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Abstract: People living in urban areas are often exposed to heat and inundation caused by heavy 
rains. Therefore, pedestrian routing in areas exposed to weather-related threats can be of value to 
citizens. In this study, water accumulated on roads, sidewalks and footpaths after rainfall and 
snowmelt was used as a case of adverse environmental conditions. Pedestrian routing was 
implemented in the web tool WayFinder and a group of 56 participants tested the tool in Trondheim, 
Norway. The study aimed to gain insight into their perspectives on the implemented pedestrian 
routing functionality to examine to what extent pedestrians find such functionality helpful for 
navigating in regions that are likely to be inundated. Each participant was asked to (1) use the tool 
in practice; (2) when walking, report on observed inundated areas; and (3) complete three 
questionnaires to provide feedback on the WayFinder tool. Although most of the participants were 
successful in using WayFinder, they preferred the selection of routes that passed through areas 
likely to be inundated and obtaining information about the risks than selecting a single route 
suggestion that already avoided exposed areas. 
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1. Introduction 
Route planning functionality is common in modern web mapping tools and in 

navigation systems in smart devices. Although many programming solutions exist [1], 
there are still challenges in the development of route planners to support navigation for 
certain means of transport (e.g., cycling, walking) and target groups (e.g., the elderly, 
tourists) in specific environmental conditions (e.g., heavy rain, snowy roads). 

Route planners are typically intended to support drivers in finding fastest 
connections and to avoid, for instance, road obstacles such as traffic jams [2–4]. Route 
planners that support other means of transport have attracted less attention in the 
literature [5]. Moreover, previously developed solutions for specific users, such as those 
with physical disabilities, typically have limited applicability due either to sophisticated 
methods or to lack of easily available data and technology [6]. As a result, some route 
planners exist as proof-of-concept implementations limited to certain areas and specific 
conditions. Therefore, any attempts to make rare routing solutions more available are 
appreciated by practitioners. Supporting pedestrians in route planning in urban 
environments is timely, as urban populations are growing and urban citizens are 
particularly exposed to extreme weather-related events such as high temperatures and 
pluvial floods. Therefore, route planners can be of value to individual citizens, especially 
pedestrians and those vulnerable with limited mobility and health problems [6]. 

The study on which this paper is based constitutes part of overarching efforts under 
the umbrella of the CitizenSensing project [7]. The efforts are to support pedestrian 
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navigation in adverse environmental conditions. This study contributes to these efforts 
with an empirical examination of a pedestrian routing functionality implemented in the 
WayFinder web tool [8] that helps to navigate in urban areas with accumulated surface 
water. Accordingly, in this study we wanted to gain insight into user perspectives on the 
WayFinder routing tool to verify to what extent users find such tools of value to their 
needs. Our contribution to the field of GIScience is of an operational nature with 
applicable suggestions. We also identified some essential issues regarding the 
expectations and perspectives of citizens who are likely to use pedestrian routing tools. 

2. Related Research 
2.1. Route Planners 

Route planners have been found to be useful for various user groups. Hence, they 
are commonly used in various map-based applications such as scenic route planners [9–
11], route planners for cyclists [12], and route planners for specific places [13] or for use 
during specific events [14]. Route planners are also used in crisis and emergency 
management such as traffic evacuation [15]. Regardless of their main purposes, route 
planners have one feature in common, they all suggest routes based on multivariate 
optimization, taking into account specific conditions that directly concern the route to be 
passed (e.g., route length, time distance) and those that concern the environment (physical 
context, for example, land cover, steepness) through which the route is to pass. The 
information about the environment can concern its present state, as well as its historical 
or predicted future characteristics such as weather-related adverse conditions. 

2.2. Walkability and Pedestrian Navigation in Exposed Areas 
The assessment of the built environment in terms of being conducive to walkability 

emerges as a core challenge of planning urban areas [16]. Walkability concerns flow 
capacity and perceives an urban space as more or less convenient for pedestrians if they 
can move in an unimpeded manner without obstacles and with as much space as possible 
[17]. As Lo claims [17], pedestrian transportation is addressed in the scientific literature 
with far less intensity than motorized vehicular modes. However, there are studies that 
employ walkability indices as a basis for comparing different cities around the world and 
to create walking friendly cities [18]. Such indices use various variables [16], for instance, 
measures of permanent and temporary obstacles on walking paths to describe the 
convenience and attractiveness of an urban space. 

A large body of scientific literature reports studies by architects and urban planners 
on mapping areas that are either recommended or excluded for use by pedestrians or 
other users of public spaces during specific extreme events, for example, [6,19,20] such as 
high temperatures [21] and pluvial flooding [22]. The former (i.e., heat) can cause risk to 
human health and well-being. However, extreme heat can occur over large areas and can, 
in combination with other factors such as humidity, air pressure and air pollution, 
increase the risk of negative health impacts and death [23]. Therefore, public urban spaces 
can be only partially adapted to extreme heat and citizens also require other types of 
support, especially those in vulnerable groups such as the elderly or children. In such 
situations, there is a need for pedestrian navigation tools that facilitate the planning of 
daily activities during heat events [6]. 

