1

1 ,Qt+1
2 ,Zt+1

2 )

≤ J(Xt,Qt
1,Z

t
1,Q

t
2,Z

t
2). (22)

It means the value of J(X,Q1,Z1,Q2,Z2) monotonically
decreases along with the iteration.

Proof : Suppose the objective function is
J(Xt,Qt

1,Z
t
1,Q

t
2,Z

t
2) in the t-th iteration, after updating

the matching matrix X in the (t + 1) iteration, we have the
following inequality:

J(Xt+1,Qt
1,Z

t
1,Q

t
2,Z

t
2) ≤ J(Xt,Qt

1,Z
t
1,Q

t
2,Z

t
2). (23)

After obtaining Xt+1, we can compute Qt+1
1 by minimizing

the model in (18). Thus, we get

J(Xt+1,Qt+1
1 ,Zt

1,Q
t
2,Z

t
2) ≤ J(Xt+1,Qt

1,Z
t
1,Q

t
2,Z

t
2).
(24)

According to (21) and (24), we have J(Xt+1,Qt+1
1 ,Zt

1) ≤
J(Xt+1,Qt

1,Z
t
1). That is

n1∑
i1

n2∑
i2

tr
[
(v1

i1 − ṽ2
i2Q

t+1
1 )T z1,ti1i2

xt+1
i1i2

(v1
i1 − ṽ2

i2Q
t+1
1 )

]
≤

n1∑
i1

n2∑
i2

tr
[
(v1

i1 − ṽ2
i2Q

t
1)

T z1,ti1i2
xt+1
i1i2

(v1
i1 − ṽ2

i2Q
t
1)
]
.

(25)

Substituting z1,ti1i2
by ‖v1

i1
− ṽ2

i2
Qt

1‖
p−2
2 , (25) can be trans-

formed to

n1∑
i1

n2∑
i2

∥∥∥(v1
i1
− ṽ2

i2
Qt+1

1 )
∥∥∥2
2∥∥∥(v1

i1
− ṽ2

i2
Qt

1)
∥∥∥2
2

∥∥∥(v1
i1 − ṽ2

i2Q
t
1)
∥∥∥p
2
xt+1
i1i2

≤
n1∑
i1

n2∑
i2

∥∥∥(v1
i1 − ṽ2

i2Q
t
1)
∥∥∥p
2
xt+1
i1i2

. (26)

Based on [48], we have the property: for all x > 0 and 0 < p ≤
2, if h(x) = xp− p

2x
2+ p

2−1, then h(x) ≤ 0. Using the property
and assuming x =

∥∥∥(v1
i1
−ṽ2

i2
Qt+1

1 )
∥∥∥
2
/
∥∥∥(v1

i1
−ṽ2

i2
Qt

1)
∥∥∥
2
, we

have∥∥∥(v1
i1
− ṽ2

i2
Qt+1

1 )
∥∥∥p
2∥∥∥(v1

i1
− ṽ2

i2
Qt

1)
∥∥∥p
2

− p

2

∥∥∥(v1
i1
− ṽ2

i2
Qt+1

1 )
∥∥∥2
2∥∥∥(v1

i1
− ṽ2

i2
Qt

1)
∥∥∥2
2

+
p

2
− 1 ≤ 0.

(27)

Taking a simple algebra, we get∥∥∥(v1
i1 − ṽ2

i2Q
t+1
1 )

∥∥∥p
2
+ (

p

2
− 1)

∥∥∥(v1
i1 − ṽ2

i2Q
t
1)
∥∥∥p
2

≤ p

2

∥∥∥(v1
i1
− ṽ2

i2
Qt+1

1 )
∥∥∥2
2∥∥∥(v1

i1
− ṽ2

i2
Qt

1)
∥∥∥2
2

∥∥∥(v1
i1 − ṽ2

i2Q
t
1)
∥∥∥p
2
. (28)

Multiplying xt+1
i1i2

on both sides of (28), and summing for
each i1 and i2, then we have

n1∑
i1

n2∑
i2

∥∥∥(v1
i1 − ṽ2

i2Q
t+1
1 )

∥∥∥p
2
xt+1
i1i2

+ (
p

2
− 1)

n1∑
i1

n2∑
i2

∥∥∥(v1
i1 − ṽ2

i2Q
t
1)
∥∥∥p
2
xt+1
i1i2

≤ p

2

n1∑
i1

n2∑
i2

∥∥∥(v1
i1
− ṽ2

i2
Qt+1

1 )
∥∥∥2
2∥∥∥(v1

i1
− ṽ2

i2
Qt

1)
∥∥∥2
2

∥∥∥(v1
i1 − ṽ2

i2Q
t
1)
∥∥∥p
2
xt+1
i1i2

.

