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Abstract

In this paper, a computational framework for simulating ductile fracture in multipatch shell structures is presented. A
uctile fracture phase-field model at finite strains is combined with an isogeometric Kirchhoff–Love shell formulation. For the
pplication to complex structures, we employ a penalty approach for imposing, at patch interfaces, displacement and rotational
ontinuity and C0 and C1 continuity of the phase-field, the latter required if a higher-order phase-field formulation is adopted.
e study the mesh dependency of the numerical model and we show that mesh refinement allows for capturing important

eatures of ductile fracture such as cracking along shear bands. Therefore, we investigate the effectiveness of a predictor–
orrector algorithm for adaptive mesh refinement based on LR NURBS. Thanks to the adoption of time- and space-adaptivity
trategies, it is possible to simulate the failure of complex structures with a reasonable computational effort. Finally, we compare
he predictions of the numerical model with experimental results.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Phase-field model; Ductile fracture; Isogeometric; Shell; Multipatch; Adaptive refinement

1. Introduction

The numerical prediction of the fracture and post-failure behavior of shell structures constituted by ductile
aterials like metals requires sophisticated simulation tools. Adequate formulations for the description of ductility

nd fracture, in combination with structural models, are needed. The phase-field approach for the simulation of
racture has been the object of several studies in the last years. The formulation, stemming directly from Griffith’s
heory [1], is based on the description of brittle fracture in a variational framework presented by Francfort and

arigo [2], later regularized by Bourdin et al. [3]. The competition between the strain and the fracture surface
nergy controls the nucleation and growth of cracks, which are described by the smooth variation, between the
ntact and broken material states, of a continuous scalar parameter, the so-called phase-field. The formulation is
ow well established for the brittle fracture case thanks to various advances from the original formulation. Among
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others, we recall the different approaches for introducing a split in the strain energy in order to take into account the
physical asymmetry of the fracture behavior in tension and compression [4–7], for employing alternative degradation
functions for the tensile part of the elastic strain energy instead of the standard quadratic one [8,9], for enforcing
the irreversibility of fracture [5,10], and for adopting a higher-order phase-field formulation [11], or a dissipation
function capable of reproducing the initial linear elastic behavior of the material before fracture [12].

The phase-field simulation of fracture in ductile materials requires a more complex formulation that includes, in
ddition to the elastic and fracture energy contributions already present in the brittle fracture approach, an energy
issipation term related to plastic deformation. The main challenge of these models is represented by the interaction
etween the dissipative term related to plasticity and the fracture term, and how these contributions are coupled,
aking into account the fact that usually, in ductile materials, the plastic flow precedes the crack growth. Miehe
t al. [13] consider a classical formulation of the fracture energy contributions (i.e. the same used for brittle fracture)
pplied to thermo-elastic–plastic materials and investigate the experimentally observed transition between brittle
nd ductile fracture due to dynamic loading conditions. The work by Alessi et al. [14] reviews several phase-field
pproaches for ductile fracture. The formulation proposed by Duda et al. [15] can be considered as a “brittle fracture
n elasto-plastic solids” since no coupling is assumed between the phase-field and the plasticity. In the model by
mbati et al., at first proposed for the small strains framework [16] and then extended to finite strains [17], the

oupling between the two terms is included in the degradation function of the tensile part of the elastic strain
nergy, since this function depends on the accumulated plastic strain. In the formulations by Alessi et al. [18,19],
orden et al. [9], Kuhn et al. [20], Huang et al. [21], Rodriguez et al. [22] and Miehe et al. [23], the damage-plastic
oupling is based on the fact that a degradation function depending on the phase-field parameter is defined not only
or the bulk elastic strain energy, but also for the hardening energy contribution and the plastic dissipated work. The
atter two references include also a non-local gradient formulation for plasticity. The approach proposed by Yin and
aliske [24] is based on the definition of the fracture toughness depending on the accumulated plastic deformation

hrough the definition of a dedicated degradation function. Dittman and co-workers [25] adopt the higher-order
hase-field formulation and couple the plasticity and fracture behaviors by degrading the critical fracture energy by
function depending on the equivalent plastic strain.
The phase-field method has been coupled with plate and shell models for simulating brittle fracture in thin-walled

tructures adopting different approaches [26–29]. The formulations by Kiendl et al. [30] and Paul et al. [31], based
n the idea of performing the tension–compression split at various integration points through the shell thickness
nd then numerically integrating the strain energy contributions along these points, have been also extended to the
ase of multipatch structures with isogeometric analysis [32,33]. A similar approach has been recently adopted by
ikis et al. [34] for modeling phase-field brittle fracture in Reissner–Mindlin shells and plates. Pillai et al. [35] also
resented a formulation for phase-field brittle fracture in a MITC4+ Reissner–Mindlin degenerated shell element.
ormulations for ductile fracture have only been applied to a solid shell model in the small strains setting [36].

Several works are focused on the validation of the phase-field fracture approach through the comparison of the
esults of numerical simulations with experimental tests, such as [37–41] for the brittle case. For ductile fracture,
e recall the works by Wick et al. [42] and Borden et al. [9] which report qualitative results for the fracture of

crews and of a bolted plate, respectively. A quantitative comparison, showing good agreement of the results of
uctile fracture phase-field simulations and experiments, is reported by Ambati et al. [17].

The aim of this work is to present an isogeometric phase-field approach for simulating the ductile fracture
f thin plates and shells and to test and validate the model through the comparison of numerical analyses with
xperimental benchmarks. In addition, we study how the mesh refinement influences the results of the model in
erms of fracture path and load–displacement curves. The computational efficiency of the simulations is therefore
mproved by employing a predictor–corrector algorithm for the adaptive local refinement of the mesh only in the
egion where it is needed, i.e. in the vicinity of the cracked area. In view of simulating the behavior of real-world
tructures, we adopt a penalty formulation for patch coupling that allows the description of geometrically complex
ultipatch structures.
The paper is outlined as follows. Section 2 provides the details of the proposed approach. Firstly, the elasto-

lasticity formulation and its combination with a rotation-free isogeometric Kirchhoff–Love shell model are
eviewed. A phase-field approach for ductile fracture at finite strains, including its higher-order formulation, is
hen presented and a detailed explanation is provided about its coupling to the elasto-plastic shell model. In the

ame section, we introduce the penalty formulation for coupling the structural and phase-field behaviors of adjacent
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shells in multipatch structures and we briefly present the penalty contact formulation used for the simulation of
the experimental tests. We also focus on the employed solution algorithm, especially on the staggering and on the
adaptive step size schemes. Section 3 is devoted to the study of the effects of mesh refinement on the ductile fracture
phase-field simulations through numerical experiments, and to the presentation and application of an adaptive local
refinement procedure. In Section 4, the proposed approach is validated by the simulation and the comparison with
the results of experimental tests performed on steel plates. The paper is closed by the conclusions in Section 5.

2. Formulation

This section presents the main features of the adopted phase-field ductile fracture approach and how this
ormulation is coupled with a model for shells and plates. Firstly, the main aspects of a Kirchhoff–Love shell
ormulation for elasto-plasticity are introduced, then a phase-field ductile fracture model valid in the finite strains
egime is presented and combined with the structural model. Lastly, a penalty patch coupling and a penalty contact
ormulation, adopted for the numerical simulations of Section 4, are briefly recalled.

.1. Elasto-plasticity formulation for Kirchhoff–Love shells

We adopt a rotation-free Kirchhoff–Love shell formulation developed by Kiendl et al. [43] in the framework of
sogeometric analysis (IGA). The main assumption for thin shell theories is that segments which are perpendicular to
he midsurface in the undeformed configuration remain straight and normal to the midsurface during deformation, so
hat the transverse shear deformation can be neglected. Therefore, the description of the shell kinematics is reduced
o the description of its middle surface.