During another type of extreme event, namely pluvial flooding, the safety of citizens 
can be compromised when they are exposed to flows that exceed their ability to traverse 
flow paths [22]. More frequently, surface water accumulated on streets leads to less 
extreme situations, such as when a cloudburst or meltwater creates flood conditions that 
block streets and sidewalks because the urban drainage system becomes filled to capacity, 
resulting in water flowing out into streets [24]. Such conditions can become even worse, 
if there are snow and ice traces remaining on the streets. In such cases, pedestrian 
navigation tools can support citizens in avoiding inundated areas through displays of 
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“blue spots.” The latter are modeled data on areas where surface water is likely to 
accumulate [25]. However, it is of importance to have a good understanding of what the 
challenges are in terms of such tools being used by pedestrians and to gain insights into 
the perspectives of those who use pedestrian route planners in practice. Therefore, user 
studies are needed to collect necessary evidence. 

2.3. Empirical Studies of Route Planners for Use by Pedestrians 
Empirical studies of pedestrian route planners can be divided into two groups. The 

first group of studies focuses on technologies, such as algorithms for wayfinding and 
necessary context information for route planners. These studies also concern functionality 
and design of such tools. Holone et al. [5], for example, explored the potential of a 
pedestrian navigation with user-generated content through a combination of fieldwork 
and laboratory trials, using real life data. In turn, Beeharee & Steed [26] examined how 
the use of photos can facilitate wayfinding in unusual situations when the user must pass 
through a specific gate or along a certain path. In these cases, photographs can provide 
information and reassurance to support the navigation decision. More recently, Fuest et 
al. [27] conducted a user study to investigate the potential of six design variants for 
influencing route choices. 

The second group of empirical studies focuses on user perspectives and pays 
particular attention to criteria such as user satisfaction and the usefulness of route 
planning tools. For instance, Arenghi et al. [13] carried out a usability experiment 
involving two versions of a mobile application for accessible wayfinding and navigation 
in an urban university campus. Among their identified design issues was the ability for 
users with physical disabilities to indicate the presence of barriers. In an earlier study, 
Gavalas et al. [9] conducted a user evaluation of the scenic route planner ‘Scenic Athens’ 
to validate the quality of tour recommendations as well as the usability and perceived 
utility of the application. 

3. Materials and Methods 
3.1. Aim 

Although available routing services and ubiquitous geographic data make context-
aware routing tools feasible, we know little about pedestrians’ experiences in using such 
tools for navigation in exposed areas, such as regions that are likely to have surface water 
accumulated. Moreover, it is beneficial for navigation developers to know which routing 
approach pedestrians prefer—the approach that suggests routes that avoid exposed areas 
or the approach that displays routes that pass through such areas and provides 
information to the users about the risk. While the former approach suggests routes likely 
to be longer than those suggested by the latter one, its essential advantage is that it 
provides “ready-to-use” route suggestions that do not require any analytical capacity on 
the part of the user. Alternative route suggestions are often shorter as they pass through 
exposed areas. However, the user may need to analyze the situation and make their own 
decision regarding safety and comfort issues. For alternative route suggestions, additional 
information about the length of exposed areas a user needs to walk, may be essential to 
assess the risk of, for example, getting one’s feet wet. 

3.2. Empirical Material: WayFinder and Its Data Content on “Blue Spots” 
A customized prototype of WayFinder was used as the empirical material. For the 

purpose of the study, the prototype was equipped with additional functionality to 
facilitate its use for data collection. 

WayFinder uses a mixed solution regarding the route planner approach [8]. The tool 
works as a “passive route planner” providing a background layer with modeled areas 
likely to be inundated, to be visually explored by the user when searching for an “optimal” 
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route. Furthermore, the tool also works as a context-aware “active route planner” since 
the mapped inundated areas are included in its routing mechanism. 

3.2.1. Data Content of the WayFinder Tool: The “Blue Spots” 
We tested the WayFinder prototype that used mapped representations of “blue 

spots” [25,28] as its data content. Blue spots are terrain sinks that are likely to be inundated 
during extreme rainfall that exceeds the capacity of the urban drainage system. However, 
WayFinder is a generic tool and its data content can be easily tailored to specific demands. 
Thus, blue spots can be replaced with zones representing other kinds of exposure, such as 
heat exposure, and the user can be provided with routing advices, such as where to go to 
escape high temperatures. 

The blue spots mapping was made for the city of Trondheim using the method by 
Balstrøm and Crawford [25]. Figure 1 shows the results of the blue spot mapping overlaid 
on the map of Trondheim downtown. There are many blue spots scattered around 
downtown; however, most of the potentially inundated areas are located in the Brattøra 
district, which is visible in the top right corner of the map. Next, blue spots represented 
as vector polygons were incorporated in the tool’s routing algorithm that enabled 
avoidance of given areas. Moreover, for the purpose of displaying the blue spots mapping 
in WayFinder, vector polygons were converted to a PNG file that was used in the tool as 
a raster overlay. 

 
Figure 1. “Blue spots” in the city of Trondheim and four places used as starting points for the 
walks in the empirical study. The places are shown along with their 200-m buffers. 

