
Exploring Decomposition for Solving Pattern Mining
Problems

YOUCEF DJENOURI, Dept. of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway

JERRY CHUN-WEI LIN, Dept. of Computing, Mathematics, and Physics, HVL, Bergen, Norway

KJETIL NØRVÅG, Dept. of Computer Science, NTNU, Trondheim, Norway

HERI RAMAMPIARO, Dept. of Computer Science, NTNU, Trondheim, Norway

PHILIP S. YU, Dept. of Computer Science, University of Illinois, Chicago, IL, United States.

Abstract This paper introduces a highly efficient pattern mining technique called Clustering-Based Pattern

Mining (CBPM). This technique discovers relevant patterns by studying the correlation between transactions

in the transaction database based on clustering techniques. The set of transactions is first clustered, such

that highly correlated transactions are grouped together. Next, we derive the relevant patterns by applying a

pattern mining algorithm to each cluster. We present two different pattern mining algorithms, one applying

an approximation-based strategy and another based on an exact strategy. The approximation-based strategy

takes into account only the clusters, whereas the exact strategy takes into account both clusters and shared

items between clusters. To boost the performance of the CBPM, a GPU-based implementation is investigated.

In order to evaluate the CBPM framework, we perform extensive experiments on several pattern mining

problems. The results from the experimental evaluation show that the CBPM provides a reduction in both

the runtime and memory usage. Also, CBPM based on the approximate strategy provides good accuracy,

demonstrating its effectiveness and feasibility. Our GPU implementation achieves significant speedup of up to

332x on a single GPU.

Additional Key Words and Phrases: Pattern Mining, Decomposition, Scalability, GPU

ACM Reference Format:
Youcef Djenouri, Jerry Chun-Wei Lin, Kjetil Nørvåg, Heri Ramampiaro, and Philip S. Yu. 2019. Exploring

Decomposition for Solving Pattern Mining Problems. ACM Trans. Manag. Inform. Syst. 1, 1 (April 2019),

25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Pattern Mining (PM) is a data mining technique that finds highly co-occurring items in a database

in order to provide relevant patterns. Currently, various pattern mining techniques have been

proposed, including Frequent Itemset Mining (FIM), Weighted Itemset Mining (WIM), Uncertain

Itemset Mining (UIM), High Utility Itemset Mining (HUIM), and Sequential Pattern Mining (SPM).

Frequent Pattern Mining (FPM) has largely been applied as a pre-processing step in several practical

problem solving applications, such as market basket analysis [?], where FIM finds the correlation

among products bought by different customers; information retrieval [?], where WIM and UIM

Authors’ addresses: Youcef Djenouri, Dept. of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway; Jerry Chun-Wei

Lin, Dept. of Computing, Mathematics, and Physics, HVL, Bergen, Norway; Kjetil Nørvåg, Dept. of Computer Science,

NTNU, Trondheim, Norway; Heri Ramampiaro, Dept. of Computer Science, NTNU, Trondheim, Norway; Philip S. Yu,

Dept. of Computer Science, University of Illinois, Chicago, IL, United States. youcef.djenouri@sintef.no,jerrylin@ieee.org,

noervaag@ntnu.no,heri@ntnu.no,psyu@uic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2158-656X/2019/4-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Djenouri, et al.

mine the correlations among terms of documents; business intelligence [?], where HUIM discovers

the process models in the log of events; and bioinformatics [?], where SPM extracts the knowledge

from the biological sequence data. As an example, considering the information retrieval problem,

the collection of documents is transformed into a transaction database, where each document is

considered as a transaction, each term as an item, and the tf-idf value for each term [?] as the
weight or the probability of a given item. In this context, mining techniques, such as WIM and

UIM, allow to study different correlations between pairs of terms in a document. For instance,

if the pattern (Knowledge, Engineering) is relevant, a high dependency exists between the terms

Knowledge and Engineering. Hence, if a user is looking for documents related to Knowledge, it
would be useful to also return documents related to Engineering. Unfortunately, pattern mining

techniques for large databases, such as FIM and WIM, suffer from long processing time (runtime).

They are inefficient when solving complex problems, such as UIM, HUIM, and SPM. To reduce the

runtime of pattern mining, several optimization techniques have been proposed [? ?]. However,
these optimization techniques are incapable of dealing with databases containing a huge number

of items, where only few of the relevant patterns are displayed to the end user. The main reason

these techniques are inefficient is because they consider the whole database in the mining process.

1.1 Motivating example
Consider the trajectories of five buses illustrated in Figure 1. Each trajectory is mapped to the

road map network of the United States. Trajectory pattern mining algorithms [?] consider the
whole trajectories as sequences and apply the sequential pattern mining algorithms such as FAST [?
], and/or other algorithms to identify the most frequent points (states in this case) shared by all

the trajectories in the set. This allows to provide good guidance to users or decision makers in

applications such as hot spot and crime detection [?], snapshot detection [?], etc. Considering
the trajectories in Figure 1, the trajectories represented by the dashed lines cover three states

(Minnesota, South Dakota, and Colorado), and the trajectories represented by the solid lines cover

four other states (Illinois, Iowa, Nebraska, and Colorado). In addition, trajectories of the dashed

lines only cover one state with the trajectories of the solid lines (Colorado). At a first glance, it is

judicious to process the trajectories of dashed lines separately to the trajectories of the solid lines.

Existing trajectory clustering algorithms deal with this problem by dividing the whole trajectories

into similar clusters [?]. In our work, we attempt to follow this methodology by proposing a

general framework to split the database into similar clusters and reduce the processing cost of the

existing pattern mining algorithms. Existing partitioning-based pattern mining approaches [?]
consider naive partitions of the transaction database among the sites for distributed processing.

These algorithms ignore the correlation between the different transactions. For instance, with

these algorithms, the trajectories of Figure 1 may be handled on the same site, with eight different

states (items in this context) as problem size. This generates 2
8 − 1 potential solutions. However,

it could process the trajectories of the dashed lines on the same site with only three items, and

the trajectories of the solid lines with only four items as problem size. This only generates 2
3 − 1

potential solutions for trajectories of dashed lines and 2
4 − 1 potential solutions for trajectories of

solid lines.

1.2 Contributions
In this paper, we propose a divide and conquer approach based on splitting the problem into several

small sub-problems, but as independent as possible, and then study and explore the correlation

between them. The first challenge is to make the sub-tasks independent, i.e., to create highly

correlated clusters with little overlapped on transaction contents, i.e., common items. The second

challenge is how to address the missing patterns due to the overlap on transaction contents across

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 3

WY

ND

SD

CO

NE

KS

MN

IA

MO

ILDenver

Minneapolis

WI

Kansas City
St. Louis

Indianapolis
IN

Milwaukee

MI

Fig. 1. Motivating example.

clusters. To deal with such challenging issues, we introduce a new framework called the clustering-

based pattern mining (CBPM), which is a comprehensive extension of our previous work [?]. We

developed two approaches, the approximate approach only addresses the first challenge, while the

exact one addresses both. With this in mind, the main contributions of this work are as follows.

(1) We evaluate the use of different clustering algorithms to decompose the transaction database

into highly correlated clusters, aiming at minimizing the number of the shared items between

clusters: Naïve, HAC, k-means, bisecting k-means, and DBSCAN.

(2) We propose two novel strategies that use the clusters for pattern mining: an exact strategy

that takes into account any shared items between clusters, and an approximate one that does

not need to take into account the shared items.

(3) We investigate the impacts of applying both the exact and the approximate strategy on the

mining effectiveness, as well as efficiency.

(4) We present a GPU-based implementation, and provide intelligent mapping between the GPU

blocks and the clusters of transactions.

(5) We evaluate our approach by extensively studying the time complexity and comparing our

approach with ten existing algorithms, applied on five different mining problems: FIM, WIM,

UIM, HUIM, and SPM. This evaluation shows that our approach advances the state-of-the-art

in terms of runtime, memory performance, as well as effectiveness. Moreover, our GPU

implementation achieves significant speedup of up to 332x on a single GPU.

1.3 Outline
The remainder of the paper is organized as follows. Section 2 depicts the principles of pattern mining.

Section 3 gives an overview of related work on the most important FPM variants. Section 4 provides

a detailed explanation of our CBPM framework. Section 5 describes the GPU implementation of

the CBPM framework. Section 6 presents the performance evaluation. Section 7 discusses the main

findings from the application of the decomposition techniques to the pattern mining problems, and

draws some future perspectives of using the proposed framework. Finally, Section 8 concludes the

paper, and outlines the future work.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

4 Djenouri, et al.

2 PRINCIPLES OF PATTERN MINING
In this section, we first present a general formulation of pattern mining, and then present a few

pattern mining problems according to the general formulation.

Definition 2.1 (Pattern). Let us consider I = {1, 2...n} as a set of items, and T = {t1, t2...tm} as
a set of transactions, where n is the number of items andm is the number of transactions. We define
the function σ , where for the item i in the transaction tj , the corresponding pattern reads p=σ (i, j).
Definition 2.2 (Pattern Mining). Let us consider I = {1, 2...n} as a set of n items, and T =
{t1, t2...tm} as a set ofm transactions.A pattern mining problem finds the set of all relevant patterns L,
such as L = {p |Interestinдness(T , I ,p) ≥ γ }. Note that the Interestingness (T, I, p) is the measure to
evaluate a pattern p among the set of transactions T , and the set of items I , and where γ is the mining
threshold.

