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A B S T R A C T   

Wave-ice interactions involve complex physical processes. Well-designed laboratory investigations are indis-
pensable for studying these processes. In the present study, laboratory experimental data on saline ice obtained 
during the HYDRALAB+ project: Loads on Structure and Waves in Ice (LS-WICE) are analyzed. Here, we devise a 
cross-validation method that reduces the uncertainty in estimating the wavelength of surface gravity waves from 
wave elevation measurements made by closely located and equidistant sensors. Both experimental and numerical 
case studies show that the new method produces accurate results (normalized error smaller than 5%). 
Furthermore, experimental case studies show that the elasticity of ice lengthens the waves within the ice cover 
compared with the open-water wavelength, and predictions of the wavelength from the elastic-plate model are 
concordant with the experimental values for waves beneath intact ice sheets. In addition, we apply multivariate 
analysis methods to identify flexural modes of ice floes under wave actions. The analysis results suggest that 
multiple flexural modes exist in the motion. The results produced by using the Morlet wavelet and Prony’s 
method confirm the presence of second-order harmonics in the motion. Part of the nonlinearity likely originates 
from ice-ice interactions in addition to some contributions from nonlinearity in the waves.   

1. Introduction 

Wave-ice interactions have gained much attention in recent decades. 
This increased interest is attributed to the increase in commercial ac-
tivities in the Arctic (Melia et al., 2016) and ongoing climate change in 
the Arctic (Stopa et al., 2016; Li et al., 2019b) and Antarctic (Alberello 
et al., 2019b; Vichi et al., 2019). Multiple physical processes are 
involved in wave-ice interactions. On the one hand, waves weaken ice 
by inducing ice-ice collisions (Li et al., 2020a), transporting warm water 
to ice-covered regions and bending ice. In particular, waves fracture ice 
(Collins et al., 2015; Dolatshah et al., 2018; Kohout et al., 2014) so that 
the exposed areas of ice increase, thereby accelerating melting (Mar-
chenko et al., 2019; Squire, 2020). On the other hand, waves contribute 
to the growth of pancake ice by sweeping frazil ice together (Shen et al., 
2001; Smith and Thomson, 2019). From the perspective of waves, ice 
alters the wave dispersion relation (Cheng et al., 2019; Meylan et al., 
2018), scatters waves (Zhao et al., 2015; Bennetts and Williams, 2015), 
and dissipates wave energy (Nelli et al., 2017; Voermans et al., 2019; 
Bennetts et al., 2015; Toffoli et al., 2015; Smith and Thomson, 2019). 

To study these complex wave-ice interactions, controlled laboratory 

experiments are needed to isolate physical mechanisms of interest from 
other physical processes that exist in nature. Moreover, we need to apply 
proper data analysis techniques in order to gain an in-depth under-
standing of the measured processes before reaching solid conclusions. 

In wave-ice interaction studies, the most important wave parameters 
are wave amplitude and wavelength. The former is vital for studying 
wave attenuation (Nelli et al., 2017; Bennetts et al., 2015; Toffoli et al., 
2015), while the latter is essential in examining the wave dispersion 
relation (Mosig et al., 2015; Sree et al., 2018; Shen, 2019). Nevertheless, 
estimating wavelength accurately is quite challenging and often asso-
ciated with considerable uncertainty arising from small separations 
between the wave measurement sensors (Cheng et al., 2019) and the 
evanescent modes induced by waves at the edges of ice floes (Fox and 
Squire, 1990, 1991). To reduce the uncertainty of wavelength estimates 
by using wave elevation measurements from closely located and equi-
distant sensors, we propose a cross-validation method that comprises 
two pairs of methods: (1) the genetic algorithm (Kutz, 2013) and Prony’s 
method (Hu et al., 2013), and (2) cross-spectrum analysis (Rabault et al., 
2019) and intersite phase clustering (Cohen, 2015). To the best of our 
knowledge, this is the first time that both Prony’s method and intersite 
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phase clustering have been applied in a wave-ice interaction study. In 
cross-validation, we take the mean of the least different wavelength 
estimates produced by the methods in each method pair. The final result 
obtained by the cross-validation method is the average of the estimates 
from the two method pairs. This proposed method inherently mitigates 
noise by least-squares fitting and singular value truncation, and removes 
outliers by discarding maximum and minimum values in the set of 
estimated wavelength. Both experimental and numerical examples are 
presented to demonstrate the high-quality estimates of wavelengths 
obtained by using our proposed method. 

The experimental case studies presented in this paper also illustrate 
the effect of the elasticity of ice on modifying the wavelength of waves 
when ice cover is present and the performance of the elastic-plate model 
(Wadhams, 1981, 1986) to describe the dispersion relation of waves that 
pass under intact ice sheets. 

Another focus of this paper is the bending motion of ice floes under 
wave actions. Multivariate data analysis methods such as proper 
orthogonal decomposition (POD, Feeny and Kappagantu (1998); Gedikli 
and Dahl (2017)) and smooth orthogonal decomposition (SOD, Chelidze 
and Zhou (2006); Gedikli et al. (2020)) are applied to identify the 
flexural modes of ice floes. We apply these methods to analyze an 
extended experimental dataset compared to the one investigated by Li 
et al. (2019a). These two methods are also employed to reconstruct the 
linear response of the ice floe to satisfy the linear assumptions of some 
theoretical models for studying the hydroelastic response of floating 
mats (e.g. Montiel et al., 2013a, 2013b). 

In comparison with the data-driven approach used here for studying 
the bending motions of saline ice floes, Meylan et al. (2015) used 
theoretical (potential flow theory in combination with thin plate theory) 
and experimental model to study the flexural motions of two types of 

plastic model ice floes. Meylan et al. (2015) found that the response of 
ice floes to linear wave forcing is virtually linear, despite the presence of 
the observed nonlinear phenomenon involved in wave-floe interaction, 
such as overwash and slamming. In the present study, the nonlinearity in 
the flexural motion of ice floes is also investigated, and the source of the 
nonlinearity is systematically examined. 

This paper is organized as follows. We start with the description of 
the experiments in Section 2. Thereafter, we describe the proposed 
method to estimate wavelengths by using measurements from closely 
located and regularly spaced sensors and the methods to quantify 
wavelengths using data collected from sensors with varying separations. 
In Section 4, POD and SOD are presented. Section 5 provides the results 
produced by using the new method. Results obtained by applying POD, 
SOD and their discussions are presented in Section 6. The last section 
(Section 7) summarizes our findings. 

2. Experiments 

The experimental data presented in this study were collected during 
the Loads on Structure and Waves in Ice (LS-WICE) project (Tsarau, 
2017). The experimental part of this project was performed in the Large 
Ice Model Basin (LIMB) at Hamburg Ship Model Basin (HSVA) in Ger-
many. The whole experimental campaign comprises in total six test se-
ries. In this study, we present the analysis of the data from test series 
#1000 and one subset of test series #3000, i.e., test group #3100, in 
which the displacements of multiple points on ice floes are recorded and 
are suitable for studying the bending motion of ice floes. 

The setups of test series #1000 and test group #3100 are shown in 
Fig. 1. The ice thank is 72 m long, 10 m wide and 2.5 m deep. On the left- 
hand end of the ice tank, a flap-type wavemaker occupies the width of 

Fig. 1. Experimental test setup for test series #1000 (intact ice sheet) and test group #3100 (fragmented ice cover). (a) and (c) represent test series #1000, (b) and 
(d) represent test group #3100 (adapted from Li et al. (2019a)). The leading ice edge, locations of ultrasound and pressure sensors in test series #1000 are shown in 
(c). The floe of interest in test group #3100 is highlighted in magenta and is labeled with #A in (b) and (d). The markers on floe #A are numbered consecutively as 
#3, #4, ⋯, #8 along the wave propagation direction in (d). 
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the tank (Figs. 1a,b). On the right-hand end of the ice tank, a wooden 
parabolic beach is installed to dissipate the incoming waves. Adjacent to 
the wavemaker is an 18-m-long open-water region used for generated 
waves to mature. 

The ice cover in test series #1000 is an intact ice sheet that is 
approximately 49 m long and 9.8 m wide (Fig. 1a). Figs. 1a,c illustrate 
the locations of pressure sensors and ultrasound sensors in test series 
#1000 along the ice tank. Ultrasound sensors (S1 and S2) and pressure 
sensors (P3 ~ P9) that measure wave motions were placed at varying 
intervals along the length of the tank for the purpose of quantifying the 
wavelength and wave attenuation in ice cover accurately. In the tests, 
the combination of Qualisys cameras and Qualisys markers tracked the 
three-dimensional positions of the points on the ice. Five Qualisys 
markers with longitudinal distances 1.5 m apart were attached to the ice 
in test series #1000 (Fig. 1a). 

