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Abstract—Passive Optical Networks (PONs) are widely regarded 

as the best suited technology for deploying broadband access 

networks. As new services emerge, the dependability of PONs has 

become critical as end users expect access networks to be highly 

reliable. Although PONs dependability regarding hardware 

failures has been extensively studied, very little attention has 

been drawn to software failures in PONs. Chiefly, this paper aims 

at performing an exhaustive analysis of the effect of software 

failures in PONs dependability and failure-related costs. 

Additionally, hardware failures are also included for the sake of 

completeness and comparison. By applying Duane’s model for 

reliability growth to current literature results, the PON software 

dependability is estimated as a function of the testing phase 

duration. Then, a Markov cost model, accounting for both 

hardware and software failures is developed and solved by means 

of Monte Carlo simulations. Hence, the effect of software failures 

in PONs asymptotic availability, failure impact and 

dependability-related costs is detailed; revealing to be of utmost 

importance. Moreover, how the testing process duration affects 

these three parameters is also pinpointed. 

Keywords–Availability; failure impact; Operational Expenditures; 

Passive Optical Networks; software failures; 

I.  INTRODUCTION 

Over the last years, the increase in bandwidth requirements 
demanded by end users has pushed operators into the 
deployment of broadband access networks. Amid other options, 
Passive Optical Networks (PONs) are considered to be the best 
suited technology for meeting such demands [1]. PONs not 
only provide high bandwidth on a per-user basis, but are also 
scalable and flexible. Additionally, PONs present a relatively 
low-cost deployment and energy consumption when compared 
with other alternatives. Consequently, PONs have been already 
widely deployed, while Next-Generation PONs (NG-PONs) 
are regarded as the most promising solution for future 
broadband fiber-based access networks [2].    

Yet, as time passes, end users and services also demand 
higher service dependability in addition to higher bandwidth. 
Telemedicine, interactive gaming or e-commerce have caused 
end users (both residential and business) to expect reliable 
service delivery. Subsequently, the importance and significance 
of access networks’ dependability has arisen as a cause of 
concern over the past years. As a matter of fact, several 
protection schemes and dependability-cost analyses for 

different PON and NG-PON flavors can be found in literature 
[3], [4], [5], [6]. 

Generally, the dependability of a system is assessed by its 
asymptotic availability, a parameter which is close to the users’ 
perception. Operators are also concerned about the number of 
clients affected by a failure (i.e. failure impact), as large 
outages can cause negative publicity. Besides, operators’ 
interest in dependability is also focused on the costs associated 
to failures, which are part of the Operational Expenditures 
(OPEX). Dependability-related OPEX include the cost of 
repair, the payment of penalties and loss of reputation, 
especially if the failure impact or the outage times are large.  

Still, most of the already published PON dependability 
studies are focused on hardware, physical faults and/or 
environment failures. Even though software faults are the cause 
of an important part (usually bigger than hardware faults) of 
service failures in many systems [7], [8]; very few papers 
address software dependability in PONs. 

Hence, the aim of this paper is to give a deep insight into 
the effect of software failures in Time Division Multiplexed 
(TDM) PONs’ dependability and failure-related OPEX. Based 
on the results in [9], where software bugs in Gigabit-capable 
TDM PONs (GPONs) were studied; this paper performs a 
thorough analysis of software failures in TDM PONs. By 
applying Duane’s model for reliability growth [10] to these 
results, the failure intensity of software failures in TDM PONs 
is estimated as a function of the testing time. Then, a Markov 
cost model [11], including both hardware and software failures, 
is developed to capture the dynamic dependability behavior of 
PONs. Thus, this study is able to detail the effects not only of 
hardware failures, but also of software failures and software 
testing time in the availability, failure impact and 
dependability-related OPEX in TDM PONs. 

The remainder of this paper is organized as follows. First, 
Sect. II introduces the basic PON architecture. Section III 
presents the software dependability modelling approach taken 
in this study. Section IV describes the Markov cost model 
employed to assess the dependability and dependability-related 
OPEX of hardware and software failures in TDM PONs. 
Section V presents the analysis results in terms of asymptotic 
availability, failure impact and dependability-related OPEX. 
Finally, Sect. VI gives the conclusions of this work. 



