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ABSTRACT In computer vision, traditional machine learning (TML) and deep learning (DL) methods have
significantly contributed to the advancements of medical image analysis (MIA) by enhancing prediction
accuracy, leading to appropriate planning and diagnosis. Thesemethods substantially improved the diagnoses
of automatic brain tumor and leukemia/blood cancer detection and can assist the hematologist and doctors by
providing a second opinion. This review provides an in-depth analysis of available TML and DL techniques
for MIA with a significant focus on leukocytes classification in blood smear images and other medical
imaging domains, i.e., magnetic resonance imaging (MRI), CT images, X-ray, and ultrasounds. The proposed
review’s main impact is to find the most suitable TML and DL techniques in MIA, especially for leukocyte
classification in blood smear images. The advanced DL techniques, particularly the evolving convolutional
neural networks-based models in the MIA domain, are deeply investigated in this review article. The related
literature study reveals that mainstream TMLmethods are vastly applied to microscopic blood smear images
for white blood cells (WBC) analysis. They provide valuable information to medical specialists and help
diagnose various hematic diseases such as AIDS and blood cancer (Leukaemia). Based on WBC related
literature study and its extensive analysis presented in this study, we derive future research directions for
scientists and practitioners working in the MIA domain.

INDEX TERMS Blood smear images, CNN, deep learning, medical image analysis, traditional machine
learning, WBCs classification.

I. INTRODUCTION
Traditional machine learning (TML) and Deep learning (DL)
techniques are widely used for various applications and are
extensively applied in the medical image analysis (MIA)
domain [1]. In modern healthcare systems, MIA is an essen-
tial attribute, assisting medical experts wisely. MIA plays
a vital role in diagnosing several diseases such as brain
tumors, lung cancer, anemia, leukemia, and malaria. MIA
processes various image modalities such as MRI, CT-Scan,
Ultrasounds, Positron Emission Tomography (PET), Blood
Smear images, and hybrid modalities [2]. In MIA, the image
modalities play a vital role in detecting and classifying
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hard and soft tissues of different body organs for diag-
nostic and research purposes [3]. MIA has dense contribu-
tions for computer vision experts in the investigated topic,
where TML and DL play a significant role in leukocyte
segmentation, cancer detection, classification, medical image
annotation, and image retrieval in computer-aided diagnosis
(CAD). The CAD and computer aided-detection (CADx)
rely on effective TML and DL schemes because their per-
formance directly affects clinical diagnosis and treatment
process [4], [5]. It further assists the doctors in the diag-
nostic and treatment process, easing their traditional work-
ing mechanisms. The recent developments in information
technology, such as high-speed computational resources,
hardware design, and storage capabilities significantly
impact CAD.
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FIGURE 1. Leukocytes types [6]; (a) Lymphocyte, (b) Monocyte, (c) Neutrophil, (d) Eosinophil and (e) Basophil.

FIGURE 2. General overview of TML and DL models for leukocytes classification in blood smear images.

Formerly, key application areas of CAD system via TML
and DL involve early-stage brain tumor detection in MR
images and leukocytes analysis. It provides valuable infor-
mation to medical experts, helping them diagnose differ-
ent hematic problems such as AIDS and blood cancer
(Leukaemia). The main aim of MIA is to assist medical
experts, doctors, hematologists, pathologists, radiologists in
the diagnostic and treatment process more effectively and
efficiently. In the medical field, it has been perceived that
the mainstream human body’s diseases are recognized by
analyzing leukocytes/WBCs [9]. The increase or decrease
of leukocytes/WBCs and their morphological structure, such
as size, shape, and color variations in blood smear images,
indicate different human body disorders.

There are different types of blood cells, such as WBCs
(leukocytes), RBCs (erythrocytes), and platelets (thrombo-
cytes). Leucocytes are further divided into five subcategories:
monocyte, lymphocyte, neutrophil, basophil, and eosinophil,
as shown in Fig. 1. Various TML and DL techniques have
emerged in the last two decades to segment and classify
WBCs in microscopic blood smear images. Conventional

techniques rely on manual analysis of WBCs in blood smear
images, a time-consuming, challenging task, and prone to
errors [6]–[9]. Automatic and CAD systems have a crucial
role in clinical diagnosis and appropriate treatment [10]–[13].

