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Fiber breakage process involves heat exchange with the medium and energy dissipation in
the form of heat, sound, and light, among others. A purely mechanical treatment is
therefore in general not enough to provide a complete description of the process. We have
proposed a thermodynamic framework which allows us to identify new alarming signals
before the breaking of the whole set of fibers. The occurrence of a maximum of the
reversible heat, a minimum of the derivative of the dissipated energy, or a minimum in the
stretching velocity as a function of the stretch can prevent us from an imminent breakage of
the fibers which depends on the nature of the fiber material and on the load applied. The
proposed conceptual framework can be used to analyze how dissipation and thermal
fluctuations affect the stretching process of fibers in systems as diverse as single-
molecules, textile and muscular fibers, and composite materials.

Keywords: fiber bundle model, alarming signal, mesoscopic nonequilibrium thermodynamics, Fokker–Planck
equation, dissipation, entropy production

1 INTRODUCTION

When external load/stretch is applied on fiber materials composed of elements with different
strength thresholds, weaker elements fail first. As the surviving elements have to support the load,
stress (load per element) increases and that can trigger more element failure. With continuous
loading/stretching, at some point the system collapses completely, that is, the external load/stretch is
above the strength of the whole system at that point. Such a system collapse is known as “catastrophic
failure” for that system.

There are several physics-based approaches [1–3] that can model such a scenario. Fiber bundle
model (FBM) is one of those models, and FBM has become a useful tool for studying fracture
and failure [4–6] of composite materials under different loading conditions. The simplicity of
the model allows achieving analytic solutions [5, 7] to an extent that is not possible in any of the
fracture models studied so far. For these reasons, FBM is widely used as a model of breakdown that
extends beyond disordered solids. In fact, fiber bundle model was first introduced by a textile
engineer [4]. Later, physicists took interest in it, mainly to explore the failure dynamics and avalanche
phenomena in this model [8–10]. Furthermore, it has been used as a model for other geophysical
phenomena, such as snow avalanche [11], landslides [12, 13], biological materials [14], or even
earthquakes [15].

Although stretching processes in FBM have been analyzed extensively [1–6], mainly by the
physics community, a concrete thermodynamic description for the stretching process is still
lacking in this field. In the efforts to unveil the stretching failure phenomena, thermodynamics
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seems to be an important tool because it allows
incorporating variables such as temperature, entropy,
reversible heat, entropy production rate, and energy
dissipation to thus unify stretching failure dynamics and
energy analysis, especially where surface effects, heat
release, and sound emission, due to energy dissipation, are
present when dealing with the stretching failure of fibrous
materials.

In this article, we intend to develop a thermodynamic
framework to analyze not only the energetics of the stretching
failure phenomena but also the dynamics by means of
nonequilibrium thermodynamic formalism at all scales, from a
single molecule to a macrostructure. We believe that our
thermodynamic framework could carry over to other problem
areas, eventually also outside the physical sciences such as
molecular biology and nanotechnology.

We arrange the article as follows: After the Introduction
(section 1), we give a short background of studies on
stretching of FBM in section 2. In several subsections of
section 2, we discuss strength and stability in FBM, energy
variations during stretching, and warning signs of
catastrophic failure. In section 3, we introduce a proper
thermodynamic framework of the stretching process and
analyze the mesoscopic regime and small-fluctuation
regime. All the simulation results are presented in
section 4, including dynamics and energetics, the
Fokker–Plank approach, and the role of fluctuations on
the stretching process. We make some conclusions at the
end (section 5).

2 BACKGROUND: STRETCHING OF A
FIBER BUNDLE

In 1926, F. T. Peirce introduced the fiber bundle model [4] to
study the strength of cotton yarns in connection with textile
engineering. Some static behavior of such a bundle (with equal
load sharing by all the surviving fibers, following a failure) was
discussed by Daniels in 1945 [16], and the model was brought to
the attention of physicists in 1989 by Sornette [17].