II. PON ARCHITECTURE 

In this section, the PON architecture assumed along the 
paper is presented. 

Succinctly, the typical PON architecture presents a tree 
structure, as depicted in Fig. 1. At the operator’s Central Office 
(CO), the Optical Line Terminal (OLT) is housed – the root of 
the tree structure. Two different elements are considered at the 
OLT: the OLT ports where fibers are connected and the OLT 
chassis that hosts the OLT ports. Resembling the leaves of the 
tree, the equipment at the user’s side is denoted as Optical 
Network Unit (ONU). Amid the CO and the ONUs, the 
Remote Node (RN) is deployed and serves as splitting point. 
Similarly to the OLT, the RN consists of the RN chassis which 
accommodates the set of passive elements performing the 
signal splitting. Basically, the passive elements can be pure 
optical splitters for TDM PONs, Arrayed Waveguide Gratings 
(AWGs) for Wavelength Division Multiplexing (WDM) PONs, 
or a combination of both for Hybrid WDM/TDM PONs. As 
this study is focused on the impact of software failures in TDM 
PONs, GPONs in particular; splitters are assumed as passive 
elements at the RN. In accordance with the GPON ITU-T 
Standard [12], the splitters’ split ratio is fixed to 1:32.  
Necessarily, the OLT equipment and software are also that of a 
GPON technology.  

When regarding the fiber infrastructure, two different fiber 
sections can be identified. First, the fibers interconnecting the 
OLT and the RN, typically denoted as Feeder Fiber (FF). 
Generally, feeder fibers span over several kilometers as users 
in the same PON share the feeder fiber infrastructure. Second, 
the fibers laid between the RN and the final users, called 
Distribution Fibers (DF). Distribution fibers cover a smaller 
distance than feeder fibers, being 20 kilometers the maximum 
reach of the basic GPON technology [12].  

III. SOFTWARE DEPENDABILITY MODELLING 

In this section, the model used to assess the dependability 
of the software in the OLT is introduced. 

A. Duane’s Model for Software Reliability Growth 

Mainly, software reliability growth models have been 
developed in order to forecast the dependability of a software 
system. Reliability growth models measure the improvement of 
software reliability through the testing phase, typically 
predicting the software failure intensity at the end of the testing 
and debugging process [10]. As a result, the failure intensity 
(thus dependability) of the delivered software can be predicted.  

Inversely, the dependability requirement can be fixed 
beforehand, and the reliability growth model employed to 
predict the time (and effort) necessary to meet this requirement. 
Among a vast number of reliability growth models, Duane’s 
model has been chosen due to its simplicity and straightforward 
application. Intentionally, a brief description of Duane’s model 
is presented here, while a more thorough description can be 
found in, e.g., [10]. 

Essentially, Duane’s model is based on the observation that 
if the cumulative number of failures (N(t)) versus the 
cumulative testing time (t) was plotted on a log-log scale; it 
was quite close to a straight line. Consequently, failures during 
the testing phase occur following an inhomogeneous Poisson 
process, whose intensity can be derived as follows. First, due to 
the aforementioned observation, the cumulative number of 
failures, N(t), can be written as 

log N(t) ≈ log α + β∗log t, (1) 

being α and β the parameters of the model. Hence, the 
cumulative failure intensity, Z(t), is modelled as 

Z(t) = α∗tβ, (2) 

and the failure intensity, z(t), is easily derived as 

z(t) = d/dt(Z(t)) = α∗β∗t(β−1). (3) 

Subsequently, the estimation of α and β (and thus the 
software operational failure intensity at the end of the 
debugging process) is straightforward if the number of software 
failures and the testing time are known. Basically, this 
estimation can be done by direct fitting on the log-log plot, or 
by means of maximum likelihood estimation.  

B.  OLT Software Dependability 

As mentioned before, both the number of software failures 
as well as the testing time is needed in order to predict the 
software operational failure intensity. Notably, the software 
dependability analysis in this paper builds on the results 
presented in [9]. 

