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Adaptive Graph Filters in Reproducing Kernel
Hilbert Spaces: Design and Performance Analysis

Vitor R. M. Elias"?, Vinay Chakravarthi Gogineni

and Stefan Werner

Abstract—This paper develops adaptive graph filters that op-
erate in reproducing kernel Hilbert spaces. We consider both
centralized and fully distributed implementations. We first define
nonlinear graph filters that operate on graph-shifted versions of the
input signal. We then propose a centralized graph kernel least mean
squares (GKLMS) algorithm to identify nonlinear graph filters’
model parameters. To reduce the dictionary size of the centralized
GKLMS, we apply the principles of coherence check and random
Fourier features (RFF). The resulting algorithms have performance
close to that of the GKLMS algorithm. Additionally, we lever-
age the graph structure to derive the distributed graph diffusion
KLMS (GDKLMS) algorithms. We show that, unlike the coherence
check-based approach, the GDKLMS based on RFF avoids the
use of a pre-trained dictionary through its data-independent fixed
structure. We conduct a detailed performance study of the proposed
RFF-based GDKLMS, and the conditions for its convergence both
in mean and mean-squared senses are derived. Extensive numer-
ical simulations show that GKLMS and GDKLMS can success-
fully identify nonlinear graph filters and adapt to model changes.
Furthermore, RFF-based strategies show faster convergence for
model identification and exhibit better tracking performance in
model-changing scenarios.

Index Terms—Adaptive signal processing, distributed learning,
kernel LMS, kernel graph filters, random fourier features.

I. INTRODUCTION

RAPH signal processing (GSP) has recently received
G increased attention due to its wide applicability to model,
process, and analyze signals and large data sets, ranging from
daily-life social networks to sensor networks for industrial and
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military applications [1]—-[5]. For instance, in the context of a
wireless sensor network, graph nodes and edges represent sen-
sors and communication links, respectively, while the so-called
graph signal is the measurement snapshot across sensors [6].
Similar to traditional digital signal processing (DSP) techniques,
the basic building block in GSP is the graph-shift operation,
which captures node interconnections [7]. In the particular case
of linear networks, the graph-shifted signal on a given node
is a linear combination of adjacent node signals, where the
weights relate to the edge values. This resemblance to DSP has
sparked the development of a vast amount of GSP counterparts
of methods related to spectral analysis [8]-[14] and traditional
time-series analysis [15], [16].

One of the key research areas in GSP is modeling unknown
relations between input and output graph signals through a
filter [11]-[18]. The application of linear shift-invariant filter
models is widely employed in the literature, e.g., to design graph
spectral filters [11], [12] and model dynamic graph signals [15],
[16]. Several works deal with adaptive learning of graph filters,
see, e.g., [19]-[23]. These methods were later extended to mul-
titask graphs [24], [25]. The previous works adopt the ideas of
linear adaptive networks [26], [27] to estimate the graph filter
through in-network processing. However, linear models can-
not accurately represent many real-world systems that exhibit
more sophisticated input-output relations. Prominent examples
include the relations between air pressure and temperature [28],
and wind speed and generated power in wind turbines [29].

In conventional DSP, several approaches to nonlinear sys-
tem modeling exist in the literature [30]-[38]. In particular,
methods based on reproducing kernel Hilbert spaces (RKHS)
have gained popularity due to their efficacy and mathematical
simplicity [36]-[53]. There is extensive literature on function
estimation in RKHS for both single- and multi-node networks,
see, e.g., [39]-[57]. Most works on adaptive networks treat each
nodal signal as time series to estimate a common filter vector.
In contrast, in GSP, the graph filter operates on an instantaneous
topology-dependent snapshot of the network state by exploiting
graph shifts. Although some of the prior works account for the
input signals’ network-related characteristics, such as smooth-
ness across the graph, existing RKHS-based approaches do not
consider graph-shifted signals. The shift operator and delayed
versions of graph signals have been explored for linear adaptive
graph filters [22], [23].

This paper introduces nonlinear graph filters and presents two
adaptive methods for function estimation over graphs, namely
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the centralized graph kernel least mean squares (GKLMS) and
the graph diffusion kernel least mean squares (GDKLMS).
Preliminary results on this topic have been presented in [58].
The proposed nonlinear graph filters generalize conventional
linear graph filters and consist of a nonlinearity applied to
a combination of graph-shifted versions of the input signal.
For the estimation methods, we consider two approaches for
model reduction, namely coherence check (CC) [40], [52] that
sparsifies the original dictionary of the GKLMS, and random
Fourier features (RFF) [59] that approximate kernel evaluations
with inner products in a fixed-dimensional space. One of the
main features of the CC-based implementation is the automatic
tuning of the model order by selecting regressors based on a
coherence measure [52]. On the other hand, RFF-based im-
plementations use a data-independent mapping into a space
where kernel evaluations can be approximated as inner-products,
making them resilient to model changes. Building upon ideas
of network diffusion [26], [27], the proposed RFF-based graph
diffusion KLMS (GDKLMS) avoids the centralized processing
and updates local estimates at each node through collaboration
with neighbors. One of the main features of the RFF-based
GDKLMS is its data-independent mapping that avoids using a
pre-trained dictionary. This makes the GDKLMS more robust to
changes in the underlying system since there is no need to retrain
dictionaries associated with distributed CC-based solutions [52].
We analyze the performance of the GDKLMS and establish the
convergence conditions in both mean and mean-squared senses.