In this model, a large number of parallel Hookean springs or
fibers are clamped between two horizontal platforms; the upper
one (rigid) helps hanging the bundle, while the load hangs from
the lower one. The springs or fibers are assumed to have different
breaking strengths. Once the load per fiber exceeds a fiber’s own
threshold, it fails and cannot carry the load any more. The load/
stress it carried is now transferred to the surviving fibers. If the
lower platform deforms under loading, fibers closer to the just-
failed fiber will absorb more of the load than those further away,
and this is called the local load sharing (LLS) scheme [18]. On the
other hand, if the lower platform is rigid, the load is equally
distributed to all the surviving fibers. This is called the equal load
sharing (ELS) scheme. Intermediate range load redistribution is
also studied (see [19]).

2.1 Strength and Stability in a Fiber Bundle
Model
Let us consider a fiber bundle model having N parallel fibers
placed between two stiff bars (Figure 1). Under an external force,

FIGURE 1 | Illustration of the system. Under the application of a constant external force F, the set of fibres are stretched by a length x. As the fibers have different
strength thresholds, some of them break (yellow fibres) resulting in the increment of load for the non-broken fibres (grey fibres).
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the system responds linearly with an elastic force. The
dimensionless elastic force Fe for a given dimensionless stretch
value x (ranging from 0 to 1) is Fe � κx, where κ is the
dimensionless spring constant κ � keLm/F with ke as the elastic
constant of the material, Lm as the maximum stretching length,
and F as the external force (applied load). If the stretch x exceeds
this threshold, the fiber fails irreversibly. In the equal load sharing
(ELS) model, the bars are stiff and the applied load F is shared
equally by the intact fibers.

2.1.1 Fiber Strength Distribution
The strength thresholds of the fibers are drawn from a probability
density p(x). The corresponding cumulative probability is
given by

P(x) � ∫x

0
p(y)dy (1)

from which we can obtain the number of non-broken fibers as a
function of the average deformation of the set of fibers x:

n(x) � N[1 − P(x)]. (2)

The fraction of broken fibers, or damage, is then given by
m(x) � 1 − n(x)/N . For a uniform distribution, one has
p(x) � 1, P(x) � x, and n(x) � N(1 − x).

2.1.2 The Critical/Failure Strength
The bundle exhibits an elastic force

Fe(x) � N[1 − P(x)]κx. (3)

The normalized elastic force (Fe/N) vs. the average stretch x is
represented in Figure 2 for a uniform probability distribution.

The elastic force maximum is the strength of the bundle and
the corresponding stretch value (xc) is the critical stretch beyond
which the bundle collapses. Two distinct regimes of the system

can be recognized: one stable, for 0< x ≤ xc, and another unstable,
for x > xc.

The critical stretch value follows from the condition
dFe/dx � 0. In the case of a uniform threshold distribution,
using the corresponding values of p(xc) and P(xc), we obtain xc �
1/2.

2.2 Energies in Fiber Bundle Model During
Stretching
When N is large, one can express the elastic Ee and the breaking
Eb energies in terms of the stretch x as

Ee(x) � Nκ

2
x2[1 − P(x)] (4)

and

Eb(x) � Nκ

2
∫x

0
dy[p(y)y2]. (5)

For a uniform distribution within the range (0, 1), setting p(x) �
1 and P(x) � x in Eqs. 4, 5, we get Ee(x) � Nκ

2 x2(1 − x) and
Eb(x) � Nκ

6 x
3. Clearly, breaking energy increases steadily with the

stretch, but elastic energy reaches a maximum (see Figure 2).

2.3 The Warning Signal of a Catastrophic
Failure
The elastic energy reaches a maximum value which falls in the
unstable region of Figure 2, after the critical value of the
extension. Its knowledge is thus not useful to predict the
catastrophic failure point of the system. However, the
maximum value xmax of dEe/dx appears before xc (see
Figure 2). To obtain the relation between xmax and xc, we take
the derivative of dEe/dx, with respect to x, in which for a uniform
distribution, the solution of d2Ee(x)/dx2 � 0 gives

xmax � 2
3
xc. (6)

The rate of change of the elastic energy thus shows a peak before
the failure comes [20].

