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Abstract

Bundles of polymeric materials are ubiquitous and play essential roles in biologi-
cal systems, and often display remarkable mechanical properties. With the never-
ending experimental advances in control and manipulation of molecular properties
on the nanometric level follows an increasing demand for a theoretical description
that is valid at this scale. This regime of nano-scale bundles of small numbers
of molecules has not been investigated much theoretically; here chain–chain inter-
actions, surface effects, entropy, nonlinearities, and thermal fluctuations all play
important roles.

In this thesis, I present a broad exploration by molecular-dynamics simulations
of single chains and bundles under external loading. Stretching and rearrange-
ments of chains are investigated, as well as their breaking and dissolution.

The first article studies the response to external load in nanofibres composed
of a typical polymer, polyethylene-oxide (PEO). We cover the full range from
unloaded fibres up to and including their breaking, focusing on all features that
arise from chain-chain interactions and collective behaviour of the chains. Density
functional computations provide a benchmark to gauge and validate the empirical
force field approach, and offer an intriguing view of the bundle chemical evolu-
tion after breaking. The size-dependence for bundles under moderate loading is
systematically explored through structural cross-sections, cohesive energies and
elastic properties below and above the glass transition temperature. A remark-
ably high Young’s modulus on the order of 100 GPa was estimated with DF and
MD, explained by the semi-crystalline state of the fibres giving mechanical prop-
erties comparable to those of carbon nanotubes and of graphene. The bundle
breaks whenever the potential energy is raised above its metastability range, but
also below that limit due to creep activated by thermal fluctuations. A Kramer’s-
type approximation for the rate of chain breaking is proposed and compared to
simulation data.

Single-molecular systems of the same polymer, PEO, have been systematically
studied to understand the applicability of thermodynamics in the small scale limit.
Isometric and isotensional single-molecule stretching experiments and their theo-
retical interpretations have shown the lack of a thermodynamic limit at those scales
and the non-equivalence between their corresponding statistical ensembles. This
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disparity between thermodynamic results obtained in both experimental protocols
can also be observed in the entropy production, as previous theoretical results have
shown. In the work presented in the second article, this theoretical framework is
applied to find the entropy-production associated with stretching of two different
statistical ensembles for two different system sizes. In the smallest system, they are
different up to a factor of two, and for the bigger system the difference is smaller,
as predicted. In this way, we provide numerical evidence that a thermodynamic
description is still meaningful for the case of single molecule stretching.

With the stretching energies for these systems, the third article in this thesis
documents for the first time that the Helmholtz and Gibbs energy from single-
molecule stretching can be related by a Legendre–Fenchel transform. This opens
up a possibility to apply this transform to other systems which are small in Hill’s
sense, incrementally extending the applicability of the powerful framework of ther-
modynamics.

The final article is more applied, were we study a long standing problem within
the cellulose industry. Cellulose is a highly abundant bio-degradeable and renew-
able material with a vast range of applications from new material development to
biofuels, as a food additive, for biomedical applications and in fabrics and more.
Particularly for packaging and fabric applications, it is desirable to be able to dis-
solve cellulose into smaller units, especially single chains. A considerable amount
of effort has gone into research on how this can be achieved in an effective and
environmentally friendly manner. Our simulation study seeks to explain one of the
most promising methods for dissolving cellulose in laboratory experiments, which
makes use of a mixture solvent consisting of water with Na+, OH− and urea, which
is energetically agitated at temperatures around 258 K.

The simulations explore the influence of the agitation in both water and the
mixture solvent. While agitation appears to be essential to obtain dissolution in
the simulations, the bundle with no agitation in the mixture solution also swells
up with significant amounts of urea entering the bundle, as well as more water
than in the bundles in the pure water. Under agitation the bundles dissolve in
both solvents, but the dissolution is incomplete and the remaining structures are
qualitatively different. Our findings highlight the importance of urea in the sol-
vent, as well as the hydrophobic interactions, and are consistent with experimental
results.
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1 Introduction

“Have no fear of perfection; you’ll never reach it”
Marie Curie

While very small systems and macroscopic systems often can be well described
by established theoretical frameworks, there is a lack of understanding at the in-
termediate levels. The aim of this work has been to explore this intermediate
scale: systems that are large enough to be computationally expensive, yet too far
from the thermodynamic limit to allow for standard approaches from statistical
physics and thermodynamics. This regime of nano-scale bundles of small numbers
of molecules has not been investigated much theoretically; here chain–chain inter-
actions, surface effects, entropy, nonlinearities, and thermal fluctuations all play
important roles.

The recurring topic of this thesis is the stretching of relatively small polymeric
molecules. We know that mechanical properties of polymers play an important role
in their function, in both the man-made and natural context. In living organisms,
fibres are usually assembled in bundles, inter-linked to form gels, or incorporated
into bio-minerals, giving origin to a variety of tissues such as muscles, cartilage and
bones. Present day’s technology strives to match the properties of these remark-
able materials, in many cases attempting to imitate their hierarchical structures,
starting from the molecular building blocks to the texture of macroscopic tissues.

This thesis builds a foundation for a deeper understanding for the aforemen-
tioned effects by computer simulations, and hopefully these findings can provide
useful insight for future studies. This is a largely unexplored area, and in many
ways this thesis is a first attempt at theoretically studying realistic nanofibres.

In the first article, we consider nanofibres of a simple paradigmatic polymer,
polyethylene oxide (PEO), made of nanometric bundles, stretched between two
rigid, planar clamps. We cover the full range from unloaded fibres up to their
breaking point, focusing on all features that arise from chain–chain interactions
and collective behaviour of the chains.

In the second article, we look at a single chain of PEO, and calculate the
entropy production associated with stretching in a force-controlled and length-
controlled ensemble. With this, we provide numerical evidence that a thermody-
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namic description is still meaningful for the case of single-molecule stretching.
The force-elongation curve of these two ensembles are explored in more detail

in the third article, were we show that the stretching energies from the Helmholtz
and Gibbs ensemble can be related by a Legendre–Fenchel transform. This is a
general result that is applicable for a wide range of systems that exhibit non-
additivity, where interaction between the parts of the systems is not negligible in
comparison with the total energy.

The last manuscript concerns the dissolution of cellulose from bundles to sin-
gle chains in a solvent mixture. Here computer simulations with oscillating force-
and length-controlled stretching and compression of the bundle is used to mimic
agitation of the system. Simulations are preformed both with and without agi-
tation in both water and the solvent mixture. While agitation appears to be an
absolute criteria to obtain dissolution of cellulose in experiments, it has not yet
been accounted for in simulations.

1.1 Outline

The upcoming chapters gives a general background to relevant topics of this work.
Chapter 2 gives a short introduction to selected models to study polymers. Chap-
ter 3 elaborates further how molecular-dynamics simulations in particular can be
used as a simulation technique. Chapter 4 gives a brief introduction to the ther-
modynamics of stretching in small polymeric systems. Then follows conclusions
made from this work, before the the scientific articles are presented at the end.
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2 Polymers

“When you change the way you look at things, the things you look at
change.”

Max Planck

Polymers are built up of repetitions of molecular units, monomers, that are
linked together by covalent bonds [2]. They are ubiquitous in everyday life, ranging
from familiar synthetic plastics such as polystyrene to natural biopolymers such as
DNA and proteins that are fundamental to biological structure and function. The
richness of the properties of these materials has since long diverged into a discipline
of its own, and this thesis will barely scratch the surface of the complexities this
field has to offer.

The term polymer stems from the Greek words poly (many) and meros (part),
and it designates molecules made up of repetitions of some simpler unit. While
molecules comprising a small number of repeat units technically are classified as
oligomers, from the Greek oligo (a few), we will not be using this term. This
chapter gives a brief introduction to a selection of models describing different
aspects of the behaviour of polymeric materials, and two specific polymers will be
explored in more detail.

A characteristic feature of polymers is that they exhibit entropic elasticity.
Thermodynamic systems have a tendency to maximize their entropy [3], from
which the phenomenon of an entropic force emerges [4]. This is why a rubber
band is hard to stretch. As the entropic force is a highly general feature, it makes
no assumption on the underlying forces. A derivation of this force in an idealized
model is presented later.

Polymers are commonly classified in three groups: thermoplastics, elastomers
and thermosets [5]. Thermoplastics are linear or branched polymers that turns
liquid with heat, elastomers are cross-linked rubbery polymers, and thermosets are
normally network polymers in which chain motion is greatly restricted by a high
degree of cross-linking, making the material rigid. Thermoplastics are then further
separated into those which are crystalline and those which are amorphous. In the
amorphous state, the conformation of the polymer chain resemble that of cooked
spaghetti, and there is no well defined molecular order. In crystalline polymers, on
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the other hand, the chains fold together and form ordered regions called lamellae.
Highly crystalline polymers are then characterized by their melting point Tm,
after which they turn liquid in a first order transition. Amorphous polymers, on
the other hand, is characterized by their glass transition temperatures Tg, which
presents features of a second-order transition at which they transform abruptly
from the hard glassy state to the soft rubbery state. Most thermoplastics are
however intermediate.

Evidently, the features of a polymeric material are highly dependent on the
degree of polymerization and the morphology, such as branching, cross-linking,
and supra molecular structure [6]. We will limit this introduction to linear ho-
mopolymers, that is, polymeric chains with two end-points with no branching or
cross-linking composed of identical monomers.

2.1 Models

Idealized models are powerful in their analytical accessibility, and are highly useful
for the verification and understanding of the behaviour of more complex models
and experimental results. We will here briefly introduce some popular models for
molecular stretching, and derive the temperature dependence of the entropic force
for a single ideal chain.

2.1.1 Ideal chains

At the most idealized level, we can describe a polymeric molecule with the Freely-
Jointed Chain (FJC) model: a chain consisting of N links of length b, with no
correlation among the directions of the individual links [7]. The molecule will then
be described by a random walk, and the mean square end-to-end vector is

〈R2
ee〉 =

∑

i,j

〈bi · bj〉 =
∑

i,j

〈|bi|2〉δij = Nb2, (2.1)

since the direction of a step is independent of the direction of the previous step.
The angular brackets indicate an ensemble average, and denote an average over
all possible states of the system. Another length that characterizes the polymer is
the radius of gyration, which can be defined by

〈R2
g〉 =

1

N + 1

N+1∑

i=1

〈|ri − rcm|2〉, (2.2)

where ri is the position vector of node i and rcm is the center of mass. It is a
quantity that can describe the size of polymers of any architecture, and can be
determined experimentally with e.g. static light scattering or small angle neutron-

4



Figure 2.1: A united atom model of a PEO molecule with n = 108 monomers.
Each monomer is composed of three beads, two methylene groups (gray), and one
oxygen atom (red).
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and x-ray scattering. For this reason it is a commonly used quantity in polymer
physics. In the FJC model one can show that

〈R2
g〉 =

b2

6

[
N − 1

N

]
, (2.3)

and we see that R2
g ' R2

ee/6 for N � 1. In its simplicity, the FJC model cap-
tures a highly general aspect of polymers: all chains display ideal chain behaviour
for sufficiently long chains, if we only take into account the interactions between
neighboring units on the chemical sequence [8]. That is, as long as we choose
b large enough for the segments to be uncorrelated, a sufficently long polymeric
chain will be described by a random walk of that step length, neglecting long-range
interactions. One can, however, impose a second criterion

lC = Nb (2.4)

where we define the contour length lC as the end-to-end distance of the unfolded
chain. Combining Eqs. (2.1) and (2.4) gives us a condition for when b is equal to
the Kuhn length lK,

b =
〈R2

ee〉
lC
≡ lK, (2.5)

and the effective number of segments is then

N =
lC
lK
≡ Neff, (2.6)

such that our polymer is described by a random walk of Neff steps of length lK.
In the framework of Flory [9], the mean-square end-to-end distance of an un-

perturbed chain is characterized by the ratio

C∞ =
〈R2

ee〉
nb2m

, (2.7)

where n is the number of monomers and

b2m =
∑

i

a2
i (2.8)

is the sum of the squares of the length of the backbone bonds ai in one monomeric
unit. The ratio C∞ is known as the characteristic ratio of a polymer chain for a
given chemical and structural type. While the ratio 〈R2

ee〉/nb2m is not a constant
for low degrees of polymerization, it reaches an asymptotic value C∞ in the long
chain limit. The stiffer the polymer, the higher the characteristic ratio, with
typical values in the range of 4 to 12. When the characteristic ratio is known, the
chain can be described by a FJC with Kuhn length

lK =
C∞nb

2
m

lC
. (2.9)
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The force-elongation curve of the FJC is described by a Langevin function, and
is shown in Table 2.1. The FJC model can be extended (FJC+) by replacing the
links with elastic springs. In the low force regime, entropic elasticity dominates,
and the two models coincide. In the high force regime the segment elasticity
ES, with contributions from the potentials for stretching, bending and torsion,
will determine the slope of the force-elongation curve. The FJC+ model has
been shown to describe single-molecule stretching well in cases with absence of
supramolecular assemblies and negligible interchain interactions [10, 11].

Another variation of the FJC model is the Freely Rotating Chain (FRC) model,
where we keep the bond angles θ fixed in addition to the bond lengths. This is
useful for polymers that are locally very rigid, and becomes random walks only
at large length scales. Defining the angle θ as the change in angular direction
between consecutive bonds, the mean-square end-to-end distance is

〈R2
ee〉 =

∑

i,j

〈bi · bj〉 = Nb2
1 + cos θ

1− cos θ
, (2.10)

and the reader is referred to e.g. Rubinstein [12] for the derivation. Notice that
we again retain 〈R2

ee〉1/2 ∼ N1/2, which is a main property of ideal chains. The
contour length in this model is simply

lC = Nb cos
θ

2
. (2.11)

The Worm-Like Chain (WLC) model is another important model for polymers,
which is also known as the persistent chain model [2]. It is particularly useful for
polymers with high stiffness, and that have a uniform flexibility over the whole
polymer length. It can be defined from the FRC model in the limit b → 0 and
θ → 0 at constant contour length and persistence length lp [12], related to the
Kuhn length by

lp =
lK
2
. (2.12)

The chain is then described by a curvilinear function with local chain directions
given by unit vectors e(l), and the chain flexibility is determined by the orienta-
tional correlation function between two points with a distance ∆l along the chain

Kor = 〈e(l)e(l + ∆l)〉, (2.13)

from which we can identify the persistence length by the integral width

lps =

∞∫

0

Kor(∆l)d(∆l), (2.14)

which again can be related to the bending modulus Eb by

lp =
Eb

kBT
. (2.15)
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Table 2.1: Table summarizing selected statistical-mechanical models for polymer
elasticity [13–15]. Here l is the end-to-end length, lC is the contour length, lp is
the persistence length, KS is the segment elasticity and φ is the specific stiffness
of the polymer.

Model Expression

FJC l(f) = lC

(
coth

(
flK
kBT

)
− kBT

flK

)

FJC + l(f) = lC

(
coth

(
flK
kBT

)
− kBT

flK

)
+ nf

KS

WLC f(l) = kBT
lp

(
1
4

(
1− l

lC

)−2
− 1

4 + l
lC
− 0.8

(
l
lC

)2.15
)

WLC + f(l) = kBT
lp

(
1
4

(
1− l

lC
+ f

φ

)2
+ l

lC
− 1

4 −
f
φ

)

For the force-elongation curve shown in Table 2.1, one can also include the
stiffness of the chain as a third fitting parameter to obtain the Extensible Worm
Like Chain (WLC+) model, shown the last row in Table 2.1. Note that the last
term in the function for the elasticity of the WLC model presented in Table 2.1 was
not originally included [7], but reduces the relative error compared to experiments
from about 15% to 1% [13].

The entropic force in an idealized chain

From Boltzmann we know that the entropy can be defined as

S = −kB
∑

i

pi ln pi (2.16)

where pi is the probability that a microstate i is occupied, and kB is Boltzmann’s
constant. By assuming equal a priori probability, that the occupation of any mi-
crostate is equally probable, we can write Eq. (2.16) in terms of the possible
microstates of the system Ω

S = kB ln Ω, (2.17)

since pi = 1/Ω. This fundamental assumption of statistical thermodynamics holds
in general for isolated systems in equilibrium. The number of possible configura-
tions for a random walk of N steps with and end-to-end distance of l can be written
as Ω = Ω(l, N) [8]. Going to three dimensions, Ω(l, N) will scale like

Ω(l, N) ' N−3/2 exp

(
−3

2

l2

Nb2

)
, (2.18)

which gives us

S(l, N) = S(0)− 3kB
2Nb2

l2 (2.19)
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for the entropy of the chain in three dimensions at fixed elongation.
We can convert this to Helmholtz energy, which is defined by

F (l, N, T ) = U(l, N)− TS(l, N). (2.20)

In a model where the internal energy U is independent of the chain configuration,
the free energy associated with Eq. (2.19) is then

F (l, N, T ) = F (0) +
3kBT

2Nb2
l2. (2.21)

We can then readily obtain the entropic contribution to the force associated with
the current elongation of the polymer from the derivative of the free energy with
respect to the elongation, giving

fS =
3kBT

Nb2
l. (2.22)

Combined with Eqs. (2.4) to (2.6), we get the entropic force on our FJC of Kuhn
segments as

fS =
3kBT

lClK
l. (2.23)

The same expression can also be found when one uses the force as a control
parameter rather than the end-to-end distance [12]. The partition function of the
FJC can be written as a sum over all conformations

Z(f,N, T ) =
∑

states

e−U(f,N)/(kBT ), (2.24)

where the internal energy is given by

U(f,N) = f
N∑

i=1

b cos θi, (2.25)

where θi now denotes the angle of bond i with the end-to-end vector. Equa-
tion (2.24) can then be integrated over all possible bond angles of the chain in
three dimensions, after which the average end-to-end distance l(f) of a chain with
constant N can be found via the derivative of the Gibbs energy

l(f) = − ∂

∂f
G(f,N) = kBT

∂

∂f
lnZ(f,N) (2.26)

resulting in the well known Langevin function

l(f) = lC

(
coth

(
flK
kBT

)
− kBT

flK

)
, (2.27)

which can be shown to be similar to Eq. (2.23) in the low force limit.
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2.1.2 Real chains

While ideal chains only take local correlations into account, the interactions be-
tween monomers separated by many bonds may also be important [12]. While the
ideal chain is described by a random walk, real chains cannot occupy the same
position in space more than once. For this reason, the conformations of the real
chain are similar to that of a self-avoiding random walk. The behaviour of a real
chain in a solvent may be characterized in a parameter for the excluded volume,
giving the change in volume due to non-local interactions.

When the solvent is good, the conformations of a real chain are determined by
the balance of the effective repulsion energy between monomers, and the entropy
loss due to swelling. With Flory theory one can make rough estimations of the
free energy contributions with a basis in ideal chains. Both the energetic and the
entropic contribution are overestimated, resulting in a fortunate cancellation of
errors. Flory theory leads to a universal scaling law for the end-to-end distance

〈R2
ee〉1/2 ∝ Nν . (2.28)

In a good solvent, the excluded volume is greater than zero, and the scaling expo-
nent ν ≈ 3/5 is independent of the quality of the solvent.

At some temperature, any polymer-solvent pair will have an attractive con-
tribution that exactly cancels the steric repulsion. The excluded volume is then
zero. At this temperature we have ν = 1/2, and the chain has nearly ideal confir-
mations. This is known as the theta point. In a poor solvent, the effective volume
is negative, indicating an effective attraction.

2.1.3 The Fiber Bundle Model

The Fiber Bundle Model is an excellent example of a model that can be classified
as metaphorical [17, 18]. Rather than attempting to precisely describe reality, it
aims to illustrate non-trivial mechanisms which goes much beyond the specifics
of the model itself. The strength of this model is that it can reveal mechanisms
too complex to study in realistic models, and that can be completely lost in phe-
nomenological models [19].

The model consists of an assembly of bonds, organised into chains and bundles.
Bonds deform elastically up to a critical load marking their sudden breaking, fol-
lowed by the redistribution of the load among the surviving chains. The model is
able to merge random bond-breaking processes with collective, self-organised phe-
nomena such as avalanches, and is typically characterized by quenched disorder;
disorder that is not evolving with time.

In this model all fibres in the bundle have the same length x and the same elas-
tic constant κ. Each fiber is assigned a individual threshold ti, which are assumed
to be independent random variables from the same probability distribution. The
force carried by fiber i is then simply given by
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Figure 2.2: The sceletal formula for a PEO molecule composed of n monomers.

fi =

{
κx for x < ti

0 for x ≥ ti.
(2.29)

There are several different models for redistribution of the load of a failed
fiber, the simplest being the equal-load-sharing model, where the extra load is
distributed equally on all the remaining fibres. This model corresponds to fibres
being stretched between rigid clamps. The other extreme is the local-load-sharing
model, where only the neighboring surviving fibres share the extra load from the
broken fibres.

While the fiber bundle model is not a realistic model, or even a phenomenolog-
ical one, it is still widely acknowledged as one of the most important theoretical
frameworks to investigate fracture and breakdown of disordered media, used both
by the engineering and physics community, and it exists with numerous exten-
sions [20, 21].

2.2 Creep

While perfectly elastic materials feature stress proportional to the strain, perfectly
viscous materials exhibit stress proportional to the strain rate [22]. Most polymers
are viscoelastic, with characteristics intermediate between perfectly elastic and
perfectly viscous behaviour. Time dependent strain is also seen in metals, where
it is called anelasticity. The time dependent deformation under static loading
is characterized as creep. It is closely related to fatigue, which is the result of
cyclic loading. The timescale of deformation is given by the timescale of structure
relaxation, and in creep this is typically long, on the order of seconds or even years.

An idealized particle based fiber bundle model has successfully reproduced
characteristic stages of creep seen in the experimental investigations of polymeric
materials [21]. The smoothened energy landscape is giving rise to much faster
system dynamics than convetional more complex models for molecular dynamics,
allowing for the study of appropriate time- and length-scales for this phenomena.