(29)

Combining (26) and (29), and performing a simple transfor-
mation, we get

n1∑
i1

n2∑
i2

∥∥∥(v1
i1 − ṽ2

i2Q
t+1
1 )

∥∥∥p
2
xt+1
i1i2

≤
n1∑
i1

n2∑
i2

∥∥∥(v1
i1 − ṽ2

i2Q
t
1)
∥∥∥p
2
xt+1
i1i2

. (30)

This indicates
n1∑
i1

n2∑
i2

tr
[
(v1

i1 − ṽ2
i2Q

t+1
1 )T z1,t+1

i1i2
xt+1
i1i2

(v1
i1 − ṽ2

i2Q
t+1
1 )

]
≤

n1∑
i1

n2∑
i2

tr
[
(v1

i1 − ṽ2
i2Q

t
1)

T z1,ti1i2
xt+1
i1i2

(v1
i1 − ṽ2

i2Q
t
1)
]
,

(31)

thus we have J(Xt+1,Qt+1
1 ,Zt+1

1 ) ≤ J(Xt+1,Qt
1,Z

t
1).

Adding the second and third terms of (21) on both sides of
(31), we get

J(Xt+1,Qt+1
1 ,Zt+1

1 ,Qt
2,Z

t
2)

≤ J(Xt+1,Qt
1,Z

t
1,Q

t
2,Z

t
2). (32)

Similarly, we compute Qt+1
2 by minimizing the objective

function in (18). Thus, we get

J(Xt+1,Qt+1
1 ,Zt+1

1 ,Qt+1
2 ,Zt

2)

≤ J(Xt+1,Qt+1
1 ,Zt+1

1 ,Qt
2,Z

t
2). (33)

According to (33), and performing the same operations from
(25) to (32), we have

J(Xt+1,Qt+1
1 ,Zt+1

1 ,Qt+1
2 ,Zt+1

2 )

≤ J(Xt+1,Qt+1
1 ,Zt+1

1 ,Qt
2,Z

t
2). (34)

Combining (23), (32) and (34), we have

J(Xt+1,Qt+1
1 ,Zt+1

1 ,Qt+1
2 ,Zt+1

2 )

≤ J(Xt,Qt
1,Z

t
1,Q

t
2,Z

t
2), (35)
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Fig. 2. Convergence curves of the proposed DCM on the different graph
matching databases. (a) CMU database: Hotel. (b) Affine Covariant Regions
database: Gaffiti.

which indicates that Algorithm 1 converges. �
To test the convergence speed of DCM, we display the

convergence curves on the CMU and Affine Covariant Regions
databases in Fig. 2. It can be observed that the presented DCM
converges quickly within less than 10 iterations.

D. Complexity Analysis

As stated in Algorithm 1, we update the matching matrix
X in (9) via the path-following algorithm, which takes
O(T (ζ + 2m1m2) + m1m

2
2) operations. Here ζ = n31 if

n1 > n2, otherwise ζ = n32, which is the time complexity
of the Hungarian algorithm. In addition, n1 and n2 are the
number of points in graph G1 and G2, m1 and m2 are the
number of edges in graph G1 and G2, and T is the number
of iterations. On the other hand, the main complexity is to
calculate calibration matrices Q1 and Q2. It needs to update
matrices Ṽ2

T
A1Ṽ2, Ẽ2

T
A2Ẽ2, Ṽ2

T
KT

1 V1 and Ẽ2
T
KT

2 E1.
In which the time complexity is O(d(n22+m

2
2+n1n2+m1m2)).

IV. EXPERIMENTAL RESULTS

In this section, we design experiments on standard benchmark
databases including synthetics database [49], Affine Covariant
Regions database [50], WILLOW-ObjectClass database [1], and
CMU-House/Hotel database [51]. Fig. 3 displays the examples
of real images. The coordinate of each point is used as the
point feature, and the coordinate difference of the connected
points is used as the edge feature. The performance of the
presented algorithm is evaluated by comparing the matching
accuracy with the state-of-the-art matching approaches. We
brief describe them as follows:

1) Graduated Assignment (GA) [52] is a graduated as-
signment algorithm for graph matching, which is fast
and accurate. By combining graduated non-convexity,
two-way (assignment) constraints, and sparsity, large
improvements in accuracy and speed are achieved.