3.2.2. Functionality 
To provide participants with several routing options and let them freely choose the 

option that fits them best, the tool employs two routing services: Google Maps Directions 
API (Google, Mountain View, CA, USA) and Open Route Service API(HeiGIT gGmbH, 
Heidelberg Institute for Geoinformation Technology at Heidelberg University, Germany). 
The user’s geographic position is either retrieved from the device’s GPS receiver, or 
manually specified by the user (e.g., “Gamle bybro” in Figure 2A). The user’s position is 
then shown on a map (the blue drop marker in Figure 2B) along with the positions of the 
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objects serving as alternate endpoints of walks. For the purpose of the empirical study, 
the objects were intentionally limited to cafés, museums, parks, libraries, and 
supermarkets located within a donut buffer from the user’s position (not closer than 400 
m and not further away than 1000 m). Adequate map symbols were used to represent the 
objects’ functions (e.g., a book symbol for a library, a bag symbol for a supermarket). At 
this point, the user is supposed to select one of the available endpoints and in response 
WayFinder provides up to five alternative route suggestions (Figure 2C shows four 
alternative route suggestions). Among all suggestions, only one avoids blue spots. The 
other suggested routes may pass through them, in which case, the total length of the parts 
that intersect blue spots is provided in the ROUTES INFO panel at the bottom left corner 
of the map display (Figure 2C). 

 
Figure 2. A sequence of screenshots of the WayFinder tool demonstrating how pedestrians use the 
tool to search for route suggestions. First, the user’s geographic position is specified (screenshot A). 
Next, the user selects one of displayed map symbols of the objects serving as alternate endpoints of 
walks (screenshot B). In response, WayFinder provides four alternative route suggestions 
(screenshot C). 

Next, the user selects one of the route suggestions by clicking on a corresponding 
SELECT button (Figure 2C) and a dialog window appears, where the user needs to 
provide a username and confirm the selection. As a result, the selected route suggestion 
is saved as a GeoJSON file in the database and the user is taken back to the map, where 
only the selected route is displayed. At this point, the user starts walking and the position 
is tracked by WayFinder and continuously updated on the tool’s map. Hence, the user can 
follow the route on the map and compare it with the background blue spot mapping. After 
reaching the selected endpoint, the user clicks on the DONE button and is taken back to 
WayFinder’s opening window. 

3.2.3. Implementation 
The assumption was to develop WayFinder using broadly available web 

technologies. Therefore, its prototype was developed using the Angular open-source 
front-end web application framework (https://angular.io/ accessed on 28 May 2021). 
Google Maps Directions API and Open Route Service have been used to retrieve route 
suggestions. The route suggestions from Google Maps Directions do not avoid blue spots. 
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This may happen unintentionally, but there are no specific rules for avoiding exposed 
areas included in our implementation. Instead, for each of the suggestions, the share of 
the parts passing through blue spots is calculated and provided to the users. We used 
Turf.js API to calculate the lengths of the parts that intersected blue spots. In turn, Open 
Route Service API is the routing service that we implemented to establish “area avoid 
polygons” representing modeled blue spots and to search for route suggestions that avoid 
such areas (Route Y in Figure 2C). Additionally, Open Route Service was used to search 
for one optimized route suggestion intersecting exposed areas (Route X in Figure 2C), for 
which the share of the parts passing through blue spots is calculated and provided to the 
users. 

3.2.4. Layout 
WayFinder was designed for use on portable devices with small screens and its 

layout is therefore minimalistic. Moreover, the tool was intentionally customized for the 
purpose of the study, it means, to provide users with route suggestions with no extra 
information and with very limited auxiliary content. Therefore, WayFinder’s map display 
was equipped with basic interactive functions such as zooming and panning. 
Furthermore, the user could alter the map style between satellite image and street map 
only in the tool’s opening window. The opening window also allowed the user to go to 
the Google Street View mode to ensure that the start location of the walk was correctly 
registered. 

3.3. Procedure and Methods 
Before attending the empirical study, the participants were asked to read and sign a 

consent form. The form, among others, contained description about the data we were to 
collect, and how we planned to use the data in the study. The empirical part of the study 
consisted of three stages (Figure 3). In the first stage, the participants were asked to 
complete the background questionnaire (Q1-BQ). Thereafter, in the second stage, the 
participants were asked to use WayFinder to search for a route and walk along it. While 
walking, the participants were asked to use a participatory web application to register at 
least one observation with a photo. After the walk, participants were asked to fill in the 
post-walk questionnaire (Q2-QW). They were encouraged to use WayFinder more than 
once. This meant that each time participants used WayFinder, they repeated the sub-steps 
of the second stage. Finally, in the third stage, after all walking trips, the participants were 
asked to fill in the summary questionnaire (Q3-SQ). 

 
Figure 3. The three stages in the data collection. 

We used three empirical methods: (1) practical verification, (2) observations through 
a participatory web application, and (3) questionnaires. As complementary, the methods 
enabled us to collect diverse empirical data. 

