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This paper from 1971 has a special history. At that time the present
author was working with the covariant quantization procedure for an elec-
tromagnetic field in a dielectric medium. In such a theory, the commutator
for the potentials contains the medium’s four-velocity V,,. What appeared to
be a natural idea, was to suggest that V), is not only a formal remedy (as in
the Gupta-Bleuler theory), but that it reflects a concept of deeper physical
significance, namely the four-velocity of the all-pervading ether. The idea was
actually related to that put forward by Dirac in 1951-1953, although there
in a somewhat different context. This proposal was written up in a paper
published in the archival series ” Theoretical Physics Seminar in Trondheim”,
No. 4, 1971. Submitting afterwards the paper to Il Nuovo Cimento, I re-
ceived a report from a referee stating that all mention of an ether was pure
nonsense, far outside of any reasonable physics. So I gave the idea up at that
time. Some years have however elapsed since then, and as we know the ether
concept is at present often used in theoretical physics, commonly called the
Einstein-Dirac ether. I was probably far ahead of my time. I am posting an
extract of this old paper on the arXiv now, since I was recently recommended
to do so. A link to the original paper is given.
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1, Introduction

In classical electrodynamics a free field may be described
by the Lagrangian density

L = -4 Ba#Y o, ()

f

ate

where = Eyy = Ouhy - 9y, , The variational equations obtained

(3 ':i }
from {=H). are
DAy — 8ud"My = 0 ' V - (2)
which are equal to Maxwell’s equations

ONEiy + OuFuy + 0y = 0O (38)

8VFv = O | (3b)

when these are solved in terms of the potentials,
In quantum electrodynamics one may start from the Fermi gauge
Lagrangian density

L= -4 5,mv - 2(#8,)% . )

'

Then the momenta. canonically conjugate to Ay hecome

a.[ )

™ T = M~ 8ot 5

and the canonical quantization procedure can be carried out for all

values of W on. the same footing, The variational equations

obtained from (i) are

/

so that the physical equations (£). will evidently be satisfied if



S

the Lorentz condition
4, =0 : . . (7)

can be imposed as an operator condition.

It is however well\knoWn that-the Lorentz condition (7) lruns
into conflict with the canonlcal commutation rules., A discussion
of the difficulties eneouﬁtered is given by K#llén in his Handbuch
article(1> ., Our first ta}k in the following will be to trace out
the di r reasons for thés.prdblem, the gauge problem of electro—
dynam One should not-bé content merely by considering the gauge
problem as being due to an:éccidental conflict between the Lorentz
condition and the canoniéal/éommutation rules., Rather, care should
‘be exerted to trace out tp whéﬁ extent the gauge problem has its
roots in Maxwell’s equations themselves, which form the very core
of electrodynamics. In a simple analysis in Sect, 2 it is shown that
the general field-theoretical assumptions: (1) four-vector trans-—
formation préperties for the potential. Ay » (2) invariance of the
vacuum state, and (3) spectral condition, are not reconcilable with
Maxwell’s equations solved in the form (2). Therefore the specific
canonical quantization me¢hod uhOUld not be kept responsible for
the gauge Droblem; the problem is rather due to the fact that
egs. (2) do not fit into a general field theoretlcql scheme, Recent
work by‘Strocchi(Z . strictly within the framework of axiomatic
field theory, confirms thls statement

After this analys1s of the origin of the gauge prdblem our

next task in the following will be to work out one specific quanti—{
zation procedurc which reconc1les Maz well’s equations, solved in
the form (2), with the generql ﬂssumotlons (1) - (3) above, In
order to accomplish this we permit the existence of an extra para-

meter .V, in the formalism, being of the nature of a four-veloclty
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and thus satisfying the condition V2 = VﬁV“ =.17 , The formalism
is constructed as compactly covariant as possible by éxpanding each
Fourier component of the potential into a covariant k-dependent
basis oél)(k) . Thereby the components of the potential along the
vbasis vectors turn out to be Lorentz invariant entiti?s. We quantize
only two of these components and retain fhe other two components as
c-numbers, As the quantization is carried through in>this way, the
method bears some resemblance with the Coulomb gauge method, The
difference is that we work in the Fermi gauge instead of in the
Coulomb gauge and therefore have the freedom to perform restricted
gauge transformations, Au —> Au + ouX , where X satisfies the
relation f1x = 0 ., Such a gauge transformation affects the physic-
ally unimportant c-number potential components and leaves the
physically important components unaffected. The Hilbert (Fock) space
gets a Lorentz invariant meaning, and there is no need of introducing
oan indefinite metric, The vacuum is defined in a gauge dependent
way as tne’state in which both the number of physical photons and
the c-number potential components are equal to zero, This eorpe-
sponds in a most direct way to the definition of the vacuum in the .
Gupta-Bleuler theory as the state in which both the physical.trans-
verse photons and the unphysical longitudinal and scalar photons
are absent. With this definition of the vacuum we obtain the same
expression for the photon propagator as in the Coulomb gauge case,
Having worked out the gquantization procedufe we shall then,
as the third part of oun work, discuss the significance of the
parameter Vi , One might simply consider Vu &8 & mathematical
quantity by means of which one can make the theory more appealing
from a physiogl point of view, as the Maxwell equations become valid