2) Re-weighted Random Walk Matching (RRWM) [25]
introduces a random walk view on the graph matching
problem and the core algorithm utilizes the point selection
on an association graph to represent candidate correspon-
dence between the two graphs. The solution is obtained

（a） （b）

（c） （d）

Fig. 3. The examples of real images from CMU database, Affine Covariant
Regions database, and WILLOW-ObjectClass database. (a) CMU hotel image
pair: 30 points. (b) Affine Covariant Regions wall image pair: 130 points. (c)
WILLOW-ObjectClass car image pair: 10 points. (d) WILLOW-ObjectClass
motorbike image pair: 10 points.

by simulating random walks with re-weighting jumps
enforcing the matching constraints on the association
graph.

3) Integer Projected Fixed Point (IPFP) [53] can solve
both graph matching and MAP inference efficiently. The
solution is optimized in the quadratic score of discrete
domain and shows an excellent result either by itself
or by starting from the solution returned by any graph
matching algorithms.

4) Spectral Matching (SM) [54] is an efficient spectral
method for graph matching. It gets the optimal solution
by using the principal eigenvectors of the adjacency
matrix and imposing the mapping constraints required
by the overall correspondence mapping.

5) Probabilistic Graph Matching (PM) [55] formalizes a
soft matching criterion and algebraic relation between
the hyper-edge weight matrix and the desired vertex-to-
vertex probabilistic matching. It can scale naturally from
graphs to hypergraphs.

6) Spectral Matching with Affine Constraints (SMAC) [56]
uses a new spectral relaxation technique to get the
approximate solution for matching problem.

7) Composition based Affinity Optimization Model (CAO)
[57] elicits the affinity and consistency associated with
inliers to design the outlier, and incorporates the affinity
and consistency to address multi-graph matching problem.
In our experiments, we employ the single step of multi-
graph matching for the case of bipartite graph.

8) Robust Graph Matching (RGM) [43] embeds the joint
transformation into the graph matching model to perform
unary matching and local structure matching simultane-
ously, and the L2,1-norm is used to measure the similarity.

9) Adaptive Discrete Graph Matching (DGA) [32] exploits
the discrete domain by linear assignment approximation
to iteratively update the solution and then devises an
adaptive relaxation mechanism to jump out the degrading
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case.
10) Factorized Graph Matching (FGM) [44] factorizes the

large pairwise affinity matrix into smaller matrices that
encode the local structure of each graph and the pairwise
affinity between edges for reducing computational com-
plexity. It has two versions, of which FGM-U only uses
the undirected edge features to match graphs and FGM-D
employs directed edge features for graph matching.

11) Alternating Direction Graph Matching (ADGM) [58]
using the alternating direction method of multipliers
develops a decomposition framework, which can solve
graph matching involving the constraints of arbitrary
order and arbitrary potentials.

A. Performance Evaluation on the Synthetic Database

In this part, we make a comparison between the proposed
DCM model and the state-of-the-art methods on the synthetic
database (the Chinese character ’blessing’ and tropical fish
image) [49]. Each image of Chinese character ’blessing’
contains 105 points and tropical fish is composed of 98 points.
To illustrate the robustness of our method under the influence of
deformations and noise, we conduct two series of experiments
to match points of each model image with points of the
corresponding target image. In the first series, the target image
is generated by adding Gaussian random noise with different
levels to the original model image. That is T = M+σN(0, 1).
Here M is the coordinate matrix of the points in the original
model image and T is the coordinate matrix of the points
in the target image. σ is a scale parametric. We set it as
σ ∈ {0.01, 0.02, 0.03, 0.04, 0.05} to generate five different
noise levels. The examples of different noise levels are shown
in Fig. 4, and the matching results are listed in Table I and
Table II. In the second series, we follow the experimental
setting in [59], and each model image is added the different
levels of nonrigid deformations to generate the corresponding
target image. The matching results are shown in Table III and
Table IV.