2.3 Polyethylene Oxide (PEO)

PEO (also referred to as polyethylene glycol or PEG) is a highly water-soluble
thermoplastic polymer with a wide range of applications [23, 24]. With a litera-
ture glass transition temperature of 207 K [25], PEO is a liquid or a low-melting
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Table 2.2: Parameters Equation 2.33, modelling the force-elongation curve of PEO
by a Markovian two-level in equilibrium.

Quantity Magnitude

n 108

lhelical 2.6 Å

lplanar 3.3 Å

Gplanar −Ghelical 8 kBT

lK 2.9 Å

KS 62 N/m

solid at room temperature, depending on the degree of polymerization. Very high-
purity PEO has been shown to be crystalline, with PEO16 having a melting point
of 300 K [26]. It has been studied extensively experimentally [27, 28]. Of appli-
cations with high relevancy to current events it can be mentioned that PEO is
used as an excipient (or "filler") in many pharmaceutical products, among them
the Moderna and Pfizer–BioNTech vaccines for SARS-CoV-2 [29, 30]. As a side
note, it can also be mentioned that PEO is famous for being a self-pouring liquid.
This resembles the flying chain effect that is observed with a chain of beads in
a jar, a phenomena that is still not completely understood [31, 32]. While the
interpretation of this feature of PEO is not entirely without ambiguity, the anal-
ogy to PEO as weakly connected linear chains in a loosely coiled conformation is
illustrative for the behaviour observed at ambient conditions with a high degree
of polymerization [23].

Another interesting property of PEO is that it undergoes a conformational
transition during stretching. For this reason, the force-elongation curve of PEO
is typically neither well described by the worm-like chain model (WLC) or the
freely jointed chain model (FJC). In the crystalline state PEO assumes a helical
conformation, trans-trans-gauche (ttg) [33]. As the molecule is stretched, the equi-
librium is shifted towards the elongated planar state, trans-trans-trans (ttt) [27].
This transition could also be induced by solvation effects, and it has been shown
that these effects can dominate over backbone stretching energy and the confor-
mational entropy of the polymer [34]. This explains experimental results where
PEO can be well described by the WLC or WLC+ model [35].

To obtain the force-elongation curve for PEO in cases where the conformational
transition is not induced by solvation effects, the molecule may be modeled as a
Markovian two-level system in equilibrium. We will here present such a model by
Oesterhelt, Rief and Gaub [27]. As all monomers retain either a planar of a helical
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Figure 2.3: Force-elongation curve for a PEO molecule with n = 108 monomers,
similar to the one shown in Figure 2.1. The orange background marks the range
from l = nlhelical to l = nlplanar. The curve is averaged over 20 samples at ambient
temperature.

confirmation, the contour can be written

lC = nplanar · lplanar + nhelical · lhelical . (2.30)

The ratio of the populations nhelical /nplanar is Boltzmann distributed,

nhelical
nplanar

= e+∆G/kBT , (2.31)

where ∆G is the free energy difference between the states. The difference in free
energy as a function of the applied force is given by

∆G(f) = (Gplanar −Ghelical )− f · (lplanar − lhelical ) , (2.32)

which can be combined with the force-elongation curve for FJC+ in Table 2.1 to
obtain1

l(f) =n

(
lplanar

e+∆G/kBT + 1
+

lhelical

e−∆G/kBT + 1

)
·

(
coth

(
f · lK
kBT

)
− kBT

flK

)
+
nf

KS
.

(2.33)

1In the original article the signs of ∆G is switched, this is a typo.
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In Figure 2.3, we show how this model compares to our simulation data of the
system shown in Figure 2.1; a chain of PEO with n = 108 monomers. In the low
force region, we determine the Kuhn length lK by a linear fit with

llow(f) = nlhelicalflK/(3kBT ),

and in the high force region we determine the planar length lplanar and the elastic
constant KS by a linear fit with

lhigh(f) = nlplanar + nf/KS.

All the parameters for Eq. (2.33) is shown in Table 2.2. The ttg segment length
of lhelical = 2.6 Å is tuned for best fit with the data, starting from the crystalli-
graphically measured length of 2.78 Å [33]. The ttt segment length of lplanar = 3.3
Å can be compared to Oesterhelts value of 3.58 Å [27]. Both are off the expected
values, but they are still considered to be reasonable close. The limiting cases of
Eq. (2.30) is shown with an orange background in Figure 2.3, and illustrate the
range from the completely unfolded helical state to the unstretched planar state.
The Kuhn length of lK = 2.9 Å is lower than experimental results of 7.4 Å in a
solvent of phosphate buffered saline [35], which may in part be explained by the
solvent and the relatively small degree of polymerization.

The force field is similar to that of Article I, except for the addition of an im-
plicit solvent, with pair_style lj/charmm/coul/charmm/implicit in LAMMPS,
which includes an additional 1/r term in the Coulombic formula, serving as a
distance-dependent dielectric term accounting for screening-effects. This cor-
responds to a good solvent, and limits chain-chain interactions. The chain is
stretched with constant strain rate, with a velocity of 22 m/s, and the chains are
constrained to move between two clamps, described by two moving Lennard-Jones
walls 2 Å outside of the endpoints. The temperature is controlled by a Langevin
thermostat to T = 293 K, and the data is averaged over 20 samples.

2.4 Cellulose

Cellulose is the most abundant polymer in the world [36]. Made out of linked
sugars it is an important building block for plant life on earth. It is produced by
plants, animals and single-celled organisms, and its popularity is increasing among
a broad range of applications from new material development to cosmetics, as a
food additive, for biomedical applications and in fabrics. It is composed of glucose
units linked by β(1 → 4) bonds [37]. Each unit is rotated 180◦ to one another,
and two glucose units are referred to as a cellobiose unit. The skeletal formula is
show in Figure 2.4 with the Haworth projection.

One particular property of cellulose, is that that it degrades rather than melting
at high temperatures. This degradations typically occur above 470 K[38]. In a
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Figure 2.4: The skeletal formula of cellulose, composed of n units of cellobiose.

solvent, cellulose has been shown to undergo a glass transition at temperatures
around 500 K [39], when extrapolated to dry conditions.

In nature, cellulose exist as microfibrils structures of sizes down of 36-18
chains [40, 41]. For many applications, particularly for packaging and fabric ap-
plications, it would be beneficial to have the cellulose as single chains. There is
a great interest in understanding how cellulose might be dissolved. A bundle of
cellulose is held together by hydrogen bonds in-plane and van der Waals bonds
that act perpendicularly. The perhaps most dominant challenge in obtaining dis-
solution is that the cellulose bonds are both hydrophilic and hydrophobic [42,
43].

In the laboratory, the cellulose nanofibrils are typically isolated from wood-
based fibres by mechanical treatment with high shear forces, with the optional
chemical or enzymatic pretreatment step [44]. One common solvent for cellulose
is composed of hydroxide and urea dissolved in water, which seems to be most
effective at temperatures around 258 K [45]. The exact role of individual solvent
constituents have been heavily investigated, but experimental and computational
findings are not consistent between studies. One hypothesis, perhaps the most
common, is that sodium and urea is thought to penetrate the bundle, where sodium
then disrupts the interchain bonding and urea stabilize the dissolved chains to
prevent re-agglomeration.

2.5 Applications for the articles

2.5.1 Article I

The first article is a computational study of tensile properties of PEO nanofibres,
composed of linear chains of 33 monomers each. The geometry of the system is
inspired by the fiber bundle model: the end-points of each chain are attached to
stiff parallel planes, such that each chain is elongated by the same amount. The
particles at the end-points of each chain are however allowed to move within these
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planes. The tensile loading was studied both with constant force and constant
strain rate. For the constant force simulations, the load on the chains are equally
distributed through the clamps, similar to the equal load sharing fiber bundle
model. The simulations with constant strain rate focus on the interchain interac-
tions, and do not include any redistribution of forces through the clamps. Going
far beyond the complexity of the fiber bundle model, we aim to study polymeric
fibres from a material science point of view and in this way probe the limitations
of these models.

While the fiber bundle model exhibits quenched disorder, the disorder in these
simulations originates in the chaotic potential energy landscape and in fluctuations
from a thermal bath, to be discussed more later. The effect of configuration defects
is also explored. The covalent bonds are modeled with Morse potentials, allowing
for the breaking of bonds. While these computational experiments targets creep,
their high energy and limited time scale more closely approach the mechanical
breaking process.

Crystallinity plays an important role, as we have a transition from a disordered
state to a semi-crystalline state during stretching. In experimental studies of PEO,
the samples are highly amorphous, and the tensile properties are dominated by
the interchain interactions between the loosely coiled chains. The semi-crystalline
fibres in this computational study resemble more closely the structure of polyethy-
lene, to which it display similar mechanical properties.

2.5.2 Article II-III

Continuing with the stretching of PEO nanofibres, the second and third article
focus on single-molecule stretching with various degrees of polymerization at theta
conditions. Here entropic elasticity is explored in addition do the enthalpic elastic-
ity, and the system is compared to an idealized FJC model. The system is verified
by studying the behaviour in the entropic region according to Eq. (2.23), which
can be written as

fS =
3kBT

Neffb
2
eff
l. (2.34)

Note that equation 7 in article II is off by a factor of 6: this expression was obtained
by using the radius of gyration rather than the end-to-end distance as the length
in the expression for the entropy, shown in 2.19. As the molecule undergoes a
transition from helical to planar conformations, the unfolded length relevant for
the entropic regime is the length of the molecule before this transition. Accounting
for this, one obtains a Kuhn length of 2 Å. In this article N = 51 denotes the
number of beads in the chain, and the resulting effective number of beads for the
FJC model is Neff = 12. I consider this to be reasonable for a PEO-molecule
composed of n = 16 monomers.
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2.5.3 Article IV

The fourth article has a more applied objective, and concerns the dissolution of
cellulose. The aim of the work is to understand the specific details concerning the
dissolution process of cellulose in a solution of water, sodium hydroxide and urea.
As this is a highly complex system, it is not well described by idealized models.
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3 Molecular Dynamics

“We adore chaos because we love to produce order”
M.C. Escher

Molecular dynamics (MD) is a incredibly versatile tool for computing the time
evolution of systems. The complexity of the systems can be increased far beyond
what can be described analytically. Similar to experiments in the laboratory, the
outcome is prone to statistical errors. One also has to pay great attention into
making sure that the simulation conditions are physical, and that the model is
appropriate for what one is trying to achieve. Nonetheless, these brute force com-
puter experiments have been shown to be highly useful tools for a wide range of
applications. One attractive feature of molecular dynamics is that it permits di-
rect visualization of the detailed motions of individual atoms in a system, thereby
providing a window into the microscopic world. While the instantaneous move-
ments of a singe trajectory might not be representative for the system, they can
be useful as a guide toward understanding the mechanisms underlying a given
process. Moreover, the average values have been shown to be reliable in most
cases. We will here go through some basic principles of molecular dynamics, with
an emphasis on properties that have been relevant for this work. For more details
see [46].

3.1 Length and time scale

One of the first points to consider when preparing a computer simulation is the
relevant length and time scale. With fully atomistic simulations one explicitly
solves Newton’s equations of motion for every single atom, and one typically work
on the nano-scale in length and time. If one is interested in significantly larger
scales, it is often a good idea to coarse-grain: one particle in our simulation can
represent multiple atoms or whole groups of atoms. This reduction of degrees of
freedom allows for considerably larger systems or significantly longer simulation
times. The interpretation of time scales in coarse grained simulations is however
a complicated topic of its own, especially relevant for dynamic processes.
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For systems with long-range interactions, the computation of the resulting
long-range forces is typically dominating for the computational cost. For a sim-
ulation where N particles interact with all other particles, a naive summation
over pairs would give a running time of O(N2). By making use of Fast Fourier
Transforms (FFT), the time complexity is often reduced to O(N logN). Some al-
gorithms even obtain linear time algorithms, at the cost of limited accuracy. This
will be discussed more in Section 3.5.

A common strategy to reduce the finite size effect of small systems is to make
use of periodic boundaries in one or multiple dimensions, such that a particle
interacts not only with the other particles in the system, but also replicas of these
through the boundaries. As we will discuss more later, having periodic boundaries
is even a requirement for using FFT. One should note that the computational cost
of FFT-based methods scales with the volume of the simulation box.

When modeling systems such as polymers in a solvent, a common approach to
speed up the simulations and increase the available time and length scales is to
make use of implicit solvents. While there are different approaches to achieving it,
they all aim to modify the non-bonded interaction potential to account for solvents
without explicitly including the solvent-particles. This does not however account
for the hydrophobic effect, viscosity or hydrogen bonding. If those effects are not
relevant, implicit solvents can often be a good choice.

3.2 The initial configuration

In a MD simulation, positions and momenta of all particles at time t are functions
of their initial values at t = 0:

ri(t) = f [rN (0),pN (0); t]. (3.1)

However, one should be aware that any perturbation with amplitude ε gives rise
to exponentially growing deviation

|∆ri(t)| ∼ ε exp (λt), (3.2)

known as a Lyapunov instability. Moreover, round off errors also causes deviations
in the trajectory. While there is no reason to expect an MD simulation to exactly
reproduce every detail of a physical system, one has observed that global properties
such as total energy and response functions appear to be reliable. It is often safe
to assume that

Let us assume for now that the trajectories given by MD are sufficiently re-
alistic, given that the parameters for the interactions between the particles are
correct.
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Figure 3.1: Illustration of typical terms in the potential energy surface for molecu-
lar simulations. The dihedral illustrates the potential for the torsions, these terms
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3.3 The potential energy surface

The interaction potential is an integral part of a MD simulation with classical force
fields, and should be discussed in some detail. For a system made of N interacting
atoms, we will have a set of coordinates and momenta {Rα, α = 1, . . . , N}, {pα, α =
1, . . . , N}. The potential energy surface will then at all times be a function of the
set of positions U({Rα}), and the forces on each atom will be given by

Fα = −∇RαU({Rα}). (3.3)

The potential energy will typically have contributions from bonded and non-
bonded interactions,

U = Ub + Unb, (3.4)

and the the bonded energy is commonly given by the sum of two-, three-, and
four-body terms from atoms joined by one, two and three consecutive covalent
bonds, as illustrated in Figure 3.1. In the functional form of AMBER [47], the
bonded interactions reads

Ub =
∑

bonds

kb(l− l0)2 +
∑

angles

ka(θ− θ0)2 +
∑

torsions

∑

n

1

2
Vn[1 + cos(nω − γ)], (3.5)

where kb, ka and Vn are suitable force constants. l0, θ0 and γ reflect the length,
bending and dihedral angles of unstrained bonds. The non-bonded interactions
consists of Van der Waals terms based on 6-12 potentials and electrostatic terms
for Coulomb’s law,

Unb =
N−1∑

j=1

N∑

i=j+1

fij

{
4εij

[(
σij
rij

)12

−
(
σij
rij

)6 ]
+

qiqj
4πε0rij

}
, (3.6)
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where qi are atomic charges and σij and εij are length and energy constants. The
coefficients fij are weighting coefficients for pairwise energy and force contribution
between permanently bonded atoms. In AMBER, this coefficient is 0.0, 0.0 and
0.5 for atoms separated by 1, 2 and 3 bonds respectively, otherwise it is 1. Other
families of force fields such as e.g. CHARMM, GROMOS and OPLS all have
slightly different functional forms, and different conventions for e.g. the attribution
of charges. In AMBER, each atom is attributed partial atomic charges through
Restrained ElectroStatic Potential calculations [48].

3.3.1 A minimalistic reactive force field

The harmonic potential is only a reasonable approximation for bonds in proximity
to equilibrium. We will here present a minimal reactive force field with a broader
range of applicability that even allows for the breaking of covalent bonds.

We can replace the term for the stretching in Eq. (3.5) by a Morse potential
of the form

Ustr(l) = De

[
1− e−α(l−l0)

]2
, (3.7)

which saturates to a finite value at large separations. The required parameters for
the dissociation energy De are obtained from density functional computations [49],
and the parameters for α are found by requiring the Morse potential to have the
same curvature as the harmonic bonds [50], i.e. α = (kb/2De)

1/2.
Another advantage of the Morse potential is that it can account for the an-

harmonicity found in real molecules. With this potential, bonds shorter than
ln(2)/α+ l0 give rise to stable anharmonic oscillations

E(v) = hν0(v + 1/2)− [hν0(v + 1/2)]2

4De
(3.8)

where v is the vibrational quantum level and

ν0 =
α

2π

√
2De/mi, (3.9)

where mi is the mass of particle i. When the initial configuration and the param-
eters for the potential energy surface is given, the position of the atoms may be
updated by a suitable algorithm.

3.4 Verlet algorithms

The simplistic algorithm developed and used for the first MD simulations is still a
good choice, upon suitable modifications. Its second order global error δt2 makes
it reasonably long-term stable, and it has a low computational cost in addition
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to being fairly intuitive. The algorithm can be derived by combining the forward
evolution

ri(t+ δt) = ri(t) + δtvi(t) +
1

2
δt2

Fi(t)

mi
(3.10)

with the backward evolution

ri(t− δt) = ri(t)− δtvi(t) +
1

2
δt2

Fi(t)

mi
, (3.11)

to obtain the expressions

ri(t+ δt) = 2ri(t)− ri(t− δt) + δt2
Fi(t)

mi
(3.12)

and
vi(t) =

1

2
[ri(t+ δt)− ri(t− δt)] . (3.13)

A potential downside of this leap-frog scheme is that no consistent estimation of
the velocity at time t exists before the positions in the next time step is computed.
When forces or other potentials depend on velocities, or when high accuracy with
temperature and/or pressure coupling is needed we may use the predictor-corrector
integrator velocity Verlet. We then advance time by δt

ri(t+ δt)← ri(t) + δtvi(t) +
1

2
δt2ai, (3.14)

predict velocities at t+ δt

vi(t+ δt)← ri(t) + δtai(t), (3.15)

compute forces FN (t + δt) at coordinates {rN (t + δt)}, before we correct the
velocities

vi(t+ δt)← vi(t+ δt) +
1

2
δt[ai(t+ δt)− ai(t)]. (3.16)

The velocity Verlet is the default time integrator in popular software for MD such
as LAMMPS [51], while popular alternatives such as GROMACS has leap-frog
algorithms as the standard integrator with velocity Verlet as a possible option.

3.5 Long-range interactions

For the non-bonded interaction shown in Eq. (3.6) we saw that every particle in
the system interacts with all the other particles, and it is not surprising that this
is where MD calculations typically spend most of the computational time. For
the dispersion forces, one can introduce a cutoff and a tail correction, however for
the Coulombic terms this is not allowed: as the Coulomb potential decays as 1/r,
and the number of interacting particles increase with the the surface area of a
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sphere 4πr2, the tail correction to the potential energy clearly diverges. There are
however other techniques that allow for significant reductions in the computational
cost of the long-range interactions without losing the long-range character of the
forces.

On such approach is Ewald summation. It is applicable when we have periodic
boundary conditions. Each particle with point charge qi is attributed a Gaussian
screening cloud, with a total charge that exactly cancels qi. To compensate for
this, a smooth periodic charge distribution is introduced to account for the original
charges and their images. These functions can be represented by a Fourier series
which converge rapidly, and artifacts due to self-interaction can be corrected at
the end.

The electrostatic potential due to the compensating charge distribution is
found by Poisson’s equation and computed in reciprocal space. The short-range
electrostatic energy due to the screened point charges is then computed in real
space, before the self-interaction is computed separately and subtracted from the
contribution to the Coulomb energy. Ewald summation has a time complexity of
O(N3/2).

The Particle-Particle Particle-Mesh (PPPM) method also splits the Coulomb
potential is in two, this time with a switching function. Similar to the Ewald
method, the short-range interactions is calculated directly from the particle-particle
interactions. For the long range interactions, the charges are first distributed on a
mesh. The Poisson’s equation is then solved via a FFT technique, before the forces
are calculated and assigned back to the particles in the system. As the compu-
tational cost of solving the Poisson equation drops significantly when the charges
are distributed on a mesh, the PPPM method can obtain a time complexity of
O(N logN).

The Fast Multipole Method (FMM) also deserves a brief mention, as it promises
nothing less than a linear time complexity, O(N). It has, however, been shown
to introduce irregularities in the electrostatic potential and force [52], and for this
reason it seems it is not much used in practice as of today.

3.6 Thermostats and barostats

The most common ensemble for MD is perhaps the NV E, or micro-canonical
ensemble. However, it is also fairly common to run simulations in the canonical
(NV T ) ensemble or the isobaric (NPT ) ensemble. While the thermodynamic
potentials converge to the same value for all ensembles in the thermodynamic
limit, the fluctuations in each ensemble will be different. As a consequence, the
response functions are different in the different ensembles.

The most popular methods for obtaining canonical dynamics are the “extended
phase space” approaches, where the physical phase space is supplemented with ad-
ditional variables [53]. This method was first introduced by Andersen for constant
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pressure simulations [54], but the perhaps most common of these methods today
is the one developed by Nosé and Hoover.

3.6.1 Nosé-Hoover

The Nosé-Hoover thermostat is a completely deterministic approach to obtain
isothermal conditions in MD. An additional artificial time-scaling coordinate s is
included that control the fluctuations in the kinetic energy, representing coupling
to a heat bath. The variable s plays the role of a time-scaling parameter, and
is associated with a quantity Q of units energy×time2, commonly denoted as an
effective "mass".

To avoid fluctuating time-intervals, during simulations, the variable s may be
replaced with a thermodynamic "friction" variable ξ, which can be either positive
or negative, obtaining equations of motions that can be expressed as [55]

ṙi =
pi
mi

ṗi = Fi − ξpi

ξ̇ =

(
K

K0
− 1

)
/τ2.