Basically, the authors in [9] report the results of applying a 
regression testing technique to a GPON OLT software during 
more than one year. Additionally, not only the number of 
software failures is reported, but also the distribution of these 
failures over the testing time. Hence, when applying Duane’s 
model to these results, it is possible to obtain a reasonable 
estimation of the GPON OLT software failure intensity as a 
function of the testing time. 

After analyzing these results, the cumulative number of 
failures versus the cumulative testing time log-log plot is 
presented in Fig. 2 with red dots. In the figure, the cumulative 
testing time has been normalized in hours. Additionally, Fig. 2 
also shows the fitted cumulative failure intensity (Z(t)) 
according to Duane’s model, in blue. Particularly, the values of 
α and β for the fitted cumulative failure intensity are 0.311543 
and 0.761157 respectively. Consequently, by substituting these 
values in (2), the fitted cumulative failure intensity of OLT 
software failures follows 

Z(t) = 0.311543∗t0.761157, (4) 

Fig. 1. Schematic PON architecture. 



while the software failure intensity follows 

z(t) = d/dt(Z(t)) = 0.237133∗t −0.238843. (5) 

By employing (5), the software failure intensity can be 
calculated for different values of the cumulative testing time. 
Finally, this failure intensity is used in the next section to 
introduce software failures into the Markov cost model 
assessing the dependability and failure costs of PONs. 

IV. MARKOV COST MODEL FOR PON DEPENDABILITY AND 

DEPENDABILITY-RELATED OPEX 

In this section, the Markov cost model employed to analyze 
both the dependability and dependability-related OPEX of 
PONs is introduced. First, the Markov cost model for hardware 
failures is presented. Then, this Markov model is modified with 
the software failure intensity calculated in Sect. III to include 
software failures in the dependability-cost analysis. 

Briefly, Markov cost models allow for including cost 
considerations into Markov models, so that both dependability 
and failure-related costs can be calculated at the same time 
[11]. Markov cost models stem from the notion of Markov 
reward models, which associate a reward rate ci with each state 
i of the Markov model. When dealing with failure costs 
calculations, the rewards are the cost rates (cost per unit time) 
related to failures in the corresponding state. As in [13], two 
dependability-related costs are considered in this study: costs 
related to failure repair and costs of paying penalties. 
Decidedly, the cost rate of a given state consists of two terms: 
the Repair Cost Rate (RCR) and the Penalty Cost Rate (PCR). 

Regarding the RCR, failure repair costs are directly related 
to the repair crew’s salary, the number of operative repair 
crews and the repair time. Subsequently, the RCR in a given 
state i is proportional to the crew’s salary (S – in $/hour) and 
the number of operative crews in state i (OCi): 

RCRi = S ∗ OCi. (6) 

Concerning the PCR, penalty costs depend on the agreed 
penalty rate (PR), the number of failed clients (FC) and the 
disconnection time. Also, in order to account for the impact of 
reputation loss in case of large outages, an exponential impact 
factor, χ, is introduced. Thus, the PCR in a given state i follows 

PCRi = FCi
χ ∗ PR. (7) 

Purposely, the impact factor χ allows for a smooth insertion 
of the loss of reputation due to failures into the PCR. It was 
first introduced in [13], in a similar way as in [5]. Mainly, the 
basic idea behind the impact factor χ is to increase the PCR if 
the number of clients affected by a failure is high, due to the 
impact of negative publicity. From an operator’s point of view 
and considering the same time period, failures affecting a large 
number of clients at the same time have a bigger impact than a 
large number of independent, non-overlapping in time failures 
affecting a small number of clients. Succinctly, over a month, a 
single failure (e.g. a digging) affecting 5 000 clients is much 
worse than 5 000 failures affecting one client, occurring at 
different non-overlapping times over the same month. The 
former type of failure will lead to negative press releases. 
Intentionally, a value of 1.1 is proposed for χ. Then, if the 
number of failed clients is small, the PCR will be almost the 
same as if χ is not included. In fact, it is the same if there is 
only 1 failed client. On the other hand, when the number of 
failed clients is considerable, the PCR will grow larger. For 
example, the PCR of a failure affecting 10 000 clients is 2.5 
times larger than the same failure without any impact factor. 

A. PON Hardware Failures 

Let us now consider the Markov cost model when only 
hardware failures are present. As there are no software failures 
in this case, it will be used as baseline to measure the impact of 
software failures on the dependability and failure costs.  

