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Abstract

Fretting is a term covering a wide array of physical phenomena. When con-
tacting bodies vibrate, relative slip between the bodies cause surface damage
including wear and plasticity and cracks. Partially stuck contacts with high
stress gradients produce micro-cracks at the surface which may propagate and
cause fretting fatigue failure. Grossly sliding contacts, however, are often dom-
inated by increasing wear and loss of material.

Fretting have long been an interest to researchers in tribology and material
sciences and continues to be a relevant phenomenon in engineering practice.
Numerous theories and methodologies are applied to fretting problems, but
engineering approaches are often simpler than those found in academia. In
this thesis, fretting fatigue is investigated both numerically and experimentally
with special attention to engineering applications. It is recognised that recent
academic advancements in understanding and modelling capabilities represent
opportunities for the practicing engineer facing fretting problems.

In this thesis, traditional modelling using Finite Elements is used to solve
fretting contacts. Critical plane post-processing is used to investigate fretting
cracking behaviour. Some new experimental test rigs were developed to pro-
duce experimental results. Finally, simple, lumped-mass models were used to
investigate friction dynamics related to fretting contacts.

Keywords: fretting, fatigue, numerical, experimental, friction dynamics
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Chapter 1

Introduction

1.1 Motivations and goals

There is an ever increasing demand of efficiency in the manufacturing industry.
Engineers are faced with the the challenging task of designing reliable and per-
formant machine components with high material utilisation. The machine com-
ponents have increasingly complex geometries, are subjected to high cyclic loads
and thorough analysis is required to ensure long-lasting components. Moreover,
such components are often part of a larger, complex machinery with numerous
interacting parts. Design and production becomes an iterative process; the com-
plete system is not finished until all components concurrently comply with the
design criteria. This iterative production can in fact be very complex when non-
linear damaging effects are encountered. Early predictive capabilities become
increasingly important; efficient identification of problem areas can accelerate
the iterative design process and avoid expensive late stage repairs.

Moving contacting parts are examples of non-linearity and exist everywhere:
bolted joints, press-fits, bearings etc. Surface damage and fatigue life reduction
caused by fretting in contacts are sometimes extremely difficult to predict. Due
to the complexity of the mechanisms involved, gross simplifications are often
made and combined with full-scale testing. Full-scale testing is usually more
costly than performing computer-aided predictions. Increasing knowledge of
the mechanisms involved and with modern computational power and better
prediction methodologies, fretting fatigue can be avoided at an early design
stage greatly reducing costs.

Although fretting have been studied for over a century, its effects to fatigue
components are still elusive. Fretting fatigue damage is known to be influ-
enced by a large set of factors and its synthesis is almost chaotic in nature.
For engineering applications, detailed analysis of all the parameters involved is
impossible and compromises must be made. Simplified methods are preferred,
but neglecting important features of the problem at hand may cause surprises.
Ceaseless research into fretting fatigue generate increasing knowledge and im-
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2 CHAPTER 1. INTRODUCTION

proved predictive capabilities but some features of fretting contacts are still not
completely understood, particularly related to micro-geometry the dynamics of
the contact friction.

The gap between industry and academic approaches are in many cases con-
siderable. Whereas in industry, simple holistic methods are applied to complex
situations, the opposite is often the case in academia: complex models are ap-
plied to simple lab specimens subjected to simple loads.

The main goals of this thesis can be divided into three parts: Theoretical,
numerical and experimental. A solid theoretical foundation is important under-
stand the complexities involved in fretting fatigue and is key to form relevant
intuitions. Numerical predictive tools applicable to a wide range of industrial
settings is the ultimate goal. It can be argued that physical testing may be less
important if the predictive capabilities are good. Physical testing is still impor-
tant in fretting as large variations in physical behaviour are found. Moreover,
validation of numerical methodologies is essential.

1.1.1 Research objectives

The ultimate goal of any research project is to advance current knowledge and
to provide concrete contributions to the field. Fretting and fretting fatigue are
topics touching upon several different fields each of which with long traditions.
Contributing to such a complex field with many great researchers is not an easy
task.

The objective of this project is twofold. Firstly, there is a need for increased
knowledge and understanding of the mechanisms involved in fretting fatigue
which needs to be physically tested. Secondly, developing predictive method-
ologies are important for engineers to holistically assess fatigue problems for
the given component. A collaboration with the industry engineers is especially
fruitful due to the opportunity to assess real-world problems, and to shorten
the gap between the industrial methods and current research.

In this project, fretting is investigated both numerically and experimentally,
in an attempt to answer how certain features of contact affect the fretting be-
haviour. Of particular interest is how complex loads and dynamic friction affects
fretting contact and its fatigue behaviour. New physical testing capabilities are
devised to provide experimental data and numerical models are developed to
correlate predictions with experiments. Together, they provide a capacity for
detailed parameter studies and further work. Finally, the numerical methodolo-
gies herein devised are useful for supplementing engineering dynamics analyses.

1.2 Industrial context

Contacting metallic components are used throughout engineering. Often, these
components are subjected to severe cyclic loads, causing fretting-initiated cracks
to greatly reduce fatigue life. Fretting problems have been studied for over a
century now, and continues to be highly relevant to many fields of mechanical
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engineering. However, fretting fatigue remains rather specific, and in fact many
engineering students are unknown to its existence. Compared to plain fatigue,
fretting can reduce the component life by up to an order of magnitude [1] and
for engineers neglecting to address these effects, the consequences can be severe.

Industry problems are related to different fretting phenomena, including
wear and fatigue. Fretting wear can cause problems to press-fits and bearings
where material removal destroy tight tolerances. Fretting fatigue cause fatigue
components to crack and fail prematurely. Metal fatigue assessments of real
components remain complex due to uncertainties in microstructure and load
histories. For vibrating components in contact, relative movement (slip) cause
abrasive wear and micro-cracks to form at the surface. In many cases the com-
ponents are also subjected to bulk fatigue loads, cause fretting-initiated cracks
to propagate. This is known as fretting fatigue. Fretting fatigue is complex
due to the many interrelated factors; surface friction and roughness, material
microstructure, loading and contact geometry are among the most important
ones [2]. Fretting is also known for its dependency on very small-scale effects,
with contact partial slip and severe stress gradients at the surface.

The very intricate nature of fretting fatigue cause it to be an interesting
topic to researchers, but a headache for engineers. Although numerous relevant
parameters for fretting fatigue have been studied during the last century, many
industrial situations remain unclear. Engineers are often concerned with large
geometries and varying operation conditions which makes fretting fatigue diffi-
cult to predict and expensive to test. Many complex numerical tools to analyse
fretting have been proposed in the literature, but in industry simplified “black
box” methods are often used. Hence, in many cases there is a considerable gap
between the scientific approaches and the simple methods used in industry.

A classical industrial application is the dovetail joint used in turbine engines.
The turbine blades are attached to the engine rotor using a dovetail or fir-tree
joint causing high axial loads and relative motion between the blade and the
rotor in harsh conditions with high temperatures. This application initiated
many fretting test campaigns and gained much interest among researchers and
engineers. A somewhat related case is the fretting occurring between piston
engine valves and valve seats: thermal gradients in the cylinder heads distort
the valve seats causing non-uniform contact pressures [3]. Piston engines are
especially disposed to fretting problems as they have many highly loaded moving
parts, bolted joints and press-fits [4].
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Figure 1.1: Fretting in a main bearing cap in marine diesel engine after some
tens of thousands of running hours.

The experience with fretting fatigue in medium-speed piston engines sparked
the interest for this project. More specifically, certain features of fretting were
especially relevant to address for engines experiencing complex load cycles: fret-
ting fatigue crack initiation and how the friction properties affect contact be-
haviour. Ultimately, the goal is to improve the efficacy of analysis and early-
stage predictive capabilities, mitigating the need for full-scale testing and thus
reducing production costs.
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1.3 Thesis outline

Previous Sections described difficulties related to fretting and fretting fatigue.
This thesis presents project work aiming to contribute to both industrial and
academic methodologies through a collection of scientific publications. Relevant
theory and supplementary analyses are included in the dissertation for improved
consistency.

The thesis can be divided into two main parts: experimental and numerical.
Experimental fretting fatigue test rigs were developed and put to use. The
numerical part is twofold: Quantitative analyses of fretting fatigue cracking
behaviour and lives using multiaxial fatigue criteria and qualitative analyses of
frictional behaviour with non-linear lumped-parameter models.

The following list presents a general outline of the thesis.

Chapter 1 Presents a context for the project work and the accom-
panying scientific publications. Difficulties with fretting
are described and both academic and industrial interests
in the topics are briefly outlined.

Chapter 2 Describes methodologies related to Finite Element anal-
yses and fretting fatigue cracking behaviour. Theoretical
foundations and some relevant historical background is
included for completeness.

Chapter 3 Describes experimental work conducted to investigate fret-
ting fatigue. The development of new testing facilities is
described and challenges therein. Experimental data are
compared with numerical predictions and some recom-
mendations are given for further experimental work.

Chapter 4 Presents discrete lumped-parameter models used to sim-
ulate dynamic properties of frictional contacts. The sim-
ulations provide insights into rich dynamic response and
may be used to inform the Finite Element analyses.

Chapter 5 Presents concluding remarks and recommendations for
further work.

Appendix Contains the scientific publications related to this Ph.D.
project thus far. A number of expositions used through-
out the project that are potentially useful for the reader
is also included.
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1.4 List of contributions

This thesis includes four scientific papers on the topics related to this project
and fretting fatigue in general. These publications can be found in full in the
appendices but a brief summary of the contributions will be presented in this
section. All publications were written by Steffen L. Sunde, with the supervision
from Bjørn Haugen and Filippo Berto.

1.4.1 Paper I

A review paper seeking to collect and review recent developments within the
field of fretting fatigue. The field have grown large and numerous papers are
published on fretting fatigue every year. Therefore, review papers are occa-
sionally very beneficial to gather recent progress. The paper has a focus on
developments relevant for engineers. More specifically, critical plane methods,
notch analogies and crack analogies are highlighted as potential useful tools for
the practicing engineer.

Predicting fretting fatigue in engineering design

S.L. Sunde, F. Berto, B. Haugen

International Journal of Fatigue, Volume 117, December

2018, Pages 314-326

https://doi.org/10.1016/j.ijfatigue.2018.08.028

1.4.2 Paper II

Shear stress-based critical plane criteria are popular amongst engineers and
researchers alike. In this paper, the efficiency of such criteria are addressed
and potential improvements are presented. More specifically, the critical plane
search space is discretised using triangular cells and adaptively refined. Details
of implementation and choice of programming language were also investigated.
Not surprisingly, compiled language (C++) were found to be around two or-
ders of magnitude faster than interpreted language (Python). The adaptive
refinement technique was found to be efficient and accurate, but at a cost of
implementation complexity. Ordinary brute force methods are usually adequate
but triangular elements nonetheless discretise the search space more uniformly
than regular angular increments.
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Efficient implementation of critical plane for 3D

stress histories using triangular elements

S.L. Sunde, B. Haugen, F. Berto

International Journal of Fatigue, Volume 134, May

2020, 105448

https://doi.org/10.1016/j.ijfatigue.2019.105448

1.4.3 Paper III

A short communications describing the state of fretting fatigue assessments in
the industry of medium-speed reciprocating engines. Here, large and complex
machine components are subjected to non-proportional load histories. Engine
dynamics are usually solved using condensed multi-body models that provide
the loading conditions for subsequent fretting analyses using Finite Element
Methods. Fretting analyses are usually conducted using simple Ruiz-like pa-
rameters combined with industry experience. There is an obvious potential for
more elaborate analysis at different stages in the development process with the
available time and information at each stage. Critical plane methods are also
used, but usually at a later stage in the design process due to efficiency and
little information available.

Fretting in medium-speed reciprocating en-
gines - Comments on practices and opportu-
nities
S.L. Sunde, F. Berto, B. Haugen
Material Design & Processing Communications,
2020; e201
https://doi.org/10.1002/mdp2.201

1.4.4 Paper IV

The development of a new test rig is demonstrated and put to use. The test rig
is based on the dovetail joint and the many test fixtures found in literature on
such joints. The fixture is simple, but allow for testing with a variety of different
conditions. Inserted contact pads provide a simple means to test different con-
tact geometries, material combinations and surface treatments. Enclosing the
lower fixture gripping bracket should permit testing in submerged conditions.
The usual disadvantage of the dovetail test configuration is that there is less
control over contact conditions; this is also the primary drawback of this test
fixture. However, using a multiaxial fatigue machine, the torsional actuator can
be used as an additional source of excitation to the specimens. The test rig
is demonstrated with a simple test program with Ti-6Al-4V specimens. The
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tests were simulated using Finite Element Methods and post-processed using
critical plane methods with Theory of Critical Distances. It was found that
very simple analyses using bulk material properties and assumptions made for
the coefficient of friction could predict the cracking direction and life within a
certain accuracy. The fixture is concluded to be useful for further experimental
work.

Experimental and numerical fretting fatigue
using a new test fixture
S.L. Sunde, B. Haugen, F. Berto
International Journal of Fatigue, Volume 143,
February 2021, 106011
https://doi.org/10.1016/j.ijfatigue.2020.

106011
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Chapter 2

Numerical fretting fatigue

This is the most important chapter of the thesis. A considerable amount of work
have been put into numerically simulating fretting fatigue. Being able to calcu-
late and predict fretting fatigue is an important goal for engineers as physical
testing is not always possible in the time frame given. Thus, early predictions
can cause considerable cost-savings and avoid unnecessary design iterations.
The finite element methods are already well known for practicing engineers and
form the basis for solving fretting contacts in this project. Continuum mechanics
and contact mechanics are used to determine the stresses and strains occurring
in sliding contacts assuming smooth surfaces and isotropic materials.

2.1 Contact Mechanics

As fretting and fretting fatigue are phenomena that occur in contact problems,
the advantages of understanding contact mechanics are clear. Most real fretting
contacts are too complex to be analysed using analytical methods, and numeri-
cal discretisations and computer solutions are necessary. Nonetheless, an under-
standing in basic contact mechanics gives key insight into fretting behaviour.
The equations demonstrated in this section are used throughout relevant re-
search as well as in this thesis. Analytic models are appropriate for engineering
situations with rolling contact; roller bearings, gear meshing, cam-rollers etc.
However, analytic sliding contact is more involved, as will be demonstrated in
this section. The use of Finite Element Methods is addressed in section 2.5. In
the following, the basics of contact elasticity and frictional contact relevant for
the fretting are covered.

11
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Figure 2.1: Different classes of contact with fundamentally different behaviour.

As early as in the late 1800, researchers started mathematically describing
contact. Hertz [5] derived relations for simple frictionless contacts in the 1880s,
which later formed the foundation for a whole separate field of contact that can
be called Hertzian theory. Hertz analysed the stresses occurring in cylinders
and spheres in frictionless contact and derived simple closed-form solutions that
are still used in engineering. Later, these models were extended to include the
effects adhesion.

Contact can be divided into several types that behave in fundamentally
different manner. One of the most relevant classifications is whether the contact
is complete or incomplete. Contact problems where at least one contacting
surfaces is convex are incomplete contact. In these configurations contact area
increase with increasing pressure and the contacting bodies have a common
surface tangent at the edge of contact, see e.g. point contact (a) in Figure 2.1.
In complete contact however, the contact area is independent of the pressure,
see type c and d in.

Half-plane (two-dimensional half-space) is the theoretical idea of the entire
two-dimensional plane being divided into two. Many contact theories assume
one of the contacting bodies to be described as a half-plane, i.e. having semi-
infinite dimensions. This assumption of half-plane theory holds to a reasonable
degree when contact is small compared with the dimensions of the real body.

When two bodies are pressed against each other, material particles at the
surfaces are displaced both in normal and in tangential direction. If the bodies
are elastically similar, the tangential displacements are the same for the two
bodies for a pure normal force and no slip occurs. Hence, contact is independent
of the friction and no tangential traction occurs. In this uncoupled solution,
Hertz pressure profile are still valid under the influence of tangential load. For
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elastically dissimilar bodies however, slip occurs due to pure normal force and
the tangential and normal solutions are therefore coupled. Most real fretting
contacts are elastically dissimilar to some degree but uncoupled solutions are
often used as approximations. See e.g. Nowell [6] and Hills et al. [7] for analyses
on coupled solutions for cylindrical contact with tangential loads.

The contact between cylinder and half-plane is given special treatment here.
This contact is essentially a specialisation of cylinder-cylinder contact where one
of the cylinders have infinite radius. This case is demonstrated in Figure 2.1b.
Similar (Hertzian) line contact was used in the experimental campaign in Paper
III and forms the pressure profiles studied numerically in paper V, see section
4.

Due to the work of Hertz [5], the parabolic pressure profile p(x) from a
cylinder pressed onto a half-plane can be expressed as

p(x) = p0

√
1− x

a

2
(2.1)

where x is positional coordinate with origin in the contact center, p0 is the peak
pressure and a is the contact half-width, see figure 2.2. The peak pressure is
obtained by

p0 =
2P

πa
(2.2)

where P is the contact force. Lastly, the contact half-width is obtained by

a =

√
2PE∗

πR
(2.3)

Where the composite elasticity E∗ is given for plane strain conditions for similar
materials by

E∗ =
4(1− μ2)

E
(2.4)

Where μ is the material Poisson’s ratio and E is the Young’s modulus.
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Figure 2.2: Normalised Hertz (line) pressure profile

For more literature on closed-form solutions, readers are referred to literature
on contact mechanics [8, 7].

A fundamentally different type of contact is the sharp-edge contact as shown
for the complete types in Figure 2.1d. Here, the contacting bodies do not have
a common surface tangent at the edges and so the resulting contact pressure
is singular. Notionally sharp-edged contacts are usually avoided in engineering
practice, but can in practice be seen e.g. in bolted joints.

2.2 Sliding contact

Frictional contact problems with shear loads are much more involved, and most
analyses relies on half-plane theory. When a tangential force is applied to the
contacting bodies, shear tractions act across the two surfaces opposite in di-
rection but equal in magnitude. Relative motion (slip) between the surfaces
dissipate energy. Friction is clearly one of the most important factors affecting
fretting fatigue as the shear tractions cause strong subsurface stress gradients
and due to friction work causing surface wear. The relationship between slip
amplitude and fretting behaviour have been debated in literature for decades
[9]. The friction properties of a contact depends on numerous parameters and
is not a function of the material combination only. In many cases though fric-
tion stress q is assumed to depend on the material combination through the
coefficient of friction μ (COF) and limited by

|q(x, y)| = μp(x, y) (2.5)

where q(x, y) is the shear traction at the position (x, y), μ is the coefficient of
friction and p(x, y) > 0 is the pressure. Note that the form of equation (2.5) is
local, i.e. the values are functions of position. When a shear load Q is applied to
the bodies, two possible situations occur; if the load exceeds the shear limit, the
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bodies will globally slide against each other. For any lower shear load however,
the contact is in a state where some parts of the contact area remains stuck
whilst others slide. The latter state is known as partial slip and is especially
critically in fretting fatigue causing high shear stress gradients.

The analysis of partial slip usually starts with Cattaneo [10] and Mindlin
[11] who independently derived relationships describing the case of partial slip
for elastically similar convex contact.

Consider cylinder-on-plane contact as shown in Figure 2.1b with its pressure
profile being described in equation 2.1. When a tangential force Q is subse-
quently applied to the cylinder, parts of the contact surfaces will start to slip.
As long as the tangential force is less than the limiting value of static friction,
i.e. Q < μP , the contact will be in partial slip. More specifically, as the pressure
as seen in Figure 2.2 vanishes at the contact edges, sliding will in theory initiate
at the edges even for vanishingly small shear force. As the force increases so
does the amount of area in slip, usually denoted c. This is illustrated in Figure
2.3

She slip size is found by assuming the partial slip shear stress profile q(x) to
be a perturbation of the fully sliding solution [7],

q(x) = μP + q′(x) = μp0

√
1− x

a

2
+ q′(x) (2.6)

where q′(x) is the correcting term active in the slip zones (a > |x| > c).
By integrating the shear over the contact the extent of the stick zone may be
expressed as

c

a
=

√
1−

∣∣∣∣ QμP
∣∣∣∣ (2.7)

This is a very important relation in analytical fretting fatigue. For details
of its derivation, reader is referred to e.g. [7]. The shear profile resulting from
equation (2.7) can be seen in Figure 2.3 for different values of coefficient of
friction.
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Figure 2.3: Normalised shear stress for partial slip conditions for cylinder-on-
plane contact.

The partial slip conditions described by equation (2.7) is only for monotoni-
cally shear loading. As fretting fatigue is subjected to cyclic tangential force ±Q
however, the shear stress can be describes as varying between this expression
on either side of the extremes [7]. The shear distribution becomes dependent
on the load history.

The cyclic loading experienced during fretting fatigue reverses the sliding
direction for each cycle. As the tangential force reverses direction, the contact
area instantly sticks. Further reduction in shear loading cause reverse slip to
occur at the contact edges. A new slip zone c′ < |x| ≤ a occurs and an additional
correction term is needed to applied to the shear distribution. This is given by

q′′(x) = 2μp0
c′

a

√
1− x

c′
2

(2.8)

where the factor 2 is to cancel out the previous correction. A similar shear
evolution is found when analysing Hertzian contact with varying normal load,
as was the case in Paper IV (See Appendix A.4). As the normal and shear
traction vary proportionally in the dovetail configuration, the stick boundaries
move considerably during the load sequence, se Section 2.5.2.

In-depth analytical treatments of frictional contacts is out of scope in this
thesis. For more in-depth theories on analytical sliding contacts, the reader
is encouraged to read book on fretting fatigue by Hills and Nowell (1993) [7]
and more recent extensions to Cattaneo-Mindlin. Jäger [12] and Ciavarella [13]
independently found that the Cattaneo-Mindlin method applied to any contact
problem for which half-plane theory applied. This meant that general partial slip
conditions could be analysed for contacts using the shear correction methods.
Thus, many types of contact could be analysed without resolving to numerical
discretisation.
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Thus far, contact between two bodies have only been addressed on a macro-
scopic level, i.e. neglecting the fact that real surfaces are rough. The assumption
of smooth surfaces is a valid assumption in many cases of engineering design.
Contacting bodies are usually machined with high precision, ground and or
polished and the effects of roughness diminishes compared to the stresses de-
termined by macroscopic geometry. The initial surface roughness do however
play an important role for the friction properties and gross slip wear rates [14].
For studies on fretting fatigue including the effects of surface roughness, see e.g.
Yue and Wahab [15].

Closed forms solutions described in this section only apply to convex (com-
plete) contacts. Flat or sharp-edged contacts (see Figure 2.1) have singularities
that need special treatment. Sharp-edge contact do sometimes occur in engi-
neering applications and these behave fundamentally different from the rounded
contact for which closed-form equations exist. Much fretting research have stud-
ied sharp-edge contact and the stress concentrations occurring at the contact
edges. Its similarity to the singular stress fields surrounding crack tips have
caused tools developed in the field of fracture mechanics to be applied, see Sec-
tion 2.4. As fretting cracks are usually found at the edges of contact where
its nucleation and early growth are dominated by the severe stress gradient,
analysing the Sackfield et al. [16] introduced asymptotic methods to charac-
terise the edge of contacts. The application of asymptotic matching is an ex-
citing method to analyse the stress fields surrounding sharp edges in fretting
contacts. See e.g. [16, 17]. Semi-analytical methods are also used on fretting
contacts [18, 19].

2.3 Fretting contacts

Due to friction, relative sliding motions will cause damage to the contacting
surfaces. The nature of this damage and indeed its severity depends on numer-
ous factors, where one of the most cited factor is the sliding amplitude. The
dependence of fretting on sliding amplitude was early recognised, though the
mechanisms behind it have been debated. A classical graphical demonstration
of this dependence was given in the seminal paper by Vingsbo and Söderberg in
1988 [20], where fretting fatigue life was plotted with a non-monotonic U-shaped
curve with displacement amplitude, see Figure 2.4. Here, fretting wear is seen
to monotonically increase. A similarly shaped relation was given by Waterhouse
[21], but with life plotted as a function slip amplitude.
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Figure 2.4: Relating the slip amplitude to fretting regime, as demonstrated by
Vingsbo and Söderberg [20]

Fatigue life is seen to decline as the slip amplitude increases whereas wear
increases. This motivated fretting behaviour to be divided into different regimes
depending on the mechanisms involved. For very small values of slip, the con-
tacting bodies are generally stuck, acting almost as one body with edge cracks.
As mentioned in section 2.1, cylindrical contact will experience local slip at the
edges when loaded tangentially, even for the smallest shear force. Similarly,
spherical (point) contacts experience an annulus of slip. In real contact, rough
surfaces experience local slip on asperity levels. Hence, some slip is inevitable,
and real contacts often fall into the partial slip or mixed regimes, rather than
being fully stuck. At low values of displacement amplitude, most fretting con-
tacts are in partial slip. In this regime, increasing shearing stress (thus also
slip amplitude), causes the stress singularity at the slip boundary to grow. At
the trailing edge of contact, increasingly favorable conditions for surface crack
initiation. As the sliding amplitude increases, contact enters the mixed stick
regime, where fatigue damage is greatly reduced but wear is still modest.

Interestingly, the fatigue life increases as the sliding amplitude is further
increased, moving into the gross slip regime. When the shearing force surpasses
the frictional limit, contacting bodies will slide nominally and hence, the shear
stress singularities are reduced. As the sliding amplitude increases, so does
the frictional work (wear) which promote debris formation and particle ejec-
tion. This can increase fatigue life by improving the contact conformity and by
removing initiated cracks before they are allowed to propagate.

Indeed, there have been many misinterpretations of the dependence of fret-
ting on slip amplitude. As noted by Pearson and Shipway [9], the strong rela-
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tion between fretting sliding amplitude and wear coefficient is often caused by
a negligent of differentiate far-field displacement from the near-contact sliding.
Additionally, the researchers point to a threshold duration for fretting wear to
occur. There are a number of factors that can cause so-called false fretting,
where relative motion is accommodated, resulting in less surface slip [22]. Re-
cent research shows a much less clear relation between the slip amplitude and
wear coefficient, and in some cases actually independency is suggested [9].

Perhaps the most important contribution in the aforementioned paper by
Vingsbo and Söderberg was the introduction of the concept of “fretting maps”.
Today, characterising fretting behaviour and material response using different
graphical tools, i.e. maps is in many ways a sub-field of fretting in itself. A
fretting map is, simply put, a visualization of certain fretting variables of interest
to distinguish the different regimes and identifying the critical values of said
variables. For more information about recent development in fretting maps,
readers are referred to [23].

It is clear that tribological mechanisms plays an important role for the fret-
ting damage modes. Although for nominally stuck contacts, frictional work is
limited and surface stress gradients are severe. Hence, in many such cases sur-
face fatigue crack formation dominates the problem and wear can be neglected
[24]. Nonetheless, some amount of micro-slip do occur, and local fretting dam-
age is governed by factors such as surface hardness and roughness as well as
loading and material microstructure. Particle detachment starts as soon as the
bodies slide against each other but for fretting fatigue applications in the stick
and mixed regime, particle detachment and ejection are limited. As the slip am-
plitudes increase, so does wear and particle detachment. In some cases, particles
forms a third body, protecting the first bodies, in others, hard particles cause
abrasive wear to the contact. Especially for hard coatings, entrapped debris
can form such abrasive particles when detached from the first bodies. Other
effects that can play important roles are surface oxidation, work hardening,
micro-plasticity, surface residual stresses etc.

2.4 Fretting fatigue

Microscopic material damage starts to accumulate immediately upon fretting
loading and is a continuous process during cyclic loading. If the loads are high
enough, accumulated damage will eventually have formed a defect that may be
called a crack. The initiated cracks are microscopic in size and their behaviour is
therefore strongly influenced by local geometry, material microstructure, defects
and surface roughness. Hence, modelling the process of crack initiation is very
difficult and empirical methods are used.

In plain fatigue, cracks usually initiate at surface flaws (e.g. micro-cracks
from the machining process) but can also initiate at internal material voids,
pre-existing flaws or inclusions. For smooth specimens, microscopic plastic slip
can drive an accumulation of dislocations along persistent slip bands [7] which
subsequently develops into cracks. For the case of fretting fatigue, crack initia-
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tion is usually caused by the presence of high tensile stresses at the surfaces by
the stick-slip boundary (see Section 2.2). These tensile stresses frequently form
multiple micro-cracks at the surfaces, some of which will continue to grow whilst
others might self-arrest. Once a crack have grown large enough, its behaviour
is dominated by the stress raisers from the crack tip itself. In this case it may
be classified as being in the propagation phase.

Numerical models of fretting crack initiation are often decoupled from the
crack growth stage. A popular methodology to model the initiation phase is
using multiaxial fatigue criteria and critical plane methods, see Section 2.7.
Continuum Damage Mechanics (CDM) uses damage evolution laws directly in
the constitutive equations, see e.g. [25, 26, 27, 28].

There is no rigorous definition that separates the initiation and propagation
phases of a crack. An initiated defect is sometimes heuristically defined to be the
smallest detectable crack, which is of course not unambiguous as it depends on
the method with which the cracks are detected. A more appropriate definition
can be derived from fracture mechanics; as the crack becomes larger than one
or two grain sizes, its behaviour will be increasingly dominated by the crack
tip singularity, and it may be described by fracture mechanics regime. Thus,
initiation is the duration of damage accumulation until its subsequent behaviour
can be described by fracture mechanics. It is clear that for a crack on the same
scale as microstructure features, the assumption of isotropic material will not
hold.

Williams [29] analysed in 1950s the state of stress surrounding singularities
and demonstrated the stress at the tip of a crack (in polar coordinates) to
be square-root singular with the distance r from the crack tip, see Figure 2.5.
The spatial variation of stress depends upon whether the load is normal, in-
plane shear or out-of-plane shear stress and the strength of the singularities are
characterised using the mode I, II and III stress intensity factors (SIF), KI ,
KII and KIII respectively.

Mode I Mode II Mode III
Opening In-plane shear Out-of-plane shear

Figure 2.5: Three modes of crack loading.