As can be seen in Table I and Table II, it is reasonable
that the accuracies decrease with the increasing of noise level.
Nevertheless, taking an overall view of matching accuracies,
the robustness of DCM is superior to other algorithms. What
we can find from Table III and Table IV is that the presented
DCM achieves higher accuracies than other algorithms on
the database with different levels of deformation variations.
Especially the performance in the Chinese character ’blessing’
sequence. DCM achieves the best performance over all other
algorithms in terms of matching accuracy. The main reason
is that the proposed dual calibration strategy balances the
structure information heuristically between unary and pair,
and the metric learning leads to the robust correspondence
relationship of graphs.

B. Performance Evaluation on the Affine Covariant Regions
Database

In this section, we conduct experiments using wall sequence
from the Affine Covariant Regions database [50] for evaluating
the performance of the graph matching approaches. The wall

sequence contains six images. The six images belong to a
same object and have various image transformations such as
rotation, scaling and stretching. In our experiment, we set the
first one as the model and the rest as the targets. That is to say,
this sequence is actually composed by five matching pairs. For
each matching pair, we extract the feature point coordinates by
using the VLFeat library [60] with the SIFT descriptor [61].
In which each image has 130 points in wall sequence. In the
first row of Table V, we summarize the matching results of
the presented DCM and other compared methods. One can
observe that the performance of the DCM is much better than
others, and the matching accuracy is 100.0%.

C. Performance Evaluation on the WILLOW-ObjectClass
Database

In this section, we conduct experiments using car, duck, and
motorbike sequences from the Willow-ObjectClass database
[1] to evaluate the performance of the presented DCM. There
are 50 duck images, 40 motorbike images and 40 car images.
Following the setting in [62], we utilize ten manually labeled
points in each image for test. Table V shows the average accura-
cies. We can see that the matching accuracies of the compared
methods in duck sequence are lower than in motorbike and car
sequences. The main reason is that duck sequence suffers from
larger viewpoint variations than motorbike and car sequences,
which leads establishing correspondence between two graphs
is more difficult. In addition, one can see the proposed DCM
obtains the good performance, and the accuracies are 99.0%,
91.6%, and 100.0%, respectively.

D. Performance Evaluation on the CMU-House/Hotel
Database

The CMU House/Hotel dataset [51] has two sequences,
of which house sequence consists of 111 frames and hotel
sequence contains 101 frames. With the same setting in [26],
we use 30 manually labeled points in each frame to test. The
comparison methods are evaluated in two ways. First, we set
frame 0 as the model image, and the rests as target images.
We match all 30 points (no outliers) and compute the average
accuracies by pairing the model with 10 targets, for example,
frame 0 and frames 1-10, frame 0 and frames 11-20, and so on.
Matching results are shown in Fig. 5 (a) and (b). It shows that
the performance of the proposed DCM is superior to the other
compared approaches. This is probably because we adopt the
dual calibration strategy, which is effective to graph matching
with rotation variation. In the second way, we choose N points
as outliers and the rests as inliers. That is, for each pair, we
match 30 − N points in the model image with 30 points in
the target image. Matching results are displayed in Fig. 5 (c)
and (d). It can be found that our DCM is more robust than
the compared methods. The probable reason is that we employ
L2,p-norm to measure the points and edges similarities, which
can reduce the influence of outliers.

E. Parameter Sensitivity Analysis

In this section, we evaluate the effect of the different
parameters to the proposed DCM algorithm.
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Fig. 4. The visual examples of different noise levels on the synthetic database. The first column represents original images. The second to sixth columns
represent the images with five different noise levels, and there are level 1 to level 5, respectively.

TABLE I
MATCHING RESULTS OF ALL METHODS IN THE CHINESE CHARACTER BLESSING SEQUENCE WITH DIFFERENT LEVELS OF NOISE (%).