when solved in terms of the potentials, and as the formal covariance

is maintained together with a positive definite metric in the
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Hilbert space, It is tempting, however, to go a étep further and
inquire whether V, may have a much deeper phyéical significance,
In Sect,5 we venture to discuss the possibility that V, 1is the
four-velocity of the all-pervading ether, With this we do not mean
to go back to the picture of the ether that one had in the 19th
century; the ether idea must be introduced in accordance with the
principle of relativity and also in accordance w;th quantum mechanics,
As we shall see, it is just by picturing the ether as a quantal
object that we are able to introduce it without thereby coming into
conflict with the principle of relativify according to which all
inertial systems are equivalent., In this context we make use of
ideas that have been put forward earlier by Dirac(3>, although he
introduced them in a different connection, It is thus found
possible to imagine an ether without thereby coming into conflict
with the fundamental principles of relativity and gquantum mechanics,
However,\the identification of ﬁhe four-velocilty of the ether with
our parameter YV, cannot be anything else than a pure con jecture
at present., Further, we are not aware of any possibility to make a
direct experimental test of whether there is an ether, The theory
is nonlocal, but the effect of this nonlocality disappears in all
expressions that can be compared with experiment, Yet it lies very
cldsc at hand to assume that the ether, if it exists, is intimately
connected with the observable properties of the vacuum, as for
instance the vacuum fluctuations., The vacuum properties make 1t
natural to imagine that the vacuum is composed of some kind of
matter, TIn view of theése features we have therefore found it
desirable to put forward the ether hypothesis, as an idea that seems
to be worth some attention,

Finali& we give some references to earlier works in this field,

As far as the discussions in Sections 2 and 5 are concerned, the



connections with the earlier treatments by Strocchi and Dirac,
regpectively, have already been pointed out, The technique with the
covariant expansion of the potentials shown in Sect.u has been made
use of before, in an analysis of phenomenological electrodynamics<4).
Otherwise, we find that the recent work by Schmutzer(s) is the one
whose spirit comes closest to our own, Some resemblance is also found
with the quantization method proposed by Méthews<6), gsince he
quantizes only two Lorentz.invariant polarization components of the
potential, The difference from our kind of approach consists essenti-
ally in the fact that he does not make use of the four-vector Vu
and therefore is met with some ambiguities in the distinction between
the various polarization components, We shall briefly return to

this point in Sect.L., Other covariant treatments have been given -

by Evans and Fulton(?) and by Moses(®), the latter using a groﬁp—

theoretical language,

2, On_the Origin of the Gauge Problem

The straightforward explanation for the difficulties encountered
in the quantization of the electromagnetic field is that one carries
through the canonical quantization procedure for all the polarization
components of @ and A, , without revdrd to the Lorentz condition,
and therefore acoidentally happens to run into conflict with the
latter when it is introduced in the theory later on, However, the
gauge problem has very deep roots. We may first note that the
conventional canonical procedurc is based upon one particular
covariant gauge, namely, the Ferml gauge as corresponding to the
Lagrangian density (4). It is just in the Ferml gauge that the
gauge condytlon, which is being introduced in the theory in order

to attain correspondence with the Maxwell fleld, takes on ‘the simple
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form (7)., In view of this, it lies at hand first to inquire whether
there may exist some other covariant gauge, correéponding to differ-
ent variational equations and a different gauge condition, which is
able to yield results more easily reconcilable with the Maxwell
theory, However, there is no sign which indicates that any simpli-
fication can be obtained in this way, Specifically, B,Lautrup(®) has
examined the formulation of quantum electrodynamics in a whole class

of covariant gauges corresponding to the following Lagranglan density:
= - 3 BT - AN+ 5 A2, (8)

Here A = A(x) is a Lagrange multiplier field which is introduced
to take care of the gauge condition, and a is' the gauge parameter,
The Fermi gauge corresponds to the case a =1, The variational

equations for 4 obtained from the expression (8) are

04, - 3,0%A) = = A - (9)

\
and the gauge condition takes on the general form

MA, = ah (10)

Lautrup has shown that although a consistent formulation of quantum
electrodynamics can be given in any‘of the covariant gauges con-
sidered here, the Fermi gauge is by far the__simplest-choice° For
instance, the field energy is not diagonalizable in any other gauge
than the Fermi gauge., Thus we must conclude that the core of the
- gauge problem is not connected with the choice of the specific Fermi
gauge in the conventional formulation of gquantum electrodyﬁamicsn

Tt is now natural to raise the following question: Instead
of proceeding in the somewhat indirect canonical way where the field
equations'(Q) are divided into two separate sets of equations,

/
respectively the variational equations and the gauge condition, is



a more
it possible to makevdirect analysis of how egs, (2) fit into a general

field-theoretical fpamework? Obviously, a solution of eqs.(2) need

not satisfy eqs.(6) and (7) separately; the requirement that a

physical solution shall satisfy egs.(6) and (7) may prove to be
unnecessarily stronge

Tt turns out that the above question has an affirmative answerl.