Therefore, automatic analysis of WBCs in microscopic
blood smear images is gaining popularity because it can
decrease the workload on hematologists and provide quick,
efficient, and accurate results to assist medical experts in the
diagnostic process [14]. There aremainly twoways to achieve
automated WBCs classification in blood smear images, i.e.,
TML and DL techniques, which have great potentials to
develop such automatic systems that canmakemedical hema-
tology more efficient [14]–[16]. The General overview of
TML and DLModels forWBCs classification in blood smear
images is shown in Fig. 2. Different CAD systems can auto-
matically diagnose numerous hematic types, such as AIDS
and blood cancer (Leukemia), by analyzing leucocytes [15].
In TML, there are interconnected steps involved, such as
segmenting ROI and extracting features followed by optimal
classification. A variety of TML techniques are available,
i.e., manual, semi-automatic, and automatic segmentation
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techniques to segment ROI from an image [16]. Features
extraction is another step in the TML approach. However,
selecting an optimal feature extractor is challenging due
to varying feature dynamics, such as geometric invariance
and photometric invariance. Nowadays, the vast emergence
of DL approaches has resulted in high-performance MIA
models, especially in clinical hematology using blood smear
images [18]–[33].

This research provides a comprehensive survey of the
available TML and DL techniques and their medical imaging
applications, mainly targeting WBCs classification in blood
microscopic images. There have been several surveys onMIA
using TML and DL techniques and future trends focusing on
MRI, CT, X-rays, but microscopic blood smear is a rarely
addressed problem [17], [18]. Therefore, this study intends
to fill this gap by analyzing state-of-the-art TML and DL
techniques for MIA, particularly leucocytes classification
methods in blood smear images. The proposed research’s
primary focus is to provide a comprehensive review of the
use of TML and DL in MIA.

In the proposed study, a novel categorization is employed
to find the most common TML and DL methods that are
reviewed in separate groups according to the research focus
and employed technique. This research also helps identify
future research directions by following TML and DL tech-
niques to classify leucocytes in microscopic blood smear
images. The followings are some of the significant contribu-
tions of the proposed review study:
• The outlines of this paper investigate different applica-
tions and uses of TML and DL models in MIA.

• This This research study also aims to identify available
machine learning techniques for leukocyte classification
and analyze the extent of accuracy, applications, and
MIA contributions.

• We address the key challenges and requirements of TML
and DL models, followed by its future directions and
solutions for future research in MIA.

The remaining paper is structured as follows; Section II
describes the review methodology and papers scrutiniza-
tion process in detail. Section III gives a brief introduction
about MIA. In Section IV, we present the detailed summary
and applications of the artificial neural network and leu-
cocytes classification in microscopic blood smear images.
In Section V, the current challenges and requirements are
discussed. Future directions of the proposed review study are
described in section VI. In the last section VII, we discuss
about recent advancements in DL models, followed by con-
clusions of the proposed review work.

II. REVIEW METHODOLOGY
This section provides a detailed discussion about digital
libraries used for conducting a formal research process in
the proposed review study. A planned searching procedure
is required to find the available literature that fulfills the
searching criteria, to utilize the available digital resources
purposefully [19]. In the proposed study, we incorporated

both manual and automatic searches to get the most rele-
vant research articles by following the Preferred Reporting
Items for Systematic Reviews andMeta-Analyses (PRISMA)
model [20], [21].

We performed both manual and automatic searches to
fetch the most relevant content. Our searching strategy begins
with an automatic search on electronic databases to retrieve
relevant data followed by verification of results by MIA
and leucocytes classification experts. In the proposed survey,
we search for articles from the period of 2014 to 2020. All
the included sources are searched automatically as well as
manually using the predefined keywords. Keywords for the
search are decided by the authors and other research partici-
pants (a group of four research students working in the area of
MIA). These keywords include ‘‘Medical Image Analysis,’’
AND ‘‘Leucocytes Classification,’’ OR ‘‘WBC’sDetection in
Blood Smear Images’’. Search keywords are defined based on
the following steps:

(a) The major terms are derived from research questions
(b) Alternating synonyms or spellings are identified for the

major terms.
(c) Keywords are identified from relevant research articles

and books.
(d) Boolean operator OR is used for alternating spellings

or synonyms.
(e) The major terms are linked by Boolean AND operator

and the search string is formed after the analysis of the
keywords in order to retrieve the relevant information
from the databases.

