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Abstract—In this paper, we present a novel system for con-
trolling a KMR iiwa mobile robot using ROS2. The KMR iiwa
is a mobile robot with a manipulator mounted on the base that
is developed by the robot manufacturer KUKA. The developed
system integrates with the Sunrise.OS operating system of the
mobile robot and exposes sensor and control interfaces over
UDP and TCP sockets. The controllability of the mobile robot
from ROS2 is verified using the Cartographer and Navigation2
projects.

Index Terms—KMR iiwa, ROS2, KUKA, Mobile Robot, In-
dustry 4.0

I. INTRODUCTION

Industry 4.0 is about digitalization, automation, machine
learning, and real-time data. A company that works extensively
with industry 4.0 is the German company KUKA, Keller und
Knappich Augsburg. The company produces robot systems for
the industry and automated production solutions, and focus
on networked, intelligent production. Such a production robot
is the KMR iiwa, KUKA Mobile Robot Intelligent Industrial
Work Assistant, shown in Figure 1.

The KMR iiwa is composed of a robot arm, the LBR iiwa 14
R820, and a mobile platform, the KMP 200 omniMove [1].
LBR is a German abbreviation for lightweight robot, while
KMP is short for KUKA Mobile Platform. The intended use
of the mobile robot is to handle automated manufacturing tasks
and transport components, and it is characterized by its high
degree of mobility and flexibility.

The operating system for the KMR iiwa mobile robots
is KUKA Sunrise.OS. Programming the software requires
knowledge of the Java programming language and the Sunrise
software, including robot specific functions. This could be
a blockade for many developers. Another drawback is that
data and information from the robot are only available locally
in the Sunrise system during executions of applications. In
a decade when everything should be online, compatibility
between networked devices is desired, and information should
be available. Tools that support system integration based on
common platforms are essential for the continuous evolution
of Industry 4.0.
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Fig. 1. The KMR iiwa is composed of a mobile platform and a lightweight
manipulator [2]. Image courtesy of KUKA Nordic AB.

ROS2, Robot Operating System 2, is the second generation
of the open source framework ROS for developing robot appli-
cations with support for several programming languages and
platforms [3]. Integration between Sunrise.OS and ROS2 is
desirable as it would limit the required preknowledge required
to operate the robot and make it more available for users. The
ROS2 packages Cartographer and Navigation2 perform real-
time localization, mapping and navigation of mobile vehicles
and are highly relevant to use with the KMR iiwa.

Two projects with focus on interaction between the LBR
iiwa and ROS have been inspirational for the work presented in
this paper. The LBR iiwa and the KMP is operated by the same
controller, and hence a similar approach for programming the
robot can be applied to the KMP.

Virga and Esposito [4], propose an architecture with native
ROSJava nodes launched on the robot controller. Hence, the
two operating systems can exchange data and commands in
the form of ROS messages over the ROS framework. The
proposed solution requires installation of third-party libraries
on the robot controller to run ROS nodes.

The work by Mokaram et al. [5] provides a simple stan-
dalone application that requires minimal installation on the
robot controller. The architecture of the API consists of two
main components, a single Sunrise.OS application on the robot
controller and a ROS node launched on the external computer.
The ROS node establishes a connection to the controller
over TCP, Transmission Control Protocol. Data and command



messages are transmitted between the two components as
strings.

The two APIs of [4] and [5] are developed for different
purposes, but the implementations contain the same funda-
mental functionality. The main difference between the two
architectures is whether to publish ROS messages directly
from the robot controller or to utilize a middle-layer to handle
the communication. The API of [5] includes simple methods
for directly controlling the robot, while [4] present a more
advanced system, including functionality for simulation in
Gazebo and using the robot with ROS packages as Moveit!.
In this paper, we present a communication interface between
the KMR iiwa and ROS2 to control the mobile platform. The
developed system integrates with the Sunrise.OS operating
system of the mobile robot and exposes sensor and control
interfaces over UDP, User Datagram Protocol, and TCP sock-
ets. The interface is available online [6], and is the first free
and open approach to controlling a KMR iiwa using ROS2.

The main functionality is autonomous navigation in an
unknown, dynamic environment without collision. The goal
is that a user should easily be able to connect to the robot
and control it without any preknowledge about KUKA robotic
systems.