The crack tip stress fields are aptly described using a polar (or cylindrical)
coordinates as shown in Figure 2.6.
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Figure 2.6: Crack tip stresses in polar coordinate system

The state of stress near the crack tip may consequently be expressed as a
combination of the three modes,

σij(r, θ) =
1√
2πr

(
KIf

I
ij(θ) +KIIf

II
ij (θ) +KIIIf

III
ij

)
(2.9)

where σij(r, θ) is the stress tensor at the position (r, θ). The functions fij(θ)
are functions describing the angular variation of the stress field, while it is clear
that the the stress intensity factors determines the strength of the field. Indeed
as one approaches the crack tip x → 0, the stress grow infinitely large. Turn-
ing the preceding equations around, stress intensity factors can be calculated
numerically using e.g. finite element method. The stress intensity factors are
subsequently used with a suitable criteria for crack propagation and direction
[26]. Consider for simplicity the SIF

K = Y σ
√
πa (2.10)

where Y is the geometrical correction, e.g. accounting for the fact that spa-
tial dimensions are in fact not infinite. The driving force for crack propagation
is the range of stress intensity factor given by

ΔK = Kmax −Kmin (2.11)

Using the stress intensity factor range, crack propagation can conveniently
be divided into the following three stages [7].

Stage I Once a crack is “initiated”, its early growth is often dominated by Mode
II, i.e. driven by shear loading the accompanying plasticity.

Stage II As the crack becomes microscopically large, the crack tip stresses will
dominate its growth in Mode I.

Stage III At some point, the crack will have grown so large that the reduced cross-
section area of the component are unable to carry the load and the crack
growth rate accelerates until failure.



22 CHAPTER 2. NUMERICAL FRETTING FATIGUE

These stages are visualized in Figure 2.7 where crack growth rate da/dN is
plotted as a function of the stress intensity factor range in a log-log scale.

Stage II Stage IIIStage I

log( K)Kth

lo
g(

da
/d

N
)

1
m

Figure 2.7: Three stages of crack growth

Stage II is often called the Paris region due to the linear, predictable nature
of the crack growth rate. This linear relation for da/dN is expressed by the
Paris’ equation,

da

dN
= A(ΔK)m (2.12)

where ΔK is the Mode I stress intensity range and A and m are material
parameters.

Equation (2.12) is used in fretting fatigue analyses when crack growth rep-
resents a considerable portion of the total fretting life. Recall that initiation
mechanisms should be treated. The Paris equation is often used when investi-
gating fretting fatigue cracking behaviour by subtracting the crack growth phase
from the total cracking life [30]. The material parameters are often found in
literature and material textbooks. Note however that in practice, growth rate
and orientation may depend on mixed-mode features, load ratio and other fac-
tors [26]. These aspects are not treated here. The relations derived here are
also important in crack arrest methods in fretting, see Section 2.4.1

A simple definition of crack path is obtained by assuming the crack to grow
in Mode I, consequently utilising the mixed-mode SIF expressions to calculate
the crack orientation: finding the orientation for which KII is minimized [31].
There are however numerous different criteria to define crack path and in fretting
fatigue, see e.g. [32, 26].

The application of linear elastic fracture mechanics to cracks relies on ne-
glecting (minimising) the effects of plasticity. Some local plasticity will always
occur at the crack tip, but in many cases the extent of this plastic process zone
is small; the surrounding stress field is elastic and the stress intensity factors
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applies. The plastic zone can be expressed by

rp =
1

3π

(
KI

σy

)2

(2.13)

where rp is the radius of the plastic zone and σy is the yield strength of the
material. This is following Irwin’s plastic zone definition assuming Von Mises’
yield and Mode I loading in plain strain [7].

The above separation of crack into stages is a simplification since mixed-
mode effects are omitted. The stress fields found under fretting contact are
multiaxial and early fretting crack growth are most likely affected by mixed-
mode effects and crack closure effects. Once a crack have grown out of the
influence of contact stresses, crack growth is determined by the bulk loading
and is essentially a plain fatigue crack propagation problem. Hence, fretting
really only affects Stage I and a portion of stage II [33].

The theories of linear elastic fracture mechanics demonstrated in this brief
overview are relevant for fretting fatigue not only due to the characterisation
of crack propagation. An equivalence between the square-root singular stress
fields at crack tips (recall equation (2.9)) and the stresses from sharp-edge fret-
ting contacts. This equivalence was noted by Giannakopoulos et al. [34] and
sparked a interest amongst researchers in crack analogies. Similarly, the condi-
tions of small-scale yielding is usually assumed. Mugadu et al.[35] used more
general asymptotic stress matching to characterise fretting fatigue stress fields,
later applied to incomplete contacts [17]. Asymptotic methods to fretting fa-
tigue is not the focus of this thesis but it is acknowledged that these tools can
be appropriate tools in many engineering contexts. Asymptotic methods are
useful for fretting fatigue because it provides means for characterising the most
detrimental fields (surrounding the contact edges) from which cracks nucleate,
circumventing the need to analyse the entire contact. Thus, the local stress
fields may be matched with those in experiments and as such be used to quan-
tify fretting fatigue strength.

2.4.1 Crack arrest

Self-arrested fretting cracks are often found in engineering applications [36, 37].
As illustrated in Figure 2.7, the power law breaks down in stage I where the
cracks are short. The existence of a threshold condition for which cracks do not
grow is often assumed and can be used as fretting fatigue threshold conditions.
In many contacts, the stress gradient is so severe that micro-cracks form at
the surface, but quickly grow out of the highly stressed material and hence
potentially self-arrest. Fretting cracks are frequently seen to be initiated from
the trailing edge of contact, and grow in shear mode obliquely under the fretting
contact where compressive stresses can cause the crack to close [38]. If the crack
is fully closed before reaching stage II, it will arrest.

Short crack methodologies have been applied to fretting fatigue to find
threshold conditions. Plotting the threshold stress intensity factor as a function
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of crack length, the threshold regimes for crack arrest can be found. The well-
known diagram of Kitagawa-Takahashi (K-T) is an example of such a diagram
used on fretting fatigue [36]. Other transition curves used are El-Haddad [39],
and Bazant curves [40].

2.4.2 Fretting fatigue stress histories

Fretting fatigue initiation and early crack growth is complicated by the fact
that the stress fields under contact in general are multiaxial. Due to the non-
linearity of contact, most stress variations are also non-proportional even for
proportionally applied loads. This means that the stress tensors have compo-
nents that individually change throughout the load history. If all the oscillating
stress components are in-phase, the principal direction of the stress is constant,
and the load is classified as proportional. In non-proportional loading, however,
the stress components change in a non-proportional fashion, and the princi-
pal direction of stress rotates. Consequently, the orientation of the material
plane experiencing the most damaging stress is not known a priori. In non-
proportional loading, the material may experience additional hardening due to
non-planar slip bands, which can greatly reduce the fatigue life [41]. Sensitiv-
ity to non-proportional loading varies from material to material, depending on
its microstructure, hardness etc. [42]. Many steels have been found to experi-
ence non-proportional hardening, while e.g. aluminium alloys are less affected
[43]. In general, non-proportional loading is known to be at least as damaging
as proportional loading, and should be accounted into the fatigue model [44].
This suggests that fatigue damage accumulates on different material planes in-
dependently, and that critical plane models are physically ground. Section 2.7
discusses the application of critical plane which was used in Paper IV (see Ap-
pendix A.4) to predict fretting fatigue initiation life.

When fatigue assessments are to be made in terms of life predictions, dam-
aging load cycles have to be identified and properly accounted for. For variable
amplitude load histories, this require cycle counting algorithms to identify the
load reversals. Uniaxial and equivalent stress (e.g. von Mises) histories have
only one dimension and therefore permit cycle counting using traditional Rain-
flow counting [45] but multiaxial stress histories cause some problems. Since
non-proportional load histories can have stress components with individual re-
versals, counting is non-trivial. Attempts to perform multiaxial cycle counting
have been made by applying Rainflow counting on each projected material plane
[46]. Other methodologies executes the counting on relative quantities of the
stress invariants. Wang and Brown [47] performed counting on the relative von
Mises strains to overcome the problem of load sign loss in the stress invariants.
Meggiolaro and de Castro [48] proposed a modification to avoid the largest load
range to be missed. Anes et al. [49] proposed a “stress scale factor” between the
shear and axial stresses to which counting was made. In most fretting fatigue
experiments, cycle counting is avoided since the load histories are simple. In
engineering practice however, complex load histories are often encountered and
care must be taken to correctly identify all relevant damaging events. Susmel
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and Taylor [50] counted on the equivalent (resolved) shear stress on the material
plane experiencing the largest variance of the counting variable. Proper cycle
counting is especially important in fretting fatigue crack initiation when equiv-
alent stresses are calculated in the candidate plane, see Section 2.7. In CDM
models, damage evolution models are usually incorporated directly into the FE
solver.

It has already been described how fretting contacts cause severe stress gra-
dients. Such stress raisers clearly affect the fretting fatigue performance, but
the exact consequences for the crack initiation and growth is complicated, as
the stress field variations becomes very non-uniform. For fatigue assessments
dealing with stress raisers, such as in fretting contact, the gradient is seen to
greatly affect fretting cracks [51, 52]. In such cases local (hot spot) methods
becomes over-conservative and averaging techniques are often used, e.g. using
the Theory of Critical Distances [50, 53]. The next section addresses the use of
such averaging methodologies in the presence of stress raisers.

2.4.3 Theory of Critical Distances

It is well-known in fatigue that utilising the peak values from stress raisers
can cause gross over-estimation of fatigue damage. If one assumes that the
physical processes that initiate and drive a crack is relevant over a material
volume of certain size, one would expects individual discrete point stresses to
not necessarily fully determine material damage. In this view, fatigue damage
should be evaluated over a spatial dimension. The size of this dimension is
expected to be related to the material and its fatigue properties [54, 55], but is
more recently also related to the the stress raiser itself, see e.g. [56, 24]. The
effect of stress gradients on fatigue life has long been researched in the field
of notch fatigue, but researchers have found the methods to work well for the
stress raisers in fretting contacts as well, making the fretting crack initiation
analysis to be amenable to the tools developed by notch fatigue. Figure 2.8
demonstrates this symbiosis.

Giannakopoulos et al. [34] pointed out the quantitative equivalence between
stress concentrations from sharp-edge contacts and notches, coining the term
“crack analogue” for fretting fatigue. Although the stress gradient in fretting
case is usually much more severe than in the case of notches, the analogy is
clear and quite useful. For more on such notch analogies see e.g. Nowell and
Dini [57] and Ciavarella [58].
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Figure 2.8: Comparing notch fatigue evaluation with fretting fatigue at a dis-
tance or averaged over a volume.

The local hot-spot fatigue analysis will in some cases act as reassuring con-
servatism to the practicing engineer, but in many other cases, depending on
the severity of the stress raisers, cause expensive designs. Non-local analysis
methods have been proposed to handle the stress raisers and the resulting size
effects. In notch fatigue, the Method of Critical Distances [59, 54] considers
various forms of averaging schemes; in the point method, fatigue is evaluated at
a single point evaluated at some critical distance from the peak (hot-spot). The
Line method averages the values over a line and the area/volume methods uses
the averaged stress over a certain area/volume of material. The point method
can simply be expressed as

σeff = σ(r = d) (2.14)

whereas averaging schemes can be written as

σeff =
1

|Ω|
∫
Ω

σ(r)dr (2.15)

where the averaging domain Ω can be a line, area or volume.
A common method to determine the static length scale L is by considering

the size of the process zone to be related to material fatigue limit as

L =
1

π

(
ΔKth

Δσ0

)
(2.16)

where Kth is the threshold stress intensity factor and Δσ0 is the uniaxial
fatigue limit. This length can be recognized as the transition length from short
cracks to long cracks [39]. The shape and size of this spatial dimension is some-
what arbitrary but it is recognized that non-propagating cracks are confined to
a process zone of such size.

In Paper III (see Appendix A.3), both volume method and point method
was used in an attempt to predict fretting life for a series of dovetail fretting
specimens. See Section 3. Here, the critical distance was averaged over the line
along the cracking direction under fretting, i.e. slightly oblique.
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2.5 Finite element modeling

The finite element method is a family of mathematical tools to solve partial
differential equations (PDE). During the last few decades the Finite Element
Method (FEM) has become very accessible to engineers and researchers and is
now considered by many to be the primary tool to solve fretting contact stresses
and strains. Most practical contacts can be solved using commercial FEM soft-
ware packages and sometimes even using open source libraries. Some common
commercial packages are Abaqus, Ansys, NX-NASTRAN, which usually are
freely available for students. Examples of popular open source libraries are
deal.ii [60] FEniCS [61] and GetFEM++ [62] amongst many others. Although
many open source alternatives are quite advanced, its usage in engineering prac-
tice is often limited and commercial packages dominate. Additionally, contact
algorithms are considered advanced features that are more developed and read-
ily available in commercial software. In this thesis Abaqus is used extensively
to solve fretting contacts. Relevant examples can be seen in Section 2.5.1 and
Paper IV (see Appendix A.4). A drawback with the increasing availability and
simplification of FEM is the many potential pitfalls involved: Mistakes can be
easily made and difficult to investigate. This is certainly the case when it comes
to frictional contacts. In this section, the application of FEM to solve fretting
fatigue is briefly discussed.

The main idea behind the finite element method is given in its name. Instead
of solving the PDE over the entire continuous domain, the domain is divided
into a finite number of discrete elements. Using the weak (integral) form of
the equations and a set of chosen test functions, the discrete equation system
is solved for the unknown field variables. For linear systems, solution methods
consist mainly of matrix operations. The solutions are approximations by def-
inition but discretisation error vanishes for increasingly refined element grids.
Highly refined mesh is especially important in areas where the field variables
have large spatial variations, which is indeed the case for fretting contacts. See
e.g. 2.15.

Contact introduces nonlinear constraints to the discrete equations and is
therefore only suitably solved using nonlinear solvers. These solvers perform
additional contact iterations to find converged solutions. For three-dimensional
models the additional iteration steps can be very expensive computationally,
depending on the details of contact algorithms.

In practice, solving FE contact problems involve many algorithmic options,
and its often a trade-off between accuracy and computational cost. When two
bodies come into contact, forces are transferred between the two surfaces both
in normal and tangential directions. However, as the contact area itself is un-
known, special algorithms are necessary to determine which nodes that come
into contact. Usually, the surfaces that might come into contact are assigned
contact elements prior to the analysis. The contact solver will track the el-
ements during the analysis, detect contact and iterate on the solution. For
fretting problems, such “surface-to-surface” definition is most relevant.

Real contacting bodies do not penetrate each other and the contact solver
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can enforce this condition (“hard contact”) by using Lagrange multipliers. This
method causes additional unknowns to the equation systems which can be costly
for large models. Normal conditions are alternatively solved using a penalty
stiffness. A small amount of penetration is then allowed but is controlled by the
normal stiffness. A high penalty parameter cause small penetration (error) but
can make the stiffness matrix ill-conditioned and cause difficulties for the contact
solver. Values for penalty parameter are often chosen based on the stiffnesses of
the first bodies, but in practice some experience and trial-and-error is common.
In case of fretting contact, hard contact is frequently used [63, 15] but in many
cases penalty stiffness solutions are sufficiently accurate [64].

Lagrange multipliers are also used to solve tangential constraints and is often
chosen for problems where slip resolution is important, like in fretting fatigue.
By using multipliers accurate slip values are enforced and proper slip conditions
can be found, again at the cost of additional unknowns. Convergence problems
can also occur as oscillations in stick/slip status and may require additional
solver iterations. On the other hand, using penalty stiffness in the tangential
direction, a small amount of elastic slip is allowed before slip occurs. This
formulations is much simpler and can greatly improve solution cost. However,
as accurate slip solutions are important in fretting fatigue, care must be taken
in the choice of penalty parameters. Some FE software packages (e.g. Abaqus
and ANSYS) offer augmented Lagrange methods as compromise, in which zero
penetration solution is found through a series of penalty iterations. For frictional
sliding, the tangent (solution) stiffness matrix becomes unsymmetric [65] and
require special matrix solution methods. Figure 2.13 shows a comparison of
penalty stiffness and Lagrange multiplier method for a fretting problem.

Traditionally, linear element types have been preferred to discretise con-
tact geometry. Numerical problems can occur for higher-order elements having
mid-side nodes. However, some software packages offer specialised higher-order
element formulations that is suitable for contact problems and in some cases
are actually preferred as they can more accurately describe surface curvature
and subsurface stress gradients. The analyst should in general consult with the
manual of the FE solver in question for details. In fretting problems, element
meshes are often refined to a degree where linear elements are accurate enough.

In this thesis, FE software is used extensively to solve fretting contacts, in
3D and 2D. Paper IV A.4 demonstrates the application on of FEM to develop a
test-rig and was used to simulate and predict fretting fatigue for a set of dovetail
specimens.

2.5.1 A fretting example

Abaqus/Standard is a general-purpose finite element software package known
for its ability to solve contact problems and is used in many fretting studies
in literature [66, 24, 67]. The contact solver in Abaqus is advanced and offer
many solution methods, and correspondingly, its use is complex and offer many
potential traps. In this section, the application of Abaqus/standard is discussed
for a classical fretting problem. Consider the contact problem shown in Figure
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2.9. This example will be used as a demonstrator in the following sections with
critical plane post-processing. See Araùjo and Nowell [51] for experimental
results related to this configuration.

Symmetry line

R

2c
2a

Figure 2.9: Simple two-dimensional finite element model of fretting fatigue spec-
imen.

The classical contact configuration with a constant pad pressure P and
monotonically increasing shear force Q < μP , often referred to as the Cattaneo-
Mindlin configuration and was discussed in section 2.2). Here, sinusoidal shear
force and in-phase fatigue load are applied to the contact. As the peak shear
force transferred between the pad and specimen is lower than the friction limit
the contact will be to be in partial slip causing a high shear stress at the stick-slip
interface. Sliding occurs in one plane and a two-dimensional model is appropri-
ate, in this case plane strain. Here, a distinction will be made between fretting
fatigue case and plain fretting case; the former being loaded in both fretting
shear and fatigue, the latter only in fretting shear (σ = 0). Figure 2.10 show
a comparison of the surface tractions and slip for the plain fretting case and
fretting fatigue (σ = 280 MPa).
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Figure 2.10: Comparing shear stress and slip for plain fretting vs fretting fatigue.

Symmetry is seen in shear stress and slip for the plain fretting case, somewhat
equating the trailing and leading edges in terms of fretting damage. In fretting
fatigue case it is clear how the trailing edge experience more severe shear stress
due to the additional straining from the fatigue loading. The Hertzian (line)
contact profile with large contact radius R cause the problem to be well-behaving
with no sharp corners if the surface elements are sufficiently small. Due to the
resulting stress gradients and local sliding on the micro-scale, a highly refined
mesh is necessary. It is not uncommon with element sizes in fretting studies
to be in the ranges of 10 − 50μm and even down to 2 − 5μm [68]. See Figure
2.11 and Figure 2.12 for mesh convergence analysis of plain fretting and fretting
fatigue case respectively.

Figure 2.11: Contact convergence for plain fretting contact stresses at peak
shear load.

As can be seen in Figure 2.11, peak shear stresses at the trailing edge of
contact are found to converge for relatively coarse meshes. The tangential stress
σxx at the trailing edge stick-slip boundary is singular and increases for as the
mesh is refined.
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Figure 2.12: Contact convergence for fretting fatigue with bulk fatigue load
σ = 280 MPa

The mesh refinement analysis of the fretting fatigue case have similar char-
acteristics. Accurate shear stresses are found at the trailing edge for elements
sizes of 5μm or finer. The tangential stress however require fine mesh to not
underestimate the fretting crack initiation conditions.

Figure 2.13: Difference between penalty stiffness and Lagrangian multipliers.
Notice how the contact shear stresses are the same, but allowing a small amount
of elastic slip (here 5μm), cause non-conservative results for the surface stress
σxx.

Surface quantities like shear stress and slip do not describe fretting dam-
age alone. In most fatigue analyses, empirical combinations of stresses and
strains are assumed to initiate and propagate fatigue crack. This require a
post-processing analysis where the temporal field variations is accounted for.
Section 2.7 demonstrates the use of critical plane methods to determine fretting
fatigue cracking behaviour by using subsurface stress histories. In the following
Section the analysis of the relevant substrate field values is demonstrated.

Figure 2.14 compares fretting stress cycle at trailing edge of contact and
in the substrate. Notice the quite proportional nature of the stress cycles at
these points. It is clear that very high tensile stress amplitudes occur at the
trailing edge of contact dominates the stress tensor. promotes initiation of
surface cracks.
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Figure 2.14: Fretting fatigue stress cycle at trailing edge (−1.03, 0.0) and in-
depth (−1.1,−0.5)

The subsurface stress field can be used to estimate the severity of fretting
contact loads. Figure 2.15 indicates material damage in terms of deviatoric
stresses (Von Mises equivalent stress). Not surprisingly, values are high but
also localized to the contact vicinity in the plain fretting case. For the fretting
fatigue case the bulk stresses are strong enough for fretting-initiated cracks to
propagate.

Figure 2.15: Subsurface Von Mises equivalent stresses for plain fretting and
fretting fatigue. Von Mises stresses indicate material shear damage.

Evaluating subsurface von Mises equivalent stresses from quasi-static FE
solutions can give valuable insights into the severity of contact, but the non-
proportional stress histories resulting from fretting contact (see section 2.4.2)
usually require more elaborate analysis through post-process analysis. See sec-
tion 2.6 for fretting assessments made using surface quantities. In section 2.7
critical plane post-processing methodologies are discussed.
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2.5.2 Dovetail joint

A large amount of research has been carried out on fretting fatigue in dovetail
joints [69, 70, 71, 72, 67, 73]. Consider the aircraft turbine blades attached to
the rotor by a dovetail joint. Due to the centrifugal forces acting on the blade,
sliding contact occurs between the blade and the rotor, causing fretting fatigue.
Additional aerodynamic and mechanical vibrations may also apply. Contact in
the dovetail joint is usually flat and rounded (see Section 2.1), but in Paper
IV Hertzian contact profile was used as shown in Figure 2.16. The choice of
Hertzian contact geometry was made to allow for closed form equations to apply.

F

Figure 2.16: Dovetail geometry used in Paper IV.

Figure 2.16 demonstrates how geometry was partitioned to allow for a very
steep variation in element sizes. For details around this, see Paper IV in Ap-
pendix A.4. In publication, FEM was used to analyse a series of experiments
made on titanium specimens. See Section 3.2 for general aspects of experimen-
tal testing. The dovetail configuration differs from the Cattaneo-Mindlin case
as the normal and shear loading both vary with time in a proportional manner.
In many cases, a single load is applied to the dovetail joint, providing both
normal, tangential and bulk loading. In terms of finite element analysis, this
configuration present some additional numerical complexities, compared with
fretting contacts with constant pressure. As contact pressure and shearing act
simultaneously, slip amplitudes are often longer compared with the classical case
discussed in Section 2.5.1. The contact shear evolution demonstrated in Figure
2.17 summarises the contact situation for the dovetail configuration.
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Figure 2.17: Traction evolution on dovetail joint where pressure and tangential
force both vary with the axial load.

The stick-slip history seen in Figure 2.17 shows how the stick-slip boundary
moves significantly during the fretting cycle as both tangential and normal loads
vary in-phase for the dovetail specimens. Surface fatigue damage can therefore
be assumed to be smeared over a larger area, potentially increasing cracking
life. For more on this fretting configuration, see Paper IV.

Figure 2.18: Dovetail fretting cycle demonstrated for critical point at trailing
edge, and in-depth.

Figure 2.18 demonstrates the fretting stress cycles for two selected specimen
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material points: the critical point at the trailing edge and at a distance of
approximately 0.5 mm inward. When compared with the corresponding stress
cycle in Figure 2.14, it is clear that the dovetail case experience much more non-
proportional stress variations. As mentioned in Section 2.4.2, non-proportional
loads may have significant effect on fatigue properties and must be included in
the damage model. For more on the analysis of the dovetail geometry, see Paper
IV in Appendix A.4.

2.5.3 Three-dimensional fretting analysis

Most finite element fretting analyses in this thesis use two-dimensional discreti-
sations. Although instantaneous slip occurs in a plane, real contacts experience
some transverse strain due to Poisson’s ratio. Moreover, for 3D load histories,
some contacts can hypothetically experience sliding in multiple directions dur-
ing a cycle. For fretting experiments and many cases of real contacts, sliding
action occurs in a single dimension, and its solution with respect to stresses
and strains can be approximated using two-dimensional plane strain or plane
stress analysis. Kim and Mall [74] investigated the differences between three-
dimensional and two-dimensional models for cylindrical (Hertzian) and flat and
rounded contact. Edge-effects were found to be negligible and that a plane
strain analysis provided accurate results.

3D finite element contact solutions are considerably more expensive com-
putationally as the fretting area already require a very fine mesh. Additional
efforts are often required to mesh the geometry, sometimes requiring the con-
tacting bodies to have perfectly aligning elements. Indeed, most experimental
setups and academic studies consider sliding in one single plane. But in mechan-
ical engineering practice, complicated load histories can cause slip histories to
require three-dimensional analysis. In Paper III, such circumstances were dis-
cussed in the case of medium-speed reciprocating engines. In piston engines, gas
forces and inertia forces act in different directions and at multiple frequencies.
Slip may occur in more than one plane during an engine cycle. In this industry,
complex FEM models are simplified using methods of condensations; millions of
degrees of freedom are condensed to super-elements with a very small subset of
important degrees of freedom. The condensed models are used to simulate the
relevant dynamics of the engine and the resulting forces are applied to simplified
(local) contact models to analyse the fretting cycles.

Other sub-modelling techniques have proven necessary in order to isolate
the fretting contact problem. Sub-modelling techniques are often incorporated
into the finite element software package. Another and more recent technique
was used by Montebello et al. [75, 76]. Here, the velocity field surrounding the
strong fretting stress gradient is partitioned by using intensity factors, much like
the stress intensity factors in fracture mechanics (See Section 2.4). The key idea
with using velocity field though, is that since velocity is an extensive parameter,
it can capture the nonlinear nature of the contact.
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2.6 Fretting-specific parameters

Preceding sections considered the application of finite element method to solve
fretting contacts and it was declared that quantifying fretting fatigue dam-
age using quasi-static stresses and strains alone is unsatisfactory. As such, FE
solutions serve a purpose as qualitative analysis but for quantitative fretting
analyses temporal variations must be considered. Hence, post-processing steps
are usually required. Several fretting-specific parameters have been proposed
to characterise fretting behaviour and many of these are commonly used in
engineering practice [77, 78].

The seminal papers by Ruiz et al. [69, 79] were among the first to suggest
the use of fretting specific energy-based parameters. They studied fretting in
aircraft turbine blades and suggested using the shear stress work on the contact
interfaces to quantify fretting damage. Analyses were made in two-dimensional
models and several two-dimensional parameters were suggested, one for fretting
surface damage (wear) and one for fretting crack initiation. Intensity of the
surface damage was suggested to be governed by the frictional work (τδ).

In an attempt to quantify fretting fatigue, a parameter was obtained by
multiplying the shear work with the surface tangential stress, thus

k = σtτδ (2.17)

where k is the “second Ruiz fretting parameter”, henceforth called fretting
fatigue damage parameter (FFDP). σt is the stress component acting parallel
to the contact surface, τ is the shear stress and δ is the slip distance.

In numerical analyses consisting of several time steps, the FFDP is computed
by integrating the shear work over the fretting cycle t ∈ [0, T ] and multiplied
by the largest tangential stress during that cycle.

k = σ1 ·W = σ1

∫
τ · ds = σ1

∫ T

0

τ · ṡdt (2.18)

where τ is the shear stress vector and s is the slip vector. Tangential stress
σt is here swapped with maximum principal stress σ1 to overcome the uni-
dimensional nature of the original Ruiz parameter. Numerically, the shear work
can be calculated using the midpoint rule as

W =
N∑

n=1

τn−1 + τn

2
· (sn − sn−1) (2.19)

Where n ∈ [1, N ] is the discrete time step. Note however, the lack of physical
interpretation of the FFDP. It is simply an empirical, “composite” parameter
obtained by multiplying the surface damage (via shear work) with the crack
driving force (via the normal stress). Nowell and Hills [1], found (2.17) to
correlate with fretting cracks and that there seems to be a threshold value.

In Figure 2.19 the FFD parameter is plotted for a series of dovetail specimens
tested in the published article IV, See Appendix A.3. Leading and trailing edges
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are highlighted as critical areas, but a quantitative assessment of the values is
difficult without relevant data for comparisons.

Figure 2.19: Ruiz FFD parameter. The left and right peaks in each plot are the
leading and trailing edges, respectively.

Vidner et al. [80] recently suggested using the frictional power instead of
work. They also suggested extensions to the Ruiz parameter where critical
plane-based parameters to be used in place of maximum principal stress. Other
fretting-specific parameters are e.g. “fretting related damage” parameter (FRD)
[81].

FRD = α+ β

√
Q

fP
(2.20)

The FRD parameter was related to the plain fatigue methods as a knock-
down factor to determine the number of cycles to failure and thus making full
use of already existing plain fatigue data. Q is the sliding force, P is the normal
load, f coefficient of friction α and β are fitting coefficients.

Although the fretting-specific parameters discussed in this section are simple
and approachable, their physical interpretations are lacking. Its reasonable to
assume that fretting damage is a function of shear work or power but the com-
plex mechanics of fretting crack initiation and early growth are not adequately
described using only surface quantities. In this thesis critical plane methods
were found superior to surface parameters in terms of characterising fretting
fatigue cracking behaviour and life estimations. These methods are described
in the following section.
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2.7 Critical Plane Analysis

Previous sections were concerned with analysing fretting fatigue severity by
evaluating quasi-static finite element solutions and empirical fretting-specific
parameters. To quantify fatigue lives is, however, an involved task that require
more advanced analysis. In many fields of engineering, safe-life design principles
are applied and the overall safety against fretting is objective of the fretting
analysis. Although the Ruiz parameters, when combined with experience may
give such insights wrt. fretting damage, their robustness are limited. Moreover,
life predictions are very useful for component fatigue design and to meaningfully
determine service intervals. More physically valid descriptions are always desired
as they help reasoning about the mechanisms involved. In this section the
application of critical plane methodology is described to predict fretting fatigue
crack initiation lives and orientation.