The above-mentioned keywords and string are checked on
each database and its pattern is modified based on relevant
results retrieval. Numerous keywords associated with the
study’s primary focus is based on the four research ques-
tions (RQ) that are designed keeping in view the Patient,
Intervention, Comparison, Outcome (PICO) framework [22].
RQ -1:What are the different TML and DL techniques for

leukocyte classification in blood smear images?
RQ -2: What are the different applications of TML and

DL techniques in medical analysis, especially leukocytes
classification?
RQ -3:How are TML andDL techniques used inMIA, par-

ticularly for leukocyte classification in blood smear images?
RQ -4: What type of machine learning is practical and

efficient for analyzing leukocytes in blood smear images?

A. RETRIEVED PAPERS SCRUTINIZATION CRITERION
The initially retrieved papers are subject to inclu-
sion/exclusion criteria by following the PRISMA guidelines.
Table 1 represents the inclusion and exclusion criteria to
filter out irrelevant articles. The selection of research articles
is completed in three steps. Firstly, duplicate papers are
removed. Secondly, the paper title, abstract, and keywords are
investigated for relevancy, and finally, the remaining research
papers are included after a thorough investigation. The pro-
cess of exclusion and inclusion criteria is applied to eliminate
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TABLE 1. Criteria for research papers inclusion and exclusion in the proposed study.

FIGURE 3. A comprehensive illustration for article selection process.

conflict analysis and biasedness. A total of 1436 research
papers are collected to review the literature based on the
research focus during the article selection process. In the
initial selection process, manual filtering is incorporated, and
the papers are filtered using the relevant title, and 1106 papers
are obtained. These 1106 articles are then filtered by observ-
ing the abstract and conclusion, finally leaving 922 papers.
These papers are filtered by methodology and results in the
next step, and 725 articles are obtained. Then the articles are
filtered after reading the full contents, leaving 216 articles.
We checked the remaining articles’ quality by evaluating the
methodology, full-proof results, journal’s impact factor, and
citations. After checking all these parameters, 80 papers are
picked for the proposed study. After the completion of the
paper’s scrutinization process (paper inclusion and exclu-
sion), the quality assessment is performed. Each research
article is assessed against the scrutinization criteria. All
research articles are reviewed, and the quality of the papers
with respect to each research question is assessed. Each of the
selected articles is read and analyzedmanually by the authors.
The publication channels used for the article searching and
the stepwise selection process are presented in Fig. 3.

III. MIA
The process that can provide visual information of the
human body to assist the radiologists and doctors in an
efficient diagnostic and treatment is called medical imag-
ing [23]. There are many image modalities upon which
the doctors and medical experts rely for diagnosing dis-
eases and prescribing treatment. Thesemodalities includeCT,

FIGURE 4. Number of research publications in the field of medical
imaging in the past two decades.

FIGURE 5. The exponential growth in the research of TML and DL for
leucocytes classification in blood smear images.

X-ray, MRI, microscopic blood smear images, PET, and
ultrasound [17], [23], [24]. These imaging technologies play
an essential role in MIA; doctors and medical experts can
automatically detect and diagnose different chronic diseases
by analyzing these images. They can also visualize different
body organs for research [37]. The number of research papers
explored in this field is shown in Fig. 4. The last two decades
have witnessed extensive medical imaging usage in CAD,
for instance, in applications such as for leucocytes segmenta-
tion and classification, tumor segmentation and classification,
detection and classification of breast cancer, image-guided
therapy, and medical image annotation [25]–[28]. It has,
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FIGURE 6. General architecture of TML based leucocytes segmentation and classification.

therefore, became an integral part of today’s modern health-
care systems [29].

A. TML AND DL FOR LEUCOCYTES CLASSIFICATION IN
BLOOD SMEAR IMAGES
The literature includes a sufficient number of recently pub-
lished review articles on TML and DL techniques used in
MIA. The most recent and relevant research works about
TML and DL methods in medical imaging, particularly for
the classification of leucocytes in blood smear images [30],
are discussed in the subsequent sections. In the proposed
study, the most relevant and recent studies are searched out
using keywords ‘‘leucocytes detection’’ or ‘‘leucocytes clas-
sification’’ by filtering the recent papers. During searching,
we found that there is an exponential research growth of using
TML and DLmethods for leukocytes analysis in blood smear
images. Fig. 5. represents the overall research results of DL
and TML techniques for MIA and its exponential growth in
the last two decades.