Method SM PM GA RRWM IPFP-U IPFP-S SMAC ADGM FGM-U FGM-D RGM DGA CAO DCM
Level 1 42.8 29.0 41.5 81.1 80.2 74.7 87.8 95.1 83.0 79.3 95.1 75.9 72.2 96.4
Level 2 22.2 12.1 22.5 43.4 40.3 34.6 50.1 63.6 43.2 40.7 77.9 35.8 27.6 78.5
Level 3 17.2 7.1 15.8 35.2 27.2 25.2 34.6 41.1 29.5 30.0 56.9 20.9 28.2 58.1
Level 4 12.4 4.0 12.4 23.9 22.1 19.7 23.4 27.7 22.7 23.1 40.3 16.1 16.6 41.8
Level 5 8.5 3.2 9.1 19.1 19.0 14.0 15.3 23.4 17.4 17.7 31.1 12.6 14.8 30.6

TABLE II
MATCHING RESULTS OF ALL METHODS IN THE TROPICAL FISH SEQUENCE WITH DIFFERENT LEVELS OF NOISE (%).

Method SM PM GA RRWM IPFP-U IPFP-S SMAC ADGM FGM-U FGM-D RGM DGA CAO DCM
Level 1 33.9 29.2 35.3 71.7 72.7 67.0 76.2 94.7 74.0 73.1 94.3 70.9 61.0 96.3
Level 2 16.5 10.1 22.4 43.6 39.1 27.6 51.7 64.3 45.4 40.8 72.7 33.2 31.8 73.7
Level 3 10.5 6.1 14.7 28.4 26.9 16.6 33.7 37.1 28.1 24.8 53.6 22.7 21.7 49.4
Level 4 10.1 5.4 12.4 21.8 20.6 15.0 26.5 22.9 21.9 22.4 38.2 15.0 18.3 37.9
Level 5 9.2 3.6 10.5 18.5 17.1 12.6 18.4 21.0 17.1 12.6 29.7 13.1 13.0 28.7

TABLE III
MATCHING RESULTS OF ALL METHODS IN THE CHINESE CHARACTER BLESSING SEQUENCE WITH DIFFERENT LEVELS OF DEFORMATION (%).

Method SM PM GA RRWM IPFP-U IPFP-S SMAC ADGM FGM-U FGM-D RGM DGA CAO DCM
Level 1 66.5 64.2 67.8 97.9 97.6 98.8 95.1 50.7 63.9 98.8 100.0 97.1 96.6 100.0
Level 2 33.2 37.2 41.9 82.2 84.6 71.7 63.1 20.0 11.4 61.8 89.9 72.6 72.4 95.0
Level 3 20.3 25.0 31.1 63.1 60.6 40.1 39.3 15.4 8.5 37.4 85.5 46.4 52.8 89.7
Level 4 17.8 27.5 34.6 66.4 67.6 58.3 41.3 14.3 15.6 46.6 70.4 55.5 59.3 77.1
Level 5 9.6 14.9 15.7 24.0 24.6 13.3 20.6 12.6 11.6 20.0 45.5 18.7 24.2 45.7

1) Parameter p: We set p ∈ {0.2, 0.4, · · · , 1.8, 2.0} and
conduct the experiments on four databases to evaluate the
performance of the proposed DCM. The matching results are
shown in Fig.6 when choosing different values of the parameter
p. We can obtain the best selections of p according to different
databases and different matching tasks flexibly and adaptively.
In particular, it could achieve the best performance when the
values of p are set as 1.4 and 0.4 on the synthetic database with
deformation variation and noise variation, respectively. The
best results of the proposed DCM are obtained when p = 1.0
on affine covariant regions and willow-objectclass databases.
The best performance can be achieved when p ≥ 1.2 on the
CMU-House/Hotel database.

2) Parameters µ1 and µ2: We further evaluate the effect of
the different values of µ1 and µ2 on the matching accuracy.
Here we empirically set µ1, µ2 ∈ {0.001, 0.01, 0.1, 1, 10, 100}
and conduct the experiments on four databases. The matching
accuracies of the proposed DCM are shown in Fig. 7. According
to the experimental results, one can see that the performance is
not changeless to different values of parameters. In this paper
we set the values of parameter pair {µ1, µ2} as (0.01, 0.01),
(0.1, 0.1), (0.01, 0.01) and (1, 0.1) for Synthetic database,
WILLOW-ObjectClass database, Affine Covariant Regions
database, and CMU-House/Hotel database.
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TABLE IV
MATCHING RESULTS OF ALL METHODS IN THE TROPICAL FISH SEQUENCE WITH DIFFERENT LEVELS OF DEFORMATION (%).