This paper is organized as follows. Section II presents the
necessary concepts and notations of GSP, including the conven-
tional models of linear graph filters, and formulates the problem
of modeling nonlinear graph filters. The proposed GKLMS and
GDKLMS algorithms are presented in Section ITI. We first derive
the GKLMS as a centralized solution for the modeling problem
and present the implementations based on CC and RFF. There-
after, the RFF-based GDKLMS is derived. In Section IV, we
present the convergence analysis of the RFF-based GDKLMS,
along with the conditions for convergence in the mean and
mean-squared senses. In this section, we also study the steady-
state mean-squared error. In Section VI, numerical experiments
are conducted to demonstrate the performance of the proposed
solutions for identifying and tracking the nonlinear graph filters.
For this, we use both synthetic and real-life networks. Synthetic
examples employ generic nonlinear functions, whereas real-life
examples treat the modeling of relations between temperature
and humidity data from sensor networks. Finally, in Section VII,
we present the concluding remarks of this work.

II. PROBLEM FORMULATION

Consider an undirected graph G = {N, £}, where N = {1, 2,
..., K} is the set of nodes and & is the set of edges such that
(k,1) € Eifnodes k and [ are connected. The graph is associated
with a graph-shift operator, S € RE*X whose entries [S];; =
sy take non-zero values only if (k,l) € £ [1], [2]. The graph
adjacency matrix [2] and the graph Laplacian matrix [1] are the
most common choices for S. At time instant n, the graph signal
is defined by a vector X, = [21,, T2p ... Tk n]T, With 2k,

being the signal value at node k. The graph-shift operation Sx,,
is performed locally at each node % by linearly combining the
samples from neighboring nodes, namely ", N, SkiZ1,n, Where
N denotes the neighborhood of node k including % itself. In
this work, we assume the graph topology and the shift matrix
are known. For cases where S is not known, one can employ
different techniques for learning the graph structure available in
the GSP literature [11], [60]-[64].

A linear shift-invariant (LSI) graph filter of size L x 1 com-
bines shifted graph signals and is defined by

L—1
H=> hS, ey
=0

where [hoh1 ... hy1]" is the linear graph filter coefficient
vector [12], [22]. When streaming data is available, a two-
dimensional graph-time filter [13] can be employed. The filter
processes the signal x,, and yields the graph filtered vector

Yn = [yl,n Yan - yK,n]T as
L—-1M-1

Yo =2 D hiyS%uj+vn, )
i=0 j=0

where M — 1 is the filter memory in temporal domain,
and v, = [V1, V2 p ... VK|t is a zero-mean wide-sense
stationary (WSS) noise with covariance matrix R, =
diag{c? 1,07 5,...,00 i }. Also, v, and vy, are i.i.d. for any
n # m. The model (2) uses walks of up to length L. — 1 in the
graph. Thus, it requires multihop communication in distributed
implementations, which limits its usage in real-time applica-
tions.

A simplified model that avoids multihop communication can
be constructed by combining time and graph domains into one,
as

L-1
Yo=Y hiS' %y i + vy 3)
i=0
A graph diffusion LMS strategy using model (3) is proposed
in [23]. In (3), samples {@k n, [SXn-1]k, - -+, [SE %0 r11]k}
are available locally at node k. Thus, only one graph-shift
operation is needed at each time instant. A crucial difference
between our GSP approach and conventional single- and multi-
variate DSP approaches lies in our assumption that the signals’
spatio-temporal dynamics depend on the graph structure.

In many real-world applications, these linear models cannot
fully capture the input-output relations [37]. For this purpose, we
assume a nonlinear relation between input and output, at node
k, given by

Yen = f(rk,n) + Vk,n>» (4)

where f : R — R is a continuous nonlinear function on R,
Uk,n 1s the observation noise at node k, and

[SL_an7L+l]k]T~ 6)

The objective here is to identify f(-) at each node k given a
set of data pairs {ry ;, Y.}, 7 € {1,2,...,n}. In this paper, we

I'k,n = [mk}n [an,l]k
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characterize nonlinear graph filters using the principles of kernel
adaptive filters.

III. GRAPH KERNEL ADAPTIVE FILTERS

In order to estimate the nonlinear function f(-) in (4), ker-
nel methods first map the input regressors {rkl}lef p—q INto
a higher dimensional feature space where f(-) takes a linear
form [37], [49]. This mapping is denoted by (-, 1 ;), in which
k() : REx RY — R is a reproducing kernel, which satis-
fies [37]

KTk, Thi) = (K5 Thon ) K05 Th ) gy s (6)

where 7 is the induced RKHS and (-, -)3 denotes the corre-
sponding inner product. In (6), (-, ry ;) is a representer evalu-
ation at ry, ; [51], [52]. The definition of the kernel function is
sufficient to evaluate the inner product in (6) without explicitly
mapping the data into RKHS.