Any pattern mining problem could be written from the two previous definitions. For instance,

i) Frequent Itemset Mining (FIM) [?] is defined by considering T as a Boolean database, and

Interestinдness(T , I ,p)= |p |T , I|T | . ii) Weighted Itemset Mining (WIM) [?] is defined by considering T

as a weighted database, and Interestingness(T, I, p)=

∑ |T |
j=1W (tj , I ,p), whereW (tj , I ,p) is the min-

imum or the maximum weight of the items of the pattern p in the transaction tj . iii) Uncertain
Itemset Mining (UIM) [?] is defined by considering T as uncertain database, and Interesting-

ness(T, I, p)=

∑ |T |
j=1

∏
i ∈p Probi j , where Probi j is the probability of the item i in the transaction tj .

iv) High Utility Itemset Mining (HUIM) [?] is defined by considering T as utility database, and

Interestinдness(T , I ,p) = ∑ |T |
j=1

∑
i ∈p iui j × eu(i). Note that iui j is the internal utility value of i in

the transaction tj , and eu(i) is the external utility of each item i . v) Sequential Pattern Mining

(SPM) [?] is defined by considering T as sequence database, and Interestinдness(T , I ,p) = |p |T , I|T | .
Figure 2 shows an illustrative example of the pattern mining problems by considering the mining

threshold as 50% for FIM, WIM, UIM, and SPM. For HUIM, we consider the mining threshold as 12,

and the external utility values as {a : 2,b : 1, c : 3,d : 1}. For instance, if we assume the Apriori

algorithm [?] on the FIM database, the process starts by generating the first candidate patterns

of size 1, {a, b, c, d}. Then, the support of each candidate pattern is calculated. As an example, the

support of the pattern a is equal to the number of occurrences of a over all numbers of transactions,

which is equal to 60%. Its support is greater than the minimum support (50%), hence a is considered

as frequent patterns. This process is repeated for all candidate patterns for size 1. The frequent

patterns of this step is {a, b}. The next step aims to generate the candidate patterns of size 2 from

the frequent patterns of size 1. The same process is repeated for all candidate patterns of size 2, this

recursive process must be repeated until we get only an empty set of candidate patterns. The final

result will be {a, b, ab}.

(a, 2), (b, 3), (c, 4)
(a, 1), (b, 2)
(a, 5)
(b, 2), (d, 5)
(b, 3)

L={a, b, d, ab, bd}

WIM

abc
ab
a
bd
b

L={a, b, ab}

FIM

(a, 0.2), (b, 0.3), (c, 0.4)
(a, 0.1), (b, 0.2)
(a, 0.2)
(b, 0.1), (d, 0.5)
(b, 0.1)

L={a, b, d, ab}

UIM

<{a, b}, {c}>
<{a, d}, {a, b}, {c}, {b}>
<{a}, {b}>
<{b}>

L={{a}, {ab}}

SPM

(a, 2), (b, 3), (c, 4)
(a, 1), (b, 2)
(a, 5)
(b, 2), (d, 5)
(b, 3)

L={a, c, ac, bc, abc}

HUIM

Fig. 2. Pattern mining problems.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 5

3 RELATEDWORK
This work is surrounded into two main topics, serial and parallel pattern mining algorithms, in the

following, reviews on both topics are presented.

3.1 Serial pattern mining algorithms
Pattern mining problem has been largely studied over the past three decades [? ?]. Various pattern
mining techniques have been reported, including the FIM,WIM, HUIM, UIM and SPM. The FIM is the

first pattern mining problemwhich extracts all itemsets that exceed the minimum support threshold.

Apriori [?] and FP-Growth[?] are the most used FIM algorithms. Apriori applies a generate and
test strategy to explore the itemset space. The candidate itemsets are generated incrementally. To

generate k-sized itemsets as candidates, the algorithm calculates and combines the frequent (k − 1)-
sized itemsets. This process is repeated until no candidate itemsets are obtained in an iteration. On

the other hand, FP-Growth adopts a divide and conquer strategy, and compresses the transactional

database into an efficient main-memory-based tree structure. It then applies recursively the mining

process to find the frequent itemsets. The main limitation of the conventional FIM algorithms is

the database format, where only binary cases could be mined. A typical application of this problem

is the market basket analysis, where for a given transaction (customer), a given item (product)

may be present or absent. To address this limitation, the WIM [?] was defined, where a weight
is associated to each item to indicate its relative importance in the given transaction. The goal of

WIM is to extract itemsets exceeding the minimum weight threshold. Yun [?] proposed weighted

interesting pattern (WIP). It introduces an infinity measure that determines the correlation between

the items of the same pattern.

The HUIM is an extension of the WIM where both internal and external utilities of the items are

involved. The aim is to find all high utility patterns from the transaction database that exceeds the

minimum utility threshold. The utility of a pattern is the sum of the utility of all its items, where the

utility of an item is defined by the product by its internal and external utility values. Chan et al. [?
] proposed the first HUIM algorithm. It applies the Apriori-based algorithm to discover top k high

utility patterns. This algorithm suffers from the runtime performance, as the search space is not well

pruned using the closure downward property. Thus, the utility measure is neither monotone nor

anti-monotone. To address this limitation the transaction weighted utility (TWU) property is defined

to prune the high utility pattern space [? ?]. It is an upper-bound monotone measure to reduce

the search space. More efficient HUIM algorithms based on TWU have recently been proposed,

such as EFficient high-utility Itemset Mining (EFIM) [?], and d2HUP [?]. The particularity of

such approaches is that they used more efficient data structures to determine the TWU and the

utility values. The pattern mining has been applied to other applications, including UIM [?] and
SPM [?]. UIM explores uncertain transaction databases, in which two models (expected-support

and probabilistic itemsets) have been defined to mine uncertain patterns. Li et al. [?] proposed the

probabilistic frequent itemset mining over streams. It derives the probabilistic frequent itemsets in

an incremental way by determining the upper and the lower bounds of the mining threshold. SPM

discovers a set of ordered patterns in a sequence database. Salvemini et al. [?] proposed the FAST

algorithm. It finds the complete set of the sequence patterns by reducing the candidates generation

runtime and employing an efficient lexicographic tree structure. Van et al. [?] introduced the

pattern-growth algorithm in solving the sequential pattern mining problemwith itemset constraints.

It proposed an incremental strategy to prune the enumeration search tree, allows to reduce the

number of visited nodes.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

6 Djenouri, et al.

3.2 Parallel pattern mining algorithms
Regarding high-performance computing, many algorithms have been developed for boosting the

FIM runtime performance [? ? ? ? ? ? ? ?]. However, few algorithms have been proposed for

the other pattern mining problem [? ? ? ? ? ?]. In [?], GPApriori is developed by designed a

"static bitset" memory structure to represent the transaction database on GPU architecture. In [?],
CU-Apriori is proposed, which develops two strategies for parallelizing both candidate itemsets

generation and support counting on a GPU. In the candidate generation, each thread is assigned

two frequent (k − 1)-sized itemsets, it compares them to make sure that they share the common

(k − 2) prefix and then generates a k-sized candidate itemset. In the evaluation, each thread is

assigned one candidate itemset and counts its support by scanning the transactions simultaneously.

The evaluation of frequent itemsets is improved in [?] by proposing mapping and sum reduction

techniques to merge all counts of the given itemsets. It is also improved in [?] by developing three

strategies for minimizing the impact of the GPU thread divergence. In [?], a multilevel layer data

structure is proposed to enhance the support counting of the frequent itemsets. It divides vertical

data into several layers, where each layer is an index table of the next layer. This strategy can

completely represent the original vertical structure. In a vertical structure, each item corresponds

to a fixed-length binary vector. However, in this strategy, the length of each vector varies, which

depends on the number of transactions included in the corresponding item. Several approaches

have been proposed for solving the pattern mining problems using the MapReduce framework.

In [?], the BigFIM algorithm is presented, which combines principles from both Apriori and

Eclat. BigFIM is implemented using the MapReduce paradigm. The mappers are determined using

Eclat algorithm, whereas, the reducers are computed using the Apriori algorithm. ?] apply the

MapReduce framework for mining frequent biological sub-graphs. It first constructs the size-k

subgraphs from the size-(k-1) subgraphs by the mappers, while the reducers will check whether

or not the candidate subgraph meets the user-defined support. ?] present a parallel randomized

algorithm for approximate pattern mining in the MapReduce framework. It starts by creating

random samples from the whole set of transactions. Each mapper is assigned to one sample to

generate the potential candidate patterns. The reducers then perform an aggregation function

to determine the set of all approximate relevant patterns, which highly depend to the random

samples created in the first stage. However, the authors only provide analytical guarantees regarding

the quality of the approximate relevant patterns derived by this algorithm. ?] proposed a tree-

based approach for mining uncertain data. It integrates the folk join framework by splitting the

computationally intensive tasks into multiples pieces which can be solved in parallel. It also use a

sampling method to transform the tree structure in a more compact one. This approach only finds a

small number of relevant patterns due to the sampling process. ?] applied sequential pattern mining

on large time series data, using the MapReduce framework. The time series data is transformed

into several segments using statistical properties, such as mean and variance. Each segment is

assigned to one mapper, to generate the suffix trees, and then extract the final times series patterns

by the reducers. In [?], a Hadoop implementation based on MapReduce programming (FiDoop)

was proposed for frequent itemset mining problem. It incorporates the concept of FIU-tree rather

than the traditional FP-tree of used in the FP-Growth algorithm, for the purpose of improving the

storage of the candidate itemsets. An improved version called FiDoop-DP was proposed in [?]. The
authors proposed an efficient strategy to partition data sets among the mappers for minimizing

data transfer cost between the different nodes. Voronoi diagram was used to minimize unnecessary

redundant transactions transmission. kmeans was only used for selecting the Voronoi pivots. To the

best of our knowledge, FiDoop-DP is the only work that explores data partitioning for performing

pattern mining using the MapReduce, However, this approach uses partitioning during the map

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 7

stage to re-organize the transactions among mappers for better exploration of cluster hardware

architecture, and thus avoiding jobs redundancy. This task requires costly computational resources

and it is not useful during the mining stage.