3.3.1. Practical Usage of WayFinder 
For the best possible trial of the tool, the participants were requested to use 

WayFinder after heavy rainfall events, of course, with keeping safety rules. Moreover, to 
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avoid possible inconsistent data collection, we suggested that participants should start 
their walks from any of the following four places in Trondheim: Ilsvikøra, Torget, Gamle 
Bybro and Singsaker studenthjem (Figure 1). The selection of the four places was intended 
to cover locations in Trondheim that would be easily recognizable and accessible to the 
participants. 

The use of WayFinder allowed for the collection of empirical data that concerned 
each route selected for a walking trip undertaken by the participants. The data contained 
also the name and type of the endpoint (e.g., café or library), and the submission 
timestamp. Each submission was saved as a unique GeoJSON file. 

3.3.2. Observations through the CitizenSensing Web Application 
While walking along selected routes, the participants were instructed to observe 

inundated places or, if they selected a route avoiding potentially inundated areas and 
thus, observed none of “blue spots,” they could make another observation, for example, 
debris or ice blocking an outlet. The participants registered their observations using the 
CitizenSensing web application [8]. Each observation included a timestamp, geographical 
coordinates, a photo, information about an observation type (e.g., “heavy rain,” “low 
temperature”), and a comment. The observations were used to verify whether participants 
walked the routes they selected and were compared with the blue spot mapping used in 
the WayFinder tool. 

3.3.3. Questionnaires 
Below, we outline the three questionnaires used in the study. The detailed structure 

of the questionnaires is presented in Tables S1–S3 in the online Supplementary Materials. 
The background questionnaire (Q1-BQ) was completed before any walks were taken. 

It contained four questions with responses on a scale from 1 (poor) to 7 (very good). In the 
first two questions, participants were asked to rate their skills in terms of use of maps for 
city walks and in terms of spatial orientation in urban space, respectively. These two 
questions were posed to provide insights into the participants’ capabilities regarding the 
use of a map display providing route suggestions. Participants were in the next two 
questions asked to rate their familiarity with Trondheim’s topography and weather 
conditions. These questions were designed to verify whether place-specific knowledge 
influenced the study’s outcomes. 

The post-walk questionnaire (Q2-QW) was completed after the end of each walk. 
Consequently, the number of completed post-walk questionnaires depended on the 
number of individual walks made by each participant. Q2-QW was composed of five 
questions. First, we asked whether the participant had followed one of WayFinder’s 
suggested routes, and if not, why not (five predefined answers included e.g., “I did not 
have Internet connection” and “I did not know how to use the tool”). Second, we asked 
participants to provide the code of the selected route and, third, we asked for their reason 
for selecting a specific option (four predefined answers included e.g., “to avoid potentially 
inundated areas”). This question was designed to validate the routes saved in GeoJSONs 
in WayFinder. In the fourth question, participants were asked to rate the completeness of 
the blue spot mapping used in the WayFinder tool. The fifth and final question was 
intended to generate feedback about the number of observed inundated areas that were 
not included in the tool’s blue spot mapping. 

The summary questionnaire (Q3-SQ) was filled after all walks had been completed. 
It consisted of four questions about participants’ experiences when using the tool. First, a 
question with seven response options was used to let the participants state how useful 
they found the WayFinder tool. In the second question, we asked participants to identify 
which user type they thought would be interested in using the tool. They could select one 
or more predefined options, such as “Tourists” or “Elderly people.” In the third and 
fourth question, the participants were asked to rate their satisfaction when using the  
WayFinder tool and its functionality, respectively. 
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3.4. Participants 
A total of 65 participants (40 females and 25 males) participated in the empirical 

study. They were all first-year undergraduate students in geography. The background 
questionnaire was completed by 62 participants; three participants did not respond. The 
participants rated their skills in the use of maps for city walks as slightly above moderate, 
with average score of 5.0 (on a scale from 1 to 7). The participants also reported slightly 
above moderate skills in spatial orientation in urban space, with average score of 5.1. 
Furthermore, participants reported a slightly more than moderate acquaintance with the 
city of Trondheim and the weather conditions in the city, with an average score of 5.2 for 
both aspects. 

Given that the scores were slightly above moderate levels, we claim that the 
participants constituted a suitable sample for the empirical testing. They were able to 
make conscious use of WayFinder and to report on it critically. 

4. Data Analysis 
4.1. Data Preparation 

The data collection was held from September to November 2020. Although 65 
participants used WayFinder during this period, their engagement was not always in 
accordance with the instructions. Therefore, in the data analysis, we excluded a 
substantial number of the registered walked routes; we kept 133 (57%) out of the 
registered 234 GeoJSONs. A common mistake made by the participants was repeatedly 
saving the same route as they progressed along it. This resulted in data relating to the 
same route being saved several times. Another mistake concerned registering alternative 
routes without actually walking along them. Consequently, a number of routes were 
registered with minor delays by the same participants as reflected in the routes’ 
timestamps. Furthermore, we excluded participants who did not complete all required 
questionnaires. At the end, the final dataset consisted of the data from 56 participants 
(86%) for further data analysis. 