In test group #3100, a fragmented ice cover, which is composed of 
multiple rectangular ice floes (3 m long and 1.63 m wide), was produced 
by cutting an intact ice sheet that is different from the ice sheet in test 
series #1000 (Figs. 1b,d). The positions of pressure sensors (P2 ~ P9) 
are displayed in Fig. 1b. There were 12 markers that were attached to 
the ice surface 0.5 m apart to monitor the positions of the points on 
several ice floes. The floe and markers of interest in test group #3100 are 
highlighted in magenta in Figs. 1b,d and labeled as #A (ice floe) and 
numbered between #3 ~ #8 (markers) (Fig. 1d). An overview of the 
experimental setup for test group #3100 can be found in Appendix G, 
Fig. G.1. 

Experimental parameters in test series #1000 and test group #3100 
are listed in Table 1. Prescribed wave periods in test series #1000 are 
1.6 s and 2 s, whereas the target wave periods in test group #3100 range 
from 1.1 s to 2 s. In these two sets of tests, the target-generated waves are 
linear (wave steepness is less than 0.05). The ratio of target incoming 
wavelength over ice floe length (Low/Lice) varies between 0.0814 and 
0.126 in test series #1000, the same parameter ranges between 0.630 
and 2.05 in test group #3100. 

Before running the tests, the properties of the ice (including elastic 
modulus) and water are measured. Table 2 summarizes the measured 
properties of ice and water in test series #1000 (intact ice sheet) and test 
group #3100 (fragmented ice cover). The properties of ice and water 
between test series #1000 and test group #3100 are approximately the 
same with the exception of the elastic modulus, the value of which in the 
test series #1000 is less than half of that in test group #3100. For 
brevity, reader is referred to Evers (2017); Quality Systems Group of the 
28th ITTC (2017); Li and Lubbad (2018) for the methods and procedures 
to measure the various properties of ice and water. 

For completeness, we provide an overview of the LS-WICE project 
and the pertinent publications here: open water test (Tsarau, 2017), test 
series #1000 about wave-induced ice fracture (Herman et al., 2017, 

2018), test series #2000 and #3000 regarding the dynamics of ice under 
wave actions and the evolution of waves in fragmented ice cover (Cheng 
et al., 2017; Li and Lubbad, 2018; Herman et al., 2019; Cheng et al., 
2019; Li et al., 2020a), test series #4000 concerning wave-ice-structure 
interactions (Tsarau et al., 2017), and test series #5000 about wave 
loads on structure in open water (Tsarau, 2017). 

3. Methods to estimate wavelength 

In this section, we propose a method to estimate wavelength from 
wave elevation measurements by cross-validating the wavelength esti-
mates from pairs of methods. One method pair is composed of the ge-
netic algorithm (Kutz, 2013) and Prony’s method (Hu et al. (2013); this 
method pair is abbreviated as GPR), and the other method pair consists 
of intersite phase clustering (ISPC, Cohen (2015)) and cross-spectrum 
analysis (Rabault et al. (2019); this method pair is denoted by ICS). 
For brevity, details on these methods to estimate the wavelength are 
provided in Appendix A. The cross-validation approach is presented in 
Subsection 3.1. 

3.1. Estimating the wavelength by using measurements from closely 
located and equidistant sensors 

The procedures to quantify the wavelength based on cross-validating 
the wavelength estimates by applying various method pairs are illus-
trated in Fig. 2. Firstly, we illustrate the cross-validation approach 
applied on GPR (shown in the left panel of Fig. 2). The first step is 
forming a matrix of wavelength estimates (LM1) from the elevation 
measurements at closely spaced and equidistant points produced by 
using Prony’s method and the genetic algorithm. Then, LM1 reduces to 
L̃M1 when the columns of LM1 with minimum and maximum values (e. 
g., the first and third columns) are deleted, i.e., when the outliers are 
rejected. Thereafter, two columns of L̃M1 with the smallest normalized 
difference are chosen, i.e., the uncertainty is alleviated, giving matrix 

Table 1 
Experimental parameters in test series #1000 and test group #3100  

Wave parameters 
Test runs in test series/group 

Amplitude aow [mm] Period Tw [s] Length Low [m] Steepness kowaow [×10− 2] Low/Lice - [− ] 

Test series #1000a #1100 5 2 6.17 0.510 0.126 
#1200 5 1.6 3.99 0.787 0.0814 
#1400 10 2 6.17 1.02 0.126 
#1410 15 2 6.17 1.53 0.126 
#1420 20 2 6.17 2.04 0.126 
#1430 25 2 6.17 2.55 0.126 

Test group #3100b #3110 12.5 2 6.16 1.27 2.05 
#3120 12.5 1.8 5.04 1.56 1.68 
#3130 12.5 1.6 3.99 1.97 1.33 
#3140 15 1.5 3.51 2.68 1.17 
#3150 15 1.4 3.06 3.08 1.02 
#3160 15 1.1 1.89 4.99 0.630  

a The ice cover in test series #1000 is an intact ice sheet that is 49 m long and 9.8 m wide. Lice = 49 m. 
b In test group #3100, there is a fragmented ice cover that consists of multiple ice floes with a dimension of 3 m × 1.63 m. Lice = 3 m. 

Table 2 
Properties of ice and water in test series #1000 (intact ice sheet) and test group 
#3100 (fragmented ice cover)  

Ice property Test series/group  

#1000 #3100 

Ice thickness hi [mm] 34.45 ± 1.95 36.13 ± 0.92 
Ice density ρi [kg/m3] 919.03 ± 2.84 915.67 ± 2.08 
Elastic modulus Ei [MPa] 16 56.4 ± 18.4  

Water property 

Water depth H [m] 2.48 2.45 
Water density ρw [kg/m3] 1005 1005.5  
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L̂M1. Afterwards, the first three largest entries in L̂M1 are chosen. 
Thereafter, the estimates of the wavelength using GPR (LGPR) based on 
the cross-validation approach are obtained by taking the mean of the 
three largest elements in L̂M1. Following the same procedures of 
applying cross-validation approach on GPR, we employ ICS to obtain 
wavelength estimate (LICS), as demonstrated in the right panel of Fig. 2. 
The final step in cross-validation approach is finding the mean of LGPR 

and LICS, hence Lm. 

3.2. Estimating the wavelength from sensors with varying separation 

The wavelengths under the ice cover in test group #3100 have been 
quantified in Cheng et al. (2019) by analyzing the pressure measure-
ments taken by pressure sensors P2 ~ P9. For test series #1000, Herman 
et al. (2018) only presented the wave amplitude obtained by converting 
the pressure measurements to wave elevations without showing any 
analysis results for the wavelengths by using pressure measurements. 
Analogous to Cheng et al. (2019), we applied the MATLAB function 
xcorr to estimate the wavelengths by using all available sensor pairs in 
test series #1000 (S1, S2 and P3 ~ P9). Wavelength estimation is prone 
to uncertainty due to small separations (less than half of a wavelength) 
between sensors (Cheng et al., 2019). In Cheng et al. (2019), the median 

value of the set of estimated wavelengths for a specific test run is taken 
as the final result. As opposed to Cheng et al. (2019), we employ an 
unsupervised learning algorithm, k-means clustering (Brunton and Kutz, 
2019, and references therein), to remove outliers first and then take the 
mean value of the set of estimated wavelengths for a specific test run as 
the final estimated wavelength. The number of clusters in k-means 
clustering is determined by the kink-finding method (Murphy, 2012), 
similar to the L-curve method for Tikhonov regularization (Mueller and 
Siltanen, 2012). The optimal means of the clusters are found by 
randomly initializing the values of means of the clusters multiple times, 
and correspond with the values that minimize the objective function 
involved in k-means clustering (James et al., 2013). In addition to using 
k-means clustering, another approach is to take the average of the 
wavelengths estimated that lie within the range of 0.95 ~ 1.05 of the 
corresponding wavelength in the open-water condition according to 
Herman et al. (2018) and the references therein. Hereafter, this 
approach is referred to as the wavelength criterion approach. 

4. Methods to analyze the flexural response of ice floes under 
wave action 

While the previous section introduces a new method to estimate 

Fig. 2. Estimate wavelength by the cross-validation method  

H. Li et al.                                                                                                                                                                                                                                        



Cold Regions Science and Technology 182 (2021) 103208

5

wavelengths from wave elevation measurements, here we will apply two 
advanced multivariate analysis techniques, POD and SOD, to identify 
the flexural modes of ice floes induced by wave forcing. We find that 
these multivariate analysis techniques successfully reveal the hidden 
nonlinearities in the bending response of the ice floes. 

4.1. Proper orthogonal decomposition (POD) 

Both POD and SOD can be formulated as an optimization problem. 
POD searches for an orthogonal coordinate system with a reduced 
number of coordinates that can maximize the expression of the variance 
in the data. According to Feeny and Kappagantu (1998); Ilbeigi and 
Chelidze (2017); Gedikli et al. (2017); Gedikli and Dahl (2017), in POD, 
proper orthogonal modes (POMs) represent spatial modes, proper 
orthogonal coordinates (POCs) denote the temporal modes, and proper 
orthogonal values (POVs) represent the proxy of kinematic energy of 
each mode (or subspace dimension). Hereafter, the modes and subspace 
dimensions are used interchangeably throughout the paper. 