The main numerical difficulty related to quantitative fatigue analysis of fret-
ting contact is how to handle the highly localised non-proportional stress varia-
tions (see section 2.4). Inherent uncertainty is always present, related to variabil-
ity in microstructure and surface roughness. Hence, any numerical prediction
is only an approximation and scatter will certainly be present in the results.
Critical plane analyses is by many researchers the preferred method to quantify
fatigue damage for multiaxial stress histories. It has long been acknowledged
that fatigue damage manifests itself in material planes with certain preferential
orientations, depending on the loading and material. Critical plane methods in
general calculates the fatigue damage on a large number of such candidate ma-
terial planes in search for the most critical one. In theory there exist infinitely
many candidate planes for each material point and a discrete selection must be
made. Furthermore, the critical plane search is usually performed for a large
set of material points, often generated by the finite element method (see Section
2.5). The potentially large computational cost of critical plane methods is clear:
The critical plane criteria is evaluated for a large number of plane orientations
for each material point. For densely meshed geometries like in fretting fatigue,
this results in a time consuming analysis.

Much research have focused on improving the efficiency, accuracy and unam-
biguity of critical plane methods and Paper II (See Appendix A.2) investigated
and demonstrated some relevant aspects of a numerical implementation. A
framework for efficiently calculating critical plane orientation and damage was
developed for the general case of three-dimensional stress histories. The details
of these methods and the application to fretting fatigue are demonstrated in
this section.

2.7.1 Multiaxial fatigue criteria

Numerous different fatigue criteria and methodologies have been proposed through-
out the history and the application of some criteria was reviewed in paper I, see
Appendix A.1. See also Navaro et al. [82] and Bhatti and Wahab [83] for an
overview. Most commonly applied to fretting fatigue problems are the classi-
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cal Smith-Watson-Topper [84], Fatemi-Socie [85] and Findley [86] parameters.
More recent parameters having success is the Modified Wöhler Curve Method
[87] and Carpinteri-Spagnoli criterion [88, 89] amongst others.

One of the most classical fatigue criteria is the Smith-Watson-Topper [84]
parameter based on tensile strain and mean stress. This criterion is commonly
used on materials cracks are Mode I-dominated and often for low-cycle fatigue.
In its critical plane form it can be expressed as

SWT = σmax
Δε1
2

(2.21)

where σmax is the maximum normal stress and Δε1 is the principal strain
range. Extensions to the SWT parameter have been proposed that accounts for
shear mechanisms, making it more suitable for shear-failing materials [90]. As
tensile stresses are known to form micro-cracks at the fretting contact bound-
aries, SWT parameter could be applicable to many relevant fretting problems.

Most numerical efforts to quantify fretting fatigue damage in this project
rely on the Findley parameter (FP). In its simple form it can be expressed as

FP = τa + kσmax (2.22)

where τa is equivalent shear stress acting in the candidate plane, k is a
material parameter and σmax is the maximum normal stress on the same plane
during the stress cycle. The parameter k can be interpreted as a measure of
sensitivity to opening mode effects on the shear cracks. k is therefore often
lower for shear dominated (ductile materials) than for brittle materials. Socie
[91] propose to use 0.1−0.2 for ductile materials, but in Paper IV (see Appendix
A.4), k = 0.35 was found to work well for Ti-6Al-4V dovetail fretting specimens.
Kallmeyer et al. [92] found 0.35 to give best correlation with uni-axial and bi-
axial data for Ti-6Al-4V.

Figure 2.20: Findley fatigue damage parameter as a function of candidate plane
orientation
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In Figure 2.20 the Findley parameter in Equation (2.22) is visualised for the
single material point in contact center of problem described in section 2.5.1.
Negative values are the result of compressive normal stresses and hence, fa-
tigue life in these orientations are infinite. Notice the symmetry in the damage
surfaces; this is a result of the two-dimensional FE discretisation.

2.7.2 Resolved shear stress amplitude

As demonstrated in (2.22), the Findley parameter rely on a scalar value shear
amplitude. It was described in section 2.4 how fatigue cracks in ductile met-
als are often initiated by shear mechanisms. Many shear-based fatigue criteria
have been proposed, some of which were reviewed in Paper I. Shear-based cri-
teria share a common difficulty in terms of implementation; as the shear stress
(or strain) history in the candidate plane is a set of vectors, some heuristic
is needed to obtain a equivalent shear stress (or strain) amplitude. Therefore,
the SWT parameter is simpler in its implementation because all the quantities
in (2.21) are directed along the candidate plane normal. Methods to compute
the equivalent shear stress amplitude is a research field on it own and many
different methodologies have been used, see e.g. [93] for a discussion on mea-
sures of equivalent shear stress amplitudes, uniqueness and quantification of
non-proportionality.

Load history for a material point is represented by a discrete set of Cauchy
stress tensors T represented in the standard basis by the matrix

T =

⎡
⎣σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎤
⎦ (2.23)

i.e. with six independent components which in general can be its own func-
tion of time.

The stress tensor describes the stress state in a small point (continuum) and
by the Cauchy stress theorem, the stresses acting on an arbitrary material plane
through this point can be found by

t = T · n (2.24)

where t is the stress traction acting on the material plane. The sequence of
traction vectors acting on the candidate plane obtained from the load history
can be thought to describe a three-dimensional object. To find the resolved
shear stress amplitude acting on the material plane, this object is projected
onto the plane π with its own coordinate system ei. A two-dimensional polygon
is obtained, from which the shear stress amplitude can be calculated.

The third axis e3 of the candidate plane coordinate system is in the plane
normal direction, but the other two axes are not given and can be chosen rather
arbitrarily as long as they are mutually perpendicular. Convention used here
is to choose e1 by cyclic permutation of the largest component of the normal
vector, as demonstrated in Algorithm 1.
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Following enclosure demonstrates the convention used to determine candi-
date plane coordinate system.

Algorithm 1 Determining a suitable coordinate system in candidate plane

1: procedure InPlaneCsys(n ∈ R
3)

2: n ← 1
‖n‖n 
 Ensure normal vector has unit length

3: nx = |n[0]|
4: ny = |n[1]|
5: nz = |n[2]|

6: if nx ≥ ny and nx ≥ nz then
7: ex = (0, 1, 0)
8: else if ny ≥ nx and ny ≥ nz then
9: ex = (0, 0, 1)

10: else
11: ex = (1, 0, 0)

12: ex ← e+ eTxn · n 
 Add out-of-plane directions
13: ex ← 1

‖ex‖ex 
 Renormalise
14: ey = n× ex

15: return [ex, ey, n]

The simple algorithm demonstrated above uniquely defines an in-plane coor-
dinate system (change of basis) that is used to calculate the shear stress history
in the candidate plane.

2.7.3 A brief note about algorithm complexity

Critical plane computations rely on a number of algorithms. In case of large
models with many material points to be evaluated for fatigue, the computational
cost of these algorithms matter. Some relevant algorithms were discussed in
Paper II. In this section, the discussion is expanded and a brief description of
algorithm complexity is included for completeness.

Big-O notation is a way of classifying the efficiency of an algorithm and is
often used to describe time and space (memory) usage. E.g. a time complexity
of O(n) means that the algorithm scales linearly in time with the size n of the
input. However, this does not necessarily mean that the input is only visited
once; the notation is asymptotic and describes the limiting behaviour as the
input parameters goes to infinity. As an example, consider the algorithm for
the convex hull described on the following section. The time complexity of the
sorting step is O(n log n). After sorting, the shear stress history is traversed
twice, once from each end, which is linear in time O(n). The total time is
then O(n log n) + 2 ·O(n), but using asymptotic notation, the converging time
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complexity is bounded by the largest component, thus the convex hull is also
O(n log n). Many relevant algorithms have polynomial time complexity and
brute force methods are often O(n2) or O(n!) but in some cases more opti-
mal algorithms in O(n log n) exist. It is common in research to focus on the
asymptotic behaviour and dropping constants. However, in practice, constants
do matter and for practical cases, the actual implementation should be profiled
to validate the efficiency.

In many cases of fatigue analysis, the number of time steps to be evaluated
are relatively few for each damaging load cycle. However, in non-proportional
histories increased temporal resolution are necessary to fully describe the dam-
aging cycles. Examples of relevant engineering problems were discussed in
Paper III. In four stroke piston engines, the major load cycle consist of 720
crank degrees and may contain several loads. These are often simulated using
crank steps of 10-20 crank degrees [77]. Note though that for non-proportional
variable-amplitude load histories, cycle counting may be necessary. Bottom line
is: Efficiency of the critical plane analysis is not known until time profiles of
the real implementations are inspected. Engineering FE-models often have high
number of material points to be analysed and the running time of critical plane
analyses becomes important.

2.7.4 Convex Hull

The convex hull (CH) of a set of two-dimensional points is the smallest polygon
containing all points (see Figure 2.21). This mathematical object can be shown
to be unique for the given set of points and is proven useful in several aspects
of fatigue analysis. When calculating stress vectors in the candidate plane, CH
is shown to contain all the points used to affecting the resolved shear stress (see
Sections 2.7.5 and 2.7.6). Hence, the CH can be used to reduce the number of
history points and accelerate the fatigue evaluation. In Figure 2.23 this concept
is demonstrated for the fretting fatigue case described in the previous sections.
Some points are seen to be discarded without affecting the equivalent shear
stress amplitudes.

A number of algorithms are found to compute the convex hull efficiently,
e.g. “Graham Scan” has time-complexity O(n log n) where n is the number of
time steps. As the idea behind CH in this context is to reduce the number
of points used in the determination the resolved shear stress, without lack of
generality. The exact loss of generality depends on the definition of shear stress
amplitude but it can be shown to not affect the result for MRH and MCC
(See section 2.7.5 and 2.7.6 respectively). The practical effectiveness depends
on the implementation but the theoretical effectiveness is also limited to the
complexity of the subsequent resolved shear stress step. By computing the
convex hull before brute-forcing MCC, potentially great computational effort
can be saved. The actual amount of time saved depends also on the load history
as only interior points are removed. For a proportional shear stress history, all
points in the candidate plane are co-linear and only the two extreme points are
necessary. However, for a 90 degree out-of-phase loading, the shear path is a
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circle and the convex hull actually contains all the original points. For many
practical load cases, a majority of the points lie inside the CH and hence do not
contribute to the resolved shear amplitude defined by shape-enclosing methods.
In these cases the convex hull can be used to reduce the accelerate the next
steps in the fatigue evaluation.

The O(nlogn) algorithm by Graham [94] is described in pseudo-code in Al-
gorithm 2. Example implementations are included in the appendices. Note
that these examples are simple for the case of brevity and in many cases more
stable and efficient implementations are available through third-party libraries
(see Section 2.8). For Python, the convex hull algorithm is available through
the ConvexHull class available in SciPy library [95].

Figure 2.21: Two-dimensional convex hull

As the convex hull is only an intermediate step in calculating the equivalent
shear stress, it is strictly not necessary. It may however speed up the critical
plane analysis in many cases. In paper II the efficiency of the convex hull was
investigated for the use on many relevant fatigue loading histories.

2.7.5 Minimum Circumscribed Circle

The Minimum Circumscribed Circle (MCC) was one of the first proposed defi-
nitions for the resolved shear stress [96]. This two-dimensional geometric object
fully enclose the shear stress path and is unique. The problem with MCC is
its inability to distinguish between proportional and non-proportional paths. It
is recognized that fatigue behaviours of materials are different for proportional
and non-proportional load [97]. However, the MCC predicts the same amplitude
value for a straight line than for a circle with the line as its diameter. Ellipses
have been proposed as a means of addressing this deficiency [46].
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Algorithm 2 Algorithm for computing Convex Hull

1: procedure ConvexHull(P = [p(x, y)] ∈ R
2) 
 Graham Scan

2: P ← sort(P ) 
 Sort points lexicographically.
3: U = [p0, p1] 
 Upper half of the convex hull.
4: for p ∈ P do 
 Traverse points.
5: i = 0
6: while |U | ≥ i do 
 Check against points on hull thus far.
7: if Turn(U−1, U−2, p) is Clockwise then
8: i ← i+ 1
9: else

10: Remove U−j

11: Append p to U

12: L = [p−1, p−2] 
 Lower half of the convex hull.
13: for p ∈ [p−3, ...p0] do 
 Traverse reversed point list.
14: i = 0
15: while |L| ≥ i do 
 Check against points on hull thus far.
16: if Turn(L−1, L−2, p) is Clockwise then
17: i ← i+ 1
18: else
19: Remove L−j

20: Append p to L

21: L ← L[1..−1] 
 Discard overlapping endpoints in L and U.
22: return U + L 
 Return the joined hull halves
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For this circle, the center and radius can be interpreted as mean and ampli-
tude shear stress, respectively. A great benefit of the MCC is that it is unique
for a given set of input points and hence, results in unambiguous values for mean
shear stress and resolved shear stress amplitude. Note however that the Find-
ley criterion in Equation (2.22) is independent on mean shear. Computing the
MCC efficiently, however, is not straight-forward. An exhaustive (brute-force)
search algorithm is trivial to implement by leveraging the fact that the circle
passes through two or three points. Thus, MCC is found simply by checking all
possible circles consisting of two or three points separately [98] and chooses the
smallest one that contains all other points. This results in a very large number
of visited circles to and quickly becomes very computationally demanding for
large problem sizes even for short histories.

The task of computing MCC can be formulated as a convex quadratic pro-
gramming (QP) problem with one linear constraint for each input point [99].
The problem can be written as

min
x,y,z

{x2 + y2 + z}
s.t. 2xτu,i + 2xτv, i+ z ≥ τ2u,i + τ2v,i

(2.25)

where the three optimisation variables x, y, z are the x-coordinate, y-coordinate
and squared radius respectively. Finding the optimal solution is easy using ex-
isting quadratic program solvers which are available in many commercial soft-
ware packages, but also using free open-source libraries. An implementation
in Python using the open source library cvxpy [100] is included in the appen-
dices and can be similarly solved using C++ libraries like CGAL [101]. Details
of solving quadratic programs are outside the scope if this thesis, but the in-
terested reader are referred to textbooks like [102]. See also Bernasconi and
Papadopoulos [103] for a discussion on effective means of computing the mini-
mum circumscribed circle, including iterative methods.

In figure 2.22 three different methods for computing the MCC are compared.
The inefficiency of the brute force method is clear for problem sizes larger than
10 points. By using the convex hull, problem size is reduced. Note that this
comparison is made for pseudo-random points where the number of interior
points is higher than for most shear histories. An important point to make
is that if the shear history have many interior points, proper cycle counting
algorithms should be used so that all damaging cycles are accounted for. The
actual computational benefit from CH is as described above dependent on the
distribution of points in the candidate plane. This also explains the irregular
nature of the brute force method in Figure 2.22. In this thesis, the convex hull
was used extensively to speed up the process. Some of the observations made
for real load histories are demonstrated in Paper II.
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Figure 2.22: Comparing computational time for three different algorithms com-
puting MCC. Comparisons were made with Intel Xeon W3680 (3.3 GHz) using
naive Python (see Appendix A.5).

Example implementations of the convex hull is shown in appendix A.5 for
completeness. Due to the fact that MCC do not properly account for non-
proportionality in the shear stress history, other alternative definitions of the
shear stress amplitude was sought.

2.7.6 Maximum Rectangular Hull

Instead of enclosing the shear stress history in a circle, Araùjo et al. [104]
proposed using a rectangle with maximised diagonal, correspondingly predicting
a larger resolved shear amplitude for a non-proportional load compared with the
proportional. This is demonstrated on a candidate plane for the fretting fatigue
case demonstrated in previous section and visualized in Figure 2.23.

The definition of the maximum rectangular hull (MRH) can be written as

τa = max
ω

√
a21(ω) + a22(ω), 0 ≤ ω ≤ π/2 (2.26)

where the sides of the rectangle a1 and a2 are given by

ai(ω) =
1

2

[
max

t
τi(ω, t)−min

t
τi(ω, t)

]
, i = 1, 2 (2.27)

The definition of MRH in Equation (2.26) can be interpreted as the rectangle
found by rotating the shear path for a number of orientations ω ∈ [0, π/2],
maximising its bi-directional projection. The equivalent shear stress amplitude
is then half of the diagonal of the MRH. The mean shear stress can be the
geometrical center of the square.
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Note that the maximum rectangular hull algorithm is linear in the number of
points, but with a potentially high constant related to the number of rotations
ω checked. If, for instance, one degree increments were considered for ω, the
running time is O(90 · n). However, the original authors [51] found that only
five to ten rotations were necessary. In Paper II, MRH was used extensively
on real load histories and the accuracy was discussed. MRH was also used to
compute fretting fatigue life for a set of Ti-6Al-4V dovetail specimens in Paper
IV (see Section 3.2.

Figure 2.23: Convex hull, minimum circumscribed circle and maximum rectan-
gular hull for the shear stress path in a candidate plane.

Figure 2.23 summarises the calculation of equivalent shear stress for fatigue
evaluation. Here, the candidate plane of (45, 45) is investigated for the hot-spot
found for the fretting fatigue case demonstrated in previous section. Notice
how the MRH algorithm predicts slightly higher resolved shear stress compared
with MCC due to the non-proportional shear loading path. Notice also how
the convex hull in this case only removes one single point for being co-linear
with the adjacent points. It is clear that by adjusting appropriate tolerances for
co-linearity, more points could be excluded. This is typical for many fretting
fatigue shear paths.

2.7.7 Angular search space discretisation

To compute the critical plane for a material point and a given load history,
generally all possible planes passing through the point needs to be investigated.
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As there is theoretically infinitely many possible candidate plane orientations,
the search space needs to be discretised. Different discretisation strategies are
possible and some were reviewed in Paper II. In this Paper, an iterative selection
scheme was proposed, using triangular elements that facilitate local search space
refinement. In this section, some of these methods are discussed.

x

y

z (r, θ, φ)

φ

θ

Figure 2.24: Spherical coordinate system

Consider a spherical coordinate system centered in this material point and
following ISO 80000-2:2009 convention. The three coordinates (r, θ, φ) is used
to denote the radial distance, polar angle and azimuthal angle, respectively.
Figure 2.24 shows how the spherical coordinate system relates to the Cartesian
coordinates (x, y, z).

r =
√

x2 + y2 + z2 (2.28a)

θ = arctan

√
x2 + y2

z
(2.28b)

φ = arctan
y

x
(2.28c)

The orientation of a material plane running through the origin can be de-
scribed by either the two rotations θ and φ or by its unit normal vector. Results
are here expressed in angle orientations, but the numerical implementations fa-
vors the normal vector as it is used directly in the linear algebra equations for
the shear projection (see Algorithm 1). The components of the plane normal
vector are found by

x = r sin θ cosφ (2.29a)

y = r sin θ sinφ (2.29b)

z = r cos θ (2.29c)

In most cases a pre-determined set of angles θ, φ ∈ [0o, 180o] are used to
define the critical plane search space, divided e.g. by angular increments of
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1o. However, note that this space can halved by acknowledging the fact that a
plane flipped by rotating it 180 degrees is the same plane. The search space for
material plane orientations can be thought of as a unit hemisphere.

Figure 2.25: Rectangular discretisation of critical plane search space

Figure 2.25 clearly demonstrates how the rectangular discretisation cause an
uneven distribution of plane orientations. While the rectangular choice makes
sense for a flat surface, the hemisphere will have a high density around and
lower around the equator. Rectangular grid was used to produce the damage
surface shown in Figure 2.20 and works well for such visualisation. However,
uneven distribution can inaccurately represent the damages for material planes
along the equator if a coarse mesh is chosen. Moreover, choosing a fine such
mesh produces an unnecessarily fine mesh at the poles.

Alternatively, the hemisphere can be discretised using triangular elements
as shown in Figure 2.26. This produces a more homogeneous search space
discretisation [105, 99]. Triangular cells are also trivially partitioned into smaller
triangular elements, permitting a discretisation to be refined, even locally. This
opens possibilities to adaptively refine the search space. Paper II found in
appendix A.2 describes an implementation of such adaptive refinement scheme,
albeit naive. It is shown find the critical plane accurately for a smaller number
of candidate planes.

The very naive adaptive scheme was shown in paper II. is demonstrated
in Figure 2.26. Here, a pre-determined coarse set of triangles was first calcu-
lated and triangles was recursively refined based on the local damage. Slight
computational advantage was shown by comparing load histories found in the
literature and by computing a large number of pseudo-random load histories.
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Figure 2.26: Findley fatigue damage at hot-spot, comparing a brute-force ap-
proach with a naive adaptive refinement.

2.7.8 Application to fretting

In this section, the use of critical plane method is demonstrated on fretting
contact. More specifically, Findley parameter is applied to the plain fretting
and fretting fatigue case which were solved using FEM in section 2.5.

Figure 2.27 demonstrates the Findley parameter for the material point situ-
ated at trailing edge, and for the material point at 0.5 mm depth from trailing
edge. Symmetries are clear and peak damages found at θ = 90o. The trailing
edge point shows two almost-equally damaging peaks both serving as potentially
cracking directions.

Figure 2.27: Subsurface Findley damage (k = 0.1) for the plain fretting case
described in section 2.5. Left figure is at the surface trailing edge and right is
at 0.5 mm depth from said point.

Similar visualisation is made for the fretting fatigue case and shown in Figure
2.28. Both points are now considerably stressed, with contours being qualita-
tively very similar. Cracking is now increasingly probable along material points
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with aligning critical directions.

Figure 2.28: Subsurface Findley damage (k = 0.1) for the fretting fatigue case
described in section 2.5. Left figure is at the surface trailing edge and right is
at 0.5 mm depth from said point.

Figure 2.29 visualises the subsurface scalar field representing Findley damage
for the plain fretting case. Since shear is cycled between ±Q, the damage field
is quite symmetrical to the contact center. Damage is highly localised to the
close-surface area at the “trailing” and “leading” edges of contact. Bulk fatigue
damage is low and for any surface-initiated crack, propagation until failure is
not expected.
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Figure 2.29: Findley damage parameter (k = 0.1) for fretting contact () without
bulk fatigue loading.

In the case of fretting fatigue (Figure 2.30) however, damage is more localised
around the trailing edge of contact. Subsurface fatigue loads are severe enough
to potentially propagate fretting-initiated cracks to failure.

Figure 2.30: Fretting fatigue case Findley (k = 0.1)

2.7.9 Dovetail fretting fatigue

In paper IV, Findley critical plane parameter was used to calculate fretting fa-
tigue crack initiation in dovetail experimental tests. Good agreement was found
when used in combination with averaging schemes from the Theory of Critical
Distances (see Section 2.4.3. As described in Section 2.5.2, normal and shearing
tractions oscilate in-phase and cause the slip to vary over the contact surface.
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Crack initiation mechanisms are smeared over an area. This is demonstrated
in Figure 2.31 where Findley damage parameter is plotted for the specimen
substrate. Very localised damage is found, as expected. By subsequent aver-
aging, the Findley parameter was used to predict initiation life using Basquin’s
equations, See Paper IV in Appendix A.4.

Figure 2.31: Subsurface Findley damage parameter with hot-spot cracking di-
rection indicated by arrow.

2.8 Choice of programming languages

The choice of programming language and implementation plays an important
role in numerical analysis and is therefore honored with a brief section here.
During this thesis, mainly C++ and Python were used, but also Fortran and
the relatively young language Rust. These languages have different strengths
and weaknesses with respect to numerical fatigue analysis and they are outlined
in the following.

Python is one of the most obvious choices for mechanical engineers. It is
an easy to use scripting/programming language that does not require separate
compilation steps. Library support in Python is excellent, the numerical li-
braries numpy and SciPy provide efficient array operations with linear algebra
and other relevant algorithms. The plotting library matplotlib provide visual-
isation tools and is used extensively for plotting in this thesis, see e.g. 2.21
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and 2.20. Python is also very explicitly written, making it easy to read and
understand. An example of this is shown in Appendix A.5 where convex hull is
implemented in Python. Notice how similar it is to the pseudo-code presented in
Algorithm 2. Since memory management is handled internally, a large burden is
hidden from the user. This is why Python is an excellent scripting language for
such numerical work, particularly in prototype stages. However, Python may
be slow for CPU-intensive work compared to compiled languages. In critical
plane analyses, Python using numpy libraries was found to be up to two orders
of magnitude slower than compiled languages. This difference was lowered to
approximately one order of magnitude by using so-called “Just-in-time” (JIT)
compilation. By using JIT libraries, Python code is compiled to machine code
making use of e.g. CPU vector operations, and even opens up for parallelisation.
See e.g. Numba library.

In this thesis C++ was predominantly used for the CPU-intensive work that
is critical plane analysis. Advanced C++ compilers are able to optimise many of
the operations. Using the vast Boost-libries and Eigen3 for linear algebra, C++
is an especially powerful language for numerical calculations. Multi-threading is
also fairly accessible using e.g. OpenMP. These libraries were used to implement
efficient critical plane analyses in Paper II (See Appendix A.2). However, C++
is very large and complex language which can be difficult to use and easy to make
errors. Convex hull algorithm is for demonstration shown in appendix A.5. Rust
is a relatively new programming language that have grown in popularity among
researchers [106]. Rust is a low-level compiled language like C++ but with
additional mechanisms for handling memory, thereby reducing the potential for
bugs especially in multi-threading situations. High-level functional abstractions
and excellent tooling support (e.g. package manager and build tools) are some
of the reasons for its popularity as an alternative for C++.

Many computational steps in critical plane analyses are trivially computed
in parallel. For a given computational task, this means in practice that little
work is required to separate the workload into multiple parallel tasks and this is
the case when each parallel tasks have little or no inter-dependencies. In paper
II, parallelisation was used on brute-force implementations of critical plane.
where the search space was simply divided on a number of CPU threads. Each
thread found its critical plane candidate, from which the global critical plane
was found by comparing each threads maximum. On large, industrial models
it may more make sense to parallelise on each material point. Adaptive scheme
was found to offer only a slight improvement to efficiency. This is partly due to
the brute-force methods to benefit from improved caching for more predictable
code for the modern CPU. Note that the implementations in this thesis are by
few means fully optimised and the efficiency and timing are only indicative.



Chapter 3

Experimental fretting
fatigue

One does not simply study fretting fatigue without conducting any physical
experiments. Experimental data and observations are essential in the field of
fretting due to the complex and diverse mechanisms involved. Consequently,
performing fretting fatigue tests is important for this thesis to be of any sig-
nificant value. Due to the initial lack of fretting fatigue testing facilities, a
considerable amount of resources were put into devising new experimental ca-
pabilities. These efforts will be summarised in this chapter. First, a brief review
of the test methods used in the literature is presented in the following section
for context.

3.1 Historical overview

Academic interest in fretting fatigue started with reports from plain fatigue
tests with wear and fatigue cracks occurred at the specimen gripping joints
[107]. One of the first test programs specifically aimed at surveying fretting was
by Tomlinson [108] in 1927, however focusing on surface oxidation and wear.
In a later study published in 1939 Tomlinson et al. [109], the authors wrote in
the introduction “it is considered by some engineers that fatigue failures may
be initiated by fretting effects, although it has to be admitted that there is
no strong evidence either for or against this view”. Moreover, the researchers
reported the important observation relating cyclic slip with surface damage and
that the repeated straining of contact surfaces could represent “some special
type of fatigue action”.

Warlow-Davies et al. [110] published in 1941 results from a study where fa-
tigue specimens were first subjected to fretting corrosion on a separate machine.
Surface damage was introduced to the cylindrical specimens by by attached
clamps. Later fretting fatigue test configurations by other researchers applied
the fatigue loads simultaneously with fretting contact using loading rings. Nish-

55
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ioka and Hirakawa [111] applied cyclic bending to a cantilever beam while fret-
ting the surface with a pad (“shoe”) connected to two eccentric wheels from
which the phase and relative magnitude between fatigue loading and slip could
be controlled. Contact pressure was applied using a “proving ring” measured
using strain gauges.

Figure 3.1: Clamping ring and lap-joint fretting fatigue tests used in this project.

Clamping mechanisms similar to the metal ring used by Nishioka and Hi-
rakawa became a popular device for applying fretting contact to fatigue speci-
mens. Correspondingly axially loaded fatigue samples were fretted by proving
rings, either using “bridge-type” or by some pad which was retained from mov-
ing along with the surface strain. This way, both bulk fatigue loading and
surface fretting is applied using a single, linear actuator. Early adoptions often
made use of rotating motors with eccentric wheels to convert to oscillating mo-
tion [111]. However, with the industrialisation of axial fatigue machines, using
the already established test facilities of plain fatigue introduced an opportunity
to easily perform fretting fatigue tests with additional clamping devices.

A vast number of different methods and test were devised throughout the
twentieth century and in 1992 there was an attempt to start standardisation of
the fretting fatigue test [112]. However, there is still no accepted generic stan-
dard [113]. The more recent ASTM E2789 standard [114] from 2015 provides
only guidelines and general requirements for conducting a fretting fatigue test
program. While it provides definitions and terminology for testing, it does not
make suggestions toward specific test setups.

Hills and Nowell summarized in 2009 [115] the most important features with
fretting fatigue testing. They argue that the standardisation of fretting fatigue
test geometries will make it easier to compare different sets of results, but stan-
dardisation may also restrict the diversity of test results and hence make them
somewhat less helpful for understanding fretting fatigue as a whole.