4.2. Walking Trips: Registered GeoJSONs and Completed Q2-QWs 
Figure 4 shows 133 walked routes registered by the selected 56 participants. The 

longest route was 1308 m, while the shortest was 429 m (average 701 m). Most participants 
walked twice; however, for example, there were seven participants who did four walks. 
Although nine GeoJSONs were saved as avoiding blue spots, the intersection analysis 
revealed that there were 12 such routes (9.0%), meaning that in three cases also Google 
Maps Direction API provided routes that avoided blue spots. The destinations of the 
walking trips were of diverse types: 41 walks (30.8%) ended at a “restaurant, café,” 28 
(21.1%) at a “supermarket, grocery, store,” 24 (18.0%) at a “tourist attraction, museum,” 
16 (12.0%) at a “park,” 15 (11.3%) at a “library,” and 9 (6.8%) at an “art gallery.” 

We analyzed our participants’ statements regarding the reasons for selecting specific 
routes, provided through Q2-QWs. The participants declared that they selected the “route 
with the shortest parts passing through blue spots” in 44 cases out of 133 (33.1%), the 
“shortest route” in 43 cases (32.3%), the “route avoiding blue spots” in 8 cases (6.0%), and 
“other choice” in 38 cases (28.6%). In the latter case, the participants were asked to specify 
the reason. Among the various explanations were “I chose a path I was not familiar with” 
and “I chose the one with most accumulated water.” There were minor differences 
between the statements in Q2-QWs and the actual route characteristics saved in 
GeoJSONs. For instance, in Q2-QWs, the selection of the “route avoiding blue spots” 
appeared eight times, whereas such a selection was saved in nine GeoJSONs. 

We have also compared the lengths of selected route suggestions with the lengths of 
alternative suggestions. For 18 out of 133 routing requests, the routing suggestion 
avoiding blue spots was unavailable. Moreover, in another two routing requests, the 
suggestion avoiding blue spots was much longer than the selected route suggestion. If the 
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participants selected a route suggestion other than the route avoiding blue spots, the latter 
(if existed and was not much longer) was on average 16.4% (SD = 22.3) longer than the 
selected route suggestion. Furthermore, if the participants selected the route suggestion 
avoiding blue spots, the latter was on average 10.5% (SD = 14.3) longer than the shortest 
route suggestion. In 22 cases, the selected route suggestion was longer than the suggestion 
avoiding blue spots (on average, 10.5% longer, SD = 5.7). Lastly, if the participants selected 
a route suggestion other than the shortest route or other than the route avoiding blue 
spots, the selected route was, on average, 10.6% (SD = 8.4) longer than the shortest 
available route suggestion. 

 
Figure 4. The 133 walking trips registered by the selected 56 participants. 

4.3. Walking Trip Choices by Participants’ Skills 
We investigated whether there were statistically significant differences in the skills 

and acquaintances of those who declared different reasons for selecting specific route 
suggestions. As shown in Figure 5, the skills and acquaintances were generally on similar 
level. Furthermore, for three of the considered skills and acquaintances—proficiency in 
the use of maps for city walks (p = 0.691), spatial orientation in the urban space (p = 0.641), 
and acquaintance with the weather conditions in Trondheim (p = 0.083)—a Kruskal–Wallis 
H test did not provide any evidence of differences between any of pairs of skill rates for 
various reasons for selecting specific route suggestions. However, for our “Acquaintance 
1” (acquaintance with the city of Trondheim), a Kruskal–Wallis test provided evidence (H 
(3, N = 133) = 9.580, p = 0.022) of a difference between the mean ranks of at least one pair 
of provided reasons for selecting specific route suggestions. Dunn’s pairwise tests 
revealed evidence (marked with the blue asterisk in Figure 5) of differences between 
participants who declared “other choice” and those who declared walking along the 
“shortest route” (p = 0.034, adjusted using the Bonferroni correction). 
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Figure 5. Users’ skills and acquaintances and reasons for selecting a specific route suggestion 
(black asterisks in the box plots show outliers in the datasets, whereas the blue asterisk above the 
box plot shows statistically significant differences). 

4.4. Observed Places with Accumulated Surface Water 
The places where 245 photos were registered through the CitizenSensing web 

application to document walking trips are shown in Figure 4. However, 25 out of 133 
walks did not have any photos assigned to them. For the remaining 108 walks, two photos 
on average were registered per walk. A majority of the photos (226 or 92.2%) documented 
effects of heavy rainfall. Other content categories were “snowfall” (1.2%), “cold 
temperatures” (3.3%) and “seasonal observations” (3.3%). Most of the photos showed 
puddles of various size and shape, either on streets or on sidewalks, such as the puddle 
visible in Figure 6C, and large puddles’ “traces,” such as those visible in Figure 6A,B. The 
latter two observations are in Figure 6A,B presented also on a map to provide a better 
insight into the topographic context. Regarding observations registered under types other 
than “heavy rainfall,” the participants observed debris or ice blocking water flows 
through drainage outlets. For instance, the observation in Figure 6D was registered as 
“snowfall,” whereas the observation in Figure 6E was registered as “seasonal 
observation.” 

Most of the photos were taken at a certain distance from the objects in order to 
provide a view of their context, such as photo B in Figure 6. A total of 128 (52%) out of 245 
observations were made up to 20 m away from the mapped blue spots, and a further 73 
photos (30%) were taken even farther away. Finally, 44 (18%) out of 245 observations were 
done within the mapped blue spots (e.g., Figure 6A). 