The paper is structured as follows. A description of the
KMR iiwa is presented in Section II. Further, in Section III,
an introduction to ROS2 and the packages Cartographer and
Navigation2 is given. A challenge with the implementation
was to find the correct methods to command and retrieve
data from the robot. The approach for obtaining the correct
methods is described in Section IV. Next, in Section V, follows
a system description with the implemented functionality of the
interface. Section VI presents a verification of the functionality
of developed system. Finally, Section VII concludes the paper.

II. KMR IIWA

A. Hardware

The KMP mobile platform has four mecanum wheels, which
allow the mobile platform to move omnidirectionally. It is
equipped with two SICK S300 safety laser scanners mounted
diagonally opposite of each other.

The S300 is a compact laser measurement system that scans
the environment in two dimensions in the height of 150 mm
above the ground in means of infrared laser beams. Each laser
has a scanning range of 270°, covering one long side and one
short side of the vehicle, and a resolution of 0.5°.

The controller of the robot system, Sunrise Cabinet, is
contained inside the KMP. The Sunrise Cabinet contains two
PCs: one control PC and one navigation PC.

B. Software

KUKA Sunrise.OS is the system software for robots that are
operated by the Sunrise Cabinet. It offers functionality for pro-
gramming and configuration of robot applications. Commands,
sensor data, and information related to the ongoing operation
are only available locally on the robot control system, or the
supplied teach pendant, the SmartPAD.

C. Operation

There are three different approaches for controlling the
KMP: manually, autonomously, or by an application.

The most interesting option in this context is to control
the KMP by a Java-based Sunrise application on the Sunrise
Cabinet. The application can be implemented in the program-
ming environment Sunrise.Workbench. The software packages
KUKA RoboticsAPI and KUKA Sunrise.Mobility contain
methods for obtaining information from the robot system
and executing motions, which are the basis for developing a
program for controlling the KMP.

KUKA.NavigationSolution is an optional software pack-
age with functionality for autonomous navigation of mobile
platforms. The navigation software is based on sensor data
from the S300 laser scanners and the odometry of the mobile
platform.

The KMP can be moved manually by jogging the robot
from the SmartPAD or the Radio Control Unit, an optional
device with joysticks for controlling the platform.

The robot system has three different operation modes. T1
and T2 are manual operation modes used for testing and
verification of programs. AUT is autonomous mode, which
is the operating mode for program execution.

D. Safety

The primary function of the S300 sensors is to operate as
the safety equipment of the system by monitoring predefined
areas around the vehicle. By default, the S300 sensors are
configured with a protective field and a warning field. The size
of the monitored fields depends on the velocity of the vehicle.
The consequence of a violation of the two fields varies with
the operation mode. Generally, a breach of a field causes a
reduction of maximum travel speed or triggers a safety stop
of the vehicle. The laser scanners are not active for velocities
below 0.13 m/s in the manual operation modes.

III. ROS2

ROS [3] is a robot operating system that can be used
with multiple programming languages and has implemented
open source functionality. It includes tools and libraries to
handle the programming of robots without having to deal with
hardware. The main goal of ROS is to provide a standard
that can be used by any robot. ROS2, the second generation
of ROS, is state-of-the-art software and is currently under
massive deployment.

In general, ROS2 is cleaner and faster than the prior version,
in addition to more flexible and universal. One of the main
differences between the two versions is that ROS2 is built
on top of DDS, Data Distribution Service, which provides a
distributed discovery feature.

Two ROS2 packages that are relevant for controlling the
KMP is Cartographer [7] and Navigation2 [8].

Cartographer is a package for real-time SLAM, simultane-
ous localization and mapping, and is part of Google’s open
source projects [9].



A map can be created based on the robot’s odometry, trans-
formation information, and sensor information when the robot
moves. The map can further be provided to Navigation2 and be
used for navigation in the environment. The requirement for
the cartographer node is sensor data measuring the distance
to obstacles in the environment. Data from IMU sensors and
odometry sensors can be included to improve the result.

Navigation2 is a package that can be used to control mobile
robots and is based on a velocity controller. The main goal of
applying the package is to navigate the robot from a start
pose to a goal pose. This task can be broken down into
subtasks like handling maps, localization of the robot, obstacle
avoidance, and path following. When an obstacle-free path is
calculated, velocity commands are produced to describe how
the robot should move to follow the path. The navigation
package requires information about the environment and how
the robot moves, which can be provided in the form of a map,
sensor data, and odometry data.