(3.17)

Here τ is a phenomenological relaxation time in which the system is brought from
a kinetic energy K to K0 corresponding to the sought temperature. For τ →∞ we
regain the original equation of motion. We stress that this is a non-Hamiltonian
system, however the equation of motions in Eq. (3.17) can also be derived from a
Hamiltonian system using a non-canonical choice of variables [56].

Following along the same lines, the Nosé-Hoover thermostat can also be ex-
tended to control the pressure to give a Nosé-Hoover barostat, giving the equations
of motion for the positions and momenta

ṙi =
pi
mi

+
pε
W

ri (3.18)

and
pi = Fi −

(
1 +

d
dN

)
pε
W

pi −
pξ1
Q1

pi. (3.19)

Here N is the number of particles, ξ1, pξ1 and Q1 are the parameters for the ther-
mostat, and ε, pε and W are the parameters for the barostatting. The parameter
ε is determined by the volume of the system V and the initial volume V (0) by

ε = ln(V/V (0)). (3.20)

W in Eq. (3.19) is a mass parameter associated with ε, and pε is the momentum
conjugate to ε. Note that this is the improved scheme of Martyna et al. [57], as
the earlier scheme of Hoover only approximate the desired distribution [56, 58].
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The Nosé-Hoover algorithm as presented here only generates the correct canonical
distribution for systems with only one conserved quantity, or with no external
forces and a fixed center of mass. This restriction is avoided by coupling the
Nosé-Hoover thermostat to a chain of thermostats [57]. This addition of extra
thermostats comes at a low computational cost; only the first thermostat interacts
with N particles, the others form a simple one dimensional chain.

One should note that the Nosé-Hoover thermostat is global, and it is non-
Galilean invariant; [59] the laws of motion are not the same in all inertial frames.

3.6.2 Langevin thermostat

The Langevin thermostat has a different approach to control the temperature.
Here, we mimic the viscous aspect of a solvent to approximate the canonical en-
semble. Random collisions between the liquid and the particles account for the
heat dissipation by the Langevin equation:

ṙi =
pi
mi

(3.21)

ṗi = Fi − ξ
pi
mi

+ βi(t) (3.22)

where Fi are the forces derived from the potential energy, ξ is the friction coefficient
controlling the coupling between the particles and the heat bath, and βi are random
forces, given by a Gaussian probability distribution with correlation function

〈βi(t) · βj(t′)〉 = 6ξkBTδijδ(t− t′) (3.23)

where T is the target temperature. The force is then uncorrelated with time. For
large η we have overdamped Langevin dynamics or Brownian dynamics with no
average acceleration. The thermostat can be included in a Verlet-type algorithm
following the steps of Grønbech-Jensen and Farago [60].

The Langevin thermostat is also non-Galilean invariant. But in contrast to
the Nosé-Hoover thermostat, the Langevin thermostat does not regulate the tem-
perature uniformly. Moreover, it is also profile-unbiased [59], and has been shown
to outperform the chained Nosé-Hoover thermostat in non-equilibrium simula-
tions [61].

3.6.3 Berendsen

The Berendsen thermostat represents yet another approach to control the tem-
perature during simulations. Here the system is weakly coupled to a constant
temperature bath by adding an extra term in the equations of motion which ef-
fects the temperature change

dT

dt

∣∣∣∣
bath

=
T0 − T
τT

, (3.24)
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where T0 is the reference temperature, T is the instantaneous temperature and τT
is a relaxation time. Similarly for the Berendsen barostat, we have

dP

dt

∣∣∣∣
bath

=
P0 − P
τP

, (3.25)

where again P0 is the reference pressure, P is the instantaneous pressure and τp
is a relaxation time. For every time step the system volume is then rescaled to
accommodate Eq. (3.25) [62]. The main drawback of the Berendsen thermostat
is perhaps that it does not sample the NV T ensemble [63]. Moreover, due to
artifacts associated with velocity rescaling algorithms, the usage of the Berendsen
thermostat and barostat is generally not recommended [64].

3.7 Ergodicity

Ergodicity is one of the core assumptions for the application of molecular-dynamics
simulations: the notion that we can replace an average over all possible states in
an ensemble with an average in time. For a given property A[rN ,pN ], we can
write this as

〈A〉ensemble = lim
t→∞

1

t

t∫

0

A[rN (t′),pN (t′)]dt′. (3.26)

There are, however, a few scenarios where this assumption is not valid. Firstly,
the simulations needs to be long enough to have the possibility of visiting a rep-
resentative fraction of the phase space. Moreover, it will not hold for a system
whose potential energy U(r) possesses high barriers, as this leads to separatrices
in the phase space. This requires the use of advanced sampling techniques such as
rare events or umbrella sampling [65, 66].

3.8 Challenges

For MD simulations to be meaningful, it is crucial to have a realistic force field.
Moreover, there are some inherent limitations of MD with atomic point charge
models. The electron density is a dynamic continuum, and assigning fixed charges
to a finite amount of particles or dummy-particles will never be able to fully
reproduce the electromagnetic field. For this reason, water has shown to be ex-
cruciatingly difficult to model, and the melting temperatures in the most common
models are completely off [67]. Polarizability can also be challenging to account
for, though there are potentials that take this into account. In general, when
quantum effects are dominating one should consider using density-functional ap-
proximations. The case of water, however, remains challenging, and most widely
used approximations for the exchange-correlation functional does not describe the
properties of pure water systems well [68].
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3.9 Applications for the articles

Molecular-dynamics simulations are the main tool for the investigations described
in all four articles in this thesis. The simulations were all performed in LAMMPS [51],
with suitably-chosen force fields.

3.9.1 Article I

The simulations in the first article are preformed with a united atom force field,
with potentials accounting for stretching, bending and torsion. The minimalistic
reactive force field with Morse potentials from Section 3.3.1 was used to allow for
breaking of covalent bonds, with breaking energy from density functional compu-
tations from the literature.

When tensile stress or strain is applied to the molecules, work is being done
on the end-particles. For this reason, it is preferable to use a thermostat that acts
locally, and the Langevin thermostat was the preferred choice.

One of the objectives of this study was to approach system sizes that would
be available to experimental applications, and for this reason all boundaries were
non-periodic.

In an attempt to sample a representative portion of phase space, the simula-
tions started with a simulated annealing protocol to reach low-energy structures
closer to experimental conditions; the samples were heated up to high tempera-
tures before the temperatures was decreased slowly to ambient temperature. This
protocol provided useful to overcome barriers in the potential energy landscape.

3.9.2 Articles II-III

The model for the second and third article is similar to the one in the first article,
with the notable exception of the disabling of all non-bonded interactions. An
annealing protocol similar to the one in the first article was employed together
with a combination of relatively long simulations and many samples to sample a
representative portion of phase space for different elongations of the molecule. The
main focus of these articles is the analysis of the trajectories in thermodynamical
framework.

3.9.3 Article IV

The cellulose molecules in the fourth article was modeled with a fully atomistic
model, with explicit solvent molecules of sodium hydroxide, urea and water. A
force field of the AMBER family was employed with a fully-atomistic model with
explicit solvents. Long-range non-bonded interactions plays an important role in
this system, and they are calculated with a PPPM solver. The simulations are run
with Nosé-Hoover thermostats and barostats to control temperature and pressure.
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4 Thermodynamics of stretching

“Thermodynamics is a funny subject. The first time you go through it,
you don’t understand it at all. The second time you go through it, you
think you understand it, except for one or two small points. The third
time you go through it, you know you don’t understand it, but by that
time you are so used to it, it doesn’t bother you any more.” [69]

Arnold Sommerfeld

The laws of thermodynamics formalize the behaviour of energy conversion in
nature. It is a framework of general applicability that opens up for drawing con-
nections that would otherwise be unattainable. Thermodynamics was originally
derived and apply to the macroscopic limit, but it can also be extended to deal
with small systems [70]. Let us first consider the case of global equilibrium. The
energy balance for the internal energy was first introduced by Clausius [3], whom
related the internal energy U to the change in entropy S, temperature T , pressure
p and change in volume V .

Converted to the case of polymer stretching, the change in internal energy at
thermal equilibrium would be

dU = TdS + fdl, (4.1)

where f is the force pulling on the system and l is the end-to-end distance.
Upon reflection, the idea that systems consisting of ∼ 1023 particles can be

characterized by this handful of parameters is nothing less than astonishing. This
fundamental thermodynamic relation holds for both reversible and irreversible
processes [71]. Gibbs later extended this to include the chemical potential µj of
component j in a system with of n components. In the case of polymer stretching,
this would be

dU = TdS + fdl +

n∑

j=1

µjdNj . (4.2)

With this, we can account for change in internal energy due to a change in the
number Nj of component j.
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4.1 Hill’s thermodynamics

While Eq. (4.2) is perfectly valid for macroscopic systems, it does not hold for
small systems. The solution proposed by Hill was to introduce a large ensemble of
N replicas of a small system [72]. System properties are then obtained by dividing
the ensemble value by N . The change in total internal energy of all replicas in the
ensemble is then expressed by

dUt = TdSt + fdlt +
n∑

j=1

µjdNj,tj + εdN (4.3)

where the subscript t indicates an ensemble property, and ε is the partial replica
energy, or the subdivision potential, as Hill named it. Any system with a non-zero
subdivision potential is characterized as small, and should be approached accord-
ingly. With this extension, one can take the effect of shape- and size-variation
of small systems into account within the established framework of thermodynam-
ics [73–76].

4.2 Non-equilibrium thermodynamics

Non-equilibrium thermodynamics allows us to describe also the rate of energy
conversion between different states [77]. This branch of thermodynamics emerg-
ing with Onsager describe transport processes in systems that are out of global
equilibrium [78, 79]. We still need local equilibrium, but this is a much softer
criteria, and it has been shown to be a good assumption even for strong shock
waves [80].

In non-equilibrium thermodynamics, the second law is expressed by the local
entropy production in the system, σ. It is given by the sum of the product of the
conjugate fluxes, Ji, and forces Xi, such that

σ =
∑

i

JiXi ≥ 0. (4.4)

Each flux is a linear combination of all forces

Ji =
∑

i

LijXj , (4.5)

where the reciprocal relations
Lji = Lij (4.6)

apply. When the complete set of extensive variables, Ai, are identified, the conju-
gate fluxes are

Ji = dAi/dt, (4.7)
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and the forces are
Xi = (∂S/∂Ai)Ai 6=j . (4.8)

In combination, Eqs. (4.4) to (4.8) contain all information on the non-equilibrium
behaviour of the system [77].

4.3 The entropy production

When a molecule is stretched, one can control either the elongation of the molecule
or the external force on the molecule. We will now derive the friction coefficient
associated with stretching in both cases [77, 81]. We will make use of the fact
that mean value variations of the internal energy in an ensemble of identical,
independent replicas follow the same thermodynamic relations as for large systems.

4.3.1 The isometric ensemble

In the case in which the end-to-end distance l and the temperature T are externally
controlled, variations in the average energy of the molecule is given by the Gibbs
equation

dŪ = TdS + f̄dl, (4.9)

where f̄ is the average force between the endpoints of the molecule. The changes
in the average internal energy is given by the first law of thermodynamics as

dŪ = dQ+ f̄extdl, (4.10)

where f̄ext denotes the average external force on the terminals, and dQ is the
heat delivered to the molecule. This change in heat should be equal to minus
the heat exchange with the environment, dQ = −dQ0. The change in entropy
has contributions from the molecule dS, and from the environment dS0. For a
non-equilibrium process, the sum is the total entropy production Sirr. From the
second law of thermodynamics we get

dSirr
dt
≡ dS

dt
+

dS0

dt
≥ 0, (4.11)

where the equality only holds for completely reversible processes. Since dS0 =
dQ0/T , we now obtain

dSirr
dt

=
1

T
(f̄ext − f̄)

dl
dt
. (4.12)

We can then describe the system with a linear force flux relation via Eqs. (4.4)
and (4.5). If we denote the velocity by v ≡ dl/dt and the average change in the
force by ∆f̄ ≡ f̄ext − f̄ , we can formulate a rate law for isometric stretching

∆f̄ = ξl(l)v, (4.13)
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where ξl=ξl(l) is the friction coefficient associated with stretching specific for the
length-controlled case. This is then a rate law for isometric stretching. Once ξl(l)
is known, the entropy production follows by Eq. (4.12) as dS/dt = v2ξl(l)/T .

4.3.2 The isotensional ensemble

In the case in which the applied force fext and the temperature T are externally
controlled, variations in the average energy of the molecule now follows the Gibbs
equation

dŪ = TdS + fdl̄, (4.14)

where l̄ indicates the average length. The first law now reads

dŪ = dQ+ fextdl̄, (4.15)

and the total entropy production is now

dSirr
dt

=
1

T
(fext − f)

dl̄
dt
. (4.16)

With the change in the controlled force given by ∆f = fext− f , and the resulting
average stretching velocity v̄ = dl̄/dt, the rate law in the force-controlled regime
can be written

∆f = ξf (f)v̄. (4.17)

Here ξf=ξf (f) is the friction coefficient at isotensional conditions. In the ther-
modynamic limit, the two friction coefficients are the same. Away from the limit,
they may be different, as the rate laws depend on the set of the environmental
control variables in use.

4.4 Thermodynamics of non-additive systems

The principle of additivity plays a key role in the thermodynamic framework. If
one divides a system in different parts, the system is said to be additive if the
interaction between the parts is negligible in comparison with the total energy.
Systems consisting of a small number of particles and systems with long-range
interactions are intrinsically non-additive [82]; the interaction energy between the
different parts of the system cannot be neglected. The subdivision potential ε in
Eq. (4.3) is then different from zero. The lack of additivity is often associated with
concave regions known as curvature anomalies in the thermodynamic potentials.

For non-additive systems, the accessible equilibrium configurations depends on
the choice of control parameters used to define its state [83]. This phenomena is
called ensemble inequivalence.
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Partition functions of the different ensembles are known to be related by Leg-
endre transforms. For sufficiently long polymers, this is indeed true, as the usual
Legendre transform

G (T,N, f(l)) = F (T,N, l)− f(l)l (4.18)

is all we need to transform between the Gibbs energy G (T,N, f(l)) and the
Helmholtz energy F (T,N, l) with respect to l at constant T and N . With the
extension of Fenchel, this transformation can be written [84]

−GLF (T,N, f(l)) = max
l′

[
f(l)l′ − F (T,N, l′)

]
, (4.19)

and−GLF (T,N, f(l)) would then be the Legendre–Fenchel transform of F (T,N, l).
While it reduces to the form shown in Eq. (4.18) for functions that are both dif-
ferentiable and convex, these are not requirements for its applicability. Thus we
are also equipped to transform thermodynamic potentials that exhibit convexity
anomalies. When these anomalies do occur, the thermodynamic potentials will
not coincide with their convex envelope, leading to ensemble inequivalence [85].

Moreover, when the Helmholtz energy exhibits a curvature anomaly in the
canonical ensemble, the states associated with this anomaly is jumped over by a
first order phase transition in the isotensional ensemble [83].

4.5 Applications for the articles

Article II and III concern the thermodynamics of stretching of single molecules.

4.5.1 Article II

In the second article, a large amount of replicas of small systems were studied, and
the entropy production associated with stretching is computed in the framework
presented in Section 4.3.

4.5.2 Article III

The third article presents a general method for transforming the free energies of
different ensembles for molecular stretching, namely the Legendre-Fenchel trans-
formation discussed in Section 4.4. With this framework, the Helmholtz stretching
energies from article II is transformed to Gibb energies.
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5 Conclusions

The aim of this work was to explore the intermediate scale between single-molecule
and bulk. A significant part of the time was spent investigating a united atom
model of PEO with molecular-dynamics simulations. While the model is greatly
simplified, it still displays a richness due to the complex energy landscape.

Fluctuations are important both on the bundle level and on the single chain
level, though they play very different roles. On the bundle level, thermal fluctua-
tions can trigger the breaking of bonds in the form of creep. The activation free
energy depends on the strain and the temperature; at low strain rates, thermal
fluctuations have more time to overcome the barrier, and at high temperatures
the fluctuations are more energetic. This was shown to be well described by a
Kramer’s type approximation for the rate of chain breaking.

Single chains modeled with density functional approximations displayed a
broad range of metastability during tensile stretching. With increasing number
of chains this range narrowed down due to lateral chain-chain interactions which
perturbed the linear arrangement of the chains.

The role of supramolecular structures was investigated systematically in bun-
dles of 1-24 chains of 33 PEO monomers and one case of 100 chains. Stretching
the chains between planar clamps produced geometries that were greatly simpli-
fied with respect to macroscopic polymers, with the intention of magnifying the
role of lateral chain-chain interactions. Our study of the location of the first chain
to break revealed that the outer layer of chains are significantly more likely to be
the first chain to break than the other chains. A number of defects were studied in
more detail; twisting around the elongation axis, non-optimal 2D isomers and 2D
twinning of nanocrystals. At and above ambient temperature these defects form
and disappear in a dynamical fashion, but the system retains a high degree of
structure and a recognizable hexagonal structure, with ordering and tight packing
of chains increasing with load. It is evident that the impact of the defects on the
ultimate stress of the bundles are non-trivial.

If one were interested in reproducing the experimental tensile properties of
PEO one would have to choose a different model, as the amorphous structure
of entangled chains completely dominates the tensile properties. The Young’s
modulus and the tensile strength of amorphous samples are not determined by
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the stretching of covalent bonds, but rather by weaker chain-chain interactions.
For the purpose of this work, the simplistic model has successfully allowed for
a more isolated study of the lateral chain-chain interactions in polymers under
tensile loading.

On the single chain level the relative size of the fluctuations is of even more
significance than for a typical large system. By considering sets of replicas of the
small systems according to the method of Hill, extensivity of the thermodynamic
potentials was restored. For single molecules composed of 3,7 and 16 monomers
of PEO, fluctuations in force and length were shown to give rise to size-dependent
ensemble deviations, with the two smallest systems exhibiting convexity anomalies
in the thermodynamic potentials. These occurred in a region where the molecule
was undergoing torsional unfolding, and originate in local maxima in the potential
of mean force accessible only in the length-controlled ensemble.

The difference in fluctuations of the two ensembles of small systems gave rise
to a difference in the entropy production. With 7 monomers of PEO, the friction
coefficient of isometric stretching is roughly twice the value of that of an ensemble
with isotensional stretching. This difference decreased when the size of the system
was increased to 16 monomers. This study shows how non-equilibrium properties
are affected by the absence of the thermodynamic limit, and the method could
be applied systematically to the study of irreversible processes that take place at
small scales.

A method was described and numerically verified employing the Legendre–
Fenchel transform to manage the curvature anomalies in the small systems of
PEO. By this method, the isotensional Gibbs free energy are obtained from sim-
ulations in the isometric ensemble in such a way that the states characterized by
this free energy are unique. This is of general applicability, and reduces to the
usual Legendre transform for larger systems where the free energy is differentiable
and convex. Removing these limitations opens up for wider applications of the
established framework of thermodynamics.

Moving on to the more applied case of cellulose dissolution, we find that our
simulations indicate that additional external forces are required to dissolve bundles
of naturally occurring structures of cellulose. This is consistent with experimental
observations. In general, the behaviour we observe are in line with current exper-
imental opinion. We find that in the mixture solvent, the urea intercalates into
the bundles, increasing their volume significantly. For smaller bundles, we find
that sheets of cellulose are stable in the mixture solvent, but in pure water they
immediately collapse into bundles. This is believed to be caused by hydropho-
bic interactions between cellulose chains. When we add periodic external forces
to mimic stirring or agitation of the solvent-cellulose mixture, we see that the
bundles are being dissolved. We find that the cellulose dissolves more readily in
the mixture solvent than in pure water, which is consistent with experimental
results. In the water solvent, the dissolution is incomplete. Under boundary con-
ditions that are likely more representative of longer cellulose bundles, they tend
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to leave sheets of cellulose that are bound together with hydrophobic interactions.
This is a further evidence of the stabilizing effect of the urea molecules. Qualita-
tively, our findings are consistent with the experimental results that the NaOH and
urea solvent is able to completely dissolve cellulose under experimental conditions
when water only partially dissolves cellulose, except in the case of small degree
of polymerization. The different behaviour of water and solvent is likely related
to cellulose-cellulose hydrophobic interactions, which appear to be more stable in
pure water than in the mixture solvent, where urea is absorbed into the bundles.
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Stretching and breaking of PEO nanofibres. A
classical force field and ab initio simulation study

Eivind Bering *a and Astrid S. de Wijn b

The burgeoning development of nanotechnology is allowing us to construct more and more nano-scale

systems in the real world that used to only exist in computer simulations. Among them, nanofibres made of

only a few aligned polymeric chains in particular might soon have important roles in nanofabrications as

well as in nanomedicine. In this work, we present a broad exploration by computer simulations of elastic

and inelastic properties of polyethylene-oxide (PEO) nanofibres under load. We cover the full range from

unloaded fibres up to their breaking point, focusing on all features that arise from chain–chain interactions

and collective behaviour of the chains. We employ both molecular dynamics (MD) simulations and density

functional theory (DF). The classical force field is represented by a minimal reactive force field model,

allowing for the breaking of covalent bonds. Density functional (DF) computations provide a benchmark to

gauge and validate the empirical force field approach, and offer an intriguing view of the bundle chemical

evolution after breaking. Force-field based MD is employed for the systematic investigation of bundles of

up to 24 chains, and for a single bundle of 100 chains. Low-temperature results for bundles under

moderate loading provide a size-dependent sequence of cross-sections, structures, cohesive energies and

elastic properties. A remarkably high Young’s modulus on the order of 100 GPa was estimated with DF and

MD, explained by the semi-crystalline state of the fibres giving mechanical properties comparable to those

of carbon nanotubes and of graphene. Breaking is investigated by simulations with constant strain rate or

constant stress. The bundle breaks whenever the potential energy is raised above its metastability range,

but also below that limit due to creep activated by thermal fluctuations. A Kramer’s-type approximation for

the rate of chain breaking is proposed and compared to simulation data.