In the post-walk questionnaire (Q2–QW), participants were asked to rate, on a scale 
from 1 (very incomplete) to 7 (very complete), how complete they thought the blue spots 
mapping was. The participants reported that the completeness was more than moderate, 
with an average score of 5.4. We also verified whether there were statistically significant 
differences in the rates of those who declared different reasons for selecting specific route 
suggestions. However, a Kruskal–Wallis H test (p = 0.894) did not provide evidence of 
differences between any of the pairs of rates for various reasons for selecting specific route 
suggestions. 

Furthermore, in Q2–QW, the participants were asked to report on the unmapped 
blue spots they noted while walking. The participants reported on average 2.1 such places 
per walking trip. However, a Kruskal–Wallis H test (p = 0.831) did not provide evidence 
of differences between the numbers of reported unmapped blue spots for the various 



ISPRS Int. J. Geo-Inf. 2021, 10, 365 11 of 18 
 

 

reasons for selecting specific route suggestions. We hypothesized that participants who 
avoided blue spots did not observe any. 

 
Figure 6. Examples of photos documenting the walking trips made by the participants. Photos (A,B) 
are supported by maps showing their registration positions and the directions from which they were 
taken (map source: Open Street Map), whereas photos (C—E) show puddles of various size and 
shape and leaves blocking an outlet typically documented by the participants. 

4.5. The Assessment of the WayFinder Prototype Based on the Data Collected through Q3-SQ 
We asked participants to rate from 1 (low usefulness) to 7 (high usefulness) how 

useful they found the WayFinder tool. The participants reported moderate usefulness, 
with an average score of 4.5. Furthermore, we wanted to know how satisfied they were 
when using the WayFinder tool, again on a scale from 1 (low satisfaction) to 7 (high 
satisfaction). They reported moderate satisfaction, with an average score of 3.8. We also 
asked the participants to rate from 1 (low) to 7 (high) the functionality of the tool. They 
reported slightly below moderate functionality, with an average score 3.4. Lastly, in the 
questionnaire, we asked about user groups that might be interested in using the tool. 
Wheelchair users, elderly people, and parents with young children in prams or strollers 
were identified as groups that would benefit most from using WayFinder. 

4.6. Walking Trip Choices and Assessments of the WayFinder Tool 
We checked whether there were statistically significant differences in assessments of 

the tool given by participants who declared different reasons for selecting specific route 
suggestions. In general, the tool’s functionality had lower rates than the two remaining 
assessments (see Assessment 3 in Figure 7). However, for the three considered 
assessments (i.e., usefulness of the WayFinder tool (p = 0.204), satisfaction when using it 
(p = 0.628), and functionality of the tool (p = 0.216)), a Kruskal–Wallis H test did not 
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provide any evidence of differences between any of pairs of assessment rates for various 
reasons given by participants for their selection of specific route suggestions. 

 
Figure 7. Tool assessments and reasons for selecting a specific route suggestion (asterisks in the 
box plots show outliers in the datasets). 

4.7. Grouping Participants by Skill, Acquaintance, and Provided Assessment 
We partitioned 56 participants into groups of individuals who were similar in terms 

of their skills, acquaintances, and the assessments they had given. Each participant was 
characterized by a set of seven attributes consisting of the rates of the two skills, the two 
acquaintances, and the rates of the three assessments that we used in k-means clustering. 
The clustering analysis resulted in the partitioning that consisted of four groups A, B, C, 
and D, with 9, 18, 16, and 13 individuals, respectively. The clustering details with the mean 
values calculated based on participants’ scores are summarized in Figure 8. Moreover, the 
rows and columns in Figure 8 have been ordered so to emphasize the differences between 
the clusters. 

 
Figure 8. The division of 56 participants according to their skills and assessments of the WayFinder 
tool. 

Additionally, we checked the differences between the clusters in terms of the 
frequencies of selected route alternatives. However, a chi-square test did not reveal 
statistically significant association among four clusters and declared different reasons for 
selecting specific route suggestions (χ2 (9, N = 133) = 11.162, p = 0.265). 

  



ISPRS Int. J. Geo-Inf. 2021, 10, 365 13 of 18 
 

 

5. Results 
The functionality of the WayFinder prototype was rated as slightly below the 

moderate level, regardless of the declared reasons for selecting specific route suggestions 
(Assessment 3 in Figure 7). Since the prototype’s functionalities were limited to necessary 
interactive functions, this might have caused the provided rates. We also collected 
participants’ feedback on the tool’s usefulness and their satisfaction when using it. 
Regarding the latter, the participants reported a moderate level of satisfaction 
(Assessment 2 in Figure 7) that might have been caused by using WayFinder 
simultaneously with the CitizenSensing tool to register observations. The usefulness of 
the tool was similarly rated as moderate (Assessment 1 in Figure 7). We interpreted this 
feature as concerning the likelihood of the tool being used to support a specific user task, 
in this particular case pedestrian navigation in a city exposed to inundation. Therefore, 
the moderate score on usefulness was the finding of primary importance to our 
investigations. 