In the shell governing equations, we use the curvilinear coordinates θ1 and θ2 for the midsurface and the
oordinate θ3

∈ [−t/2,+t/2] for the thickness direction, with t indicating the shell thickness. Considering a point
(θ1, θ2) on the middle surface of the shell, the tangent base vectors aα , constituting a covariant coordinate system,
re defined as:

aα =
∂r
∂θα

. (1)

ccording to the adopted index notation, Greek indices α and β assume the values {1, 2} for indicating the in-plane
omponents, while Latin indices i and j take the values {1, 2, 3}. Partial derivatives with respect to θα are indicated
s (·),α = ∂(·)/∂θα , so that Eq. (1) can be written also as aα = r,α . The dual contravariant base vectors are defined
y aα · aβ = δαβ , with δαβ being the Kronecker delta, and they can be used for defining a contravariant coordinate
ystem on the shell midsurface. The unit normal vector in thickness direction is defined as:

a3 =
a1 × a2

∥a1 × a2∥
. (2)

onsidering a point in the shell continuum and x being its position vector in the deformed configuration, the position
f the vector can be described, due to the Kirchhoff assumption, by the corresponding point on the midsurface r
nd the fiber director a3:

x = r + θ3a3. (3)

ccordingly, the base vectors, defined at any point x in the shell continuum, are denoted as gi = x,i and take the
form:

gα = aα + θ3a3,α, g3 = a3. (4)

he dual contravariant base vectors can be retrieved by the expression gi
· g j = δi

j . As follows, the notation
·̊) indicates the undeformed configuration of the geometric variables. With these terms in hand, the covariant
omponents of the deformation gradient F = dx/dx̊, in the curvilinear reference system constituted by the
ontravariant bases in the undeformed configuration g̊i

⊗ g̊ j , can be computed as:

Fi j = g̊i · g j . (5)

ccordingly, the right Cauchy–Green deformation tensor C = FT F covariant components can be defined as:

C = g · g . (6)
i j i j

3
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The adopted approach for plasticity, based on the work from Simo [44], consists in a standard three-dimensional
sochoric von-Mises J2 rate-independent plasticity theory at finite strains, which employs a multiplicative decom-
osition of the deformation gradient into its elastic and plastic parts:

F = FeFp. (7)

rom the elastic deformation gradient, the elastic left Cauchy–Green deformation tensor be is computed as:

be
= FeFeT

. (8)

he determinant of the elastic deformation gradient tensor, which is a measure of the elastic change of volume, is
esignated as J e

= det[Fe]. We adopt a neo-Hookean constitutive law of decoupled type for describing the elastic
ehavior of the material. According to this approach, the strain energy density ψe can be additively decomposed
nto a volumetric (shape preserving) and a deviatoric (volume preserving) part:

ψe = ψvol
e + ψdev

e . (9)

he two terms are computed as follows:

ψvol
e =

κ0

2

(
J e2

− 1
2

− ln J e

)
, (10)

ψdev
e =

µ

2

(
Ī e
b − 3

)
, (11)

ith κ0 and µ as the bulk and shear modulus of the material, respectively. In Eq. (11), Ī e
b = tr[b̄e], with

¯ e
= J e−

2
3 be. Further details regarding the plasticity model, including the formulation of the yield function, the

associative flow rule, and the time-integration scheme required for the solution of the elasto-plastic constitutive
equations, can be found in Ambati et al. [45].

For the implementation of the elasto-plasticity model in the shell formulation, we adopt a stress-based approach
consisting in defining integration points in the shell thickness direction where the validity of the three-dimensional
material model is enforced. Consequently, the stress resultants are computed by the integration of the stress
components through the thickness. In the finite strain context, it is important to point out that the considered shell
formulation defines only the midsurface deformation, while the thickness deformation is neglected. In order to
take into account the out-of-plane deformation, we follow the same approach as in Kiendl et al. [46] and Ambati
et al. [45], and we correct the definition of the base vector in thickness direction:

g3 = λ3a3, (12)

where λ3 is the thickness stretch. Accordingly, the change of g3 modifies the definition of the components of the
eformation gradient:

Fiβ = g̊i · gβ, Fi3 = λ3 g̊i · a3, (13)

nd also of the Cauchy–Green deformation tensor:

Cαβ = gαβ, Cα3 = 0, C33 = λ3
2. (14)

owever, the information about the thickness deformation cannot be retrieved directly from the shell kinematics,
hich is based only on the displacement field of the midsurface. For this purpose, we employ the plane stress

ondition as an additional constraint. This condition is expressed by the contravariant component S33
= 0 of

he second Piola–Kirchhoff stress tensor S = Si j g̊i ⊗ g̊ j . According to the considered approach, the plane stress
ondition is enforced locally, in an iterative manner, at each thickness integration point. Without entering into the
etails, which can be found in [45], the process starts by choosing the value of λ3 from the last converged load
tep (λ3 = 1 for the first step), then the deformation gradient tensor is corrected as in Eq. (13) and the updated
auchy–Green deformation tensor is computed as C = FT F. From the corrected F, the stress tensor S and the

elasto-plastic material tangent tensor C are computed according to J2 plasticity theory [44]. With these quantities
in hand, the linearization of the plane stress conditions allows us to compute an updated value of C33 from the just
obtained S33 and C3333. According to Eq. (14), the updated value of the thickness stretch is easily found as:√

C . (15)
λ3 = 33

4
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This value is used for obtaining again the corrected deformation gradient and Cauchy–Green deformation tensors,
as in Eqs. (13) and (14). From this point, the iterative process starts again and it is repeated until the plane stress
condition is satisfied within a specific tolerance. With this procedure, the stress resultants and the material tensor
can be computed at any point of the continuum, specifically in the considered thickness integration point. The strain
tensor ε, according to the Kirchhoff–Love formulation, can be defined at any location of the shell, based on the
midsurface kinematics, as the sum of the membrane and bending parts as follows:

ε(θ3) = εm
+ θ3κ, (16)

here εm
= εm

αβ aα ⊗ aβ is the membrane strain tensor, whose covariant components can be expressed as:

εm
αβ =

1
2

(
aα · aβ − åα · åβ

)
. (17)

The second term in Eq. (16) is related to bending and varies linearly with the thickness coordinate θ3. The covariant
components of the curvature change tensor κ = καβ aα ⊗ aβ are computed as:

καβ = åα,β · å3 − aα,β · a3. (18)

he presence of the second-order derivatives in the curvature expression in Eq. (18) requires at least C1 continuity
f the shape functions of the discretized model, making IGA a favorable choice for the discretization of the thin
hell formulation.

The variational formulation used for the discretized model is based on the virtual work principle and corresponds
o the weak form of the momentum equation:

δW = δW int
− δW ext

= 0. (19)

n the definition of the internal virtual work:

δW int
=

∫
A

(
δεm

: n + δκ : m
)

d A, (20)

δεm and δκ are computed according to Eqs. (17), (18) and related ones, considering a virtual displacement field δu.
The effective stress resultants n and m, for axial force and bending respectively, are computed employing numerical
integration of the stresses through the thickness.

2.2. Higher order phase-field model for ductile fracture

In the phase-field fracture model, the nucleation and/or evolution of cracks are solely described through the
minimization of an energy functional, as first proposed, for the case of brittle fracture, by Bourdin et al. [3]. For the
ductile fracture case, we assume a regularized energy functional that includes elastic, plastic and fracture energy
contributions, as in Ambati et al. [16,17]:

Eℓ(b̄e, J e, α, s) =

∫
Ω

[
ψe(b̄e, J e, p, s) + ψp(α) + ψs(s)

]
dV . (21)

The term ψp(α) represents the plastic strain energy density function, under the assumption of isotropic hardening,
and α is the relative internal hardening variable corresponding to the equivalent accumulated plastic strain.