Specifically, one can show that egs.(2) run into conflict with any

conventional duantum field theory which is constructed on the basis
of the following general postulates:
(1) Existence of a unitary represemtation of the Poincaré groups

{a,A} _> U(a,A) such that

U(a,A)Au(X)U’1(a,A) = AJ%A?(AX+&) . (11)
(2) Existence and invariance of the vacuum state:
Cu(a,a)|oy = |0> .
\
The vacuum state ig assumed to POSSESS zero energy and momentum,

(3) 'spectral condition, i,e. positivity of the energy of every

physical gtate in every inertial frame,

From these postulates one can derive the following general

expression for the two-point functions:

(O] &y (x)Ay (3)[0> = - J [dp o(p)(ps (P2)&uv +
(2m)?

B e C L ‘ (12)

where pq 9P are gpectral functions, Use of egs.(2) leads 1O the

relation py = 0 . Thus

Sipe (), (13)

(2ar)?

(04 (1) (3)[0) = —— A oo [ap 0012 (0%



and this leads to(?)
©JF,,(x)F, ()]0 =0 . 4 (1L4)

This result is exvected not to hold for a real physical theory.
Bage (111) would for instance imply the unacceptable comnsequence that
the field operators were commutative even for light-like separations,
(x-y)2 = 0 ., Thus we must conclude that the gauge problem is
primarily not a consequence of the fact that the Maxwell equations,
solved in the form (2), conventionally are replaced by variational
equations and a gauge condition, The problem arises already on the
level of.eqs.(Z) themselves, as these equations get into conflict
with the above field;theoretical postulates. Note that in order to
obtain the result (14) it is not necessary to assume that egs.(2)
hold on operator form, It is sufficient that they Jold when applied
to the vacuum state:
\ (Db - u0%4y) [0 = O (15)
The above results are confirmed by the fesults recently
obtained by Strocchi(?) in the framework of axiomatic field theory.
He assumed the field operators to bé operator-valued distriﬁutions
(not necessarily tempered distributions) in the Hilbert space. The
field-theoretical postulates were chosen somewhat different from the
postulates,(1)—(3) above., Instead of using the spectral condition
(éur condition (3)), he assumed in ref,2a that the two-point function

for the fields, (x-y) = <O|Fuv<X)Fpm(y)lo> , can be regarded

Wuvpv
as the boundary value of an analytic function W

v po
in the forward tube, In ref,2b he gave up the postulate that A

(z) , analytic -

be a four-vector under the Lorentz group and replaced it by the

postulate of weak local commutativity for the potential components,
1

Tn each case he was able to derive the result (14), showing the
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conflict between egs,(2) and the set of postulates chdsen,
In view of these features we are therefore on safe ground
when asserting that eqs,(Q) cannot be fitted in with general postu-

lates about relativistic field theory.

3, Quantization: Preliminary Remarks

From the above discussion 1t 1s clear thét any realistic
method chosen in the quantization of the electromagnetic field will
have to possess one of the following two properties: either, that
() WMaxwell’s equations, solved in terms of the potentials, are

abandoned.,
or, that
(8) some change is made in the conventional set of postulates

about relativistic guantum field theory.

(The additional possibility that exists to construct a theory which
possesses both properties (a) and (B) is not an actual possibility

in an attempt to bridge electrodynamics and gquantum field theory,)

The well known Gupta-Bleuler methoq(1°) belongs to the type (o) o

Tn this case egs.(6) are requiréd to hold as owerator equations

while the Lorentz condition (7) is replaced by the nonlocal condition

palt) gy =0, (16)

where a“Aé+) is the positive frequency part of the operator otAy -
As egs.(2) must be expected to hold when the mean values af the
potentials are taken, it follows that all states in the Hilbert
space cannot be physically realizable as this would lead us back

to eqgs.(2) on operator form. Accordingly, the Hilbert space

becomes equipped with an indefinite metric and contains state
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vectors also with negative norm, The advantages of the Gupta-Bleuler
method are that the postulates (1)-(3) in the preéeding(Section can
be maintained, and further that the potentials are commutative for
space—~like separations. We may also refer to the result of axio-
'matio field theory that 4, can be defined as a weakly local and
Lorentz covariant operator-valued distribuiion only in a Hilbert
space with an indefinite metric('!).