TML approaches involve interconnected steps, i.e., image
pre-processing, segmentation, feature extraction, feature
selection, and classification. The pre-processing step includes
image enhancement such as contrast adjustment, noise
removal, and image sharpening. All these steps are applied
to the input image before image segmentation [41]. There are
numerous pre-processing techniques such as median filter,
low pass filter, high pass filter, and Gabor filter. These are
used normally for image contrast adjustment, image sharpen-
ing, and noise removal before image segmentation. TML has
been addressed by several researchers for leucocytes detec-
tion and classification. However, accurate nuclei detection,
separation of borders to recover overlapped cells, segment-
ing ROI, robust features extraction, and best features selec-
tion have become challenging and time-consuming using
these approaches [31]–[33]. In this approach, after segment-
ing ROI, the next step is feature extraction. In traditional
supervised learning techniques, the classification depends on
choosing robust features descriptor and best features selection

algorithm [31], which are the most crucial steps towards
efficiency and accuracy of the adopted technique. The general
overview of TML is shown in Fig. 6.

Many conventional supervised learningmethods have been
used to classify leucocytes in microscopic blood smear
images, such as Support Vector Machine (SVM) [32]–[34],
Naive Bayes (NB) [35]–[37], K-Nearest Neighbor (KNN)
[38]–[40], and Artificial Neural Network (ANN) [41]–[43].
Some popular WBCs nuclei detection techniques are identi-
fied and reviewed, which are presented in Table 2.

B. LEUKOCYTES CLASSIFICATION USING SVM
There are numerous supervised learning techniques available
to deal with leucocyte classification, such as SVM, ANN,
Naïve Bayesian, and Decision Trees. Hegde et al. [70] pro-
posed a novel technique in which the authors first segmented
the WBCs and then employed SVM to classify WBC cells
into a normal or leukemic cell. Zhao et al. [69] proposed
a novel technique to segment and classify Leukocytes in
blood smear images. Color co-relation and morphological
based segmentation are applied, followed by texture features
extraction and classification using SVM to classify WBCs
into its five subclasses [90]. Table 3 elaborates on the key
contributions and applications of SVM for leucocytes classi-
fication in blood smear images.

C. ENSEMBLES, HYBRIDS, BAYESIAN, K-NN AND
DECISION TREES FOR LEUKOCYTES CLASSIFICATION
In addition to ANNs and SVMs, which have significant
contributions to MIA, hybrids, Bayesian, Ensembles, K-
NN, and Tree models have also been applied to solve the
problems in different sub-domains of medical imaging such
as brain tumor detection, lung cancer detection, leukocytes
classification, etc. Abdulkadir et al. [71] proposed a hybrid
approach for WBC classification in blood smear images.
Sajjad et al. [15] proposed a smartphone-based quality health-
care system for smart cities, in which an ensemble multi-class
SVM is used to classify WBCs in blood smear images.
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TABLE 2. List of various research studies for WBCS nuclei detection in blood smear images.
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TABLE 2. (Continued.) List of various research studies for WBCS nuclei detection in blood smear images.

TABLE 3. Notable contributions and application of SVM for leucocytes classification.

Tantikitti et al. [72] proposed a computer-aided diagnos-
ing system to diagnose dengue fever disease. A multi-level
threshold technique is used to segment leukocytes in blood
smear images. This research has two decision tree models
for classification. The first model was used to classify the
type of white blood cells that are lymphocytes or Phago-
cytes. The second model is used to classify the dengue
virus infection as positive or negative. In [73], a novel tech-
nique is proposed in which WBCs nucleus and cytoplasm
are segmented using simple thresholding. After segmenta-
tion, some morphological operations are performed using
ellipse curve fitting, followed by feature extraction. For fea-
ture selection, the sequential forward selection technique is
incorporated, and finally, a naïve Bayes classifier is used to
classify WBCs. Vogado et al. [74] used a hybrid approach
for the classification and segmentation of leukocytes. In their
proposed technique, CNN features are used as input to train

the SVM classifier. A transfer learning is also utilized for
further classification of leukocytes, as comprehensively given
in Table 4.