1 Introduction

Polymers underlie a vast variety of industrial applications.1

They also represent an essential ingredient of life, since pro-
teins, nucleic acids and polysaccharides consist of polymeric
molecules.2 The mechanical properties of polymers play an
important role in their function, in both the man-made
and natural context.3 Experimental developments in nano-
technology and biophysics as well as the overwhelming growth
of computer power are making it feasible to investigate the
mechanical properties of polymer fibres down to the molecular
and atomistic scale.

Experimental measurements at the nano scale have been focused
very heavily on the single molecule limit, using vibrational spectro-
scopy, atomic force microscopy and optical tweezers to determine
the strain–stress relation in organic polymers and in biopolymers.4,5

Measurements provide elastic properties and limiting resistance

that can be compared with state of the art ab initio
computations,6 but also highlight the difference with the same
properties measured for macroscopic samples of the same
material. In between the single molecule and the bulk are
different structures and length scales that play a big role in this
difference. This range of multiple chains together evokes the
image of rope or yarn, which is often plied, consisting of
macroscopic fibres twisted together to increase the strength
and integrity of the final material. Similarly, the interaction
and collective behaviour of the molecules inside polymer
bundles play a crucial role in the mechanical properties of the
nanometric bundle. While these intermediate length scales have
not been studied nearly as much as the single-molecule case,
they are becoming experimentally accessible as well. Advanced
fabrication techniques such as electrospinning allow the routine
preparation of fibres of sub-mm length and diameter, reaching
down to the 10 nm range.7 This size still corresponds to
hundreds of polymer chains, leaving out a relatively wide range
that is currently accessible only to self-assembly, that, however,
is available only for selected, mainly biological, polymers.

From a theoretical point of view, bundles in this size range
are complex and therefore challenging. Important roles are
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played by chain–chain interactions, surface effects, entropy,
nonlinearities, and thermal fluctuations. At the same time, the
systems are so large as to be computationally expensive, yet too far
from the thermodynamic limit to allow for standard approaches
from statistical physics and thermodynamics. This regime of
nano-scale bundles of small numbers of molecules (as opposed
to single molecules8 or bulk9,10) has not been investigated
much theoretically.

In our computational study, we consider nanofibres of a simple
paradigmatic polymer, i.e., polyethylene oxide (PEO), made of nano-
metric bundles, stretched between two rigid, planar clamps. PEO
(also referred to as polyethylene glycol or PEG) has a wide range of
applications,11 and typing ‘‘polyethylene glycol’’ in an internet search
engine in October 2019 produces about six million hits. It has
been studied extensively experimentally.5,12 In our simulations,
we focus on the elastic and inelastic response of these nano-
fibres to tensile load, covering the creep regime and up to their
limiting resistance and chemistry of breaking.

Basic bonding and elastic properties of very thin samples are
analysed by density-functional (DF) simulations. This approach
provides quantitative and predictive information on the inter-
play of different deformation modes such as torsion, bending
and stretching along the chain, on the role of electron orbitals
and covalent bonds in determining the chain breaking mecha-
nism, deformation under stretching, and the re-bonding of
chains after breaking.

We study somewhat larger bundles using a reactive classical
force field, stretching them until they break. The stretched
bundles exhibit a complex structure in the lateral direction,
showing solid-like structures. In addition, we show that there
are more complex structural effects in 3D, related to the helicity
of the chains. The mechanical properties depend nontrivially on
the number of chains in the bundle. Finally, we also investigate
the thermal effects on the structure and breaking of bundles. We
show, among other things, that imperfections in the structure
impact on the mechanical properties. The combination of
chemical detail and accuracy provided by DF with the computa-
tional efficiency, and rigorous statistical mechanics framework
provided by MD simulation offers a comprehensive view of a
complex phenomenon such as creep in polymers.13,14

2 Method

We perform molecular dynamics (MD) simulations of stretching of
a nanofibre of poly-ethylene oxide (PEO) composed of N molecular
chains on the form CH3–[O–CH2–CH2]n–O–CH3 with n = 33.

In our study, a tensile load or strain is applied to the
PEO fibre through planar clamps. These clamps consist of a
geometrical constraint on one of the coordinates, here z, of the
terminations. The position of the carbon atoms belonging to
the two terminal methyl groups are constrained to lay in the
plane defining the clamps. The junction of chain and clamp
can move along the plane of the clamp, hence tension com-
bines with inter-chain cohesion to mimic lateral compression
of the fibre. The simulations are carried out using the free and

open-source LAMMPS Molecular Dynamics Simulator.15 A sketch
of this model is shown in Fig. 1.

2.1 Classical simulations

The polymeric PEO chains are described with a united atom
model where each carbon is grouped with its bonded hydrogen
atoms to form a united atom. It has been shown that this
united-atom representation provides results in reasonable
agreement with available experimental data at lower computa-
tional cost.16 The basic force field we use has a functional form
that resembles the OPLS model,17 with some important dis-
tinctions. The potential energy surface is dividend into bonded
and non-bonded parts,

U({Ri, i = 1, N}) = Ubond({Ri, i = 1, N}) + Unon-bond({Ri, i = 1, N}),
(1)

where Ri is the position of the i-th atom. The non-bonded part
accounts for Coulomb interaction, short range repulsion, and
dispersion interactions. The latter two are described by a
Lennard-Jones pair potential, so that

Unon-bond({Ri, i = 1, N}) = UC({Ri}) + ULJ({Ri}), (2)

where

UC Rif gð Þ ¼ ke
X0
iaj

qiqj

Ri � Rj

�� �� (3)

and

ULJ Rif gð Þ ¼ 4
X0
iaj

eij
sij

Ri � Rj

�� ��
 !12

� sij
Ri � Rj

�� ��
 !6

2
4

3
5; (4)

where ke is the Coulomb constant, {qi} are atomic charges, sij

and eij are the length and energy scales of the LJ potential. The
prime on each sum indicates that pairs of atoms separated by
one, two, or three consecutive bonds are excluded. This is the
typical CHARMM convention.18 The interaction energy between
two dissimilar non-bonded atoms is estimated by the Lorentz–
Berthelot combination rules, i.e. sij ¼

sii þ sjj
2

and eij ¼
ffiffiffiffiffiffiffiffiffi
eiiejj
p

.19

The bonded interaction consist of stretching, bending and
torsional contributions

Ubond({Ri, i = 1, N}) = Ustr({Ri}) + Ubend({Ri}) + Utors({Ri}).
(5)

where each term is given by a quadratic function of the deviation
of bond lengths and distances from their equilibrium value.

While a conventional quadratic bond stretching potential
provides a fair description of the low energy portion of the
system potential energy surface, it does not account for the
anharmonicity of real bonds under high stress, and in parti-
cular it does not allow for bond breaking, which is what we are
concerned with in this work. In our minimal reactive force

Fig. 1 A snapshot of a bundle with three chains.
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field, we therefore replace the conventional quadratic form of
standard bond stretching potential with a Morse potential

Ustr({Ri, i = 1, N}) = Dij[1 � e�aij(rij�%rij)]2, (6)

which saturates to a finite value at large separations. Here Dij is
the dissociation energy, %rij is the equilibrium bond distance and
aij gives the width of the potential. If the bond length reaches a
certain cut-off distance the bond is permanently removed. For
these simulations a cut-off distance of 4 Å was used. For the
C–C bond, this effectively reduces the dissociation energy
by 2%. As is conventional, we do not take into account the zero
point energy of the vibrational levels of around 4 kJ mol�1. The
required parameters for the dissociation energy Dij are obtained
from density functional computations of the same bond
breaking,20 and the parameters for aij are found by requiring
the Morse potential to have the same curvature in the minimum

as the harmonic bond, i.e. aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks

ij

.
2Dij

r
, where K s

ij is the force

constant in the harmonic potential

Uharmonic Rif gð Þ ¼ 1

2

X
fijg

Ks
ij rij � �rij
� �2

: (7)

The stress on end-bonds joining chains to the clamps is
enhanced by inertia effects. To avoid their preferential breaking,
these bonds are modeled with the harmonic potential. Our
model covers only the C–C and C–O bond breaking events of
interest for our study. Bond-order force fields such as ReaxFF21

could provide a more comprehensive view. However, this simple
reactive force-field suffices for our purposes.

The potentials for the bending and torsion read

Ubend Rif gð Þ ¼ 1

2

X
fijkg

Kb
ijk yijk � �yijk
� �2

(8)

and

Utors Rif gð Þ ¼
X
fijklg

X
fcg

K t;c
ijkl cos fijkl

� �h ic�1
; (9)

where i, j, k and l are atoms joined by consecutive covalent bonds,
Kb

ijk and Kt
ijkl are force constants of bending and torsion energy

contributions and �yijk are equilibrium angles. These are chosen to
reproduce molecular properties measured by spectroscopy or
computed by ab initio methods. Note that the sum over the
torsional coefficients includes every possible dihedral. Moreover,
bending and torsion terms are not removed whenever a bond
breaks. This introduces a slight artifact into the potential energy
surface, whose elimination would require recoding the computa-
tion of the angular part of energy and forces.

This united atom force field parameterization is taken from
van Zon et al.,22 based on a modification of the explicit atom
force field of Neyertz et al.23 The set of parameters used in our
simulations is reported in Tables 1 and 2. The time step used in
the simulations is 1 fs.

The initial configuration of the bundles is generated by
placing the end particles randomly within circular cross sections
of area of 16 Å2 per chain, and the rest of the beads in chain are

placed at equidistant spacing in the z-direction with a random
component in the xy-plane.

From the beginning of the simulation the fibers are stretched
between the two clamps. This is somewhat artificial, since
polymer chains at low strain tend to adopt a (nearly)-Gaussian
coil configuration, however it might correspond well to stretching
experiments using tweezers or AFM.

From these initial configurations the systems are subjected
to simulated annealing to reach low-energy structures closer to
equilibrium and what one would expect for experimental samples.24

During this process the Morse potential for the bond stretching is
temporarily replaced by the harmonic potential, and the samples
are heated up to about 1000 K before the temperature is gradually
decreased to the desired temperature during 1 ns while keeping
the force on the ends fixed at 1 nN per chain.

When the molecules are being stretched out, work is done
and energy is added to the system through the end-particles. For
this reason, it is necessary to use a thermostat that acts locally,
and does not regulate the temperature uniformly. The Langevin
thermostat is thus the preferred choice rather than the more
commonly used Nosé–Hoover. The parameter for the relaxation
time in the Langevin thermostat was set to 1 ps.

We stretch the bundles either with constant strain rate, or
constant force, corresponding to the experimental conditions
of constant strain and constant stress measurements. In the
constant strain rate simulations, we increase the separation
between the clamps at a constant velocity. In the constant force
simulations, the position of the clamps is adjusted to keep the
force on the fibre constant at a pre-assigned value. In the
simulations with constant strain rate, the force that was applied
to a chain before it breaks does not get redistributed over the
other chains. This allows us to isolate the interaction between the
chains from the interaction mediated by the terminals, which cloud
these effects in a system with more realistic boundary conditions.

Table 1 Force field parameters for the stretching, bending and for the
non-bonded interaction16 with disassociation energies20

Bonds Ks
ij [kJ (mol Å2)�1] Dij [kJ mol�1] %rij [Å]

C–C 2587.4 370.8 1.54
C–O 3094.0 344.5 1.43

Bends Kb
ijk [kJ mol�1] �yijk [Å]

O–C–C 727.7 110.0
C–O–C 1070.1 112.0

LJ-interaction sii [Å] eii [kJ mol�1] qi [qe]

CH3 3.699 1.047 0.174
CH2 3.624 0.831 0.174
O 3.034 0.401 �0.348

Table 2 Force field parameters for the torsion16

Torsion
[kJ mol�1] Kt,0

ijk Kt,1
ijk Kt,2

ijk Kt,3
ijk Kt,4

ijk Kt,5
ijk Kt,6

ijk

O–C–C–O 2.211 15.194 17.844 �32.460 �13.871 �1.189 12.322
C–C–C–O 5.183 5.610 6.272 �15.428 �0.678 �4.568 3.567
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The constant stress condition, on the other hand, represents a
molecular dynamics realisation of the well known fibre bundle
model (FBM) with global redistribution of load upon chain
breaking.25 The two modes of operation with constant stress and
constant strain rate have been carried out with the LAMMPS
options aveforce and move respectively. In one particular sample,
torque was added on the atoms on the terminations in the lateral
direction with the option addtorque. The molecular dynamics
simulations have been carried out with finite boundary conditions
in all directions.

For the analysis of trajectories, chains are identified as
neighbours if the distance between the endpoints on the
terminals are less than 1.5 times the estimated bulk separation
of the chains, estimated from simulations with 100 chains.
Chains with less than six neighbours are counted as part of the
contour. Both criteria were validated by visual inspection of the
cross sections for a number of bundles.

2.2 Ab initio simulations

Qualitative and quantitative aspects of the breaking of PEO
chains at T = 0 K have been investigated by density functional
(DF) computations. We used the plane wave-pseudopotential
formulation of DF theory implemented in CPMD ab initio
simulation package,26,27 with the exchange–correlation energy
given by the generalised gradient approximation of Perdew,
Burke and Ernzerhof (PBE).28

The system is enclosed in an orthorhombic simulation cell with
periodic boundary conditions. The plane wave basis of reciprocal
lattice vectors is included up to a kinetic energy cut-off of 120 Ry,
with the sampling of the Brillouin zone limited to the G-point. This
last approximation is justified by the large size of the simulation
box, and by the insulating character of the material. Only valence
states are included in the computation, and the core valence
electron interaction is represented by ab initio norm conserving
pseudopotentials of the Troullier–Martins type.29 Dispersion (van
der Waals) interactions are essential to describe lateral chain–
chain cohesion. In the present study they are accounted for
using the semi-empirical approach by Grimme.30

In all samples, chains extended along the entire length Lz of
the longest side of the periodic orthorhombic simulation cell to
mimic an infinitely long polymeric fibre. The periodicity along
x and y at Lx = Ly = 14.4 Å has been set to keep the lateral
interaction of periodic replicas low. Stretching is imposed by
increasing Lz beyond its initial value of B3.2 Å per monomer,
with the T = 0 K condition enforced by minimizing the potential
energy by means of quenched MD. Additional DF computations
have been carried out on crystalline PEO starting from the
experimental structure and unit cell of ref. 31.

Most computations have been carried out in the spin-
compensated picture. Since this might break down in proximity of
the bond breaking, a few test computations have been carried out
considering unconstrained spin-orbitals, including the possibility of
bare spin polarisation in an open shell electronic structure. These
tests did not provide any evidence of local spin-uncompensated
domain, hence the results reported in the following section all
refer to spin compensated computations.

3 Results
3.1 Chemistry of bundle breaking and ab initio simulations

We begin by investigating in detail the chemistry of bundle
breaking, which is however only possible for the smallest bundles,
as it requires ab initio simulations. Hence, density functional
simulations of stretching and breaking of chains at T = 0 K have
been carried out on samples made of one and two PEO chains,
each chain consisting of 10 –(CH2)2O– monomers.

3.1.1 Energy versus strain relation. The potential energy
per monomer upon stretching a single PEO chain is shown in
Fig. 2. A fit of the computational data using the anharmonic
functional form:

V(e) = V0 + ae2 + be3 + de4 (10)

with a 4 0, where the strain per monomer e = (Lz � L0
z)/L0

z

provides both an estimate of the minimum energy periodicity
L0

z = 3.46 � 0.05 Å and an estimate of the potential energy V0 at
periodicity L0

z. The relatively large uncertainty in L0
z is due to a

number of reasons. At low strain the potential energy is con-
trolled primarily by weak torsional restoring forces, the energy
optimization with respect to the atomic coordinates is slow, the
computed potential energy shows small amplitude fluctuations
around the minimum, and even the anharmonic fit is not very
accurate at negative strain.

To translate V0 into a binding energy we also computed the
ground state energy of the PEO monomer (CH2)2O (see Fig. 2).
Hence, the computed cohesive energy per monomer Vc =
103 kJ mol�1 in the single chain refers to the ring-opening
polymerisation reaction from the ethylene oxide monomer,
which is the simplest epoxide ether. Each atom has the same
number and type of bonds in the monomer and in the chain,
and the relatively low Vc represents the energy gain in releasing
the large strain that is apparent in the monomer ground state
geometry.

With length increasing beyond L0
z, the fit of eqn (10) becomes

accurate, and faithfully reproduces the system potential energy up
to e = 0.28. We observe that at low strain e the dependence of
potential energy on e is remarkably anharmonic, as reflected in
the behaviour of dV(e)/de reported in Fig. 2, which clearly deviates
from Hooke’s law in proximity of e = 0. This is apparently due to
the interplay of torsion, bending and stretching energies, whose
relative size and role changes progressively with increasing strain.

A linear regime in dV(e)/de emerges at intermediate strain
0.04 r er 0.15. However, this linear term does not go through
the origin as in Hooke’s law, but it is given by dV(e)/de =
k(L0

z)2(e � e0), with k = 653 kJ (mol Å2)�1 and e0 B 0.02. An
effective Young’s modulus %Y(e) can be estimated from the
second derivative d2V(e)/de2, that represents an effective strain
dependent force constant k(e). To turn k(e) into %Y(e), we need to
attribute a nominal cross section S to the single chain. This can
be done using experimental data on the chain–chain distance
(d = 4.3 Å) in crystal PEO.31 Assuming hexagonal cross sections,
one obtains S = 16 Å2. Since the force constant depends on e,
also %Y(e) is a function of strain, growing from %Y(0) = 82 GPa at
L0

z to %Y(e = 0.1) = 246 GPa at Lz = 3.8 Å per monomer. Both these
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values are large, with the high-strain value being comparable to
steel. Even the highest value can be understood by considering
that it refers to the stage of straining dominated by the
stretching of C–C and C–O covalent bonds.

It is worth emphasising that this high estimate of the
Young’s modulus is not directly related to the curvature of

the potential energy around its minimum, but corresponds to a
high load elastic regime in which a combination of bending
and especially stretching energies provide the restoring force
opposing further elongation of the chain.

In addition, the stretching process in aligned chains does
not correspond to the elastic deformation of a macroscopic
PEO sample, in which the averaging over glassy domain and
crystal grains of different orientation give origin to a linear
(elastic) regime at low strain, of Young’s modulus and elastic
constants much reduced with respect to the values computed
for oriented, defect-free chains.

3.1.2 Structural changes upon stretching. The non-linear
dependence of dV(e)/de on load is reflected in the strain
dependence of the C–C and C–O bond lengths, reported in
Fig. 3, of bending angles, shown in Fig. 4, and of dihedral
angles shown in Fig. 5. The plots confirm that, as expected,
dihedral angles are the first to manifest sizable strain, followed
by bending, and stretching in the last stage. The MD results for

Fig. 2 Top: The potential energy of one and two PEO chains as a function
of the strain e = (Lz� L0

z)/L0
z , where Lz is the periodic length corresponding to

one PEO monomer per chain and L0
z is the deviation from equilibrium at L0

z =
3.46 � 0.05 Å for the single chain; L0

z = 3.26 � 0.05 Å for the double chain;
L0

z = 3.27 � 0.05 Å for the crystal sample. The same quantity is reported for
the stretching of the PEO crystal cell along the direction of chains,
representing the limit of an infinitely extended bundle. Dots: Simulation
results (DF); full lines: interpolation by the anharmonic fit in eqn (10). Middle:
The stress as a function of the strain, computed by the anharmonic fit in
eqn (10). All energies refer to the single monomer. Bottom: The effective
Young’s modulus, assuming a cross sectional area of S = 16 Å2 per chain.

Fig. 3 Bond distances during the stretching of a single PEO chain computed
by GGA-DFT and MD.

Fig. 4 Bending angles during the stretching of a single PEO chain
computed by GGA-DFT and MD.
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the bond lengths match the DFT results over the entire range.
The angles are shifted by about 3 to 4 degrees in the range we
are interested in but otherwise also show similar behaviour as
well. Only the torsional angles show significant quantitative
deviation between MD and DFT calculations. This could be
related to a shift in the hybridisation of the C atoms (see
below), which is not captured in the classical force field.
Regardless, the high-strain behaviour is dominated by bending
and stretching, and therefore this difference will likely not have
a qualitative effect on the behaviour at high strain, which is
what we focus on in this work.

Deviation of the applied force from the linear behaviour at
e4 0.19 corresponds to the onset of high-strain anharmonicity,
which dominates the system behaviour in the last stages of
stretching. The applied force reaches its maximum at e = 0.22.
Beyond that length, the force decreases with increasing strain,
and the system would be unstable under constant stress
conditions. If subjected to thermal fluctuations at non-zero
temperature, it would break even earlier. The clearest signature
of breaking appears in the strain dependence of bond lengths.
More in detail, the strain dependence of C–C and C–O is non-
monotonic at first, then both bond lengths increase linearly for
0.04 r e r 0.2, with a relative variation larger for the C–C than
for the C–O bond length. Non-linearity in the strain depen-
dence of the bond lengths appears at e B 0.23. Above this
length the slope of C–C with strain turns upwards, indicating
the incipient failing of C–C bonds. Anharmonicity of the
restoring force and non-linearity of bond lengths versus strain
are fully developed at e B 0.26, an elongation at which the
single chain appears broken at several C–C bonds even by
visual inspection of simulation snapshots. Remarkably, the
trend shown by C–O over the same range of global strain is
opposite, since C–O saturates at a fairly high value while C–C
increases rapidly.