3.3 Discussion
The existing pattern mining algorithms consider the whole transaction databases to find the

relevant patterns. They ignore the different dependencies and correlation between the transactions.

Exploring the whole pattern mining problem require a huge time and memory consuming. In

order to improve the performance of the pattern mining approaches, several techniques have been

proposed, such as metaheuristics, which operate based on evolutionary and/or swarm intelligence

approaches [?]. However, these techniques are incapable of dealing with large transaction databases,
where only few interesting patterns may be discovered. To deal with this challenging issue, we will

in this paper present a new framework for pattern mining algorithms. This new framework explores

decomposition techniques for find out the relevant patterns. Similar ideas have been investigated

in database community, in particular in the areas of record linkage and entity resolution [? ? ? ?].
The aim is to apply blocking-based techniques such as canopy clustering [?], suffix-blocking [? ?],
and Q-gram based indexing [?], to derive the different records that represent the same real-world

object in a given database, and check if such a real-world object may be determined by a single

record. These methods need domain specific knowledge and require complete redesign for pattern

mining applications. In addition, these approaches suffer from the accuracy problem, where the

approximate heuristics are used on each block. In this paper, we attempt to follow these concepts

by proposing a new framework for pattern mining problems, which can be used and guarantee

the performance in terms of accuracy, memory and runtime. To boost the performance of our

framework, a GPU-based approach is also investigated in this work.

4 CLUSTERING-BASED PATTERN MINING (CBPM)
This section presents the principle of the CBPM framework, and describes its components in

details, separately. We finish this section by computing the theoretical complexity and showing an

illustrative example of the CBPM framework.

Transactional
database

G1

G2 Gk

G3

Relevant
patterns

Mining
process

Clustering

Separator
items

Fig. 3. The CBPM framework.

4.1 Overview
Here, we provide a general framework for the pattern mining for finding different dependencies

between the transactions, which will be used for efficient improvement of the mining process. This

framework illustrated in Figure 3 is composed of two main steps, i.e., the clustering and mining

process, as follows.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

8 Djenouri, et al.

(1) Clustering. In this step, a transaction database is divided into a set of homogeneous clusters

using clustering techniques, where a cluster may be viewed as a subset of transactions of

the whole set of transactions. We take advantage of the clustering technique to extract the

relevant knowledge, which will be used by the pattern mining algorithms. The patterns shared

by two clusters constitute a shared set. An interesting clustering approach is to minimize

the size of the shared sets, while having in the same cluster transactions that are highly

correlated, that is, transactions that share the maximum number of items. In this work, we

will show different ways to decompose the transactions by investigating naïve, partitioning,

hierarchical, density, and hybrid clustering. This allows to provide a clear picture of the

decomposition step, and helps to make a fair conclusion about the most effective clustering

algorithm for minimizing the number of shared items among the clusters of transactions.

(2) Mining process. The mining process is applied on the clusters found in the previous step.

In this context, two main approaches have been investigated, i.e., the approximation-based

and the exact approaches, i) In the approximate one the clusters are used to derive partial

solutions, which are then merged into a global solution, and ii) In the exact approach, the

mining process is applied on both the clusters and the shared sets, by aggregating these

patterns on all clusters. It should be noted that, both approaches are applicable for all pattern

mining algorithms.

4.2 Clustering
The set of transactions T is partitioned into k disjoint clustersC = {C1,C2...Ck }, where each cluster

Ci is the subset of transactions in T such as Ci ∩Cj = ∅. Here, I (Ci) is the set items of the cluster

Ci and I (Ci) = {
⋃

I (tj)/tj ∈ Ci }
Proposition 4.1. We define C as the set of clusters of the transaction database T. Suppose that

the clusters in C do not share any items which means, ∀(i, j) ∈ [1...k]2 I (Ci) ∩ I (Cj) = ∅, we have the
following proposition: L = {⋃k

i=1 Li }. Note that Li is the set of the relevant patterns of the cluster Ci .

Proof. Consider ∀(i, j) ∈ [1...k]2 I (Ci) ∩ I (Cj) = ∅. We have
∀i ∈ [1...k]: Li = {p |Interestinдness(T , I ,p) ≥ γ }. The interestingness of the pattern p is based on
its existence/absence in the whole transactions, so we have to compare p with all transactions in T,
and return the transactions containing p for further processing. Now, consider a pattern p exists in
I (Ci), i,e p ⊆ I (Ci) ⇒ ∀e ∈ p, e ∈ I (Ci) ⇒ ∀e ∈ p, e < I (Cj), (∀j ∈ [1...k],∨j , i) ⇒ p ⊈ I (Cj) ⇒
Li = {p |Interestinдness(Ci , I (Ci),p) ≥ γ } ⇒ L = {⋃k

i=1 Li } □

From the above proposition, one may argue that if the whole transactions are decomposed in

such a way, the independent clusters will be derived. It means that, any cluster of transactions share

items with any other cluster, and therefore, the clusters could be mined separately. Unfortunately,

such case is difficult to realize, as many dependencies may be observed between transactions. The

aim of clustering transactions is to minimize the shared items between the clusters, where these

shared items are called Shared Items. In this section, we adopt different clustering algorithms [? ? ? ?
] in order to minimize the number of Shared Items. Before this, we propose the following concepts,

(1) Similarity computation. The similarity measure between two transactions ti and tj is com-

puted as D(ti , tj) = max(|I (ti)|, |I (tj)|)− (|I (ti)∩ I (tj)|). Note that I (ti) denotes the set of items

of the transactions ti .

(2) Centroids updating. Let us consider the set of transactions of the clusterCi = {t (i)
1
, t (i)
2
, ..., t (i)|Ci |}.

The aim is to find a gravity center of this set which is also a transaction. Inspired by the

centroid formula developed in [?], we compute the centroid µi . The frequency of each item

is calculated for all the transactions of the cluster Ci . The length of the transaction center

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 9

is denoted by li , and corresponds to the average number of items of all transactions in Ci

as li =
∑|Ci |
j=1 |I (t

(i)
j) |

|Ci | . Afterwards, the items of transactions in Ci are sorted according to their

frequency, and only the li frequent items are assigned to µi , as µi = {j |j ∈ Fli }. Note that Fli
denotes the set of the li frequent items of the cluster Ci .

(3) Transaction neighborhoods. We define the neighborhoods of a transaction ti for a given

threshold ϵ , noted Nti by Nti = {tj |D(ti , tj) ≥ ϵ ∨ j , i}.
(4) Core transaction. A transaction ti is called core transaction if there is at least the minimum

number of transactions σT such as |Nti | ≥ σT .
(5) Shared items determination. After constructing the clusters of transactions, we have to

determine the shared set of items between the clusters. We define the shared set of items,

denoted by S , as S =
⋃k

i=1, j>i I (Ci)∩I (Cj).Moreover, we denote S i, j as the shared set between
the clusters Ci and Cj .

4.2.1 Naive grouping for transaction decomposition. The naive grouping aims to group transac-

tions into k disjoint clusters without processing. Given m transactions, {t1, t2...tm}, the first m
k

transactions are assigned to C1, the second
m
k transactions are assigned to C2, and so until the last

m
k transactions are assigned to Ck .

4.2.2 Hierarchical agglomerative clustering for transaction decomposition. HAC (Hierarchical Ag-

glomerative Clustering) [?] for transaction decomposition aims to create a tree-like nested struc-

ture partition H = {H1,H2...Hh} of the data such that, ∀(i, j) ∈ [1..k]2,∀(m, l) ∈ [1...h]2,Ci ∈
Hm ,Cj ∈ Hl ,m ≥ l ⇒ Ci ∈ Cj ∧Ci ∩Cj = ∅. It starts with all transactions in a separate cluster

and then repeatedly joins the two clusters that are most similar until there is only one cluster. The

similarity between two clusters Ci , and Cj is determined by the number of shared items between

them, as |I (Ci) ∩ I (Cj)|.

4.2.3 K-means for transaction decomposition. K-means [?] for transaction decomposition aims to

optimize the following function: J =
∑k

j=1
∑

t ∈Cj
|t − µ j |2, where µ j is the centroid of transactions

in Cj . First, the transactions are assigned randomly to the k clusters and a centroid is computed for

each cluster. Then, every transaction is assigned to a cluster whose centroid is the closest to that

transaction. These two steps are repeated until there is no further assignment of the transactions

to the clusters. In this work, we attempt to adapt the k-means algorithm for clustering of the

transactional database.

4.2.4 Bisecting k-means for transaction decomposition. The bisecting k-means [?] for transaction
decomposition uses a hybrid partitioning and divisive hierarchical approach. It starts with one

cluster and at each step splits one of the clusters into two using the standard k-means algorithm.

The process of bisecting a cluster is repeated several times, where the split that produces a higher

similarity is selected.

4.2.5 DBSCAN for transaction decomposition. The DBSCAN algorithm [?] for transaction decom-

position aims to search for clusters by checking the ϵ-neighborhood of each transaction. After the

core transactions are determined, DBSCAN then iteratively collects density-reachable transactions

from these core transactions directly, which may involve merging a few density-reachable clusters.