IV. ANN FOR LEUCOCYTES CLASSIFICATION
ANN is a supervised learning technique inspired by the
biological nervous system of the human brain. It involves
input, output, and hidden layers that are linked together via
weighted connections. The performance of any ANN tech-
nique depends on these weights, which are numerical values.
The output layer generates results given the inputs based
on weights, error function, and neurons in the hidden layer.
Several research studies have applied ANN in the context of
MIA due to its enormous applications, including leucocytes
classification, brain tumor classification, breast cancer detec-
tion, and lung cancer detection. Some notable contributions
and applications are summarized in Table 5.
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TABLE 4. Notable contributions and applications of bayesian, ensembles, hybrids, K-NN and trees models for leucocytes classification in blood smear
images.

A. LEUKOCYTES CLASSIFICATION BASED
ON DEEP LEARNING
DL allows us to define a system in which the feature extrac-
tion is not designed by human engineers but learned from
data using a general-purpose learning procedure [79]. In the
field of MIA, deep learning achieved satisfactory perfor-
mance and relatively easy to build an end-to-end network
using CNN [80]. TML models are trained on manually
extracted features, or they learn features via other simple
machine learning techniques to perform different classifi-
cation tasks. Therefore, DL techniques have attracted the
researcher’s attention and motivated them to explore DL’s
benefits for WBCs classification. Currently, DL has become
a powerful research tool in artificial intelligence, speech
analysis [81], natural language processing (NLP) [82], and
medical imaging [83]. DL’s use is also becoming an essen-
tial aspect as a pattern recognition tool in the field of
MIA [84]–[86]. According to a recent review on DL based
MIA [87], DL algorithms and particularly convolutional net-
works, have become a choice for many for analyzing medical

FIGURE 7. The general overview of deep learning.

data. These methods are particularly suitable to those areas
where human-like intelligence is required to analyze large
amounts of data. Additionally, good knowledge is needed to
extract rich features from a massive raw data volume [88].

However, this task is challenging and time-consuming
when a vast collection of data is to be handled efficiently.
DL provides end-to-end learning and eliminates all extra
overheads of selecting feature descriptors and feature selec-
tion, as shown in Fig.7. DL methods’ significant advantage
is learning and automatically extracting semantically rich
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TABLE 5. Representative key contributions and applications of ANN for WBCS classification.

features from the raw data [82]. This is the main difference
between TML and DLmodels. DL’s unmatched benefits have
attracted a large research community and industries to use
DL-based approaches for MIA.

DL models can be classified into different categories
such as convolutional neural networks [95], deep belief
networks [96], Long short-term memory networks [97],
Recurrent Neural Networks (RNN) [98], and deep auto-
encoders [99]. Convolutional neural networks (CNNs) is
widely used in medical imaging [17].

B. LEUKOCYTES CLASSIFICATION USING
CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNN consists of multiple convolutional, pooling, and fully
interconnected layers with activation functions. It is trained
using gradient descent and backpropagation as any standard
ANNs (see Fig. 8) [100]. Typical CNNs generally have a
successive convolutional and pooling layer followed by a
fully connected layer. A Softmax function is used at the
output nodes to classify WBC’s into its five respective cat-
egories, i.e., monocyte, lymphocyte, neutrophil, basophil,
and eosinophil. Banik al. [101] proposed a novel CNN
model for WBCs classification by fusing the features of
first and last convolutional layers using the BCCD database.
Choi et al. [102] proposed a CNN model with eight layers
for WBCs classification. Karthikeyan et al. [103] presented
an LSM-TIDC method to classify WBCs in blood smear
images. Firstly, images are pre-processed, then texture and
geometrical features are extracted using a multi-directional
model. Finally, the extracted features are fed as a fea-
ture vector to deep convolutional networks for efficient and

early detection of WBCs in blood smear images. In [14],
the authors proposed a Regional-Based CNN using transfer
learning approaches to classify WBCs in peripheral blood
smear images. The overview of some recent articles using DL
for leukocyte classification is shown in Table 6.