A. Graph Kernel LMS

In the GSP context, K new data samples are available at each
time instant. Then, given a set of regressors {ry;}"" , _ . the
graph function f(-) can be expressed as a kernel expainsion in
terms of the mapped data as

n K
ZZO@;@H I‘}gl (7)

i=1 k=1

The model (7) can approximate any continuous function
f(+) [37]. Hence, the corresponding estimate of y; ,,, at node
l, is given by

yl,n

f(rin :Zzazkﬂrm,rm) (®)

i=1 k=1

The coefficients of the expansion in (8) are obtained through
the following minimization problem:

3 E|:<yln Zzazkﬂ I‘mﬂ“m))?

i=1 k=1

min
Ak E]R

= min E [||yn K, a||§], )

aeR!LK
where E[] denotes the expected value of the argument, a® =
[al af T, with a} = [a1 @iz - .. a;x], and the matrix

ajay ...oQ

is a Gram matrix with [K; ), x = £(rn, k) for k,l € N.

Considering the growing nature of the dictionary, access to
the second-order statistics is impractical. Therefore, we use a
stochastic-gradient approach and minimize the instantaneous
value of (9) recursively. The update equation for the graph
KLMS (GKLMYS) is given by

K,=Ki.Ko,...Kyn

Opt1 = Oy, + M KE (YH - Knan), (11)

where 11 > 0 is the step size.
The proposed GKLMS algorithm is summarized in Algo-
rithm 1.

Algorithm 1: GKLMS.

Input: step size

Initialization: g = empty vector;

9 Learning

for each time instant n do
Inpln: Yn, {rk,n}i{:l
append K zeros to a,;
compute K,, = [Kq , Kz, ...
update an+1 =a,+u Kn (¥n
store regressors {rg ,}5_;

end

Knnl;

B. Graph Kernel LMS Using Coherence-Check

As follows from (8), the model order grows with both time,
n, and network size, K, when new data samples arrive. This
increase makes this model unsuitable for real-time applications
and large-scale networks. The growing dimensionality of the
dictionary is a well-known issue in single-node kernel meth-
ods [40], [41], [49]-[53], where several solutions have been
proposed that learn a sparse, or fixed-size dictionary. Of these,
the coherence-based sparsification schemes use a coherence
metric [40], [52] between a candidate regressor and the current
dictionary to decide whether to include the candidate in the
dictionary. Given a set of data samples {rk7i}f:’7i;1:1, various
approaches can be employed to construct a CC-based sparse
dictionary adaptively. In a centralized manner, one can consider
regressors from all nodes at each time instant and test the
coherence metric for each regressor r; ,,, given by

Sin = rrjrle%)i |6(rrm, ;)]

12)

where D,, denotes the dictionary obtained before testing re-
gressor T ,; the dictionary starts empty before running the
algorithm. Given a predefined threshold, § > 0, if §; ,, < J, the
regressor is added to the dictionary. The process continues over
the remaining regressors, accounting for previous regressors
added to the dictionary, until a predefined dictionary size, D,
is achieved, or all the data samples are used. Therefore, using
the coherence check criterion, ¥; ,, in (8) can be rewritten as

Jin = > ik K1, Thi),

ieM,, kek;

(13)

where M, is a set of time instants (up to time instant n) in
which at least one input regressor is added to the dictionary,
with |M,,| < n, and K; is a set of node indices of the regressors
that passed the coherence check at time index ¢, with |K;| <
K. Under the CC criterion, at time index n, the dictionary D,,
contains |D,,| = 3, v || regressors.

Remark 1: Given a set of reasonable conditions on the thresh-
old, §, the maximum number of regressors in the dictionary is
finite, i.e., | D,,| stops increasing after a certain time [52].
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Algorithm 2: GKLMS using Coherence Check.

Input: training data {fm,gl,i}ﬁﬂ:l, dictionary size D,
threshold ¢, and step size
Initialization: D = (), g = empty vector,
% Learning
for each time instant n do
Inpl“: Yn, {rk,n}gzl
for k=1,...,K do
if |D| < D then
compute 6;,, = Maxy,ep |[K(ryn,r;)[;
if 0;,, < ¢ then
add r; ,, to D;
add [ to IC,,;
end
end
end
if |IC;,| # 0 then
append |KC,,| zeros to cy,;
add n to M,,;

end
compute K,, = [Kj ,, Kg_&n K|M~n"n];
update &, 11 = a, + p KY (y, — K,a,);

end

The coefficients of the expansion in (13) are obtained through
the following minimization problem:

K 2
min 3OE (y— S Y <>>
OéikER —

=1 ieM,, kek;

= min E |:||Yn - RR&H%} ,

acRPnl

(14)

T ~T ~T
=

~ ~T . ~T  ~ ~
where « oy oy ..oapyy, ), with o =[andz ...

ik, € RIXil. The matrix K,, is a Gram matrix given by

K, = [Rl,n RZ,n s R\M,”\,n] € RKX‘D”" (15)

with [Kzn]lk = k(v p,Tky), forl € Nand k € K;.

Using the stochastic-gradient approach and minimizing the
instantaneous value of (14), we obtain the following update rule
of the centralized GKLMS using coherence check:

&’n+1 = an + p KZ (y” - K’VLa’VL)‘ (16)

Algorithm 2 summarizes the steps for pre-training the dictio-
nary according to the CC criterion and the learning stage of the
CC-based GKLMS algorithm.

Remark 2: If coherence check is employed in an online fash-
ion, two events must be considered for each candidate regressor.
If the regressor does not satisfy the CC criterion, the dictionary
remains the same. Otherwise, K,, gets one new column and a
zero-valued entry must be appended to &, [52]. At every time
instant ¢, fori € M,,, |KC;| regressors are added to the dictionary.
Hence, |K;| zeros must be appended to &,.