3 THERMODYNAMICS OF STRETCHING
PROCESSES

The stretching failure of fibers/materials is seen at a small scale,
for example, during stretching of molecules in biological objects
[21]. Similar stretching failure phenomena are also observed on a
much bigger scale, like in the case of bridges made of long cables
[22]. The observation in Ref. [20] that elastic energy variation
could be a useful indicator of upcoming stretching-induced
failure motivates us to construct a proper thermodynamic
framework for such stretching failure phenomenon. For this
purpose, we are going to introduce some new concepts like
thermal bath, irreversible energy dissipation, and entropy
production, and we believe that such a framework will help
explore some new features of stretching failure behavior in

FIGURE 2 | Force and energy against stretch x for a uniform distribution
of the fiber strengths in the bundle, that is, for p(x) � 1.
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general. In this section, we will compute the energy dissipated and
the heat released in the stretching process and show that
dissipation provides a warning signal of the failure.

3.1 Energetics
Due to the load F, the system experiences an external work W
which affects the elastic and breaking energies and the entropy S
as well. Energy conservation can thus be formulated as

W � ΔEe + ΔEb + TΔS, (7)

where TΔS is the heat released Qr in the process and ΔEd the
energy dissipated, with T the temperature. All the terms in this
equations are measured in units of FLmN . The elastic energy of
the fibers as a function of the elongation results from the elastic
energy per fiber times the number of unbroken fibers (Eq. 2):

ΔEe(x) � n(x)
N

φ(x), (8)

where φ(x) � κ
2x

2. The breaking energy results from the elastic
energy which transforms into kinetic and surface energy. An
infinitesimal change of this energy is related to the infinitesimal
change of the damage through dEb(x) � φ(x)dm(x). Therefore,
its total change is

ΔEb(x) � ∫x

0
φ(z)[zm(z)

zz
]dz. (9)

The work done by the external force is the sum of the work done
on each fiber:

W(x) � 1
FN

∑n(x)
i�1

wi(x) ≈ 1
FN

∫n

0
w(x)dn’, (10)

where the work per fiber w is

wi(x) � −∫x

0

F
n(y) dy. (11)

Changes in the entropy in the stretching process are expressed as

ΔS � ΔrS + ΔiS, (12)

where ΔrS is the entropy supplied to the system by its
surroundings and ΔiS is the entropy produced in the process.
The second law of thermodynamics states that ΔiS≥ 0, where the
zero value holds for reversible stretching (at quasi-equilibrium).
The entropy supplied can be positive or negative; the sign
depends on the interaction of the system with its surroundings
[23]. For a closed system that may exchange heat with the
surroundings, it is given by the Carnot–Clausius expression

ΔrS � Qr

T
, (13)

where Qr is the reversible or compensated heat, supplied for the
surroundings, and T is the temperature of the environment. The
irreversible change of the entropy, or the total entropy produced,
at average elongation x is given by

ΔiS � ∫  t

0

n(x)
N

σdt ’, (14)

where σ is the entropy production rate. The Goudy–Stodola
theorem relates the total energy dissipated ΔEd to the entropy
produced ΔiS [24]:

ΔEd � TΔiS. (15)

At this point, it is important to distinguish between reversible
heat Qr and dissipated energy Ed . The former is the energy in the
form of heat supplied from or toward the surroundings in order
to keep the temperature of the system constant. This quantity can
be measured, for instance, by using a calorimeter. The latter is the
free energy lost that can be transferred as heat, sound, or light, to
mention just few forms of energy. The energy dissipated is thus
not necessarily related to a measurable heat flux or to a
measurable temperature change in the neighborhood of the
system. This is the reason why reversible heat is frequently
referred on the literature as measurable heat [23].