The participants seldom selected a route that avoided blue spots. Selections to avoid 
blue spots were made in 9 out of 133 of the analyzed walks. Instead, most of the walks 
were taken along the route with the shortest parts intersecting blue spots or along the 
shortest route. Participants chose various route alternatives regardless of their capabilities 
in terms of their map-use skills, skills in spatial orientation, and familiarity with the 
weather conditions in Trondheim (Figure 5). Furthermore, no statistically significant 
differences were observed for the participants’ assessments of the tool and the different 
reasons they gave for selecting specific routes (see Figure 7). 

The cluster analysis based on the empirical data collected from the subset of 56 
participants allowed for a division into four “user profiles.” As shown in Figure 8, all four 
clusters are similar in terms of map-use skills and skills in spatial orientation (for both, all 
mean scores were around 5). However, differences between clusters are visible for the 
participants’ acquaintance with Trondheim and the assessments they gave. Cluster C 
consists of individuals who declared a relatively low level of acquaintance with 
Trondheim and gave the highest scores on the assessment of the tool among the 
participants. In turn, cluster A consists of participants who did not know Trondheim 
neither and who gave the lowest ratings in the tool assessments. Further, participants who 
knew Trondheim well and gave relatively poor scores in their assessments of the tool 
constitute cluster D. Lastly, cluster B, consists of participants with the most even rates, 
with the best acquaintance with Trondheim, the best skills, and gave high scores in their 
assessment of the tool. 

The data analysis revealed that both of the implemented routing APIs worked 
properly, without any technical failures. While the WayFinder prototype did not feature 
real time but only modeled data on areas likely to be inundated (i.e., “blue spots”), 
participants did not comment on the lack of such content and they rated the completeness 
of the map overlay showing the blue spots in Trondheim as slightly above the moderate 
level. 

6. Discussion 
6.1. Participants’ Perspectives on the WayFinder Routing Tool 

The aim of this study was to gain participants’ perspectives on a routing tool 
designed to support pedestrians when navigating in potentially inundated urban areas. 
We hypothesized that users, especially those unfamiliar with Trondheim, would be 
willing to be assisted by ready-to-use and context aware route suggestions that 
incorporated information about either inaccessible or exposed spots. However, for the 
study purposes, the tested tool, WayFinder, was equipped with both a passive and active 
routing approach [8]. While the former allowed users to examine (manually) suggested 
routes to avoid areas exposed to inundation, the latter was “automatized,” as outlined in 
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the study by [6], by providing context-aware routes that already avoided places likely to 
be inundated. 

Our study reveals that participants seldom decided to walk along the route option 
that avoided potentially inundated areas. Instead, most of them used the passive routing 
approach, in which suggested routes intersected areas likely to have surface water 
accumulated. In fact, user photos showed puddles of various size along selected routes, 
none of which would seem to require re-routing by more than a few meters. However, the 
participants did not know about the conditions when selecting a route ahead of the walk, 
hence they did not know how many extra meters they would need to walk to keep they 
feet dry. 

Since the participants were young individuals with moderate skills in terms of map 
use and spatial orientation, they felt confident enough to face potential difficulties. This 
enabled them to select potentially inundated routes and if they experienced difficulties in 
a certain place, they overcame them by analyzing local conditions and avoiding exposed 
spots. This claim can be backed up by the finding that when asked about their reason for 
selecting a route alternative, the participants with the highest scores on acquaintance with 
Trondheim more frequently selected “other choice” than “shortest route” in their 
responses (Acquaintance 1 in Figure 5). This indicates that individuals who were familiar 
with Trondheim often decided to walk along a route they were already familiar with, e.g., 
“the route I usually take” or “the most favorable route on the way home.” Furthermore, 
we assumed that those who were unfamiliar with Trondheim would give a positive 
assessment of the tool. However, the cluster analysis revealed two groups of individuals 
unfamiliar with Trondheim, clusters A and C in Figure 8. While cluster C consisted of 
individuals who gave, in fact, a positive assessment of the tool, cluster A consisted of 
participants who provided a negative assessment. 

With respect to users’ perspectives on the WayFinder tool’s functionality, usefulness, 
and satisfaction—these were rated at a moderate level. The participants were generally 
successful in using the tool, since they all managed to register selected routes. However, 
some of them were not satisfied with the tool. This finding was also discovered in our 
cluster analysis, which revealed that two user groups (clusters A and D in Figure 8) 
comprised participants who gave low ratings for the tool. 

6.2. Implications of our Study to the Design of Navigation Systems for Pedestrians 
The primary applicable suggestion for the design of a navigation system for 

pedestrians is the need of determining, which routing approach the users of the system 
prefer—the approach that suggests routes that avoid exposed areas or the approach that 
displays routes that pass through such areas and provides information to the users about 
the risk. Furthermore, although the participants did not provide an overly positive 
assessment of the WayFinder tool, several design suggestions could make the passive 
system more useful. For example, route suggestions symbolized as lines were sometimes 
displayed on the WayFinder map as superimposed. This problem needs to be addressed 
in the future development, since superimposed line symbols along with the small screen 
size of portable devices, might be experienced as uncomfortable for some individuals and 
therefore might cause confusion when using the tool. Moreover, route suggestions, apart 
from the map display, can be presented in an adjacent visual component that shows them 
as cross-sections of a specific attribute space, such as terrain steepness, air temperature, or 
noise. Generally, the functionality of a passive system depends on user capabilities. The 
tool can provide users with available information and can be equipped with various 
interaction techniques. However, it is always the user who determines whether the tool is 
experienced as cognitively overloaded [29] and to what extent the provided functionality 
is comprehensible. In turn, if the route planner is developed based on an active routing 
framework, necessary data are incorporated in the route calculations. In that case, a 
successful functionality will depend on the algorithms being able to provide the user with 
a smart final routing suggestion without necessarily offering any additional background 
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information. In practice, such background information can also be displayed. 
Nevertheless, as already incorporated during the algorithm formulation stage, this would 
not require specific attention by the users. 