The process terminates when no new transactions can be added to any cluster.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

10 Djenouri, et al.

4.3 Mining Process
This step benefits from the knowledge extracted in the previous step. Instead of mining the whole

transaction database with the full set of items. Each cluster of transactions with its items is handled

separately. In this context, the two following strategies are proposed.

4.3.1 Approximation-based strategy. In this strategy, the clusters are handled separately without

considering the shared items. The local relevant patterns are first extracted by applying the mining

process on each cluster. The merging function is then used to derive the global relevant patterns.

This function is constituted of the concatenation of all local relevant patterns. Such an approach

returns partial relevant patterns from the whole transaction database. This is due to the fact that

the shared items were not taken into account in the mining process. Algorithm 1 presents the

pseudo-code of the approximation-based strategy.

Algorithm 1 Approximation-based strategy

1: Input:
C = {C1, C2 ..., Ck }: The set of k clusters

γ : The mining threshold

2: Output:
A: The set of the relevant patterns discovered

3: A ← ∅.
4: for i=1 to k do
5: Ai ← MininдProcess(Ci , I (Ci), γ).
6: A ← A ∪ Ai
7: end for
8: return A

Proposition 4.2. An upper bound, respectively, the lower bound, of the number of the relevant
patters discovered by the approximation-based strategy, are |L|, and |L| − (∑k

i=1
∑k

j=(i+1)(2 |Si j | − 1)),
and we note |L| − (∑k

i=1
∑k

j=(i+1)(2 |Si j | − 1)) ≤ |A| ≤ |L|

Proof. In the worst case, the number of missing patterns of the approximation-based strategy

is equal to the number of candidate patterns from the shared items between all clusters. This is

may be realized, where the interestingness value of all the candidate patterns exceeds the mining

threshold γ . In this case, the number of relevant patterns of the approximation-based strategy is

equal to |L| minus all the number of candidate patterns derived from the shared items of all clusters,

equal to

∑k
i=1

∑k
j=(i+1)(2 |Si j | − 1). In the case of the candidate patterns derived from the shared items

of all clusters are not relevant, the number of relevant patterns of the approximation-based strategy

is |L|. □

From the above proposition, one may argue that the quality of the approximation-based strategy

highly depends on the number of shared items of all clusters. If the number of the shared items

is minimized, the approximation-based strategy is able to find all relevant patterns. This will be

fixed by choosing well the number of clusters of the k-means algorithm or the ϵ value for DBSCAN

algorithm.

4.3.2 Exact strategy. The goal of this strategy is to capture the missing patterns not covered by

mining the local clusters. It considers the shared items as well as the clusters in the mining process.

This allows to discover all relevant patterns from the whole transactions. The mining process is first

applied on each cluster of transactions to extract the local relevant patterns. The possible candidate

patterns are then generated from the shared items. For each generated pattern, the postprocessing

function (see Def. 4.1) is then used to determine the interestingness of this pattern in the whole

transaction database. Note that, the interestingness depends on the problem. For instance, if we are

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 11

interested to deal with a frequent itemset mining problem, the interestingness function should be

the support measure. The relevant patterns of the shared items are then concatenated with the

local relevant patterns of the clusters to derive the global relevant patterns of the whole transaction

database. Algorithm 2 presents the pseudo-code of the exact strategy.

Algorithm 2 Exact strategy

1: Input:
C = {C1, C2 ..., Ck }: The set of k clusters

S : The set of shared items

γ : The mining threshold

2: Output:
L: The set of all relevant patterns

3: L← ∅.
4: for i=1 to k do
5: Li ← MininдProcess(Ci , I (Ci), γ).
6: L← L ∪ Li
7: end for
8: P← ∅.
9: for each S i, j ∈ S do
10: P ← P ∪GenerateAllPatterns(S i, j).
11: end for
12: for each p ∈ P do
13: if F(p) ≥ γ then
14: L← L ∪ {p }
15: end if
16: end for
17: return L

Definition 4.1. We define an postprocessing function of the pattern p in the clusters of the trans-
actions C by F(p) = ∑k

i=1 Interestinдness(Ci , I (Ci),p)

4.4 Complexity
The time complexity of the CBPM framework depends on the clustering and the pattern mining

algorithms used in the overall process. We assume that the complexity of the k-means algorithm [?
], or the complexity of DBSCAN algorithm [?] requires O(m × n). Considering the mining process,

We define the complexity of any pattern mining algorithm A by O(Cost(A,n,m)). Note thatm and

n are the number of transactions and the number of items, respectively. Two possible cases are as

follows.

4.4.1 Approximation-based strategy. In this strategy, the mining is applied on each cluster without

considering the shared items. The complexity of the CBPM using this strategy is O((n ×m) +∑k
i=1Cost(A, |Ci |, |I (Ci)|))

4.4.2 Exact strategy. In this strategy, the mining is applied on each cluster where the shared items

are taken into account. The cost of constructing the shared items reads O(k2). Here, the postpro-
cessing function is performed for each shared itemset, so that the complexity of this function is

O(k × |S |), where S is the set of the shared items. Thus, the complexity of the CBPM using this

strategy is

O((n ×m) + (k2) + (∑k
i=1Cost(A, |Ci |, |I (Ci)|)) + (k × |S |))

Table 1 compares the complexity of some of the existing pattern mining algorithms using

the CBPM framework by varying the function Cost(A,m,n). Note that, the worst complexity is

computed by considering the maximum number of transactions, the average number of transactions,

and the size of the shared items as n. For simplicity, we assume the same number of transactions and

items on each cluster (i,e ∀i ∈ [1...k], |Ci | =m/k ∧ |I (Ci) = n/k). From this table, we may conclude

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

12 Djenouri, et al.

Table 1. Complexity of the existing pattern mining algorithms using the CBPM framework.

Problem Algorithm Cost(A, m, n) CBPM (Exact) CBPM (Approximate)

Apriori[?] mn2 mn2+nk+k4

k2
mn2

k2
FIM FP-Growth[?] n2 nm + kn2 + k2 nm + kn2

PrePost+[?] nloд(n) nm+nloд(n)
k + k2 nm+nloд(n)

k
SSFIM[?] m2

n m2
n/k + nk + k2 n2n/k

WIM WFIM[?] mnloд(n) mnloд(n/k)
k + nk + k2 mnloд(n/k)

k

WIP[?] mn2 mn2+nk+k4

k2
mn2

k2

UIM U-Apriori[?] mn2loд(n) mn2loд(n/k)
k + nk + k2 mn2loд(n/k)

k

HUIM d2HU P [?] n4loд(n) n4

k3
loд(n/k) + nm + nk + k2 n4

k3
loд(n/k) + nm

EFIM[?] n3 + loд(n2) n3

k2
+

loд(n2/k2)
k + nm n3

k2
+

loд(n2/k2)
k + nm + nk + k2

SPM FAST[?] n4 n4

k3
+ nm + nk + k2 n4

k3
+ nm

that by using the CBPM framework, the complexity of all algorithms is reduced k orders of the

magnitude. In addition, the Pre-Post+, WFIM, U-Apriori, EFIM, and FAST are the best algorithms

of the pattern mining problems (FIM, WIM, UIM, HUIM, and SPM). Thus, these algorithms are

considered as baselines in the experimentation section.

4.5 Example

ID: Items

t1: abe

t2: abd

t3: ac

t4: bc

t1 , t2

t3 , t4

{a, b}
C2

C1

L= {a, b, c, ab}

Approximate and exact
minsup = 50%

minsup=75%

L= {a, b}L= Ø

k-means
k=2

Fig. 4. Illustrative example.

Figure 4 presents an illustrative example of the CBPM framework for solving the frequent itemset

mining problem. In this case, a pattern is viewed as an itemset (set of items), with a Boolean value

(present or absent) in the given transaction. The transaction database is first partitioned using any

clustering algorithm, without loss of generality, in this example, we used the k-means algorithm

(with k = 2). Two clusters are found, i.e., C1 = {t1, t2} with I (C1) = {a,b,d, e}, and C2 = {t3, t4}
with I (C2) = {a,b, c}. The shared items between C1 andC2 are {a,b}. For instance, if the minimum

support is set to 50%, the approximate and the exact strategies return the same result L = {a,b, c,ab}:
i) In the approximate strategy, the mining process is applied on theC1 andC2, we find L1 = {a,b,ab},
and L2 = {a,b, c}, the concatenation will be L = {a,b, c,ab}. ii) In the exact strategy, the same

process is applied forC1 andC2, followed by the generation of all possible itemsets from the shared

items, which results in L1 ∪ L2 ∪ {a,b,ab}={a,b, c,ab}. Now, if we consider the minimum support

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 13

set to 75%, different results are found for the approximate and the exact strategies as follows. i)

The approximate strategy could not find any frequent itemsets since each cluster contains only

two transactions, whereas the minimum support is 75%. That means we have to find itemsets that

appear at least three times, and the result will be empty set. ii) This issue will be solved by the exact

strategy, where the shared items are explored. The possible candidate itemsets from the shared set is

{a,b,ab}, the support of each itemset in this set is the postprocessing of supports of the clustersC1

and C2. For example, A({a}) = support(C1, I (C1), {a}) + support(C2, I (C2), {a}) = 2/4 + 1/4 = 3/4.
The same process is applied for all candidate itemsets, and the result will be {a,b,ab}, which is

exactly the same result reported by the Apriori algorithm, if we consider the whole transaction

database.

5 PARALLEL IMPLEMENTATION
In this section, we first propose a generic approach to implement CBPM on parallel architectures.

A particular instantiation on GPU architecture of this generic approach is then presented.