V. CURRENT CHALLENGES AND REQUIREMENTS
In this extensive literature review, we found the major
research challenges and requirements, several key features,
their applications, and advantages of TML andDL techniques
forMIA, particularly forWBC’s classification in blood smear
images. In the last few years, there are certain standard and
powerful TML and DL models developed for MIA, such as
brain tumor localization and classification from MRI, leuko-
cytes detection and classification in blood smear images,
and lung cancer detection in CT images [124]. Still, there
exist some significant challenges that the research community
either has to accept or try to overcome. These challenges
include the unavailability of publicly available large and good
quality datasets, dedicated medical experts, and lightweight
TML and DL techniques. Some of the challenges are related
to the mathematical and theoretical underpinnings of many
DML techniques [123], [124]. To overcome these challenges,
unsupervised or semi-supervised systems are required [83].
The proficiency of semi-supervised and unsupervised meth-
ods in MIA will be compromised to avoid these issues.
It is also challenging to move from supervised learning to
unsupervised learning approaches without affecting the sys-
tem’s accuracy and efficiency. MIA applications and systems
employing TML and DL methods are still far from perfect,
leaving significant space for improvements.
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FIGURE 8. Building blocks of general CNN architecture for leukocytes classification. A slight modification of a figure in [17].

A. UNAVAILABILITY OF PUBLICALLY AVAILABLE DATASETS
The major problem in the field of medical image analysis is
the unavailability of publicly available datasets. To address
this issue, the researchers need to encourage health orga-
nizations to make their medical data available; it can be
interesting if quality data is publicly available for researchers.
Moreover, initiatives that encourage open data from different
health institutions worldwide are encouraged; some operation
are also necessary (e.g., data from hospitals and conditional
access to datasets). In all these cases, incentive mechanisms
can be related to financial return, entertainment, or services
to these institutions while providing quality data. The topic
becomes more interesting for research when the data is avail-
able in massive amounts, just like other fields (e.g., video
summarization [125], IoT [126], energy management [127],
and so on.). It is vital to collect extensive and quality datasets
with ground-truth labels for specificMIA applications.More-
over, such datasets can be used for benchmarking as well as
hosting different competitions.

B. TRAINED PREDICTOR GENERALIZATION ABILITIES
The key issue with MIA and leucocytes detection and clas-
sification is to train a predictor. An ideal learning technique
with a better balance of generalization ability and a computa-
tionally efficient heuristic model is required to overcome this
problem. A learning paradigm that uses true or random labels
and provides effective tools to deal with available datasets
and efficient training algorithms are needed to train a model
with remarkable generalization abilities. Learning with deep
neural networks has enjoyed huge empirical success in recent
years across a wide variety of tasks in the field of MIA,
i.e., brain tumor detection, lung cancer, breast cancer detec-
tion, and leucocytes classification. Despite being a complex,
non-convex optimization problem, simple methods such as
stochastic gradient descent (SGD) can recover reasonable

solutions that minimize the training error. More surprisingly,
the networks learned this way exhibit good generalization
abilities [128], even when the number of parameters is sig-
nificantly larger than the amount of training data [129].
During model training, only minimizing the training error
is not enough. Picking the wrong global minima can also
lead to bad generalization behavior for the predictor. In
such situations, generalization behavior depends implicitly
on the algorithm used tominimize the training error. Different
algorithmic choices for optimization, such as the initializa-
tion, update rules, learning rate, and stopping condition, will
lead to different global minima with different generalization
abilities.

C. TRUST-WORTHY METHODS TO BE FUNCTIONAL IN
REAL-WORLD ENVIROMENTS
The existing TML and DL techniques are not good enough to
be trusted without medical expertise to function in real world
health diagnosis systems [130]. There must be an expert as
well as technical skills to train a learning model for MIA and
leucocytes classification.We need to explore such precise and
trustworthymethods which do not need health experts and are
implementable in real-world health applications.

VI. FUTURE RESEARCH DIRECTIONS
Considering the major challenges encountered by the MIA
community outlined in sectionV, extensivework is demanded
from the biomedical industry and research community to
contribute toMAI and especially leukocytes analysis in blood
smear images.

A. DATA AUGMENTATION TECHNIQUES TO FILL THE
DATASETS DEFICIENCY
In this study, we have focused on the most frequently men-
tioned problem of unavailability of datasets in the field
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TABLE 6. Some notable key contribution of different deep learning models for leukocytes classification.
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TABLE 6. (Continued.) Some notable key contribution of different deep learning models for leukocytes classification.

of MIA and leucocytes classification. An extensive data
augmentation technique and transfer leaning models are
recommended to improve MIA and WBC’s detection
classification in blood smear images. There are several
data augmentation techniques used to extend the existing
data, i.e., classical image transformations like rotating, crop-
ping, zooming, Gaussian blur, sharpening, edge detection,
histogram-based methods, and finishing at Style Transfer and
Generative Adversarial Networks.