The fracture energy density function ψs , introduced by Bourdin et al. [3] in the regularized formulation of brittle
fracture, can be expressed in its original form (“second-order phase-field model”):

ψs,2(s,∇s) = Gc

[
(1 − s)2

4ℓ
+ ℓ|∇s|2

]
, (22)

r in the so-called “fourth-order phase-field model” form, as proposed by Borden et al. [11]:

ψs,4(s,∇s,∆s) = Gc

[
(1 − s)2

4ℓ
+
ℓ

2
|∇s|2 +

ℓ3

4
(∆s)2

]
. (23)

hoosing an expression of the fracture energy density as in Eq. (23) would lead to a higher-order formulation
f the phase-field ductile fracture model, that has shown superior convergence rate with respect to the standard
ormulation [11,32] and therefore will be adopted, whenever possible, in the numerical simulations present in this
5
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paper. As for the Kirchhoff–Love shell formulation, a discretization employing isogeometric analysis can provide
the continuity required by the higher order derivatives present in the fourth-order model (C1 continuity). For both
formulations, ψs depends on the phase-field scalar variable s, whose smooth transition from 1, corresponding to
ntact material, to 0, corresponding to fully broken material, approximates the crack topology in the considered
omain Ω . The scalar term ℓ is a length scale parameter that controls the width of the transition zone of the

phase-field and Gc represents the fracture toughness of the material. Eqs. (22) and (23) employ a quadratic
dissipation function in the form (1 − s)2, following the so-called “AT2 model” originally proposed by Ambrosio
and Tortorelli [47] and later adopted by Bourdin et al. [3]. This formulation leads to a material model that does not
show a perfectly linear elastic behavior, since the damage starts to accumulate from the beginning of the analysis.
An alternative is represented by the “AT1 model”, proposed by Pham et al. [12], which employs a linear dissipation
function (1 − s) and according to which a linear elastic behavior of the material is obtained.

Intending to distinguish the different fracture behaviors of the material in tension and compression, we adopt
an additive decomposition of the elastic strain energy ψe in its positive (tensile and shear, ψ+

e ) and negative
(compressive, ψ−

e ) parts. Following the model adopted for the description of the J2 plasticity, the decomposition
involves the volumetric and deviatoric contributions of the strain energy (see Eqs. (10) and (11)), as in Borden
et al. [9] (whose approach is based on the split, introduced in the small strains framework, by Amor et al. [4]), so
that:

J e < 1

{
ψ+

e = ψdev
e (b̄e)

ψ−
e = ψvol

e (J e)

J e
≥ 1

{
ψ+

e = ψdev
e (b̄e) + ψvol

e (J e)
ψ−

e = 0

(24)

ccordingly, only the positive part of the elastic strain energy is degraded by the degradation function g(s, p):

ψe(b̄e, J e, p, s) = g(s, p) ψ+

e (b̄e, J e) + ψ−

e (J e). (25)

he degradation function, which accounts for the deterioration of the material due to the nucleation and growth of
icrocracks, includes a positive small factor η ≈ 0 for avoiding zero stiffness of the material in the fully cracked

tate, and takes the form:

g(s, p) = (1 − η)s2pm
+ η, (26)

with

p =
α

αcri t
. (27)

n Eq. (26), the presence of p, which describes the localization and accumulation of the plastic strains, couples the
lastic behavior of the material with the fracture process. The phase-field is dependent on the accumulation of the
uctile damage, as the fracture can develop only in regions with significant (i.e. comparable with the critical value of
he hardening variable αcri t ) plastic strains. For elasto-plastic materials, this is in agreement with the observation that
racture occurs in areas that undergo high plastic strain. Additionally, the present formulation implies that, once the
racture starts evolving in a certain region, the plastic strain ceases to accumulate, so that the occurring deformations
re totally elastic in that area. It is important to point out that, for α = αcri t , the standard quadratic degradation
unction is retrieved. The parameters αcri t and m can be considered as material parameters that need to be calibrated
hrough the comparison with experimental results. The second one can assume the values m = {1, 2, 3, . . .} and
ontrols the speed of the ductile fracture process. A higher value of m allows for a slower accumulation of the
amage when p < 1, i.e. α < αcri t , and for a faster accumulation when the hardening values exceeds the critical
hreshold [16].

The stationarity condition of the energy functional in Eq. (21) with respect to s leads to the strong form of
he phase-field evolution equation for ductile fracture which reads, for the second- and fourth-order formulations
espectively,

2 ℓ
g,sψ+

e + s − 4 ℓ2∆s = 1, (28)

Gc

6
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2 ℓ
Gc

g,sψ+

e + s − 2 ℓ2∆s + ℓ4∆(∆s) = 1, (29)

here:

g,s =
∂g(s, p)
∂s

= (1 − η)2pms(2pm
−1). (30)

Unlike for the brittle fracture model, in this case, the phase-field evolution equation is nonlinear.
The irreversibility of the fracture, meaning that cracks will not heal if the external loads are removed, is enforced

by introducing in the phase-field model the following local history variable He, defined as the maximum of the
positive part of the elastic strain energy density up to the current pseudo-time T :

He(T ) := max
τ∈[0,T ]

ψ+

e (b̄e, J e, τ ). (31)

he history variable replaces ψ+
e in the phase-field evolution equation.

.3. Phase-field ductile fracture modeling for thin shells and plates

The combination of the ductile fracture phase-field approach with the considered Kirchhoff–Love shell model
s based on the methodology adopted by Kiendl et al. [30] for the brittle fracture case, which can be employed
egardless of the specific shell formulation. Accordingly, the model is reduced to the behavior of the midsurface
ariables and we introduce the strain energy surface density Ψe, which expresses the elastic strain energy per unit

area of the midsurface:

Ψe =

∫
+t/2

−t/2
ψe(θ3) dθ3. (32)

Analogously, we can define the fracture energy surface density Ψs(s), from the through-thickness integration of ψs ,
and the plastic energy surface density Ψp(α), based on the integration of ψp(α) along the thickness. Consequently,
for the case of plates or shells, the energy functional in Eq. (21) can be rewritten in the following form:

Eℓ(b̄e, J e, α, s) =

∫
A

[
Ψe(b̄e, J e, s, p) + Ψp(α) + Ψs(s)

]
d A. (33)

ig. 1 shows how, due to the bending component related to the shell curvature change, the strain tensor linearly
aries from tension to compression through the thickness (see also Eq. (16)). Moreover, as a consequence of the
ssumed plastic behavior of the material and of the degradation of the tensile part of the stress tensor due to the
hase-field fracture formulation, the stress tensor itself can have a nonlinear distribution along the shell thickness.
or this reason, numerical integration is employed for computing the integral in Eq. (32) and special attention is
equired for the tension–compression split, which is operated according to Eq. (24) at each thickness integration
oint. Since the correct strain tensor depends both on the membrane and on the bending components, the split needs
o be computed on the total strain energy without separating the membrane and bending parts.

Unlike the formulation for brittle fracture, the adopted degradation function (see Eq. (26)) depends not only
n the phase-field variable s, but also on the plasticity-related scalar parameter p that, according to the definition
n Eq. (27), depends on the hardening parameter α. Since α can vary through the shell thickness, also the degradation
unction varies through the thickness. So, in this approach, we assume the phase-field parameter, which is defined
nly on the midsurface, to be constant through the thickness, but we obtain a non-constant degradation function and
onlinear distributions of the stresses (see again Fig. 1). This means that, when the integral in Eq. (32) is computed
aking into account the tension–compression split,

Ψe =

∫
+t/2

−t/2

[
g(s, p)ψ+

e (b̄e, J e) + ψ−

e (J e)
]

dθ3, (34)

he degradation function term g(s, p) needs to be included in the through-thickness numerical integration. As
consequence, the strong form of the phase-field ductile fracture evolution equation for shells, based on the

tationarity condition of the energy functional (33) with respect to s, is:
2 ℓ

∫
g,sψ+

e dθ3
+ s − 4 ℓ2∆s = 1, (35)
tGc t

7
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Fig. 1. Combination of the contributions of membrane and bending strain and total strain ε over the thickness t for a shell subjected to
ending and tension. Possible distributions of the hardening variable α and of the degradation function g(s, p) along t . As a result, the
hrough-thickness stress σ distribution after degradation of the positive (tensile) component is depicted.