C. Graph Kernel LMS Using Random Fourier Features

An alternative to sparsification methods, like CC, is pro-
vided by RFF [59]. The shift-invariant kernel evaluation
K(Tin, Tk;) = k(T — I'y,;) can be approximated as an inner
product in the D-dimensional RFF space. This turns the problem
into a finite-dimension linear filtering problem, while avoiding
the evaluation of kernel functions [59]. Let 2, ,, be the mapping
of r;,,, into the RFF space R, given by

Zin =

(D/2)"* [cos(ViTy, +b1) ... cos(Vhr, + bD)]T,

a7)

where the phase terms {b; } 2, are drawn from a uniform distri-
bution on the interval [0, 27]. Vectors {v;}2 , are drawn from
the probability density function (pdf) p(v) such that

k(ry, —rg:) = /p(v) exp (jvT(rlyn - rk,i)) dv, (18)

where j2 = —1. In other words, the Fourier transform of
k(r;, —rk,) is given by p(v). From (17) and (18), it can be
verified that E[zg’izlm} = k(rn, rg;). Then, the kernel eval-
uation can be approximated as £(r ,, T ;) ~ Zg,izl,n and the
estimate g ,, in (8) can be approximated by

n K T
Jin N (ZZ% zk,i> Zin ="z, (19

i=1 k=1

where h € R? is the representation of the function f(-) in the
RFF space. A higher value of D improves the approximation
of the kernel function. Therefore, the choice of D depends
mostly on the application, as it represents a trade-off between
performance and complexity.

We note that, if a Gaussian kernel given by x(r;,,ry;) =
exp (—||rn — ri]|3/(202)) is used, the pdf p(v) is given in
closed form as a normal distribution. See [59] for closed-form
representations of p(v) when other kernel functions are used.

The linear representation of f(-) in the RFF space, h, can be
estimated by solving the following optimization problem:

i n—Z h|?], 20
min E [|ly, — Z,h3] (20)

where the matrix
Zn = [Zl,n Zo2n .- zK,n] (21)

represents the RFF mapping of all input vectors at time n. Similar
to (16), approximating the solution through stochastic-gradient
descent iterations yields the RFF-based centralized graph kernel
LMS (GKLMS) update rule

hn+1 =h, + ,U/Znen’ (22)

where e,, = y,, — ZIh,,. The proposed GKLMS using RFF is
summarized in Algorithm 3.

Notice that the estimates & in (16) and h in (22) require knowl-
edge of the input of the entire graph, which can be impractical
in applications without a centralized processing unit. Therefore,
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Algorithm 3: GKLMS using RFF.

Algorithm 4: GDKLMS using RFF.

Input: RFF-space dimension D, pdf p(v), step size u
Initialization:
draw vectors {v;}2, from p(v);
draw phase terms {b;}2; from [0, 27];
hy = 0p;
%1.earning
for each time instant n do
IIlplltZ Yn, {rk,’n}le
compute {z;,}<, using (17);
construct matrix Z,, using (21);
update h,,+1 = h,, + uZ,e,;
end

we propose a distributed implementation of the GKLMS, named
graph diffusion KLMS (GDKLMS).

Remark 3: A CC-based distributed implementation requires a
pre-trained dictionary available at each node [40]. The dictionary
can be pre-trained in a centralized way and broadcasted to the
entire network, or by a single node that shares its dictionary
with all nodes. More importantly, the dictionary depends on
available training data, and may be retrained whenever there
are changes in the underlying model. Therefore, RFF-based
algorithms seem more suitable for distributed implementations
and robust to changes in model and data statistics.

D. Graph Diffusion Kernel LMS Using RFF

In order to derive a distributed implementation, the global
optimization problem (20) is expressed alternatively in the fol-
lowing separable form:

K

arg min Z E [(yk,n — Zg,nlbk)z] ’
Py, Pp ERP k=1

(23)

where 1), is the local estimate of h at node k. The optimization
problem in (23) can be solved in a distributed fashion by min-
imizing E[(yx,n — 2z}, ,%)?] at each node. Let e, = ypn —
z;fﬂﬂﬂ 1.~ Following the similar lines of centralized GKLMS, the
update rule for 1, is given by

Vi1 = Vi T 1 €k nZkn- (24)

We now leverage the graph structure and adopt the adapt-
then-combine (ATC) strategy to improve individual estimates
via graph diffusion [22], [23], [26], [40], [65]. The ATC strategy
is one common diffusion strategy composed by two steps. At
iteration n, the first step updates the local estimate, at a given
node k, using the new input {ry ., yx.}, generating an inter-
mediate estimate. In the second step, nodes share and combine
their intermediate estimates to generate the final estimate for
that iteration. That is, the parameter update of hy, ,, at node k
is obtained by combining the estimates from its neighborhood.
Note that the graph structure defines a node’s neighborhood, and
adjacent nodes relate to each other. The ATC update rule for the

Input: RFF-space dimension D, pdf p(v), step size p,
combination coefficients a;y,

Initialization:

draw vectors {v;}2, from p(v);

draw phase terms {b;}?, from [0, 27];

hk’() =0p, Vk € {1,2,...,K};