The cumulative energy proportion of modes up to the ith mode 
relative to the total response can be evaluated as 

ENEi =

∑i
jλj

∑p
j λj

× 100% (1)  

where λj is the value of the jth POV and p indicates the number of total 
modes identified by using POD. 

4.2. Smooth orthogonal decomposition (SOD) 

In contrast, SOD seeks a nonorthogonal coordinate system that 
maximizes the ratio between the variance in the data and the variance in 
the first time derivative of the data in the nonorthogonal coordinate 
system (Chelidze and Zhou, 2006). In SOD, smooth orthogonal modes 
(SOMs) represent spatial modes, smooth orthogonal coordinates (SOCs) 
denote the temporal modes, and smooth orthogonal values (SOVs) 
indicate the smoothness of the corresponding SOCs (Ilbeigi and Che-
lidze, 2017; Gedikli et al., 2018; Li et al., 2019a). 

In SOD, SOMs are linearly independent of each other (Li et al., 
2019a), while POMs are orthonormal. After orthonormalization, 
orthonormalized SOMs are comparable to POMs (Chelidze and Zhou, 
2006). SOCs are orthogonal to each other (Li et al., 2019a; Gedikli et al., 
2017). After normalization, the normalized SOCs are similar to the 
normalized POCs. Further details of POD and SOD are given in Appendix 
C. 

4.3. Modal assurance criterion (MAC) 

To compare the temporal modes and spatial modes given by POD and 
SOD, we introduce the modal assurance criterion (MAC) (Allemang, 
2003; Seyed-Aghazadeh and Modarres-Sadeghi, 2016; Farooq and 
Feeny, 2008). The MAC provides a quantitative comparison between the 
experimental measurements and theoretical predictions of the flexural 
mode shapes and hence is complementary to the visual comparisons 
performed for experimental studies in other wave tanks (e.g. Montiel 
et al., 2013b; Meylan et al., 2015). 

The MAC is defined as: 

MAC =

⃒
⃒ΨT

AΨB
⃒
⃒2

|ΨT
AΨA|⋅|Ψ T

BΨB|
(2)  

where ΨA and ΨB are vectors (modes produced by POD and SOD) with 
the same dimension. The MAC number can be thought of as the square of 
the correlation between the modal vectors ΨA and ΨB. MAC = 1 when 
ΨA and ΨB are identical, and MAC = 0 when these two vectors are in-
dependent of each other. In all other cases, the MAC number can vary 
between zero and one. 

4.4. Examine the nonlinear response of ice floes 

The MAC number identifies the linear relationship between two 
modes/vectors. However, it does not provide any information regarding 
the nonlinearities in the response. Previously, Montiel et al. (2013b,a) 
applied a short-time fast Fourier transform (STFFT) to isolate the linear 
response of floes from the nonlinear response. In the linear response, ice 
floes oscillate at the same frequency as the incoming wave frequency. In 
contrast, the frequency of the nonlinear response of ice floes differs from 
that of the incident wave frequency. In this study, we apply Morlet 
wavelet (Cohen, 2014, 2019) as opposed to using the STFFT. The Morlet 
wavelet is preferable because there are fewer parameters to set and it has 
higher time-frequency resolution(Gramatikov and Georgiev, 1995; 
Zhang et al., 2003). For detailed procedures to separate the linear 
response from the nonlinear response, readers are referred to Montiel 
et al. (2013b). 

5. Estimated wavenumbers 

5.1. Phase difference estimated by intersite phase clustering (ISPC) 

Figs. 3a,b,c,d represent the vertical oscillation signals, the instanta-
neous phase angles, the instantaneous phase difference and the distri-
bution of instantaneous phase difference in the polar coordinates 
between the motions of markers #7 and #8, respectively. Figs. 3a,b 
show that there seems to be a constant phase difference between the 
elevation measurements at markers #7 and #8, z7 and z8. Fig. 3c shows 
that the variation in the phase difference is quasi-steady and fluctuates 
around 50∘, which is demonstrated more evidently by the high con-
centration of the phase difference in Fig. 3d. Additionally, the amount of 
instant phase difference clustering ∣IPC ∣  = 0.998 suggests the tight 
clustering of the phase difference (see the mathematical definition of 
∣IPC∣ in Eq. A.9, Appendix A.2). In Fig. 3c, abrupt jumps are observed 
near the boundaries of the phase difference time history. This is attrib-
uted to that fast Fourier transform (FFT) and inverse fast Fourier 
transform (IFFT) involved in obtaining the analytic signals in ISPC as-
sume periodic boundary conditions (Kutz, 2013; Bruns, 2004). Non- 
periodic boundary of the measured signals induces ripple effect when 
transforming between time and frequency domains (Cohen, 2014). To 
alleviate this edge artefact, we remove a small portion (1.56%) of the 
phase difference time series near its boundary. 

5.2. Wavenumbers estimated for test group #3100 (fragmented ice cover) 

Fig. 4 exhibits both the estimates of the wavenumber by Cheng et al. 
(2019) where they used data measured by pressure sensors (kps) and the 
estimates of our new method where we use measurements collected 
from the Qualisys system (km) for test group #3100 (fragmented ice 
cover). Furthermore, Fig. 4 displays the theoretical prediction of the 
wavenumber made by the mass-loading model (kmass and kmass, Peters 
(1950); Weitz and Keller (1950)) and elastic-plate model (kplate and kplate, 
Wadhams (1981); Fox and Squire (1990), along with the open-water 
wavenumber kow for test group #3100. kmass and kplate represent the 
predictions made by using all the available varying measurements of the 
ice properties, i.e., the ice thickness, the ice density, and the elastic 
modulus of ice. kmass and kplate denote the predictions obtained via the 
mean values of the measured ice properties. 

According to the results presented in Fig. 4, the wavenumbers esti-
mated using the GPR and ICS approaches based on the vertical oscilla-
tion measurements of the markers match well with those from Cheng 
et al. (2019) (kps), where they obtain the wavenumbers by analyzing the 
pressure measurements. The only exception is test run #3150 (Low/Lice 
= 1.02, kowaow = 0.0308), where estimate by ICS exceeds both those 
from GPR and Cheng et al. (2019) (kps). When considering the mean 
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estimates (km) obtained by the GPR and ICS methods, good agreement is 
seen between km and the results from Cheng et al. (2019) (kps). The 
normalized relative differences with respect to kps are within 4.5%. 

To validate the k-means clustering approach, we apply k-means 
clustering to filter the wavelength obtained by analyzing the pressure 
measurements from test runs #3110 ~ #3150 (Low/Lice ≥ 1.02, kowaow ≤

0.0308) and take the mean of the cluster close to the open-water 
wavelength. We find that normalized relative differences are within 
3.2% with respect to kps from Cheng et al. (2019). 

5.3. Wavenumbers estimated for test series #1000 (intact ice sheet) 

Fig. 5 shows the wavenumber under ice cover versus the open-water 
steepness (kowaow) for test series #1000 (intact ice sheet) and two test 
runs in test group #3100 (fragmented ice cover). As illustrated in 
Figs. 5b,c, the wavenumber estimates by using Qualisys position mea-
surements (km) are close to those based on pressure measurements (kps). 
Normalized difference of km relative to kps lies within 1.05%. Moreover, 
the wavenumber estimates (kps and km) are close to the predictions from 
the elastic-plate model (kplate and kplate, Wadhams (1981); Fox and Squire 
(1990)) in test series #1100 (intact ice sheet). 

To test our proposed cross-validation approach to estimate the 
wavelength, we create numerical signals based on the features extracted 
from 75 measured vertical displacements of ice floes in waves in three 
different ice/wave tanks. The results of using the proposed method to 
analyze these numerical signals show that the normalized error of esti-
mated wavelength is within 5% relative to ground truth, see details in 
Appendix B. 

5.4. Modification of wavenumber due to ice cover 

5.4.1. Effect of ice cover properties on the change of wavenumber 
A comparison between Fig. 5a and Fig. 5b shows that the wavelength 

increases (or the wavenumber decreases) in test run #3110 (fragmented 
ice cover) relative to test series #1000 (intact ice sheet) according to the 
theoretical predictions made by the elastic-plate model (kplate and kplate) 
and the wavelength estimated by using wave motion measurements 
(wavenumbers kps and km). The reason is that the elastic modulus of the 
ice in test group #3100 is at least 2.3 times higher than that in test series 
#1100, while the other properties of the ice (density, thickness) and the 
water depth in the ice tank are similar between test series #1100 and 
test group #3100, see details in Table 2. The increase in the wavelength 
with larger elasticity is also seen when comparing Fig. 5c and Fig. 5d. An 
increase in the wavelength under ice cover with the elasticity of ice is 
also demonstrated in Collins et al. (2017). 