Early fretting fatigue tests made use of single-actuator machines where pads,
usually of bridge type, were clamped onto the specimen using proving rings
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[116]. The clamping force is therefore constant as long as the wear was neg-
ligible. The Japanese standard JSME S 015-2002 uses this test configuration
[113]. More advanced, bi-axial test rigs permit the bulk fatigue load to be con-
trolled independently from the contact loading. Early fretting tests at Oxford
University used the fretting bridge on dogbone specimen, but during the end of
60s, they developed a test rig using Hertzian contact and electromagnetic reso-
nance to generate the shear forces [117]. With this, the contact stresses, slip and
displacements were controlled and these tests had a high degree of repeatabil-
ity. Additional generelisations were made that permitted independent control
of shear and bulk forces in the specimen. This was also tested for complete
contacts with a self-aligning property avoiding rotation of the shear forces. The
new arrangement have three independent actuators for the normal, shearing and
bulk loads.

Figure 3.1 shows one of the test-rigs used in the prototyping stage in this
project using clamping ring. Strain gauges are attached to the outer and inner
surface of the clamping ring and are used to control the clamping force in the
bolts. The strain gauge readings were first calibrated by loading the ring in a
load cell. A designated jig was manufactured to simplify the assembly of the
specimens as symmetrically as possible. The proving ring was not supported
by other means than the contact pads, which unfortunately cause some inertia
forces to affect the fretting contact. Nonetheless, the test rig prototype was
used on a batch of aluminium samples and fretting initiated fatigue cracks were
found. In-situ strain gauge readings allows for clamping force to be monitored
during test. As expected, large scatter is found in the load-life plot due to the
easily misaligned clamping arrangement. For the next iterations of this test, the
mass of the ring is to be reduced and alternatively with additional supports, see
e.g. Sabsabi et al. [118].

Another simple test fixture, is the plate lap-joint. When designing such
joints, engineers often rely on standards like Eurocode 3. The bolted connection
is designed to carry loads in shear and fatigue action and fretting can affect the
area surrounding the bolts, greatly reducing fatigue resistance [28]. If clamping
forces are high enough, the the joining plates can “recede” and circular partial-
slip situation may surround the bolt vicinity. Clamping load is applied to the
bolt by using a torque wrench with pre-determined torque. The losses in the
bolt while tightening however cause the real clamping force to be unknown.
Consequently, axial strain gauges are attached to the sleeve from which the
clamping force can be calculated, see Figure 3.1. Nevertheless, such plate joints
enable very accessible means for fretting fatigue experimental observations. The
lap-joint shown in Figure 3.1 was developed and calibrated, but no experimental
test campaigns are included here. It is argued that such tests are very suitable
for educational purposes in mechanical engineering to provide testing experience
and increase fretting fatigue awareness.
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3.2 Dovetail joint

Driven by the development of aircraft turbine engines, much research have fo-
cused on fretting fatigue in turbine blade dovetail joints, see Figure 3.2. In these
applications, mass is to be minimised whilst pursuing reliable operations in ex-
ceptionally harsh conditions. Turbine blades are attached to a rotating disk
using dovetail or fir-tree joints. The joints are subjected to low-cycle fatigue
loading due to centrifugal forces from engine start-up and high-cycle fatigue
loading owing to mechanical and aerodynamic-induced vibrations. These loads
cause microscopic relative sliding motion between the dovetail and the rotating
disk, producing fretting damage. Failures by fretting fatigue was not uncommon
[119].

Crack

Dovetail joint Fir-tree joint

Rotating disk

Centrifugal loads

Crack

Mechanical vibrations

Rotating disk

Pressure uctuations

Figure 3.2: Two different mechanical joints to attach turbine blades: dovetail
and fir-tree.

In Paper IV (see Appendix A.4) a new test rig based on the dovetail joint
was developed and demonstrated with a set of Grade 5 titanium alloy speci-
mens. The main idea behind adopting the dovetail arrangement here, is that a
relatively simple test rig is obtained that can be readily mounted in most fatigue
machines. Many dovetail-based fretting fatigue test rigs have been demonstrated
in the literature, see e.g. [69, 67, 71, 120, 121, 122]. The original dovetail testing
arrangements were generally used to replicate the fretting action in real turbine
dovetail joints, but has become a popular test rig to produce fretting fatigue
test results for more general use; comparing material combinations, load levels,
palliatives etc. The main novelty of the test rig demonstrated in Paper IV is the
idea of testing two specimens at the same time and using a torsional actuator
to provide the secondary source of vibration. This way, mechanical vibrations
can be simulated in addition to the axial centrifugal load.
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Figure 3.3: Dovetail arrangement used as test fixture in Paper III.

The demonstration of the dovetail test rig in Paper IV made use of a uniaxial
fatigue machine, applying axial loads to a single specimen at a time. Load and
displacement were monitored during testing and a very simple stopping criterion
was employed based on the continuously monitored displacement. Tests were
stopped if a jump was detected in the displacement signal. Note that this
displacement includes the stretching on the rig itself and therefore includes
the universal joint (See Figure 3.3). A subset of specimens were additionally
equipped with strain gauges on both sides in order to more accurately record
specimen behaviour during the test (see Figure 3.4). High frequency recording
of load, displacement and strain gauge data for both sides were stored for post-
processing and analysis.
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Figure 3.4: Titanium specimen with strain gauges attached to both flanks on
the dovetail specimen

Test rig was used on a complete series of 6082 aluminium and Ti-6Al-4V tita-
nium alloys, two commonly used materials in fretting fatigue testing literature.
The titanium alloy results were documented in Paper IV and correlated with
predictions using finite element analyses. However, the aluminium results are
not published yet. Aluminium and titanium alloy specimens were geometrically
similar and some aluminium samples failed due to regular fatigue in the neck fil-
let instead of fretting fatigue. Here, it was found to be necessary to place 1 mm
shims behind the aluminium fretting pads, see Figure 3.5. This “spacer” cause
the contact to move upwards on the dovetail specimens, reducing the bending
stress in the neck. Specimens were also milled at the bottom to slightly increase
the bulk stress for fretting fatigue crack propagation.
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Figure 3.5: Aluminium dovetail specimen

All titanium specimens however failed by fretting fatigue, except two run-
outs. Titanium specimens were inspected after failure using Scanning Electron
Microscope (SEM) and light microscope. Figure 3.6 demonstrates how a fa-
tigue crack initiated at the fretted area and propagated obliquely under fretting
contact. For more SEM pictures, see Paper IV in Appendix A.4.

Figure 3.6: Scanning electron microscope of titanium specimen with ad-hoc
spacers.

A digital camera attached to the light microscope was used to document the
crack paths. High-resolution microscope images were obtained by an automated
stitching process using Python and the open source framework libraries provided
by OpenCV [123].
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Figure 3.7: Stitched “high-resolution” microscope image.

Life predictions were made using the numerical framework demonstrated in
Paper II. For details of the numerical work, see Section 2.7. Findley critical
plane parameter with k = 0.35 was found to work well with Theory of Critical
Distance (see Section 2.4.3). However, it is stressed that the results obtained are
accompanied with a considerable amount of uncertainty: most notably is the
EDM-wiring process that produces irregular surfaces with small, melted drops
and micro-cracks. Fatigue crack initiation is dominated by macro-geometry of
contact. The details of material microstructure are also not fully defined al-
though its manufacturing process is known. Lastly, coefficient of friction is only
assumed based on literature and not measured explicitly. Material plasticity
was only seen in very small amount related to rubbing of surface asperities dur-
ing the first few cycles and was therefore neglected in the analyses. For softer
material, sharper-edge contact or higher loads, a plastic material model could
be necessary. It is concluded that the simple study shown in Paper IV demon-
strates the usefulness of the dovetail test configuration and its potential for more
detailed fretting fatigue studies that are planned.

3.3 Clamping ring test

A variant of the bridge-type fretting fatigue test was build during this project
as mentioned in Section 3.1. Using a proving ring, fretting contact is easily
applied to “dogbone” specimens as shown in figure 3.8. The proving ring was
manufactured using water jet and threads were subsequently applied for the
clamping bolts. A specialised gripper bracket was made to permit the re-use
of clamping pads from the dovetail test program which was described in the
previous section, this bracket is shown in the following figure.



3.3. CLAMPING RING TEST 63

Figure 3.8: Clamping ring dogbone fretting fatigue test

Strain gauges were attached to the clamping ring to monitor the clamping
loads. The clamping load was calibrated with a load cell; a series of known forces
was applied to the bolts and strains in the proving ring was recorded. A series
of aluminium specimens was tested and the load-life results are shown in figure
3.9. Note however that this test program was only an early-stage prototype and
that the data is not particularly useful.

Figure 3.9: Life versus load for prototype dogbone specimens in aluminium.
Considerable scatter is largely related to alignment difficulties.

The prototype test rig demonstrated in this section is very simple and ap-
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proachable but has some inherent problems. Firstly, the weight of the rig itself
cause unsymmetrical loads to the specimens tested. Mass of this ring should
be minimised to ensure good dynamical behaviour and to permit higher testing
frequencies. Secondly, the fixture consist of many loose parts which makes it
difficult to assemble and load the specimens symmetrically. A special jig was
used to facilitate this process but results still demonstrated considerable scat-
ter as shown in Figure 3.9. Additional support to the clamping ring and pad
bracket will improve the assembly procedure. Axial load cells should also be
added to the bolts may provide better contact pressure recordings.



Chapter 4

Friction dynamics
simulation

As friction is one of the most important parameters in fretting contact, it is
given special attention in this chapter. More specifically is this chapter aimed
at numerically exploring simple friction models for lumped-mass systems related
to fretting. Non-linear effects due to friction cause quite simple discrete models
to display rich dynamic behaviour and reproduce well-known physical properties
of frictional contacts.

4.1 Friction modelling

Most fretting analyses use Amontons-Coulomb friction laws where the sliding
resistance is assumed to be proportional only to the normal load through the
coefficient of friction (COF), see Equation 2.5. This formulation is adequate for
many engineering applications. COF are often obtained from tabulated data and
chosen based on the relevant material combination. The actual friction however,
is a systems parameter and depends on loads, contact geometry, environment
(e.g. humidity, temperature) and many others [124].

Friction is clearly one of the chief parameters influencing fretting behavior
as its determines the amount of slip and the substrate stress gradients coming
from contact tractions. In Section 2.5.1, it was discussed how fretting behaviour
strongly depends on the friction properties of the contact and some simple ana-
lytical expressions were shown in Section 2.1. Fretting contacts were historically
described to attain one of three different sliding regimes: stick regime, partial
slip, and gross sliding. In a “stuck” contact, bulk sliding is retained across the
contact area but in reality, microscopic slip can, and most likely will, occur lo-
cally. Hence, a more appropriate way of separating the sliding regimes is partial
slip, mixed stick-slip and gross slip [125, 89].

Friction properties in fretting wear and fretting fatigue are known to display
temporal variations. Since the contacting surfaces experience surface modifica-

65
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tions through wear and plasticity, this is to some degree expected. Complete
fretting contacts are seen to sometimes experience frictional shakedown where
the frictional slip eventually vanishes and the contact reaches a fully adhered
steady state [126, 127, 128]. These shakedown phenomena have been compared
with Melan’s theory for plasticity [129].

Coulomb friction applies strictly only globally to contacts in gross sliding but
through the work of Hertz [5], Cattaneo [10], Mindlin [130], Ciavarella [13] and
Jäger [12] partial slip problems can be analysed analytically for certain smooth
elastic contacts. See section 2.1. General frictional elastic contacts are usually
solved using finite element methods and in Section 2.5 it was discussed how
the non-linearity of frictional contacts are solved using such numerical methods.
Nevertheless, most fretting analyses using numerical or analytical methods are
static or quasi-static, neglecting inertia effects.

A number of deviations from Coulomb friction have also been found related
to the dynamics of the system. Most well-known is perhaps the Stribeck effect
[131], where even for dry contacts, the friction force experience a negative slope
with respect to the relative sliding velocity, see Figure 4.1. A number of velocity-
weakening friction models have been proposed to capture this effect, see e.g.
[132]. The negative slope in velocity-weakening friction models are known to
produce friction instabilities leading to self-excited vibrations with very rich
dynamic response and chaotic solutions.

Velocity-weakening (VW)Coulumb friction Velocity-strengthening (VS)

VW VW VS

Figure 4.1: Three different friction functions.

A large body of research exist on friction dynamics using simple discrete
models [133, 124]. Self-excited vibrations are found in robotic applications
causing undesirable motion. The irregular and chaotic motions produced by
stick-slip instabilities have been simulated numerically using single degree of
freedom lumped-mass models, see e.g. Popp al.[134]. Unstable friction response
have also been found to cause brake squeel [135] and seismic events [136]. The
classical Burridge-Knopoff (BK) model [137] was introduced as early as 1967
to numerically study earthquake dynamics. The BK model consists of a one-
dimensional chain of spring-connected masses on a slow-moving friction surface.
Since the introduction in the sixties, many researchers have used similar models
to reproduce various frictional response, see e.g. [136, 138, 135]. Such models
have also been used to analyse applications where friction is deliberately intro-
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duced to fretting contacts as a means of damping external vibrations. Sanliturk
et al. [139] used a set of spring-dampers in parallel to analyse friction dampers
in turbine blade assemblies. For an overview of friction models across different
fields see Berger (2002) [124].

Research on the effects of rate-and-state dependent friction models in recip-
rocating motion is limited. Mulvihill et al. [140] found non-Coulomb features
for gross sliding to relate to wear-scar interactions. Shalapko and Tarasova [141]
analysed surface-layer effects in fretting fatigue using a two-degree of freedom
system subjected to reciprocating motion and found their model to produce
chaotic solutions. Thøgersen et al. [142] analysed frictional contact using dis-
tributions of micro-junctions and found the macroscale sliding to depend on
relative velocity.

A natural question that arises is whether a static friction model is sufficient to
model the frictional behaviour in fretting contacts. Another interesting question
is whether simple lumped-parameter models can simulate surface interactions
relevant for fretting contacts. Stick-slip is mainly a low-velocity phenomena
where the negative slope of the friction curve is steep. As gross slip fretting
contact is subjected to a sinusoidal shear force (or displacement), the velocity
too cycle harmonically and moves through a wide range of velocities. However,
as the fretting strokes are small for many cases of fretting, instabilities are usu-
ally suppressed. Nonetheless, single degree of freedom systems have been shown
to produce interesting dynamics and to represent various friction phenomena
numerically. They can give valuable insights into stick-slip behaviour and var-
ious velocity effects. In Section 4.2 a single DOF model is used to analyse
reciprocating fretting motion. Partially stuck contacts found in many fretting
applications obviously needs more than one DOF to represent the spatial vari-
ations. In Section 4.3 one-dimensional chains of blocks are used to investigate
dynamic behaviour of Hertzian fretting contacts. These models have similarities
with the Burridge-Knopoff models but are ascribed reciprocating motion and
varying (Hertzian) contact profiles. This chapter demonstrates part of a project
to model the complex dynamic friction interactions and to study the effects of
time-varying (state-dependent) friction of fretting contacts.

4.2 One-dimensional friction model

Reciprocating fretting contact is analysed using a one-dimensional single degree
of freedom (SDOF) lumped-mass model as shown in Figure 4.2. It was described
in previous section that rich dynamics can be found even for SDOF models due
non-linear rate-dependent friction functions, which are demonstrated in this
Section. The SDOF model will be used to investigate parameters related to
fretting contact but more importantly form the basis for multi-degree of freedom
(MDOF) model demonstrated in Section 4.10.

Consider the single block with mass m, suspended by a linear spring with
stiffness k and viscous damper with damping coefficient c. The block is pressed
onto a friction surface (“belt”) with pressure p and coefficient of friction μ.
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Figure 4.2: Discrete friction system for a single degree of freedom. A constant
pressure P presses the block onto a rigid belt causing a shear force transmitted
from the belt through coefficient of friction μ.

The equation of motion for this single degree of freedom system is

mẍ+ cẋ+ kx = fμ(vrel) (4.1)

where x is the spatial displacement of the block. Dots denote derivative
with respect to time t, i.e. ẋ and ẍ is the velocity and acceleration of the block,
respectively. The right hand side fμ is the friction force which depends on the
relative velocity between the block and belt, vrel = ẋ− vb.

The belt is prescribed a harmonic oscillation by

xb(t) = d sin (ωt) (4.2a)

vb(t) = ωd cos (ωt) (4.2b)

ab(t) = −ω2d sin (ωt) (4.2c)

where ω = 2πf is the angular velocity, f is the forcing frequency and d is
the displacement amplitude (“fretting stroke”). A constant pressure p is exerted
on the block, causing friction between the block and the belt. The shear force
depends on the coefficient of friction (COF) μ, which in turn is a function of
relative velocity. Denoting the COF at a given time as

μ =

{
μs for vrel = 0

μd(vrel) for vrel 	= 0
(4.3)

where μs is the static COF and μd i is the dynamic, rate-dependent coefficient
of friction (See Figure 4.1). Following from (4.3), the friction force is only piece-
wise continuous. The stick force is limited by the friction limit and is always
opposite in direction with respect to the relative velocity. The friction limit is
μsp and the friction force may thus be described by

fμ =

{
min(μsp, |Fa|) · sgn(Fs) for vrel = 0

μ(vr, t)p · sgn(vr) for vrel 	= 0
(4.4)
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where Fa is the force required to accelerate the mass with the belt and
Fs = kx is the spring force (see Figure 4.4) and sgn is the signum function
expressed as

sgn(α) =

{
1 for α ≥ 0

−1 for α < 0
(4.5)

where α in this case is a dummy variable.
A simple velocity-weakening friction law is used here,

μd(vrel) = μk +
μs − μk

1 + δ|vrel| (4.6)

where δ is a coefficient describing the slope of the friction as seen in Figure
4.3. Note that there is a number of different rate-dependent friction models
used in literature and this was chosen for its simplicity. See Berger (2002) [124]
for an overview over other models.

Figure 4.3: Friction curve for various values of scaling δ. Here μs = 0.75 and
μk = 0.5

Physical quantities are specified instead of normalising the equations. The
spring stiffness may be derived from the material constants and beam equations,

k =
EA

L
, m = ρAL (4.7)

but for simplicity, the following quantities will be assumed for the remainder
of this text: m = 0.05, k = 105, μs = 0.75, μk = 0.50 unless otherwise specified.
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4.2.1 Damping

Equation (4.1) describes a forced harmonic oscillator with dissipation. For har-
monically forced mechanical systems with sufficient dissipation, solution relaxes
down to a steady state. Damping factor c controls the amount of dissipation
of the system and this parameter is in reality difficult to quantify physically
[143]. For fretting contacts, dissipation may be related to heat-generation from
material straining and contact interaction, plastic work, sound etc. Here, linear
velocity-dependent (viscous) damping force is assumed. From the characteris-
tic polynomial of Equation (4.1), the critical damping for the system can be
obtained and damping values are expressed as ratio of this critical value. As-
suming for now purely stiffness-proportional damping, the damping ratio ξ can
be expressed as

ξ =
1

2
βω (4.8)

where β is the stiffness proportional damping factor and ω is the target
frequency in radians. In engineering practice, appropriate damping ratios are
often found to be ξ = 0.01− 0.1 for a given target frequency [143]. The SDOF
system has only one natural frequency (ωn =

√
(k/m)) and is forced with

frequency ω. For most physical quantities relevant for fretting, forcing frequency
is considerably lower than the natural frequencies of the system. It is clear from
(4.8) that frequencies are damped differently for a given β. More on this is
discussed for the multiple-degree of freedom system discussed in section 4.3

4.2.2 Results

The equation of motion (4.1) is integrated using the classical fourth order Runge-
Kutta method (RK4). Details of the integration scheme is given in appendix A.9
for reference. The second order differential system is first rewritten as system
of first-order equations and time is included in the state vector � for simplicity.
The state vector and its tangent (“Jacobian”) can then be written in vector
form as

� =

⎡
⎣uu̇
t

⎤
⎦ �̇ =

⎡
⎣ẋi

ẍi

ṫ

⎤
⎦ =

⎡
⎣ ẋi

1
mi

(Fs − Fr)

1

⎤
⎦ (4.9)

Due to the transition between stick and slip states, the slope of the solution
is only piece-wise continuous. To handle this in the temporal integration, one
can either use a smoothing function or by “switching” the equation system [144].
Using a smoothing function cause the tangent to be continuous but results in
very stiff equation near the transition. Such stiff differential equations may
be difficult to integrate, often requiring a scheme with adaptive time-stepping.
Using the switch model however, the tangent is calculated based on the current
state of the block (stick vs slip). A “stick-band” is centered around the zero-
velocity point, with a width of ε, see Figure 4.1. ε is here chosen to be 10−4.
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Time steps are usually chosen to be very small (10−7) to minimise errors when
transition between stick and slip, but also to avoid numerical instabilities if the
time stepper would happen to fall in-between stick and slip.

Flowchart for the switching algorithm for the solution tangent is shown in
Figure 4.4

Sticking

Incipient sliding

Return slope

FalseTrue

True

False

Slipping

Figure 4.4: Flowchart for calculating the slope of the SDOF system

The phase space of the system described in Equation (4.1) is three-dimensional.
Solution trajectories are visualised in Figure 4.5. The trajectory is demonstrated
in (projected) two-dimensional and three-dimensional phase space. For some
chaotic and irregular solutions, these visualisations are difficult to interpret as
they appear to be random (see Figure 4.9). For some of these solutions, the
three-dimensional phase space can be projected onto a two-dimensional phase
space by taking intersections transversely to the trajectory flow. By recording
long series of intersections with this plane, underlying dynamics can sometimes
be appear in the projection plane. The periodic flow intersections with a speci-
fied plane is then recorded, known by Poincaré map after Henri Poincaré [145].
These visualisations are very popular tools in dynamic modelling and chaos the-
ory and may be appropriate for some (rare) weakly dissipated friction system
trajectories.
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Figure 4.5: Example frequency and phase space for a weakly dissipated fretting
contact in gross slip

Figure 4.5 demonstrates how the forcing frequency dominates the block be-
haviour mainly through first order (15 Hz) but also through third and fifth order
(harmonics). The projected two-dimensional phase space show how the block
have multiple attractors and velocity jumps as the belt change direction.

When friction force is large enough to resist shearing forces exerted to the
block at outer limits of fretting stroke, block will adhere throughout fretting
cycle. Thus after a small transient, depending on dissipation, block steady
state solution will remain in stick. In this chapter, transient states are simply
discarded as the steady-state behaviour usually define fretting damage. Sliding
and sticking solutions are illustrated in Figure 4.6.
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Figure 4.6: Comparing stick solution with slipping for single degree of free-
dom. Pressures are P = 1500 and P = 1200 for sticking and slipping solution
respectively. Forcing frequency is 15Hz, δ = 1, ξ = 0.05.

As expected, solution is found to be very sensitive to the amount of dissi-
pation: damping is found to suppress stick-slip behaviour. Chaotic solutions
are not found for any relevant amounts of dissipation. The strong dependence
on dissipation highlights the need to experimentally verify model and physi-
cal parameters before any qualitative analyses are to be hoped for. Figure 4.7
demonstrates how velocity jumps are suppressed by dissipation, but the slip
amplitudes are only slightly affected by the damping ratio.
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Figure 4.7: Solution for different values of damping ratio

Velocity of the block is also affected by the slope of the friction function (see
Figure 4.3). For steep gradients, larger velocity jumps and slip amplitudes are
found.

Figure 4.8: Solution for different values of friction slope δ

Irregular motion can be seen for very weakly dissipated systems. Apparent
chaotic solutions are characterised by irregular trajectories in phase space and
noise in the frequency space. Often, very little damping is needed to suppress
chaotic behaviour. In dissipated systems chaos only occurs for rare combinations
where the periodic bifurcations provide enough irregularity for the solution to
diverge. Note that a common signature of chaotic behaviour is exponentially
diverging of two initially close states. This phenomenon is not considered here.
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a b

c d

Figure 4.9: Apparent chaotic solution for weakly dissipated system at higher
frequency (ξ = 0.1%, f ≈ 47.46 Hz, δ = 0.5).

Figure 4.9 shows an example of apparent chaotic solution for weak dissipation
and higher loading frequency. The frequency content of the pad displacement is
broad-banded but dominated by the forcing frequency and its higher harmonics.
In Figure 4.9d, intersections are taken at xb = 0 to form a Poincaré map.
Although the dimensionality of the state space in this visualisation is reduced
by one, it is still difficult to interpret. Note however that such projections are
not necessarily well-defined in the case of piece-wise continuous equations as in
(4.1).

4.3 Multi-degree of freedom system

Attention is now turned to the frictional chain models similar to the Burridge-
Knopoff-like systems. The idea is to obtain macroscopic fretting dynamical
behaviour from a small scale (“micro”-model). The system described in Section
4.2 is therefore extended to N blocks forming a one-dimensional frictional chain
as shown in Figure 4.10. The remainder of this section will for simplicity only
consider N = 100.
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...

Figure 4.10: One dimensional friction chain with N degrees of freedom

The equation of motion for block i becomes

mẍi =− kix− ciẋ

− k(i−1)i(xi − xi−1)− c(i−1)i(ẋi − ẋi−1)

− ki(i+1)(xi − xi+1))− ci(i+1)(ẋi − ẋi+1)

+ Fμ,i

(4.10)

where Fμ,i is the friction force for block i which in general is a function
of both velocity and state history. Rate dependency accounts for velocity-
weakening (Stribeck-effects) and history-dependency can be used to model e.g.
the friction evolution seen in fretting experiments. The pressures pi can be used
to ascribe spatially varying pressure. Here, Hertzian pressure profile will be
used, see Equation (2.1), but with a small number of free blocks on each end of
the chain.

For simplicity, in the following all intermediate springs will be ascribed the
same stiffness k and spring to ground is ki = k/N . All blocks will also have the
same mass mi = m/N . This system will have a series of broadly spaced natural
frequencies, where the first natural mode corresponds to all blocks oscillating
synchronously. The first natural frequency (in Hz) is hence

f0 =
1

2π

√
ki
mi

(4.11)

the highest natural mode of the system corresponds to all masses oscillating
in opposite phase, i.e. having the natural frequency fN (in Hz)

fN =
1

2π

√
4 · k12 + k1

m
(4.12)

Since mass and stiffness are scaled with respect to the SDOF model, first
natural frequency is the same for this as in the previous section. The highest
frequency will however increase with the number of blocks as springs in series
should amount to the same overall stiffness, see Equation (4.7). This may cause
problems for systems where N is large as the critical time step may become
quite small.
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4.3.1 Damping

In engineering practice Rayleigh damping factors are often chosen based on
two (usually natural) target frequencies. As described in section 4.2.1, Rayleigh
damping affects frequencies differently. The damping can be assumed to be a
linear combination of mass and stiffness properties of the system. By assuming a
linear damping relation, natural modes of the system remain uncoupled. This is
numerically convenient but the physical reasoning is not always clear. Nonethe-
less, mass-proportional damping can be viewed as viscous damping which may
result from fluid interactions at the surfaces. Stiffness-proportional damping
may be thought to model dissipation from the material strain work. Consider
the damping matrix C written as

C = αM + βK (4.13)

where α and β are the Rayleigh damping coefficients related to mass and
stiffness respectively. M and K are the mass and stiffness matrices. Matrix
representations of these relations is convenient, but recall that explicit integra-
tion is used here and matrices are avoided in the solution. Similarly to SDOF
demonstrated in Section 4.2, damping may be expressed as a ratio of critical
damping. By entering Equation (4.13) into the characteristic equation of motion
(4.1), the damping ratio for a given frequency f may be obtained by

ξf =
α

2ωi
+

βωi

2
(4.14)

where ωf is the target frequency in radians. There are two particularly im-
portant frequencies related to the frictional chain demonstrated in this section.
That is the first natural frequency and the forcing frequency. As described in
previous section, natural frequencies of the friction chain will span a wide spec-
tre of frequencies which are higher than fretting forcing frequency. This means
that forcing frequency and natural frequencies will receive different amounts of
damping. For simplicity, damping is still assumed to be stiffness-proportional
and thus only one target frequency is needed. For the remainder, damping ra-
tios will be given wrt. the forcing frequency ξf or first natural frequency ξn.
Ascribing an amount of damping ξnn the forcing frequency will be very lightly
damped.

As dissipation is most likely affected by several different frequencies, some
low-frequency (mass-proportional) damping is most likely appropriate, see Fig-
ure 4.16. Equation (4.14) can be rewritten to obtain the damping factors by

α =
2ω1ω2

ω2
2 − ω2

1

(ω2ξ1 − ω1ξ2)

β =
2

ω2
2 − ω2

1

(ω2ξ2 − ω1ξ1)

(4.15)

where ω1 and ω2 are the target frequencies and ξ1 and ξ2 are the correspond-
ing frequencies. In practice these are often chosen to be 1− 5% of e.g. first and
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third natural frequencies, but should in general be measured experimentally.

4.3.2 Results

In the following, MDOF model (Figure 4.10) will be simulated for a whole range
of different parameters. Most interestingly here will be the general and quali-
tative solutions, demonstrating how different parameters affect the model and
the resulting behaviour. However, it is stressed once again that no quantitative
physical results are unavailable and that the models remain theoretical until a
thorough experiment and calibration effort is made.

Hertzian contact pressure profile (see Equation (2.1)) is assigned to the
model, but keeping five free blocks at each end. Pressures p in this section
is referred as the peak pressure on center block. Forcing frequency is 15 Hz and
fretting stroke amplitude is d = 0.01 mm.

Figure 4.11 show how higher contact pressure cause center blocks to stick
whilst the contact edges experience minute relative sliding with the belt. For
low contact pressure, contact enters gross sliding regime. In this regime shear
forces cause all blocks to slide, revealing how the center block abruptly alters
between sticking and slipping state. Local slip events are also evident for the
outer blocks as oscillations in slip almost following the belt.

Figure 4.11: Different degrees of freedom for partial stick and gross slip regimes.
Demonstrating difference between nominally stuck contact and gross sliding.
Upper row: Partial stick solution for p = 100, lower row: gross slip for p = 10.

Hysteresis loops (“fretting cycles”) are calculated by integrating the shear
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force over contact and plotting as a function of belt displacement. An example is
shown in Figure 4.12. For higher contact pressures, only a small subset of blocks
slide, thus having the state of partial slip. Very local slip events at the contact
edges cause small oscillations in the contact shear. The hysteresis area may be
thought to represent the frictional work. The gross slip regime dissipates more
friction energy which is related to increased fretting wear and lower cracking
probability due to smaller peak shear stress.