An interesting view of the same breaking process is obtained
by looking at the standard deviation along the chain of individual
bond lengths, shown in the error bars of Fig. 3. The minimisation
of the chain energy in the anharmonic regime at low strain

makes bonds slightly inequivalent from each other despite
connecting the same type of atom. Thus, the standard deviation
s of chemically equivalent bond lengths is not negligible at low
strain. Then, s decreases with increasing strain, since restoring
forces become stronger, making bond lengths better defined.
Eventually, s shows a rapid and drastic increase above e = 0.23,
providing the most unambiguous sign of chain breaking.

The spread of C–C bond lengths leading to breaking could
be reflected in spectroscopic data. To highlight this effect, we
computed by DFT the vibrational density of states of the single
PEO chain at three different values of the longitudinal periodi-
city, corresponding to e = 0, e = 0.16 and e = and e = 0.25. At the
near-equilibrium periodicity of e = 0, the vibrational density of
states shows the typical features of similar organic systems,
with a high frequency band at 2800 r o r 3100 cm�1 due to
the C–H bond stretching, an intermediate band due to bond
bending at 1200 r or 1600 cm�1, and a broad background of
modes at 0 r o r 1200 cm�1, of mixed character but consisting
primarily of bond-torsion modes (see Fig. 6). With increasing
strain, the C–H stretching band moves to somewhat higher
frequency and splits into a symmetric (at the highest frequency)
and an anti-symmetric (at slightly lower frequency) C–H stretching.
Bending modes move to slightly lower frequency, while the range
at or 1200 cm�1 shows the major and least predictable changes,
that could easily be detected by spectroscopy and could be used to
monitor the system evolution up to near breaking conditions. The
chain breaking itself, taking place at e = 0.23, is likely to be a stage
too short to be characterised by spectroscopy. Moreover, the
changes in the vibrational DOS upon breaking are less easy to
predict and to interpret, since new molecular species appear in the
system, possibly spin-unpaired radicals, not easily accounted for
even at the DF-level.

Notice that with increasing strain bending angles tend to
1201 and dihedral angles tend to 1801, values that characterise
organic structures of sp2 bonding. Since bonding angles
modulate the size of Hamiltonian matrix elements, their corre-
spondence with the sp2 geometry suggests that the sp3 bonding
of the unstrained chain turns to sp2 at high strain. The change

Fig. 5 Torsional angles during the stretching of a single PEO chain
computed by GGA-DFT and MD.

Fig. 6 Comparison of the vibrational density of states (V-DOS) computed
by DF at two different values of the longitudinal periodicity: e = 0.00 (blue
line) and e = 0.16 (red line).
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of electronic structure with increasing strain is supported by
the computation of atomic charges, evaluated by the electro-
static potential (ESP) method.32 The results show an enhance-
ment of atomic charges with increasing strain, followed by a
sudden drop at breaking. These effects are not accounted for by
standard reactive classical force fields, such as ReaxFF.21

As already stated, the single PEO chain does not collapse
upon crossing the length corresponding to the maximum
restoring force. In other words, the chain does not snap during
simulated breaking, because of the constant strain condition
enforced by these DF simulations, and of the absence of lateral
perturbations from thermal fluctuations that could undermine
the strained geometry in its metastable regime. Moreover, no
simple healing process is available to the single chain, which
splits in a collection of geometrically equivalent strained epoxy
units. In reality, it might be practically impossible to maintain
(meta)-stability beyond the linear stages, at e 4 0.19.

3.1.3 The two-chains system. To assess the role of chain–
chain interactions the simulation of stretching at T = 0 K has
been repeated for a sample consisting of two chains. The effect
of these interactions turns out to be sizable, and, surprisingly,
it has the effect of decreasing the strength of the bundle under
tensile load.

Also in this case, strain has been imposed by changing the
periodicity of the unit cell containing 2� 10 PEO monomers. As
before, for any given periodicity, the potential energy V(e) has
been carefully optimised with respect to the atomic positions
by quenched molecular dynamics, and the resulting V(e) has
been fitted by the same expression of eqn (10). The length
of minimum potential energy turns out to be L0

z = 3.26 Å,
i.e., nearly 0.2 Å shorter than for a single chain. This could be
due to the effect of the surface tension (surface energy, at T = 0 K)
per unit length of the bundle, which is stronger for two chains
than for one, and tends to reduce the surface area and thus the
length of the system.

Comparison of the ground state energy of the single and
double PEO chain computed at the DF level allows us to estimate
the chain–chain cohesive energy of two chains at 1.2 kJ mol�1

per PEO monomer. A similar comparison for the crystal sample
gives a cohesive energy of 13.1 kJ mol�1 per PEO monomer.
We emphasise that this cohesive energy arises from the chain–
chain interaction, due to dispersion energy only, and without any
reference to the energy gained in forming chains from the epoxide
monomer. With increasing strain the evolution of V(e) (shown in
Fig. 2) qualitatively follows the same behaviour of the one-chain
case. The computation of dihedral angles, bending angles and
bond stretching shows that also these structural parameters follow
the same trends in both cases, consisting at first in the deformation
of dihedral angles, then of bending angles and finally of stretching
bond distances. A quantitative comparison is not easy, because of
the different reference length L0

z of the two samples. It is apparent,
however, that the two-chains system breaks at a shorter length and
at a lower applied force per chain than in the single chain case. In
the case of two chains, the apparent Young’s modulus computed
from d2V(e)/de2 depends on strain, starting from about 2 GPa at low
strain, and reaching 183 GPa at high strain.

Analysis of configurations shows that the monomers in the
two chains never really align in the lateral direction, confirming
the sizable role of chain–chain interactions. These interactions
are apparently amplified by the helicity of each PEO chain,
adding a longitudinal modulation of short-range repulsive
interactions in addition to the attractive dispersion forces.
The longitudinal corrugation in the interaction energy, in parti-
cular, gives rise to multiple local minima in the potential energy,
that make it difficult to unambiguously identify the ground state
of bundles.

3.1.4 Chemical rebonding after chain breaking. Ab initio
computations offer a glimpse of the events following the
breaking of individual chains in the two-chains system. We
find that at first, the separation of one chain into nearly
equivalent segments is observed, terminated by planar OCH2

groups, in which C is in the sp2 electronic configuration. Then,
interaction with the neighbouring chain causes the collapse of
the bundle, with a short sequence of chemical changes that
carry out the partial healing of the broken two-chains bundle as
displayed in Fig. 7. At long times, the healing results in finite
chains terminated by OH on one side, and planar OCH2 on the
other side, with the release of a few epoxide ether monomers.
The post-breaking evolution given by DF computations might
be affected by limitations of the approximate DF approach in
tackling open shell species, and, in any case, it is not correctly
reproduced by the classical force field model, even at the
qualitative level. Perhaps it might be described by some highly
sophisticated reactive force field models, that, however, require
heavy stages of parametrisation.

3.1.5 Stretching crystalline PEO. To assess the effect of
helicity of PEO chains and of lateral chain–chain interactions,
simulations have been carried out for the experimental crystal
structure of PEO, in which chains are closely packed. In our
study, the periodic system is seen as the limiting case of thick
bundles. The apparent effect of the condensed environment is
to give a complex unit cell, containing four chains and 28
monomers in total, with an average equilibrium length per
monomer of 3.27 Å.

Especially at low strain, the V(Lz) curve (see. Fig. 2) for the
extended system shows a fine structure, apparently due to
the lateral interactions, creating conditions of local minima
and sometimes preventing a complete energy optimisation.
Nevertheless, the energy increase with increasing periodicity
at low strain is more parabolic than in the single and double
chain case, since in the condensed phase it is more difficult to
decouple torsion, bending and stretching than in the few-chain

Fig. 7 Partial healing of the broken two-chain bundle.
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samples. As a result, the apparent Young’s modulus %Y com-
puted from the strain-dependent force constant is somewhat
more constant than in the one- and two-chain cases, varying
from %Y = 75 GPa at low strain to %Y = 190 GPa at intermediate
strain. The bundle breaks at shorter periodicity per monomer
(Lz = 3.7 Å) than the one and two-chain system. Also in this case,
the breaking of one chain destabilises neighboring chains,
giving rise to chemical reactions. The healing of broken bonds
is complete, giving rise to a set of loops breaking the contin-
uous connection between the two sides of the broken bundle,
without leaving behind any radical species as shown in Fig. 8.

As a result of the healing process, the final potential energy
per monomer is only 3.2 kJ mol�1 higher than the ground state
energy. The low energy of the final state emphasises the fact
that bundles become metastable very soon upon stretching,
and only the kinetic barrier encountered by the healing process
prevents the breaking at much lower strains and stresses than
found in the simulation. The argument is even more compelling
for thick bundles, in which healing might occur by reacting with
neighboring chains, and for long bundles, since the energy
required for a given relative stretching is extensive, and the
energy required to break a chain is a constant. There are
obviously many things in the chemistry of the chains that are
not captured by the classical force field. The most important
among them is the fast chemical rebonding of chains following
their breaking under strain, effectively removing all dangling
bonds from the system. However, from comparing the behaviour
of the bond stretching and bending at high strain, we conclude
that the classical force field captures the behaviour of the chain
under high strain sufficiently well up to the breaking point.

3.2 Stretched bundles with N 4 2 chains

We continue by investigating the structural properties of
stretched bundles of up to 24 chains, now using molecular-
dynamics simulations and potential energy minimisation based
on the empirical force field described above. At any non-vanishing
temperature, entropy effects turn unconstrained chains into
coils, whose radius scales like the square root of the number of
monomers N. In addition, there are finite-size effects and bead–
bead, i.e. non-bonded, interactions which cause deviations
from the ideal scaling. In our systems, the clamps and the

tension applied to the bundle change the picture qualitatively
and quantitatively. An example of a stretched bundle at finite
temperature is shown in Fig. 1.

3.2.1 Structure at low and vanishing temperature. To give a
first characterisation of structural, cohesive and elastic proper-
ties of PEO bundles, and to provide a term of comparison for
the results of MD simulations to the DF simulations, we first
investigate the bundles in the limit of very low temperature and
under moderate tensile load (k = 1 nN per chain), an order of
magnitude below the breaking limit. At low temperature T this
moderate tension is sufficient to force the bundle’s chains into
approximatively linear configurations. Once chains adopt the
linear configuration, the bundle structure is determined mainly
by the geometry of its cross section, that can be visualised
as a 2D cluster, in which the interaction among particles is
represented by the integral along z of the lateral chain–chain
potential energy. The full 3D system, however, is more complex
due to the nonisotropic lateral interactions.

To approach the T = 0 K condition, the energy of N-chain
bundles is first minimised with respect to all coordinates
(at fixed applied force) by short annealing runs of 1 ns. These
cannot guarantee that the simulation will reach the ground
state of the system, but the relatively ordered geometry of
samples up to at least room temperature suggests that the
potential-energy landscape consists of only a few major valleys,
and the geometries determined by short annealings are likely
to be representative of low temperature structures, providing
information also on defects and isomers.

The sequence of clusters obtained in this way is reported in
Fig. 9. As already stated, in this figure all bundles are under a
1 nN per chain tensile load. Once again, as expected, the
compact hexagonal motif dominates the structure of the 2D
clusters. However, non optimal geometries arise because of short
annealing and incomplete optimisation. Moreover and more
importantly, both unexpected 2D geometries and longitudinal
variations in the cross section arise from the spontaneous
helicity of PEO chains, which adds a small but complex pertur-
bation to the lateral interactions.

An example of nearly degenerate isomers in the 2D cluster
representation, corresponding to different bundle polymorphs,
is provided by the structure of the 20-chain bundle (see Fig. 10),
found in several different configurations as a result of succes-
sive fast optimisation cycles. The cross section may also change
along z, when one or more chains are not quite straight, but
show a marked winding around some other chain as seen in
Fig. 10(b).

Fig. 11 shows the average force–elongation curves for the
three high-energy isomers shown in Fig. 10(a)–(c), and for
the three low-energy isomers shown in Fig. 10(d)–(f). The
initial slope is the same, but the high-energy isomers are able
to sustain a little more force than the low-energy ones. This
observation is reminiscent of mechanical hardening in metals.
However, the two effects are not obviously related, since
hardening in metals is caused by defects blocking the move-
ment of dislocations, while in our system dislocation dynamics
does not play an obvious role in the yield. It is thus not clear

Fig. 8 Final state upon stretching a crystal sample up to the breaking
point. The system has been rotated along the long axis to expose chains
that otherwise are partially hidden in the trapezoidal cross section. Healing
takes place by connecting neighboring chains forming loops returning to a
single clamp. One of the chains appears to be broken because of periodic
boundary conditions.
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what is the origin of this effect, whose magnitude, in any case,
is apparently quite small.

The ideal, regular-looking cross-section is not always the one
with the lowest energy. In several cases, the atomistic bundles
of N chains adopt a cross-section different from the one in the
ideal sequence, contradicting the assumptions of cylindrically
symmetry and invariance along z. We found that this difference
is often not the result of incomplete optimisation of the
atomistic bundles, since preparing them according to the ideal

cylindrical cross section almost invariably results in a higher
potential energy. Structures of this type clearly point to the
effect of the PEO chain helicity on the geometry of bundles.

The plot of the cohesive energy per chain in the lowest
energy structure for each N displays the characteristic trend
found in the size dependence of cohesive energies for atomic
and molecular clusters. Cohesive energy increases rapidly at
first, and then saturates slowly to the cohesive energy per chain
of a hexagonal arrangement of linear and aligned chains. The
shortfall of cohesive energy at low N can be attributed to the
surface energy, whose fractional weight on the total cohesion is

highest for N = 1, and decreases as
ffiffiffiffi
N
p

with increasing size.
To leading order, the energy of the bundle can be estimated

from the volume and the surface area, i.e. the compact surface
delimiting the bundle. First, we quantify the surface area, or
equivalently, the perimeter of the 2D cluster. To this aim, we
attribute an hexagonal cross area to each chain in the bundle,
with an interchain distance d = 4.3 Å. Then, the perimeter CN

of the 2D cluster is determined by counting the number of
hexagon sides exposed to the vacuum. The size dependence of
the cohesive energy of the bundle is represented as:

Vc(N) = NV0 � sC (11)

where V0 and s represent the bulk energy per chain and the
surface energy, respectively, to be determined by fitting the
numerical values of the cohesive energy. Since, on average,
the contour length scales as C p N1/2, we recover the expected
scaling of the cohesive energy per chain:

VcðNÞ
N

¼ V0 � a
s

N1=2
(12)

where the numerical coefficient gives the (average) proportionality
of CN and N1/2.

Fig. 9 Cross sections of bundles of sizes from N = 4 to N = 24 at T = 0 K
with a constant force of 1 nN per chain.

Fig. 10 Isomers of the 2D cluster representing the structure of the
20-chain bundle at T = 400 K with a constant force of 1 nN per chain
obtained by equivalent optimisation cycles started from independent
configurations. The cohesive energy per chain associated with each
configuration averaged over 2 ns is given in the sub-caption. Figure (a)–(c)
represent low cohesive energy configurations, and (d)–(f) represent con-
figurations with high cohesive energy.
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Comparison of the computed Vc(N) with the result of the
smooth fit in eqn (12) shows a good match, as seen in Fig. 12.
The single sample with N = 100 had Vc/N = 760 kJ mol�1 after
1 ns of annealing, which is about 2% higher than the prediction
given by the fit for T = 300 K in eqn (12). To investigate the
impact of the annealing time, the annealing procedure was
repeated with an additional 2 ns of annealing time, which
increased the cohesive energy by about 3%. While longer
annealing times indeed results in lower energy structures,
1 ns is considered to give a reasonable balance of realism
and efficiency.

The N and
ffiffiffiffi
N
p

scaling of cohesive energy is less apparent in
the average bundle length L(N) measured by the separation of
the clamps and Young’s modulus at non-zero temperature, as
we will see in the next Section 3.2.2. In these cases, we see a
sequence of peaks and dips, that point to sizes whose packing
exposes an optimal or unfavored contour, respectively.

The single sample with N = 100 at T = 300 K had a length of
L = 114.6 Å after the first annealing run of 1 ns, and a length of
L = 114.7 Å after an additional annealing run of 2 ns, which is
about 0.2% lower than expected from the smaller systems.

At T = 0 K we determine the relation of length Lz and stress
by increasing Lz in regular steps, and minimizing the potential
energy at each step with respect to all internal degrees of
freedom. Stress k is computed from the forces on the terminals.
The Young’s modulus for the breaking of a single chain was
calculated from the slope of the beginning of the strain curve to
be 144 � 6 GPa, again assigning the chain a cross sectional area
of S = 16 Å2.

Breaking at T = 0 K takes place in a localised way, focusing
strain on a limited stretch of the chain when the system crosses
the stability boundary. At T = 0 K, the pictures of breaking
at constant stress or constant strain are equivalent. However,
these two modes of stretching differ in very important aspects
at non-zero T, because of the role of fluctuation and thermal
activation.

3.2.2 Nonzero temperature. At finite temperature, we use
the simulated annealing protocol described in Section 2 at the
desired temperature, to obtain equilibrium conditions at a
constant applied force per chain. Typical cross-sections of the
bundles obtained in this way are shown in Fig. 13. The figure
shows that the hexagonal structure observed at low tempera-
ture remains highly ordered even at high temperatures. When
the number of chains in a bundle has specific values (such as 3,
7, or 19), a shape of minimal contour forms with complete
shells. However, when the number of chains is not one of these
‘‘magic’’ numbers, then there are typically several possible
isomers appearing. Nevertheless, the hexagonal lattice struc-
ture usually remains. We have observed one special case, for
N = 22, where we have found a 7-fold symmetric bundle with
full shells. In extended 2D lattices, such defects have to be
coupled to a 5-fold symmetry defect, forming the two end
points of a dislocation line. In finite systems, one of the two
conjugated defects may be annihilated at the surface. Some-
times, but especially if we do not anneal the system and instead
run it at constant temperature, we find a more disordered state,
where the isomerisation changes along the length of the
bundle. We have also observed that isomerisation can also
change with time.

The lengths of the bundles at T = 300 and 400 K with a
constant applied force per chain of 1 nN is shown in Fig. 14. For
comparison, a single chain at T = 0 K had a significantly longer
length of 115.7 � 0.1 Å. The length depends only weakly on the
size of the bundle and levels off quickly for bundles consisting
of more than 20 chains. For small bundles, there is a clear
signature of the ‘‘magic’’ numbers at 3 and 7, but for larger
bundles this effect is smaller and washed out by statistical error
and thermal noise. Overall, the effect of the bundle size is
significant, but small. The cohesive energies show even less of
the structure (see Fig. 12). At this strain, the entropic effects are
small, which is evident from the weak temperature dependence
of both the average length and the Young’s modulus. The
general trend is the same as for the ab initio computations

Fig. 11 Force elongation curves averaged over the three high energy
configurations showed in Fig. 10(a)–(c) and for the low energy configura-
tions showed in Fig. 10(d)–(f).

Fig. 12 Computed cohesive energy per chain as a function of size N
at T = 0, 300, 400 K, with a fit by the smooth expression in eqn (12),
representing the interplay of bulk cohesion and surface energy.
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presented in Section 3.1 in that the equilibrium length is
shorter with increasing bundle size. This can be seen clearly
in Fig. 15, where the average length at which the first chain in
the bundle breaks is shown as a function of bundle size. For the
bundle with 100 chains at T = 300 K the first chain broke at
a length of L = 134.8 Å, in good agreement with the picture
from Fig. 15.

The force per chain as a function of strain is shown in Fig. 16
for a number of different-sized bundles at various temperatures.

For all sizes, there is an initial linear elastic regime. The force
remains almost linear in the strain until the first chain in the
bundle breaks. The Young’s modulus can be computed from
the slope of k(L) at low strain. Here it was estimated by linear
regression up to a strain of 0.05, about 30% of the strain at
which the first chain breaks. The resulting Young’s moduli are
presented Fig. 17. The modulus display no significant size
dependence for systems of size N 4 9, also the bundle of
100 chains at T = 300 K had a Young’s modulus of Y = 130 GPa.
Experiments with Linear PE also indicate that the Young’s
modulus to a good first approximation is independent of
the molecular weight, as the macroscopic deformation is the
dominant factor.33 In agreement with previous findings,34 one
can see that a decrease in temperature will lead to an increase
in the modulus.

The estimated modulus is high. The experimental values for
the Young’s modulus of bulk PEO is typically on the order of
0.1–20 MPa.35–37 Though the Young’s modulus and the tensile

Fig. 13 Cross sections of bundles of sizes from N = 4 to N = 24 at
T = 400 K with a constant force of 1 nN per chain.

Fig. 14 Average bundle length L(N) for 100 samples as a function of size N
with a constant force of 1 nN per chain at T = 300 K and T = 400 K.

Fig. 15 The average strain at which the first chain in the bundle breaks,
indicated as eb, for 100 samples at constant strain rate 0.8 m s�1 as a
function of size N at T = 300 and T = 400 K.
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strength of these amorphous samples are not determined by the
stretching of covalent bonds, but rather by weaker interactions.38

For the elastic properties of PEO along the chain axis, an
experimental value of 10 GPa has been reported,39 in well
agreement with computational results.9 The values we find
from our simulations for PEO are much higher, comparable
to the values for PE.40 Stretching of thermoplastic PE gives a
Young’s modulus on the order of 1 GPa,41 while experiments with
single crystals gives a modulus in the range 168–278 GPa,42,43

and even up to 370 GPa for low density films.39 Ab initio
computations of single chain PE gives a modulus between
300 and 500 GPa.10,34,44

We can understand this by considering that the stretching
constants of bulk PEO in experiments is strongly determined by
the structure. A major difference between PE and PEO is that
the latter is known to have a loosely coiled confirmation.9 The
high modulus and high strength found in fibers relies mainly
on high polymer chain orientation and extension, and poly-
mers with helical chain configuration exhibit a much lower
theoretical modulus.45 In our model the chains are extremely
extended and ordered, producing systems far from the com-
plexity of macroscopic samples. Our semi-crystalline fibers
resemble more closely the structure of PE, and thus display
similar mechanical properties.