In essence, the modelled system is the PON architecture 
depicted in Fig. 1. For illustration, a significant part of the 
Markov model is shown in Fig. 3. Namely, state definition 
depends on the type of failed element.  As explained in Sect. II, 
the different elements of the PON architecture are OLT chassis, 
OLT ports, feeder fiber, RN chassis, splitters, distribution fiber 
and ONUs. Since the split ratio is fixed to 1:32, the number of 
ONUs is also 32 (denoted N in Fig. 3). Additionally, splitters in 
the RN are assumed to fail if the RN chassis fails, and the same 
applies to the OLT ports hosted in an OLT chassis. Failure 
rates for the different components are taken from [3] and [14]. 
Typically, the longer the fiber, the more likely it is to fail, thus 
the fiber failure rate in [3] depends on the length of the fiber. In 
this study, different values for the lengths of feeder and 
distribution fibers are considered, in order to model dense or 
sparse PON deployment scenarios, following the values of the 
studies in [6], [13]. Dense scenarios correspond to densely 
populated urban areas, where users are located close to each 
other. Thus, the length of the feeder fiber is fixed to 3.75 Km., 
while the length of the distribution fiber is fixed to 0.375 Km. 
Sparse scenarios correspond to suburban or rural areas, being 
the lengths of the feeder and distribution fibers 18.2 and 1.8 
Km. respectively. 

As for the number of failed clients in each state, it 
decidedly depends on the type of failed element. Following the 
values presented in [6], [13]; the number of clients affected by 
each type of failure has been fixed as follows. OLT chassis 
failures typically affect 1 600 clients, while RN chassis affect 
100 clients. OLT ports and splitters only affect the 32 clients 
associated to the PON. Unequivocally, ONU failures affect 
only 1 client. Regarding fiber failures, the number of affected 

Fig. 2. Cumulative number of software failures as a function of the testing 
time (Data from [9]) and the Dunae’s Z(t) fitted estimation. 



clients is slightly more complicated to calculate. In general, 
fiber failures are related to diggings in the trenches containing 
the fibers. Hence, if the digging occurs very close to the CO, it 
will affect a large number of fibers, and thus a large number of 
clients. Contrarily, the number of affected clients will be 
smaller if the digging occurs far from the CO. To model this 
effect, the number of affected clients in case of feeder fiber 
failure is assumed to be a random variable uniformly 
distributed between 1 000 and 5 000 clients. In case of 
distribution fiber failure, the same reasoning applies, but the 
uniform variable is defined between 1 and 100 failed clients. 

Finally, regarding the repair process, repair rates for the 
different elements are also taken from [3] and [14]. Besides, it 
is assumed that there is only one repair crew, as it was shown 
in [13] that one repair crew is enough to handle repairs in most 
situations. If there are two or more failed elements, the 
component leading to a higher reduction in the cost rate in a 
shorter repair time is repaired first. 

B. OLT Software Failures Modelling 

In order to include software failures into the model, two 
new states are introduced into the Markov model of Sect. IV A. 
Additionally to the data presented in Sect. III, the GPON OLT 
software failures reported in [9] are categorized into four 
different grades with respect to their criticality. Namely, these 
four categories are “low criticality bugs”, “medium criticality 
bugs”, “high criticality bugs” and “very high criticality bugs”. 

Low and medium criticality bugs are stated to somewhat 
hamper the PON performance, but they do not lead to total 
crash or total service interruption. High and very high 
criticality bugs, on the other hand, interrupt system operation 
and affect basic functionalities. To model the latter, the state 
named “software failure” is introduced in the Markov chain, 
and it is assumed to be a down state as service is interrupted. 
Low and medium criticality bugs are modelled with the state 
called “excited software”. As there is no clear indication in [9] 
of how big the performance reduction becomes when these 
bugs occur, two different approaches are assumed. In the 
optimistic approach, the system is considered to be working 
when in the excited software state. Mainly, this means that 
although the performance may be reduced, end users do not 
notice it. Contrarily, the pessimistic approach assumes the 
excited software state to be a failed state, where part of the 
OLT software is down and end users do notice the outage.  