However, although the quta—Bleuier method gives a consistent
description of quantum electrodynamics, 1t is clear that the |
indefinite metric and the corresponding unphysical (longitudinal and
scalar) photons are features, of the theory that are not quite satis-
'factoryu We shall not study the various implications of this method
here (see ref.2b), but turn our attention to nethods of the type (B)
above., In this case some change has to be made in the baslc
assumptions about quantum field theory, and one usually chooses to
give up the requirement that A, be a four-vector under the Lorentsz
group, The best kﬁown example of this type is the transverse |
Coulomb gauge method@%giving the following transformation equation

for the potential under the homogeneous Lorentz group:
U(0,0) A (x)U-1 (0,A) = A7LAY (Ax) + u®(x,0) . ' (17)

Here @(ng) is an operator gauge function by means of which the
gauge condition VeA = O can be made covariant, The advantages of
the transverse Coulbmb gauge are that only physical photons appear
in the formalism, that egs.(2) are kept valid, and that the metric
of the Hilbert space is positive definite, Another method of the
type (B), although less known, is to meake use of the Valatin gauge(!?)
and work with three kinds of photons.

The method considered in the next Section also belongs to the

type (8), in so far as the field equations (2) are required to hold,



12,

and as we change the basic postulates of guantum ‘field theory in
the sense that we permit the existence of an extra four-vector Vu
in the formalism, Thercby the above discussed conflict between
egs. (2) and the postulates (1)-(3) given in Sect,2 will no longer
be present, We work in the Fermi gauge. The discussion about the
physical significance of V, shall be postponed until Sect.b; for
the present, we look upon Vu merely as a classical four—velocity,
In our opinion the theory constructed in this way has some
definite advantages from a physical point of view. For the sake of

convenience we summarize the' following properties of the theory:

(i) The potential Au transforms like a four-vector under

!

. 3 - A ﬂ
Lorentz transformations. # P

(11) Equations (6) and (7), and accordingly also egs, (2), are
satisfied as operator cguations.
(iii) Rach Fourier component of the potential is decomposed into
a covariant basis Q£%>(k) so that the potential components
along the basis vectors become Lorentz invariants. Only
two of these potential components are subject to quanti-

zation. The quantized components are unaffected by

restricted gauge transformations,

(iv) The potential is nonlocal, a property which 1s, however, of

no physical significance.

Note in particular that (i) and (ii) now become compatible proper-
ties. The reason for this is evidently the presence of tﬂe four-
velocity Vg in the theory. Specifically, the most general I
expression for the vacuum expectation value of the product of two
potential components will now, apart from the terms shown on the

right hand side of eq. (12), also contain terms of the form puVy
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pvVus and VuVy , Thererfore we will no longer find the strong
.reéultl(1u). Finally, the quantization method chosen implies that
the metric of the Hilbert space is positive definite, and no

unphysical particles appear in the theory,

L, Quantization

We shall now quantize the free electromagnetic field, by
imposing the fﬁndamental computation rules on the Fouriler components
of the potential, Ouﬁ first task is then to construct a Fourier/
expansion which exhibits the Lorentz covariance in a compact way.
To this end we find it convenient to make use of the same method
as we have utilized before in connection with phenomenological
electrodynamic theory of the padiation field within a materilal
medium(1494))viz., to seleot'ajg§¥g§f§7%rame R in which the field
quantities are required to gatisfy boundary conditions at the walls
of a large box with volume ’6’. The frame ﬁ is a completely
arbitrary frame; this is an essentilal point of departure from the
earlier phenomenological treatmentg wherein % was naturally taken
to be the rest frame of the medium, In another inertial frame K ,
- with respect to which % moves with the velocity v , the perio—
dicity conditions at the walls are in general lost. Instead, the
Fourier component of the potential which corresponds to the wave

vector Kk becomes periodic at the walls of a fictitious "pox" with

the volume

o«.

A Vv /12D (18)

0 0 )
where Xk is the wave vector in KX and v = (1-v?) 2 , If we
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introduce the Fourier expansion

b (%} = %(Zkoij—)*%(exp[—ik'x]@i(k)+exp[ik.x]qj(k)> (19)

where ko = ]g} it is clear that, because of the four-vector
property of A, and the Lorentz invariance of the eiﬁression
Zkoz%< = Zﬁijr, the quantity au(k) transforms like a four-vector
under Lorentz transformations, Actually, we shall omit the normali-

zation factor in (19) and work with the simple expansion
b (x) = B(expl -ikex]ay (k) +expl kexlai (X)) (20)

In connection with this expansion it must be borne in mind that the
one~photon volume is now equal to 1/(2k,) in any inertial frame,
Further, in order to transform a sum OvVer discrete values of Kk
into an integral over Kk (as ﬁsual in the final step of actual
calculations) we have to make use of the substitution

2 — (2r)7 Jax/(2ko) .