To validate the applicability of the physically measured elastic 
modulus in the elastic-plate model for test series #1000 (intact ice sheet) 

Fig. 3. Intersite phase clustering (ISPC) is used to estimate the phase lag between z7 and z8 in test run #3130 (Low/Lice = 1.33, kowaow = 0.0197). (a) The vertical 
oscillation signals of markers #7 and #8. (b) The instantaneous phase angles of z7 and z8. (c) The instantaneous phase differences between z7 and z8. (d) The 
distribution of the instantaneous phase differences between z7 and z8 in the polar plot. The blue lines and red dash-dot lines in (a)-(b) represent the signals for 
markers #7 and #8, respectively. The clustered straight lines in (d) with different colors are assumed to have a magnitude of 1 to aid visualization and denote 
instantaneous phase differences. The green line starts and ends with the red dot denoting the mean phase difference, and the length of this line represents the amount 
of phase difference clustering. 

Fig. 4. Wavenumber (test group #3100, fragmented ice cover). kmass from the 
mass-loading model and kplate from the elastic-plate model are the predicted 
wavenumbers using all the available measured ice properties, ρi, Ei and hi, 
which vary. In contrast, Cheng et al. (2019) only considered the variability in Ei 

and hi. kmass from the mass-loading model and kplate from the elastic-plate model 
are the predictions using the mean values of the measured ice properties. kps 

denotes the estimated wavelength using the pressure measurements and is 
taken from Cheng et al. (2019) for test runs #3110 ~ #3150 (Low/Lice ≥ 1.02, 
kowaow ≤ 0.0308) and Herman et al. (2019) for test run #3160 (Low/Lice =

0.630, kowaow = 0.0499). km represents the mean value of the wavenumbers 
estimated by using the GPR and ICS approaches. 
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and test group #3100 (fragmented ice cover), we apply the empirical 
formula proposed by Sakai and Hanai (2002)(see Eqs. E.1 ~ E.3) to 
estimate the equivalent elastic modulus, as also performed in a recent 
experimental study (Parra et al., 2020). The empirical formula includes 
a nondimensional length scale denoted by IF, which includes parameters 
such as ice thickness, the length and the elasticity of ice (see Eq. E.2 in 
Appendix E for the mathematical definition of IF). When IF is greater 
than 0.6, the equivalent elastic modulus equals the physical elastic 
modulus. Using Eq. E.2, we find that IF is 1.82 and 0.61 for test series 
#1000 (intact ice sheet) and test group #3100 (fragmented ice cover), 
respectively. Hence, the usage of the physical elastic modulus in the 
elastic-plate model is justified. This finding implies that the dispersion 
relation of waves below ice can be fully characterized by the elastic- 
plate model in test series #1000 having a 49-m-long intact ice sheet 
and in test group #3100 having an ice cover composed of multiple 3-m- 
long rectangular ice floes. This implication is further confirmed by the 
good agreement between the wavenumber predicted by the elastic-plate 
model (when the physical elastic modulus is applied) and the experi-
mental wavenumbers (see Figs. 4 and 5). The only exception is the 
experimental result of the test run #3160 (wave frequency of 0.91 Hz). 
This discrepancy can be attributed to the more pronounced effects of 
viscosity of ice and the nonlinear material properties of ice on modifying 
wavelength in high frequency wave regimes, which are not incorporated 
in the linear elastic-plate model (Sree et al., 2018, 2020). Moreover, the 
steady part of the signals is very short in test run #3160 (Low/Lice =

0.630, kowaow = 0.0499). Therefore, test run #3160 is excluded from the 
analysis from now on. The experimental studies performed by Sakai and 
Hanai (2002) and Parra et al. (2020) also demonstrate that the elastic- 
plate model describes the dispersion relation of waves below intact ice 
sheets well. 

Furthermore, the waves shorten and lengthen (i.e., the wavenumbers 
increase and decrease) in test series #1000 with an intact ice sheet 
(Figs. 5b,c) and test group #3100 having a fragmented ice cover (Fig. 4 
and Figs. 5a,d) relative to the open-water wavelength, respectively. 

According to earlier studies (Sakai and Hanai, 2002; Sree et al., 2018, 
2020; Herman et al., 2019; Collins et al., 2017, and references therein), 
regarding continuous ice cover and fragmented ice cover, whether 
waves shorten or lengthen is dependent on wave frequency, floe size, the 
viscosity, flexural rigidity and the thickness of ice; i.e., the inertia of the 
ice providing that ice density does not vary significantly. 

5.4.2. Crossover frequency 
The crossover frequency when the wavelength predicted by the 

elastic-plate model starts exceeding that in the open-water case for deep 
water conditions is 

fc =
1

2π

(
ρihig4

Di

)1/6

(3)  

where g is gravitational acceleration; ρi is the density of ice; hi is the 
thickness of ice cover; and Di is the flexural rigidity of ice, which is 
defined as 

Di =
Eih3

i

12(1 − ν2)
(4)  

where ν is Poisson’s ratio of ice, which is 0.3 here as in Cheng et al. 
(2019); Kovalev and Squire (2020). 

The theoretical crossover frequency using the mean values of the ice 
properties is predicted to be 0.656 Hz and 0.523 Hz for test series #1000 
(intact ice sheet) and test group #3100 (fragmented ice cover), respec-
tively. These theoretical crossover frequencies are close to our observed 
results. By applying the graphical method to our results, we numerically 
determine the crossover frequency to be 0.656 Hz and 0.520 Hz for test 
series #1000 and test group #3100, respectively. This is why wave-
numbers are larger than and less than the corresponding open-water 
values when fw = 0.625 Hz for test series #1000 and test group 
#3100, respectively (see Figs. 5c,d). 

Fig. 4, Figs. 5a,d and Figs. 5b,c illustrate that the wavenumber pre-
dicted by the mass-loading model (kmass and kmass, Peters (1950); Weitz 
and Keller (1950)) always exceeds the open-water wavenumber (kow) 
and deviates increasingly more from the open-waver value as the wave 
frequency increases. As exhibited in Fig. 4, the deviation in the predicted 
value by the elastic-plate model (kplate and kplate) from the open-wave 
wavelength increases with the wave frequency when the wave fre-
quency is higher than the crossover frequency. These two trends have 
also been revealed in previous studies (Sakai and Hanai, 2002; Collins 
et al., 2017; Herman et al., 2019). For completeness, the equations to 
calculate the wavenumber for open-water conditions, mass-loading 
model and elastic-plate model are listed in Appendix D. 

6. Identified flexural modes of ice floes 

Figs. 6, 7 and 8 illustrate the relative energy contribution of 
decomposed mode shapes (POVs) and SOVs, the temporal mode (TM) 
shapes, and the corresponding frequency components, respectively. 

Fig. 5. Wavenumber versus open-water wave steep-
ness: (a) Test run #3110 (Low/Lice = 2.05), (b) test 
series #1000 (intact ice sheet), (c) test run #1200 
(Low/Lice = 0.0184), and (d) test run #3130 (Low/Lice 

= 1.33). The kps values in (a) and (d) are taken from 
Cheng et al. (2019), while those in (b) and (c) are 
estimated as the mean of values found by using k- 
means clustering and the wavelength criterion 
approach. The kmass value from the mass-loading 
model and the kplate value from the elastic-plate 
model are the predicted wavenumbers using all the 
available measured ice properties, such as varying ρi, 
Ei and hi. kmass and kplate are the predictions using the 
mean values of the measured ice properties. km rep-
resents the mean value of the wavenumber estimated 
by using the GPR and ICS approaches.   
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6.1. POVs and SOVs 

Using POD, Fig. 6a shows that the first three subspace dimensions 
account for 99.98% of the total energy for ice floe #A. The cumulative 
energy proportion of the subspace dimensions is calculated by summing 
the first i POVs and dividing by the sum of all 6 POVs, which is equal to 
the total number of markers on ice floe #A; see Eq. 1 for the mathe-
matical definition. 

We further examine the SOVs for the first six subspace dimensions 
(Fig. 6b). The first two subspace dimensions have the largest and the 
same SOVs. In the higher subspace dimensions, the corresponding SOVs 
are smaller than those in the first two subspace dimensions (Fig. 6b). 

6.2. POCs and SOCs (temporal modes) 

When the corresponding temporal mode shapes are investigated (see 
Fig. 7), we observe smooth temporal modes for the first two subspace 
dimensions (Figs. 7a,b). A frequency domain analysis of these temporal 
modes (Figs. 8a,b) indicates only one frequency component involved in 

these first two modes. Consecutively, we notice that the third mode is 
smooth and has a single dominant frequency (twice the frequency of the 
first two mode shapes), as illustrated in Fig. 7c and Fig. 8c. 