A reduced version of the Markov model accounting for 
both hardware and software failures is depicted in Fig. 4. The 
dashed oval in Fig. 4 represents all hardware and hardware-
software possible failure combinations, according to the states 
in the dashed box of Fig. 3. Please note that the state 
corresponding to OLT chassis failure is repeated in both figures 
for clarity. 

In Fig. 4, λsoft is the software failure intensity in (5), which 
depends on the testing time. When computing this intensity, all 
types of bugs were considered. However, high and very high 
criticality bugs are reported to account for a 33% of the total 
number of bugs. Thus, the intensity leading to the software 
failure state is multiplied by 0.33 (denoted p in Fig. 4). 
Decidedly, low and medium criticality bugs represent a 66% of 

Fig. 3. Markov model considering only hardware failures. 

Fig. 4. Modified Markov model for both hardware and software failures. 



the total software failures. Thus, the intensity leading to the 
excited software state is multiplied by 0.66 (1-p in Fig. 4). 
Noticeably, OLT software is assumed to be running on the 
OLT chassis. Hence, there cannot be software failures if there 
is an OLT chassis hardware failure (there are no transitions 
from the OLT chassis failure state to the excited software state 
or the software failure state). Besides, hardware repair of the 
OLT chassis assumes to fix also software failures, as the OLT 
chassis is switched off and on and the software brought to a 
consistent initial state. 

Regarding software repairs, two different restoration 
actions are considered. A system in the excited software state is 
assumed to be brought back to a free-failure state by a restart, 
while a system in the software failure state requires a full 
reload of the system. When a restart is initiated, the process 
with the failure is stopped, a subset of the processor’s data 
reset, and the processing resumed. Because the bugs in the 
excited software state have not a high criticality, the restart is a 
quick process (5 minutes, γrestart = 1/12 h-1), and negligible 
human intervention is assumed (there is no impact to the RCR).  

 On the other hand, a reload is a more complex action and 
requires more time, as the software failures in this case are 
more severe. During a reload, the processor and peripherals are 
reset and tested, while the processor’s software and data are 
reloaded. The average duration of this action is assumed to be 
30 minutes (µreload = 1/2 h-1), and human intervention is not 
negligible (it does affect the RCR). Note that software 
restart/reload can be done in parallel with hardware repairs – 
i.e. there is one dedicated repair crew for hardware and another 
for software failures. 

Finally, the number of affected clients due to software 
failures is fixed as follows. In the software failure state, the 
OLT chassis system is considered to be down, thus this kind of 
failure affect 1 600 clients. When the system is in the excited 
software state, the number of failed clients depends on the 
chosen approach. Because the software is assumed to be 
working in the optimistic approach, there are no failed clients 
in this case. Yet, the pessimistic approach considers that some 
end users do notice the outage, thus the number of failed clients 
is modelled as a uniform variable between 1 and 400. 

V. DEPENDABILITY AND FAILURE-RELATED OPEX 

SIMULATION RESULTS 

This section presents the results of the dependability and 
failure-related OPEX study, after solving the Markov models 
presented in Sect. IV by means of simulations. After a brief 
description of the simulator, results for the availability, failure 
impact and dependability-related OPEX are reported. 

Due to the large number of states, simulations are required 
to solve the Markov models. Amid other options, a uniformized 
simulator [15] has been implemented; solved by means of 
Monte Carlo simulation because of its flexibility and easy 
implementation [11]. As explained in Sect. IV. A, two different 
scenarios have been considered, namely dense and sparse 
scenarios. Additionally, two different approaches for the 
excited software state are assumed as explained in Sect. IV B – 
the optimistic and the pessimistic approach. The effect of the 
testing phase duration (which affects λsoft  as described in Sect. 

III) is also investigated by varying the testing time from 5 500 
(duration of testing phase in [9]) to 50 000 hours. Finally, 
results also include the case with only hardware failures as 
baseline to measure the hampering of software failures in the 
PON dependability and failure-related OPEX. 

A. Asymptotic Availability 

Regarding asymptotic availability, Fig. 5 shows the results 
for dense scenarios, while Fig. 6 depicts the results for sparse 
scenarios. Results are presented with 95% confidence intervals, 
although most of them are hidden behind the marked points. 
Undoubtedly, results when software failures are not present do 
not depend on the testing time. 