2 ℓ
tGc

∫
t
g,sψ+

e dθ3
+ s − 2 ℓ2∆s + ℓ4∆(∆s) = 1, (36)

ith Eq. (35) valid for the second-order formulation and (36) for the higher-order model. The weak form of the two
revious equations, including δs as a test function and considering the usual boundary conditions of the phase-field
roblem, read:∫

A

(
2 ℓ
tGc

∫
t
g,sHedθ3

+ s − 1
)
δs d A + 4 ℓ2

∫
A
∇s · ∇δs d A = 0, (37)∫

A

(
2 ℓ
tGc

∫
t
g,sHedθ3

+ s − 1
)
δs d A + 2 ℓ2

∫
A
∇s · ∇δs d A + ℓ4

∫
A
∆s · ∆δs d A = 0. (38)

The previous equations employ the history field He for enforcing the irreversibility of the fracture and need
o be solved by an iterative solver due to their nonlinearity. In the discretized framework, the variation of the
xpressions (37) and (38) with respect to the discrete value of the phase-field at the control points sr leads to the

expression of the residual phase-field vector RP F , whose linearization yields the tangent stiffness matrix KP F . So,
the linearized version of the phase-field evolution equation, which is solved for an increment of the vector of the
discrete phase-field values at control points ∆s, simply becomes:

KP F ∆s = RP F . (39)

2.4. Penalty-based coupling of adjacent shell patches

In view of simulating the fracture behavior of complex multipatch shell structures, as done in Section 4.2, a
penalty-based approach for coupling adjacent isogeometric patches is adopted. Both the structural and the phase-
field behaviors across the patch interfaces are coupled and a single dimensionless penalty term αglob = 103, scaled
by the problem parameters, is needed for all the coupling terms.

Considering two patches A and B that share an interface curve L, the structural coupling consists in imposing
displacement and rotational continuity across the patch connection by augmenting the virtual work formulation
in Eq. (19) by adding the terms δW pd and δW pr. The first term imposes the displacement continuity:

δW pd
=

∫
L
αd
(
uA

− uB)
·
(
δuA

− δuB) dL, (40)

while the second one preserves the rotational continuity:

δW pr
=

∫
L
αr
((

aA
3 · aB

3 − åA
3 · åB

3

) (
δaA

3 · δaB
3 − δåA

3 · δåB
3

)
+( A B ˚ A ˚ B) ( A B ˚ A ˚ B))
+ an · a3 − an · a3 δan · δa3 − δan · δa3 dL, (41)

8
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where aA
n is the unit vector lying in the plane of patch A and perpendicular to L. For further details regarding the

formulation, the reader is referred to the work by Herrema et al. [48], according to which the penalty terms αd
and αr are computed by scaling the global penalty parameter αglob = 103 with the membrane and bending elastic
stiffness values of the coupled shells. In our case, uniform isotropic materials are considered, so:

αd = g(s, p) αglob
E t

h (1 − ν2)
, (42)

αr = g(s, p) αglob
E t3

12 h (1 − ν2)
, (43)

ith E as the Young’s modulus, ν as the Poisson’s ratio, and t as the shell thickness, while h is the average
lement length along the coupled edge having the finer discretization. The meaning of h needs to be specified,
ince the formulation can handle non-conforming meshes at the two sides of the coupled edge, thus it can be used
n combination with adaptive mesh refinement technologies. The phase-field degradation function g(s, p) ensures a
onsistent scaling between the structural and penalty stiffness in fractured patch interfaces.

In analogy with the methodology used for the structural coupling, the penalty approach is used also for enforcing
ontinuity of the phase-field between the patch interfaces, as shown in Proserpio et al. [32]. Accordingly, the term∫

L
αC0

P F (s A
− s B)(δs A

− δs B) dL, (44)

hich penalizes the difference of the phase-field at the two sides of L, is added to the left-hand side of Eqs. (37) and
38) for guaranteeing C0 continuity of s. If the higher-order phase-field formulation is employed, also C1 continuity
f s needs to be imposed between smooth patch interfaces. This can be achieved by summing to the left-hand side
f Eq. (38), in addition to the aforementioned term for C0 continuity, the following expression:∫

L
αC1

P F (∇s A
· aA

n − ∇s B
· aB

n )(∇δs A
· aA

n − ∇δs B
· aB

n ) dL, (45)

hich penalizes the relative change in the directional derivative of s along an between the two patches. The penalty
mposition of C1 continuity of s can only be applied to smooth patch interfaces. For this reason, the higher-order
hase-field formulation cannot be used for structures including patch connections forming a kink, and the second-
rder model needs to be adopted. Because of the nonlinearity of the phase-field evolution equation, the first variation
f Eq. (44), and of Eq. (45) if applicable, with respect to the discrete value of the phase-field at the control points
r (so that s,r = ∂s/∂sr ), need to be added to the residual phase-field vector RP F :∫

L
αC0

P F (s A
− s B)(s A

,r − s B
,r ) dL, (46)∫

L
αC1

P F (∇s A
· aA

n − ∇s B
· aB

n )(∇s A
,r · aA

n − ∇s B
,r · aB

n ) dL. (47)

nalogously, the second variation expressions:∫
L
αC0

P F (s A
,s − s B

,s )(s A
,r − s B

,r ) dL, (48)∫
L
αC1

P F (∇s A
,s · aA

n − ∇s B
,s · aB

n )(∇s A
,r · aA

n − ∇s B
,r · aB

n ) dL, (49)

eed to be added to the phase-field tangent stiffness matrix KP F . As for the structural case, the penalty terms for
mposing phase-field continuity between patches (αC0

P F and αC1

P F ) are chosen by scaling the global penalty parameter
glob = 103 with terms that maintain dimensional consistency with the related equation. At the same time, the
enalty parameters need to be large enough in order to guarantee the imposition of the required continuity of s,
ithout creating ill-conditioning in KP F . The history field He is the driving force of the phase-field equation and the

erm in which it is included becomes numerically predominant in the regions where fracture develops. Additionally,
n cracked areas, the plastic strains usually increase up to a level comparable to αcri t , thus implying that p = 1.
onsidering that, for p = 1, the quadratic degradation function considered for brittle fracture is retrieved, we adopt

he same penalty terms as for the brittle fracture case:

αC0

P F = αglob

[
4ℓ(1 − η)He

max
+ 1

]
h, (50)
tGc

9
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Fig. 2. Contact formulation, definition of the normal gap.

αC1

P F = αglob

[
4ℓ(1 − η)He

max

tGc
+ 1

]
ℓ2h. (51)

The term He
max corresponds to the current maximum value of the history field in the structure.

As a final remark, we highlight that the penalty methodology presented in this section can be used also for
weakly imposing clamping and symmetry boundary conditions.

2.5. Penalty-based frictionless contact formulation

In Section 4.2, we study a series of tests where different steel structures are penetrated by an indenter,
simulating the consequences of ship grounding. For this reason, a frictionless penalty contact formulation suitable
for large deformation problems is employed. We follow the approach outlined in Dimitri et al. [49], but instead of
T-splines, LR NURBS (Locally Refined Non-Uniform Rational B-splines, see Section 2.6) are adopted for the
discretization [50].

Two bodies, in this case two patches representing the shell midsurfaces, are assumed to be in contact. One of
them is referred to as the slave surface and the other as the master surface. We assume that each point xs on the
slave surface can have only one partner contact point xm on the master surface, whose position is computed by a
closest point projection [51] of xs over the master surface. The normal gap between the two surfaces is computed
as:

gN = (xs
− xm) · nm, (52)

where nm is defined as the normal unit vector at xm , with direction pointing towards the slave surface when no
contact occurs, see Fig. 2. The direction of nm remains constant during the analysis, even in case if the surfaces
come into contact. According to the definition in Eq. (52), the normal gap is positive if the contact is open, while
gN < 0 in case of penetration. For thin shells and plates, instead of defining the contact between the midsurfaces, it
is possible to describe the contact between the shell faces by taking into account the slave and master thicknesses,
t s and tm respectively. In this case, xs and xm and the relative quantities continue to be defined at the midsurfaces,
but contact starts occurring when gN < (t s

+ tm)/2. Denoting with T the Piola traction vector, its normal component
is the normal contact traction TN :

T = Tm
= −Ts

= TN nm, TN = T · nm . (53)

The Kuhn–Tucker conditions for impenetrability are defined as follows:

gN ≥ 0, TN ≤ 0, gN TN = 0. (54)

These contact constraints can be regularized by adopting the penalty formulation, and thus assume the form:

TN = αN ⟨gN ⟩
−, ⟨gN ⟩

−
=

{
gN if gN < 0

(55)

0 otherwise

10
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with αN as the penalty parameter related to contact. Accordingly, the contribution of the frictionless contact
formulation to the virtual work of the structure is defined as:

δW N
=

∫
As

TN δgN d A = αN

∫
As

gN δgN d A, (56)

with the integral evaluated on the slave surface in the reference configuration and δgN representing the variation
f the normal gap. For details regarding the variation and the linearization of the gap function and of the contact
irtual work, and their discretization, the reader is referred to De Lorenzis et al. [52].