Method SM PM GA RRWM IPFP-U IPFP-S SMAC ADGM FGM-U FGM-D RGM DGA CAO DCM
Level 1 88.7 84.0 86.5 100.0 100.0 98.8 99.7 86.5 100.0 100.0 100.0 100.0 100.0 100.0
Level 2 67.9 64.0 68.8 99.7 97.9 98.3 90.9 46.4 78.8 98.9 100.0 97.7 91.4 100.0
Level 3 47.1 51.4 55.4 91.2 87.6 76.9 77.9 33.0 50.6 76.9 98.8 90.8 88.2 100.0
Level 4 40.0 46.4 50.2 85.3 85.7 75.8 67.4 27.8 45.3 81.1 99.8 79.4 77.1 99.3
Level 5 24.4 31.1 36.6 73.6 73.4 55.9 46.1 17.1 19.1 63.1 99.5 57.7 56.3 97.2

TABLE V
MATCHING RESULTS ON THE AFFINE COVARIANT REGIONS DATABASE AND WILLOW-OBJECTCLASS DATABASE (%).

Method SM PM GA RRWM IPFP-U IPFP-S SMAC ADGM FGM-U FGM-D RGM DGA CAO DCM
Wall 66.6 58.5 67.1 97.9 95.7 91.4 84.0 53.8 93.6 94.0 100.0 93.6 95.2 100.0
Duck 59.6 49.6 71.6 69.2 68.8 64.8 71.2 86.0 75.6 67.2 88.8 60.4 72.0 91.6
Car 79.5 67.0 75.0 83.5 82.0 80.5 85.5 99.0 89.0 89.0 99.0 75.5 84.5 99.0

Motorbike 87.0 77.5 88.0 99.0 96.0 97.0 92.5 100.0 99.0 96.5 100.0 91.5 99.0 100.0
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Fig. 5. Matching results of different algorithms on the CMU-House/Hotel database. (a) and (c) display the matching accuracies in the house sequence. (b) and
(d) display the matching accuracies in the hotel sequence.
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Fig. 6. Matching results of the proposed DCM with different parameter p on the different databases. (a) Synthetic database with deformation variation. (b)
Synthetic database with noise variation. (c) Affine Covariant Regions database. (d) CMU-House/Hotel database. (e) WILLOW-ObjectClass database.
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Fig. 7. Matching results of the proposed DCM with different values of the
parameters µ1 and µ2 on the different databases. (a) Synthetic database. (b)
Affine Covariant Regions database. (c) WILLOW-ObjectClass database. (d)
CMU-House/Hotel database.

TABLE VI
RUNNING TIME (SECONDS) OF OUR DCM ON THE DIFFERENT DATABASES.

Database Solving X Optimizing Q1 and Q2 Total
SYN 85.6438 0.0014 706.9703
WOC 0.7435 0.0003 2.3455
ACR 84.1314 0.0021 435.4436
CMU 4.7817 0.0005 15.0029

TABLE VII
COMPARISON RESULTS OF COMPUTATION TIME (SECONDS) ON THE

DIFFERENT DATABASES.

Database RRWM IPFP-S ADGM FGM-D DGA DCM
SYN 31.20 4.80 9.25 117.05 4.46 706.97
WOC 0.21 0.22 1.34 1.89 0.33 2.35
ACR 95.27 7.05 30.98 230.44 9.22 435.44
CMU 0.64 0.37 1.41 5.07 0.54 15.00

F. Running Time

In this paper, our DCM is implemented in MATLAB
(R2015a). The computer processor is Intel(R) Core(TM) i7-
6700T CPU @ 2.80GHz, and the memory is 8-GB. We report
the running time in the optimizing dual calibration matrices
Q1, Q2 and solving X at each iteration, and also show the
total runtime for the the entire algorithm. The results are listed
in Table VI. For the synthetic (SYN) dataset, the tropical fish
images with 98 points are used. The proposed algorithm takes
about 85.6438s and 0.0014s for updating X and dual calibration
matrices Q1, Q2 at each iteration. After performing 8 iterations,
the convergence is reached and the total runtime is 706.9703s
for the whole algorithm. For the WILLOW-ObjectClass (WOC)
and CMU datasets, we use car images with 10 points and house
images with 30 points for testing, respectively. Our algorithm
is able to converge after performing 3 iterations, and the total
runtime is 2.3455s and 15.0029s, respectively. For the Affine
Covariant Regions database, the wall images containing 130
points are used. The whole algorithm takes about 435.4436s
when the convergence is reached (after performing 5 iterations).