We were also interested in the challenges of using modeled data in navigation 
systems for pedestrians to show areas likely to be inundated, to enable pedestrians to 
avoid such areas in actual conditions. The study revealed that such data was considered 
complete and could well represent areas that are likely to be inundated. Our collected 
documentation (photos) and the assessment of the blue spot mapping suggest that such 
data can be valuable content in routing systems that are designed to enable users to avoid 
exposed areas. Although we assumed that such content would feature shortcomings and 
therefore crowd-generated real-time observations on inundated areas and their impacts 
on humans and environments would be unavoidable, the study revealed that such data 
can be replaced by modeled data. Therefore, in the case of uneven distribution of reported 
observations collected as volunteered geographic information [30] or a possible lack of 
specific real-time data for certain areas, data on historical events such as floods can be a 
substitute and can help to determine areas that should be avoided. 

6.3. Research Limitations and Future Steps 
The above outcomes concern the context of our specific participants and cannot be 

considered for other user groups, which would require targeted user studies. Repeating 
the same study with vulnerable users such as wheelchair users, elderly people, and 
parents with young children with strollers requires different user study designs. For 
instance, “blue spots” are not the only obstacle for wheelchair users since also stairs and 
steep sidewalks may need to be included in the routing mechanism as objects to be 
avoided in route suggestions. In another example, exposure to heat and steep sidewalks 
may need to be included if a study with the elderly is to be organized. Unless, practical 
usage of WayFinder is replaced with other empirical methods such as interviews or focus 
groups that do not require conducting waking trips in exposed areas. However, then, the 
tool would be tested “theoretically” not “practically.” Involving young individuals as 
participants seems to be a good compromise to, on the one hand, skip other exposures in 
the study design that can influence the routing decisions, and, on the other hand, be able 
to test the tool practically. 

It needs to be emphasized that organizing a user study of WayFinder in the 
conditions of a real risk to human beings, for example, during severe flooding, heavy rain, 
or thunderstorm, is hardly possible as human health can be endangered. Even during 
“moderately sever conditions”, user studies with the user groups identified to benefit 
most from using WayFinder such as parents with strollers, the elderly, or wheelchair users 
seem to be infeasible due to safety and ethical reasons. For instance, if a user would select 
a walkway that WayFinder presented as free of surface water, which due to specific 
circumstances nevertheless might be inundated, the consequence of such a misleading 
routing suggestion could be dramatic, especially if a user needs to quickly escape an 
exposed area. Therefore, this study was designed as a proxy of the conditions of 
environmental exposure, with the assumption that no real risk could be included in the 
user study and participants’ safety was prioritized. 

7. Conclusions 
Although context-aware routing tools are increasingly feasible, the literature largely 

avoids human factors in the discussion. A question arises as to what extent users find such 
tools of value to their needs. Why would individuals use such tools? A specific example 
is applications to assist pedestrians when navigating in exposed areas such as those likely 
to have surface water accumulated. 

In our empirical study, most of the participants were successful in using the 
WayFinder prototype. The tool’s modeled data content on areas likely to be inundated 
was recognized as representing such places well. Nevertheless, our participants preferred 
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shortest path routes regardless of modeled or real-world conditions. This implies, that the 
participants of this study preferred the selection of routes that passed through areas likely 
to be inundated and obtaining information about the risks rather than selecting a single 
route suggestion that already avoided exposed areas. This may suggest that when 
navigating through areas likely to be inundated, pedestrians assisted by a navigation tool 
prefer to keep control over their decisions and thus, rely on their analytical skills and local 
knowledge rather than to follow a specific suggestion provided by a tool. 

The main contribution of our study is in demonstrating the proof-of-concept 
implementation of the pedestrian route planner WayFinder and testing it empirically with 
potential users. Moreover, since we used broadly available technologies to build our route 
planner for pedestrians and equipped it with modeled data on areas likely to be inundated 
that can be prepared also for other places, Wayfinder can be easily developed for other 
cities and for other adverse environmental conditions. Furthermore, the concept of the 
tool can be inspiring for all those who plan to develop similar tools for other user groups. 
In that case, it is of primary importance to mapmakers and to all those who design map-
based navigation tools to obtain insights into what routing approaches are considered 
desirable by users—in other words, solutions that suggest routes that avoid exposed areas 
(“active route planners”) or those that display routes that pass through such areas and 
provide information about the risks involved (“passive route planners”). 
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