This contact formulation is denoted as “Gauss-point-to-surface”, since the contribution to the virtual work δW N

s computed at each integration point of the slave surface. Contact between patches having non conforming meshes
an be managed without any problem, as the master contact point xm does not need to be a quadrature point. We
dopt a pre-search algorithm that allows excluding, from the computation of the integral (56), slave elements which
re sufficiently far from the master patch so that they are not affected by penetration, i.e. they do not contribute to
W N. For each element on the slave surface, we identify the closest element on the master patch, whose center will
e the starting point of the search algorithm for finding the contact point xm of each integration point belonging to
he considered slave element. This pre-computation makes the point search algorithm more efficient and prevents
t from diverging, i.e. not finding the correct contact point. At this stage, we also compute the normal unit vector
t xm and we make sure that it is oriented in the correct way by inverting its direction if necessary, so that it can
orrectly represent nm . Once the direction of nm is determined as the one pointing towards the slave surface (before
ontact occurs at xm), it is kept constant for the rest of the analysis.

In order to guarantee a scaling between the structural and the contact penalty stiffness when the penalty contact
ormulation is combined with the phase-field fracture approach, the effect of the phase-field degradation function
s added into Eq. (56) by the term gs,m , which takes the minimum value of the degradation function between the

aster and the slave contact points. The elements in the cracked zones have degraded material properties but still
ontribute to the contact penalty terms and, therefore, they provide resistance against penetration. In order to avoid
his numerical problem and to remove fully broken elements from the contact computations, zero contact stiffness is
uaranteed by imposing gs,m

= 0 if s < 0.05 at xs or xm . So, the virtual work formulation in Eq. (19) is augmented
y adding the following term:

δW N
= αN

∫
As

gs,m gN δgN d A. (57)

.6. Discretization of the geometry with LR NURBS

Thanks to the smoothness of the basis functions, IGA represents a favorable choice for the discretization of
he geometry, because it allows for an efficient implementation of the rotation-free Kirchhoff–Love shell model
nd of the fourth-order phase-field formulation. In the context of the numerical simulation of contact, IGA allows
or considering the exact geometry of the surfaces. Additionally, the higher continuity of the basis functions
ontributes to improving the performance of the contact algorithms, with respect to the traditional finite element
mplementations, thanks to the well-posedness of the closest-point projection problems [52].

In phase-field fracture analyses, the steep gradient of the smeared crack profile, whose width depends on the
often small) length scale parameter ℓ, requires a mesh having fine elements at least in the vicinity of the crack
egion. Due to their tensor product properties, the NURBS basis functions used in standard isogeometric analysis
llow only a global refinement of the geometry. For this reason, we adopt a local refinement technology by
mploying LR NURBS [53], an extension of LR B-splines [54], for the discretization of the geometry. In this
ork, a ductile fracture formulation that employs a local plasticity theory is presented. Since mesh refinement is
ell known to be critical for local plasticity formulations [55], its influence is studied in Section 3.

.7. Aspects related to the solution algorithm

From the stationarity condition of the energy functional (see Eq. (33)) with respect to the displacement field u
nd the phase-field s, the two governing equations of the coupled problem, i.e. the momentum and the phase-field
volution equations, are obtained. According to the staggered approach proposed by Bourdin et al. [3] and Miehe
11
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et al. [5], the two equations are solved separately at each pseudo-time step of the analysis, keeping frozen the field
which the equation is not solved for. In order to guarantee that the structure is in equilibrium at the end of each
load step, we check the convergence of the solution after each staggered iteration and we repeat the process until
the convergence is reached. It is important to point out that both the momentum and the phase-field equilibrium
equations are nonlinear, so that they require an iterative solver. A classical approach, which will be called “loosely
coupled” staggering scheme, would require, for each staggered iteration, first the iterative solution of the equilibrium
equation for u and then the iterative solution of the phase-field equation for s. In order to improve the efficiency of
he numerical simulation, we adopt the “strongly coupled” scheme, used in [32] for brittle fracture problems (where
he phase-field equation is linear), according to which, in each staggered iteration, a single iteration of each of the
wo governing equation is performed, until convergence of the staggering process is reached (both for the momentum
nd the phase-field equation) with an adequately low tolerance for the residual. Box 1 outlines a comparison of the
wo approaches. The strong staggered coupling scheme is employed for all the numerical simulations of this paper.

ox 1: Loosely and strongly coupled staggering schemes. In case the convergence conditions are not satisfied, the
terations are repeated.

Loosely coupled staggering scheme Strongly coupled staggering scheme

Load step i
Staggered iterations:

Iterative solution of momentum eq.:
Iteration of momentum eq.

↓

Check convergence of momentum eq.

⇓

Iterative solution of phase-field eq.:
Iteration of phase-field eq.

↓

Check convergence of phase-field eq.

⇓

Check convergence of stagg. iterations

Load step i
Staggered iterations:

Iteration of momentum eq.

⇓

Iteration of phase-field eq.

⇓

Check convergence of stagg. iterations

Load step i + 1
...

Load step i + 1
...

As observed by Gerasimov et al. [10] for phase-field brittle fracture analyses, when the staggering process is
epeated until convergence in each step, the use of relatively large pseudo-time steps does not affect the results
ccuracy and even reduces the computational time, with respect to smaller steps. In order to improve the efficiency
f the simulations, the use of quite large increments between the steps is possible in the initial part of the simulations
r when the pure elastic regime dominates. On the other hand, large steps cannot be used when the plasticity starts
volving in the structure, otherwise no convergence of the momentum equation, and so of the staggered iterations,
an be achieved. The same applies to the contact formulation, which cannot handle too large step increments that
ould lead to penetration at the beginning of the steps too large for allowing the convergence of the equilibrium

quation. For these reasons, we adopt a simple adaptive step size procedure that will be briefly exposed. The initial
tep size is chosen as relatively large and represents the maximum possible step increment for the analyses. When
load step does not reach convergence (meaning that a maximum number of staggered iterations, set to 200 for the

imulations presented in this work, is exceeded), the step is recomputed with an increment reduced by a factor of
, until convergence is reached. In order to improve the efficiency of the simulations, we strive to have increments

s large as possible. So, each time a step converges, we increase the step size by a factor 1.5 (we observed that

12
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Fig. 3. Setup of the tensile problems (dimensions in mm).

an increase factor equal to the one for step reduction would often lead to non-convergence). The increment cannot,
anyway, be larger than the maximum one set at the beginning of the analyses. This approach allows relatively large
steps in the initial part of the analyses, while the increment size is reduced when complex deformations occur (for
example the buckling of stiffeners in Section 4.2) or contact and phase-field ductile fracture effects dominate the
simulation.

3. Adaptive local refinement for ductile fracture simulations

The J2 plasticity formulation (see Section 2.1) employed in this work is a local plasticity model, meaning that the
plastic constitutive equation of the material is evaluated at the integration points of the structure, without including
any information about the size of the zone where plastic strains localize, because no length scale parameter is
present in the model. As a consequence, the results of the simulations may be sensitive to the mesh size in the
plastic region, which can localize differently and change dimension in case the mesh is refined [55].