To show the computational complexity straightforwardly, we
select some representative methods and report the comparison
results on running time on different databases in Table VII. It
can be found that the proposed DCM obtains better performance
in the variety of graph matching tasks such as deformations,
rotations and outliers than the existing methods but has high
computational complexity. The main reasons are that: (1) we
follow the same experimental setting of FGM-D [44] and adopt
Delaunay triangulation [63] for edge generation to build graph
structures, the number of edges increases heavily with the
number of points. For example, 10 points generate about 40
edges on the WOC dataset, while 98 points generate about 564
edges on the SYN dataset. (2) we use a two steps iteration
algorithm to solve the proposed graph matching model and the
algorithm can converge after performing 3-8 iterations. At each
iteration, the main computational complexity is to solve the
matching matrix X by adopting the path-following algorithm
proposed in [47]. For example, updating X on the SYN dataset
(fish sequence) takes 85.6438s at each iteration. It should be
noted that the proposed method is time-consuming, but it is
within today’s computing ability.
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(a) 10/10 (acc: 100%) (b) 6/10 (acc: 60%) (c) 4/10 (acc: 40%)

(d) 10/10 (acc: 100%) (e) 8/10 (acc: 80%) (f) 2/10 (acc: 20%)

Fig. 8. The visualization results for evaluating the effectiveness of edge alignment. The correct and incorrect matching point pairs are connected in red and
yellow lines, respectively. The first column (a and d) represents to the matching results of the proposed method. The second column (b and e) represents to
the matching results of the proposed method when µ2 = 0. The third column (c and f) represents to the matching results of the proposed method when
µ1 = µ2 = 0.

(a) 20 pts vs 30 pts (10 outliers) (b) 20/20 (acc: 100%) (c) 19/20 (acc: 95%)

(d) 15 pts vs 30 pts (15 outliers) (e) 15/15 (acc: 100%) (f) 12/15 (acc: 80%)

(g) 10 pts vs 30 pts (20 outliers) (h) 9/10 (acc: 90%) (i) 6/10 (acc: 60%)

Fig. 9. The visualization results for evaluating the robustness of L2,p-norm. The yellow points are outliers. The correct and incorrect matching point pairs are
connected in red and yellow lines, respectively. (a) 20 points in the model graph and 30 points in the target graph (10 points are outliers). (d) 15 points in the
model graph and 30 points in the target graph (15 points are outliers). (g) 10 points in the model graph and 30 points in the target graph (20 points are
outliers). The second column (b, e and h) represents to the matching results of using L2,p-norm. The third column (c, f and i) represents to the matching
results of using L2-norm.

G. Discussion

In this section, we analyse the effectiveness of the edge
alignment and L2,p-norm, and discuss the possible reason for
matching failure.

1) Impact analysis of edge alignment: In the proposed model
(8), we incorporate the second and third terms to align the
edges. The second term is to maximize the edge similarities
after performing dual calibration, which is helpful to establish
the correspondence relationship between two graphs but could
make Y too sparse in the process of matching. Considering

that Delaunay triangulation [63] is used for edge generation to
build graph structures, and each pair of points have multiple
edges that should be aligned. If Y is too sparse, it will go
against the improvement of matching performance. Thus we
empirically add the third term to achieve the balanced effect.
The corresponding experiments on the WILLOW-ObjectClass
dataset are conducted for investigating the effectiveness of
edge alignment. The matching results with ten points are
shown in Fig. 8. The correct and incorrect matching point
pairs are connected in red and yellow, respectively. The first
column (a and d) represents to the matching results of the
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（a） （b） （c）

（d） （e） （f）

Fig. 10. Examples on the synthetic database (the tropical fish and Chinese
character ’blessing’). a and d are original images with 98 and 105 points,
respectively. b and e are the deformed/rotated images. c and f are the aligned
images of b and e after performing dual calibration mechanism.

proposed method. The second column (b and e) represents to
the matching results of the proposed method when µ2 = 0
(i.e. no third term in model (8)). The third column (c and
f) represents to the matching results of the proposed method
when µ1 = µ2 = 0. From the results of the first and second
column, it can be seen that the third term in our model (eq. 8)
is effective to improve the performance. Comparing the results
of the first column (a and d) with the third column (c and f), it
also indicates the effectiveness of the presented edge alignment
(combining the second and third terms).