Fig. 16 The force per chain during constant strain rate simulations at 0.8 m s�1 for system of bundles of 1–24 chains of at T = 300 K and T = 400 K. The
lower inset shows the breaking part zoomed in, with lines indicating when the first chain broke on average in bundles of size N = 24, labeled as eb. The
upper inlet shows single samples with bundles of size N = 24, and again the lines indicate when the first chain in the bundle breaks.

Fig. 17 The Young’s modulus of bundles of PEO with a constant strain
rate of 0.8 m s�1 as a function of size N at T = 300 and T = 400 K. The
Young’s modulus are estimated from the strain curves, with 100 samples
per system.
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3.3 Breaking

We now turn to the further stretching and finally breaking of
the larger bundles in the classical molecular-dynamics simula-
tions. We discuss here the results of simulations at a constant
strain rate, stretching out the bundles, until all the chains have
broken. Fig. 18 shows a sequence of snapshots of a bundle of 17
chains being stretched out and breaking. The computational
limiting resistance load kl was estimated from the average
curves in Fig. 16 to 30.5 � 0.1 GPa at 300 K 28.4 � 0.1 GPa at
400 K. For 0 K, kl was estimated to 36.9 � 0.3 GPa using the
same methodology with 10 samples of single chain bundles.

Because our simulations are at constant strain rate, the force that
was applied to a chain before it breaks does not get redistributed
over the other chains. This allows us to isolate the interaction
between the chains from the interaction mediated by the terminals,
which cloud these effects in a system with more realistic boundary
conditions. If there were no relevant interaction between the
chains, then each chain would break independently, and the
fraction of broken chains would not depend on the bundle size.
We observe only a small systematic size dependence.

There are several important further observations that can be
made regarding the dependence of breaking on temperature
and bundle size.

3.3.1 Thermally activated breaking. At higher temperature,
the chains are slightly shorter and the Young’s Modulus is lower,
in agreement with previous findings from DF simulations of
crystalline polyethylene.34 Also, chains break earlier and breaking
times follow a broader distribution. Ideally, neglecting the weak
lateral interaction, at T = 0 K, all chains break at the same length.

The breaking rate of chains from the simulations is shown
in Fig. 19. The spread of breaking times and earlier breaking
can both be understood from thermal activation. Before the
zero-temperature breaking point is reached, the chains can
break by thermal fluctuations. At higher temperature, there are
more and bigger thermal fluctuations, and hence the chains
may break more quickly. The activation free energy depends on
the strain. At low strain rates, it takes more time for thermal
fluctuations to overcome the higher barrier.

We can make some simple estimates of the thermally activated
breaking rate and dependence on strain rate and temperature. For
this purpose, we treat the chain as one-dimensional and assume
that the chain–chain interaction is negligible. We assume that
each breaking bond experiences a mean field response from the
rest of the chain equal to the average force in the chain, F0. The
total potential-energy landscape then consists of a linear term and
the energy of the bond. For small forces, there is a deep minimum
for the intact bond and an even deeper escape with a broken
bond, with a high barrier in between. For some critical force Fc

this minimum completely disappears at rc, and even at T = 0 K the
bond would break without any thermal activation. When a bond
breaks through thermal activation, it can be assumed to be close
to this point and thus F0 is close to Fc.

We expand the potential-energy landscape around the breaking
point rc to the third order, and locate the nearest maximum and
minimum at a distance close to the breaking point,

Dr ¼

ffiffiffiffiffiffiffiffi
DF
3C3

s
; (13)

Fig. 18 Snapshots of a bundle of 17 chains under a constant strain rate of
0.8 m s�1, stretching out and breaking at T = 400 K.

Fig. 19 The rate of chains breaking as a function of strain, for tempera-
tures T = 300 and T = 400 K averaged over bundles of size 16–24 chains
with 100 samples each. A fit using the expression for one-dimensional
thermally activated breaking, eqn (15), is also included.
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where DF = F0 � Fc and C3 is the third order expansion
coefficient. We can then obtain the escape rate from the
Kramers rate given by

t�1 ¼ O2

2pg
exp �DE= kBTð Þ½ � (14)

with O being the instantaneous effective oscillation frequency,
DE being the energy barrier and g the microscopic friction
coefficient (viscous). We find

t�1 = CDr exp(�6C3Dr3/(kBT)), (15)

with C a constant. This result contains several parameters that
depend on the details of the complex potential landscape and
dynamics, which we must obtain indirectly through fitting.

A fit of eqn (15) to the simulation results is included in
Fig. 19. The expression fits well, but we note one odd result
in the fit parameters. The value found for the parameter rc,
151.9 � 0.2 Å, the length at which a break is immediate, is
higher than the breaking length found in the 0 K simulations,
147.1 � 0.2 Å for a single chain. This is probably related to the
fact that the real energy landscape is much more complicated
than in our simple 1D estimate, and there are several different
reaction paths that may be activated at different temperatures.
We have also briefly tested the dependence on the strain rate,
and found that it behaves as expected: At higher strain rate, the
chains break at a higher strain. The breaking rate, however, is
not dependent on the strain rate, which implies that we are
indeed in the adiabatic regime.

3.3.2 Bundle size and structure. We have investigated the
dependence of various observables on the size of the bundle.
Neglecting lateral chain–chain interactions, the force versus
strain curve would be the same for all sizes. Simulation results,
however, show that the force per chain for bundles of different
sizes do not fall exactly on top of each other, but are quite close.
This observation points to the effects of chain–chain interac-
tions, which are small but not completely negligible, as already
suggested for the results for the linear regime and for the
Young’s Modulus.

To deepen our understanding of the bundle effect on chain
breaking, we examine the location of the first bond that breaks
inside the bundle. As seen in Section 3.1, the C–C bonds are
weaker than the C–O bonds, and are therefore more likely to
break. At T = 300 K, 94.8% of the first bonds to break in each
chain are C–C bonds. This strengthens the connection to PE
mentioned in Section 3.2.2. At T = 400 K, 87.4% of the first
bonds to break in each chain are C–C bonds. Apart from this,
the distribution of breaking bonds is fairly uniform over the
length of the chain, with the exception of the end bonds, which
we have kept as harmonic, as is described in Section 2. If this is
not done, they are about 3 times more likely to break than
other bonds.

We can also investigate the relation between the location
of the first chain that breaks and the structure of the cross-
section of the bundle. We characterise this aspect with the
conditional probability of a chain being the first to break given
the number of neighbours in the two-dimensional lattice of

the cross-section. This is shown in Fig. 20. The outer chains,
with few neighbours, are slightly more likely to be the first to
break than chains inside the bundle that are surrounded by
other chains. As a result, small bundles with relatively many
outer chains show signs of yielding earlier than large bundles.
Two possible origins of this effect have been considered,
i.e., the rugosity of the chain–chain interaction along the long-
itudinal direction, and the dependence of fluctuations of
individual chains on the number of neighbours.

The effect of the bundle size on the Young’s modulus or the
yield appears to be relatively small. This is likely due to the fact
that covalent bonds are much stronger than the other interac-
tions in the system, such as Coulomb and dispersion forces. In
polymers, also steric interactions are important, which could
affect the breaking process through the roughness of the long-
itudinal chain–chain interaction. We suspect that chain–chain
effects would be larger in systems with the stronger inter-
molecular interaction compared to bonding between mono-
mers inside the chains.

3.3.3 Winding and defects. In metals, the increase of the
yield strength in small systems is related to the absence of
localised and especially extended (dislocation) defects. We
therefore also briefly investigate here the effect of defects and
disorder on the yielding and creep of the fibre bundles.

Fig. 10 shows results for several bundles with the same
number of chains but different order. One can see that the more
unordered cross sections are further away from equilibrium.
At the same elongation, some of the chains will not be straight,
but twisted around in some way, and subjected to higher forces.
Thus one would expect these bundles to break at a shorter
elongation, however the force-elongation curves in Fig. 11 indicate

Fig. 20 The ratio of the probability for a chain to break first bf given that is
has c number of neighbouring chains to the probability for a chain to have
c neighbouring chains. Two data sets with 100 samples per system with
bundles of sizes from N = 7 to N = 24 at T = 300 K and T = 400 K
respectively are compared to a data set of 100 samples with 7 chains with
an external torque at T = 300 K. The breaking simulations were carried out
with a constant strain rate of 0.8 m s�1. The outer chains, with few
neighbours, are slightly more likely to be the first to break than chains
inside the bundle that are surrounded by other chains. The error bars show
the statistical error � 1=

ffiffiffi
n
p

.
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the opposite. To investigate this further, bundles of 7 chains
was deliberately twisted by applying a torque in the longitudi-
nal direction applied to the two constrained planes. The result
of these simulations is shown in Fig. 21. With the added
torque, the 6 outer chains are twisted around the central chain.
The cross section and side view are shown as well. All the outer
chains are rotated about two times around the center. The
bundle with torque has a slightly different response during the
stretching and breaks significantly earlier than the untwisted
bundle, as one would expect. The breaking statistics are
included in Fig. 20, and indeed show that the outer chains
are by far the most likely to break. The inner chain breaks first
in only about 4% of cases.

3.3.4 Parameter dependencies. To asses the value and
transferability of the reported findings, it is useful to explore
the robustness of the chosen parameters. The role of the strain
rate was briefly explored by stretching 100 samples of bundles
with 7 chains at T = 300 K at a strain rate of 0.4 m s�1 rather
than 0.8 m s�1. The average strain at which the first chain
breaks then decreased by 0.30 � 0.05% compared to the values
presented in Fig. 15, which could be reasonably explained
by thermal activation of breaking. The estimated rate of
chain breaking was similar for the two strain rates, and the
estimated Young’s modulus was the same within the accuracy
reported here.

The choice of bond disassociation energy was briefly
challenged by running the same systems with 7 chains with a
8% reduced bond disassociation energy, again with a strain rate
of 0.4 m s�1 at T = 300 K. Lowering the disassociation energy
increases the role of thermal activation of breaking, and these
computations suggests that the rate of chain breaking then is
closer to what was reported for T = 400 K in Fig. 19. The average
strain at which the first chain in the bundles broke decreased

by about 1%, while the Young’s modulus again was the same
within the accuracy reported here. An in-depth study on the role
of the bond disassociation energy on the breaking of nano-
fibres could be an interesting future project.

4 Summary and conclusions

We have investigated stretching and breaking of nano-scale polymer
bundles using computer simulations based on an empirical
atomistic force field and on a density functional approximation.
Simulated nanometrically thin bundles of PEO chains were
subjected to tensile load up to their failing.

The density functional (DF) simulations have been performed
for small systems, aiming at providing data to benchmark the
empirical force field, and to explore features such as re-bonding
after breaking that are not accounted for by the force field
model. Over a broad range of strain, the DF computations reveal
a complex picture. Stretching is resisted at first by torsional
restoring forces, and later by bending and stretching.

Stretching of a single chain consisting of ten PEO monomers
at T = 0 K provides an ab initio estimate of the energy versus
strain relation. The results show that in the low-load limit the
energy curve is not simply parabolic, because of the interplay of
dihedral, bending and stretching terms determined by rather
different force constants. At intermediate strain, where bending
and stretching dominate the system response, the simulation
provides a high estimate of the Young’s modulus that approaches
the values measured for oriented carbon protuberances and
graphene.

Under conditions of constant strain, a single chain has a
broad range of metastability even beyond the length of max-
imum restoring force, due to the absence of lateral interactions
that might perturb the linear arrangement of the chain. The
picture is already changed by increasing the system size to two
parallel chains, which surprisingly break at a shorter length
and load than the single chain. The chains are not perfectly in
registry along their common longitudinal direction due to the
intra-chain interaction and the helical structure of the chains,
giving rise to multiple local minima in the potential energy. The
proximity of the two PEO chains opens the way to chemical
rebonding after breaking, resulting in a sample made of free
floating epoxide monomers, and PEO segments terminated
by –OH on one side, and by planar –OCH2 on the other side.
This partial healing might be affected by the approximate DF
approach in tackling open shell species, and by the idealised
setting of simulations, neglecting defects and impurities.

At the DF level, the limit of thick bundles has been investi-
gated by stretching a system made of the experimental unit cell
periodically repeated in space. In this case the stress–strain
relation is more linear down to low load, and the bundle breaks
at an even shorter length and load than the two-chains system.
There are obviously many effects in the chemistry of the chains
that are not captured by the classical force field. However, by
comparing the behavior of the bond stretching and bending at
high strain, we conclude that the classical force field captures

Fig. 21 Comparison of force–elongation curves for bundles with and
without added external torque. The samples are stretched at a strain rate of
0.8 m s�1 at T = 300 K. Both curves are averaged over 100 samples of
bundles with N = 7 chains. Side and front view snapshots are also included
at the top.
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sufficiently well the behavior of the single chain under high
strain up to the breaking point.

To investigate larger bundles of up to 24 chains of 33 PEO
monomers, and one case of 100 chains, we have used
molecular-dynamics simulations. The classical force field in
our simulations uses a standard functional form for the system
potential energy, slightly modified in its stretching term to allow
for breaking of C–C and C–O covalent bonds. The bundles are
stretched out using two opposed planar structureless clamps.
This geometry is greatly simplified with respect to the structure
of macroscopic polymers but it is considered to provide a
sufficiently realistic picture of bundles of nanometric and sub-
nanometric diameter under tension. Moreover, it allows us to
isolate and study the effect of the interaction between chains.

We have first determined the bundle geometry and structure
under moderate tension at zero temperature, at ambient
temperature and slightly beyond, reaching up to 400 K. Beyond
a moderate load of the order of 1 nN per chain, the PEO chains
tend to align in the lateral direction, although they retain in
part their spontaneous helicity. When the chains are aligned
like this, the cross section of the fibre shows a clear structure of
a 2D cluster, that at low temperature is arranged according to a
hexagonal pattern.

Bundle properties depend on the number N of chains in a
non-monotonic way, and are marked by steps at discrete sizes
that correspond to the filling of shells in the 2D hexagonal
cluster, representing the analog of magic sizes in the physics of
nanoclusters.46,47 We obtain the strain versus load relation of
the bundles, from which the Young’s modulus, the elastic range
and the limiting strength have been determined. Deviations
from linear elasticity first occur upwards, corresponding to the
stiffening of the bundle due to an-harmonic interactions. At 95%
of the limiting load the stress–strain relation bends downwards,
and the stress vanishes over a narrow strain range where the
bundles break.

Finally, we have simulated the failing of the bundles under
load slowly increasing towards the limiting resistance value.
This last computational experiment targets creep, but given the
large ratio of cohesive to thermal energies, together with the
limited time covered by MD, simulations closely approach
the mechanical breaking process.

The PEO bundles display a remarkably high tensile strength.
The ultimate stress was computed from the MD simulations to
be 36.9 � 0.3 GPa at low temperature, 30.5 � 0.1 GPa at 300 K
and 28.4 � 0.1 GPa at 400 K, displaying a moderate temperature
dependence. The estimated Young’s modulus is also high, with
DF computations up to 80 GPa at low strain, and about 250 GPa
at intermediate strain. The fibres in the MD computations
exhibited a modulus of Y = 144 � 6 GPa at low temperature,
around 130 GPa at T = 300 K and 125 GPa at T = 400 K.
As discussed in Section 3.2.2, the high strength and stiffness
are due to the semi-crystalline state of the fibres, resulting in
samples displaying mechanical properties closer to that of
crystalline PE, or even steel. The matching of helical chains
that locally is an essential structural feature of extended PEO
systems at vanishing or low strain is heavily dominated by the

stretching, and the tensile properties are limited primarily by
the covalent bonds.

Our study of the relation between the location of the first
chain that breaks and the structure of the cross-section of the
bundle revealed that outer chains are significantly more likely
to be the first to break than chains inside the bundle that are
surrounded by other chains. Applying a torque on a set of
samples emphasized this effect.

We have investigated the effect of defects in the structure
and deviations from the ideal perfect bundles. Defects affect
the ultimate strength of the bundles and are present down
to the lowest temperatures. We have identified a number of
different types of defects, such as chains twisting around the
elongation axis, non-optimal 2D isomers and 2D twinning of
nanocrystals. At and above ambient temperature all these types
of defects form and disappear in a dynamical fashion, rounding
the steps at the shell closing sizes, but up to at least 400 K the
system retains a high degree of ordering and a recognisable
hexagonal structure. Ordering and tight packing of chains
increase with increasing load.

The impact of the defects on the ultimate strength of the
bundles is nontrivial. In general, non-optimal isomers appear to
increase the strength somewhat. This observation is reminiscent
of mechanical hardening in metals. However, the two effects are
not obviously related, since hardening in metals is caused by
defects blocking the movement of dislocations, while in our
system dislocation dynamics does not play an obvious role in
the yield.

Finally, the thermal activation of chain breaking was inves-
tigated, and a Kramer-type expression for the breaking rate was
proposed and compared to simulation data. This expression was
based on a highly simplified picture, but nevertheless provides a
reasonable description of the data. Moreover, it gives us a mean
to extrapolate breaking rates and creep to different conditions.

PEO is a relatively simple polymer, and the results obtained in
this work demonstrate quite general properties. Thus, we expect
similar behaviour to appear in many other more complex materials
that form bundles. However, the chain–chain interactions are
relative weak in PEO when compared to the bonds inside the
chain. The effects of the structure and chain–chain interaction
may thus be substantially bigger in bundles consisting of more
strongly interacting chains.
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ABSTRACT: Single-molecular systems are a test bed to analyze
to what extent thermodynamics applies when the size of the system
is drastically reduced. Isometric and isotensional single-molecule
stretching experiments and their theoretical interpretations have
shown the lack of a thermodynamic limit at those scales and the
nonequivalence between their corresponding statistical ensembles.
This disparity between thermodynamic results obtained in both
experimental protocols can also be observed in entropy
production, as previous theoretical results have shown. In this
work, we present results from molecular dynamics simulations of
stretching of a typical polymer, polyethylene-oxide, where this framework is applied to obtain friction coefficients associated with
stretching at the two different statistical ensembles for two different system sizes, from which the entropy production follows. In the
smallest system, they are different up to a factor of 2, and for the bigger system, the difference is smaller, as predicted. In this way, we
provide numerical evidence that a thermodynamic description is still meaningful for the case of single-molecule stretching.

■ INTRODUCTION
Small systems, unlike those that are in the thermodynamic
limit, do not have an extensive internal energy.1 Because of the
small number of particles, they are subjected to large
fluctuations. Consequently, it becomes more challenging to
obtain relations for average quantities, which are standard in
thermodynamics and statistical mechanics of large systems.
Gibbs thermodynamics, as we know it from standard texts,2

ceases to apply for such systems. In view of the numerous and
important applications in nanotechnology, for instance, in
nanofluidics3,4 and biology,5 this situation poses a problem:
there is a need to describe energy conversion on the small
scale, but a lack of sufficient theoretical understanding. At the
most extreme end of the small scale, we are not able to
properly describe statistical averages for single molecules.
Doubt has thus been raised on the applicability of standard
thermodynamic equations to the stretching of single molecules
under all conditions.6

In general, the energy involved in the stretching of a
sufficiently small polymer depends on whether one controls
the stretching length or the stretching force. The average force
for isometric stretching differs from that for isotensional
stretching. In the long polymer limit, they are the same,
however, which has been verified experimentally, computa-
tionally, and theoretically. A very good discussion of this is
given by Süzen et al.7

In an earlier paper,8 some of us extended Hill’s theory for
thermodynamics of small systems1 to time-dependent
stretching processes, by deriving expressions for the entropy

production for isometric and isotensional stretching. This leads
to rate laws with friction coefficients that depended on the
control variables. The aim of the present work is to calculate
such friction coefficients and the corresponding entropy
production using computer simulations and to verify that
they depend on the control variables. This is the first example
of a dynamic coefficient in molecular stretching.
We investigate the molecular stretching numerically using

molecular dynamics simulations.9 As a model, we have chosen
to use a united-atom model of poly-ethylene oxide (PEO), cf.
Figure 1, well-documented in the literature.10 This molecular
model has all standard modes of movement under tension,
translation, rotation, torsion, and, eventually, the breaking of
bonds, and lends itself to a testing of the theoretical
description.
In our simulations, the stretching process can be controlled

by the environment in two different ways. The endpoints of
the hydrocarbon chain can be controlled by either an external
force, i.e., fext is a constant, or by fixing the terminal positions of
the molecule, i.e., l is a constant. These isometric and
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isotensional ways to operate are illustrated in Figure 1a,b. The
figures show molecules that are not fully stretched.
Typically, torsional degrees of freedom are associated with

lower energies and forces than bending, which in turn is
associated with lower energies and forces than bond stretching.
We thus expect the response to the environment to change as
each of these different modes of elongating the molecule
becomes accessible. From the simulation results, we shall find
the appropriate dynamic description and relate the molecular
properties to the dissipation.
In the thermodynamic limit, the rate laws of the two modes

of operation are the same. Here, we present for the first time
detailed numerical evidence that there is a difference in the
dynamics in the two cases, as predicted from the method of
Hill.8

■ THEORY
The thermodynamic basis for our numerical single-molecule
stretching experiments was worked out earlier,8 when we
derived the governing equations for isometric and isotensional
experiments on single molecules. In the classical thermody-
namic limit, the same set of equations applies to both cases.
For small systems, however, there are different sets, as each set
depends on how the system is controlled by the environment.1

An introduction to the general idea of Hill and a more
extensive explanation on the structure of nano-thermody-
namics can be found in a recent book.11 In the present work,
our system is always just one polymer. The length and
therefore the number of monomers and the degrees of freedom
vary. A bar will be used above a symbol to denote the average
property of an ensemble of systems. We recapitulate the results
of earlier8 to provide a basis for the present step, how the
equations can be applied to understand simulations andin a
possible next stepexperimental results.