Yo =0p, Yk € {1,2,...,K};

% Learning

for each time instant n do

for k=1,...,K do

compute zj ,, using (17);

update ¢k,n+1 = hk,n +p €k,nZk,n;

end
for k=1,...,K do

update hy, ;41 = > T/’l,n+1?
leEN}

end
end

GDKLMS using RFF is given by

Vi1 = Den + 1 €k nZk o, (25a)

hy i1 = Z aye Yy i1
1EN},

where the combination coefficients a;; are non-negative and
satisfy the condition Zle N, Ak = 1[26]. We could use a similar
combine-then-adapt (CTA) strategy [65]. Both ATC and CTA
strategies share fundamentally the same structure and yield
similar results [27]. Algorithm 4 summarizes the steps of the
GDKLMS implementation using RFF.

(25b)

IV. CONVERGENCE ANALYSIS

In this section, we study the performance of the proposed
RFF-based GDKLMS and establish the conditions for its con-
vergence both in mean and mean-squared senses. For this, at net-
work level, we define the filter coefficient vector in the RFF space
h, = 1x ® h, the estimated filter coefficient vector in RFF
spacehy ,, = [}, h, ... hj |7, and the (RFF-mapped) in-
putdatamatrix Z,, = blockdiag{z1 ,Z2n,. .., 2K} Inthese
definitions, 1k is a vector of size K x 1 with every entry taking
the value one, ® denotes the right Kronecker product operator,
and blockdiag{-} denotes the block-diagonal-stacking operator.
Using these definitions, the network-level data model is given
by

Yn=2rh, +v,. (26)

From these definitions, the network-level recursion of the
RFF-based GDKLMS can then be expressed as follows:

hg,n+1 - A(hg,n + ,U/Znen) 3 (27)

where A = AT ® Ip. The matrix A, with [A];; = ai, is a
K x K left stochastic matrix (i.e., each column consists of non-
negative real numbers whose sum is unity). In the following,
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we study the convergence behavior of the proposed RFF-based
GDKLMS governed by the form (27). For this, we assume the
following:

A1l: Given anode k € N, the RFF-mapped data signal zy, ,,
is drawn from a WSS multivariate random sequence with
correlation matrix R j, = E[zkmz;f)n}; in addition, the
data vectors zy, ,, and z; ,,, are independent, for all k #
leN.

The observation noise v,, is a zero-mean WSS mul-
tivariate random sequence, with diagonal correlation
matrix R, = E[v,v}] = diag{o? ;,07,,... 7012;,1(}’
being independent of any other random signal in the
model.

The weight vector hy, ,, is taken to be independent of
Zj . for k € N.

The graph topology is assumed to be static, meaning
the shift matrix S and the combiner coefficients a;;, are
constant throughout the process.

The step size p is sufficiently small so that the terms
involving higher order powers of 1 can be ignored.

The above assumptions are commonly used in the analysis of
distributed adaptive schemes over networks.

Remark 4: Note that the vector z ,, is the representation
of ry, in the RFF space. Hence, z; , may not be normally
distributed. If the basis of the RFF space is generated in a
way such that the basis vectors v; # v; for any i # j, the
autocorrelation matrix R.; i, for k € A/ will be strictly positive
definite [47].

Apart from these assumptions, the analysis also requires prop-
erties of the block maximum norm of a matrix (i.e., || - ||b,c0), the
block vectorization operator (i.e., bvec{-}) [27], and the block
Kronecker product of two matrices (i.e., ®yp) [66]. Details of
these operators can be found in [27], [66], [67].

A2:

A3:

A4:

AS:

A. First-Order Convergence Analysis

Denoting the global weight deviation vector of the proposed
GDKLMS using RFF, at time instant n, as h, , = hy —hg .,
recalling the fact that Ah, = h, (since the matrix A is left
stochastic), from (27), the recursion for flg’n can then be ob-
tained as

flg,nJrl = anlg,n — K Azn Un, (28)

where B,, = A(Ipx — uZnZE). In the following, we estab-
lish the condition for the convergence in mean.

Theorem 1: Assume the data model (26) and the assumptions
A1-A4 hold (assumption A5 is not required here). Then a
sufficient condition for the proposed RFF-based GDKLMS to
converge in mean is given by

2 .
max {max il Rz,k>}}

1<k<K | 1<i<D

0<p<

(29)

Proof: Taking the statistical expectation E[-] on both sides of
(28), and using the assumptions A1-A4, we obtain

Elh, 1] =B Elhg,], (30)

with B = E[B,] = A(Ipx — uR.), where R, = E[Z,Z]]
= blockdiag(R., 1, R 2,..., R k).

From (30), it is easily seen that lim,, .., E[ﬁg,n} attains a
finite value if and only if ||B|| < 1, where || - || denotes any
matrix norm. We derive a convergence condition in terms of p,
by constraining the block maximum norm of the matrix B (i.e.,
1B]|b.00)- Using the properties of block maximum norm [26],
we can write

1B

b,oo < ”A”b,oc”IDK - .URsz,oo- (31)
Since the matrix A is left stochastic, we have |Alp. =
|AT ® Ip||b e = 1. Furthermore, as the matrix (Ipx — uR.)
is block diagonal symmetric, using [26, Lemma D. 3(a), D. 5], a
sufficient condition for E[flgm,] to converge in mean is given by
p(Ipx —uR;) < 1, or, equivalently, |1 — pA;(R.))| < 1 for
je{1,2,..., DK}, where p(-) denotes the spectral radius of
the argument matrix and ;(R.) denotes the jth eigenvalue of
R.. After solving this, we arrive at (29). [ |

B. Second-Order Convergence Analysis

Next, we focus on the second-order convergence analysis of
the proposed GDKLMS using RFF. Using the energy conserva-
tion approach, we investigate the steady-state MSE performance
of the proposed scheme.