IV. APPROACH

The information required by Cartographer and Navigation2
defines the functional requirements of the system: It must be
possible to retrieve odometry from the wheel encoders and
laser data from the SICK scanners on the KMP, and the vehicle
must be able to be controlled by velocity messages.

The motion commands and sensor retrieval methods from
KUKA RoboticsAPI are limited and are chosen based on
KUKA’s definition of what is the intended use for pro-
gramming the robot. A challenge that was faced during the
development was to find the appropriate methods to retrieve
data and move the KMP for the desired outcome.

As mentioned in Section II-D, the main functionality of
the laser scanners is to monitor predefined areas around the
vehicle. Boolean signals from the lasers indicate whether
the monitored fields are violated, and can be extracted
through defined methods from the KUKA RoboticsAPI. Range
data from the laser scanners are only available through
KUKA.NavigationSolution, and there are no direct methods
to retrieve sensor data through KUKA RoboticsAPI.

The correct method for retrieving the sensor data was
found by investigating the underlying functionality of
KUKA.NavigationSolution. This software package introduces
several views that can be opened in Sunrise Workbench,
among them are the LaserView that visualizes range readings
in real-time. By exploring the source code of the view, it
was found that a FDI, Fast Data Interface, connection is
established to the Navigation PC. The FDI connection utilizes
a UDP socket to transmit data and enables functionality
for subscribing to sensor data. As KUKA.NavigationSolution
relies on the odometry data from the KMP for navigation, this
data can also be subscribed to through the FDI connection.

As for the motion commands, the predefined methods
available from KUKA RoboticsAPI provide functionality for
moving the KMP to an absolute or relative pose. This is not
applicable for the intended use, as Navigation2 sends velocity
commands.

The approach leading to the proposed solution was to
investigate the underlying code of the devices used to jog
the KMP manually. When a jogging button is held on the
smartPAD or the joysticks are used to move the robot with
the Radio Control Unit, the robot is continuously jogged. In
a similar manner, a jog method can be executed continuously
from a Java program to make the robot move with the specified
velocity. The method found to jog the robot enabled access to
the internal functionality of the robot, which is mainly marked
as private and not intended to use for programming by external
users.

By investigation of the source code, it was found that
for each time the jog method is executed, a new thread is
established. As the method is intended for internal use, the
threads are marked as private, and there is no way to handle all
the threads established when continuously calling the method.
Over time this lead to an accumulation of threads, which
is a problem when the number of threads get too high. A
solution to this problem was found in the code of the Radio
Control Unit, which revealed that a support class had to be
implemented to handle the threads. The support class creates
a thread pool for each new jogging execution, which can be
shut down when the velocity motion is finished, and hence,
kill all the threads established.

With the jogging motion it is possible to execute motion
based on velocity commands, which further makes it possible
to move the KMP by the commands from Navigation2.

V. SYSTEM DESCRIPTION

The implemented interface has the following main function-
alities:

• Retrieve laser data from the KMP
• Retrieve odometry data from the KMP
• Retrieve status information from the KMP
• Move the KMP by giving velocity commands in the

terminal
• Move the KMP by setting a goal pose in the terminal
• Use Cartographer to create a map of the environment
• Use Navigation2 to move the KMP
The interface consists of multiple ROS2 nodes running on

a remote PC communicating with a Java program over TCP.
The remote PC does not need to be in the immediate vicinity
of the KMR, but must be connected to the same network.
The Java program, KMRiiwaSunriseApplication, is installed on
the Control PC in the Sunrise Cabinet, which handles further
communication with other internal devices on the robot. The
physical architecture is shown in Figure 2.

Figure 3 shows the architecture of the implemented com-
munication interface between the Java application and the
ROS2 nodes. Each node is responsible for one area and is
communicating with a corresponding Java class on the Sunrise
Cabinet over UDP or TCP. Both protocols are implemented,
and the desired communication type can be set in the system
parameters. By creating separate nodes and connections for
all tasks, it is possible to launch only the nodes needed for a



Fig. 2. Graphical representation of the physical system. Component images
courtesy of KUKA Global.

specific use case. This limits the transferred data and enables
a faster system.

The information is transmitted with the selected protocol as
strings on the following format:

Length >︸ ︷︷ ︸
Additional
Information

Type (LaserID) Timestamp Data︸ ︷︷ ︸
Message

The additional information, Length, is only included if the
message is sent over TCP. As TCP is a buffer protocol, this
is necessary to ensure that the whole message is read.