In addition, we also conduct the experiments on the synthetic
database (the tropical fish and Chinese character ’blessing’).
As observed in Fig. 10, establishing correspondence between a
and b (or d and e) is more difficult than between a and c (or d
and f). Actually, the matching accuracies of a vs. b and a vs. c
are 94.90% and 96.94%, respectively. The matching accuracies
of d vs. e and d vs. f are 9.52% and 77.14%, respectively.
The results further demonstrate the effectiveness of the edge
alignment.

2) Robustness analysis of L2,p-norm vs. L2-norm: We adopt
the L2,p-norm to replace L2-norm as the similarity metric in
the proposed graph matching algorithm as L2,p-norm can be
effectively applied to different types of data sources due to
the flexibility of setting p value. As a consequence, it can
reduce the influence of outliers to improve the robustness of
the algorithm. In order to validate the robustness of using
L2,p-norm, we use house sequence with 30 points on the CMU
dataset to conduct the experiments. We choose N (N =10, 15,
20) points as outliers. That is, for each match, there are 30-N
points in the model image and 30 points in the target image.
The visual matching results are shown in Fig. 9. The second
column (b, e and h) represents to the matching results of using
L2,p-norm, and the third column (c, f and i) represents to the
matching results of using L2-norm. From the results, it can be
observed that L2,p-norm is more robust than L2-norm in our
method.

3) Matching failure analysis: In order to analyse the possible
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Fig. 11. Matching failure example on the WILLOW-ObjectClass dataset.
The yellow points represent the matching failure. The correct and incorrect
matching point pairs are connected in red and yellow lines, respectively.

reasons for matching failure, we show a visual example of two
duck images in Fig. 11. For each image, ten manually labeled
points are used for matching. We mark them as 1 to 10, which
can be seen in Fig. 11(a) and (b). Furthermore, we follow
the experimental setting in [44] [47], and adopt Delaunay
triangulation [63] for edge generation to build graph structures.
For instance, points 1, 2, 3 make a triangle structure and points
2, 3, 4 make another structure in Fig. 11(a). As observed in
Fig. 11(c), points 3 and 4 are two matching failure cases. We
think the possible reason of matching failure is that the two
points make two different triangle structures as shown in Fig.
11(a) and (b). In Fig. 11(a), points 2, 3, 4 make a triangle
structure. In Fig. 11(b), points 3, 4, 5 make a triangle structure.
The different triangle structures have different edges, which
could lead to lose efficacy of the proposed edge alignment
module. In this case it may be lead to match failure if the
point alignment module can’t have positive effect.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a dual calibration mechanism
(DCM) for establishing feature point correspondence in graph
matching. Specifically, we first employ a dual calibration strat-
egy to solve two geometric calibration matrices. By performing
the dual calibration, the feature points correspondence between
two images with deformation and rotation variations can be
obtained. Second, we use the L2,p-norm as the similarity
metric in the presented model to measure the points and
edges similarities for reducing the influence of outliers. Finally,
we incorporate the dual calibration and L2,p-norm based
similarity metric into the graph matching model and develop
an effective algorithm to solve the model. In addition, we also
theoretically prove the convergence of the presented algorithm.
Experimental results in the variety of graph matching tasks such
as deformations, rotations and outliers evidence the competitive
performance of the presented DCM model over the state-of-
the-art approaches.

It should be noted that the proposed method can obtain
better matching accuracies than the existing methods but it has
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high computational complexity due to using the path-following
algorithm presented in [47] to solve the matching matrix X.
Thus how to develop a more effective algorithm to reduce
the computational cost is a challenging and important task.
In addition, different from our work, Gai et al. [40] use the
idea of linking two coordinate systems and 3D reconstruction
to propose dual calibration model. Can the idea be used
for the graph matching task? If the answer is yes, how to
design the new calibration scheme? Recently, cost aggregation
methods [64] [65] have attracted much attention and have
been successfully used in stereo matching [64]. It would be an
interesting problem whether the cost aggregation can be used
for improving the graph matching performance or not. Deep
neural network methods have good feature extraction ability and
also have been widely applied in correspondence matching such
as dense correspondence [66] [67] and stereo matching [68].
Adaptively incorporating the deep neural network and graph
matching model could potentially yield better performance.
Our future work will focus on these topics.
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