Defining the 3-weighted norm-square of h,, ,, as ||h, .|| =
fl;[:nzflg,n, where X is a positive semi-definite matrix that can
be chosen arbitrarily, and using the assumptions A1-A4, one can
write

B [IBgns1l3] = E [IBynliy]

+ 1*Elvf 2L ATS AZv,),

(32)

where the cross terms are zero since v,, is taken to be zero-mean
and statistically independent of zy, ,,. The matrix X' is given by

> = E[B!ZB,]. (33)
Now, using the block Kronecker product denoted by &y, [66]

and the bvec{-} operator [66], we can relate the vectors o =
bvec{X} and 0’ = bvec{X'} as

o' =Flo, (34)
with
F =E[B, 2, B, =(A® A)H, (35)
where
H ~Ipz gz — p(R. @b Ipk) — u(Ipx @b R;).  (36)

In the above expression, using the assumption AS, the terms
involving high-order powers of y are ignored, and we continue
our analysis with this approximation. Note that this approxima-
tion is standard in the analysis of many distributed schemes over
networks [26], [27].
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Now, consider the second term on the right-hand side of (32).
We can write it as
Elv, Zr ATSAZv,)
=Tr (E[v, 2, ATSAZv,))
=Tr (AE[Z,v,v, Z,]A"E)

=Tr (AE[®,]A"S), (37

where ®,, = ZnRUZE.
Using the properties of block Kronecker product [66], we
finally have

Tr (AE[®,]ATS) =0, (38)

where v = bvec{AE[®,]A"} = (A® A)7,, with
vy = brec{E[®,])
= bvec{E[Z, R, Z,]}

=E[Z, ®, Z,] - bvec{R, }. (39)

Combining these results, (32) can be expressed as

E |:||flg,n+l||§vec’1{a}:| =E |:||}~197n||§vec’l{-7'-Ta'}i|

+u*yle, (40)
where bvec™!{-} rearranges the argument vector of size
D? K? x lintoa DK x DK matrix, i.e., ¥ = bvec ' {o}.
Theorem 2: Assume the data model (26) and that assump-
tions A1-AS hold. Furthermore, assume that the step size p is
sufficiently small such that the approximation (36) is justified by
ignoring the higher-order powers of 1, so that (40) can be used
as a reasonable representation for studying the dynamics of the
weighted mean-squared deviation (MSD). Then, the proposed
RFF-based GDKLMS converges in mean-squared sense under

1
0<p< . (41)
e { e

Proof: Tterating the recursion (40) backwards down ton = 0,
we obtain

E ||flg;n+1||§vec’1{o’}:| =E |:H1:vlg«,0Hg\/ec’l{(]-'T)n+1o-}i|

+ [1,2")’T (IDQ K2 + Z (fT)z) o,
i=1
(42)

where h, o =h, —h, . Note that under | FT| = ||F| <
1, we will have (F')"*! — 0p2x2 as n — co. Hence,
E[|[hg |7 .. {a}] attains a finite value. Therefore, a sufficient

condition for convergence of E[|[h,.,,.1%] is then given by
IF|| < 1. To derive a convergence condition in terms of z, we
use the block maximum norm of the matrix F, i.e., || F||p oc-
From the properties of the block maximum norm [26], we can

write

IF

boo = [[(A®p A)H

boo < [[(A®p A)

b,oo|[H]

b,o00+

(43)
The term (A ®y, \A) can be written as (A ® A)T ® (Ip @ Ip).
Again, from the properties of the block maximum norm, we have
AL Allboo = (A ®A)T @Ip2||p = 1. Now, substitut-
ing the definition of H as given by (36), we have

| F[b,00 < 1 Ip2 k2 — p(R: @b Ipk) — p(Ink @b Rz)||boc-
(44)

Since the argument of the norm on the right-hand side of (44)

is a block diagonal symmetric matrix, from the properties of
block maximum norm, it is seen that E[”ﬁg’n”gvec’l {U}] con-

verges under

P(Ip2 k2 — (R, @, Ipk) — p(Ipx @b R2)|[boo) < 1,

(45)
or, equivalently,
‘1 - :u“)“P(RZ) - HA‘Q(RZ)‘ < 17 p,q € {1725 e aDK}
(46)

Note that (R, ®p, Ipk) and (Ipx ®p R.) have the same set of
eigenvectors and eigenvalues. Also, A;(R) has multiplicity of
DK, for [ € N. After solving the above condition, we obtain
the mean-squared convergence condition on g given in (41).

Remark 5: We observe that the bounds established for ;1 are
inversely proportional to the spectral radius of the covariance
matrix of vectors z;. Hence, similar to conventional stochastic
gradient algorithms, p requires tuning according to the largest
eigenmode.