The Type field describes what kind of data this message
includes, and is necessary to know how the data should
be processed. If the message is coming from the robot, an
example of a type could be Odometry. An odometry message
contains data describing the pose and velocity of the robot.

The pose of the robot is represented by a position vector
x ∈ R3 and a unit quaternion q ∈ S3, while the velocity is
represented by a twist V = (ω, v) ∈ R6 where ω ∈ R3 and
v ∈ R3 are the angular and linear velocities, respectively.

The LaserID only applies for laser scan messages to denote
from which sensor the data is read. The data, in this case,
consist of 540 range readings from the specified laser.

Similarly, a message of type setTwist can be sent, command-
ing a change in the velocity of the robot.

A. Sunrise Application

The KMRiiwaSunriseApplication is the main application
running on the Sunrise Cabinet. The Java classes communi-
cating with ROS2 are initiated from the application as threads
and executed in parallel. The Java classes are responsible for
sending sensor data and other relevant information, and for
carrying out the pose or velocity commands received from
the ROS2 nodes. Support classes are implemented for both
the protocol options TCP and UDP for handling the socket
objects and transmitting data. Each of the Java communication
classes establishes a socket class to transmit the data to the
corresponding ROS2 node.

The kmp sensor reader class is handling both the data
from the S300 laser sensors and the odometry data. An FDI

connection, which is used to transmit odometry and laser
data, is established between an instance of the class and the
Navigation PC. The FDI connection is based on subscriptions,
meaning a data type is only sent if a subscription to the data
type is created. This makes it possible to subscribe to only
laser or odometry data. A data listener class is implemented
that, by subscribing to the data of interest, retrieves odometry
data and laser data through the FDI connection. Further, the
data is transmitted to the two corresponding ROS2 nodes.

The kmp status reader use functionality from KUKA
RoboticsAPI to retrieve information from the robot. Examples
of information that can be retrieved are whether an emergency
stop has been triggered and if there are any obstacles in the
monitored fields.

The kmp commander receives velocity or pose commands
from the corresponding ROS2 node. Pose commands are
executed by the motion type MobilePlatformRelativeMotion
from KUKA RoboticsAPI, while velocity commands are being
carried out by jogging the robot. More specific this is done
by a KMPJogger object, which is implemented to handle the
execution of motion and the accumulation of threads.

B. Remote PC

On the remote PC, there are four different nodes available
for communication with the KMP: kmp odometry, kmp laser,
kmp command and kmp status.

All the nodes have data process methods and ROS publish-
ers and subscribers to correctly handle the data to and from the
KMP. All the publishers and subscribers, and the associated
ROS topic are listed in Table I and II.

The kmp odometry and kmp laser nodes handle the sensor
information retrieved from the KMP, while the kmp command
subscribes to multiple ROS topics and forwards the commands
from each topic. The currently supported commands are: move
with a certain velocity, move to a given pose, and shutdown.
The shutdown command is essential to be able to shut down
all connections and threads in the program correctly.

The kmp status retrieves information data from the KMP
and saves the information to a ROS message, KmpStatusdata.
This message type is custom made for the interface and
includes information that is useful when operating the robot.
The message could be extended with more information if
necessary. The KmpStatusdata includes the information shown
in Table III.

VI. SYSTEM VERIFICATION USING CARTOGRAPHER AND
NAVIGATION2

The ROS packages Cartographer and Navigation2 are used
to verify if the communication and control work as expected.
Both packages include parameter files with multiple parame-
ters that can be tuned to improve the algorithms used. These
parameters are minimally tuned for this experiment, and only
the parameters necessary for the packages to work with our
data have been changed. All available data sources are used,
which includes sensor data from both S300 sensors as well as
odometry data.



Fig. 3. Architecture of the implemented solution.

TABLE I
PUBLISHERS FOR PUBLISHING DATA FROM KMP TO ROS

Name Message type Topic Description
pub odometry Odometry /odom Odometry information.

pub laserscan1 LaserScan /scan 1 Data from B1 S300 laser (front).

pub laserscan2 LaserScan /scan 2 Data from B4 S300 laser (back).

pub kmp statusdata KmpStatusdata /kmp statusdata Statusdata retrieved in the kmp status node.