Figure 4.12: Comparing partial slip with grossly sliding hysteresis.

Quite irregular motion is seen for the gross sliding fretting loops, and they
are perhaps more suitably studied using statistical analysis. Figure 4.13 demon-
strates the fretting loop for a contact in gross slip. Small local slip-events are
seen to cause oscillations at the end points

Figure 4.13: Simulating 50 fretting cycles and corresponding mean and standard
deviation plot.

The macroscopic behaviour of the contact is found to be insignificantly af-
fected by the slope δ of the friction function. Peak shear values are found to
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vary only slightly but for steep friction function, the fretting loop is seen to be
smoother.

Figure 4.14: Comparing hysteresis loop for different values of friction slope δ.
Less cyclic variation is seen for steeper friction slope.

For increasing stiffness-proportional damping, hysteresis loop becomes de-
creasingly irregular as seen in Figure 4.15. However, far out oscillations are
increasingly abrupt which is most likely unphysical.

Figure 4.15: Fretting loop for higher values of stiffness-proportional damping.
As blocks start to slip, block slip events cause oscillations in the shear force.

Figure 4.16 demonstrates hysteresis for the Hertzian fretting contact for
both mass- and stiffness-proportional damping. The unphysical oscillations at
the end points are suppressed, leading to a smooth hysteresis loop. Here, first
natural frequency is damped with 1% and last natural frequency damped 5%.
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Figure 4.16: Fretting loop for system with both mass and stiffness proportional
damping.

Spatial and temporal variations in coefficient of friction is permitted by hav-
ing one extra degree of freedom per block. A friction evolution law is added to
the system tangent and each block will have its own (small) variation in friction
properties. Fretting contacts are known to experience increasing coefficient of
friction during operation. This increase may be described by surface alterations
(oxide layers wearing off, increasing conformity etc.) and wear debris interaction
[146].

Consider for simplicity the friction evolution “laws”,

μ̇i = γΔt(xi − xb) (4.16a)

μ̇i = γΔtτ(xi − xb) (4.16b)

where γ is a constant describing evolve rate and τ is the shear force. Figure
4.17 demonstrates an accelerated example where the five different hysteresis are
recorded throughout a fretting load history with p = 10 and evolve rate γ = 1.
COF is seen to stabilize for central parts of the contact whilst contact edges
continue to slide against the belt.
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Figure 4.17: Fretting hysteresis loop with accelerated friction evolution law
based on slip.

Figure 4.18 demonstrates an accelerated hysteresis loop evolution where the
friction evolution law is based on shear work, rather than slip.

Figure 4.18: Fretting hysteresis loop with accelerated friction evolution law
based on shear work.

Different evolution is seen for work-evolving coefficient and slip-evolving coef-
ficient. The friction evolution laws demonstrated are very simplistic but provide
interesting insights into both fretting behaviour. More complex evolution laws
will be used in further work.
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4.4 Discussion

In this chapter, steady-state frictional systems were investigated using discrete
lumped-mass models. Nonlinear friction functions are shown to produce quite
rich dynamics even for simple one-degree of freedom systems. It is recognised
that friction plays an important role in the behaviour of fretting systems and it
is the goal of these studies to qualitatively analyse the dynamic friction and its
influence on fretting contacts. Obviously, experimental testing and calibration
needs to be performed before any quantitative analyses can be made. Experi-
mental verification of these friction simulations are not included in this thesis
but is envisioned for further work. Numerical modelling of friction dynamics is
also an ongoing research interest and is expected to continue through academic
papers.

The mathematical tools from chaos theory and dynamic modelling in gen-
eral provide very interesting and useful tools, some of which were demonstrated
in this chapter. It is argued that studying dynamic friction behaviour using
phase space diagrams, first return maps, bifurcation diagrams and, potentially,
Lyapunov exponents can provide valuable insights into the behaviour of fretting
contacts. Chaotic solutions was not found for the reciprocating fretting contacts
for any physically relevant amount of damping. Chaos is generally rare for such
dissipated systems, but may exist as threshold states depending on dissipation,
system stiffness, forcing properties etc. Nonetheless, dependency on the physi-
cal parameters highlight the advantages of using statistical methods to analyse
fretting contacts. Frequency methods are also useful in these models to analyse
the frequency content and periodicity in the response.

The classical fourth-order Runge-Kutta integration scheme was used and
found to be sufficiently accurate for steady state simulations. However, very
short time steps are used to avoid inaccuracies related to the stick-slip transi-
tions. Hence, implicit integration methods are currently not practical. Adaptive
time stepping integrators may be useful, especially for the SDF system.

The numerical modelling and simulation of dynamic friction using the simple
models demonstrated here continues to be a topic of great interest and will be
subject to further research. Experimental work should also be conducted in
order to further unite these methods with real fretting contacts. Furthermore,
it is of interest in further work to investigate random rough surfaces and through
parameter studies through Monte-Carlo simulations.
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Chapter 5

Conclusions

In this project, a holistic approach to study fretting fatigue is undertaken. Fret-
ting and fretting fatigue is inherently complex and intertwined problems. Dur-
ing the last century, numerous of parameters have been discussed to have an
effect on fretting fatigue and numerous theories have been proposed. Similarly,
the field is also represented by a very diverse set of analysis methodologies. A
comprehensive study on fretting is therefore difficult. A holistic approach will
in many cases mean addressing a problem for a large number of relevant fac-
tors and leaving out the non-important ones. The exact choice of which effects
and parameters to include in the model often depend on the application. This
project was initiated based on experience with varied fretting behaviour in the
context of medium-speed piston engines. In this field, large geometries are sub-
jected to complex fretting load histories causing problems sometimes dominated
by fretting wear and sometimes dominated by fretting fatigue. The main goal
of this project is to improve the prediction capabilities of fretting problems and
to provide facilities to conduct relevant experimental work. Crack initiation
prediction is of particular interest as fatigue failures are especially critical. Fric-
tion is also given special treatment as dynamic friction cause uncertainty to the
mechanical joint behaviour.

This report was divided into four parts, each of which will be concluded in
the following.

5.1 Numerical

The numerical work on fretting fatigue is the primary part of this thesis. The
Ruiz parameters are used in many engineering practices and when combined
with experience and recorded data, these can provide indications and estimates
that inform design decisions early in the project. However, the lack of physical
interpretation is a problem and there are obvious limits to the accuracy of
interpolating the recorded data. Such parameters can predict fretting wear to
some degree, but quantifying fretting initiation of cracks usually require more
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advanced analysis.
Fretting fatigue is popularly addressed using critical plane methods. It is

generally accepted that fatigue cracks initiate and grow in certain preferen-
tial material planes determined primarily by the material properties and load-
ing. Section 2.7 reviewed the numerical aspects of implementing critical plane
methodologies to fretting fatigue. Especially critical is managing the size and
gradient effects occurring under fretting contact, and the use of Theory of Crit-
ical Distance was investigated in Paper IV, see Appendix A.4. For critical plane
methods to be suitable for engineering projects, accuracy and efficiency is im-
portant. Paper II considered various ways of accelerating the critical plane
analysis. Critical plane analyses are mainly used to predict fretting fatigue ini-
tiation and in some cases fracture mechanics methodologies must be applied to
properly model the subsequent crack growth. This has not been a focus of this
thesis, but remains part the work to be continued; it is recognised that more
research is needed into the separation of initiation and propagation stages.

The choice of fatigue criterion probably needs some justification. The shear
stress-based criteria was proposed by Findley [86] in the fifties and many more
advanced criteria have been proposed since then, see Section 2.7.1. However,
although simple in its form, the Findley criteria should be able to capture shear-
based crack initiation and early growth as seen in many engineering metals.
The use of fatigue criterion is not the main aim of this thesis, but the methods
demonstrated here should be straight-forward to apply to many other criteria.
Work is continuing with the application of other parameters, e.g. Carpinteri,
see e.g. [88, 89].

The choice of suitable programming languages was an important part of the
numerical work in this thesis. Python and C++ were used predominately, but
also the newer language Rust. While Python is the obvious choice for proto-
typing, C++ was preferred for CPU-intensive critical plane algorithms, using
multi-threading support through OpenMP and linear algebra using Eigen3. The
recent programming language Rust provide a memory-safe alternative to C++
and is growing in popularity for scientific applications. Some code demonstra-
tors in Python and C++ are included in the appendices that highlights the
relevant benefits for each language.

5.2 Experimental

Experimental work is important in fretting projects. Fretting observations re-
ported in academic literature and industrial practice are varied. The dovetail
fixture demonstrated in Section 3.2 permit testing at a variety of testing condi-
tions. Although testing can be performed at different loads, its usage is clearly
limited compared with the bi-axial test rigs used in detailed fretting fatigue
experimental campaigns.

Most of the experimental work conducted in this thesis is considered proto-
typing. Developing new fretting fatigue test capabilities require resources and
time. Fretting fatigue test machines are also inherently complicated and devel-
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oping new test machines should include intermediate steps. Ultimately, the goal
of experimental testing is to be able to control many of the relevant parameters
independently, such as contact tractions, fatigue load, material combinations
etc. Controlling traction loads and fatigue loads independently require several
actuators and fretting-specific machines are usually built [117]. Work is initiated
during this project to build such a multi-actuator fretting fatigue test machine,
but realisations of these plans were deprioritised in favour of the intermediate
development steps that would produce test results faster. Future work includes
building the more advanced test machines and inaugurate new students in the
continuing experimental work.

The proving ring and lap-joint tests are examples of very accessible test se-
tups which have both been demonstrated numerous times in research literature.
Section 3 demonstrated the use of such tests during this in preliminary test
programs. The results of these tests are not published yet and probably never
will, but the tests nonetheless represented necessary exploratory experimental
work and intermediate steps in developing useful test programs. These types of
test rigs are quite limited, especially in terms of fretting loads. Usually, contact
pressure is constant (and to some degree unknown due to bolt friction etc.)
and shear forces are in-phase with the fatigue loads. Hence, these tests do not
satisfy the interest in investigating loading effects. However, they do represent
excellent opportunity for graduate students to do simple fretting tests. This is
important because it is suggested here that the focus on contact mechanics and
fretting fatigue in graduate mechanical engineering topics are to some degree
neglected.

The dovetail fretting fatigue test demonstrated in Section 3.2 was devel-
oped with diversity and simplicity in mind. These two issues are in many ways
conflicted since adopting possibilities of diversity, usually comes at the cost of
complexity or lack of accuracy, hence, this fixture is a compromise. The dove-
tail joint fretting test is perhaps the most used configuration in the field, being
simple and more importantly, it is related to concrete problems reported in the
engineering field. Some additions were made to the fixture to make it more flex-
ible. Firstly, allowing interchangeable contact pads enables different materials
to be tested as demonstrated by many authors previously. Secondly, by allowing
two specimens being tested at the same time, the rotating actuator in a multi-
axial fatigue machine can be used to introduce a secondary source of vibration
to the specimens. Paper IV demonstrates the use of this test configuration on a
set of Ti-6Al-4V alloy specimens with cylindrical (Hertzian) contact geometry
loaded axially.

Materials worked with during this project were mostly aluminium (6082)
and Ti-6Al-4V. These materials were chosen simply because they are accessible
and due to the existing fretting fatigue experimental data. Validation of the
test methods used in this project preferred similar material. Also of further
work is to extend the experimental work to materials used in the industry as
described in paper III. Here it is suggested that the experimental data on cast
irons are lacking. Fretting fatigue performance of cast iron alloys are relevant in
the industry of heavy-duty machinery and interesting due to the self-lubricating
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property of the graphite in cast iron.
It is acknowledged that especially fretting fatigue is a phenomenon concerned

with the material and its microstructure. Material and fractography is perhaps
given disproportional amount of attention in this thesis but more detailed ma-
terial studies are part of the ongoing plans.

5.3 Friction simulations

Part four of this thesis was concerned with the dynamics of friction contacts. It
is well-known that friction is one of the most important parameters in fretting
contacts and it is not fully established how the dynamics of the contact affects
the behaviour of the fretting system.

Discrete spring-block systems have been used for decades to analyse the
non-linear dynamics due to friction. In Section 4 one-dimensional frictional
chains were used to simulate friction dynamics in fretting contacts. The models
were not ascribed particularly accurate and fretting-related physical properties,
but are used to qualitatively study frictional behaviour of gross slip and mixed
regime contacts for Hertzian contact profiles. The single degree of freedom
oscillator with velocity-weakening friction law was found to suppress chaotic
dynamics when appropriate amounts of damping is introduced. Using these
models, rate- and state-dependent friction can be simulated to inform the dy-
namic behaviour of fretting contacts.
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[104] J.A. Araújo et al. “On the characterization of the critical plane with
a simple and fast alternative measure of the shear stress amplitude in
multiaxial fatigue”. In: International Journal of Fatigue 33.8 (2011).
Multiaxial Fatigue Models, pp. 1092–1100. issn: 0142-1123. doi: https:
//doi.org/10.1016/j.ijfatigue.2011.01.002. url: http://www.
sciencedirect.com/science/article/pii/S0142112311000041.

[105] B. Weber et al. “Improvements of multiaxial fatigue criteria computa-
tion for a strong reduction of calculation duration”. In: Computational
Materials Science 15.4 (Nov. 1999), pp. 381–399. doi: 10.1016/s0927-
0256(98)00129-3.



BIBLIOGRAPHY 99

[106] Rui Pereira et al. “Ranking programming languages by energy efficiency”.
In: Science of Computer Programming 205 (2021), p. 102609. issn: 0167-
6423. doi: https : / / doi . org / 10 . 1016 / j . scico . 2021 . 102609.
url: https : / / www . sciencedirect . com / science / article / pii /

S0167642321000022.

[107] Mr. E. M. Eden, Mr. W. N. Rose, and Mr. P. L. Cunningham. “The En-
durance of Metals: Experiments on Rotating Beams at University Col-
lege, London”. In: Proceedings of the Institution of Mechanical Engineers
81.1 (1911), pp. 839–974. doi: 10.1243/PIME\_PROC\_1911\_081\_017\
_02. url: https://doi.org/10.1243/PIME_PROC_1911_081_017_02.

[108] G. A. Tomlinson. “The Rusting of Steel Surfaces in Contact”. In: Proceed-
ings of the Royal Society of London A: Mathematical, Physical and En-
gineering Sciences 115.771 (1927), pp. 472–483. issn: 0950-1207. doi: 10.
1098/rspa.1927.0104. eprint: http://rspa.royalsocietypublishing.
org/content/115/771/472.full.pdf.

[109] G. A. Tomlinson, P. L. Thorpe, and H. J. Gough. “An Investigation
of the Fretting Corrosion of Closely Fitting Surfaces”. In: Proceedings
of the Institution of Mechanical Engineers 141.1 (1939), pp. 223–249.
doi: 10.1243/PIME\_PROC\_1939\_141\_034\_02. eprint: https:
//doi.org/10.1243/PIME_PROC_1939_141_034_02. url: https:
//doi.org/10.1243/PIME_PROC_1939_141_034_02.

[110] E.J. Warlow-Davies. “Fretting Corrosion and Fatigue Strength: Brief Re-
sults of Preliminary Experiments”. In: Proceedings of the Institution of
Mechanical Engineers 146.1 (June 1941), pp. 32–38. doi: 10.1243/PIME\
_PROC\_1941\_146\_012\_02. url: https://doi.org/10.1243/PIME_
PROC_1941_146_012_02.

[111] Kunio Nishioka and Kenji Hirakawa. “Fundamental Investigations of
Fretting Fatigue : (Part 2, Fretting Fatigue Testing Machine and Some
Test Results)”. In: Bulletin of JSME 12.50 (1969), pp. 180–187. doi:
10.1299/jsme1958.12.180.

[112] MH Attia and RB Waterhouse, eds. Standardization of Fretting Fatigue
Test Methods and Equipment. ASTM International, Jan. 1992. doi: 10.
1520/stp1159-eb.

[113] R.W. Neu. “Progress in standardization of fretting fatigue terminology
and testing”. In: Tribology International 44.11 (Oct. 2011), pp. 1371–
1377. doi: 10.1016/j.triboint.2010.12.001.

[114] Guide for Fretting Fatigue Testing. doi: 10.1520/e2789-10r15.

[115] D.A. Hills and D. Nowell. “What features are needed in a fretting fa-
tigue test?” In: Tribology International 42.9 (2009). Special Issue: Fifth
International Symposium on Fretting Fatigue, pp. 1316–1323. issn: 0301-
679X. doi: http://dx.doi.org/10.1016/j.triboint.2009.04.
023. url: http://www.sciencedirect.com/science/article/pii/
S0301679X09000905.



100 BIBLIOGRAPHY

[116] TC Lindley and KJ Nix. “Fretting Fatigue in the Power Generation In-
dustry: Experiments, Analysis, and Integrity Assessment”. In: Standard-
ization of Fretting Fatigue Test Methods and Equipment. ASTM Inter-
national, 1992, pp. 153–153–17. doi: 10.1520/stp25828s.

[117] D.A. Hills and D. Nowell. “Mechanics of fretting fatigue-Oxford’s con-
tribution”. In: Tribology International 76 (Aug. 2014), pp. 1–5. doi: 10.
1016/j.triboint.2013.09.015.

[118] M. Sabsabi, E. Giner, and F.J. Fuenmayor. “Experimental fatigue testing
of a fretting complete contact and numerical life correlation using X-
FEM”. In: International Journal of Fatigue 33.6 (2011), pp. 811–822.
issn: 0142-1123. doi: https://doi.org/10.1016/j.ijfatigue.2010.
12.012. url: https://www.sciencedirect.com/science/article/
pii/S0142112310003130.

[119] “Critical issues in high cycle fatigue”. In: International Journal of Fatigue
21 (1999), S221–S231. issn: 0142-1123. doi: https://doi.org/10.
1016/S0142-1123(99)00074-2. url: http://www.sciencedirect.
com/science/article/pii/S0142112399000742.

[120] Patrick J. Golden. “Development of a dovetail fretting fatigue fixture
for turbine engine materials”. In: International Journal of Fatigue 31.4
(Apr. 2009), pp. 620–628. doi: 10.1016/j.ijfatigue.2008.03.017.

[121] J.-J. Chen et al. “Experimental and numerical investigation on crack
initiation of fretting fatigue of dovetail”. In: Fatigue & Fracture of En-
gineering Materials & Structures 41.6 (Feb. 2018), pp. 1426–1436. doi:
10.1111/ffe.12787.

[122] Shouyi Sun et al. “Fretting fatigue failure behavior of Nickel-based single
crystal superalloy dovetail specimen in contact with powder metallurgy
pads at high temperature”. In: Tribology International 142 (Feb. 2020),
p. 105986. doi: 10.1016/j.triboint.2019.105986.

[123] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[124] EJ Berger. “Friction modeling for dynamic system simulation”. In: Ap-
plied Mechanics Reviews 55.6 (Nov. 2002), pp. 535–577. doi: 10.1115/
1.1501080.

[125] Z.R. Zhou and L. Vincent. “Mixed fretting regime”. In: Wear 181-183
(1995). 10th International Conference on Wear of Materials, pp. 531–
536. issn: 0043-1648. doi: https://doi.org/10.1016/0043-1648(95)
90168-X. url: https://www.sciencedirect.com/science/article/
pii/004316489590168X.

[126] N Banerjee and D. A Hills. “Analysis of stick–slip and contact-edge be-
haviour in a simplified fretting fatigue test”. In: The Journal of Strain
Analysis for Engineering Design 41.3 (2006), pp. 183–192. doi: 10.1243/
03093247JSA83. eprint: https://doi.org/10.1243/03093247JSA83.
url: https://doi.org/10.1243/03093247JSA83.



BIBLIOGRAPHY 101

[127] A. Klarbring, M. Ciavarella, and J.R. Barber. “Shakedown in elastic
contact problems with Coulomb friction”. In: International Journal of
Solids and Structures 44.25 (2007), pp. 8355–8365. issn: 0020-7683. doi:
https://doi.org/10.1016/j.ijsolstr.2007.06.013. url: https://
www.sciencedirect.com/science/article/pii/S002076830700251X.

[128] James R. Barber, Anders Klarbring, and Michele Ciavarella. “Shake-
down in frictional contact problems for the continuum”. In: Comptes
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Appendices

A.1 Paper I

A review of theories and methodologies used on fretting fatigue with special
attention to applicability to engineering applications.
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A B S T R A C T

The progress in fretting fatigue understanding and predictability is reviewed, with engineering applications in
mind. While industrial assessments often relies on simple empirical parameters, research in fretting fatigue
should allow the design engineer to improve confidence in the fretting fatigue analysis.
Fretting fatigue cracks often form in multiaxial stress fields with severe gradients under the contact area, and

are inherently difficult to predict.
By describing the fretting stress gradients using comparisons with the mechanical fields surrounding cracks

and notches, crack nucleation threshold conditions and finite life can efficiently be determined. Also, non-local
stress intensity multipliers provide promising tools for the industrial finite element analysis, often involving
complex geometries and loading conditions.
The use of multiaxial fatigue criteria to determine fretting fatigue nucleation life is also reviewed. Researchers

have shown that critical plane calculations with some stress-averaging method can predict fretting fatigue crack
initiation. However, the frictional interface causes non-proportional loading paths, and the application of critical
plane methods is not straight forward.

1. Introduction

Fretting is the phenomenon in which contacting surfaces subjected
to oscillatory relative movement experience surface damage. Over time,
cracks form at the surface and result in fretting fatigue related failures.
Fretting can greatly reduce the fatigue life of the contacting parts.

Although the mechanisms of fretting have been studied for over a
century, its exact nature and behaviour is still not well understood
[1–3]. As early as in 1911, “fretting” was mentioned in relation with the
formations of debris in plain fatigue tests [4], interpreting it as surface
wear. Later, the term fretting fatigue arose, as researches started ac-
knowledging its negative effect on fatigue life [5,6]. It became apparent
during the following decades that fretting fatigue was indeed a com-
plicated phenomenon; Collins [7] proposed dependence on more than
50 parameters. However, due to the difficulties involved in accurately
controlling and monitoring different parameters during fretting fatigue
tests, early experiments and discussions were questionable [8]. The
phenomena involved are also known to be interconnected, and Collins
suggested that the parameters could be narrowed down into eight
broader categories: Amplitude of relative slip, magnitude and dis-
tribution of the contact pressure, the local state of stress, number of
cycles, material and surface conditions, cyclic frequency, temperature,
and environments surrounding the surfaces [7]. Further complications

are realised as the length scales involved in fretting fatigue are often on
the same order of magnitude as material microstructural features [9]
and surface features [10].

Fretting fatigue have mainly been studied for metallic alloys and
ceramics used in engineering. In bearings, loss of clearance may be
caused by fretting wear, but also jamming due to debris [11]. In bio-
materials, debris formations induces inflammations in the host tissue
[12,13]. Highly loaded components like turbine blades [14,1] and axle
press-fits [15–17] may catastrophically fail due to fretting initiated
cracks being driven to propagate into the substrate. Other examples are
spline couplings, keyed joints, flexible marine risers and pipe fittings
[18–21].

2. Mechanisms of fretting fatigue

The fretting fatigue process is usually separated into different
stages. The initial phase is often concerned with wearing off the oxide
layer on the surfaces. After the oxide layer is worn off, cold-welds form
at the surface asperities, increasing the coefficient of friction.
Subsequent loading of the surfaces then cause these micro-welds to
break, forming wear debris [22]. This wear debris can work as an
abrasive medium, but can also form a protective third body layer re-
ducing wear [11]. Additional loading cycles may introduce plastic
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deformation and microcracks to the surfaces, which cause additional
wear debris and the potential of further propagating cracks into the
material. These cracks eventually grow out of the contact stress fields
and becomes dominated by the far-field stresses, if present.

In partial slip conditions, the friction is high enough to restrict the
surfaces from global sliding and there is only a very small amount of
local sliding between the generally adhered surfaces. These conditions
are the most prone to fretting fatigue [23,24]. The competing effects of
tribologically transformed structure [25], particle detachment and nu-
cleation of fatigue cracks [26] makes a quantitative prediction for a
given material and given operating conditions very difficult. The crack
initiation process is highly dependent on the material microstructure
[27,28].

Wear is often neglected in fretting fatigue analysis, but is reported to
sometimes affect the fretting fatigue life [27,29,30]. The exact reasons
for the underlying phenomena are still debated, but it is likely de-
pending on material combination and loading conditions. Material re-
moval due to surface wear may eliminate nucleating cracks at the
surface. Wear also redistributes the contacting pressure [31], even in
the partial slip regime as studied by Shen et al. [23]. They concludes
that the wear could not be neglected. However, as other researchers
have reported, wear in partial slip conditions is minor [27] and can in
many cases be neglected for small values of slip. Frictional contacts are
also known to sometimes shake down, i.e. residual shearing tractions
building up and restricting further sliding, eventually leading to a
steady state response being notionally adhered [2,32].

The fretting problem is quite different, depending on whether the
contact is complete or incomplete. For incomplete contact, at least one
of the mating surfaces is of convex shape and the contact area is related
to the load. For complete (conforming or flat) however, notionally
sharp corners introduce stress singularities. For tangentially loaded
incomplete contact, there is no frictional shakedown effect, and some
local sliding will always occur. Thus, incomplete contacts are more
prone to partial slip fretting fatigue.

3. Fretting maps

Various visual descriptions of fretting have been researched using
fretting loops or fretting maps to characterise the fretting problem and
to separate the regimes involved. Fretting loops plot the relation be-
tween friction force and displacement amplitude, sometimes along a
third, temporal axis. Fretting loops form the basis for many fretting
maps [33].

The slip amplitude was early identified as one of the most defining
parameters for fretting. Vingsbo and Söderberg [24] introduced the
concept of fretting maps with three different regimes of sliding condi-
tions.

1. Stick regime with low sliding action and low surface damage (oxi-
dation and wear). Low fretting damage.

2. Mixed stick-slip regime had fretting fatigue with small amounts of
wear. Accelerated crack growth rate reduced fatigue life.

3. Gross slip regime showed severe damage due to wear but crack for-
mations were limited. In the gross slip regime, the wear coefficient
increased by several orders of magnitude.

Hence, this fretting map could be used to determine the fretting
regimes for a set of conditions. Fig. 1 illustrates the different regimes.
Fretting maps was an important development in the work of fretting
assessment. Today they are used to describe the overall fretting beha-
viour, including contact conditions, fretting regime, wear mechanism,
crack nucleation and propagation [33].

Some years after Vingsbo and Söderberg, Zhou and Vincent [26,34]
proposed to separate the problem using two different types of fretting
maps, running condition fretting map (RCFM) and material response fret-
ting map (MRFM). RCFM distinguished between partial slip regime,
mixed fretting regime and slip regime, and is in some ways quite similar
to Vingsbo and Söderberg. It is however, maybe more correct in uni-
fying the stick and partial-slip regimes, since in reality there will always
be some local sliding. The material response fretting map was related to
the post hoc degradation analysis of the specimen.

Different maps related to the number of cycles have also been
proposed [35]. In 2006 Zhoul et al. [36] reviewed the progress in
fretting maps and covered additional proposals, but arrives to the

Nomenclature

N2 f number of cycles for fatigue failure
Kth threshold stress intensity factor range

relative slip
strain range
shear strain range

1 plain fatigue limit

f fatigue ductility coefficient
shear fatigue ductility coefficient
Poisson’s ratio

f fatigue strength coefficient
T stress in tangential direction of contact

y yield stress
contact shear stress

a shear stress amplitude

f shear fatigue strength coefficient
a contact semi-width
a0 El Haddad intrinsic length parameter
b fatigue strength exponent
b0 shear fatigue strength exponent
c fatigue ductility exponent
c0 shear fatigue ductility exponent
E Young’s modulus
f coefficient of friction
G shear modulus
gmax maximum gap of contacting profile (unloaded)
k Findley’s influence factor
P contact normal force
Q contact sliding force
Y LEFM Geometrical factor

Fig. 1. Relating the slip amplitude to fretting regime, as proposed by Vingsbo
and Söderberg [24].
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conclusion that further work is needed to quantify the competing effects
in fretting fatigue, especially in mixed regime.

In 2015 Pearson and Shipway [33] investigated the paper of
Vingsbo and Söderberg on fretting maps and criticised their suggestion
that the wear coefficient was strongly dependent on displacement am-
plitude. They point out that in general, fretting research at that time
had two limitations: Firstly, many researchers used far-field displace-
ment amplitudes and not the actual slip for the contact thus also in-
cluding the compliance of the test rig. Secondly, research has also
shown that there appears to be a threshold below which wear does not
occur. The errors related to not recognising these effects grows as the
slip amplitude becomes smaller, where the relative difference between
the displacement amplitude and slip amplitude is bigger.

The different fretting maps proposed serves well as graphical de-
monstrations of the competing mechanisms usually involved in fretting
and is useful for the engineer in the early design phase, especially when
considering to apply surface treatment, etc. [37,36]. Very quantitative
predictions for fretting fatigue are, however, difficult to achieve using
maps only. Computational fretting maps may also be used in parametric
numerical fretting fatigue studies [38,39].

4. Design parameters

In aerospace, nuclear and other safety-critical industries, much ef-
fort have been put into predicting fretting fatigue through knockdown
factors and different design parameters. These parameters are often
easily computed and may serve as a first step in the design process.
Collins [7] early identified the usefulness of quantitative factors in the
fretting fatigue design phase.

The first attempts to mathematically relate the contact stress fields
with fatigue damage was Ruiz et al. [14]. They investigated fretting
fatigue life of turbine blade dovetail joints and proposed a design
parameter, “fretting damage” (FD), by multiplying the highest surface
tangential stress with the maximum frictional work ( ):

=FD ( ) ·( )T max max (1)

However, as the maximum tangential stress may occur at a different
location than the maximum frictional work, it is numerically awkward.
A second parameter was obtained by simply maximising the product of
tangential stress T , surface shear stress and relative slip (Eq. (2)).
This “fretting fatigue damage” (FFD) parameter was reported to predict
the location of crack, but failed to predict the number of cycles to crack
initiation or crack growth [40]. The parameters proposed by Ruiz et al.
have nonetheless been extensively used, mainly due to their simplicity
and the fact that it may predict crack initiation probability [27].