B. MEDICAL EXPERTISE AND TECHNICAL
SKILL ARE REQUIRED
In the future, computer-aided MIA-based diagnostic appli-
cations can benefit from the recent advances in TML and
DL models. These models are already available on multi-
ple open-source platforms such as Tensorflow, Caffe, and
Keras [131]. However, selecting and training an appropri-
ate machine learning model for a specific MAI problem is
challenging due to limited medical expertise and clinical
knowledge.

C. RESOURCE CONSCIOUS DL MODELS FOR LEUKOCYTES
CLASSIFICATION
In recent developments, DL, i.e., GAN’s (Generative Adver-
sarial Networks), R-CNN, Fast R-CNN, faster R-CNN, and
deep fusion of TML andDL techniquesmodels have achieved
higher performance in brain tumor detection, leukocytes clas-
sification, breast cancer detection, and otherMIA tasks. How-
ever, their primary concerns are high computational cost and
highmemory requirements. So, computationally efficient and
energy-friendly TML and DL models need to be explored
for leukocytes analysis in blood smear images. Furthermore,
such light weighted models can be easily implemented over
resource-constrained devices.

D. END-TO-END LEUCOCYTES DETECTION AND
CLASSIFICATION MODELS
Traditional learning techniques can be replaced by a deep
neural network (DNN) based models. With the recent
advancement of CNNs [132], end-to-end models are also
gaining in popularity due to simplified model-building pro-
cesses and the ability to classify leucocytes into its five cate-
gories. These models are based on data-driven learning meth-
ods and competition with complicated MIA models based
on DNN. Different end-to-end architectures for leucocyte
detection and classification in blood smear images, such as
attention-based methods [133], [134] and CNN based model
are also prominent.

E. UNIVERSAL EVALUATION FOR TML AND DL IN MIA
In MIA, the research community mainly relies on subjec-
tive evaluation techniques. However, this task is challenging,
time-consuming, and can be prone to errors. Thus, further
research is required to explore universal evaluation tech-
niques that can automatically measure the performance of
TML and DL models for MIA from different perspectives.

VII. DISCUSSION AND CONCLUSION
This study provided a comprehensive review of TML and DL
techniques used for leukocyte classification in blood smear
mages. We reviewed different TML and DL approaches to
classify WBCs in blood smear images. The data are collected
from primary studies published during 2014 to 2020. The
current study’s literature identifies 80 primary studies (arti-
cles published in journals, books, conferences, and online
materials) defining TML and DL techniques for leucocytes
classification in blood smear images and its applications in
medical diagnosis. While reviewing the articles, we found
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that both TML and DL approaches have performed equally
well with overall contributions in MIA. This study is focused
on identifying different applications of TML and DL in MIA
and leucocytes classification in blood smear images. The
objective of this study is to gain insight into complex details
of TML and DL by accumulating and analyzing the knowl-
edge provided in the literature in order to facilitate further
research in the field of MIA. This study shows that much
work is still needed to investigate the use of TML and DL
techniques for useful MIA and leucocytes classification in
blood smear images. This study also aimed at identifying
applications of advanced DL models other than leucocyte
classification. However, it is found that almost all other med-
ical diagnosis applications are either directly or indirectly
related to TML and DL. The accumulation of all this infor-
mation in this study will benefit the research community by
identifying where they need to start in further research on
TML and DL models for MIA.

In future these techniques will have tremendous con-
tributions in the development of medical imaging, natural
language processing and speech analysis. Beside WBCs,
TML and DL techniques are also used for the detection
and classification of different MIA domains i.e., MRI, CT,
X-ray, Ultrasound images analysis. In the current study,
we reviewed different TML and DL techniques such as SVM
ANNs, Ensembles, Bayesians, neuro-fuzzy, hybrids, DL and
CNNs which are used to analyzed blood smear image [15],
[72]–[78]. In MIA, blood smear images are the emerging
domain that achieved great attention by the research com-
munity since last three decades. Standard contributions and
applications of TML and DL in MIA are presented in this
study. Furthermore, we also identified the current challenges,
future directions and solutions for the advancements of TML
and DL models in the field of MIA and particularly for
WBCs classification in blood smear images. In future, we aim
to extend our survey by considering various MIA domains
such as MRI, CT, Ultrasound, X-ray images by utilizing the
potentials of TML and DL techniques.
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