C. Steady-State Mean-Squared Error

For o under (41), letting n — oo on both sides of (40), we
have

. » 2
Tim B [|[By.0

_ ,,2.,T
bvec’l{(IDszﬁ’FT)o’}] =py o (47)

By selecting 0 = (Ip2 g2 — F ') 'bvec(R.), (47) becomes

lim E [[[by,0 & | = #27" (Ip2 2 — F7) Mbrec(R..).
(48)

Using (48), the network-level steady-state mean-squared error
(SMSE) of the proposed RFF-based GDKLMS is given by

1

SMSE = — lim Ele; e,]

n—0o0

lim
n—0o00

(BB, 2,25 hy,0] + Elvlv,]]
. ” 2 : T
[ 1im B[l ] + lim Blvfv,]]

S I L ]

[,u,2"yT(ID2 K2 — TT)ilbveC(Rz) + tr(RU)} .
(49)

V. COMPLEXITY ANALYSIS

This section details the computational complexity of the pro-
posed algorithms. For the GKLMS algorithm, the Gram matrix
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computation (10) requires a total of nK? kernel evaluations.
The complexity of kernel evaluations is treated separately, as
we do not consider a specific kernel function. The computational
cost of (11) is 2nK? + nk multiplications and 2nK? additions.
These values reveal that kernel methods’ complexity does not
scale well with time and network size without using techniques
to deal with the growing dictionary.

CC-based sparsification requires K |D| kernel evaluations per
iterations for computing the Gram matrix, where D denotes the
dictionary size, and |D|(2K + 1) multiplications and 2K |D|
additions for the parameter update. The CC-based approach also
requires dictionary training, and the minimum number of kernel
evaluations for training is |D|(|D| — 1)/2, assuming the first |D|
regressors are added to the dictionary. An upper bound for the
training process is t|D| kernel evaluations, where ¢ is the number
of training data samples.

For the RFF-based computation, the mapping’s complexity
into RFF space is assumed similar to that of the kernel evaluation.
In this case, the RFF-GKLMS requires K D kernel evaluations
for the mapping, and D(2K + 1) multiplications and 2K D ad-
ditions for the update, where D denotes the dimension of the RFF
space. Considering the case where |D| and D are the same for
the CC- and RFF-based implementations, their complexities per
iteration are also the same. The CC-based approach, however,
has the added complexity of training the dictionary.

Finally, The GDKLMS using RFF requires, at each node,
D(|N| + 3) multiplications and D(JN|+ 1) additions, with
| V| denoting the node’s neighborhood cardinality. The mapping
into the RFF space needs D kernel evaluations.

VI. NUMERICAL RESULTS

This section demonstrates the performance of the proposed
algorithms through extensive numerical experiments under syn-
thetic and real network data. This section demonstrates the
performance of the proposed algorithms through extensive nu-
merical experiments under synthetic and real network data. We
exclude comparisons with state-of-the-art methods based on the
linear model (3) because their performance in the considered
setting will be poor. In all simulations, the value of § is adjusted
as a function of the target dictionary size, such that we can reach
the target size while still having a representative dictionary.

A. Nonlinear Graph Filter Identification

First, we consider a connected Erdos-Renyi graph comprising
K = 20 nodes with edge probability equal to 0.2. The shift
matrix S is constructed as follows: first, the existing edges,
according to the previously constructed graph, receive a weight
value drawn from the uniform distribution in the interval (0,1];
each entry sj; receives the value of the corresponding edge
weight or zero if the edge does not exist; the eigenvalues
{x k}szl of S are normalized by the largest eigenvalue such that
|Ak| < 1. Input signal x,, and observation noise v,, are drawn
from zero-mean normal distributions with covariance matrices
R, = diag{o} ,} and R,, = diag{o? , }, respectively, where
0326, ;. are drawn from the uniform distribution in [1,1.5] and 012}7 &
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Fig. 1. Learning curves (network-level MSE vs. iteration index) for the

proposed algorithms with large dictionary size and RFF-space dimension.

from [0.1,0.15]. For distributed implementations, the combina-
tion coefficients ay; are computed according to the Metropolis
rule [26]. We used a Gaussian kernel with o2 = 1. For a filter of
length L = 4, we aim at estimating the time-invariant nonlinear
function given by

f(ren) = \/rimJ + sin?(rgn47m)

+(0.8—10.5 eXp(—T']%’nﬁg)'rk,n,& (50

The network-level instantaneous MSE, given by MSE,, =
+ Zszl eim, is considered as the performance metric and
results are displayed by plotting MSE,, versus the iteration index
n, averaging over 1000 independent runs.

In Fig. 1(a), we present the learning curves of the centralized
approaches based on CC and RFF. We limit the size of the
dictionary and set the dimension of the RFF space to D =
256. Results show that, for large enough dictionary sizes and
RFF-space dimensions, these implementations are able to reach
similar performance to that of the GKLMS implementation
without sparsification methods. In Fig 1(b), we show similar
results comparing the CC- and RFF-based GDKLMS against the
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Fig. 2. Learning curves (network-level MSE vs iteration index) for the pro-

posed algorithms considering small values for D.

GKLMS without sparsification. For the CC-based GDKLMS,
we pre-train the dictionary before the learning process. The cen-
tralized implementations can better approximate the GKLMS
without sparsification when compared to the GDKLMS. This
is an expected result considering that data from the entire
graph is available during the learning process of the centralized
approaches.