5.1 Generic Approach to Parallelize CBPM
To run CBPM on any parallel architecture, the following sequential steps have to be performed:

(1) Partition the database: in this step, the transaction database is divided into partitions,

whereby each partition contains a set of transactions. Any partitioning algorithm could be

used here. In this work, we adopt the five decomposition algorithms (naive grouping, HAC,

k-means, bisecting k-means, and DBSCAN). This step is performed in the CPU.

(2) Computing and storing the local results: in this step, each parallel node apply a serial

pattern mining algorithm on each cluster, generate all relevant patterns from the cluster of

transactions that is assigned to it and stores them in the set of all relevant patterns. The

latter is built following the same logic of building the list of the relevant patterns in the

serial implementation of CBPM. As for the serial implementation, we have two variants, i)

a parallel approximation-based strategy that does not consider the shared items, and ii) a

parallel exact strategy, which considers the shared items. Once the local relevant patterns are

calculated, they will be send it to CPU for further processing.

(3) Merging the local results: the local relevant patterns are merged into a global one on

the CPU side. This can be done using a simple concatenation as is the case of parallel

approximation-based strategy, or an postprocessing as the case of parallel exact strategy.

The instantiation of the three steps defined above must be carefully designed to fit the hardware

in use. In the remainder of this section, an instantiation of this generic approach is presented using

GPU hardware.

5.2 GPU-CBPM
GPUs (Graphic Processing Units) are graphical cards initially developed for efficient generation

of images intended for a display device, but their use as a powerful computing tool has gained

popularity in many domains during the last decade [? ? ?]. The hardware is composed of two hosts,

i) the CPU and, ii) the GPU hosts. The former contains processor(S) and main memory. The latter

is a multi-threading system that consists of multiple computing cores, where each core executes

a block of threads. Threads of a block in the same core communicate with one another using

a shared memory, whereas the communication between blocks relies on a global memory. The

CPU/GPU communication is made possible by hardware buses. In the following, the adaptation of

CBPM for deployment on GPU architectures is denoted GPU-CBPM. In GPU-CBPM (see Figure 5),

the transaction database is first partitioned on k clusters {C1,C2...Ck } using the decomposition

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

14 Djenouri, et al.

Fig. 5. GPU-CBPM framework.

methods. The set of designed clusters are then sent to GPU. Each block of threads is mapped onto

one cluster, where the same mining process is applied on each block in parallel. If we consider

the size of the shared memory of each block is r , the first r transactions of the cluster Ci are

allocated to the shared memory of the block, and the remaining transactions of the cluster Ci
is allocated to the global memory of the GPU host. GPU-CBPM defines a local table, tablei , for
storing the relevant patterns of the cluster Ci . The local table of each cluster is sent to CPU for

further processing. In this context, CPU host performs merging step to find the global relevant

patterns. Two merging operators are defined. i) simple concatenation is applied for paralyzing the

approximation-based strategy, it defines by the union of all sets of relevant patterns in the local

tables, and ii) postprocessing is applied for paralyzing the exact strategy, it defines by applying

the postprocessing function (see Def. 4.1) on the shared items S and the local tables. Algorithm 3

presents the pseudo-code of GPU-CBPM using standard CUDA operations.

From a theoretical standpoint, GPU-CBPM improves the serial implementation of CBPM by

exploiting the massively threaded computing of GPUs while mining the clusters of transactions.

GPU-CBPM also minimizes the CPU/GPU communication, by defining only two points of CPU/GPU

communication. The first one takes place when the transaction database is loaded into the GPU

host, and the second one when the local tables are returned to the CPU. GPU-CBPM also provides

an efficient memory management by using different levels of memories including global and shared

memories. However, GPU-CBPM may suffer from the synchronization between the GPU blocks.

This takes place when the GPU blocks process clusters with different number of transactions. This

issue degrades the performance of the GPU-based implementation of the CBPM framework. In

real scenarios, different number of transactions per cluster may be obtained, this depends on the

way of the clustering used in the decomposition step, as the size of the clusters are different, as the

synchronization cost of the GPU-based implementation will be high. All these statements will be

clearly explained in the performance evaluation section (See Section 6 for more details).

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 15

Algorithm 3 GPU-CBPM: CPU and GPU hosts

1: /**************************CPU Host**/
2: Input:

T = {t1, t2 ..., tm }: The set ofm transactions

I = {1, 2..., n }: The set of n items

C = {C1, C2 ..., Ck }: The set of k clusters

S : The set of shared items

γ : The mining threshold

Alдo: The pattern mining algorithm

3: Output:
L: The set of all relevant patterns

4: C← Decomposition(T, I)

5: S← SharedItems(C)

6: cudaMemcpy(C ′, C, n × m, cudaMemcpyHostToDevice) Mining«<k, 1024»>(L, C ′, γ , Algo)
7: if Approximation then
8: return L

9: else
10: P← ∅
11: for each S i, j ∈ S do
12: P ← P ∪GenerateAllPatterns(S i, j).
13: end for
14: for each p ∈ P do
15: if F(p) ≥ γ then
16: L← L ∪ {p }
17: end if
18: end for
19: return L

20: end if
21: /**************************GPU Host**/
22: Kernel Mining(L, C ′, γ , Algo)
23: input

Shared T []: Array of transactions allocated in shared memories

24: Output:
L′: The set of all relevant patterns of all blocks

25: idx← blockIdx.x × blockDim.x + threadIdx.x

26: T[idx]← C ′blockIdx .x [idx]
27: L′[blockIdx.x]=Algo(T, γ)
28: cudaMemcpy(L′, L, |L′ |, cudaMemcpyDeviceToHost)

6 PERFORMANCE EVALUATION
Intensive experiments have been carried out to evaluate the CBPM framework. First, the FIM, WIM,

UIM, HUIM, and SPM problems have been investigated using standard datasets, by integrating

the CBPM on the SPMF data mining library [?]. The CBPM java source code is integrated on

the five best pattern mining algorithms in terms of the time complexity (See Sec. 4.4): i) Frequent

itemset mining: PrePost+ [?], ii) Weighted itemset mining: WFIM[?], iii) Uncertain itemset mining:

U-Apriori [?] , iv) High utility itemset mining: EFIM[?], and v) Sequential pattern mining: FAST[?
]. Second, the results of CBPM framework on real taxi trajectory dataset has been shown and

compared with the first phase of the RegMiner algorithm [?]. All serial implementations are done

on a computer with 64 bit core i7 processor running Windows 10 and 16 GB of RAM. Finally, the

GPU-based implementation is illustrated using sparse transaction databases.

6.1 Description of Standard Datasets
We perform the experiments using well-known pattern mining datasets

1
. Table 2 presents the

characteristics of the standard datasets used in our experiments. Six datasets, i.e., Accident, Chess,

Connect, Mushroom, Pumsb, and Korasak, Foodmart, and Chainstore, are used for evaluating the

FIM algorithms. The first four datasets are used to evaluate the FIM algorithms. Further to the

1
http://www.philippe-fournier-viger.com/spmf/

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

16 Djenouri, et al.

Table 2. Description of standard datasets.

Problem Dataset Trans.Size/ Item Size Aver. Size/

Name Sequence Count Avg. Seq. Size

Accident 340,183 468 33.8

Chess 3,196 75 37.0

Connect 67,557 129 43.0

FIM Mushroom 8,124 119 23.0

WIM Pumsb 49,046 2,113 74.0

HUIM Korasak 990,000 41,270 8.1

Foodmart 4,141 1,559 4.4

Chainstore 1,112,949 46,086 7.2

Leviathan 5,834 9,025 33.81

SPM Sign 730 267 51.99

Snack 163 20 60

FIFA 20,450 2,990 34.74

30 32 34 36 38 40 42 44 46 48 50

(100-minsup)%

0

1

2

3

4

5

6

7

8

9

ru
n

ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

75 80 85 90 95

(100-minsup)%

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ru
n

ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

40 42 44 46 48 50 52 54 56 58 60

(100-minsup)%

2

3

4

5

6

7

8

9

10

11

12

ru
n

ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

(pumsb) (mushroom) (connect)

65 70 75 80 85

(100-minsup)%

0

5

10

15

ru
n

ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

90 91 92 93 94 95 96 97 98

(100-minsup)%

0

10

20

30

40

50

60

70

80

ru
n

ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8

(100-minsup)%

1

1.5

2

2.5

3

3.5

4

4.5

5

ru
n

ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

(chess) (accident) (korasak)

Fig. 6. Runtime of the PrePost+ with and without the CBPM framework.

FIM datasets, the last two datasets have been considered for evaluating the WIM, HUIM and UIM

algorithms. For evaluating the three latter problems, we consider the following.

(1) WIM: Foodmart and Chainstore containing real weights. For FIM datasets, a generator

function is used to generate the weights of the items as carried out in the previous work [?].
(2) UIM: The probabilities are generated using the normal distribution with a mean of 90% for

high probability value, and 10% for low probability value with standard deviation of 5% for

high probability value and 6% for the low probability value. This is done as in the previous

work [?].
(3) HUIM: Foodmart and Chainstore are customer transaction databases containing the real

external/internal utility values. For the FIM datasets, external/internal utility values have been

respectively generated in the [1, 1,000] and [1, 5] intervals using a log normal distribution as

done in the previous works [? ?].