=FFD · ·T (2)

For more recent variations and extensions to the Ruiz parameters,
see e.g. [41,42]. These critera combines the frictional power or fric-
tional work with multiaxial fatigue parameters.

More recently, Varenberg et al. [43,44] proposed a dimensionless
slip index aiming to distinguish between the fretting regimes in a more
unified and rigorous way than the classical use of fretting maps. By
using dimensional analysis they derived an expression for the slip ratio
which is governed by the dimensionless parameter = A S N/d c , with Ad
being the imposed displacement amplitude, Sc the slope of the friction
loop and N is the normal load. Applied to fretting experiments, the
different regimes were separated. Partial slip exists for <0.5 0.6
and gross slip for > 0.6.

In 2015 Li et al. [3] noted that there is still no satisfactory fretting
fatigue damage criterion and they proposed a parameter for fretting
fatigue life predictions, by expressing the “fretting related damage
parameter” (FRD) as

= +FRD Q
fP (3)

The FRD parameter was related to the plain fatigue methods as a
knock-down factor to determine the number of cycles to failure and
thus making full use of already existing plain fatigue data. Q is the
sliding force, P is the normal load, f coefficient of friction and are
fitting coefficients.

5. Critical plane methods

More extensive parameters for fretting fatigue have been proposed
by making use of the different plain fatigue parameters. Due to the
multiaxial nature of the stresses, particularly critical plane-based
methods have been attempted to determine the fretting fatigue limit.
Empirical combinations of stresses and strains are assumed to drive the
cracks to initiate and grow in certain material planes. Applied to the
stress gradients of fretting fatigue, the critical plane methods usually
considers a point at a critical distance or in an averaged sense, and
searches for the material plane orientation having the most damaging
parameter. Thus, often cracking direction is also obtained. In general,
these methods can be divided into stress-based, strain-based and en-
ergy-based parameters. Numerous parameters for fatigue have been
applied to the fretting case, and the following list is by no means ex-
haustive.

Szolwinski and Farris [22] used the Smith-Watson-Topper (SWT)
[45] to find the initiation location and life. It may be given by

=SWT
2max (4)

As SWT was extended to be used in a critical plane method [46], this
would mean finding the material plane maximising the product of
normal strain range and maximum tensile stress on that plane during
the loading cycle (i.e. strain energy density). Combining Eq. (4) with
Basquin’s law and Coffin-Manson, the SWT critical plane parameter
may be expressed as [47]:

= + +SWT
E

N N
( )

(2 ) (2 )f
f

b
f f f

b c
2

2
(5)

f and b are the material fatigue strength and exponent, f and c are the
fatigue ductility coefficient and exponent respectively. E is the modulus
of elasticity and Nf is the number of cycles to initiate a crack with a
given length. Making use of Eq. (5), the life of the component may be
estimated by finding the critical SWT and comparing with fully re-
versed uniaxial test data. The SWT is found either by evaluating Eq. (5)
on the plane experiencing the largest range of principal strain, or by
searching for the plane with maximum SWT [46].

Fatemi and Socie (FS) [48] proposed a strain based critical plane
parameter for shear dominated cracks, studying the effects of out-of-
phase loading. It has also been applied to fretting fatigue [47,40,9].
Using the FS criterion, the material plane having the maximum shear
strain is considered the critical plane, with the influence of opening
mode included through the material parameter . It can be expressed as

= + = +FS
G

N N
2

1 (2 ) (2 )max

y

f
f
b

f f
c0 0

(6)

where is the shear strain range during the cycle, max maximum
normal stress, y is the yield stress, G is the shear modulus and , ,f f
are material related parameters. b0 and c0 are the shear fatigue strength
exponent and shear fatigue ductility exponent respectively. Thus, the
critical plane is found by maximising Eq. (6), where the shear strain
range is evaluated as the difference between the largest and smallest
shear strain during the cycle [49]. Eq. (6) can alternatively be related
uniaxial data using the following relations derived from von Mises’
criterion [50].

= = = = =
+

b b c c G E
3

, 3 , , ,
2(1 )f

f
f f 0 0

(7)
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Shear based parameters work better for ductile materials and tensile
criteria work better for brittle materials. The dominant mode of in-
itiation is often not known a priori, which makes the decision of which
criterion to apply difficult. As Araújo and Nowell [47] suggests, a
possible, conservative approach may be to simply calculate both FS and
SWT parameters - and then use the worst case. Averaging methods were
shown to reveal a contact size effects in Al-4%Cu and Ti-6Al-4V sam-
ples, but concerns about assuming the averaging parameters to be
material constant are raised.

Lykins et al. [40] found SWT to be effective for predicting initiation
life and location for Ti-6Al-4V, and noted the FS parameter to be ef-
fective for initiation location. The Maximum strain amplitude was con-
cluded to be important in the fretting crack initiation for the Ti–6Al–4V
alloy. Araújo [9] found SWT to predict crack direction for AISI 1034
and 35NCD16 samples, using averaged stresses over a characteristic
length along the crack direction.

The stress parameter proposed by Findley (FP) [51] in the sixties
combines the shear loads with the normal loads. More specifically, the
critical plane is defined as the material plane experiencing the max-
imum combination of shear stress amplitude and maximum normal
stress over a stabilized cycle. Thus, maximising Eq. (8) yields the cri-
tical plane.

= +FP ka max (8)

where k is a parameter describing the material crack growth sensitivity
to normal stresses, and is determined based on experimental data.
Higher values of k can be interpreted as higher sensitivity to opening
mode effects on the shear cracks. k is therefore normally lower for shear
dominated (ductile materials) than for brittle materials. Socie [50]
propose to use 0.1–0.2 for ductile materials. In terms of the number of
cycles to failure it may be expressed as [52]:

= + =FP k N(2 )a max f f
b0 (9)

Namjoshi et al. [53] tested the Findley criteria for fretting fatigue
crack initiation of different pad geometries on Ti-6Al-4V “dog bone”
specimens for a variety of stress levels. The Findley parameter (and
SWT) was found to be effective in finding the location but not the or-
ientation of cracks. They proposed the modified shear stress range
critical plane parameter, having four curve fitting constants. The re-
searchers argue that the criterion is thus less influenced by pad geo-
metry, and that it would be successful in finding the crack orientation
and initiation life.

Most studies on using critical plane parameters to quantify fretting
fatigue have considered convex contact geometries and in-phase
loading. Recently, Bhatti and Wahab [54] found a number of para-
meters to be appropriate for different cases of phase-shifted loading
conditions. Foletti et al. [55] applied the (mesoscopic) Dang Van [56]
and Liu–Mahadevan [57] criteria to fretting fatigue in railway axle
press-fits. Chakherlou et al. [58] compared seven different critical plane
criteria for life estimations on different models e.g. with aluminium
plate joint with pre-tensioned bolts and residual stresses due to cold
expansion. They conclude that no criterion is universally accurate, but
SWT parameter was within a factor of two for most specimens.

The stress based fatigue parameters neglects plastic effects. Since for
higher contact loads, micro plasticity is expected to occur, the stress
based parameters might be less reliable than the strain based para-
meters. However, the different criteria used for different materials have
shown reasonable accuracy for specific sets of experimental data, and is
less accurate in the general sense. In general it is noted that due to the
stress gradients involved in fretting fatigue, some non-local approach
must be used in addition [59,49,47]. Thus, averaging the stress over
some material dependent critical distance becomes necessary.

Some researchers have used stress-invariant criteria and thus
avoiding the computationally expensive critical plane method. Ferré
et al. [60] averaged the Crossland criterion over a critical area and
achieved <10% error for nucleation endurance for titanium samples.

Fouvry et al. [61] achieved 12% error for steel specimen. The Dang Van
criterion is often used as comparison with other methods [62,63]. The
stress-invariant methods are considerably easier to implement, com-
pared with critical plane methods, but at the cost of accuracy. Also, by
assuming stress-invariance, the potential information about initial
cracking direction is lost.

6. Analytical methods

The analytical studies of contact started in the 1880s by Hertz [64]
who first studied the stresses in spherical bodies in contact. His theories
was restricted to frictionless contact between linear elastic bodies,
proving the Hertzian pressure distribution. He also restricted his study
to non-conforming contact for which the contact area was small com-
pared to the bodies, i.e. half-space theory. Since Hertz, numerous re-
searchers have put efforts into extending the theory and its become a
useful tool in fretting analysis, especially for closed form comparisons
with experiments.

Bradley [65] showed that contacting spheres share adhesive forces
when put into contact and Johnson, Kendall and Roberts [66] (JKR)
extended the Hertzian contact for elastic bodies subjected to small
contact loads to include adhesive forces associated with the free surface
energies. The JKR theory introduced a singularity at the contact
boundary and a separation force to the problem, which effectively in-
creases the contact area. Derjaguin, Muller, and Toporov (DMT) [67]
proposed an adhesive law based on the undeformed Hertzian profile,
thus avoiding the JKR singularity. More recently, adhesion was in-
troduced to models to introduce stress singularities in rounded contact
fatigue problems [68].

6.1. Sliding contact

Cattaneo [69] extended the Hertzian contact problem to include
tangential loads experiencing interfacial partial slip. The normal load
was held constant, whilst monotonically increasing the tangential load.
The partial slip conditions were described by superimposing the full
sliding terms with a correction related to the contacting pressure
coming from the normal contact. Independently, Mindlin [70] studied
the same type of solution but with some generalisations to the loading
path. Further generalisations to the Cattaneo-Mindlin problem (CM)

followed [71,72].
The CM case also became a popular setup for experimental testing of

fretting fatigue, though the shear tractions in the fretting tests differ
from the CM solution due to the bulk stresses. The plane strain ap-
proximation is usually assumed for the cylinder-on-plane case. Nowell
and Hills demonstrated in 1987 the effect of bulk tension on the stress
distributions for the CM case [73] by perturbing the Mindlin solution on
integral form. It was shown that the bulk stresses in the specimen in-
troduces an eccentricity to the contact stick zone due to strain mismatch.
The use of the Mindlin solution with the eccentricity is shown to be a
good approximation except for near the contact center. The half-plane
stresses were thus found for the case where the bulk stresses are in-phase
with the tangential load and they argue that the Mindlin case is rea-
sonable approximate.

Ciavarella [74] and Jäger [75] independently extended the CM
problem to more general geometries, and this generalisation is often
referred to as the Ciavarella-Jäger theorem (CJ). The theorem holds for
two-dimensional contact, but for 3D only in the unrealistic case of
vanishing Poisson ratio, otherwise only in approximate sense. This
limitation also applies to the original CM solution [1], and may not
always be neglected [76].

Barber et al. [32] applied periodic tangential loads and periodic
normal loads to the CJ case. The uncoupled contact problem (vanishing
Dundur’s constant) was studied with the loads in PQ-space being
bounded by =Q μP so that gross slip would not occur. They conclude
that the extent of the permanent stick zone during steady state, was
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independent of loading path. The interior traction distributions, how-
ever, are depending on loading path. By extending the methods of Jäger
and Ciavarella to cyclic tangential loading, they show that the frictional
system reaches a steady state after the first cycle. The paper conclude
that the system will shakedown to a steady state independent of tran-
sient conditions, with a given permanent stick zone.

Ciavarella and Demelio [1] reviewed in 2000 some of the efforts
made to the analytical approaches to fretting fatigue, again by con-
sidering the case of elastically similar half-planes where the normal and
shearing tractions are uncoupled. They considered constant normal
load and oscillating tangential load for indenters ranging from the
Hertzian to flat indenters (complete contact) with increasingly sharply
rounded corners. The analytical solutions are combined with the clas-
sical fretting damage parameters of slip amplitude and frictional slip
energy [14] and stress intensity factors for cracking. For increasingly
sharp indenter, tensile stresses at surface increases, but also becomes
more localised. Thus, the stress intensity factor (KI) rapidly decrease,
and cracks have greater chance of self-arresting. However, only opening
mode (KI) is considered. The authors point out the possibilities to se-
parate the stress concentration effect and frictional damage for further
testing, which can help to understand the complexities involved. Ac-
cording to the authors, it is not entirely clear if there is an “optimal”
corner radius on the rounded indenter. A simple expression for the
relative microslip at onset of full sliding was given as

= fgmax max (10)

where f is the coefficient of friction and gmax is the maximum gap of the
contacting profiles before loading.

The Cattaneo-Mindlin problem was revisited by Etsion [77] and its
assumptions were validated. Experimental evidence show that the
contact does change when tangential forces are applied, a phenomena
coined “junction growth” by Tabor [78]. The problem is to assume a
local Coloumb friction law because when friction and contact pressure
are high, unrealistically high contact stresses may occur, exceeding
yield. By relating the incipient sliding to plastic failure, these assump-
tions were relaxed, suggesting a model for the other end of the scale
with respect to actual plasticity in the given contact situation. Wang
et al. [79] studied partial slip conditions for elastically dissimilar ma-
terials by coupling the normal and tangential loads using constraint
equations on the slip in the contact plane. Other, semi-analytical
methods for solving partial slip cases are also proposed [80,81].

Davies et al. [82] considered the CJ theorem and extended it for
loading with varying normal load. The evolution of the stick-slip zones
were determined, still limiting the analysis to contact profiles satisfying
half-plane theory and by avoiding gross slip in the P-Q space. The au-
thors are mainly interested in determining the energy dissipation in the
system, but argues that fretting crack nucleation can be assumed to
coincide with the point of maximum dissipation. Along with the paper,
a Mathematica code was given for researchers to further study stick-slip
evolutions.

The analytical and semi-analytical models are important tools for
fretting and provides mathematical ground for researchers to study
fretting fatigue. They are also useful for comparing with experimental
results and parameter studies [83], even though the exact fretting
conditions are hard to control. By adjusting the parameters involved,
these methods can be used to simulate the stress fields in the real
component. However, quite significant size effect have been reported
[47], which puts limitations to this method. Also, numerical methods
such as finite element, are becoming increasingly used, allowing for
more complex geometry, material models, loading histories, etc. In
general, when half-plane theory is violated, more elaborate numerical
methods are needed.

7. Asymptotic methods

The stress concentrations in fretting fatigue can also be studied

using asymptotic analysis, leading to an analogy with cracks in fracture
mechanics. As the contact edges become increasingly sharp, Hertzian
stress analysis fail. For sharp, (complete) contact, stress singularities
arise and asymptotes can be applied [84–86]. In these methods, the
stress fields are matched with truncated asymptotic expansions, and
one enters the discussion on the order of singularity of the stress field and
its spatial range of validity. In reality, of course, there always exists
some rounding of the corners, but notionally complete contact occur in
engineering situations [2] and the asymptotic methods can be suitable
approximations. Also, in rough contacting surfaces, local singularities
may occur due to adhesion [11].

Williams [87] developed a framework for analysing singular stress
fields in wedges by expressing the stresses as functions of wedge angle
in a polar coordinate system r( , ) with its origin in the singular point.
Using the biharmonic equation, the solutions for the stresses and dis-
placements are expanded as an asymptotic series in powers of r (Eq.
(11)), and non-trivial solutions are obtained for certain eigenvalues .

Following Williams method, the stress field surrounding the apex
can be expressed on the form [84]

= + +r K r f K r f( , ) ( ) ( ) higher order termsij I ij
I

II ij
II1 ( ) 1I II (11)

where for a mode n K{1, 2}, n is the stress intensity function, n is the
eigenvalue and f ( ) is the corresponding eigenfunction. Thus, suffi-
ciently close to the singularity, the stress field is dominated by the
lowest eigenvalue, and the environment for crack nucleation in this
critical region may be quantified. For wedge angle of = °360 the so-
lution for a crack is obtained with its lowest, and hence dominant ei-
genvalue being 0.5. This solution is important in the fields of fracture
mechanics and contact mechanics. See e.g. Mugadu et al. [84] for
considering the edges of contact in a spline coupling. Note however,
that the Williams solution considers elastically similar bodies [88] and
solutions for elastically dissimilar contact exists, see Bogy et al.
[89–91].

Though being quite mathematical, these serves as foundation for
useful tools for engineers encountering singularities such as in sharp
edge contact. For a more thorough description, the reader is referred to
published literature [92,93].

Sackfield et al. [94] applied asymptotic expressions to the mathe-
matical description of a rigid punch pressed into a half-plane substrate.
For flat punch they assumed small rounded corners so that the stress at
the corners were dominated by the singular term (generalised stress
intensity factor K ) in the stress expansion. The stresses were matched
with the corresponding sharp edged indenter, and thus relies on the
radius to be small compared with the indenter dimensions. This is
beneficial in cases where the sharp edge solutions exist and can be used
for indenters with small radii, which in finite elements solutions often
requires very fine element mesh to resolve.

The asymptotic analysis was then used for incomplete contact in
partial slip by Dini and Hills in 2004 [86] and compared with the
classical Cattaneo-Mindlin solution. They argue that the stress expan-
sion from the local singularity is impractical for sliding contact, but for
partial slip the stick-slip interface is a natural location for crack nu-
cleation. The stress intensity factors KI and KII serves as scaling para-
meters for the normal and shear forces respectively, and characterises
the contact. Thus it provides a means to simply obtain the stress
characterisation to evaluate the fretting fatigue. Good agreement for
the stresses is only expected close to the contact corners, which any-
ways are the most likely locations for crack nucleation. By evaluating
the contact situation in such a local manner permits one to recreate the
fretting problem of a prototype to a simple laboratory test setup
[95,96,2].

The asymptotic solution of complete contact between elastically
dissimilar bodies was investigated by Churchman et al. [91]. Whether
failure is most likely to happen at the leading or the trailing edge de-
pends on the slip direction, but for the fretting case of oscillating punch,
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the problem is symmetric.
Hills and Dini [2] reviewed in 2016 the efforts on using asymptotic

forms to describe the stress fields for fretting fatigue, pointing out the
fundamentally different nature of incomplete and complete contact. For
incomplete contact, they argue that the local fields (stress and slip) are
determined by the two stress intensity factors and the friction coeffi-
cient. Hence, the fields can be used to model and replicate the situation
for complex prototypes. For complete contact however, slip will be
contained inside the contact area, limiting the sliding motion to very
small values. The authors thus claim that fretting fatigue, in its tradi-
tional sense, should not occur for complete contact. In their approach
the normal load is held constant and the case of oscillating normal load
is retained for further studies. Contact of parts of conforming geometry
(“punch on punch”) and “receding” contact is only mentioned and
points out that the research in these types of contact is lacking. It is also
remarked that the contact stress intensity factors are only valid near the
contact edge and hence it is useful for nucleation criteria, but not ne-
cessarily crack growth as the crack grows farther away from the edge.
Plots of total fretting fatigue life versus the crack nucleation fields are as
such not entirely accurate.

Since the stick-slip situation for incomplete contact can be described
by the three parameters K K,T N and μ, laboratory experiments can be
made into replicating the situation for complex prototypes. For com-
plete contact however, the use of asymptotic solutions can demonstrate
that fretting fatigue should not occur in complete contacts: For high
enough coefficients of friction, the contact is in an adhered state, and for
lower coefficients, frictional shakedown will cause the steady-state slip
values to be very small [97]. Given that the nonlinear (process) zone is
small, the strain energy should be characterised by the asymptotes.
Further studies to be made are to account for oscillating normal load,
and to match the asymptotic methods to rounded contact.

Recently, Fleury et al. [98] used asymptotic methods for the in-
complete contact subjected to more complex loading histories, with
varying normal and shear load (in-phase). The slip zone size and
amount of slip are found through the two stress intensity factors KT and
KN (see Fig. 2), and the fretting damage may then be found e.g. using
the energy dissipation. This asymptotic formulation gives good ap-
proximations when the slip zone is small compared with the contact
size, but at decreasing accuracy for larger variations in normal load.

Asymptotic methods are useful for fretting fatigue because it pro-
vides means for characterising the most detrimental fields (surrounding
the contact edges) from which cracks nucleate, circumventing the need
to analyse the entire contact. Thus, the local stress fields may be mat-
ched with those in experiments and as such be used to quantify fretting
fatigue strength. The methods are however limited to (local) half-plane
idealisation [98], decoupling tangential and normal stresses. Examples
of asymptotic matching is presented in the literature for simple contacts
with closed-form solutions, but for complex cases, numerical methods
like the finite element can be used to find the generalised intensity
factors, see e.g. Montebello et al. [99].

8. Crack initiation and growth

Whereas the asymptotic methods can permit the fretting fatigue
conditions to be described without the need for explicit modelling of
the micromechanics by locally matching the necessary fields with ex-
periments, other methods attempts to micromechanically describe the
fretting fatigue cracking process.

The mechanisms involved have been extensively researched for
metallic contacts, but initiation of fretting fatigue cracks is still an
elusive problem. Usually, the fatigue life is split into nucleation and
propagation phases, but the relative importance of one phase over the
other have been debated. Fig. 3 shows the fracture surface from a
fretted titanium specimen by Araújo and Nowell [47]. Navarro et al.
[59] noted that the relative importance of initiation versus propagation
may depend on the fatigue criterion used, the loading conditions,

material, geometry, etc. and thus one cannot a priori know to which
phase the majority of life is.

Despite the advancements in characterising the fretting fields of
stresses and strains, resolving the crack nucleation driving forces con-
tinues to be a target of research [2,84]. As nucleation criteria in fretting
fatigue, mainly three different methodologies have been used: short
crack methodologies, multiaxial fatigue criteria and fretting specific
parameters (Ruiz, etc.). Recently, the use of continuum damage me-

chanics have also been applied to fretting fatigue. The short crack
methods uses threshold curves for the stress intensity factors to de-
termine whether a crack will arrest after initiation, and uses normally
either Kitagawa-Takahashi diagram or El-Haddad curves [100–102].
The critical plane methods usually assumes the fatigue crack to form
along persistent slip bands in the material crystals, and uses empirical
parameters to determine the most detrimental plane orientation.

Szolwinski and Farris [22] attempted to quantitatively model the
nucleation life for fretting fatigue experiments and noted that char-
acterising the stresses alone was not sufficient. They turned to the
Smith-Watson-Topper model and used Westegaard’s method for char-
acterising the stress distribution. Fortran routines were written to find
the plane having the largest damage parameter defined in Eq. (4) which
they used to find the crack origin and orientation, in what they called
the -model. The nucleation life was taken to be the number of cycles
needed to form a crack of 1mm length, and Paris law was used to
propagate the crack to failure. The life estimates provided was within
the scatter of the data from experiments.

Araújo and Nowell discussed in their 2002 paper [47] the size ef-
fects in fretting fatigue. For incomplete contact, they performed ex-
perimental and analytical analysis, and varied the contact size whilst
holding the same levels of stress on the contact surface. They show that
two different critical plane criteria (SWT and FS) are overly con-
servative for smaller contacts. For smaller contacts, the stresses at the
surface are the same, however with a more rapid decay beneath the
surface. Hence, for smaller contacts, the driving forces for crack growth
are less severe than for larger ones, and the point-based (local) critical
plane criteria does in general not account for this gradient. They pro-
posed averaging over a characteristic volume or depth. This depth or
volume was found to be on the same scale as microstructural para-
meters, essentially meaning that accurate predictions needs to include
features of material microstructure.

For determining the orientations of early cracks, Araújo et al. [9]
proposed a method where the normal and shearing driving forces were
averaged over a line of characteristic length and then used in different
critical plane algorithms. Thus, the critical plane calculations is not
necessary at each integration point. As the steep stress gradients related
to fretting fatigue can cause small-scale crack reorientations, an incre-
mental approach should be used. Continuum elasticity is assumed,
which is regarded as an engineering approximation due to micro-
structural effects playing a role in the real case. FS, SWT and Modified
Wöhler Curve Method (MWCM) were used and only SWT was successful
in predicting the orientations of the cracks, although, not accurately.

The Dang Van criterion [56] has also been used in attempts to

Fig. 2. Matching the stress fields with edge asymptotes [98].
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describe nucleation [63,103]. Fouvry et al. [63] compared it with other
classical multiaxial parameters. Under partial slip conditions, the
coefficient of friction was confirmed to be important and the crack
nucleation conditions were accurately quantified. Tests were performed
on steel specimen with a titanium nitride coating. It was found that
with the compressive stresses introduced, the coating greatly reduced
the cracking nucleation risk.

Lykins et al. [40] tested the Ruiz parameters and a number of fa-
tigue criteria to predict fretting fatigue crack initiation in titanium
alloy. The Ruiz parameters were deemed ineffective, but improved
when corrections for contact effects and mean stress ratio were in-
cluded. Fretting fatigue nucleation was shown to have the same trends
in the Wöhler-diagrams. The crack initiation locations found in the
experiments were shown to coincide with the maximum strain ampli-
tude.

Navarro et al. [104] proposed the method they called the variable
initiation length model in which the number of cycles for crack nuclea-
tion was calculated for material points along the crack path. For these
points, the crack growth rate was computed both for initiation using
Basquin’s equation and for propagation force using Linear Elastic Frac-
ture Mechanics (LEFM). The depth at which the LEFM driving forces
surpassed the driving forces representing the initiation mechanisms was
taken to be the initiation length. Thus the total life is obtained by
adding the number of cycles to initiation at this depth and the number
of cycles to propagate the crack until failure.

Bhatti and Wahab [54] studied fretting fatigue for 2024-T351 Alu-
minium using for different phase angles between the axial load and
tangential load. Finite element models of three different combinations
of boundary conditions with three different phase angles were con-
sidered: 0 deg, 90 deg and 180 deg. Results were compared with lit-
erature [105]. They conclude that the location of crack initiation for
fretting damage is highly dependent on the phase angle, but the Ruiz
parameter and SWT multiaxial fatigue criterion was reported to show
good correlation with the results of Szolwinski and Farris. Initiation life
is shortest for 180 deg phase shift and longest for the 90 deg case.

The determination of crack growth in uniform stress fields is fairly
established today, e.g. using Paris law. In fretting fatigue however, the
non-proportional mixed-mode stress fields close to the contact sig-
nificantly complicates the matter [106,47,59]. Recently Baietto et al.
[107] coupled experimental fretting results with a numerical model to
model fretting fatigue mixed mode crack initiation and growth.

However, Faanes [108] found fretting cracks to be notably affected by
Mode II only in the short initial stage.

In continuum damage mechanics (CDM) an accumulating damage
variable is used to describe material degradation and was introduced to
fatigue by Lemaitre [109]. This damage parameter <D0 1 (scalar for
isotropic damage) is used to define the effective stress which may be
given as

=
D1 (12)

Zhang et al. [110] used CDM in a three dimensional finite element
model with multiaxial fatigue calculations. They used a nonlinear da-
mage accumulation and compared the results with the SWT parameter
for notched and unnotched plain fatigue as well as fretting. In an effort
to do lifetime predictions for different values of slip amplitude, the
results were compared with published data. The model is successful in
suggesting the reduction in fretting fatigue life for increasing relative
slip in the partial slip regime. Also, the predicted life increases slightly
in the gross slip regime. For low amplitudes of slip in the partial slip
regime life predictions were non-conservative, and the researchers ar-
gues this may be explained due to not including wear. The study was
later followed up by including wear [23].

Hojjati-Talemi and Wahab [111] also found CDM to give accurate
predictions for experimental data found in the literature, and concludes
that the method is appropriate for the multiaxial stress state.

Implementing damage evolution concepts to the finite element
analysis provides an efficient tool for predicting fretting fatigue da-
mage. In safe-life design, the application of short crack methodologies
to determine the cracking risk is appropriate. The critical plane
methods are computationally expensive, having to evaluate the dif-
ferent parameters for a range of possible plane orientations, but permits
estimating the crack initiation angle. The need for non-local methods,
however, can introduce somewhat arbitrary length parameters to the
problem (e.g. the critical distance).

9. Notch analogue model

Researchers in fretting fatigue have attempted to draw the very
useful parallel to the theory of notch fatigue, thus possible making use
of the extensive research on stress raisers in notches. Giannakopoulos
et al. [85] drawed the analogy between fretting fatigue for rounded flat
punches and (blunt) notch fatigue. By recognising that stress gradients
and multiaxiality are important in fatigue for both notches and fretting
contact, the analogy is clear. The most highly stressed point in the case
of incomplete contact is the surface point at the edge of contact. Here,
the normal and shear stresses will reach zero and the stress field might
be assumed to be uniaxial [101]. In this case, multiaxial parameters
might be avoided. It is generally believed, however, that initiation and
early growth is mixed mode dominated and stress multiaxiality be-
comes important [112].

A method to account for the size effects in fretting fatigue is the
classical hot spot method. However, studies have shown that the hot-
spot method tends to be overly conservative [62]. More promising is
using the Theory of Critical Distances (TCD), where the stresses are
averaged in some sense. In the point method the stress is considered at a
certain distance to the stress raiser, the Line Method averages the
stresses over a line of certain length and in the Area Method the stresses
are averaged over an area [113]. Researchers have successfully used
TCD combined with different multiaxial criteria to determine fretting
fatigue threshold conditions [112]. In general, TCD method can work
well for determining orientations of Mode I dominated long cracks, but
for initial crack orientation the approximation made by using volume
averaging methods fail [114].

Fouvry et al. [115] conducted fretting fatigue tests under partial slip
conditions of a sphere on plane and recorded normal force, tangential
force and displacement. The results were compared with the predictions

Fig. 3. Scanning electron micrograph of a fretting crack surface [47].
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made by describing the loading conditions using Mindlin and Hamilton
[116] formulations with the Dang Van criterion. A volume-averaging
method was used to account for the size effect and came to the con-
clusion that crack nucleation can be predicted by finding the size of the
material intrinsic critical volume.

Araújo et al. [112] used MWCM [117,118] with the TCD method
and compared with experimental data for cylinder-on-plane contact
fatigue tests. The critical length L, was taken to be given by the material
intrinsic “transition crack size” separating the short and long cracks
regimes [119], see Eq. (14). The method was reported to correctly
predict failures in the medium-cycle regime and for the high cycle re-
gime within an error of ± 20 %, and also captured the size effect. The
method is simple to implement as a post-processing step for linear
elastic analysis, but relies on the fatigue crack formation processes to be
confined in the critical volume. The size of this volume for a given
material is however not dependent on geometrical features [120].