Moreover, the temporal mode shapes in Figs. 7d,e,f vary greatly 
when compared with those in the lower subspace dimensions. A fre-
quency analysis of these mode shapes in correspondence with higher 
subspace dimensions (fourth, fifth and sixth subspace dimensions) 
shows more high-frequency components (Figs. 8d,e,f). 

6.3. Connections of POVs and SOVs with POCs and SOCs 

The same SOVs in the first two subspace dimensions indicate that the 
first two temporal modes oscillate with the same frequency (see Ap-
pendix C, Eq. C.8). This finding is also reflected in Figs. 7a,b and Figs. 8a, 
b, in which only one frequency component is observed. 

The third subspace dimension has smaller SOVs than the first two 
subspace dimensions. This finding suggests that the corresponding 
temporal mode is less smooth and contains several frequency compo-
nents. However, the third mode has single dominant frequency as shown 

Fig. 6. POVs (a) and SOVs (b) on a logarithmic scale with base 10 for test run #3130 (Low/Lice = 1.33, kowaow = 0.0197).  

Fig. 7. Temporal modes (TMs) identified by using POD and SOD for test run #3130 (Low/Lice = 1.33, kowaow = 0.0197). The blue line and the red dashed line 
represent the TMs identified by using POD and SOD, respectively. 
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in Fig. 8c. 
Following the same procedures, we find much smaller SOVs 

(Fig. 6b), hence much less smooth temporal modes (Figs. 7d,e,f) and 
more frequency components for the fourth, fifth and sixth subspace di-
mensions (Figs. 8d,e,f) than for the first three subspace dimensions. This 
simple practice illustrates that the first three subspace dimensions give 
smooth time histories, but higher subspace dimensions (higher than the 
third subspace dimension) seem to be contaminated with noise. 

The energy distribution in Fig. 6a suggests that the first two modes 
are the most dominant modes. Although the energy contribution of the 
third mode is low (Fig. 6a), the temporal variation in this mode suggests 
that this mode should be a linear addition to the first two modes. 

6.4. POMs and SOMs (spatial modes) 

The spatial modes identified by POD and SOD are illustrated in 
Fig. 9. The first two spatial modes resemble the first flexural mode (half 

sinusoidal), and the third mode is analogous with the second flexural 
mode (sinusoidal). For traveling wave motion, two POD modes (sub-
space dimensions) are needed to represent one physical flexural mode 
(Taira et al., 2017). The same is true for SOD (Li et al., 2019a). This is 
supported by the fact that both the first and the second temporal modes 
oscillate at incoming wave frequencies (Figs. 8a,b) and the first two 
SOVs are identical (Fig. 6b), i.e., the two modes have the same frequency 
(see Eq. C.8). Consequently, the fourth mode should correspond with the 
second flexural mode of the response of the ice floe induced by traveling 
waves. However, noise contaminates this mode, as illustrated in Fig. 7d 
and Fig. 8d. Hence, the fourth mode cannot be physically interpreted. In 
contrast, higher modes (i.e., the fifth and sixth modes) do not represent a 
physical mode because (1) there is no dominant frequency component in 
these modes (see Figs. 7e,f and Figs. 8e,f); (2) their energy contribution 
is negligible when compared with the first four modes (within 1%, see 
Fig. 6a). 

This finding is corroborated by the Nyquist criterion, that is, when 

Fig. 8. Frequency domain analysis of the normalized SOCs for test run #3130 (Low/Lice = 1.33, kowaow = 0.0197). (a) ~ (f) are the amplitude spectra for the 
normalized SOCs corresponding to the first six subspace dimensions. 

Fig. 9. Spatial modes (SMs) identified by using POD and SOD for test run #3130 (Low/Lice = 1.33, kowaow = 0.0197). The blue line with blue circle and the red dash- 
dot line with red square represent the SMs identified by using POD and SOD, respectively. (a) ~ (f) are the spatial modes corresponding to the first subspace 
dimension, the second subspace dimension, ⋯, and the sixth subspace dimension, respectively. 
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the number of measurement points in the spatial domain p ≥ 2nmd + 1, 
nmd spatial modes can be correctly identified (Mukundan et al., 2009; 
Seyed-Aghazadeh and Modarres-Sadeghi, 2016). In test group #3100, 
six markers were placed on ice floe #A (see Fig. 1b). Hence, in principle, 
two spatial physical flexural modes can be correctly extracted. 

By using the complex resonance approach to address the hydroelastic 
problem, Meylan and Tomic (2012) theoretically predicted the motion 
modes of an elastic plate floating atop fluid. The first two flexural modes 
produced by Meylan and Tomic (2012) resemble to the second and third 
modes identified by POD and SOD. Interestingly, although the fifth and 
sixth modes extracted by POD and SOD are subjected to some uncer-
tainty due to the limited number of markers placed on ice floe #A and 
noise effect, their mode shapes are similar to the theoretical mode 
shapes presented in Meylan and Tomic (2012). In addition, the two free 
modes, which are not identified by POD and SOD, are related to heave 
and pitch motions, and they are only predicted by the theoretical model 
in Meylan and Tomic (2012). 

6.5. Multivariate analysis results for all test runs 

In test series #1000, the five Qualisys markers cover only a very 
small proportion of the intact ice sheet (Lmarker/Lice = 0.122, see Fig. 1a 
and Table 1). Thus the modes cannot be identified solely by data-driven 
approach in this test set. Below, we summarize the results of all test runs 
only in test group #3100 (fragmented ice cover). 

Table 3 shows the proportion of cumulative energy in the total ver-
tical response of ice floe #A for test group #3100 (fragmented ice 
cover). For example, ENE2 denotes the cumulative energy contribution 
of the first two modes, ENE3 represents the cumulative energy contri-
bution of the first three modes, and so on. The results for test run #3130 
(Low/Lice = 1.33, kowaow = 0.0197) are repeated here for comparison. The 
proportion of the linear part of the response generally decreases with 
increasing wave steepness. The first four modes account for more than 
99% of the response. 

A comparison between the SMs and TMs identified by POD and SOD 
using the MAC is listed in Table 4. The consistency in the SMs and TMs 
from POD and SOD drops with the increase in the subspace dimension, 
although these SMs and TMs are similar (MAC greater than 0.8). 

SOD can also be used to estimate the incoming wave period when 
multiple sensors are placed on one ice floe (see Eq. C.8). The normalized 
error of the wave period identified by SOD by using position measure-
ments of markers relative to the incident wave period ranges from 0.05 
%  ~ 0.8% for test runs #3110 ~ #3150 (Low/Lice ≥ 1.02, kowaow ≤

0.0308). 

6.6. On the nonlinearity in the flexural response of ice floes 

6.6.1. Quantifying the nonlinearity 
To examine the source of higher-order effects, we investigated the 

motions of markers placed on floe #A using the Morlet wavelet time- 
frequency analysis (Cohen, 2019). As an example, the time-frequency 
analysis results of the vertical displacements of marker #7 are shown 
in Fig. 10, presented similar to Montiel et al. (2013b). The amplitudes of 
both the fundamental harmonic and the second-order harmonic are 

visible (black and light gray stripes in Fig. 10a). The temporal variations 
in the amplitude values of these two harmonics are seen more clearly in 
Fig. 10b than in Fig. 10a. ∣z7(2fw, t) ∣ / ∣ z7(fw, t)∣ is approximately 6.4% in 
the steady time window, which is not negligible. The results of ∣z7(2fw, t) 
∣ / ∣ z7(fw, t)∣ for test runs #3110 ~ #3150 (Low/Lice ≥ 1.02, kowaow ≤

0.0308) for all the markers on ice floe #A are summarized in Fig. 12. 
As discussed above, the first two subspace dimensions identified by 

using POD and SOD represent the first physical mode. When Prony’s 
method is used, two complex exponentials are needed to represent one 
physical frequency component (Hu et al., 2013). Hence, we reconstruct 
the linear response of ice floes by adding only the first two subspace 
dimensions/complex exponentials. Thereafter, we apply the Hilbert 
transform (Bruns, 2004) to obtain the analytic signal. Lastly, we take the 
mean of the oscillation magnitudes extracted from the analytic signal of 
each marker in the steady time window to calculate the oscillation 
amplitudes of each marker. 

To compare the reconstructed linear responses obtained by POD, 
SOD and Prony’s method with those from the Morlet wavelet time- 
frequency analysis, we use the relative difference (RD) formula, which 
is defined as follows: 

RD =

⃦
⃦
⃦Z*

Amp,1 − ZM
Amp,1

⃦
⃦
⃦

2⃦
⃦
⃦ZM

Amp,1

⃦
⃦
⃦

2

× 100% (5)  

where the superscript * denotes POD, SOD or Prony’s method; the su-
perscript M represents Morlet wavelet and ZAmp, 1 represents the 
amplitude vector for markers #3 ~ #8 corresponding to the incoming 
wave frequency. 

Fig. 11 illustrates that the relative difference in the fundamental 
amplitudes obtained by POD, SOD and Prony’s method with respect to 
those extracted by the Morlet wavelet is negligible (less than 0.5%). 