=

Each Fourier component in (20) is now decomposed into a k—-dependent
basis:

a0 = 3 oM a0, (21)

[¢]
and we exploit the presence of the distinguished frame K to

introduce a set of covariant vectors Qém) ., Namely, let Qéz) be

a real four-vector which satisfies the relations

V-e(?) - keel® = 0 (22a)

6(2) ,e(z) = <1

’ (22b)

0
where Vu is the four-velocity of K with respect to XK , Further,



15,

define the (pseudo) four-vector

; Sy poks 7 (e(2))T
o ) = - 2wyt T LE (23)

where €042z = 1, satisfying
vee®) - xe(® _ o (2la)
S e(2) () _ o | (2l4b)

It should be noted that

) kuV&—V’k

2) 4P 3) \O wv
()P ()7 o L Ry
which in the frame ﬁ implies
(0] (0]
e S g . - (25)

In accordance with this relation we shall see that Qéz) ’ q£3> can
be interpreted physically as the covariant polarization vectors for
the photon field, Now we shall introduce two four-vectors more
which, however, cannot be interpreted as polarization vectors., Let

us define

ef®) = v, , o). ele) =y . (26)
of) = KumWukeV o). (V) - 4 . (27)

KV ’

It can readily be verified that these vectors satisfy the following

relations (k®=0) :

Ly (2 N AN
e e < g
(28)
3 (M) M)
M%Lg&m'% fﬂ = v .
Moreover, it can be verified that the vectors qém) are all mutu-

ally orthogonal, Since one of them is time-like and the other three

‘space-like, it follows('®) that they are linearly independent, It
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should be borne in mind that in egs.(23) and (27) we have assumed
that k& = 0 ,

The advantage of introducing the vectors Qél) is evidently,
()

in accordance with eq,(21), that the Fourier components a

become invariants under restricted homogeneous Lorentz transformations,

which are the only transformations of interest here, Hence, in the

classical case the relation

aM (ax) = a(® (x) (29)
5 )
holds for ™\ = 0,1,2,3 . Moreover, in the frame K  the three-

dimensional vectors g(l), AN=1,2,%3, form an orthonormal set, Note,
however, that the g<l) are in general not orthogonal in other
inertial frames,

Now let us turn our attention to the quantization, Instead of
postulating the usual canonical commutation rules for all directions
N, N we shall rather quantize only those two components which in

Q (0]
K are transverse to k , 1.e,

[a® (), ()]

Il

Sk’ At s AN = 255
| (30)
0,1,

2™ (x),a® (&)1 = 0 N

il

The other commutators are put equal to zero, Since a(® ,a(1)
commute with all field quantities they shall simply be regarded as
c—numbers., It should be noted that because of the covariance of the
vectors qél) the compénents a(o), aﬁ1) become Lorentz i@variants,
i,e, they transform according to eq.(29) and never get mixed up wit@
the operator components a(2)9 a(3) . The relation betweén a(®

and a(1) follows from the requirement that the Lorentz condition

(7) shall hold:

alo) = g0, (31)
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Further, as we have assumed that ko, = lgl in the Fourier expansions
it is evident that egs.(6), and therefore also the field equations
(2), are valid,

(o) (1)

Now the c-number components a s & are unphysical.
quantities whose magnitude can be changed by a regtricted gauge
transformation A,—> 4, + X , where X satisfies UX =0 . For

in the Fourier space this transformation can be written as

a(l>(k) —e-a(m)(k) - ik(m)X(k) ,

)

where ku = Z,qfl)k(x) . As the invariant components k(zly k(3
vanish in ﬁ and hence also in any other inertial frame, it is clear
that the gauge transformation changes the components a(o), a<1)
and leaves the transvérse components unchénged, And as a restricted
gauge transformation leaves eqs.(6) and (7) invariant, it follows
that the magnitude of the components a(o), a(1> is of no physical
importance, In fact, a certain value of these components corresponds
to a certain mixture of longitudinal and scalar photons in the Gupta-
Bleuler theory, We have obviously the possibilify to put
a(o> = a(1> = 0 , in which case we would obtain a covariant picture
of the transverse Coulomb gauge iﬁ % . We shall not, howéver,
restrict the gauge in this way.

As regards the physical components a(2>, a(z) we first nots

that their Lorentz invariance 1s expressed convenilently as

am (Ak) = U(O,A)a(“) (k)Uu=' (0,A) 4, N = 2,3,

so that the Lorentz invariance of the commutation rules can be

expressed in a very compact manner as

o™ (), o™ (e ] = [a® (), )] (33)
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Next, let us give the expression for the four-momentum operator of
the field:

B = % ku1§za(m)T(k)a(l)(k) " | (3l)

—

where the zero point contribution has been'omitted, It is clear
that the present formalism displays the Lorentz covariance of the
theory in a very compact way. The most general state vector of the

operator (34) can be written as

M) o )
|{WIV” <k>>—[] |1 ["1 “” 0) (35)
where ]N<m)(k)} is the eigenstate for the number N(m)(k) of
ohotons with momentum Xk , energy k, = |k| , and transverse polari-
‘zation AN
o (M) f(k)am () [v® () = 7 1) | v™ () (36)

and the wvacuum state lO) is the state of no physical photons., As
we work only with the physical photons there is no need of intro-
ducing an indefinite metric in the, Hilbert space. Further,. each

occupation number becomes an invariant under Lorentz transformations:
A A
i )(Ak) I )(k) (37)

(note that the value of A is unchanged). Thus the Lorentz
invariance holds not only for the operator component a(x) , but
also. for the eigenvalue of the physical bilinear combinatién
a<“)fa(1). Note that this invariance property for each value of
N is intimately connected with the use of covariant polarization
vectors Qém)

Let us now find the covariant commutator for the potentials.