The last four datasets, that is, Leviathan, Sign, Snake, and FIFA, are used to evaluate the SPM

algorithms. In addition, an IBM Synthetic Data Generator for Itemsets and Sequences
2
is used to

generate synthetic datasets of different number of items and transactions.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 17

20 30 40 50 60 70 80

(100-minweight)%

10

12

14

16

18

20

22

24

26

28

30

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

70 75 80 85 90 95 100

(100-minweight)%

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

30 35 40 45 50 55 60 65 70 75 80

(100-minweight)%

15

20

25

30

35

40

45

50

55

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

60 65 70 75 80 85 90 95

(100-minweight)%

2

4

6

8

10

12

14

16

18

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

(pumsb) (mushroom) (connect) (chess)

90 91 92 93 94 95 96 97 98

(100-minweight)%

10

20

30

40

50

60

70

80

90

100

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8

(100-minweight)%

2

3

4

5

6

7

8

9

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

80 82 84 86 88 90 92 94 96 98 100

(100-minweight)%

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

80 82 84 86 88 90 92 94 96 98 100

(100-minweight)%

0

50

100

150

200

250

ru
n

ti
m

e
(s

e
c
)

WFIM

WFIM(Exact)

WFIM(Approximate)

(accident) (korasak) (foodmart) (chainstore)

Fig. 7. Runtime of the WFIM with and without the CBPM framework.

20 30 40 50 60 70 80

(100-minuncertain)%

10

12

14

16

18

20

22

24

26

28

30

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

70 75 80 85 90 95 100

(100-minuncertain)%

15

20

25

30

35

40

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

30 35 40 45 50 55 60 65 70 75 80

(100-minuncertain)%

15

20

25

30

35

40

45

50

55

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

30 35 40 45 50 55 60 65 70 75 80

(100-minuncertain)%

15

20

25

30

35

40

45

50

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

(pumsb) (mushroom) (connect) (chess)

90 91 92 93 94 95 96 97 98

(100-minuncertain)%

20

40

60

80

100

120

140

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8

(100-minuncertain)%

10

11

12

13

14

15

16

17

18

19

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

80 82 84 86 88 90 92 94 96 98 100

(100-minuncertain)%

5

6

7

8

9

10

11

12

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

80 82 84 86 88 90 92 94 96 98 100

(100-minuncertain)%

50

100

150

200

250

300

ru
n

ti
m

e
(s

e
c
)

U-Apriori

U-Apriori(Exact)

U-Apriori(Approximate)

(accident) (korasak) (foodmart) (chainstore)

Fig. 8. Runtime of the U-Apriori with and without the CBPM framework.

0 2 4 6 8 10 12 14 16 18 20

minutil X 1000K

50

100

150

200

250

300

350

400

450

500

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

0 2 4 6 8 10 12 14 16 18 20

minutil X 1K

60

80

100

120

140

160

180

200

220

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

84 85 86 87 88 89 90

minutil X 100K

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

94 94.5 95 95.5 96 96.5 97 97.5 98 98.5 99

minutil X 100K

0

50

100

150

200

250

300

350

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

(pumsb) (mushroom) (connect) (chess)

100 120 140 160 180 200 220 240 260 280 300

minutil X 100K

0

100

200

300

400

500

600

700

800

900

1000

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

2 4 6 8 10 12 14 16

minutil X 100K

40

50

60

70

80

90

100

110

120

130

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

95 95.5 96 96.5 97 97.5 98 98.5 99

minutil X 1000

1

1.5

2

2.5

3

3.5

4

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

95 95.5 96 96.5 97 97.5 98 98.5 99

minutil X 1000K

0

100

200

300

400

500

600

ru
n

ti
m

e
(s

e
c
)

EFIM

EFIM(Exact)

EFIM(Approximate)

(accident) (korasak) (foodmart) (chainstore)

Fig. 9. Runtime of the EFIM with and without the CBPM framework.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

18 Djenouri, et al.

20 22 24 26 28 30 32 34 36 38 40

(100-minsup)%

70

80

90

100

110

120

130

140

ru
n

ti
m

e
(s

e
c
)

FAST

FAST(Exact)

FAST(Approximate)

40 42 44 46 48 50 52 54 56 58 60

(100-minsup)%

100

150

200

250

300

350

ru
n

ti
m

e
(s

e
c
)

FAST

FAST(Exact)

FAST(Approximate)

40 42 44 46 48 50 52 54 56 58 60

(100-minsup)%

100

150

200

250

300

350

ru
n

ti
m

e
(s

e
c
)

FAST

FAST(Exact)

FAST(Approximate)

10 12 14 16 18 20 22 24 26 28 30

(100-minsup)%

100

150

200

250

300

350

ru
n

ti
m

e
(s

e
c
)

FAST

FAST(Exact)

FAST(Approximate)

(leviathan) (sign) (snack) (FIFA)

Fig. 10. Runtime of the FAST with and without the CBPM framework.

Table 3. Comparison of the maximum memory usage (MB), and the maximum number of visited nodes of
the pattern mining algorithms with and without the CBPM framework.

memory consumption #visited nodes

Problem: Dataset Without CBPM: CBPM: Without CBPM: CBPM:

Algorithm CBPM Exact Approximate CBPM Exact Approximate

pumsb 10 8 7 18,112 12,119 5,127
mushroom 2 2 2 745,129 512,131 598,748

FIM: connect 108 96 64 996,008 518,576 296,748
PrePost+ chess 75 69 51 1,517,339 1,318,152 800,563

accident 637 439 332 10,458 9,289 6,780
korasak 143 99 68 1,851 1,847 856
pumsb 732 661 492 35,845 31,785 23,175

mushroom 51 42 30 1,874,457 1,798,214 1,312,147
connect 308 278 178 1,524,333 912,127 759,659

WIM: chess 179 152 64 2,685,417 2,000,110 1,598,667
WFIM accident 879 821 663 26,556 22,996 18,845

korasak 371 300 253 2,125 2,001 1,002
foodmart 89 81 47 198,007 177,223 135,168
chainstore 302 291 200 2,001 1,782 1,096
pumsb 748 684 527 55,111 50,119 42,219

mushroom 65 54 41 2,415,002 2,117,107 1,658,127
connect 396 299 201 1,711,418 1,174,718 817,147

UIM: chess 195 164 88 2,845,457 1,400,107 1,000,748
U-Apriori accident 912 861 719 42,128 39,027 35,187

korasak 401 328 284 2,517 2,314 1,802
foodmart 101 91 62 221,127 197,117 174,331
chainstore 419 379 218 2,927 2,241 1,685
pumsb 1075 912 715 59,597 51,578 45,748

mushroom 112 106 91 3,179,165 2,743,258 2,089,153
connect 567 478 285 1,952,111 1,112,553 928,216

HUIM: chess 218 153 101 3,334,258 2,957,514 2,147,214
EFIM accident 1230 1112 701 55,211 40,128 32,198

korasak 608 427 217 3,142 2,546 2,336
foodmart 112 98 75 326,158 300,258 257,845
chainstore 698 601 411 3,748 3,147 2,415
leviathan 245 211 145 5,298 4,958 2,685

SPM: sign 375 351 168 6,510 5,882 4,005
FAST snack 417 412 214 8,222 7,984 4,847

FIFA 749 695 459 10,214 9,002 6,123

6.2 Performance of the sequential version
Runtime. Figures 6, 7, 8, 9 and 10 present the runtime performance of the patternmining algorithms

with and without the CBPM framework for both approximate and exact strategies using different

datasets and with different mining threshold. The results reveal that by reducing the mining

threshold, and with increasing the complexity of the problem solved, the pattern mining algorithms

benefit from the CBPM framework. Thus, for a low mining threshold, and for a more complex

problem like UIM, HUIM or SPM, the approximation-based and exact strategies outperform the

2
https://github.com/zakimjz/IBMGenerator

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 19

pumsb

mushroom

connect
chess

accident

korasak

foodmart

chainstore

leviathan
sign

snack fifa

Databases

0

50

100

150

(%
) S

at
isf

ied
 P

at
te

rn
s

FIM

WIM

UIM

HUIM

SPM

Fig. 11. Ratio of the satisfied patterns using the approximate strategy with the CBPM framework.

0 100 200 300 400 500 600 700 800 900 1000

shared items

90

91

92

93

94

95

96

97

98

99

100

%
 s

a
ti
s
fi
e
d
 p

a
tt
e
rn

s

Approximate

Exact

0 100 200 300 400 500 600 700 800 900 1000

shared items

200

400

600

800

1000

1200

1400

ru
n
ti
m

e
(s

e
c
)

Approximate

Exact

0 100 200 300 400 500 600 700 800 900 1000

shared items

88

90

92

94

96

98

100

%
 s

a
ti
s
fi
e
d
 p

a
tt
e
rn

s

Approximate

Exact

0 100 200 300 400 500 600 700 800 900 1000

shared items

200

400

600

800

1000

1200

1400

1600

ru
n
ti
m

e
(s

e
c
)

Approximate

Exact

FIM Generator SPMGenerator

Fig. 12. Accuracy and runtime of approximate and exact-based strategies for different number of shared
items.

original pattern mining algorithms. For instance, for the minimum utility threshold of 1600K , the
runtime of the original EFIM and EFIM using the CBPM framework is 1 second in the Connect

dataset. However, by setting the minimum utility to 1000K , the runtime of the original EFIM

exceeds 8, 000 seconds, and the runtime of the EFIM with CBPM framework does not reach 1, 500
seconds. These results are achieved thanks to the following factors. i) The decomposition method

applied to the CBPM framework by minimizing the number of the shared items. ii) Solving the

sub-problems with small number of transactions and small number of items, instead of dealing the

whole transaction database with the whole distinct items, and iii) The integrability of the pattern

mining algorithms and the CBPM framework.

Memory consumption. In this experiment, the memory usage of the pattern mining algorithms

with and without the CBPM framework is recorded. The results are measured using the Java API.