Fig. 12 demonstrates that the nonlinearity (the ratio between am-
plitudes related to 2fw and the amplitudes corresponding to fw) becomes 
more evident with increased wave steepness. Generally, the Morlet 
wavelet and Prony’s method produce similar results except for zero 
values. The zero values from Prony’s method indicate that Prony’s 
method fails to identify the components that have a frequency equal to 
twice the wave frequency. At the same time, the corresponding ratios 
given by the Morlet wavelet are less than 1%. This finding suggests that 
the estimate of the amplitude related to 2fw is prone to uncertainty in 
these cases. 

6.6.2. Investigating the source of nonlinearity 
According to Fig. 4 and Figs. 5a,d, the wave lengthens in test group 

#3100 (fragmented ice cover). Considering this fact, along with the 
open-water wave steepness in test group #3100 being less than 0.05 and 
the attenuation of waves beneath the ice cover, linear wave theory is still 
applicable because the wave steepness is less than 0.05 (Toffoli et al., 
2015; Herman et al., 2018; Alberello et al., 2019a). Therefore, we do not 
expect a significant nonlinear contribution from the waves to the out-of- 
plane response of the ice floe, which is further substantiated by the 
analysis results of the measurements taken for the two open-water test 
runs with wave steepness values greater than 0.05 (the values of the 

Table 3 
Proportion of the cumulative energy of the first i modes for test group #3100 
(fragmented ice cover)  

ENEi Test runs 

#3110 #3120 #3130 #3140 #3150 
(0.0127) (0.0156) (0.0197) (0.0268) (0.0308)a 

ENE2 97.97% 98.18% 95.53% 95.85% 94.68% 
ENE3 99.14% 98.96% 98.54% 97.81% 97.79% 
ENE4 99.69% 99.68% 99.23% 99.37% 99.05%  

a This row gives incoming wave steepness value in each test run. 

Table 4 
MAC values of the SMs and TMs identified by POD and SOD for test runs #3110 
~ #3150 (Low/Lice ≥ 1.02, kowaow ≤ 0.0308)  

Spatial modes SM1 SM2 SM3 SM4 

MAC 0.935±
0.0520 

0.925±
0.0480 

0.828±
0.144 

0.819±
0.175 

Temporal 
modes 

TM1 TM2 TM3 TM4 

MAC 0.997 ±
0.00300 

0.998 ±
0.00310 

0.951 ±
0.105 

0.935 ±
0.106  
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other open-water test runs are greater than 0.065) but closest to that of 
test run #3160 (kowaow = 4.99 × 10− 2) with the largest wave steepness 
in test group #3100. Specifically, the analysis results suggest that zAmp, 

2
m/zAmp, 1

m < 1.7% and the other higher-order components are negligible 
in the two open-water test runs. Additionally, zAmp, 2

m /zAmp, 1
m even ex-

ceeds 2.2% when the wave steepnesses are 2.68 × 10− 2 and 3.08 × 10− 2 

for test runs #3140 and #3150, respectively (Fig. 12). Except for the 

higher-order effects arising from waves generated, scattering is another 
possible source of nonlinearity (Montiel et al., 2013b). However, 
because the open-water gap between the ice floes in test group #3100 
(fragmented ice cover) is indiscernible based on video recordings, the 
contribution of the nonlinearity from scattering induced by the ice floe 
edge can be reasonably assumed to be negligible. Due to the small 
varying separations between ice floes, interfloe interactions induced by 
waves are frequent (Li et al., 2020a). As a result, interfloe interactions 
most likely contribute to the nonlinearity except for those from incident 
waves. See Appendix F for details about the open-water tests. 

7. Conclusions 

In this study, we proposed a novel method to extract wavenumber 
information from closely spaced and equidistant sensors. Using two 
experimental groups as an example, we showed that the relative dif-
ference between the results obtained from measurements taken by 
pressure sensors with variable separations and those from position 
measurements of Qualisys markers placed at a fixed interval is small 
(within 5%). The results of the numerical examples give a normalized 
error that is less than 5% when compared with the ground truth. The 
proposed method intrinsically reduces noise and rejects outliers that 
may arise from evanescent modes of flexural motion of ice floes. This 
method also mitigates the uncertainty due to small separations between 
sensor pairs, as mentioned in Cheng et al. (2019) and Sakai and Hanai 

Fig. 10. Morlet wavelet time-frequency analysis of the vertical 
oscillations of marker #7 in test run #3130 (Low/Lice = 1.33, 
kowaow = 0.0197). (a) The time-frequency plot of the oscilla-
tion amplitude of marker #7. (b) The temporal variations in 
the amplitudes of the harmonics corresponding to fw (blue 
line) and 2fw (red dash-dot line) are extracted from the black 
and gray stripes in (a), respectively. The time span between the 
two purple dashed lines in (a) and (b) denotes the steady time 
window.   

Fig. 11. Relative difference (RD) of the extracted fundamental amplitudes from 
POD, SOD and Prony’s method relative to those from the Morlet wavelet for test 
runs #3110 ~ #3150 (Low/Lice ≥ 1.02, kowaow ≤ 0.0308). 

Fig. 12. Ratios between the amplitudes corresponding to 2fw and the amplitudes corresponding to fw. The subscripts M and P denote the Morlet wavelet and Prony’s 
method, respectively. The number in round bracket represents incoming wave steepness in each test run. 
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(2002). 
The investigation of the experimental cases also shows that the 

elasticity of ice increases the length of waves below the ice cover, and 
the elastic-plate model predicts congruent wavelength results with the 
experimental values for waves propagating beneath intact ice sheets. 

The second part of this paper addresses the flexural motion of ice 
floes. Two multivariate analysis techniques, proper orthogonal decom-
position (POD) and smooth orthogonal decomposition (SOD), are used 
to identify the flexural modes of ice floes induced by waves. The results 
show that both POD and SOD successfully identify the dominant first 
and second flexural modes. These results are consistent with the Nyquist 
criterion, in which case only two flexural modes can be correctly 
recovered when six measurement points are available on one ice floe. It 
is noteworthy that the identified second, third, fifth and sixth spatial 
mode shapes by POD and SOD are similar to the theoretically predicted 
first, second, third and fourth flexural modes as in Meylan and Tomic 
(2012). In addition, POD and SOD produced comparable results for 
temporal and spatial mode identification. The results yielded by POD 
suggest that the first flexural mode accounts for more than 94% of the 
total vertical response of ice floes. This finding implies that the higher- 
order harmonics do not contribute substantially to the vertical motion of 
ice floes. The ratio between the amplitude of second-order harmonics 
and that of fundamental harmonics (less than 8%) for each marker ob-
tained by Morlet wavelet time-frequency analysis and Prony’s method 
confirms the insignificant contribution of the nonlinear component to 
the total response. In addition, SOD correctly retrieves the incoming 
wave period (normalized error less than 0.8%). POD, SOD and Prony’s 
method can also be used to reconstruct the linear response of ice floes. 
Hence, POD and SOD are useful tools to analyze the wave-induced 
bending motion of ice floes. 

The analysis of the open-water tests shows that the ratio between the 
amplitude of the second-order harmonics and that of the fundamental 
harmonics is less than 1.7%, whereas the corresponding analysis results 
for the markers give values greater than 2.2%. Moreover, the varying 
gaps between the ice floes are very small; hence, the higher-order effects 

resulting from scattering are very limited. This finding suggests that an 
ice-ice interaction may be the source of the remaining nonlinear 
response. 

Data availability 

The dataset used in this study is available in Haase and Tsarau 
(2019). 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that should have appeared to influ-
ence the work reported in this paper. 

Acknowledgments 

The authors wish to acknowledge the support from the Research 
Council of Norway through the Centre for Research-Based Innovation 
SAMCoT and the support from all the SAMCoT partners. The experi-
mental work described in this publication was supported by the Euro-
pean Community’s Horizon 2020 Programme through a grant to the 
budget of the Integrated Infrastructure Initiative HYDRALAB+, contract 
no. 654110. The lead author would like to thank the Hamburg Ship 
Model Basin (HSVA), especially the ice tank crew, for their hospitality, 
technical and scientific support and the professional execution of the test 
programme in the Research Infrastructure ARCTECLAB. The corre-
sponding author would like to express gratitude towards colleagues 
from the LS-WICE project, including Hayley Shen and Meleta Truax from 
Clarkson University, Agnieszka Herman from the University of Gdansk, 
Karl-Ulrich Evers from HSVA, Andrei Tsarau and Sveinung Løset from 
the Norwegian University of Science and Technology and Sergiy 
Sukhorukov from Kvaerner AS. The lead author also thanks Dr. Lucas 
Yiew and Dr. Fabien Montiel for kindly sharing their experimental data.  