Tn this context it is convenient to introduce the projection
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operator

oy O V, 0y +Vy 0
o =y + e - LR (38)

) .
which picks out the quantized transverse part .4, of the potential:
S Q’ Y
i -u
‘H/-L = Ty v.A. 9 Sy = ’Tuy,/{‘v i

The operator 74y 1is assumed to act on a Fourier expansién for
which ko = lgl . As only the quantized part contributes to the

comnutator we readily find (

[ (%) oy ()] = LA (%), M0 ()] = —dquyD(x-y) (39)

where D(x—y) is the singular function corresponding to mass zero
particles('), As the c-numbers a(o), é(1> have no influence upon
this result it is clear that we obtain the same result as in the
covariant Coulomb gauge case, 1,€. when a(o) = a(1) =0, In
particular, in the frame i we find for space-like separations
the” same nonvanishing result for the spatial components as in the
transverse Coulomb gauge case:

[ (x),4; (v)] = 1(Xﬂ“yo> [(Y_X)z - 3w éa—g?"yﬂ ‘ | (L0)

However, in any inertial frame the two last terms in the expression
(38) have no net effect upon the covariant commutator for the field

strengths, and we are left with the usual local expression

[F,, (x)sF ()] = (e

)

MP v? o Vpau8¢+gvaauap umavap)D<X"y) ¥ (F1>

We close this section by deriving a covariant expression for

the photon propagator

Duy (x-y) = %<OI{AM (x) b (y)}lon Lo (x-y)<O|[ A (%), M0 (¥)]]O> +  (L2)
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Herc the anticommutator term requires special attention, In
connection with eq, (35) we defined the vacuum state as the state
where no physical photons are present. We shall now extend the
definition of the vacuum state in the sense that we require the c-
numbers a(°>, a(1) to be zero for a vacuum, This is a nontrivial
gauge-dependent requirement which excludes the possibility to apply
restricted gauge transformations to the vacuum. In fact, this just
correcsponds to the requirement one imposes in the Gupta-Bleuler
theory that the vacuum state shall contain no iongitudinal or scalar

photons,

For the anticommutator term we now find
1 ,
<ol 1 (2 (1) |08 = =72 (x-3) (13)
where D(O (x~y) is the usual anticommutator function.(1{ Thus
' = 1 (1) i
v (x-y) = = & 7D’ (x=y)- 5 e(x-y)wvD(x-y) .

Here we want to commute e(x-y) with 74» . This is not possible
when Ty 1is given by the expression (38). However, we shall see
that these quantities commute if 7,y 1s expressed in a form which
does not presuppose that it is acting on a Fourier expansion for

which ko = |k| :

Tuy = Guv~VuVy + (a““Y%YgggiaE;V”V'a) (L)

This expression reduces to the expression (38) when the operator
{1 is replaced by zero. (Equation (Lk) correspondé to the new
expressions one obtains for QéB) and af1) by. replacing the
‘denominator keV in egs.(23) and (27) by [(k«V)2~k2]'127 .) Now we
see that e(x-y) commutes with 7uy 1n the frame K , and as the
former quantity is a scalar and the latter quantity a tensor it

follows that they commute in any inertial frame, Thus



24 &

Dy (x-3) = = 3 7uw (D" (x-y) + 1o(x-3)D(x-¥))

which gives the propagator in the Fouriler space as

-1 | ky ~V, Vek) (ky=Vy Ve
Dy (k) = T L&lv“Vqu + (X (L{I.kl){z?f-k]z) VyV k)] ’ / (15)

This is the same exprcssion as the one obtained in a covariant .
formulation of the transverse Coulomb gauge in K (a(o) = a(!) = 0),(1e
The result is what we should expect, in view of our definition of
the vacuum, The c~numbers a(o), a(1> can in no way affect the
propagator,

Terms proportional to Xk, or ky in the propagator give no
contribution to the physical amplitudes, although it should in this
context be pointed out that Bialynicki-Birula('7?) recently has /
pointed out that the earlier conventional arguments given to derive
this fact are incomplete. Next, the term proportional to V,Vy in
the propagator is in general cancelled by a Coulomb interaction
term(16), and we are thus left with the same effective propagator
expression as in the Gupta-Bleuler theory,