Santus [21] applied the MWCM with TCD to study fretting fatigue of
steel-to-aluminium threaded pipe connections used in a corrosive en-
vironment. This method was mapped together with a slip-based para-
meter from which a fatigue limit was deduced based on experimental
results from full scale tests. The slip parameter was used simply as a
means of incorporating the competing effects of fretting wear and crack
nucleation in the partial slip regime.

Ferré et al. [121] used different combinations of local and non-local
multiaxial fatigue approaches to study the stress gradient effect on
fretting crack nucleation. They performed cylinder-on-plane contact
tests for Ti-6V-4V specimens in low cycle fatigue loading for three dif-
ferent cylinder radii and evaluated the different fatigue predictions for
a range of stress gradients. Assessments were made using a local stress
approach, volume-averaging approach, critical distance, and a
weighted function approach based on work by Papadopoulos [122]. In
general all the non-local approaches performed well, so they preferred
the volume-averaging method for being practical.

For materials with large defects, cast iron, high strength steels, etc.
probabilistic methods might also be useful methods to model the size
effects [123,124]. Probabilistic methods for fretting fatigue is in general
less researched than its deterministic counterparts, even though fretting
fatigue is essentially a random process [125].

10. Crack analogue model

Related to the asymptotic methods for characterising the local fields
surrounding the contact edges, a crack analogue for fretting fatigue have
emerged, comparing the contact stress singularities with the stresses for
cracks, essentially inferring the order of singularity to be square root
bounded. The crack growth in fretting fatigue can then be viewed as a
branching crack from the primary crack represented by the contact
interface.

Giannakopoulos et al. [126] presented in 1998 a study in which the
stress and strain fields of contact mechanics were matched with fracture
mechanics solutions, see Fig. 4. They proposed to use the asymptotic
field descriptions in linear elastic fracture mechanics (LEFM) as means
to predict fretting fatigue life using the classical Paris law. Using the
LEFM concept of T-stress, bulk cyclic stress, surface treatment residual
stresses, etc. could be included. The local crack driving forces k1 and k2
were described using two coupled equations with the remote stress in-
tensity factors KI and KII . The angle of initiation was found by assuming
the crack to initiate along the direction for which the local mode II
intensity factor vanishes ( =k 02 ), governed by the contact load P and
tangential load Q. As the crack grows into the substrate however, the
crack reorients to having the applied cyclic bulk stress app as opening
mode. The total life is thus modelled as two separate stages; The first
stage for which the contact loads initiates and drives the crack to grow
to a critical distance from the surface. Depending on the applied loads,
the crack then either arrests or is driven further in Mode I govern by the
cyclic bulk stress app.

By quantitatively comparing with data found in the literature,
Giannakopoulos et al. [126] found their results to agree with 15 fretting
experiments from different studies. The limitations are however clear,
inheriting the small-scale yielding limits from LEFM. The punch is also
assumed to be rigid in this study, but the researchers refers to the work
of Dundurs [127] and his material parameters for elastic bodies in
contact. Crack initiation is assumed to be driven solely by the me-
chanical effects of the contact, thus surface roughness, wear, lubrica-
tion, etc. are neglected. Though the stress fields are not always square-
root singular, these solutions are expected to be at least approximately
valid for many combinations of materials and geometries [126].

This crack analogue model was also generalised to rounded contact
where the stress singularities are induced from adhesion [68]. The
stick/slip conditions were classified using the notion of strong and weak
adhesion for static and dynamic friction. The three different modes of
stress intensity factors were found at the stick-slip boundary and
compared with material fatigue thresholds using an empirical relation
between the adhesion and friction as derived by McFarlane and Tabor
in 1950 [128]. Correlations were found for the crack initiation angle
and threshold, but deviations were expected due to the stick-slip zone
sizes in many cases being comparable with material grain size.

Inspired by the “crack analog”, Fouvry and Berthel [61] recently
used the width of the partial slip sliding zone as a length scale parameter
in their crack analogue parameter. By multiplying the maximum shear
stress with the square root of the sliding zone width, the fretting crack
nucleation was represented without the need for very fine contact mesh
in the FEM analysis.

Recently, researchers have put effort into systematising stress in-
tensity factor computations for fretting fatigue [129–131].

Montebello et al. [99] proposes a method that is based on char-
acterising the mechanical fields surrounding the contact by the velocity
field. In this way, by using non-local stress intensity factors, comparing
loading conditions does not require a full finite element simulation with
extremely fine element meshes. This is an interesting approach and a
possibly very useful method for industrial applications. It is expected
that more research will look into the use of non-local stress intensity
factors to account for the gradient effects.

10.1. Unified crack-notch model

Atzori and Lazzarin [132,133] unified the notch sensitivity and
defect (crack) sensitivity in fatigue by defining a transition size a for
which the “crack like notch” starts to behave like a “large blunt notch”.
They used a material intrinsic parameter to separate the classical notch
mechanics regime with its peak stress criteria, and the fracture me-
chanics regime in which stress field criteria are used. The idea is that
small contact area problems are described by a crack analogue where
the fatigue threshold is not dependant on the crack geometry. But above
a certain size, the notch analogue model becomes applicable, in which
stress concentrations are accounted for. Ciavarella applied this method
to the fretting problem [134,135], thus unifying the crack analogue
with the notch analogue. When applied to the fretting test results by

Fig. 4. Comparing the stress fields of contact with LEFM [126].
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Araújo and Nowell [100,62], the method correctly separated the failed
specimens from the run-outs.

The Crack-Like Notch Analogue Model (CLNA) uses the fatigue knock-
down factor introduced by Ciavarella [134] on the fretting fatigue
problem.

The Atzori-Lazzarin criterion can be mathematically expressed as

= +K Y a
a

Kmin 1 ,f t
2

0 (13)

where a is half the crack width for an internal crack and the crack width
for an edge crack. a0 is the El Haddad crack length parameter [119]
which is used to describe the transition from a “short crack” to a “long
crack”, together with the geometrical factor Y. The intrinsic property a0
is given by

=a K1 th
0

1

2

(14)

where Kth is the threshold stress intensity factor range and 1 is the
plain specimen fatigue limit.

The infinite-life predictions of the CLNA model were compared with
Hertzian experiments and experiment data available from Araújo and
Nowell [100] and others. In general, the model predicted failures and
run-outs correctly. Ciavarella argues that, at least within the conditions
described in [134], the parameters for multiaxiality were not necessary.
Araújo et al. notes [112], the CLNA method is extremely efficient, but
the application of this method on engineering applications is ques-
tionable, since it’s based on 2D convex contact with constant normal
load and in-phase oscillating bulk and tangential loads. However, due
to its simplicity, it is excellent for early-stage design and planning ex-
periments. Ciavarella and Berto [136] also contributed to the CLNA
methods by further extending the methods to incorporate varying
normal load.

As noted recently by Antunes et al. [129], there is lack of general
expressions for stress intensity factors for cracks originating from
bodies in contact under fretting conditions, and they seek to relieve this
deficiency. They argue that a problem with CLNA method and analy-
tical SIF in general, is neglecting non-linear effects. For estimating
fretting fatigue life they used the Topper-El Haddad [137] notion of a
crack tip stress raiser, calling it Stress Gradient Factor (SGF) as it
modifies the reference stress intensity factor.

11. Wear

Fretting is in general referring to bodies in contact subjected to small
sliding, and is not to be confused with the more specific terms fretting
corrosion, fretting wear and fretting fatigue.

In tribology, fretting involves questions around friction, surface
roughness, lubrication effects, wear debris formation and ejection, etc.
[11]. The tribologically transformed structure and particle formation in
fretting was studied by Sauger et al. [138]. Velocity accommodation
effects may also be important [29] in some cases. However, it may be
argued that many cases of fretting fatigue is negligibly affected by some
tribological phenomena due to very small values of slip. Nonetheless,
there is an increasing interest in incorporating wear into the fretting
fatigue cracking analysis [139].

An energy description of the wear process was proposed by Fouvry
et al. [25] using the interfacial shear work and considering situations
where debris ejection was unrestricted. Thus, the frictional energy is
related to the “contact endurance” and they proposed using Energy
density-N diagrams as analogue to the S-N fatigue curves. This can be
used e.g. to determine life time of the surface treatments for partial and
gross sliding. The energy-based wear has been proven superior to the
Archard model for sliding contact, unifying the wear over a range of
sliding regimes [140].

Madge et al. [141] were among the first to try to numerically

combine wear mechanisms with fatigue cracking analysis, attempting
to relate the reduction in fatigue life with increasing slip amplitude
which is reported in literature. They found that the pressure redis-
tributing effect of material removal was critical in the driving forces for
cracks. As material removal shifts the fretting fatigue damage evolution
from the contact edge to the stick-slip boundary, a critical (optimal)
value for wear coefficient can be found that increases fatigue life by
spreading the fatigue damage over a larger area.

In gross slip, initial surface roughness plays an important role for
the friction coefficient and wear [142]. Paggi et al. [143] derived a
linear relationship between the tangential force and the stick contact
area for the Greenwood-Williams contact with a rough surface de-
scribed by an exponential probability distribution of the asperities.
They used the generalised superpositioned principles of Ciavarella [74]
and Jäger [75]. The probability distribution function of the surface
(height distribution) were shown to only very weakly affect the results.

Yue and Wahab recently [144] considered the cylinder-on-flat
geometry and studied the effect of variable coefficient of friction on the
fretting wear on a range of sliding conditions. For gross sliding condi-
tions, little difference was found, but for partial slip they found in-
creasingly accurate measures of wear volume compared with experi-
mental results previously reported. A finite element model was used
with the energy based wear rates defined using a polynomial relation of
coefficient of friction with the number of cycles.

12. Finite element methods

Today, numerical analysis of contact problems using the finite ele-
ment method (FEM) is well established using either Lagrangian multi-
pliers, augmented Lagrangian multipliers or the penalty method. For
accurate descriptions of stick-slip in fretting contact however, addi-
tional computational costs involved with high number constraints for
the Lagrangian multipliers might be necessary. Various methods are
researched for modelling fretting fatigue using FEM including wear
[141,144,140], plasticity [131], crack growth [145].

Continuum damage mechanics may be used in the FEM code to
model the damage evolution and crack initiation [110]. Goh et al.
(2003) studied microstructural effects on fretting fatigue by using a
crystal plasticity model to describe the inherent material heterogeneity
[146].

The Extended Finite Element method (XFEM) can be seen as the a
natural extension to the standard finite element method (FEM), but
with additional functions enriching the solution. Through the principle
of partition of unity, discontinuous basis functions can be added to the
solution space of FEM and provide capabilities to capture local and
discontinuous effects like cracks, material interfaces, etc. Möes, Dolbow
and Belytschko [145] introduced in 1999 the methods as a means for
modelling cracks in the finite element framework without the need for
remeshing.

Martínez et al. [147] used the XFEM implementation introduced by
Giner et al. [148] in an attempt to predict cracking trajectory in railway
axles under bending. Crack closure effects were considered by introdu-
cing restrictions to the appropriate nodes using truss elements. Using
the minimum shear stress range as crack propagation criteria produced
the most accurate results when compared with the real railway axle, but
neglecting variations in the crack growth rate.

Nesládek and Španiel [149] recently initiated a project for devel-
oping a software tool to predict fretting fatigue. In engineering appli-
cations with complex model geometries, both fretting fatigue and plain
fatigue often co-exist. Therefore, a plugin for Abaqus finite element
software was proposed, attempting to unifying the assessments. The
plugin is integrated in the graphical user interface and permits using
multiaxial fatigue criteria in a post-processing step. TCD is used for the
fretting stress gradients.

An interesting direction for further development in terms of the fi-
nite element modelling method is developing element formulations and
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incorporating asymptotic descriptions. This could permit the singular
and near singular fields to be calculated without the need for very fine
meshes, and thus make it more useful in an engineering context. It may
also serve as a platform for further studying microstructural effects on
fretting fatigue crack nucleation [150]. Giner et al. [151] used singular
expressions for complete contact as enrichment functions in the finite
element formulation and found good estimates of stress intensity factors
with relatively coarse meshes. Recently Cardoso et al. [152] applied
singular enrichment functions to incomplete contact. Non-local intensity
factors [99] was used to track the contact edges, hence, identifying the
nodes to be enriched. Increased accuracy for coarse mesh.

In general, the FEM analysis has become an important tool for en-
gineers, but for detailed contact analysis, FEM often require very fine
meshes. Contact elements of size less than 10 μm are not uncommon.
Thus, for larger models and for complex loading histories, the compu-
tational costs may not be justified, w.r.t. the accuracy and predictability
actually gained. Sub-modelling techniques can be used to separate the
contact problem from the structural analysis, thus avoiding the need for
fine contact mesh in the global solution. Also, the use of non-local stress
intensity factors is very useful for sub-modelling techniques
[151,99,152].

13. Some comments on fretting fatigue testing

Given the complex nature of fretting fatigue, testing is in some cases
necessary to obtain predictive confidence. A review of the methods and
equipment used in testing probably deserves a whole separate treat-
ment and is only shortly mentioned here. A number of different
methods and test rigs are devised in the literature and in 1992 there was
an attempt to start standardisation of the fretting fatigue test [153].
However, there is still no accepted generic standard [154]. The recent
ASTM E2789 standard [155] provides only guidelines and general re-
quirements for conducting a fretting fatigue test program. While it
provides definitions and terminology for fretting fatigue testing, it does
not propose a specific test configuration.

Hills and Nowell summarized in 2009 [156] the most important
features with fretting fatigue testing. They argue that the standardisa-
tion of fretting fatigue test geometries will alleviate the comparison of
different sets of results, but standardisation can also restrict the di-
versity of test results and hence make them less helpful for under-
standing fretting fatigue as a whole.

Early fretting fatigue tests made use of single-actuator test rigs
where pads, usually of “bridge” type where clamped onto the specimen
using e.g. a proving ring [157]. The clamping force was therefore
constant as long as the wear was negligible. The Japanese standard
JSME S 015-2002 uses this test configuration [154]. More advanced,
biaxial test rigs permits the cyclic load to be controlled independently
from the contact loading. Early fretting tests at Oxford University used
the fretting bridge on dogbone specimen, but during the end of 60s,
they developed a test rig using Hertzian contact and electromagnetic
resonance to generate the shear forces [158]. With this, the contact
stresses, slip and displacements were known. These tests had a high
degree of repeatability. Further generelisation was made that permitted
independent control of shear and bulk forces in the specimen. This was
also tested for complete contact with a self-aligning property avoiding
rotation of the shear forces. The new arrangement have three in-
dependent actuators for the normal, shearing and bulk loads.

Other interesting developments in fretting fatigue testing include
the use of digital image correlation (DIC) method to resolve the contact
situation during the experiment [159,160].

14. Conclusions

Over a century after the first studies, researchers and engineers are
still interested in and concerned with fretting fatigue. This article has
attempted to review the progress in fretting fatigue understanding and

predictions, with the engineering applications in mind. Fretting fatigue
assessments in the industry are often very simple and relies on un-
sophisticated parameters. Comparing these parameters with company
internal empirical data and experience the overall risk of fretting is
determined, i.e. designing for “infinite life”. However, research in
fretting and fretting fatigue have increased the understanding of the
underlying phenomena and improvements have been made into de-
termining fretting fatigue life. It is therefore argued that more elaborate
analysis may be appropriate in many engineering applications.

It is clear that fretting and fretting fatigue are indeed complex pro-
blems, and for the practical engineering case not all contributing phe-
nomena are important. The integrity of an engineering component is
evaluated according to its intended requirements and operating con-
ditions, and the design engineer must carefully identify the fretting
regimes and choose the appropriate analysis. Some sliding motion are
in many engineering cases inevitable, and partial slip conditions are
common, promoting fretting fatigue. In other cases, fretting wear is
more critical. Thus, the use of fretting maps is a valuable tool for the
design engineer to predict the fretting regime and to visually reason
about the mechanisms involved.

For more quantitative predictions of fretting fatigue, simple para-
meters like Ruiz (FD and FRD) give the engineers the possibility to
numerically evaluate their design, however purely empirical. The Ruiz-
parameters are widely used in the industry, mainly due to being ac-
cessible.

Drawing analogies to notches and cracks can be a great improve-
ment in the predictability of fretting fatigue. These methods are easily
applied to engineering cases to predict cracking risk and thereby de-
signing for infinite life. The practicality of asymptotic methods in en-
gineering applications may not seem obvious at first. However, the fact
that the crack nucleation risk in critical regions surrounding contact
edges can be matched to a small laboratory test may provide very useful
tools. Most analyses are restricted by half-plane theory and small scale
plasticity. For cases of varying contact normal load however, the
asymptotic methods are difficult to use due to the moving contact
edges.

For predicting fretting fatigue damage nucleation, multiaxial fatigue
methods might be used, but with the amount of uncertainty involved, it
most likely requires high safety-factors. Applying critical plane calcu-
lations as a post-processing step in elastic FEM analysis is a practical,
but sometimes computationally costly approach. Sub-modelling tech-
niques and non-local stress intensity factors are promising methods and
may alleviate the problems with computational costs.
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A B S T R A C T

Multiaxial fatigue and the application of critical plane criteria are briefly reviewed. Methods to increase the
efficiency of such criteria are discussed. A simple methodology is also presented where the critical plane search
space is discretised using triangular elements and adaptively refined. It is shown to increase accuracy in the
damage search with fewer candidate plane evaluations, useful for large 3D models. Parallel computations are
also leveraged.

1. Introduction

In engineering practice, fatigue assessments often involve large 3D
models of complex geometry subjected to multiaxial stresses. In many
cases, the loads are also non-proportional [1,2], which greatly com-
plicates the fatigue evaluation.

It is a well-observed phenomenon that cracks form and grow in
preferential material planes [3,4], the orientation of which depends on
the loading and the material. This fact, combined with multiaxial
stresses, have caused critical plane (CP) criteria to be a popular method
for many researchers [5–9]. These criteria are concerned with searching
for the material plane orientation having the largest fatigue damage
and thus have a physical foundation. Critical plane criteria are, how-
ever, known to be computationally expensive, having to evaluate the
fatigue damage on a large number of candidate material planes. For
real-world engineering cases, finite element models often have hun-
dreds of thousands or millions of elements subjected to complex load
histories and critical plane fatigue assessment can become too ex-
pensive, especially in the early design iteration stage. By accelerating
the critical plane computational effort, higher analysis throughput will
allow for a more efficient design iteration process. In these cases, early
identification of critical areas and hot-spots can be important.

This paper describes a numerical implementation of a critical plane
analysis for multiaxial fatigue and considers several methods to accel-
erate the analysis. Multiaxial fatigue is quickly reviewed with special
regards to its relation with critical plane analysis for fatigue

assessments. Shear stress-dominated fatigue is considered, and some
improvements to the critical plane implementation are investigated.

The main aim of this paper is to survey the efficiency of critical
plane analysis applications to engineering models. An adaptive im-
plementation of the critical plane search is described and its effective-
ness is demonstrated. Some of the points raised are applicable to certain
classes of critical plane models but do not apply in general.

2. Critical plane approach to multiaxial fatigue

Fatigue is often heuristically divided into low-cycle fatigue (LCF)
and high-cycle fatigue (HCF) due to the dominating mechanisms being
distinct. In LCF plasticity plays an important role, but in HCF, plasticity
is usually of negligible importance. LCF analyses are concerned with
loading in the range of −1 104 cycles whereas HCF is often in the range
of −10 104 8 cycles. Some applications are even concerned with very
high-cycle fatigue (VHCF) regimes (>108) [10]. Engineers often design
for loads in HCF and VHCF ranges but damaging events (shocks etc.)
belonging to the LCF regimes may occur [11]. The loading regime is an
important factor when choosing a critical plane criterion; whereas for
HCF stress-based criteria are often used, for problems involving plas-
ticity, strain-based criteria are often used.

For fatigue assessments involving variable amplitude loading, pop-
ular methods reduces the multiaxial stress history into an equivalent
(invariant) stress history on which damage is counted and accumulated.
Among the most popular, classical criteria using stress invariants are
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the Sines [12] and Crossland [13]. It is clear, however, that these
methods will not correctly account for phase- and frequency differ-
ences, and that they exclude the load signs of the different stress
components (“channels”). This makes them only suitable for simple
proportional load histories. For variable amplitude loading, it is espe-
cially important with a proper cycle counting method to account for all
damaging events.

Uniaxial and equivalent stress histories are one-dimensional and
therefore popularly counted using traditional Rainflow counting [14] or
one of its derivatives. For non-proportional multiaxial fatigue, however,
the single-channel counting algorithms fail due to neglecting reversals
on more than one stress component. Attempts to perform multiaxial
cycle counting have been made by applying Rainflow counting on each
projected material plane [15]. Other methodologies executes the
counting on relative quantities of the stress invariants. Wang and Brown
[16] performed counting on relative von Mises strains to overcome the
problem of load sign loss in the stress invariants. Meggiolaro and de
Castro [17] proposed a modification to avoid the largest load range to
be missed. Anes et al. [18] proposed a “stress scale factor” between the
shear and axial stresses on which counting was performed. Weighted
averages and statistical parameters are also used [19].

The additional complexity of non-proportional loads is important
due to the stress tensors having components that individually may
change throughout the load history. If all the oscillating stress com-
ponents are in-phase, the principal direction of the stress is constant,
and the load is classified as proportional. In non-proportional loading,
however, the stress components change in a non-proportional fashion
with each other, and thus the principal direction of stress rotates.
Consequently, the orientation of the material plane experiencing the
most damaging stress is not known a priori. With non-proportional
cyclic stresses, the material may experience additional hardening due to
non-planar slip bands, which can greatly reduce the fatigue life [20].
Sensitivity to non-proportional loading varies from material to mate-
rial, depending on its microstructure, hardness etc. [2]. Many steels
have been found to experience non-proportional hardening, while e.g.
aluminium alloys are less affected [21]. In general, non-proportional
loading is known to be at least as damaging as proportional loading and
should be incorporated in the fatigue model [22]. This suggests that
fatigue damage accumulates on different material planes independently
and that critical plane models are physically ground. Recently, sig-
nificant attention has been paid to the effects of non-proportionality on
the fatigue analysis [23–25].

3. Critical plane analysis

In the following, the material is assumed to be isotropic undergoing
small deformations. Combinations of stresses and strains are assumed to
drive the cracks to initiate and grow in certain material planes. These
driving forces are evaluated at material points, thought to represent
small, homogeneous volumes of material. Consider a material point p in
a coordinate frameOxyz being subjected to stress given by the tensor σ .
Its components can be expressed by the symmetric matrix

= ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

σ
σ σ σ
σ σ σ
σ σ σ

xx xy xz

xy yy yz

xz yz zz

i.e. with six independent components which in general can be its
own function of time.

Consider now a candidatematerial plane π centered in this point and
with its orientation given by the unit normal vector n. The orientation
is alternatively expressed by the two angles ϕ and θ. The traction stress
vector t acting on this plane is given by Cauchy's stress theorem and
obtained by

= σt n· (1)

From the traction vector, the normal stress scalar σn and shear stress
vector τ acting in the material plane π can subsequently be obtained by
the vector dot product

=σ t n·n (2)

and

= −τ σt nn (3)

Now, a load history can be discretised by a set of stress tensors
acting on the material point throughout the loading sequence. This
loading history, or more specifically, its projected shear stresses and
normal stresses are driving force for the fatigue damage in the material
plane. The direction of the normal stress is given by the plane normal
vector, but the shear stress history, being a vector acting in the material
plane, can be thought to describe a two-dimensional path Ψ in π . For a
proportional load cycle, this path is represented by a straight line, but
for a non-proportional cycle, the path can be a complex 2D shape, see
Fig. 1.

In terms of calculating the fatigue damage in a candidate plane,
most criteria depend on amplitude values of the load. Determining the
normal stress amplitude acting on the plane is trivial. The shear path is
generally a two-dimensional shape, and determining amplitude and
mean values is therefore nontrivial. There is extensive research focused

Nomenclature

ϕ θ( , )c c tuple of angles representing the critical plane
∗τ centre of MCC
τ shear stress
τm mean shear stress
τti shear stress at timeti
n unit normal vector
t traction vector
δ phase difference
γa shear strain amplitude
λ frequency ratio
ω orientation of shear path for MRH
ϕ normal vector azimuth
π candidate material plane
Ψ shear path in material plane
σ Cauchy stress tensor
σn normal stress
σy material yield stress

σn max, maximum normal stress during a cycle
σxx a, normal stress amplitude
σxx m, mean normal stress
σxy a, shear stress amplitude
σxy m, mean shear stress
τa equivalent shear stress amplitude
τi shear vector in candidate plane at time ti
θ normal vector inclination
a1,2 sides of the MRH
kFn Findley material constant
kFS material constant
N total number of candidate planes
P time period
p material point
t time instant
k number of points in hemisphere
l refinement threshold
m subset size
n subset reduction factor
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on this specific problem, and only a brief review of the methodologies is
considered in the here.

First, some relevant critical plane criteria are considered for context.
The Findley critical plane parameter [26] can be expressed as a

linear combination of the shear stress amplitude and the maximum
normal stress. The orientation of the critical plane can be expressed
mathematically by

+ϕ θ τ ϕ θ k σ ϕ θ( , ): max{ ( , ) ( , )}c c
ϕ θ

a Fn n max
,

, (4)

where τa is the shear stress amplitude and σn max, is the maximum normal
stress acting on the plane during the cycle. k is a material parameter
that often ranges between 0.1 and 0.2 [27]. As highlighted by Papa-
dopoulos [22], the Findley criterion predicts a dependence on mean
shear stress, which is found to be negligible in many HCF studies [28].
The criterion is popular nonetheless and shown to work for titanium,
steel, and aluminium, among others. For small values of k, the effects of
static shear are also negligible.

Analogously, the multiaxial fatigue damage can be defined through
a strain-based parameter, often applied to LCF and ductile materials.
Fatemi et al. [6] found the critical plane to be at or near the plane of
maximal shear strain amplitude. In this case, the critical plane can be
described by

⎜ ⎟
⎧
⎨⎩

⎛
⎝

+ ⎞
⎠
⎫
⎬⎭

ϕ θ γ k σ
σ

( , ): max 1c c
ϕ θ a FS

n max

y,

,

(5)

where γa is the shear strain amplitude and σn max, is the largest normal
stress on the critical plane. σy is the yield stress and kFS is a material
constant.

Implicit relation for the fatigue life can then be expressed and re-
lated to relevant fatigue parameters by combining the damage para-
meter for the critical plane with Basquin and Coffin-Manson laws [29].
Subsequently, for life predictions, the number of cycles are solved for
using e.g. Newton-Raphson iterations.

Other shear based critical plane parameters are the Modified Wöhler
Curve Method [30], Matake [31], McDiarmid [32] and more recently a
class of extensions to the classical energy-based criterion by Smith,
Watson and Topper (swt) [33,34,24].

3.1. Equivalent shear amplitude

The aforesaid complexities related to the shear-based fatigue criteria
are now addressed. As the shear stress history is a vector history, there

is no immediate amplitude value given for the non-proportional load
history. For criteria based on shear amplitude quantities, a scalar-va-
lued function is needed to transform the vector history into an equiva-
lent amplitude. A large amount of research has been put into these
functions, and a number of two-dimensional geometric projection
methods have been proposed. The two most simple methods are the
longest chord (LC) and longest projection (LP) methods, for which the
shear path is projected onto a single line in the candidate plane. LC
method searches for the largest distance between two points on the
path. The amplitude is the half-length of the line connecting these two
points and the mean is its midpoint. In the LP method however, the path
points are projected onto all lines in the candidate plane running
through the origin. The amplitude is half-length of the extreme points
on this projection and the mean is its center. The problem with LC and
LP is that for some load paths, the definitions of the mean and ampli-
tude are ambiguous.

Minimum Circumscribing circle (MCC) was proposed by Dang Van
[35] in the 90s and is often used [36]. A circle is found to cover the
shear path. The center of the circle is taken as the mean shear value and
the radius represents the shear stress amplitude. The problem of finding
the MCC can be expressed as [22]

− ∗
∗τ τ t τ: min{max|| ( ) ||}m
τ t

i
i (6)

where τm is the mean shear, τ t( )i is the shear vector tip at time ti and ∗τ
is the vector position of the circle center.

The MCC problem as stated above is mathematically well-defined as
it can be shown that this circle is unique. A brute-force solution solves
the problem in O n( )4 time where n is the number of history points, and
may therefore be quite time consuming for longer time histories. There
are, however, algorithmic solutions of linear time complexity [36,37]
and iterative methods converge quickly. Nonetheless, as remarked by
some authors, a problem with the MCC method is its inability to dis-
tinguish between some proportional and non-proportional histories
[9,38].

3.2. Maximum rectangular hull

Araújo et al. [9] proposed to calculate the equivalent shear stress by
using the maximum rectangular hull (MRH). This rectangle is found by
simply rotating the shear path ∈ω π[0, /2] and finding its longest
projection along two perpendicular axes, expressed as a1 and a2 in the
equations below. The mean shear stress can then be evaluated as the
centre of the rectangle and the amplitude is the half the rectangle di-
agonal. For proportional loading histories, MRH provides the same re-
sult as the longest projection. However, by taking its maximum pro-
jection over the possible rotations of the path, MRH correctly predicts
larger equivalent amplitudes for non-proportional paths. Therefore, the
Maximum Rectangular Hull provides an improvement over MCC, LC
and LP wrt. differentiating proportional and non-proportional loads.

= + ≤ ≤τ a ω a ω ω πmax ( ) ( ) , 0 /2a
ω

1
2

2
2

(7)

where the sides of the rectangle a1 and a2 are given by

= − =a ω τ ω t τ ω t i( ) 1
2
[max ( , ) min ( , )], 1, 2i

t
i

t
i (8)

Thus, the equivalent shear stress is found by rotating the projected
shear path (Ψ) for a pre-determined resolution of angles ω and finding
its maximum bidirectional projection in the candidate plane. See Fig. 2
for a comparison of the MRH and MCC.