Table 3 lists the maximum memory usage for a varying dataset used and the problem solved. From

this table, we may observe that both exact, and approximate strategies outperform the previously

reported pattern mining algorithms, for all datasets. Moreover, the pattern mining algorithms

consume less of memory when using the CBPM framework. For instance, by running the EFIM

algorithm on the chainstore dataset, the approximate strategy consumes 411 MB, while the original
EFIM consumes 698MB in average. The reason for efficient memory usage of the CBPM framework

is because it deals only with small datasets at a time rather than other algorithms, while the

conventional algorithms deal with the whole dataset. The CBPM explores small sub-trees, while

conventional algorithms explore the whole tree for finding the relevant patterns. In addition to

these results, the approximate strategy outperforms the exact strategy for all cases. This may be

explained by the fact that the approximate strategy does not take into account the shared items in

the search space, where a less memory is required for the overall mining process of such strategy.

Number of visited nodes. Another experiment has been carried out to investigate the pruning of

the search space of the CBPM framework by comparing the maximum number of the visited nodes

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

20 Djenouri, et al.

(patterns) of the search-enumeration tree by the pattern mining algorithms with and without the

CBPM framework, and by exploiting both approximation-based and exact strategies. According

to Table 3, the results reveal that by using the CBPM framework, the pattern mining algorithms

efficiently prune the search space, while only sub-trees are explored against the whole tree for the

original pattern mining algorithms. The results also show that the approximation-based strategy

outperforms the exact one, for all cases. This is due to the fact that the approximate strategy ignores

the shared items between the clusters, where the exact one generates all possible candidate patterns

from the shared items.

Ratio of the satisfied patterns. This experiment evaluates the approximation-based strategy

proposed in this work. Note that in the pattern mining literature, there are many approximation-

based algorithms by exploiting the metaheuristics [?]. However, these approaches are out of the
scope of this paper, where the main goal of this work is to show the effect of the decomposition on

the pattern mining algorithms. Figure 11 presents the ratio of the satisfied patterns (i.e., patterns

that exceed the mining threshold value). Note that, the last four databases are used for sequential

pattern mining, and thus only one bar is obtained for these datasets. By varying the dataset used,

and the pattern mining problem solved in the experiment, we show that the ratio of the satisfied

patterns reach up to 90% for all cases. However, the ratio is different for each problem. Thus, there

are problems, while the ratio of the satisfied patterns is up to 98% such as the FIM andWIM, whereas,

there are other more complex problems, while the ratio of the satisfied patterns is between 98%

and 90% such as the UIM, HUIM and SPM. These results are achieved thanks to the decomposition

method employed in the CBPM framework by minimizing the number of the shared items, and

the postprocessing function used in the approximation-based strategy. Figure 12 presents the ratio

of the satisfied patterns, and the runtime using IBM Synthetic Data Generator for Itemsets and

Sequences
3
. By varying with the number of shared items from 1 to 1, 000, the ratio of the satisfied

patterns is reduced from 100% to 88% for the approximate based strategy, and the runtime of the

exact strategy is increased from 200 to 1, 500. Thus, the number of shared items resulting from

the decomposition method has a high impact of the accuracy of the approximate-based strategy,

and also in terms of the runtime of the exact approaches. In fact, the approximate-based strategy

only explores the clusters of transactions and ignores the shared items. Hence, it might be some

relevant patterns in the set of shared items among the clusters. However, as the exact strategy

considers both the clusters of transactions and the shared items among the clusters, this may

increase the processing time compared to the approximate-based strategy. We can conclude that

there is a trade-off between quality and runtime of our framework depending on the number of

shared items. In general, if there is a high correlation among different transactions of a given

database, the decomposition method may derive considerable number of shared items between

different clusters. For this, we can say that if the ratio between the similarity of the transactions in

the given database, and the similarity between the different transactions within the cluster is high,

then our framework may fail, and give a bad result. Otherwise, our framework returns good results

in terms of both runtime and accuracy.

Sensitivity to number of clusters. The aim of this experiment is to show the sensitivity of

the number of clusters on the CBPM framework. In order to do this study, we explored the k-

means algorithm on the FIM problem. We varied the number of clusters from 1 to 25 on the

FIM transaction databases, and we computed the accuracy and the runtime for the approximate

strategy (after 25 clusters, no changes in accuracy is observed). Figures 13 show the runtime and

the accuracy, computed by the percentage of the satisfied patterns, of the CBPM framework using

the approximation strategy and for different FIM and SPM transaction databases. By varying the

3
https://github.com/zakimjz/IBMGenerator

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 21

0 5 10 15 20 25

number of clusters

0

5

10

15

20

25

ru
n
ti
m

e
(s

e
c
)

Korasak

Mushroom

Accident

Chess

Connect

Pumbs

0 5 10 15 20 25

number of clusters

80

82

84

86

88

90

92

94

96

98

100

%
 S

a
ts

if
ie

d
 P

a
tt
e
rn

s

Korasak

Mushroom

Accident

Chess

Connect

Pumbs

0 5 10 15 20 25

number of clusters

0

10

20

30

40

50

60

70

ru
n
ti
m

e
(s

e
c
)

Leviathan

FIFA

Sign

Snack

0 5 10 15 20 25

number of clusters

75

80

85

90

95

100

%
 S

a
ts

if
ie

d
 P

a
tt
e
rn

s

Leviathan

FIFA

Sign

Snack

FIM Problem SPM Problem

Fig. 13. Runtime (seconds) and percentage (%) of the frequent and sequential patterns of the CBPM framework
with different number of clusters.

number of clusters from 1 to 25, the accuracy of our approach exceeds 88% for all cases. However,

the results vary from database to database. With smaller number of clusters, fewer separator items

are observed, and then high accuracy is obtained. By increasing the number of clusters until a

specified value, a higher number of separator items are observed. As a result, the accuracy is

reduced. By increasing further the number of clusters, more independent clusters are derived, and

then the accuracy is increased up to a certain point. Moreover, we can categorize the transaction

databases into two categories, sparse and non sparse data. We can say that the accuracy with non

sparse data is better than the accuracy with sparse data. Specifically, the accuracy of Korasak and

Mushroom, which are considered as non sparse data, exceeds 94% whatever the case used. However,

the accuracy of the sparse data, as the case for the remaining transaction databases, can goes under

90%. This is explained by the fact that with non-sparse data, fewer number of items per transaction

is observed. Consequently fewer number of separator items among clusters as compared to the

sparse data, which contain higher number of items per transaction, and as a result, high correlation

between clusters are derived. In terms of the runtime, while varying the number of clusters from 1

to 25, we can see that the runtime significantly changes with number of clusters, in particular for

the Accident transaction database that contains high number of items and transactions. We can

explain this as follows. There is an trade off between mining and clustering steps. If we consider few

number of clusters, we obtain high number of transactions per cluster. As a result, the clustering

step consumes less time than the mining step, and if we consider high number of clusters, we

obtain few number of transactions per cluster. Thus, the clustering step consumes more time than

the mining step. From these results, we can conclude that our approach is very sensitive to the

number of clusters. Choosing the best number of clusters value is a critical issue of our approach. It

depends to several factors: the number of items, the number of transactions, and the density of each

transaction database. Moreover, when choosing few number of clusters, we obtain a high accuracy,

but this is not useful for the parallel approach, where we need more independent clusters. Studying

the meta-features of each transaction database and fixing the number of clusters automatically are

still open research questions.

Case study: trajectory pattern mining. This experiment aims to show the performance of the

proposed framework on real trajectory database called T-Drive [?]. It provides trajectories of
10, 357 different taxis for several days. Each of which is saved in one file. All taxi trajectories are

merged to one file providing 68, 872 trajectories. A preprocessing step is performed by transforming

each trajectory to one transaction, where all points visited by such trajectory is considered as

items in the corresponding transaction. We integrated the CBPM framework with the first phase

(Mining Compact Sequential Patterns) of RegMiner algorithm [?]. Figures 14 present the runtime

and the percentage of frequent patterns of the original RegMiner with and without using exact and

approximate strategy of CBPM framework. The results reveal the stability of RegMiner in terms

of runtime performance, when using CPBM framework, this is without losing on the percentage

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

22 Djenouri, et al.

0 5 10 15 20 25 30 35 40 45 50

(100-minsup)%

0

100

200

300

400

500

600

ru
n
ti
m

e
(s

)

Approximate

Exact

RegMiner

1 10 20 50

(100-minsup)%

0

20

40

60

80

100

%
 S

a
ts

ifi
e
d
 P

a
tt
e
rn

s

Approximate

Exact

RegMiner

CPU Quality

Fig. 14. Runtime (seconds) and percentage (%) of the frequent patterns of the RegMiner algorithm on T-Drive
trajectory database with and without using the CBPM framework.

10 20 30 40 50 60 70 80 90 99

(100-minsup)%

0

50

100

150

200

250

300

sp
e
e
d
u
p

GPU-CBPM(kmeans)

GPU-CBPM(DBSCAN)

10 20 30 40 50 60 70 80 90 99

(100-minsup)%

0

50

100

150

200

250

300

350

400

sp
e
e
d
u
p

GPU-CBPM(kmeans)

GPU-CBPM(DBSCAN)

Frequent Itemset Generator Database Sequence Generator Database

Fig. 15. Speedup of the GPU-CBPM framework.

Table 4. Percentage of amount of time of the three steps of GPU-CBPM framework.