It should be borne in mind that it is first after the choice
of a distinguished frame £ that we have the extra parameter at
our disposal which is necessary in order to be able to define the
basis vectors eﬁ“) and hence the operator components a‘l) in an
unémbiguous way., This does not imply a. conflict with the principle
of relativity, however, because f is a completely arbitrary
ineptial frame, All inertial systems can still be regarded as
being completely equivalent, Now it 1s possible to construct a
covariant formalism essentially of the type considered above, but
ﬁithout introducing the four-velocity of the frame f in the
formalism, This is Mathews® method of approach,(¢) As in such a
case one has no extra parameter at one’s disposal in the construct-

ion of the vectors: Q£W>, one has to treat a whole class of
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permissible expressions for the ¢y on the same footing, and will

thereby be confronted with a certain kind of ambigunity in the commu-

o (1)

tation rules for the

5 Discussion, The Ether Concept

So far the quantity V, has merely played the role as a
mathematical parameter in the formalism,<givinglthe four-velocity
of a different, although arbitrary, inertial frame E with respect
to the frame K in which the fields are expressed, We have already
noted that the use of Vy implies certain advantages from a physical
point of view, in particular that the validity of eqgs, (2) is maintained
along with the four-vector propcrty of Ay and the positive definite
metric in the Hilbert space, [It is reasonable to assume that the
Maxwell equations form the very core of electrodynamics, in view of
the gaﬁge invariance of any expression that is directly .comparable
with experiment, Further, the ihtroduction of the four-potential
A,  seems to be an almost unavoidable step in the quantization of
the electromagnetic field; in the geperal interacting case we, arec
not even able to write down a local expression for the interaction
Lagrangian in terms of the fields alone. Therefore the solutions (2)
‘of Maxwell’s equations in the free field case may be expected to
conform closely to the physical reality.] Now we might be content
by looking upon V, simply as a formal remedy by means of which the
formalism can be given a physically more attractive appearanée than
what is the case in the Guptﬁ~Bleuler theory. However, it would be
of great fundamental interest here to go a step further and inquire
if not V; has a much deeper physical significance, It might be
that the necessity of using 'V, in order to obtain the above

physically satisfactory features of the theory actually reflects
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the fact that Vy is the four-velocity of a physical object. In
the following we shall venture to discuss the radical possibility
that Vu is the four-velocity of the all-pervading ether,

Now the conception of an ether is not unique, 80 that we must
specify what we mean when speaking about the ether. _Let us first
focus our attention on the ether in the traditional sense of the
word, viz. the absolute ether appearing in Lorentz’ theory of
clectrons, (18) According to Lorentz there is a certain system of
inertia, the absolute system, wherein the ether is at rest., The
ether is assumed not to be dragged along by moving bodies., Let the
absolute system be denoted by ﬁ and let a particular point P
have the coordinates §,§- in this system; then the coordinates of
P in another inertial system K with respect to which ﬁ moves

with the uniform velocity v are assumed to be given by the

Galilean transformation

o

[0] 0 .
t =t X=X+vt . (L6)

It is just the assumption of the Galilean transformation equations
(46) which makes the Lorentz theory amenable to experimental tests.
We know that in this area there has been performed numerous experi-
ments, which by now have reached a very high dégree of accuracy,
and which all speak in disfavour of the Lorentz ether hypothesis.
Let us give some examples. Concerning the classical Michelson-
Morley experimenés(f9) thc accurate experiment perfdrmed by Joos

in 19%0(1°4) provided an upper limit for the ether drift of 1.5 km/ s,
Tater on the ether—-drift experiments have been repeated with the
use of modern experimental technique involving, for instance, the
use of lasers, and one has been able to push the upper 1limit

considerably further down.(2°) Highest sensitivity seems to have

been obtained with the use of the Mtssbauer effect(®?!); Isaak(?1°)
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reports that an experiment of this type carried out at Birminghan
showed that the ether velocity in the laboratory did not exceed
5 em/s, In view of these facts we therefore have to reject the
ether hypothesis in its particular Lorentz form,

However, it should be made clear that the above result does
not.compel us completely to avoid the ether idea per se. It is

possible to imagine an ether which behaves in accordance with rela-

tivity., By replacing egs, (L46) by the Torentz transformation

equations we will no longer have the above mentioned conflict with
the experiments., In classical terms one might then imagine the
cther as some sort of classical fluid, distributed all over the
space and defining one distinguished frame E as the frame in which
the ether would be at rest, (Frgm a cosmological point of view 1t
would for instance be a possibility to associate the frame % with
the frame in which the 3°. Dblackbody radiation in the universe
appears to be isotropic.(?2)) However, we do not find such a
picture of the ether to be very appealing, for the reason that it
would destroy the principle of iéotropy of space in a vacuum, In

a complete vacuum such an ether would in an arbitrary inertial frame
define one preferred spatial dircction, wviz, the direction of the
three-dimensional vcetor V . The principle of isotropy of space

seems to be a rather fundamental principle in physics — cf., for

_instance, the close connection between the isotropy property and

the conservation law fd? angular momentum which is displayed by
Noether®s theorem — and it should not readlly be given up, But now
there is indeed one way in which the idea. of an ether can be made
compatible with the principle of isotropy of space, namely, toO
picture the ether as a guantal object., The necessity of introducing
the'ether hypothesis in accordance with quantum mechanics has been