3.1. Influence of the mesh size on the phase-field modeling of ductile fracture

In order to evaluate the effect of the mesh size on the considered local plasticity model combined with the phase-
field fracture approach, we consider two numerical examples, a rectangular flat specimen and a hollow cylinder,
under tensile loading caused by the imposed displacement of the top edge. Geometry and boundary conditions are
shown in Fig. 3 (the thickness is t = 1 mm for both specimens). For the cylinder example, only one quarter of the
model is simulated due to symmetry, employing symmetric boundary conditions imposed by penalty, according to
the formulation in Section 2.4. The same J2 plasticity model as in [45] with the following material parameters is
considered in this work, i.e. E = 189 × 103 N/mm2 and ν = 0.29 for elasticity. A nonlinear hardening law in the
following form is assumed [17]:( ) (

−δα
)

R(α) = σy + Hmα + σ∞ − σy 1 − e , (58)

13
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Fig. 4. Results of the phase-field ductile fracture simulations for the rectangular flat specimen with pre-refined mesh. The colormaps indicate
he values of the hardening variable α and of the phase-field s. For visualization purposes, in the equivalent plastic strain plots, elements

considered broken (s < 0.05) are removed. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

with yielding stress σy = 343 MPa, ultimate tensile strength σ∞ = 680 MPa, hardening modulus Hm = 300 MPa,
and saturation coefficient δ = 16.93. The parameters required for the phase-field ductile fracture model are chosen
s follows: fracture toughness Gc = 1000 N/mm, critical value of the hardening variable αcri t = 0.50, m = 1,
nd ℓ = 0.50 mm. The simulations are performed firstly only considering the elasto-plastic material model, then
lso including the phase-field ductile fracture formulation. Different mesh sizes are considered by employing local
esh refinement in the central region of the specimen, where necking, plastic strain concentration and fracture

re expected to take place. For the rectangular flat specimen, we consider h = {0.500, 0.250, 0.125} mm, where h
ndicates the minimum characteristic element size in the mesh. For the cylindrical geometry, h = {2.00, 1.00, 0.50}

mm is taken. In both cases, these minimum element sizes correspond to one, two or three levels of pre-refinement,
respectively. For these and all the simulations in this paper, we use quadratic LR NURBS having 3 through-thickness
integration points for each of the 3 × 3 Gauss points per element.

Figs. 4 and 5 show the results of the simulations involving phase-field fracture for the two specimens and the
different meshes used. From the plots of the equivalent plastic strain α it is possible to notice that the plasticity
accumulates in different ways as the mesh is refined. By using smaller elements, the concentration of the plasticity
in shear bands can be captured. Since, according to the adopted phase-field formulation, the fracture starts evolving
only in zones that undergo plastic strains, also the cracks will change shape and will start following the orientation of
the shear bands as the mesh is refined. Figs. 6 and 7 show the load–displacement curves for the two specimens, both
with only elasto-plasticity and with ductile fracture, for the considered element sizes. The results of the elasto-plastic
simulations with and without phase-field fracture are the same until the points when the cracks start initiating and
the curves of the phase-field simulations show a drop. Considering the simulations involving only J2 plasticity, it is

clear that the mesh refinement does not lead to convergence in the results. Even if all the curves are coincident in the
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t

Fig. 5. Results of the phase-field ductile fracture simulations for the hollow cylinder specimen with pre-refined mesh. The colormaps indicate
he values of the hardening variable α and of the phase-field s. For visualization purposes, in the equivalent plastic strain plots, elements

considered broken (s < 0.05) are removed. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

first part of the analysis, after the occurrence of necking, finer meshes cause larger localization of the plastic strains
in the necking region (following shear bands), leading to a softening behavior and to load–displacement curves
showing less load-carrying capacity. The simulations involving phase-field fracture in addition to elasto-plasticity
show instead load–displacement curves not too sensitive to mesh refinement, and convergence can be observed as
the element size is reduced. It is important to recall that, according to the adopted phase-field ductile fracture model,
plastic strains cease to concentrate when the fracture starts developing (only elastic deformation can take place in the
fractured region). This means that, unlike for the pure elasto-plastic simulations, the plasticity cannot increasingly
localize as the phase-field ductile fracture simulations proceed, thus alleviating the mesh dependency of the elasto-
plastic model, even without adopting a non-local gradient formulation for plasticity. A possible interpretation of
these results can also be related to the fact that the gradient term present in the phase-field model reduces the need
of adopting a gradient plasticity formulation. In conclusion, we can assume that a local pre-refinement of the mesh
can influence the direction and the shape of the fracture, but affects the simulated load–displacement curves of the
specimens only up to a limited extent.

3.2. Adaptive local refinement strategy and validation

The use of an adaptive local mesh refinement scheme is crucial for performing phase-field fracture simulations on
complex structures with a reasonable computational cost. In this section, we adopt the approach used in Proserpio
et al. [32] for brittle fracture, and we test its validity in the framework of ductile fracture. The method consists
in a predictor–corrector algorithm that allows refining the mesh only where needed, i.e. in the regions where the
fracture is evolving, without knowing a priori where the cracks are going to nucleate and/or grow. According to
the algorithm, which is summarized in Fig. 8, at the end of each step we evaluate whether the mesh needs to be
refined. If this is the case, the mesh refinement is performed, the solution of the precedent step is transferred to
the refined mesh and the considered step is recomputed with the new mesh. Unlike for the brittle fracture case, in
ductile fracture simulations cracks often grow during several steps, meaning that the evolution of the fracture during
a single step is relatively limited (even when the convergence of the staggered iterations is achieved). Nevertheless,
it may happen that, at the end of a recomputed step, the crack has grown outside of the region just refined. In this
case, the load step needs to be recomputed again, and the process is repeated until there is no need for further
refinement.

The need for refinement is evaluated according to the fact that ductile fracture is preceded by a concentration

of the plastic strain, which is measured by the hardening variable α. For this reason, we choose the equivalent
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Fig. 6. Load–displacement curves of the elasto-plastic simulations with and without phase-field fracture formulation for the rectangular flat
specimen with pre-refined mesh.

Fig. 7. Load–displacement curves of the elasto-plastic simulations with and without phase-field fracture formulation for the hollow cylinder
specimen with pre-refined mesh.

plastic strain α as the indicator for the refinement and, at the end of each load step (including recomputed ones),
we mark for refinement all the elements that are larger than the prescribed minimum element size and in which
the value of the hardening parameter is higher than a threshold value, i.e. α > αt at least in one integration point.

ince we want to be able to capture the localization of plasticity, that can potentially lead to cracks following shear
ands (see Section 3.1), we adopt a conservative approach so that the mesh is refined before the onset of fracture.
herefore, the value αt = 0.25αcri t is chosen and used in all the simulations of this paper including adaptive mesh

efinement. The refinement is performed according to the “structured mesh” strategy [54], which consists in splitting
ll the knot spans of the support of a certain basis function. This approach provides a regular mesh, with a good
ransition between zones having different element sizes, and keeps the aspect ratio of the elements in parametric
pace constant.

For each refinement round, it is necessary to transfer all the state variables from the coarse to the refined mesh.
he field quantities defined at the control points (displacement u and phase-field s, which are also the unknowns
16
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Fig. 8. Adaptive local refinement algorithm.

of the coupled problem) are projected according to the same algorithms used for determining the coordinates of
the control points corresponding to split basis functions [54]. The history field He, the hardening variable α, the
thickness stretch λ3, and the plastic right Cauchy–Green deformation tensors Cp

= Fp T Fp are instead quantities
defined at each thickness integration point [45]. The transfer of these quantities, from the integration points of the
coarse element to the ones of the refined elements having the same position across the thickness, is performed for
each scalar variable according to a local Bézier-element-based interpolation [32,56]. For the right Cauchy–Green
deformation tensor, the transfer is operated separately for each component.

We test the effectiveness of the adaptive local refinement procedure on the two numerical examples previously
run for verifying the effect of the mesh pre-refinement (see Section 3.1). In both cases, two levels of adaptive mesh
refinement are employed, for a minimum mesh size h = 0.250 mm for the rectangular flat specimen and h = 1.00
mm for the hollow cylinder example. Fig. 9 shows the initial mesh and the final results of the simulations for the two
geometries, which can be compared with the ones from the simulations with pre-refinement of the mesh (Figs. 4(b)
and 5(b)). The mesh refinement is performed early enough in order to capture the localization of the plastic strains
and therefore the cracking develops along the shear bands. Due to the conservative choice of the indicator for
the refinement and due to the uniform geometry of the specimens subjected to tensile test, a widespread region
of the domain is refined in both cases. In the rectangular flat specimen, some local refinement occurs also at the
corners due to plasticity localization, but this does not lead to fracture in those locations. Fig. 10 shows a good
agreement of the load–displacement curves between the simulations employing adaptive local refinement and the
corresponding ones performed with a pre-refined mesh. For the examples presented in this section, the reduction
of the computational cost due to the adoption of the adaptive refinement is limited by the fact that a large portion
of the mesh needs to be refined. The examples in Section 4 will show the importance of adaptive refinement for
structures where the cracked area covers only a small part of the total domain.