InFig. 2(a) we compare the proposed algorithms when smaller
dictionaries and RFF-space dimensions are considered. Specif-
ically, we compare the implementations based on RFF and
coherence check against each other. For this purpose, we adjust
the step-size p and assess the convergence speed as the learn-
ing curves for both implementations achieve similar values of
network-level steady-state MSE. Again, the value D € {16, 32}
represents both the dimension of the RFF space and the size of
the pre-trained dictionary for the coherence check approach.
Results show that both CC- and RFF-based algorithms are
capable of effectively representing the target function. Fig. 2(a)
also shows that, for the same value of D and for similar values
of network-level steady-state MSE, the RFF-based GKLMS
converges faster than the CC-based one. Moreover, it can be
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observed that the performance of the implementations with
fixed-size dictionaries greatly improves as D is increased from
16 to 32.

Fig. 2(b) shows the results for the distributed GDKLMS using
CC and RFF. Similar to the centralized case, the plots show that
both approaches can effectively represent the target function,
achieving network-level MSE of approximately —5 dB for D =
16 and —7 dB for D = 32 for the noise scenario simulated.
Again, the RFF-based solution exhibits faster convergence for
both values of D when the network-level steady-state MSE is
matched.

B. SMSE of the RFF-based GDKLMS

In this experiment, we observe the steady-state behavior of the
proposed RFF-based GDKLMS. The network and data parame-
ters employed in this simulation are the same used in Section VI-
A. We run the RFF-based GDKLMS for a total of 7' = 50 000
iterations, for different dimensions of the RFF space. In Fig. 3,
we show the learning curves for D € {25, 50 250} and the value
of the SMSE computed using (49). The step-size is p = 0.05.
Results show that increasing D reduces the gap between the
numerical and theoretical results for the steady-state behavior of
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Network structure for the Intel Lab simulation and snapshots of the original and estimated humidity signals.

the algorithm. This observation is in line with the result presented
in [47].

C. Tracking Performance of the Proposed Algorithms

In this section we study the performance of the algorithms
subjected to an abrupt change in the underlying model. The
simulation setup is the same as in Section VI-A. The nonlinear
function to be estimated is given by

fn(rk,n) =

2 2 —r?
\/ Tk T Thna = Thnze  Fm2 0 <n <4000

2 2 2 2
\/rk,n,l + Tk,n,2 + rk,n,3 + 7’k,n,4 4000 < n.

619}

Fig. 4 shows the learning curves for the centralized and
distributed algorithms for two values of dictionary sizes and
RFF-space dimension, namely, D = 16and D = 32. We see that
the RFF-based implementations are resilient to model changes,
while the CC-based implementations suffer from noticeable
performance losses, especially for small dictionaries. This is an
expected behavior, since larger dictionaries can represent more
functions. We also see that the GKLMS achieves the lowest
MSE, however, at the cost of an unconstrained dictionary size.
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D. Laboratory-Monitoring Data

We consider the Intel Lab database [68] that contains tem-
perature and humidity data, measured during March 2004,
from 52 sensors spread across a laboratory and its common
areas. The undirected graph is constructed by connecting each
sensor to its four nearest neighbors. We consider the task of
estimating humidity from the temperature signal. The data set
comprises asynchronous sensor measurements, and we construct
a snapshot of the graph signal by considering windows of 5
minutes from which we collect the first value available for each
sensor. The model from temperature to humidity is expected to
change with time. For instance, as workers arrive in the lab, the
temperature and humidity are expected to change.

In our simulations, we used L = 5 and D = 128, for cen-
tralized and distributed implementations. The step sizes are
0.03 for CC- and RFF-based GKLMS, and 0.5 for GDKLMS
implementations.

The humidity signals from Sensors 1 and 40 are plotted in
Figs. 5(a) and 5(b), respectively, together with the estimated
signals from the graph filters. The variations in the plots are
aligned with events that induce model changes. For example,
the most notable peaks are aligned with the beginning and end
of work shifts. The implementations based on CC and RFF
have similar performances, while the latter exhibit slightly more
resilience to changes in the model. Fig. 6 depicts the graph
representation of the Intel Lab sensor network and presents
snapshots of the humidity signals, both the original and the one
estimated via RFF-based GDKLMS. These results confirm that
the proposed algorithms can effectively estimate the humidity
level from temperature readings.

VII. CONCLUSION

This paper introduced nonlinear adaptive graph filters for
model estimation in the reproducing kernel Hilbert space. To this
end, a centralized graph kernel LMS (GKLMS) algorithm was
derived. To overcome the growing dimension problem encoun-
tered in the centralized GKLMS algorithm, coherence check
based dictionary-sparsification and random Fourier features
(RFF) were proposed. Furthermore, diffusion-based distributed
implementations of both coherence check and RFF-based graph
KLMS algorithms were developed that update filter parameters
through local communications and in-network processing. Mean
and mean-square-error convergence conditions were established
for the proposed GDKLMS using RFF. Numerical simulations
were conducted to demonstrate the performance of the proposed
algorithms. Simulations confirmed that coherence check and
RFF-based approaches effectively estimate nonlinear graph fil-
ters, while the latter exhibits a faster convergence and is robust
to model changes.
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