pointed’ out before, by Dirac, (®*) According to this quantal picture
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the velocity of the ether at a particular point in space-time is no
longer a well-defined quantity, but is assumed to be distributed
over various pbssible values according to a probability law given
by the square of the modplus of some wave function, We may assume
“that the four components Vu , now taken to be operators, are
commuting objects. Because of the relation V2 = 1 only three of
the components V, can be specified independently; we let these
components be the spatial members V; =. (V4 4V2,V5) while the fourth
member then is determined as Vo = [1+y?]% . We can set up an
orthogonal representation in which the basic vectors are simultaneous
cigenvectors of the threce components Vi , and we may assume that
for each space-time point z,t‘ the probability of finding the ether
within the volume element d¥ in the velocity space is proportional
to @I/Vb . This probability is isotropic in the velocity space,
Further, it is a Lorentz invariant, so that the isotropy of the
probability distribution for the ether velocity applics to every
inertial frame, In this description all inertial frames become
completely equivalent, in accordance with the principle of relativity.
It should only be borne in mind that from the standpoint of an
arbitrary frame X the pertinent frame R is no well-defined
frame;/rﬁ may be in any translational motion with respect to X .
This quantal uncertainﬂy of the frame _ﬁ apparently fits well in
‘with the arbitrariness of ﬁ in the formalism in the previous
Section, -

We also meet the problem of how to describe the interaction
between the operator fields A, and V, , We shall here deliberate~
ly choose the simplest solution and assume that they are commuting
fields,

Now having seen that there is a possibility in principle to

have an ether, bshaving in accordance with relativity and gquantum
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mechanics, we have to examine the question whether it is possible
to make an experimentai test of its existence, We are not aware
of any possibility to make a direct measurcment of 7V, , Further,
the velocity-dependent tefms in the photon propagator (45) have been
shown to be of no experimental significance, But now there are
certain effects in quantum electrodynamics which apparently can be
connected with the idea of a fluctuating ether, viz, the observable
effects of the vacuum, According to the usual formdlism the electro-
magnetic gquantities fluctuate vigorously even in a complete vacuum
and give rise to an infinite zero point energy, Typical observed
quantal effects, such as thc attractive force between two conducting
parallel plates (the Casimir effect(®?)), can be calculated by start-
ing from the expression for the zero point energy., It.is not
inconceivable that the existence of fluctuating electromagnetic
quantities in a vacuum is closely connected with the existence of a
fludtuating ether, although the law8 of interaction of the electro-
magnetic field with the ether are ﬁot known, As the zero point
encrgy emerges as a simple consequence of the commutation rules for
the potentials, it can be expected that the ether must have some
deep influence upoh these commutation rules,

Notice that the above analysis concerns inertial systems only.
An ether hypothesis of the kind considered here cannot say anything
about the particular role played by the inertial systems in compari-
son with more general coordinate systems, The hypothesis therefore
does not give any explanation of the fact that for Newton was the main
reason for introducing the notion of an absolute space, viz, that
only the inertial systems show the property that thc equations of
motion for a mechanical system depend exclusively on the physical
state of the mechanical system itself, (It is clear that once the

notion of an absolute space has been introduced, it 1is very natural
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to imagine an ether always being at rest in this space.) Nor are
we An a position to say anything about the rclé of the ether in the
theory of gravitation, as the gravitational forces, according to
the equivalence principle, are put on an equal footing with the
fictitious forces appearing in accelerated coordinate systems.

Rounding of'f these speculations about the ether we have to
remark that our intention has not been to inéist upon the actual
presence of an ether. The evidence is at present too weak to enable
us to draw any decisive conclusion, Even though one might be
inclined to accept the presence of an ether, in view of the compati-
bility of the ether hypothesis with relativity and quantum mechanics,
one should bear in mind that the identification of the ether velo-
city with our parameter 7V, cannot be anything clse than a pure
conjecture., Nevertheless we have found it worthwhile to give the
above discussion, as a presentation of a radical possibility that
seems to be worth some attention, It ought to be mentioned that
Dirac introduced his ether hypothesis in an entirely differecnt
connection, viz, as a possible consequence of his new theory of
clectrodynamics according to which the square of the four-potential
1s required to be a universal comstant, (**) However, the essentinls
of the analysis remain the same, Dirac has also discussed the
problem of normalizing the ether wave function,

Let us now leave the ether hypothesis and as a final remark
in cOnnection with the use of the four-velocity 7V, say a few

words about the nonlocality, which is a characteristic property of

the formalism in the previous Sections, In electrodynamics this‘
nonlocality will never lead to difficulties, as the physically |
important field strengths are local, cf, eq.(41), (Even in the
typical Aharonov-Bohm effect(2%), in which the potentials appear

to play an important role, the quantity of experimental interest
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can be expressed as the integral ¢;§»q; around the magnetic
equipment which produces the potential, This integral can evidently
be transformed into a surface integral involving the magnetic field
E,) However, one might wonder whether the nonlocality is of
importance in other and more general field theories, which do not
show the gauge invariance property, ‘We know that the main results
from field theory rest heavily upon the postulate of locality.
However, we shall be content only by mentioning the problem here,

without pursuing the subject further,
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