Let us focus first on dense scenarios (Fig. 5). Decidedly, 
results show that software failures markedly dominate the PON 
system availability, both for the optimistic and pessimistic 
approach. The effect of high and very high criticality bugs is 
the difference between the no software and the optimistic 
approach curves – notably dominating the availability 
reduction. Besides, the effect of the low and medium criticality 
bugs (if assumed to cause a failure) is the difference between 
the optimistic and pessimistic curves. Even if the testing phase 
is notably large (50 000 hours), availability drops from 0.99975 
(no software) to 0.9968 (optimistic) or 0.9957 (pessimistic).  

As the software testing time is increased, the availability 
also increases for both approaches, as the software failure 
intensity decreases following Duane’s model. Yet, this increase 
is more remarkable with testing times between 5 500 and 
20 000 hours. Asymptotically, both approaches tend to the no 
software case, as software failures become negligible. 

Fig. 5. Availability results for dense scenarios. 

Fig. 6. Availability results for sparse scenarios. 



As for the availability in sparse scenarios, depicted in Fig. 
6, roughly the same considerations are shown. Software 
failures also dominate the availability, although in a lesser way 
than in dense scenarios, with the biggest reduction due to high 
and very high criticality bugs. Besides, the biggest reduction in 
the effect of software failures is achieved during the first 
20 000 hours as in dense scenarios. Yet, the availability is also 
noticeably affected by hardware failures due to larger feeder 
and distribution fibers. In the best case (50 000 testing hours), 
the availability is reduced from 0.99884 (no software) to 
0.9959 (optimistic) or 0.9948 (pessimistic), where 
approximately a reduction of 0.00091 with respect to the dense 
scenario correspond to hardware failures (fiber infrastructure). 

B. Failure Impact 

As for the failure impact results, Fig. 7 and Fig. 8 show the 
Cumulative Distribution Function (CDF) of the cumulative 
number of failed clients for dense and sparse scenarios. Plainly, 
these figures show the probability of a failure causing less than 
or equal to a given number of failed clients (i.e. failure impact). 
Figures depict not only the case with only hardware failures, 
but also the optimistic and pessimistic approaches with the 
smallest and highest testing times. Curves for other testing 
times lie in between these two and are not presented for clarity. 

In dense scenarios, Fig. 7, it is clear that concerning 
hardware failures, feeder fiber failures dominate the failure 
impact. The cumulative probability of failures with small 
impact is modest till 1 000 failed clients, when it starts 
increasing due to the effect of feeder fiber failures. When 
software failures are included, all cases present an increase in 
the cumulative probability around 1 600 failed clients. Notably, 
this probability corresponds to the software failure state, 
dominating the failure impact. Markedly, the probability 
decreases as the testing time increases (solid versus dashed 
curves) as the software becomes less failure-prone. Finally, the 
difference between the optimistic and pessimistic approach is 
also notable. In the optimistic approach (green curves), the 
probability of failures with small impact is scant as the excited 
software state does not contribute to the failure impact. Yet, 
this probability is noteworthy in the pessimistic approach; 
although still the high and very high criticality bugs dominate. 

Results in sparse scenarios, Fig. 8, present almost the same 
concerns as dense scenarios. However, fiber failures become 
more notable in this case. Especially, the probability of failures 
with more than 1 000 failed clients increases considerably, due 

to larger feeder fibers. In fact this probability is now 
comparable with that of the excited software state in the 
pessimistic approach, but with a much larger failure impact. 
Besides, the probability of hardware failures with small impact 
is also noticeable, caused by distribution fiber failures. 

C. Dependability-related OPEX 

Finally, dependability-related OPEX costs are presented as 
expected cost per client (in $) over a time span of 1 year. The 
expected cost is assessed by multiplying the Expected Cost 
Rate (ECR) by the time span of interest. The ECR comes from 
the cost rate of each state (ci) and their probabilities (pi) as  

ECR = ∑i ci ∗ pi. (8) 

Besides, expected costs are broke down into Expected 
Repair Costs (ERC) and Expected Penalty Costs (EPC) as the 
cost rate of each state consists of the RCR and the PCR. As 
parameters for the cost analysis, the repair crew’s salary is 
fixed to 190 $/hour and the penalty rate to 10 $/hour. Results 
are presented with 95% confidence intervals. 