3.3. Convex hull

Dealing with discrete shear paths Ψi as two-dimensional polygons,
the field of computational geometry has provided some potentially
useful algorithms. The convex hull (CH) of a set of points in the two-

Fig. 1. Shear stress acting in the candidate plane π .
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dimensional plane is the (unique) smallest polygon containing all the
points. It can be shown that the ch of a set of points will be entirely
contained within its enclosing surface (MRH, MCC etc.). For longer load
histories (i.e. many points) the CH can greatly reduce the the number of
points considered for the shear stress path, essentially assuming that the
interior loading points do not contribute to fatigue damage. A number
of algorithms exists for computing the ch. In this paper the Graham Scan

algorithm is used, introduced by Graham [39] in 1972. Whilst a brute
force search for the convex hull is O n( )3 , the Graham Scan is O n n( log )
where n is the number of points in the original path.

3.4. Critical plane search space

It is convenient to describe the orientation of the candidate plane
normal vector in a spherical coordinate frame r θ ϕ( , , ) where r is the
radial distance, θ is the inclination and ϕ is the azimuth. Since the
material normal vector is of unit length, the search space is effectively
described by a unit sphere. By using the fact that negating the normal
vector describes the same plane, the search space is reduced to a
hemisphere.

In theory the hemisphere describes an infinite set of material plane
orientations. A naive (brute-force) procedure of discretising this hemi-
sphere is by using a pre-determined angular increment for the in-
clination and azimuth (henceforth referred to as angle grid). This how-
ever, will not guarantee to find the critical plane, and the accuracy of
the solution depends on the resolution of the angle grid. Also, this
discretisation provides a non-uniform partition of the hemisphere due
to the semi-circumferences being divided into equally many points
[40]. Thus, poles becomes more dense than around the equator. Using a
pre-determined grid of angles is inefficient, due to having to evaluate
the fatigue criteria in a large set of sub-critical candidate planes.

By instead discretising the hemisphere using triangular cells allows
for a much more uniform spacing [36], see Fig. 4. The hemisphere is
divided into triangular cells where each corner point represents the unit

Fig. 2. Comparing MRH and MCC equivalent shear stress amplitude for a fic-
titious shear stress history in the candidate material plane.

Fig. 3. Flowchart for a simple adaptive implementation of critical plane search.
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normal for a candidate plane. Triangular cells are also trivial to re-
cursively partition into new, smaller (children) cells. An iterative
scheme can start of by an initial (coarse) set of material plane or-
ientation. Then, after each round of fatigue damage evaluations, the
most critical cells are refined and the damage is computed for the new
set of points.

The simplest adaptive scheme uses a pre-determined number of
iterations and refines a subset of cells for each iteration. Thus, the
convergence for a given load history will depend on the initial set of
points and on the size of subsets. For a fixed subset size, the total
number of orientations can grow quite large. More elaborate refinement
schemes are possible [41]. Svärd [36] used a branch and bound method
for the cp search for the Findley criterion and showed its convergence
to be guaranteed. In general, objective functions represented by fatigue
criterion evaluation are non-convex functions and guaranteed con-
vergence is not possible.

Here, a simple adaptive scheme is demonstrated, where for each
iteration, a subset of points is chosen based on their computed value
(damage) during the previous iteration. The cells connected to this
subset are refined. The subset size is lowered for each iteration until a
threshold condition is met. Initial size (k), its the subset threshold (m)
and its reduction factor (n) are chosen by the user. A cell is only refined
if its value represented an increase in damage wrt. its parent cell. The
adaptive scheme is shown in the flowchart in Fig. 3.

Fig. 4 shows the resulting hemisphere discretisation from the
adaptive refinement for the simple case of uni-axial loading.

3.5. Model validation and results

To validate the method of using triangular elements with adaptive
refinement, fatigue damages are compared with the “correct” solution
of 180x180 angles, and a number of grid refinement levels used in
practice [9,21,27]. Comparisons are made for a series of experimental
results found in the literature [22,9,42,43] (see Table 1–3), and 2·106
pseudo-random load histories consisting of three or four history points.

The referenced load histories are bi-axial, synchronous and

asynchronous bending and torsion, i.e. they can be expressed as

=
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥σ t

σ t σ t
σ t( )

( ) ( ) 0
( ) 0 0

0 0 0

xx xy

xy

(9)

where

= ⎛⎝ ⎞⎠ +σ t σ πt
P

σ( ) sin 2
xx xx a xx m, , (10)

and

= ⎛⎝ + ⎞⎠ +σ t σ λ πt
P

δ σ( ) sin 2
xy xy a xy m, , (11)

Shear stress amplitude is used as damage measure (Findley =k 0.0)
on the bi-axial load cases for comparison with the sources. To de-
termine the shear amplitude, the MRH method is used. As noted by
Petrucci [38], MRH has some of the same problems as LC in that there
are cases where the mean shear is not always unique. But as highlighted
by Papadopoulos [22] the mean shear effect is negligible, and therefore
is of small concern in many cases. The authors of MRH found the rec-
tangular hull to converge for only five rotations (ω in equation 3.2).
Here, MRH was tested on the 2 million pseudo-random histories for
angle increments of 1 and 10 degrees and the maximum difference was
found to be 0.4% (around 0.1% on average).

Fig. 5 shows an example of a non-proportional bi-axial load history
for a material point and the resulting equivalent shear stress amplitude
as a function of material plane orientation. As mentioned in Section 2,
special care must be taken for non-proportional histories to properly
identify the load reversals and account for damaging cycles.

Note in Fig. 5b that there are more than one direction where the
equivalent shear stress are equally critical in terms of its amplitude. For
unambiguous direction, a choice of critical plane can be made e.g. by
choosing the plane experiencing the largest normal stress [9].

Comparing different angle grid refinements with the “correct” da-
mage (equivalent shear amplitude denoted τa) for the histories in Tables
1 and 2 shows that the error is quite low for relatively coarse grids. The

Fig. 4. Adaptive refinement illustrated by the simple case of cyclic push-pull loading, =σ t t( ) 242sinyy .
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maximum error for angle steps of 10, 9, 7.5 and 6 are 0.9%, 1.2%, 0.8%
and 0.4% respectively.

Now comparing the damage obtained by using the adaptive scheme
described in previous section. The initial hemisphere consists of 41
points and subjected to different levels of initial refinement thresholds.
Using threshold of 0.05, an average of 164 planes was investigated,
resulting in maximum error of 0.5%. For thresholds of e.g. 0.075, 0.1
and 0.125, maximum error all converged to 0.02%, with average

around −5·10 3 %. The number of candidate planes using these threshold
were 241, 327 and 418 respectively. The time saved depends on details
of the implementation. The computational overhead associated with
the refinement process was found to be small. An illustration of the
process for load case 52 can be seen in Fig. 6. Notice how all four peaks
are identified.

The resulting number of candidate planes Nplanes for the adaptive
method depends on the load history. For the “correct” brute force
method, a very fine angular step is used, = = °ϕ θΔ Δ 1 , i.e. 32400 or-
ientations. In most cases though, this level of refinement is excessive,
depending on the behaviour of the damage function and of the desired
accuracy. See more about this in Section 4.

All load histories were implemented with 100 stress tensors, which
means that the time steps were different for the asynchronous histories.
Across the data set reported in Tables 1 and 2, the use of the convex hull
reduced the number of shear points in the candidate plane by around
55%. The overall effectiveness of CH depends on the load however; only
interior points on the shear path are removed. Consider as an example
the special case where the shear path in the candidate plane is described
by a circle. In this case, all the points in the shear path are also points on
the convex hull. Thus, no points are discarded and computation is
wasted. Recall that the time complexity of the convex hull (using
Graham Scan) is O n n( log ) and the MRH algorithm is linear in n where
n is the number of points. Hence, the gain by first computing the CH
reduces as the number of points in the load history increases. Using
convex hull resulted in 24% reduced computation time for 100 history
points, but this reward is steadily decreased as the number of history
points increases. For around 400 points, the effect was negligible.

The adaptive scheme is also demonstrated using the Findley cri-
terion on a set of 2·106 pseudo-random stress histories consisting of
three or four time steps. Findley criterion is chosen due to its simplicity
and due to it demonstrating dependence on both shear and normal
quantities in the candidate plane. In general, convergence is more
challenging for these objective functions, compared with the well-be-
having damage functions produced from harmonic time series, see e.g.
Fig. 7. Correspondingly, coarse angle grids may potentially under-es-
timate damages. Using angle increments of 10, 9, 7.5 and 6 resulted in
largest underestimation of fatigue damage of 1.8%, 1.5%, 1.0% and
0.7% respectively.

Here the initial hemisphere consists of 145 points ( =k 3) and re-
duction factor 2. For subset a size of 0.05, error was 1.2% and resulted
in 241 candidate planes on average. For 0.075, 0.1 and 0.125, the
maximum error had converged to 0.5%. The average number of can-
didate planes were 280, 333 and 377, respectively.

The algorithms were implemented in Python 3.7 using numpy nu-
merical library and in C++ using Eigen3 template library. As expected,
the runtime using a high-level language (Python) is considerably longer
than the lower-level, compiled language C++. On average, Python ran
almost two orders of magnitude slower to compute full 180x180 grid
searches compared with the single-threaded C++ version. By making
use of Just-in-time (JIT) compilation support for numpy arrays using

Table 1
Synchronous experimental data ( =λ 1).

Case No. σxx a, σxx m, σxy a, σxy m, δ τa

MPa MPa MPa MPa deg MPa
a 0 138.1 0.0 167.1 0.0 0.0 180.8

1 140.4 0.0 169.9 0.0 30.0 180.8
2 145.7 0.0 176.3 0.0 60.0 180.5
3 150.2 0.0 181.7 0.0 90.0 181.7
4 245.3 0.0 122.7 0.0 0.0 173.4
5 249.7 0.0 124.8 0.0 30.0 170.5
6 252.4 0.0 126.2 0.0 60.0 159.7
7 258.0 0.0 129.0 0.0 90.0 161.2
8 299.1 0.0 62.8 0.0 0.0 162.2
9 304.5 0.0 63.9 0.0 90.0 158.9

b 10 328.0 0.0 157.0 0.0 0.0 227.0
11 286.0 0.0 137.0 0.0 90.0 175.8
12 233.0 0.0 224.0 0.0 0.0 252.5
13 213.0 0.0 205.0 0.0 90.0 205.2
14 266.0 0.0 128.0 128.0 0.0 184.6
15 283.0 0.0 136.0 136.0 90.0 174.2
16 333.0 0.0 160.0 160.0 180.0 230.9
17 280.0 280.0 134.0 0.0 0.0 193.8
18 271.0 271.0 130.0 0.0 90.0 166.7

b 19 314.0 0.0 157.0 0.0 0.0 222.0
20 315.0 0.0 158.0 0.0 60.0 199.6
21 316.0 0.0 158.0 0.0 90.0 197.5
22 315.0 0.0 158.0 0.0 120.0 199.6
23 224.0 0.0 224.0 0.0 90.0 224.0
24 380.0 0.0 95.0 0.0 90.0 201.9
25 316.0 0.0 158.0 158.0 0.0 223.4
26 314.0 0.0 157.0 157.0 60.0 198.7
27 315.0 0.0 158.0 158.0 90.0 197.1
28 279.0 279.0 140.0 0.0 0.0 197.6
29 284.0 284.0 142.0 0.0 90.0 177.5
30 355.0 0.0 89.0 178.0 0.0 198.6
31 212.0 212.0 212.0 0.0 90.0 212.0
32 129.0 0.0 258.0 0.0 90.0 258.0

d 33 485.0 0.0 280.0 0.0 0.0 370.4
34 480.0 0.0 277.0 0.0 90.0 319.9
35 480.0 300.0 277.0 0.0 0.0 366.5
36 480.0 300.0 277.0 0.0 45.0 339.3
37 470.0 300.0 270.0 0.0 60.0 318.2
38 473.0 300.0 273.0 0.0 90.0 315.3
39 590.0 300.0 148.0 0.0 0.0 330.0
40 565.0 300.0 141.0 0.0 45.0 302.3
41 540.0 300.0 135.0 0.0 90.0 286.9
42 211.0 300.0 365.0 0.0 0.0 379.9

Table 2
Asynchronous experimental data.

Case No. σxx a, σxx m, σxy a, σxy m, δ λ τa

MPa MPa MPa MPa deg MPa
e 43 263.0 0.0 132.0 0.0 0.0 4.00 222.9
f 44 186.0 0.0 93.0 0.0 0.0 0.25 158.3

45 185.0 0.0 93.0 0.0 0.0 4.00 156.9
g 46 285.0 0.0 285.0 0.0 0.0 0.25 352.7

47 290.0 0.0 290.0 0.0 0.0 4.00 367.5
h 48 259.5 0.0 150.0 0.0 0.0 2.00 215.6

49 266.0 0.0 153.6 0.0 0.0 3.00 225.6
i 50 210.0 0.0 105.0 0.0 0.0 0.25 178.7

51 220.0 0.0 110.0 0.0 0.0 2.00 169.3
52 242.0 0.0 121.0 0.0 90.0 2.00 164.2
53 196.0 0.0 98.0 0.0 0.0 8.00 170.7

Table 3
Material data for the load cases.

Case Material −f 1 −t 1 Source

MPa MPa
a Hard steel 313.9 196.2 McDiarmid et al. [44]
b 42CrMo4 steel 398.0 260.0 Lempp 1985, reported in [42]
c 34Cr4 steel 410.0 256.0 Zenner et al. [42]
d 30NCD16 steel 660.0 410.0 Froustey and Lasserre [43]
e 34Cr4 steel 415.0 259.0 Heidenreich et al. [45]
f GGG60 275.0 249.0 Susmel et al. reported in [22]
g 30NCD16 steel 585.0 405.0 Froustey et al. reported in [9]
h 39NiCrMo3 steel 585.0 405.0 Froustey et al. reported in [9]
i 25CrMo4 steel 340.0 228.0 Kaniut et al. reported in [9]
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the numba library [46], the Python programs can be accelerated con-
siderably. By using JIT compilation, the python code is automatically
translated into optimized low-level machine code.

To further accelerate the C++ critical plane search, the multi-
threading library OpenMP 4.5 [47] was used. The total search space is
simply divided into blocks, one for each thread. Once each thread has
finished its search for the maximum damage, the candidate planes for

each block are compared and the global critical plane is found. By using
e.g. 6 CPU cores (Intel Xeon 3.3 GHz) the multi-threaded version ran on
average 5.6 times faster.

4. Discussion

A short discussion on the accuracy of the critical plane methods is
appropriate. The accuracy of critical plane analysis and the computa-
tional cost generally is a trade-off. Investigating more candidate planes
increases the chance of finding the maximum fatigue damage, and
conservative analyses are preferred. Nonetheless, due to the inherent,
large scatter and uncertainty in fatigue, most analyses require large
safety factors anyways, especially for life predictions. Less under-
estimation is, however, always better, e.g. for hot-spot identification in
engineering components.

The damage surface (see e.g. Fig. 5) of many combinations of load
histories and fatigue criteria are relatively well-behaving. For such
cases, small differences are often found for relatively coarse angle grids.
Damage underestimation can still occur if maxima happens to occur in
between grid points. Notice, e.g. how the maximum error increased
when the angle grid was refined from 10 to 9 degree angular increment
for the referenced load histories. This is why relatively fine grids (5–8
degree increments) are recommended for the fatigue damage to con-
verge to “reasonable high” and stable values. Evaluation of the fatigue
criteria on all points of such fine grids are expensive for large models
and this is where an adaptive scheme can be of aid. The adaptive
method demonstrated lower fatigue damage underestimation for com-
parably fewer candidate planes. Such a simple refinement scheme is
easy to implement and can apply to a large class of critical plane cri-
teria. It should however, be used with caution and not without ver-
ification. An adaptive scheme also introduces complications for the
damage summation process for non-proportional load histories where
damage is to be accumulated on each material plane. Lastly, more
specific refinement schemes can be implemented, especially tailored for
different fatigue criteria, see e.g. [36].

5. Conclusions

In this work, some aspects of critical plane analysis of multiaxial
fatigue was considered. Methods to accelerate the search for the max-
imum fatigue damage using critical plane criteria were addressed, and
in particular using triangular discretisation of the search space with an
adaptive refinement. A very naive refinement rule is shown to give
more accurate damage predictions for fewer fatigue criterion evalua-
tions. It was tested on experimental data found in literature and two
million pseudo-random load histories. Single-threaded C++ code was
found to be around two orders of magnitude faster than the Python
version, and multi-threading was found to scale well.

Fig. 5. Load cycle and resulting damage surface for load case 52 (see Table 2).

Fig. 6. A 2-dimensional representation of an adaptive scheme searching for the
critical plane for case 52.

Fig. 7. Demonstration of an adaptive scheme and brute force damages for a
stress cycle consisting of only three time steps.
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Brief overview of fretting analyses relevant for medium speed reciprocating en-
gines.
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Abstract

Fretting and fretting fatigue are important considerations to be made in the

design and development of medium-speed reciprocating engines. Predictive

capabilities for safe-life design often rely on very simple empirical parameters

and experience. Practices are briefly reviewed, and opportunities for more

sophisticated methodologies are highlighted. It is concluded that more

research into fretting fatigue with complex load sequences are needed.
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fretting fatigue, Ruiz, reciprocating engines

1 | INTRODUCTION

Fretting is a term for surface damage occurring between contacting bodies with microscopic relative motion. The
actual manifestation of fretting damage varies and depends on up to 50 factors1,2 but most important are probably
material bulk and microscopic properties, loading conditions, contact geometry, surface roughness, and surface
hardness.3–7 Large contact pressures cause local plastic flow on asperity level, and with sliding motion (slip), adhesion
detaches particles from the surfaces, subsequently promoting abrasive wear. For smaller values of relative sliding
motion, typically less than 50-μm, stress concentrations at stick–slip interfaces initiates surface cracks. In some cases,
competitive processes can arise, where surface wear removes surface micro-cracks before they are allowed to propa-
gate. However, if bulk stresses are high enough, fretting-initiated cracks propagate and ultimately cause failure by fret-
ting fatigue.

Fretting fatigue is of major concern in medium-speed reciprocating engines.8–11 Here, complex components in
contact are subjected to large dynamic loads and excited by vibrations with a wide spectrum of frequencies. Mate-
rials are usually cast iron and steels. Full-scale testing is expensive but sometimes necessary, either by class rules or
by general verification. During the design stages and due to continuous improvements, predictive capabilities are
very useful as it allows for fretting to be avoided at an early stage, thus reducing costs. Moreover, with the accompa-
nying experimental testing, correlations with predictive analyses can be very beneficial for increasing knowledge of
the mechanisms involved. However, due to the complex and non-linear nature of fretting fatigue, combined with
long service lives, prediction is a very difficult task. Wear is known to cause friction to increase,12 effectively reduc-
ing relative slip. Loss of bolt pre-tension due to wear, on the contrary, can increase slip. Hence, even non-critical
contacts can slowly change fretting regime and generate unpredictable results. Engines are designed to operate reli-
ably for extremely long lives and the number of loading cycles for certain components range in the very high-cycle
regimes and beyond (>107 − 109 cycles).
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2 | DYNAMIC ANALYSIS

For some cases of fretting contact, forced dynamic response of the engine may be required. Three-dimensional
computer models are the basis for design and production, accompanied with extensive analyses using finite element
(FE) methods. Large geometries with small but important details like contact and fillets result in complex models with
millions of degrees of freedom (DOFs) as shown in Figure 1. Performing forced dynamic analysis on such large models
becomes computationally infeasible, and specialized software and methodologies are employed. By using model order
reduction (MOR) techniques, the FE solution space is reduced to a very small subset of DOFs. FE superelements are pre-
computed using methods of condensation, usually based on a combination of static and modal DOFs.13 This reduces
the solution space according to a given set of DOFs up to a maximum modal frequency. The condensed models (engine
block, crankshaft, connecting rods, etc.) are then fed into multi-body dynamic (MBD) software and treated as separate
elastic components, linked with forces and connectors. Non-linear effects like hydrodynamic bearings and gear
meshing are included but detailed contact analysis with stick–slip still requires a densely meshed FE model. Therefore,
the global dynamics are solved in MBD and the resulting loads are applied to a contact model as boundary conditions.
Stresses, strains, and contact slip are post-processed to finally evaluate fretting fatigue using appropriate criteria.

Examples of critical engine components wherein fretting fatigue is known to cause problems are the connecting
rod,11 main bearing caps, and crankshaft counterweights.9 The connecting rod is responsible for transmitting the linear
combustion forces to the rotating crankshaft. Consequently, it is subjected to large gas forces and inertial forces.
Usually, the connecting rod has a bolted split around the bearing shells, and the mating split surfaces are susceptible to
fretting.11 Main bearing caps support the crankshaft bearings to the engine block. Wear potentially cause material
removal to reduce bolt pre-tension and bearing clearances, subsequently increasing the danger of bearing failure. Since
mating surfaces are in complete contact, material removal and debris ejection are somewhat restricted for smaller values
of slip. Moreover, reduced pre-tension in the bolts can enable fretting fatigue to occur in the bolt threads, as shown in
Figure 2. As fretting wear gradually causes bolt pre-tension to decrease, slip rates can rise during operations. The bolt
failed from fretting fatigue initiated in the first loaded thread.

3 | FRETTING FATIGUE CRITERIA

In the field of fretting, it was early recognized that slip amplitudes were among the most important parameters
governing fretting performance.14 The most basic fretting assessment relies simply on comparing relative slip ampli-
tudes with threshold values from previous experience. Often, slip values are to be minimized and kept below 10 μm.

The classical Ruiz parameters have long been used as a simple means of quantifying fretting. Ruiz et al.15 studied
fretting in dovetail joints and suggested that the intensity of the surface damage to be governed by the frictional work
( ). They included the surface tangential stress as surface crack driving force and thus proposed

k= t ð1Þ

FIGURE 1 Slip analyses of engine main

bearing cap. (A) Assembly in engine cross-

section. (B) Resulting slip values. (C) Inspection

of bearing cap after approximately 15k

running hours
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as a parameter, henceforth for simplicity abbreviated FFDP (fretting-fatigue damage parameter). t is the stress
component acting parallel to the surface, is the shear stress, and is the relative slip. Modern implementations of this
parameter integrate the shear work over the fretting cycle t 2 [0,T] to obtain a physical value for the specific frictional
work (W),16 hence

k= 1 �W = 1

ð
�ds= 1

ðT
0

� _sdt, ð2Þ

where is the shear stress vector and s is the slip vector. Tangential stress t is here swapped with maximum principal
stress 1 to overcome the unidimensional nature of the original Ruiz parameter. Numerically, the shear work can be
calculated using the midpoint rule as

W =
XN
n=1

n−1 − n

2
� sn −sn−1ð Þ, ð3Þ

where n 2 [1, N] is the discrete time step. Note however, the lack of physical interpretation of the FFDP. It is simply an
empirical, “composite” parameter obtained by multiplying the surface damage (via shear work) with the crack driving
force (via the normal stress). Nowell and Hills17 found 1 to correlate with fretting cracks and that there seems to be a
threshold value. It was recently suggested to use the frictional power instead of the frictional work, as the intensity of
energy dissipation should affect crack initiation.18 Also note that the value of FFDP in 2 vanishes as slip work
approaches zero.

More elaborate criteria are in some cases warranted. Many researchers suggest using multiaxial fatigue parameters
and critical plane formulations to predict fretting fatigue initiation.19–21 Compared with maximum principal stress used
in 2, critical plane parameters can better account for the non-proportional cycles experienced in near-contact stresses.
Vidner and Leidich18 suggested extensions to the Ruiz parameter where critical plane-based parameters to be used in
place of maximum principal stress. Direct use of multiaxial fatigue parameters combined with the theory of critical
distances have also been shown to effectively predicting fretting fatigue.22–26

Methodologies based on crack arrest are also appropriate, as they aim to predict whether a fretting-initiated crack
will grow or arrest, thus predicting safe life.27,28 Many relevant engineering applications have nominally flat contacts
and by asymptotic expansion of the edge stress fields, threshold conditions can be analyzed using stress intensity
factors.29–31 They allow for rapid assessment of the behavior of fretting cracks and could serve as an engineering
approach alongside wear analyses. The singular stress fields can be asymptotically matched with small-scale testing.

FIGURE 2 Fretting-initiated crack in connecting rod stud bolt

after approx. 45k running hours
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However, the assumptions of half-plane theory do not always hold, and the effects of complex loads (e.g., varying
contact pressure) are still a topic for research.32

4 | CONCLUSIONS

Fretting fatigue is an important part of infinite-life design of medium-speed reciprocating engines. Bolted joints are
used extensively and when subjected to complex dynamic forces, a complete fretting assessment is difficult. The large
number of contributing factors in fretting fatigue, where many of which are inter-dependent, makes the synthesis of
fretting almost chaotic in nature and very hard to predict. In engineering, holistic approaches are often favored,
providing a safe-life prediction capability for a wide range of relevant conditions.

While research into fretting fatigue is dominated by multiaxial fatigue, asymptotic methods, and so forth (see,
e.g., Bhatti and Wahab33 for an excellent overview), engineering practices often rely on empirical, slip-based parameters
like Ruiz and its descendants (FFDP). With recent developments in fretting fatigue knowledge, computational power,
and modeling techniques, there are indeed opportunities to extend the predictive capabilities with more sophisticated
methods. Life predictions can permit more carefully controlled service intervals and detailed cracking models can assist
in fault-tolerant analysis.

Many researches show that the Ruiz parameters work well to provide cracking locations but are less trustworthy in
regards with life estimation and threshold (safe-life) identification. Industrial practices often use FFDP in the early
design stages, and when coupled with experience and in-house data, these parameters work quite well as “composite”
parameters, accounting for both wear and fretting fatigue.

There is (and probably always will be) need for more research into fretting and fretting fatigue in components sub-
jected to complicated load sequences. Testing components where fatigue load, contact pressure, and shear forces can be
controlled independently would give insight into the mechanisms that play important roles to the fretting fatigue
performance. Fretting fatigue size-effects complicates the application of small-scale laboratory testing to engineering
industrial components. Additionally, there is comparatively lacking experimental results of fretting fatigue in cast iron.
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A.4 Paper IV

Demonstrates the use of a new fretting fatigue test fixture.
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Some very simple code snippets are included here to demonstrate the appli-
cation of three different languages used in this thesis, see Section 2.8. Since the
code given in these appendices are included for demonstration purposes, they
are not necessarily optimised and tested with full coverage.





















Minimum circumscribed circle

A standard form of quadratic programming (QP) is

min
x

1
2

xTPx + qTx

s.t. Gx ≤ h
Ax = b

where x is a vector of (real) variables, G is an m × n matrix of constraints, h is a vector of coef-
ficients, P is a symmetrix positive-semidefinite n × n matrix representing the quadratic objective
function. G is a matrix representing the inequality constraints and A represents the equality con-
straints.

The minimum circumscribed circle

The minimum circumscribed circle (MCC) of a given set of n 2D points is the smallest circle to
cover all points in each dimension (x and y)

min
x,y

max
i

{(x − ui)
2 + (y − vi)

2}

Where ui and vi are the x and y components of the point i respectively. This can be rewritten
as

min
x,y,z

x2 + y2 + z2

s.t. z ≥ 2xui + 2yvi + z ≥ u2
i + v2

i , i = 1..n

this is a convex quadratic programming (QP) problem with one linear constraint for each point
(n). This is a well-studied problem in optimisation and can readily be solved using pre-existing
solvers.

In the following, equation is solved using open-source python library cvxopt.
[1]: # Import dependencies

from cvxopt import matrix, solvers
import numpy as np
from math import sqrt
import matplotlib.pyplot as plt

[2]: # Define function to compute MCC using QP
def mcc_qp(points):

"""Computes the smallest circle completely enclosing the given list of 2D␣
↪→points.

Parameters
----------
points : List of 2-dimensional points (x, y)

Returns
----------
center : Coordinates (x, y) for the circle center

1



radius : Radius of circle

"""
G = []
h = []
for p in points:

G.append([-2*p[0], -2*p[1], -1.0])
h.append(-p[0]**2 - p[1]**2)

G = matrix(np.array(G), tc='d')
h = matrix(np.array(h), tc='d')
q = matrix(np.array([0,0,1]), tc='d')
P = matrix(np.array([[1,0,0], [0,1,0], [0,0,0]]), tc='d')

sol = solvers.qp(P, q, G, h)
return (sol['x'][0], sol['x'][1]), sqrt(sol['x'][2])

[3]: # Simple test-case
test_points = [(0, 0), (2, 3), (1,-4), (2,-2), (1,1), (-1, 3), (-4,2)]
center, radius = mcc_qp(test_points)

pcost dcost gap pres dres
0: 1.0737e+01 2.7930e+02 4e+02 7e-01 1e+02
1: 1.9286e+01 1.2441e+01 7e+00 6e-03 8e-01
2: 1.6776e+01 1.6412e+01 4e-01 2e-16 1e-15
3: 1.6613e+01 1.6609e+01 4e-03 0e+00 9e-16
4: 1.6611e+01 1.6611e+01 4e-05 2e-16 9e-16
5: 1.6611e+01 1.6611e+01 4e-07 0e+00 2e-15

Optimal solution found.

[4]: # Visualise the result for test-case
fig, ax = plt.subplots()
plt.scatter(*zip(*test_points))
circle = plt.Circle(center, radius, fill=False)
ax.add_artist(circle)
ax.set_aspect("equal", adjustable="box")
ax.set_xlim((-5, 5))
ax.set_ylim((-5, 5))
ax.grid()
plt.show()
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A.9 Fourth order Runge-Kutta

The classical fourth order Runge-Kutta scheme was used to integrate the friction
systems in Section 4. This scheme can be written as

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (A.1)

where the four slopes k1..4 is defined by

k1 = f (tn, yn) (A.2)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
(A.3)

k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
(A.4)

k4 = f (tn + h, yn + hk3) (A.5)

or by its Butcher tableau [147]

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
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