Appendix A. Pairs of methods to estimate wavelength 

A.1. Wavelength determined by using genetic algorithm and Prony’s method (GPR) 

To estimate the wavelength using the genetic algorithm, one needs to fit the measured/numerical wave data to extract the phase lag between 
neighboring sensors. In essence, fitting is an optimization problem. Fitting the measured or numerical signals with a sinusoidal function is to find a 
group of parameters that minimize the following cost function (Li et al., 2019a): 

εj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

k=1

[
a(j)sin

(
2πf (j)tk + θG,(j) ) − zk

]2
√

(A.1)  

where a(j), f(j), θG, (j) are the wave amplitude, wave frequency [Hz] and phase [radians] in correspondence with the jth group; t is the time instant [s]; 
superscript G represents the genetic algorithm henceforth; and subscript k denotes the kth time instant. 

This optimization problem is solved by applying the MATLAB built-in function ga. 
Prony’s method is one of the methods to decompose signals, which is analogous to the Fourier method. Prony’s method linearly superimposes a 

series of damped complex exponential components to express signals (Hu et al., 2013; Rodríguez et al., 2018). For a discrete signal, the formula takes 
the form: 

zk =
∑r

j=1
ajexp

(
iθPR

j

)
exp
(
αjtk + i2πfjtk

)
(A.2)  

where aj, θj, αj and fj are amplitude, initial phase [radians], grow/decay rate [s− 1] and frequency [Hz] of the jth component; tk is the kth time instant; the 
superscript PR denotes Prony’s method hereafter; r is the total number of components to be used, and this parameter is judiciously determined by 
applying truncated singular value decomposition (TSVD, see e.g., Mueller and Siltanen (2012)). 

When applying Prony’s method for numerical traveling wave signals, we set r = 2, which represents two complex exponentials that correspond to 
the most dominant frequency component in the wave signals. 

In this study, the noise-rejecting algorithm as presented in Hu et al. (2013) when implementing Prony’s method is applied. To the best of our 
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knowledge, this is the first time that Prony’s method has been applied in a wave-ice interaction study. 
The wavelength is then estimated as: 

LPR
m = 2π xm+1 − xm⃒

⃒θPR
m+1 − θPR

m

⃒
⃒

(A.3)  

LG
m = 2π xm+1 − xm⃒

⃒θG
m+1 − θG

m

⃒
⃒

(A.4)  

where Lm represents wavelength estimated by using the measurements of markers #(m + 1) and #m. xm+1 and xm are the positions of the neighboring 
markers #(m + 1) and #m along the wave propagation direction. 

Essentially, fitting the signals with a sinusoidal function by using the genetic algorithm and using truncated singular value decomposition (Mueller 
and Siltanen, 2012) to determine the number of complex exponentials to reconstruct the signal in Prony’s method (Hu et al., 2013) inherently reduces 
the noise embedded in the wave motion measurements. 

A.2. Wavelength determined by applying intersite phase clustering and cross-spectrum analysis (ICS) 

Cross-spectrum analysis has been used in earlier wave-ice studies to determine phase lags between two signals (Wang and Shen, 2010; Zhao and 
Shen, 2015; Rabault et al., 2019). When compared with cross-spectrum analysis, intersite phase clustering (ISPC) is not weighted by the amplitude 
(Mormann et al., 2000; Cohen, 2015). In earlier studies, ISPC is also referred to as phase synchronization, phase coherence and phase-locking factor/ 
value (Bruns, 2004; Cohen, 2014). Here, we use ISPC in wave-ice interactions. The wavelengths estimated by cross-spectrum analysis and ISPC are: 

LI
m = 2π (xm+1 − xm)⃒

⃒ΔθI
m

⃒
⃒

(A.5)  

LCS
m = 2π (xm+1 − xm)⃒

⃒ΔθCS
m

⃒
⃒

(A.6)  

where the superscripts I and CS denote intersite phase clustering and cross-spectrum analysis, respectively; Δθm
I and Δθm

CS are the estimated phase lags 
between the signals recorded for markers #(m + 1) and #m by ISPC and cross-spectrum analysis, respectively. Δθm

I and Δθm
CS are estimated as: 

ΔθI
m = tan− 1

(
Im(IPC)

Re(IPC)

)

(A.7)  

ΔθCS
m = tan− 1

(
Im
(
Sm+1,m

)

Re
(
Sm+1,m

)

)

(A.8)  

where Sm+1, m is the cross-spectrum of zm+1 and zm. IPC is defined as 

IPC = n− 1
∑n

k=1
exp
[
i
(
θk

m+1 − θk
m

) ]
(A.9)  

where θm+1
k and θm

k are the instantaneous phases of the analytic signals zH
m+1 and zH

m for vertical oscillation measurements zm+1 and zm, respectively. 
These analytic signals are obtained by the Hilbert transform. For brevity, readers are referred to Bruns (2004) for more details about the Hilbert 
transform. 

Note that the magnitude ∣IPC∣ indicates the concentration of the instantaneous phase difference (θm+1
k − θm

k ) (see, e.g., Fig. 3d). When the 
instantaneous phase difference is distributed uniformly, ∣IPC ∣  = 0, while ∣IPC ∣  = 1 when the phase difference is a constant. 

Appendix B. Testing the cross-validation method to estimate wavelength by using numerical signals 

To augment the database to test our proposed cross-validation method to estimate wavelength, we supplement the experimental data from the LS- 
WICE project with synthetic numerical data. 

Using Prony’s method to analyze 75 measured signals for vertical displacements of ice floe from test series #1000, test group #3100 and laboratory 
experiments on wave-ice interaction from the other two wave tanks (Montiel et al., 2013b; Yiew et al., 2019), we observe several frequency com-
ponents embedded in the motion signals where the fundamental harmonic is dominant and the motion signals selected in the steady time window is 
not completely stationary (not shown). Hence, we propose following equations to generate numerical wave signals (see also Li et al., 2020b). 

zm
k =

∑10

j=1
am

j exp
(
− αm

j tk

)
sin
(

2π
Tj

tk +ϕm
j

)

+ εk (B.1)  

am
1 = awiexp[ − α(xm − x1) ] (B.2)  

am
j ̃U

(

0,
am

1

β

)

, j = 2, 3,⋯, 10 (B.3)  

∣αm
1 ∣ = 10− 3 (B.4) 
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∣αm
j ∣̃U

(
0, 10− 3), j = 2, 3,⋯, 10 (B.5)  

ϕm
1 = 2π − (xm − x1)

2π
Lwi

(B.6)  

ϕm
j ̃U

(
ϕm

1 ,ϕm
1 + 0.02π

)
, j = 2, 3,⋯, 10 (B.7)  

where the amplitudes of each component are aj
m, j = 1, 2, ⋯, 10; the superscript and subscript m denotes the mth marker; tk indicates the kth time 

instant; Tj = fw− 1[1,0.2,0.5,0.8,1.5,2,3,4,5,6] indicates the period of each wave component; the grow/decay rate of each component is ∣αj
m∣, where j 

= 1, 2, ⋯, 10; the phase angle of each component is ϕj
m, where j = 1, 2, ⋯, 10; ε represents white noise (0% for a smooth signal and 5% for a noisy 

signal); awi is the oscillation amplitude of the first marker; α denotes the spatial attenuation coefficient; β = 50 for a smooth signal and β = 20 for a 
noisy signal. The sign of αj

m is determined by the sample of the uniform distribution U(0,1), where αj
m > 0 when the sample is larger than 0.5, otherwise 

αj
m < 0. Lwi is the wavelength of the waves beneath ice cover. 

The values of fw, awi, α and Lwi are taken from the literature, except Lwi and awi for cases #1 ~ 5 and #7, which are assigned with assumed physical 
values; these values are listed in Table B.1. d is the constant longitudinal separation (along the wave propagation direction) between adjacent markers. 
Note that we tailor the proposed method for Qualisys markers, and in principle, the method is applicable for other closely spaced sensors.  

Table B.1 
Example numerical cases  

Case # fw[Hz] Lwi[m] awi[mm] d[m] d/Lwi [%] α[m− 1] Sources 

1 0.500 6.25 20.0 0.500 8.00 − 0.00297 Cheng et al. (2019) 
2 0.556 5.06 18.0 0.500 9.88 0.0682 Cheng et al. (2019) 
3 0.625 4.00 16.0 0.500 12.5 0.0343 Cheng et al. (2019) 
4 0.667 3.51 14.0 0.500 14.2 0.0242 Cheng et al. (2019) 
5 0.714 3.06 12.0 0.500 16.3 0.0235 Cheng et al. (2019) 
6 0.800 2.26 9.93 0.230 10.2 0.0240 Sree et al. (2018) 
7 0.909 1.89 10.0 0.500 26.5 0.0235 Cheng et al. (2019) 
8 1.04 1.35 9.85 0.230 17.0 0.193 Sree et al. (2018) 
9 1.43 0.710 3.81 0.0740 10.4 0.340 Sree et al. (2018) 
10 1.50 0.704 8.67 0.230 32.7 0.715 Yiew et al. (2019) 
11 2.00 0.367 8.42 0.0740 20.2 0.140 Sree et al. (2018) 
12 2.00 0.437 3.90 0.0740 16.9 0.270 Sree et al. (2018)  

We run simulations to generate wave elevations according to Eqs. B.1 ~ B.7 and Table B.1, where β = 50 and εk = 0 for smooth signals and β = 20 
and there is 5% white noise for noisy signals. The number of random simulations is 500. Considering the small number of steady wave cycles in the 
small wave flume/ice tank (Sree et al., 2018; Yiew et al., 2019), we simulate only four wave cycles. 