TABLE II
SUBSCRIBERS FOR SUBSCRIBING TO DATA FROM ROS TO KMP

Name Message type Topic Description
sub twist Twist /cmd vel Make KMR move at a certain velocity.

sub pose Pose /pose Make KMR move to a certain pose.

sub shutdown String /shutdown Make the application on the Sunrise controller shut-
down. Any string sent to this topic do the same
purpose.

TABLE III
FIELDS INCLUDED IN A KmpStatusdata MESSAGE

Name Message type Description
header std msgs/Header Regular header for all ROS messages.

operation mode String The KMR iiwa has three different operation modes. This field states the current mode.

ready to move Boolean True if the robot is ready to move, and no safety rules is violated.

warning field clear Boolean False if either of the warning fields of the S300 sensors are violated.

protection field clear Boolean False if either of the protection fields of the S300 sensors are violated.

is kmp moving Boolean True if the KMP is moving.

kmp safetystop Boolean True if the KMP performs a safety stop. This happens if any of the internal safety
monitoring functions of Sunrise software are violated.

By driving the robot around in the laboratory and using
Cartographer, the map in Figure 4 was created. Tuning the
parameters to a more significant extent would likely improve
the result, but was not relevant for testing the communication
interface. As mentioned in section II, the SICK scanners

perform a planar scan 150 mm above the ground. This affects
the map, as overhanging obstacles are not detected. Hence,
additional sensors should be included in the system to be able
to perform autonomous navigation safely.

The compatibility with Navigation2 was verified by entering
a goal pose in Rviz to which the KMP was to navigate.



Fig. 4. Map created by Cartographer

The goal pose is sent to Navigation2 which returns velocity
commands. The use of Navigation2 works as expected for
more straightforward scenarios. When commanded to navigate
to poses in open areas, the robot moves with holonomic
movement and follows the planned path until the requested
goal pose. When the goal pose is set too close to obstacles,
the navigation is not completed.

The maximum velocity specified in the parameter file of
Navigation2 are above 0.13 m/s, which is the velocity where
the sensors are activated for T1 mode. If the sensors detect
an object inside the protective field when driving at a speed
higher than this, the safety restriction of the robot turns in and
stops the movement. This causes the navigation to fail, as the
vehicle is not following the given commands and not showing
enough progress within a time limit. The vehicle is not able to
drive out of this area as all the commands from Navigation2
are at a higher speed than allowed by the robot.

When the KUKA Navigation Solution controls the vehicle,
the velocity is automatically reduced when objects are inside
the protective field. Navigation2 does not implement this
behavior, and this causes a conflict between the built-in safety
restrictions and the navigation controller. To make Navigation2
work optimally, this must be taken into account. Newly
implemented behavior in Navigation2 makes it possible to
update the parameters which specify the maximum velocities
dynamically.

Our suggested solution to the navigation problem is to
monitor the status of the warning fields and protective fields,
which both are included in the KmpStatusdata message, and
use this information to control the velocity. For both operation
modes, the robot stops if an obstacle is detected in the
protective field. The velocity should be reduced when an
obstacle is detected in the warning field to reduce the size of
the protective field. If necessary, a second warning field can be
configured by the use of SICK software, to be notified about
obstacles earlier. This could solve the problem, but would lead
to a less generic system.

VII. CONCLUSION

This paper describes a control interface for operating the
mobile robot KMR iiwa with ROS2. The proposed architecture
is verified by a proof-of-concept implementation that enables
control of the robot from an external computer. The architec-
ture is based on multiple ROS2 nodes with corresponding Java
classes that handle separate tasks. The architecture is created
in a scaleable manner, where more nodes can be added for
additional functionality.

It was desired to navigate the robot by utilizing the ROS2
packages Cartographer and Navigation2. For this purpose,
functionality was implemented to retrieve odometry and laser
data from the sensors, and for the ability to control the model
by velocity commands. The specified ROS2 packages were
used to verify the controllability of the mobile vehicle. The
Cartographer package was able to create a fully recognizable
map of the environment, and simple navigation in the environ-
ment was performed. The verification revealed issues related
to navigation closer to obstacles, and a possible solution for
this was proposed.

Further work include manipulation of the LBR iiwa, im-
proved navigation, and the addition of camera sensors to
handle issues related to 2D laser scans.

The work is open source and available online at https://
github.com/ninamwa/kmriiwa ws.
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