Isometric Experiments. In this experiment, we control the
temperature T and the length of the molecule, l. The change in
the average internal energy of a system is U̅, given using the
Gibbs equation

̅ = + ̅U T S f ld d d (1)

where S is the system entropy and f ̅ is the average internal force
working on the terminals, see Figure 1a. The average internal
energy can also change by adding heat and work to the system,
dU̅ = dQ + fe̅xtdl. The length change is a result of a change in
the average external force on the terminals, fe̅xt. By introducing
these relations in eq 1, we can identify the entropy change in
the surroundings by dS = dQ/T, while the average entropy
production per unit of time for the system (one molecule)
becomes

= ̅ − ̅S
t T

f f l
t

d
d

1 ( ) d
d

irr
ext (2)

We now denote the velocity by v ≡ dl/dt and the average
change in the force by Δf ̅ ≡ fe̅xt − f.̅ The rate law for the
isometric case becomes

ξΔ ̅ =f l v( )l (3)

Here, ξl = ξl(l) is the friction coefficient specific for the length-
controlled case. This is now of primary interest, one of the two
coefficients we want to find.
Once we know the friction coefficient, we can compute the

entropy production from eq 2, that is, dS/dt = v2ξl(l)/T. The
entropy production is proportional to the friction coefficient of
the length-controlled case. The entropy production is zero
when the external force is balanced by the internal force, fe̅xt =
f.̅

Isotensional Experiments. In isotensional experiments,
we control the temperature T and the force of the molecule,
fext. The average internal energy changes as

̅ = + ̅U T S f ld d d (4)

The length of a single molecule is now fluctuating, and l ̅
indicates its average. The first law takes the form dU̅ = dQ +
fextdl.̅ By the same reasoning as above, we obtain the entropy
production per molecule

= − ̅S
t T

f f l
t

d
d

1 ( ) d
d

irr
ext (5)

The controlled change in the force is Δf = fext − f, resulting
in the average stretching velocity v̅ = dl/̅dt. The rate law in the
force-controlled regime becomes

ξΔ = ̅f f v( )f (6)

where ξf = ξf( f) is the friction coefficient under isotensional
conditions, the second target of this study. The entropy
production then follows as dS/dt = v̅2ξf( f)/T. The entropy
production is now proportional to the friction coefficient of the
force-controlled case.
In the thermodynamic limit, the two friction coefficients are

the same. Away from the limit, this is not the case, as the rate
laws depend on the set of the environmental control variables
in use.
We shall find below that the stretching simulations of PEO

with the smallest molecule under investigation gives a friction
coefficient for the case of Figure 1a which is around twice the
value of the coefficient for Figure 1b, confirming the prediction

Figure 1. Illustration of the isometric (a) and isotensional (b)
simulation mode. Each monomer is composed of three beads, two
methylene groups (gray), and one oxygen atom (red).
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from the theory that we can expect differences between the
two coefficients.
Force in the Entropic Regime. Figure 1 illustrates the

molecule for relatively small forces, when it is in the entropic
regime. In this regime, the molecule behaves similarly to the
thermodynamic limit because it has numerous degrees of
freedom for movements.
We assume that the molecule to a good approximation can

be modeled as a freely jointed chain in the entropic regime
with an effective bead length beff and an effective number of
beads Neff, with an unfolded length lunf = Neffbeff.

12 In a system
with a solvent, this would correspond to an assumption of
theta conditions, that is, the solvent is exactly poor enough to
increase the intramolecular forces to perfectly balance out the
steric effects. The statistics of the configurations of the system
then becomes similar to a random walk, and the radius of
gyration, Rg = lunf/6Neff, gives rise to the entropic force f S

=f
k Tl

N b
18

S
B

eff eff
2

(7)

The length beff is expected to be close to the length of each
monomer.
At larger extensions, the forces will first become dominated

by unfurling of the torsional degrees of freedom, then the
bending, and finally the stretching of the bonds.13 In these
regimes, the force and dynamics typically display non-
linearities.

Helmholz’ and Gibbs’ Energies. Away from the entropic
regime, we expect to be in the small-system regime. In this
regime, there is a nontrivial size dependency of properties
which is normally extensive. This is due to the fact that
fluctuations in the different ensembles are different and lead to
different size effects.
For the isometric experiments, there is a fluctuating force for

each length. If we let

Figure 2. Force−elongation curves from the isometric and isotensional simulations for N = 12 (a), N = 24 (b), and N = 51 (c) as a function of the
length per bond. The region for the torsional unfolding is marked with an orange background, and the transition region to the monomer-stretching
regime is shown more clearly in the insets. In (d), we see that the entropic region for N = 51 is well-described by a freely jointed chain with Neff =
10 and beff = 4 Å.
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⟨ ⟩ = ̅f t f l( ) ( )l (8)

we can compute the Helmholtz energy from

∫= ̅ ′ ′A l f l l( ) ( )d
l

l

0 (9)

That is, the integral along the length axis of the force−
elongation curves is shown in Figure 2, giving the area below
the curves.
For the isotensional experiments, there is a fluctuating length

for each force. If we let

⟨ ⟩ = ̅l t l f( ) ( )f (10)

the Gibbs energy is given by

∫= ̅ ′ ′G f l f f( ) ( )d
f

f

0 (11)

That is, the integral along the force axis of the force−
elongation curves is shown in Figure 2, giving the area above
the curves.
In the thermodynamic limit, A and G are related by a

Legendre transformation. With Δl = l − l0 and Δf ̅ = f(̅l) − f(̅l0),
we obtain

+ = ̅ = Δ ̅ ΔA l G f f l f l( ) ( ( )) (12)

for sufficiently large systems.8 Small systems in general deviate
from this, and the entropy production in the two ensembles is
different. However, eq 12 is still valid when the force is linear
in the elongation, like it is in the entropic regime.
The nonequivalence between the isometric and isotensional

statistical ensembles is the result of the difference between the
work done to stretch the molecule, fl̅ and fl̅, respectively.
Considering the nonlinear force−elongation relationship f = al
+ bl2 + ..., with a and b two constant parameters, we can easily
show that up to a linear order, both works coincide. The
nonlinear term, however, breaks down the equality, thus
indicating the failure of the thermodynamic limit.
For the entropy production, it is useful to evaluate the

expression ̅ − ̅f fl
t

l
t

d
d

d
d

from eqs 2 and 5, which is greater than
or equal to zero in the second order of l for a specific set of
lengths and velocities. From this, one would expect the entropy
production for the isometric ensemble to be larger than for the
intensional ensemble when the force elongation is nonlinear.

■ MODELS AND METHODS
Although the theory presented above is of general applicability,
we choose a specific system for our numerical experiments: a
chain of poly-ethylene oxide (PEO) of the form CH3−[O−
CH2−CH2]n−O−CH3, modeled with a united atom model

where each carbon is grouped with its bonded hydrogen
atoms. The PEO monomer consists of one oxygen and two
carbons along with their hydrogens. As stated above and
illustrated in Figure 1, the endpoints of the chain are controlled
by either length (Figure 1a, N, l, T is controlled) or by fixing
the endpoints in space (Figure 1b, N, fext, T is controlled).
The potential energy as a function of the coordinates of the

coarse-grained particles has contributions from stretching,
bending, and torsion. Using a model that includes these
different dynamics allows us to examine the effect of the
different modes of stretching and the nonlinearities on the
results. The force field is compatible with the LAMMPS14

simulation package that has been used for all of our
computations.
The bond stretching is given using a Morse potential

{ = } = [ − ]α− − ̅U i N DR( , 1, ) 1 eij
r r

ibond
( ) 2ij ij ij

(13)

which saturates to a finite value at large separations. The
parameters used for the dissociation energies Dij were obtained
from density functional computations,15 and the parameters
for αij were found by requiring the Morse potential to have the
same curvature as the harmonic bond, that is, α = K D/2ij ij ij

s .
The harmonic force field parameterization is taken from van
Zon et al.,16 based on a modification of the explicit atom force
field of Neyertz et al.17 The potentials for the bending and
torsion of bonds are

∑ θ θ{ } = [ − ̅ ]
{ }

U KR( ) 1
2 ijk

ijk ijk ijkibend
b 2

(14)

and

∑ ∑ ϕ{ } =
{ } { }

−U KR( ) cos ( )
ijkl c

ijkl
c

ijkl
c

itors
t, 1

(15)

where i, j, k, and l are the atoms joined by consecutive covalent
bonds and Kij

s , Kijk
b , and Kijkl

t and ri̅j and θ̅ijk are force constants
and reference values, respectively, of stretching (s), bending
(b), and torsion (t) energy contributions, selected to
reproduce molecular properties measured by spectroscopy or
computed by ab initio methods. Note that the sum of the
torsional coefficients includes every possible dihedral. Non-
bonded interactions were not taken into account, which means
that our model polymer is surrounded by an implicit theta
solvent. We make this choice because an ideal chain of
interacting subunits would deviate from a Gaussian chain even
in the thermodynamic limit.12 The force field parameters we
used are presented in Table 1.10,16,17

The temperature was controlled with a Langevin thermostat,
which mimics the viscous aspect of a solvent. During sampling,
the relaxation time was set to 1 ps and the temperature was set

Table 1. Force Field Parameters for the Stretching, Bending, and Torsion,10 with Disassociation Energies15

bonds Kij
s [kJ (mol Å2)−1] Dij [kJ mol−1] ri̅j [Å]

C−C 2587.4 370.8 1.54
C−O 3094.0 344.5 1.43

bends Kijk
b [kJ mol−1] θ̅ijk [Å]

O−C−C 727.7 110.0
C−O−C 1070.1 112.0

torsion [kJ mol−1] Kijk
t,1 Kijk

t,2 Kijk
t,3 Kijk

t,4 Kijk
t,5 Kijk

t,6 Kijk
t,7

O−C−C−O 2.211 15.194 17.844 −32.460 −13.871 −1.189 12.322
C−C−O−C 5.183 5.610 6.272 −15.428 −0.678 −4.568 3.567
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to 300 K. The time step used in the simulations was 1 fs. All
quantities presented were averaged over 200 samples.
We obtain initial conditions with a low potential energy

using a simulated annealing approach. After the initialization
setup, all samples are heated up to 2000 K during 0.1 ns before
the temperature is slowly decreased during 1 ns.
Case Studies. In the present paper, we present

investigations of three different molecule sizes, N = 12, N =
24, and N = 51. Some simulations were also performed with N
= 102. The forces varied from 0.01 up to 5 nN or up to the
failure limit of the molecule. The length-controlled simulations
were sampled evenly in the length, while the force-controlled
simulations were sampled evenly on a log scale in the force.
This was done to distribute the data points more evenly along
the force−elongation curve. To ease the comparisons between
system sizes, the molecule length will be presented in units of
the longitudinal length divided by the number of bonds lb ≡ l/
(N − 1) and lb̅ ≡ l/̅(N − 1).

■ RESULTS AND DISCUSSION
To obtain an intuitive understanding of the behavior of the
molecule during stretching, it is useful to study the cylindrical
radius Rc, defined here as the radius of the smallest longitudinal
cylinder that can envelop the molecule, shown for N = 24 in
Figure 3. There is a sequence of collapses, to be elaborated on
below. Four snapshots illustrate the molecular conformation in
these regimes. At small lengths, we have a regime dominated
by the entropic elasticity, here, the radius Rc is 2.3 Å and
relatively constant. When the molecule is stretched above lb =
0.5 Å, the torsional degrees of freedom are the first to be
confined, and the molecule is unfolded from a helical to a
planar configuration. This transition where the C−O−C−C
backbone changes from a trans-gauche (ttg) order to an all-
trans configuration (ttt) is elaborated in section Torsional
Unfolding. This is followed by the unbending and finally the
bond stretching. Especially, in regions where several types of
dynamics are at play, there is a nonlinear response to stress.
Various Stretching Regimes. In the force−elongation

curves shown in Figure 2 for the systems with N = 12 (a), N =
24 (b), and N = 51 (c), we can again identify the different
regimes. The entropic regime is shown more clearly for N = 51,

see Figure 2d, where lengths below 0.05 Å are considered to be
close to zero. The data in this region are consistent with a
linear curve. The range where torsion plays a role is indicated
by an orange background. The nonlinear transition zone to the
monomer-stretching regime is also displayed in more detail in
the insets.

Entropic Regime. A predominantly linear relation between
force and length develops when 0.05 Å < lb,lb̅ < 0.47 Å. This is
the entropic regime, for which results for N = 51 are enlarged
in Figure 2d. From the slope of this curve, we find the effective
length beff of the neighboring units of the ideal chain that gives
the correct force−elongation behavior of the molecule in this
regime. Within the accuracy of the data presented in Figure 2d,
we see that the elongation behavior in this regime is well-
described by an ideal freely jointed chain for forces up to about
0.05 nN. With a persistence length beff/2 of 2 Å,18 we
effectively have Neff = 10 beads. The persistence (Kuhn) length
beff corresponds to approximately twice the length of the
individual monomers, explained by the bending and torsion,
which effectively stiffen the chain. The force- and length-
controlled cases appear identical in this regime, as the force−
elongation curve here is well-described by a linear function.
These findings are in line with eq 12.

Torsional Unfolding. As the molecule is stretched further,
the degrees of freedom are reduced, and the freely jointed
chain model is no longer applicable. The torsional degrees of
freedom are the first to be confined, and this occurs in the
region 0.47 Å < lb,lb̅ < 1.1 Å, marked with an orange
background in Figures 3 and 2. The beginning of the interval
was found by looking at the deviation from linearity in Figure
2d, and the end of the interval was found from the inflection
point of Figure 3. PEO strands are known to attain a helical
shape in the crystalline state, in which the bonds of the C−O−
C−C backbone are folded in a trans-gauche (ttg) order.19 This
can be seen in the first two snapshots in Figure 3 and is also
the case for PEO dissolved in water.20 An increase in the force
gives rise to a transition from a helical ttg order to an
elongated, planar all-trans configuration (ttt), as seen in the last
two snapshots in Figure 3.
From Figure 2a−c, we can see a systematic deviation that

varies with molecular size. This is emphasized in the insets. For

Figure 3. Cylindrical Rc as a function of the length of the molecule. Four snapshots of the molecule are provided to illustrate the different stretching
regimes for a molecule of length N = 24. The region for the torsional unfolding is marked with an orange background, where the end of the range is
found from the inflection point of the shown curve. One can see that in the first two snapshots, the molecule attains a helical ttg order, while in the
last two snapshots, the molecule is in a planar all-trans configuration.
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N = 12, we observe pronounced oscillations in the force−
elongation curve; for N = 24, we observe smaller oscillations;
and for N = 51, we observe no oscillation. These oscillations in
the length-controlled ensemble are finite size effects that
originates from local maxima in the potential of mean force
associated with the unfolding of the molecule. Here, the
molecule is mechanically unstable, and these modes are not
accessible in the force-controlled ensemble.5 This leads to
different fluctuations in the two ensembles.
Monomer-Stretching Regime. As the molecule is extended

above lb̅ > 1.1 Å, the individual monomers are elongated. The
molecule is unbending, and the potentials for the stretching,
bending, and torsion give rise to a molecule-specific segment
elasticity,13 increasingly dominated by the stretching of the
covalent bonds.
In this region, a small systematic difference appears in the

force−elongation curves between the length-controlled and the
force-controlled stretching experiments. This can be seen in
the inset of Figure 2a−c. The molecule is straightened out
further, illustrated by the cylindrical radius in Figure 3
eventually falling to a value less than half of the shortest
bond length. The nonlinear contributions in the Morse
potential for the bond stretching become increasingly
prominent. From the derivative of the force−elongation
curve, shown in Figure 4, we observe a maximum around lb̅

= 1.2 Å. The probability for the bonds to rupture completely is
increasing, explaining the force dropping to zero for the last
points from the length-controlled simulations, as shown in
Figure 2a−c.
These nonlinearities from the stretching of the Morse

potentials give rise to different fluctuations in the two
ensembles, and we expect to see an effect of the small system
size. The differences between the force−elongation curves
shown in Figure 2a−c are the largest in the transition regime to
the monomer-stretching regime, emphasized in the insets. The
differences are small but they are finite and systematic.
Gibbs and Helmholtz Energies. The free-energy differ-

ences, and the deviation from the Legendre transform in eq 12,
are computed from the force−elongation curves shown in

Figure 2a−c, according to section Helmholz’ and Gibbs’
Energies, and shown in Figure 5. We divide by the work

required to stretch the molecule completely, in order to
compare the different system sizes. The largest free-energy
difference is observed in the transition from the torsional-
unfolding regime to the monomer-stretching regime, see the
insets of the force−elongation curves in Figure 2a−c. Both in
the case of N = 12 and N = 24, there is a clear correspondence
between the deviations in the force−elongation curves in this
region and the peak in the free-energy difference, as shown in
Figure 5. There is a significant deviation from eq 12, with the
smallest system showing the largest deviation, as expected.

Friction Laws. Force-Controlled Simulations. We can
now use our simulations to estimate the friction coefficient ξf =
ξf( f) in eq 6. This was done for the systems with N = 24 and N
= 51 by perturbing the force and determining the rate of
change in the average length. To this end, we first generated
200 independent samples, each equilibrated at 150 different
constant forces f 0 for 5 ns. At time t = 0, the force on each of
these samples was increased by 140 different force increments
in the range 4−28%. The length as a function of time before
and after the increase in the force is shown in Figure 6 for three
force increments in the system with N = 51, averaged over 200
samples.
From these results, we find that the time scale for the initial

linear force response is 0.5 ps for N = 51. As one can see in
Figure 6, this does not appear to depend on the magnitude of
the force increment. The ratio of the force increment to the
increase in the linear response is equal within the accuracy of
the data points. A similar investigation of N = 24 results in a
time scale of ∼0.2 ps. The time scale for the linear regime is
related to the relaxation time of the system, which depends on
the length of the molecule. Other time scales in the range 0.1−
1 ps was explored and was found to give similar results,
although with increased fluctuations, indicating a reasonably
good robustness on this parameter. Continuing with the
chosen time scales, the linear response dl/̅dt was then

Figure 4. Derivative of the force−elongation curve from the length-
controlled simulations, df/̅dl for N = 12, N = 24, and N = 51. The
region for the torsional unfolding is marked with an orange
background. We see that the maximum values coincide at about lb
= 1.25 Å.

Figure 5. Percentage-wise difference in the Gibbs and Helmholtz
energies for N = 12, N = 24, and N = 51 found by integration of the
force−elongation curves shown in Figure 2a−c. We see that there is a
significant deviation from eq 12, and the relative difference is the
largest for the smallest system.
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estimated for a range of force increments Δf, as shown in
Figure 7 for molecules with N = 51 equilibrated at f 0 = 0.33,
0.67, and 1.00 nN. The friction coefficient ξf = ξf( f) was found
from the slope of the force−velocity curves, cf. eq 6. Unlike

what is the case in the thermodynamic limit, the friction
coefficient was largely dependent on the value of the force and
the length of the polymer.

Length-Controlled Simulations. To estimate the friction
coefficient ξl = ξl(l) in eq 3 for N = 24 and N = 51, we stretch
the molecule in a range of velocities and estimate the increase
in the force Δf ̅ associated with each stretching velocity for each
sample. A total of 200 independent samples were first
equilibrated at 150 different constant lengths l0 for 5 ns, and
at time t = 0, the samples were stretched at 80 different
constant velocities v = dl/dt in the range 20−100 m/s for 1 ps.
The force response from the molecule Δf ̅ for each stretching
velocity was then averaged over the same time scale as used for
estimating the linear response in the force-controlled
simulations. The resulting force−velocity curves for molecules
N = 51 with initial lengths of lb = 0.824 Å and lb = 1.192 Å can
be seen in Figure 7. Again, we found the friction coefficient ξl =
ξl(l) using eq 3 from the slope of these force−velocity curves.
The variation in the coefficient with the length of the molecule
or the force applied was similar to the results from the
isotensional experiments, but the coefficients for force-
controlled systems were systematically smaller than those for
the length-controlled systems. As the fluctuations increased
significantly for shorter lengths, only lengths per bonds larger
than 0.4 Å are shown. Both curves showed a maximum near
the relative length 1.2 Å per bond, where the Morse potential
for bond stretching is strongly nonlinear.
The difference in the friction coefficient can be expected

from a dynamical investigation of the system, by considering
the time scales and following the approach of Just et al.21 to
obtain the general form of the effective slow dynamics. The
length of the molecule acts as the slow variable, and the
probability distributions of the fast variables of the internal
degrees of freedom of the molecule are different for fixed force
and fixed length. This also leads to two different damping
constants.

Entropy Production. The force-controlled friction co-
efficient ξf = ξf( f) = ξf( f(l)̅) found in the section Force-
Controlled Simulations and the length-controlled friction
coefficient ξl = ξl(l) found in the section Length-Controlled
Simulations are presented as a function of the length in Figure
8 for molecules N = 24 and N = 51. The difference between ξf
and ξl is smaller for the largest molecule, as expected from eq
12.
The entropy production is found by multiplying this

coefficient with the constant velocity squared over the
temperature. The energy dissipation producing heat in the
surroundings is the entropy production times the (constant)
temperature. Apart from this trivial rescaling factor, the basic
properties are considered to be temperature-independent
under the assumption of theta conditions.
For very short lengths, the entropy production by definition

should go to zero. Although the uncertainty in this region is
rather high, we emphasize that zero is within the margin of
error. In the region of torsional unfolding, the ensemble
difference is the largest for the smaller system with N = 24
compared to the bigger system with N = 51. This is as expected
from the discussion of the different stretching regimes. The
entropy production reaches a maximum around 1.2 Å per bond
for both system sizes, well into the monomer-stretching
regime. Again, the ensemble difference is significantly larger for
the smallest system. This can be explained by the nonlinearity
of the Morse potential for the bond stretching, giving rise to

Figure 6. Length as a function of time for chains of length N = 51
before and after the force is increased by 4.8, 6.8, and 8.8% from f 0 =
2.3 nN at t = 0. From this, we conclude that the time scale for the
linear response is ∼0.5 ps for N = 51.