4. Numerical examples with experimental validation

We now validate our method by simulating two different experimental tests and by comparing the results of the
analyses with the experimental ones available in the literature. The first example (Section 4.1) features a pre-cracked
steel plate subjected to out-of-plane loading, while the second one (Section 4.2) includes a series of indentation

tests conducted on stiffened steel panels.
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Fig. 9. Results of the phase-field ductile fracture simulations employing adaptive mesh refinement for the tensile specimens in the terms of
hardening variable and phase-field. The colormaps indicate the values of the hardening variable α and of the phase-field s. For visualization
purposes, in the equivalent plastic strain plots, elements considered broken (s < 0.05) are removed. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of the load–displacement curves from the phase-field ductile fracture simulations with and without adaptive mesh
efinement for the tensile specimens.

.1. Tearing of a plate by out-of-plane loading

We consider a square plate made of steel with a pre-crack, teared by the action of a couple of transverse point
oads. The problem has been experimentally tested by Muscat-Fenech and Atkins in [57]. The geometry and the
18
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Fig. 11. Setup of the plate tearing problem (dimensions in mm). Black dash-dotted lines indicate clamped edges.

Fig. 12. Results of the simulation of the tearing of the plate at different moments of the analysis (indicated by the value u, the transverse
displacement of the points where the loads are applied). For visualization purposes, the fully broken elements are removed from the plate.
The colormaps indicate the value of the hardening variable α and of the phase-field s. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

boundary conditions (clamping is imposed by penalty, see Section 2.4) are outlined in Fig. 11 and a pre-crack length
0 = 30 mm is considered. The elasto-plastic material parameters are assumed as the one used in [58], where

the example has been numerically investigated using an extended finite element methodology: Young’s modulus
E = 210 × 103 N/mm2, Poisson’s ratio ν = 0.30, hardening law

R(α) = 574 (0.010372 + α)0.26, (59)

fracture toughness Gc = 255 N/mm, critical value of the hardening variable αcri t = 0.045. The fourth-order phase-
field model is employed with length scale parameter ℓ = 2.0 mm and adaptive local mesh refinement, for the crack
developing in the central region of the specimen, is adopted according to the strategy explained in Section 3.2, with
three levels of refinement leading to a minimum element size h = 1.0 mm, so that h = ℓ/2.

Fig. 12 shows the specimen at different moment of the analysis. The crack growth starts at the moment when the
isplacement u of the points where the loads are applied is equal to 30 mm (see Fig. 12(b)), a good correspondence
ith the experimental results reporting 31 mm. The analysis is terminated at u = 57 mm (see Figs. 12(c) and

2(f)), when the applied load reaches the maximum value reported in the experimental reference 2F = 1800 N.
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Fig. 13. Comparison of the load–displacement curves for the plate tearing problem.

The experimental and numerical load–displacement curves in Fig. 13 show good matching of the results. Despite
including large deformations, plastic strains development and large crack growth, the curves appear almost straight.
This shape is different with respect to the curves presented in the previous section, which were more similar to the
response curves of the employed material model due to the tensile setup of the tests.

4.2. Application to complex structures: indentation tests on stiffened panels

We consider a series of experimental indentation tests on steel panels performed by Alsos et al. [59]. The
experimental campaign was conducted in order to evaluate the resistance of stiffened plates from ship hulls in
case of events like ship grounding. Section 4.2.1 presents the setup of the problem, while in Section 4.2.2 the
results of the simulations are compared with the experimental ones and then discussed.

4.2.1. Problem definition and setup of the simulations
The experimental campaign from which we extract the experimental benchmarks consists in a series of

indentation tests performed on rectangular steel panels. The experimental setup is shown in Fig. 14. Different
plate configurations are considered: unstiffened panel (US), panel with one flat bar stiffener (1-FB), and panel
with two flat bar stiffeners (2-FB). For both the 1-FB and 2-FB case, the stiffeners are welded to the plate. In the
experimental setup, the panel and the ends of the stiffeners are welded to a strong frame consisting of massive steel
boxes. We choose to include in the simulations only the plates and the stiffeners, and we model their connections
to the frames employing clamped boundary conditions (imposed by penalty, see Section 2.4), as it can be assumed
that the surrounding girder webs are stiff enough to represent a rigid support [59]. The dimensions and geometry
of the panels and of the indenter are depicted in Fig. 15. The thickness of the plate is 5 mm, while the thickness
of the stiffeners is 6 mm.

The material of the plate and of the stiffeners consists in rolled mild steel, namely S235JR EN10025. Stress–
strain curves, resulting from tensile tests performed on samples extracted from the same batch from which the tested
structure was manufactured, are published [59]. The tensile tests have been performed in directions both parallel
and perpendicular to the rolling direction. From the average of the two responses, the experimental curve shown
in Fig. 16 is obtained. Apart from the elastic properties, which are taken as the well known ones for mild steel
(E = 210 × 103 N/mm2, ν = 0.30), numerical simulations of the tensile tests are necessary in order to determine,
by comparison with the available experimental curve, the plasticity and fracture parameters of the material. The
elasto-plasticity model without phase-field fracture employing a nonlinear hardening law as in Eq. (58) is adopted
for the quantification of the plasticity properties, which result in yielding stress σ = 285 MPa, ultimate tensile
y
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Fig. 14. Experimental setup for the indentation test. (a) shows a tested panel with its box beam frame in the experimental rigging, that
ncludes a hydraulic jack mounted on a crosshead and the indenter. (b) shows the interaction between the indenter and the plate during the
est [59]§.

Fig. 15. Longitudinal view of a stiffened plate with the indenter and transversal view of the three panel configurations (dimensions in mm).

strength σ∞ = 395 MPa, hardening modulus Hm = 550 MPa, and saturation coefficient δ = 25.00. Once these
alues are set, ductile fracture simulations are performed for determining the fracture toughness as Gc = 35 kN/mm,
he critical value of the hardening variable as αcri t = 2.0, and m = 1. Fig. 16 shows the stress–strain curves from
he simulations employing these parameters, in comparison with the one obtained from the experiments on the
pecimens. The material parameters determined in this section will be used as input for the numerical modeling
nd for predictions of the results of the indentation tests.

The simulations of the indentation tests are performed in displacement control, imposing the displacement of
he indenter in the direction perpendicular to the plate. In the experimental campaign, the displacement rate of the
ylinder was set to 10 mm/min in order to minimize the strain rate effects, which can be considered negligible
s they are supposed to account for an increase in loads of 2 − 4 % with respect to the static scenario [59]. For
his reason, the analyses are performed in the quasi-static regime. Despite the better efficiency of the fourth-order
hase-field model, especially in connection with adaptive local refinement [32], the higher-order formulation can
e employed only for the US analysis, where no patch connections with kinks are present. The second-order phase-
eld model is used instead for the 1-FB and 2-FB cases, because of the non-smooth patch connections between the

1
anel and the stiffener, which prevent the imposition of the C continuity of s (see Section 2.4). The length scale
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Fig. 16. Stress–strain curves for the tensile test and simulations used for evaluating the material properties, according to the adopted
computational model, of the mild steel rolled plates employed in the indentation test.

parameter for the phase-field model is taken as ℓ = 6 mm. Adaptive local mesh refinement according to the strategy
explained in Section 3.2 is adopted, with three levels of refinement leading to a minimum element size h = 3 mm,
so that h = ℓ/2. Due to the symmetry of the setup and considering that the experimental results showed a symmetric
behavior, only half of the geometry is simulated, with the symmetry plane passing at the transverse center line of the
plate. Since the model involves another symmetry plane (corresponding to the panel center line, in the longitudinal
direction), the perfectly symmetric setup makes the nucleation of localized cracks difficult, in the simulations. For
this reason, we introduce an imperfection in the model in the form of a small pre-crack located along the transversal
symmetry plane. In addition, the indenter tip is supposed to hit the center of the panels, but assuming that some
offset between the indenter position and the target center is present in the testing, the indenter position is shifted
by 5 mm from the panel center, along the transversal symmetry plane, in the simulations setup. Patch coupling,
symmetry and clamping boundary conditions are applied by employing the penalty formulation (Section 2.4). In the
experimental setup, the indenter is milled out from a solid piece of steel, therefore, in the simulations, only its lower
surface is modeled and it is considered as a rigid shell. Contact conditions are simulated according to the frictionless
penalty formulation exposed in Section 2.5. In addition to the plate-indenter and the plate-stiffeners interactions,
due to the possibility of penetration caused by the damage of the panel elements involved in the contact, the contact
between the indenter and the stiffeners has to be taken into account as well. Shell thickness is considered in the
contact computations for the panel and the stiffeners. The contact penalty parameter is set as αN = 103.