GPU-CBPM(Exact) GPU-CBPM(Approximate)

Dataset #Cluster Decomposition Mining Postprocessing Decomposition Mining Postprocessing

2 15 71 14 21 79 0

Frequent Itemset Generator 5 18 70 12 26 74 0

10 23 65 12 29 71 0

2 12 77 11 20 80 0

Sequence Generator 5 15 76 9 27 73 0

10 19 73 8 29 71 0

of satisfied patterns (up to 89% for all cases). This is explained by the fact only highly correlated

trajectories are mined together, instead of exploring the whole T-Drive trajectory database.

6.3 Performance of the parallel version
The GPU-CBPM has been implemented using the CUDA package. Experiments have been carried

out on a CPU host coupled with a GPU device. The CPU host is a 64-bit quad-core Intel Xeon

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 23

E5520 with a clock speed of 2.27 GHz. The GPU device is an Nvidia Tesla C2075 with 448 CUDA

cores (14 multiprocessors with 32 cores each) and a clock speed of 1.15 GHz. It has 2.8 GB of global

memory, 49.15 KB of shared memory, and a warp size of 32. Both the CPU and GPU are used

in single precision. The parallel version GPU-CBPM is evaluated using the speed up, which is

determined by the ratio on runtime of parallel algorithm and the runtime of the serial version. We

used the parallel implementation of Zhang’s work [?] in the mining process for finding the relevant

patterns on each cluster. Figures 14 present the speedup of our GPU implementation compared

to the serial implementation using IBM Synthetic Data Generator for Itemsets and Sequences

to generate 1 million of transactions and 10,000 different items. The use of IBM Synthetic Data

Generator allows to generate sparse transactions (transactions with high number of items), very

common way to validate parallel approaches on GPU. We also used different ways to decompose the

transactions using k-means and DBSCAN algorithms. By varying with the minimum support values

from 90% to 1%, the speedup of our GPU implementation increases and reaches 332 for sequence

transactions database using k-means algorithm. The results reveal that the speedup on sequence

database, and with low minimum support values is more interested than speedup on itemset

database, and with high minimum support values. This could be explained by the fact that the

parallel implementation performs well on complex pattern mining problem, and with huge search

space. Indeed, sequential pattern mining is more complex than frequent itemset mining problem,

and setting low minimum support values engenders more number of candidate patterns compared

to those generated by setting high number of minimum support values. The results also reveal that

the way of decomposing transactions influences on the performance of our GPU implementation.

Thus, parallel implementation with k-means highly outperforms DBSCAN scenario in all cases,

and whatever the minimum support value. Indeed, with k-means, our GPU implementation reaches

speedup of 332, but with DBSCAN, our GPU implementation does not exceed 170. These results

are explained by the fact that k-means generates clusters with approximately the same number of

transactions, whereas DBSCAN generates clusters with different number of transactions. As result,

the load balancing between the GPU blocks using DBSCAN is minimized, and consequently the

synchronization cost will be high. This reduces the overall performance of our GPU implementation.

Thinking about efficient strategies to reduce the synchronization cost of GPU-CBPM is an open

research issue of this work. Another experiment has been carried out to calculate the percentage of

amount of time of the three steps included in GPU-CBPM framework by using k-means algorithm

in the decomposition step. The results are reported in Table 4, regarding to this table, we can say

that the GPU-CBPM spent more time in the mining step for all cases. In addition, when increasing

with the number of clusters from 2 to 10, GPU-CBPM consumes much time in the decomposition

step, and less time in the mining step. This is due to distributed computing, where high number of

clusters have been processed in parallel by the GPU blocks.

7 DISCUSSION AND FUTURE PERSPECTIVES
This section discusses the main findings from the application of the decomposition techniques to

the pattern mining problems.

• The first finding of this study is that the proposed framework can deal with big transaction

database. This is different from previous pattern mining approaches, which have long execu-

tion times, while the whole transaction database is considered in the mining process. The

proposed framework is able to not only derive the relevant patterns from the transactions,

but also study the different correlation and similarities between the transactions and find out

disjoint groups among them. In the context of pattern mining, we argue that considering the

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

24 Djenouri, et al.

decomposition techniques in the preprocessing step allows to quickly derive the relevant

patterns.

• From a data mining research standpoint, CBPM is an example of combining data mining

techniques. In our specific context, decomposition meets pattern mining for dealing with

big transaction databases and boost the mining process. This adaptation is implemented in

different phases, such as decomposition, and mining process.

• Another finding of this study is that high-performance computing tools benefits from the

data preprocessing by using decomposition. Thus, each node (GPU block in our case) deals

with similar transactions, this accelerates the mining process.

• The last observation is that the framework is generic and can be applied in any pattern mining

problem, contrary to the other algorithms, which can deal only a particular pattern mining

problem. The five pattern mining problems illustrated in this paper are just an example of

applications of our framework. Other pattern mining problems such as erasable patterns [?],
occupancy patterns [?] and others may be solved by our framework.

Motivated by the promising results shown in this paper, different directions may be investigated:

(1) Improving the decomposition step. HAC, k-means, bisecting k-means and DBSCAN

have been used as decomposition techniques. Additional techniques can possibly be used

for reducing the number of shared items. Thus, an interesting topics for future work is to

integrate other decomposition techniques into the CBPM framework, such as intelligent

hierarchical [?], overlapping [?], or methods from other fields such as entity resolution

and/or record linkage [? ? ? ?]. Another thing that can be done is to find an appropriate

mechanism to automatically fix the number of clusters. Using several runs to find the best

value of the number of clusters is not very efficient in practice, even for the GPU-based parallel

implementation. One way to address this issue is to create a knowledge base containing each

training transaction database, with the best value of the number of clusters, and then study

the correlation between the meta-features of the transaction databases (number of items,

number of transactions, sparsity value, etc.), and the best values of the number of clusters.

This can help to automatically predict the best value of the number of the clusters of the new

transaction database.

(2) Improving the mining step. We plan to boost the performance of the CBPM and apply

it to big data mining applications by exploiting other high-performance computing tools

such as cluster computing [?]. In this context, strategies to deal with load balancing are

inmportant. One way to address this issue is to develop decomposition strategies allowing to

find out equitable clusters in terms of number of transactions per cluster. Another way is to

develop new strategies for repairing clusters to find clusters with approximately the same

number of transactions. Applying CBPM on MapReduce is also an alternative approach for

improving the mining step. Performing the partitioning of transactions as pre-processing,

and not in the mapping stage, may address the drawbacks of FiDoop-DP algorithm [?].
(3) Case studies. We already show in this paper a case study of an application of CBPM in the

trajectory mining. Motivated by the promising results shown in this first case study, we plan

to extend CBPM for solving domain-specific complex problems requiring the mining of big

data. This can be found, for instance, in the context of business intelligence applications [?
] or in the context of mining financial data [?]. In particular, runtime performance can be

particularly critical in automated trading applications where profits are often made exploiting

volatility of share values or currency rates in extremely short time intervals. In these cases,

pattern mining algorithms able to discover relevant patterns extremely quickly is likely to

open up new opportunities for more intelligent trading. Other potential use is the mining of

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

Exploring Decomposition for Solving Pattern Mining Problems 25

sensor data, notably for realtime applications related to internet of things and cyber-physical

systems such as road traffic management and related services [?], energy management in

smart buildings and smart grids [?], where the mining process is required to be performed

within a very short latency.

8 CONCLUSION
We have introduced a new intelligent pattern mining framework, called clustering-based pattern

mining (CBPM). It is shown that, CBPM discovers relevant patterns by studying the correlation

between the transaction database. The set of transactions are first partitioned using clustering

algorithms, where the high correlated transactions are grouped together. From each cluster of

transactions, the pattern mining algorithm is launched to discover the relevant patterns, where

two, approximate and exact, strategies have been investigated. The CBPM framework has been

studied theoretically and experimentally. From the theoretical perspective, the complexity of CBPM

is determined for the most common and recent pattern mining algorithms. The results showed that

CBPM reduces the complexity of the pattern mining algorithms in terms of the number of clusters.

From the experimental evaluation, the CBPM framework has been integrated in the SPMF tool,

where five case studies have been provided, i.e., the FIM, WIM, UIM, HUIM and SPM. The results

reveal that by using the CBPM, both the runtime and memory usage have been reduced for all tested

algorithms, and for both approximate and exact strategies. Moreover, with the exact strategy, the

scalability performance is improved without losing the quality of the returned patterns. However,

for the approximate strategy, the scalability is largely improved, but with a small loss in the quality

and the number of the returned patterns. Thus, the number of the satisfied patterns is up to 89%

for all cases, including a real case study of T-Drive trajectory database. To boost the performance

of the CPBM, a GPU-based version of CBPM is investigated. It provides efficient mapping between

the GPU-blocks and the clusters of transactions, where each cluster of transactions is handled by

one GPU block. The results reveal that our GPU implementation achieves significant speedup of

up to 332x on a single GPU.

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article . Publication date: April 2019.

	Abstract
	1 Introduction
	1.1 Motivating example
	1.2 Contributions
	1.3 Outline

	2 Principles of Pattern Mining
	3 Related Work
	3.1 Serial pattern mining algorithms
	3.2 Parallel pattern mining algorithms
	3.3 Discussion

	4 Clustering-Based Pattern Mining (CBPM)
	4.1 Overview
	4.2 Clustering
	4.3 Mining Process
	4.4 Complexity
	4.5 Example

	5 Parallel Implementation
	5.1 Generic Approach to Parallelize CBPM
	5.2 GPU-CBPM

	6 Performance Evaluation
	6.1 Description of Standard Datasets
	6.2 Performance of the sequential version
	6.3 Performance of the parallel version

	7 Discussion and Future Perspectives
	8 Conclusion