Figure 7. Relation between the force and the stretching velocity,
estimated in the two simulation modes, for molecules of length N =
51. Linear trends are observed, from which the friction coefficient is
estimated.
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different fluctuations in the two ensembles. Comparing the
derivative of the force−elongation curves presented in Figure
4, we see that the maxima appear to coincide. Moreover, any
coupling to low-frequency tangential phonons can also very
quickly dissipate energy in this regime.
We have seen above that the magnitude of the friction

coefficient differs between the two stretching modes, with the
length-controlled process having a higher friction coefficient
than the force-controlled process. It follows that the first
process dissipates more energy regardless of the length of the
molecule, as expected. Note that the force-controlled
simulations significantly display larger size dependence than
what is seen in the length-controlled simulations.

■ CONCLUSIONS AND PERSPECTIVES
In small-scale systems, away from the thermodynamic limit,
standard thermodynamics is no longer valid. In this case,
thermodynamic potentials become nonextensive and statistical
ensembles are not equivalent. Even if the system is very small,
extensivity can be restored, if one considers the set of replicas
of the original system as a large-scale system. Such a procedure,
proposed by Hill,1 makes it possible to apply the method of
thermodynamics on very small scales. This method, initially
proposed when the system is in equilibrium, was extended8 to
nonequilibrium situations for the case of the stretching of a
polymer.

In this article, we have shown that dissipation generated at
small scales is sensitive to the lack of equivalence between
statistical ensembles at small scales. Based on earlier work,8 we
have carried out simulations well beyond the thermodynamic
limit. We have simulated the stretching of a single PEO
molecule of length N = 12, 24, and 51 under force-controlled
and length-controlled ensembles and have extracted friction
coefficients for the largest two systems.
We have confirmed systematic finite size effects in the two

ensembles of general nature. In the static case, the finite size
effects are most pronounced in the region of torsional
unfolding and originate in local maxima in the potential of
mean force that are accessible only in the length-controlled
ensemble. This is visible for N = 24 and even more for N = 12.
In the dynamic case, the finite size effect originates in the two
ensembles having different fluctuations. This is predicted by
theory and confirmed for the first time for the dynamical
coefficient. For short polymers with N = 24, the friction
coefficient of isometric stretching is roughly twice the value of
that of an ensemble with isotensional stretching. The
difference between the friction coefficients decreases when
the length of the polymer is increased to N = 51.
Our study shows how nonequilibrium properties are affected

by the absence of the thermodynamic limit. The method
presented could be applied systematically to the study of
irreversible processes that take place at small scales.
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Abstract: Single-molecular polymers can be used to analyze to what extent thermodynamics applies
when the size of the system is drastically reduced. We have recently verified using molecular-dynamics
simulations that isometric and isotensional stretching of a small polymer result in Helmholtz and Gibbs
stretching energies, which are not related to a Legendre transform, as they are for sufficiently long
polymers. This disparity has also been observed experimentally. Using molecular dynamics simulations
of polyethylene-oxide, we document for the first time that the Helmholtz and Gibbs stretching energies
can be related by a Legendre–Fenchel transform. This opens up a possibility to apply this transform to
other systems which are small in Hill’s sense.

Keywords: nanothermodynamics; polymers; molecular simulation; single-molecule stretching

1. Introduction

As we reduce system dimensions from the micro- to the nano-scale, surface properties become
increasingly important, and the normal thermodynamic equations (thermodynamic limit properties)
cease to apply. Hill [1] proposed a way to restore the structure of ordinary Gibbs’ thermodynamics to
deal with small systems. His idea was to introduce an ensemble of small systems, for which ordinary
thermodynamics again can be applied. For an in-depth discussion, see also [2]. In Hill’s description,
Legendre transforms and Maxwell relations exist, but only at the level of the ensemble of small systems.
A single small system, however, does not obey the normal Legendre transforms. A characteristic
of small systems is that extensive properties cease to be extensive due to finite size effects, and the
thermodynamic potentials depend on the type of environmental control variables, or the ensemble
to which they belong. In other words, in general, statistical ensembles are not equivalent for small
systems. This striking property is typically observed also in systems with size comparable with the
range of the interactions [3–5]. Ensemble inequivalence in long-range interacting systems is related to
the occurrence of curvature anomalies in thermodynamic potentials, which in this case arise because
the interaction energy is not additive. It has been shown that Hill’s approach for small systems can be
implemented for long-range interacting systems as well, and that it naturally takes into account the
non-additivity induced by the interactions [6,7]. Such a parallelism between small systems and systems
with long-range interactions [8,9] indicates that the methods used to describe long-range interacting
systems also may find a wider application in the characterization of small systems, and vice versa.

Nanomaterials 2020, 10, 2355; doi:10.3390/nano10122355 www.mdpi.com/journal/nanomaterials
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For small systems, the relative size of the fluctuations will be of more significance than for a typical
large system. For sufficiently small polymers with a non-linear force-response, one would expect the
difference in fluctuations to give rise to size-dependent ensemble deviations. The energy involved
in stretching then depends on whether one controls the stretching length or the stretching force.
The average force for isometric stretching of a small molecule differs from that of isotensional stretching.
In the long polymer limit, they are the same, however, and this has been verified experimentally,
computationally, and theoretically. A detailed discussion of this is given by Süzen et al. [10].

We have also studied this problem [11], and verified that the forces were not the same, as predicted
from theory. This resulted in a Helmholtz energy for isometric stretching and a Gibbs energy for
isotensional stretching for small molecules that were not related by a Legendre transform, which is also
known from experiments by Keller et al. [12]. In addition, ensemble inequivalence has been recently
highlighted in pulling experiments by Monge et al. [13].

A question therefore arises: is it then at all possible to transform the small system description from
one set of variables to another set, like we normally do when we use Legendre transforms? To be more
specific: is it possible to transform the Helmholtz energy of a molecule (which describes isometric
stretching) into its Gibbs energy (which applies for isotensional stretching)? The aim of this short
communication is to show that this is indeed possible.

We shall use our earlier simulation results [11] and verify that the Helmholtz and Gibbs energies for
the stretching of a short polymer can be related to each other using the Legendre–Fenchel transform [14],
a generalization of the usual Legendre transform, suitable for free energies that exhibit curvature
anomalies. This transform has already proven useful in long-range interacting systems displaying
ensemble inequivalence [5,15,16], and here it is applied for the first time to a common stretching
phenomenon. The Legendre–Fenchel transform reduces to the usual Legendre transform when the
Helmholtz energy is differentiable and convex; in the present case, this happens for large polymers.
As we precisely show with our numerical simulations, the Helmoltz energy of the considered small
polymers in fact present curvature anomalies under certain conditions, making it impossible to use the
conventional Legendre transform.

2. Method

This section is split into two parts. The first part introduces the model and the computational
details, and the second part presents the theoretical method.

2.1. Simulation Details

We use the same model as some of us have used previously [11,17] to investigate molecular
stretching of poly-ethylene oxide (PEO) on the form CH3−[O−CH2−CH2]n−O−CH3 in molecular
dynamics simulations. It is a united-atom model with each bead representing either a methyl group,
a methylene group or an oxygen atom. This model is based on a common model documented in the
literature [18–20], and has all the standard contributions to the potential energy from bond stretching,
bending, and torsion, and includes also the breaking of bonds. It therefore lends itself well to a testing
of the stretching energies. In this particular force-field, the standard harmonic bond stretching potential
is replaced by a Morse potential

Ubond({Ri, i = 1, N}) = Dij

[
1− e−αij(rij−r̄ij)

]2
, (1)

where the parameters for the dissociation energies Dij are obtained from density functional

computations from the literature [21]. The stiffness of the bond is determined by αij =
√

Ks
ij/2Dij.

Furthermore, the potentials for the bending and torsion of bonds read
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Ubend({Ri}) =
1
2 ∑
{ijk}

Kb
ijk[θijk − θ̄ijk]

2 (2)

and
Utors({Ri}) = ∑

{ijkl}
∑
{c}

Kt,c
ijkl cos c−1(φijkl), (3)

where i, j, k and l are atoms joined by consecutive covalent bonds. Ks
ij, Kb

ijk, Kt
ijkl are force constants

for stretching (s), bending (b) and torsion (t). r̄ij and θ̄ijk are equilibrium values for bond stretching
and bending, respectively. All force-field parameters were tabulated previously [11]. Non-bonded
interactions were not taken into account in the current work, which means that our model polymer
is surrounded by an implicit theta solvent. The force field is compatible with the LAMMPS [22]
simulation package, that has been used for all of our computations.

The temperature was set to 300 K during sampling, and was controlled by a Langevin thermostat
with a relaxation time of 1 ps and a time step of 1 fs. The initial configurations were exposed to a
simulated annealing protocol prior to sampling, in an attempt to capture a representative portion of
the phase space [17,23]. The presented data are averaged over 5 ns for 200 samples.

2.2. Energy Transforms

For the theoretical analysis, consider now an arbitrary polymer with N beads. The energy of the
polymer is given by

H(r1, ..., rN ; p1, ..., pN) =
N

∑
j=1

p2
j

2mj
+ V(r1, ..., rN) , (4)

where pj ≡
∣∣pj
∣∣ , mj is the mass of bead j, and V(r1, ..., rN) is the potential interaction. In our previous

work [11,17], we gave an explicit expression for the interaction potential with contributions from bond
stretching, bending, and torsion. The polymer is controlled either in the isometric ensemble by fixing
the end-to-end distance x ≡ |rN − r1|, or in the isotensional ensemble by applying a stretching force
f ≡ |fN − f1|. The canonical partition function in the isometric ensemble is

Z(T, N, x) =
1

h̄3(N−1)N!

∫ ′
dr1...drN

∫ ′
dp1...dpN exp (−βH) , (5)

where the end-to-end distance x is controlled, by keeping rN − r1 constant in the integral over the
spacial coordinates. The prime for the spacial integrals indicates this. The prime for the momenta
indicates that we keep the center of mass fixed. Furthermore h̄ is Planck’s constant and β ≡ 1/ (kBT),
where kB is Boltzmann’s constant. Because of the symmetry of the system the partition function Z
depends only on x and not on the direction of rN − r1. The partition function for the isotensional
ensemble is

∆(T, N, f ) = β f
∫ xmax

0
dxZ(T, x) exp(β f x) , (6)

where now the stretching force is constant, and xmax denotes the length of the unfolded polymer.
The Helmholtz energy is given by

F(T, N, x) = −kBT ln Z(T, N, x) , (7)

and the Gibbs energy by
G(T, N, f ) = −kBT ln ∆(T, N, f ) , (8)

in which x and f are the relevant conjugated variables as usully considered in thermodynamics and
statistical mechanics of polymer systems [24]. It follows from Equation (6) that

exp [−βG (T, N, f )] = β f
∫ xmax

0
dx exp {−β [F(T, N, x)− f x]} . (9)
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This makes it possible to calculate the Gibbs energy in the isotensional ensemble from the Helmholtz
energy in the isometric ensemble. As the above derivation shows, this transformation is also correct
for small polymers.

For sufficiently long polymers, the usual Legendre transform

G (T, N, f (x)) = F(T, N, x)− f (x)x (10)

is valid. However, we verified in our first paper [11], using molecular dynamics simulations, that for
small polymers, the usual Legendre transform is not valid.

Differences in the Helmholtz energy are calculated using

F(T, N, x1)− F(T, N, x0) =
∫ x1

x0

f̄ (x)dx . (11)

Gibbs energy differences are calculated using

G(T, N, f1)− G(T, N, f0) = −
∫ f1

f0

x̄( f )d f . (12)

By Equation (9), one may also find the Gibbs energy from F(T, N, x1) in Equation (11). With x0 = 0
and f0 = 0, Equation (9) gives

exp {−βG (T, N, f (x1))} = β f (x1)
∫ xmax

0
dx exp {−β [F(T, N, x)− f (x1)x)]} , (13)

where f (x1) is obtained by means of interpolation of the isotensional force-elongation curve. From a
saddle point approximation to compute the integral in Equation (13), one obtains

− GLF (T, N, f (x1)) = max
x

[ f (x1)x− F(T, N, x)] . (14)

The function F∗(T, N, f ) = −GLF(T, N, f ) is known as the Legendre–Fenchel transform [5,15,16] of
F(T, N, x) with respect to x at constant T and N.

The Legendre–Fenchel transform is a generalization of the Legendre transform, well known in
statistical physics [5,16], and reduces to the latter when the transformed function is differentiable and
convex. An important property of the Legendre–Fenchel transform is that it always yields convex
functions; thus −GLF( f ) is convex in f at constant T and N. Furthermore, if F∗( f ) = −GLF( f ) is
transformed again, one has

F∗∗(x) = max
f

[ f x + GLF( f )]. (15)

Because −GLF( f ) is a convex function, at points f for which −GLF( f ) is differentiable the above
transform (15) reduces to the usual Legendre transform, leading to

F∗∗(x) = f (x)x + GLF( f (x)), (16)

where f (x) is the unique solution to dGLF( f )/d f = −x. Since F∗∗(x) is simply the Legendre transform
of −GLF( f ), the former is the isotensional Helmholtz free energy. Moreover, due to the properties
of the Legendre–Fencel transform, F∗∗ is the convex envelope of the isometric free energy F, namely,
the largest convex function such that F∗∗ ≤ F. Thus, the isometric and isotensional ensembles
are not equivalent if F does not coincide with its convex envelope F∗∗. In mathematical terms,
ensemble inequivalence may arise because the Legendre–Fenchel transform is not necessarily self-dual
(or involute), that is, F∗∗ 6= F when F is non-convex. In contrast, the convex envelope F∗∗ of F has the
same Legendre–Fenchel transform as F, meaning that (F∗∗)∗ = F∗ [16].
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We have outlined a method for obtaining the free energy GLF in the isotensional ensemble from
the free energy F in the isometric ensemble. This method applies, in particular, when F is non-convex.
By computing the derivative of GLF = GLF (T, N, f (x1)) with respect to f , one obtains the force
elongation relation

d
d f

GLF = −x( f ) (17)

in the isotensional ensemble. The purpose of this paper is now to test these formulas.

3. Simulation Results

In the molecular dynamics simulations, one obtains the average force f̄ (x) = 〈 f (t)〉x between
the end points in the isometric ensemble. In the isotensional ensemble, one obtains the average
distance between the endpoints x̄( f ) = 〈x(t)〉 f . The force-elongation curves from the isometric and
isotensional ensembles are shown as a function of the length per bond xb = x/(N − 1) for systems of
size N = 12, 24 and 51 in Figure 1a–c.
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(c) N = 51
Figure 1. Force as a function of length per bond from isometric and isotensional simulations for
chains of poly-ethylene oxide (PEO) composed of N = 12, 24 and 51 united atoms. The ensemble
inequivalence is most pronounced for the smallest systems.

It is clear from these figures that the isometric and the isotensional force are different, a fact that is
more pronounced for the smaller polymers. In the isometric ensemble, the slope of the curve f̄ (x) is
not restricted to be a positive quantity, since the Helmoltz free energy F(T, N, x) is not necessarily a
convex function with respect to x at fixed T and N.

In other words, the response function κ(x) defined through

1
κ(x)

=

(
∂ f̄
∂x

)

T,N
=

(
∂2F
∂x2

)

T,N
(18)

can be negative in the isometric ensemble [25], meaning that the associated system configurations
minimize the free energy when the average force between the ends of the polymer decreases for
increasing elongation. Under these conditions, interactions between monomers tend to separate them
from each other, decreasing internal forces required to keep the polymer in equilibrium. We highlight
that negative values of κ(x) in this ensemble may be realized because x is always kept fixed at a definite
value. Furthermore, in the isotensional ensemble, the end-to-end distance fluctuates at constant applied
force. In that case, the slope of x̄( f ) cannot be negative, namely,

κ( f ) =

(
∂x̄
∂ f

)

T,N
= −

(
∂2G
∂ f 2

)

T,N
≥ 0, (19)

because internal forces under these conditions do not equilibrate with the external force applied on
the polymer.

The points of negative slope in the isometric ensemble can be explained by the torsional unfolding
of the molecule. These mechanically unstable modes are not accessible in the isotensional ensemble. As a
consequence, we see that the ensemble deviation is most pronounced around xb = 1.1, which marks the
end of the region for torsional unfolding. This was previously discussed in great detail [11]. Prior to this
region, around xb < 0.5, the molecule is twisted helically, and the relation between force and elongation
is predominantly linear due to entropic effects. In the last regime, with xb > 1.1, the molecule is planar,
and the force-elongation curve is dominated by the stretching of the individual monomers.

Differences in the Helmoltz energy are found from the isometric ensembles by Equation (11),
and the Gibbs energy differences are found from the isotensional ensemble by Equation (12).
The Legendre–Fenchel transform of the Helmoltz energy is then found by Equation (14). We present
these curves for systems of size N = 12, 24 and 51 in Figure 2a–c. The Gibbs energy is shown with an
orange line, and is compared to the Legendre transform of the Helmholtz energy in blue. It is clear that
the Legendre–Fenchel transform of the Helmholtz energy, shown with a black dotted line, gives an



Nanomaterials 2020, 10, 2355 7 of 11

approximation to the Gibbs energy that is far superior that of the Legendre transform. We would also
like to stress that the Legendre–Fenchel transform is exact in the limit N → ∞, since the saddle-point
approximation is exact in this limit.
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0.0

1.0

2.0

3.0

4.0

En
er

gy
[k

B
T

]

×10−2

f̄ x− F −G −GLF

0.9 1.0 1.1
2.5

5.0

7.5

×10−3

(b) N = 24

0.4 0.6 0.8 1.0 1.2
xb [Å]
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Figure 2. Energy as a function of length per bond for chains of PEO composed of N = 12, 24 and
51 united atoms. While the Legendre transform of the Helmholtz energy F is different from minus the
Gibbs energy G, we see that the Legendre–Fenchel transform GLF is an excellent approximation in all
three cases.
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We can see from Figure 2a–c that even for finite N, the free energy GLF (T, N, f (x1)) is in excellent
approximation equal to G (T, N, f (x1)). This shows that the exact transformation, which follows
from the relation between the partition function, given in Equation (13), as well as the approximate
Legendre–Fenchel transform, Equation (14), can be used to obtain the Gibbs energy from the Helmholtz
energy for the stretching of small polymers. The curve for f̄ (x1)x1 − F(T, N, x1) is the result of the
isometric simulations and differs from the Gibbs energy curves. This shows clearly that the Legendre
transform, given in Equation (10), is not valid for small polymers.

In Figure 3a,b we present the energies from Figure 2a,b as a function of force rather than elongation
for systems of size N = 12 and 24. As the curves for the Helmholtz energy for these systems are
not convex, the corresponding Legendre transformed curves as a function of force is not one-to-one.
This is emphasized in the inserts.
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(b) N = 24
Figure 3. Energy as a function of force for chains of PEO of composed of N = 12 and 24 united atoms.
The smallest system displays multiple singularities, one of which is emphasized in the insert. Although
less pronounced, singularities can be seen also in the system with N = 24.

The force elongation relation for the Legendre–Fenchel transformed energy can be obtained by
the derivative of GLF with respect to f , cf. Equation (17). This monotonically increasing curve is shown
with a black dotted line in Figure 4a–c, with the original force-elongation curves for comparison. It is
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clear that the Legendre–Fenchel transform is non-involutive for N = 12, and that it is involutive for
N = 51, where it reduces to the Legendre transform [14].
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Figure 4. The force-elongation curve xLF computed from the Legendre–Fenchel transform cf.
Equation (17) is compared to the force-elongation curves from Figure 1. We recognize the singular
points in GLF as jumps in xLF( f ), particularly visible in the smallest system with N = 12.
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4. Discussion and Conclusions

We have analyzed the stretching of small polymers in which the thermodynamic limit cannot
be invoked. We have shown that small size contributions to the isometric Helmholtz free energy
induce curvature anomalies in this thermodynamic potential, which disappear as the number of beads
in the polymer is increased. We described a method employing the Legendre–Fenchel transform to
manage these curvature anomalies and obtain the isotensional Gibbs free energy from simulations in
the isometric ensemble, in such a way that the states characterized by this free energy are unique.

The Legendre–Fenchel transform in Equation (14) reduces to the usual Legendre transform
(Equation (10)) when the free energy F(x) is differentiable and convex in x at constant T and N.
Legendre–Fenchel transforms rather than Legendre transforms must be used in particular because
F(x) is non-convex [5,16]. As noted previously, the Legendre–Fenchel transform always yields convex
functions and therefore, −GLF( f ) is convex in f at constant T and N. The fact that −GLF( f ) is convex
ensures that the slope of the curve x̄( f ) is non-negative, as required in equilibrium states under
fluctuations of the end-to-end distance. Remarkably, this is the case when the free energy F(x) presents
a non-convex anomaly in the isometric ensemble. This implies a negative slope in the curve f̄ (x).
The Legendre–Fenchel transform maps the states associated with the anomaly into a point f at which
−GLF( f ) is non-differentiable. This behavior is exemplified in Figure 3a,b for N = 12 and N = 24,
respectively; in particular in the inserts. Such singularities are not observed for N = 51, as F(x) in this
case is convex.

We have seen above that the Legendre–Fenchel transform enables us to transform the stretching
energy from the isometric to the isotensional ensemble also for small polymers. This removes the
limitations set by the Legendre transforms, applicable only in the thermodynamic limit, and opens up
a possibility for wider applications. The scheme documented here for molecular stretching energies
reduces to the usual Legendre transforms in the thermodynamic limit.
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