4.2.2. Simulation results and discussion
Fig. 18 shows the result of the simulation for the unstiffened plate in the undeformed and deformed configuration.

The fracture starts at approximately 100 mm from the center line in the longitudinal direction (referring to the
undeformed configuration) and evolves with a shape similar to the one observed during the benchmark experimental
tests (Fig. 17(a)). It can be noted that some mesh refinement occurs around the plate center due to the increase of
the plastic strain in that region. Nevertheless, this does not lead to fracture, showing that the refinement of the
mesh does not necessarily imply the onset of cracks. In the 1-FB case (Fig. 19), the stiffener, which is placed in
the middle of the panel, is initially subjected to bending and shear action, until buckling and consequent folding
occur at approximately 130 mm of displacement of the indenter. Therefore, the stiffener does not break, while the
fracture happens in the plate, close to the connection with the stiffener itself, as observed in the tests (Fig. 17(b)).
For the 2-FB geometry, the fracture occurs in the area between the two stiffeners and evolves in a way similar to the
unstiffened case. No stiffeners failure is again observed, nor in the experiments neither in the simulations, as shown
in Figs. 20 and 17(c). The buckling of the stiffeners can be observed at approximately 65 mm of displacement of the

indenter. The comparison of the load–displacement curves resulting from the indentation tests and the simulations
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Fig. 17. Results of the indentation tests on the three panel configurations. [59]§.

Fig. 18. Result of the simulation of the indentation test on the US panel. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

erformed for this paper is shown in Figs. 21 and 22. In the experimental setup, the force and the displacement were
easured on the crosshead of the hydraulic jack that acts on the movement of the indenter. Since the simulations

re conducted in (increasing) displacement control, we removed from the experimental curves the part referring to
he retraction of the indenter. There is good agreement between the curves in the first part of the analyses, which
nclude the initial elastic deformation, the nonlinearity due to the onset and development of plasticity, the contact
etween the indenter and the plate, the buckling of the stiffeners (if present), and the crack development (detailed
onsiderations regarding the fracture mechanism for this example can be found in [59,60]). Significant plastic strains
ppear already after 20 mm indentation, while the first crack growth can be observed after 135 mm, 118 mm and
04 mm of indentation for the US, 1-FB and 2-FB panels, respectively. The simulations predict the failure moment
ith reasonable precision in the US and 1-FB cases, and with good estimates of the peak load with respect to the

xperimental curves. The two-stiffeners panel simulation, instead, overestimates the maximum load carried by the
tructure and predicts a too late fracture.
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Fig. 19. Result of the simulation of the indentation test on the 1-FB panel from two different viewpoints. For visualization purposes, the
fully broken elements are removed from the plate. The indenter and the stiffener are represented with different colormaps. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Among the factors that influence the not perfect matching of the curves, we recall that a frictionless contact
ormulation is employed, while the presence of static friction should be assumed between the steel surfaces of the
ndenter and of the plate. Moreover, the larger difference between the experimental and the simulation curves of
he 1-FB and 2-FB cases compared with the unstiffened case can be related to the fact that the simulations do not
nclude the modeling of the stiffeners weld bead. Fracture was never experimentally observed in the weld material,
ut the modeling of the weld bead would make the simulated structure stiffer. The post-failure resistance shown by
he numerical curves can be related to a redistribution of the internal actions in the main plate from the transverse to
he longitudinal direction, as a consequence of the development of the crack. This factor, together with the ductility
f the material and the quasi-static regime of the analyses, can explain the shape of the load–displacement curves.
his behavior is more evident than in the results from the analyses performed on the tensile specimens, see Fig. 16,
here it is possible to describe the drop of the load–displacement curve. The adoption of an enriched model could
e useful for replicating this behavior also for the considered structure. However, considering the complexity of the
odel, the numerical simulations provide satisfactory predictions of the behavior of the stiffened plates both in terms

f crack path and load–displacement curves. The result is relevant, especially taking into account the fact that the
aterial parameters of the model have been determined only from the results of the tensile tests performed on the

pecimens of the material considered in the experiments. Considerations similar to the ones after the experimental
ampaign can be drawn from the performed simulations. First of all, the initiation of fracture does not imply a total
oss of the resistance of the structure. Moreover, the presence of one or more stiffeners obviously increases the
nitial stiffness of the panels and reduces their flexibility, at the price of earlier fracture and less maximum carried
oad.

. Conclusion

We have presented an approach for the simulation of ductile fracture in shell structures. An isogeometric rotation-
ree Kirchhoff–Love shell formulation was combined with an elasto-plasticity material model and with a phase-field

uctile fracture formulation at finite strains, here extended to the higher-order version. According to this approach,
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Fig. 20. Result of the simulation of the indentation test on the 2-FB panel from two different viewpoints. For visualization purposes, the
fully broken elements are removed from the plate. The indenter and the stiffeners are represented with different colormaps. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Comparison of the load–displacement curves for the indentation test on the US panel.

t is possible to describe, with a single value of the phase-field defined at the midsurface, a nonlinear distribution
f the stress tensor and a degradation function varying through the shell thickness.

In order to simulate the failure of geometrically complex multipatch structures, we adopted a penalty formulation
or coupling the structural and the phase-field fracture behaviors across the patch interfaces. A penalty formulation
as been also employed for the simulation of frictionless contact conditions. Being used in phase-field fracture
imulations, both the penalty formulations had their terms scaled by the phase-field degradation function, in order to
25
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Fig. 22. Comparison of the load–displacement curves for the indentation tests on the stiffened panels.

aintain the numerical proportion between structural and penalty stiffness during the analyses and in order to relax
he penalty constraints in the fractured zones. Additionally, we found that fractured elements have to be removed
rom the contact algorithms for enabling penetration. The adequate choice of the penalty terms was suggested by
he stability and convergence of the numerical analyses performed.

Despite the strong mesh dependency of the local plasticity model, the mesh sensitivity of the ductile failure
imulations is reduced by the fact that the localization of the plastic strains ceases at the occurrence of fracture. At the
ame time, the use of fine meshes allows capturing characteristic features of ductile fracture, such as cracking along
hear-bands or cup-and-cone fracture. In view of improving the numerical efficiency of the analyses, a predictor–
orrector algorithm for adaptive local refinement employing LR NURBS was adopted, so that a fine mesh can be
mployed only in the vicinity of the crack, without the need of knowing in advance the fracture pattern.

The effectiveness of the numerical approach has been validated through the comparison with results from
xperimental test. We especially highlight the example featuring the indentation tests performed on steel stiffened
anels for simulating the consequences of grounding on ship hulls. The material parameters for the simulations have
een determined only according to the available results of tensile tests operated on specimens from the same plates
sed in the experiments. The qualitative (crack patterns) and quantitative (load–displacement curves) agreement of
he results of the simulations and of the tests highlights the potential and the flexibility of the phase-field method
lso for ductile fracture, and its possible application to the prediction of the failure of real-world structures.
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