As an example, the synthetic smooth and noisy signals of all six markers for Case #6 are exhibited in Fig. B.1. In Figs. B.1b,d, one can easily observe 
the existence of white noise when compared with Figs. B.1a,c.

Fig. B.1. One realization of a smooth signal (a, c) and a noisy signal (b, d) for Case #6. A smooth signal means that β = 50 and εk = 0 in Eq. B.1 and Eq. B.3. A noisy 
signal means that β = 20 and there is 5% white noise in Eq. B.1 and Eq. B.3. 

Fig. B.2 displays the results for the smooth signals. The normalized error (NE) relative to the ground-truth value Lwi is within 4% by means of the 
GPR method, while the ICS method yields lower NEs (less than 2.5%). The mean of NEGPR and NEICS, i.e., NEm, is less than 2.5%. 

The results for noisy signals are presented in Fig. B.3. Similar to Fig. B.2, NEICS is smaller than NEGPR. NEm lies within 4.5%. Although the GPR 
approach produces less accurate estimates of wavelengthsthan the ICS approach based on Figs. B.2 and B.3, a combination of these two methods is 
needed because only the mean of the results from these two methods accurately quantifies the wavelengths from the experiment (Figs. 4 and 5). 
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Fig. B.2. Normalized error (NE) in the wavelength estimates with respect to different cases for smooth signals. A smooth signal means that β = 50 and εk = 0 in Eq. 
B.1 and Eq. B.3. Red crosses represent outliers. 

Fig. B.3. Normalized error (NE) in the wavelength estimates with respect to different cases for noisy signals. A noisy signal means that β = 20 and there is 5% white 
noise in Eq. B.1 and Eq. B.3. The red crosses represent outliers. 

Appendix C. Proper orthogonal decomposition and smooth orthogonal decomposition. 

C.1. Proper orthogonal decomposition (POD) 

Let the measurement matrix of wave elevations be: 

Z =
[
z1, z2,⋯, zp

]
∈ ℝn×p (C.1)  

where n is the number of points sampled in the time domain and p represents the number of measurement points in the spatial domain. 
The optimization problem of POD can be translated into an eigenvalue problem as (Feeny and Liang, 2003): 

(
ZT Z

)
Ψ = ΨΛ (C.2)  

where the columns of the eigenvector matrix Ψ ∈ ℝp×p give proper orthogonal modes (POMs), i.e., spatial modes or basis vectors of the orthogonal 
coordinate system to be found; diagonal elements of the eigenvalue matrix Λ are proper orthogonal values (POVs). In other words, POD fits the best 
ellipsoid to the data matrix in the least squares sense, where the length of the semiprincipal axes corresponds to the standard deviation in the projected 
points on the principal axes and represents the square root of POVs (Gedikli et al., 2017). Each POV (λi) is related to the energy in the corresponding 
mode (or subspace dimension); hence, POD provides a way to perform an energy-optimal order reduction. 

For practical calculations, we employ economical singular value composition (SVD) to solve the POD problem, which is expressed as (Chatterjee, 
2000; Epps and Techet, 2010): 

Z = UΣΨT (C.3)  

where the columns of UΣ ∈ ℝn×p represent proper orthogonal coordinates (POCs), the columns of the orthonormal matrix U ∈ ℝn×p denote the 
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temporal modes; the diagonal singular value matrix Σ ∈ ℝp×p is related to Λ by Σ2 = Λ; the columns of orthonormal matrix Ψ ∈ ℝp×p represent spatial 
modes (Feeny, 2002; Amabili et al., 2003; Ilbeigi and Chelidze, 2017; Epps and Techet, 2010). 
C.2. Smooth orthogonal decomposition (SOD) 

SOD as an optimization problem can be translated into a generalized eigenvalue problem (Chelidze and Zhou, 2006): 
(
ZT Z

)
Ψ̃ =

(
VT

z Vz
)
Ψ̃ Λ̃ (C.4)  

where Λ̃ is the diagonal generalized eigenvalue matrix, the columns of Ψ̃ are the smooth projection modes (SPMs) that represent the nonorthogonal 
coordinate system to be found and Vz is the first time derivative of Z. 

For stable computations, we apply the economical generalized singular value decomposition (GSVD), which is formulated as (MATLAB, 2019; 
Chelidze, 2014; Gedikli et al., 2020): 

Z = ŨCΦT (C.5)  

Vz = ṼSΦT (C.6)  

CT C+ ST S = I (C.7)  

where Ũ and Ṽ are orthonormal matrices; C and S are nonnegative diagonal matrices. 
A vector of generalized eigenvalues, i.e., the vector formed by diagonal elements of Λ̃, is calculated by elementwise division between diag(CTC) and 

diag(STS) (Chelidze, 2014). 
According to Chelidze (2014), smooth orthogonal modes (SOMs) that represent spatial modes are the columns of Φ ∈ ℝp×p. Smooth orthogonal 

coordinates (SOCs) that represent temporal mode shapes are the columns of Q = ZΦ− T = ŨC ∈ ℝn×p. SPMs and SOMs are related to each other by Ψ̃ =

Φ− T. Smooth orthogonal values (SOVs), which imply the smoothness of SOCs, are given by the generalized eignevalues, viz. the diagonal entries of Λ̃. 
Smoother SOCs correspond to larger SOVs. 

The oscillation period of each mode can be estimated as (Chelidze and Zhou, 2006): 

Ti = 2π
̅̅̅̅

λ̃i

√

(C.8)  

where λ̃i is the ith diagonal element of Λ̃. 

Appendix D. Theoretical wave dispersion relations for wave-ice interactions 

Wave dispersion relations corresponding to open-water conditions, mass-loading model and elastic-plate model are as follows. The open-water 
wave dispersion relation is (Holthuijsen, 2010): 

ω2
w

g
= kowtanhkowH (D.1)  

where ωw is the angular wave frequency in radians; kow is the open-water wavenumber; and H is the water depth. 
The wave dispersion relation that corresponds to the mass-loading model (Peters, 1950; Weitz and Keller, 1950) is: 

ρwω2
w

ρwg − ρihiω2
w
= kwtanhkwH (D.2)  

where ρ is the mass density in kg/m3. The subscripts i and w represent ice and water, respectively; kw denotes the wavenumber of the waves passing ice 
cover. 

The wave dispersion relation for the elastic-plate model (Wadhams, 1981, 1986; Fox and Squire, 1990) is expressed as: 

ρwω2
w

Dik4
w + ρwg − ρihiω2

w
= kwtanhkwH (D.3)  

where Di is the flexural rigidity of ice. 

Appendix E. Empirical equations for the equivalent elastic modulus 

Sakai and Hanai (2002) proposed the following formulas (Eqs. E.1 ~ E.3) to estimate the equivalent elastic modulus based on experimental wave 
celerity variations under uniform-size rectangular model ice floes. 

Eim =

(
Eeq

Ei

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 IF ≤ 0.145
IF − 0.145

0.455
0.145 < IF ≤ 0.6

1 0.6 < IF

(E.1) 
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IF =

̅̅̅̅

hi

Ic

√

ln
Ii

Ic
(E.2)  

Ic =

(
Di

ρwg

)0.25

(E.3)  

where Ei and Eeq are the physically measured elastic modulus and the equivalent elastic modulus when viewing whole ice cover as a homogeneous 
continuum, respectively. Ii and Ic are the length and characteristic length of the discrete ice floes, respectively. 

Appendix F. Open-water tests 

The water depth and water density for open-water tests are 2.51 m and 1005.5 kg/m3, respectively. 
The parameters of waves for open-water tests are summarized in Table F.1.  

Table F.1 
Summary of wave parameters for open-water tests  

Test run Wave parameter 

Amplitude Period Length Steepness 
aow [mm] Tw [s] Low [m] kowaow [×10− 2] 

#005 25 1.4 3.06 5.13 
#012 50 2 6.17 5.09  

Appendix G. Overview of the experimental setup 

After all the test runs completed in test group #3100, the top-view images of the ice cover were taken by using a camera fixed on a crane. These 
images were stitched by means of the FIJI image processing tool (Schindelin et al., 2012) and in-house MATLAB scripts, similar to Li et al. (2020a). 
Fig. G.1.shows the final stitched result. 
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Fig. G.1. Ice cover in test group #3100 
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