Fig. 9 shows the expected costs per client in dense 
scenarios. Decidedly, repair costs are almost negligible with 
respect to penalty costs. As expected from previous results, 
software failures remarkably increase the expected costs. 
Among software failures, high and very high criticality bugs 
(optimistic approach) produce the biggest increase, due to their 
large failure impact (1 600 clients) and larger repair process. 
The expected cost increase due to low and medium criticality 
bugs (pessimistic approach) is almost comparable to the cost of 
hardware failures. Still in terms of costs, the latter is bigger due 

Fig. 7. CDF of the cumulative failure impact in dense scenarios. 

Fig. 8. CDF of the cumulative failure impact in sparse scenarios. 

Fig. 9. Expected cost per client in $ for dense scenarios in 1 year time span. 



to the large failure impact of feeder fiber failures. When the 
testing time is increased, the costs are also reduced. Yet, this 
reduction grows smaller for testing times larger than 20 000 
hours, as hinted from the availability and failure impact results. 

In sparse scenarios, Fig. 10, the same trends can be 
identified. As larger fibers become more failure-prone, there is 
an increase in the expected cost because of fiber infrastructure 
failures. Especially feeder fiber failures, because of their large 
failure impact and long repair time, lead to a large increase in 
the expected costs. Contrarily, the expected cost due to low and 
medium criticality bugs is now of minor importance, as the 
expected costs of the optimistic and pessimistic approach are 
almost the same. High and very high criticality bugs are still 
the most significant, being the biggest contribution to the 
expected costs. As before, increasing the testing time beyond 
20 000 hours does reduce the costs, but in a marginal way.  

VI. CONCLUSIONS  

In this paper, a thorough dependability and failure-related 
OPEX study of TDM PONs has been performed. While 
software failures have been the main object of the study; 
hardware failures have also been included for the sake of 
completeness. By applying Duane’s model for reliability 
growth to the results in [9], the dependability (more precisely, 
the failure intensity) of the OLT software as a function of the 
testing time has been estimated. Subsequently, a Markov cost 
model accounting for both hardware and software failures has 
been developed. Finally, the asymptotic availability, failure 
impact and dependability-related OPEX of these two types of 
failures in TDM PONs have been assessed. While high and 
very high criticality bugs are considered to cause a failure; two 
different approaches have been considered regarding low and 
medium criticality bugs, namely optimistic and pessimistic 
approach. The optimistic approach assumes that low and 
medium criticality bugs do not cause a failure, while these bugs 
do cause a failure in the pessimistic approach. 

Primarily, this paper shows that software failures present a 
significant threat for PONs dependability and OPEX in both 
dense and sparse scenarios. High and very high criticality bugs 
not only seriously hinder the availability, but their large failure 
impact considerably increases the failure-related OPEX. In 
dense scenarios, low and medium criticality bugs, when 
considered to cause a failure, hamper the availability in a 
greater way than hardware failures. Yet, their relatively small 

failure impact and quick repair make their effect with respect to 
failure-related costs comparable to hardware failures in dense 
scenarios. Contrarily, in sparse scenarios, low and medium 
criticality bugs pose the same threat to availability as hardware 
failures. Yet with respect to failure-related OPEX in sparse 
scenarios, hardware failures are far more serious than low and 
medium criticality bugs. Mainly, this occurs because hardware 
failures are typically related to fiber cuts, with a large failure 
impact and repair time. Expectedly, the effect of software 
failures can be reduced by increasing the duration of the 
software testing time. However, this reduction becomes 
marginal for testing times greater than 20 000 hours. 

Finally, the results presented in this paper call for further 
research. Due to the lack of information regarding software 
failures in PONs, software failure classification and description 
as well as the software dependability modelling is minimal. 
Also, a proper cost analysis of software failures requires 
modelling of the resources and costs associated to the testing 
phase. This way, a precise analysis of the trade-off between 
testing phase duration and costs versus the effect of software 
failures in service provision can be performed. 
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