3.2 Mesoscopic Nonequilibrium
Thermodynamics
When the fibers are immersed in a heat bath, their length can
fluctuate. The effect of these fluctuations is negligible when the
energy of the fibers is much greater than the thermal energy kBT ,
which is the limit of validity of a purely mechanical treatment. For
smaller system energies, the fluctuations become increasingly
important. This is the case, for example, in the stretching of
DNA [25]. Here, we analyze the dynamics of the elongation
fluctuations and compute the entropy production rate and the
energy dissipated in the process.

The probability density ρ(x, t) to find a fiber with length x at
dimensionless time t fulfills the continuity equation

zρ(x, t)
zt

� −zJ(x, t)
zx

(16)

ensuing from probability conservation. In this equation, J is the
probability current which vanishes at the boundaries (x � 0 and
x � 1). The entropy production rate σ of the stretching process
follows from mesoscopic nonequilibrium thermodynamics [26]:

σ(t) � −1
T

∫1

0
J(x, t) zμ(x, t)

zx
dx. (17)

By coupling linearly, the flux J and its conjugated thermodynamic
force (chemical potential gradient zμ/zx), we obtain the
dimensionless current

J(x, t) � −ρ(x, t) zμ(x, t)
zx

(18)

which corresponds to Fick’s diffusion law written in a
dimensionless form where t � t’D/L2m is the dimensionless
time and D is the diffusivity [26]. The chemical potential is

related to the free energy of the system through μ(x, t) � (zG
zn)

T,P

,
which in turn is given by

ΔG � ΔH − TΔrS

� ∫ n

0
∫x

0

1
n(y) dydn − n(x)φ(x)

N
+ kBT
FLm

n(x)lnρ(x) (19)
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with H being the enthalpy to which the elongation work and the
elastic (potential) energy contribute. From now on, we will use the
dimensionless force per fiber f � FLm/kBT . Taking the derivative
of the Gibbs free energy with respect to the number of non-
broken fibers n and considering Eq. 2, we obtain the chemical
potential

μ(x, t) � ∫x

0

1
n(y) dy − φ(x) + 1

f
lnρ. (20)

For large values of f, the entropic contribution is very small.
Notice that the signs of the enthalpic terms have been changed
because the external work is done in the direction of the
movement, while the elastic force has the opposite direction.

Substituting Eq. 20 in Eq. 18 and the resulting flux in Eq. 16,
we obtain the Fokker–Planck equation describing the evolution of
the probability distribution

zρ(x, t)
zt

� z

zx
[N ρ(x, t)

n(x) − ρ(x, t) zφ(x)
zx

+ 1
f
zρ(x, t)

zx
]. (21)

The average elongation of the fibers corresponds to the first
moment of the probability density ρ, and the solution of this
equation is

x(t) � ∫1

0
xρ(x, t)dx. (22)

Taking the time derivative of Eq. 22 and using the conservation
law (Eq. 16), we obtain

_x(t) � ∫1

0
J(x, t)dx (23)

from which we can interpret J as the local stretching velocity.

3.3 Small Fluctuation Regime
When fluctuations are very small, the variance of the probability
distribution takes very small values, and therefore, we could
approximate ρ(x, t) by a delta function centered on x:
δ[x − x(t)]. By combining Eqs. 18, 20 and substituting ρ(x, t)
by the delta function, we obtain

J(x, t) � δ[x − x(t)](1
f
+ N
n(x) − κx), (24)

where we have used the definition of φ. Integrating now Eq. 24 in
x, we obtain the stretching velocity

_x(t) � 1
f
+ N
n(x) − κx, (25)

where the first term on the right side is the entropic contribution,
the second results from the presence of the load, and the third is
due to the elastic force which opposes to the elongation of the
fibers. For very small fluctuations, the entropy production rate
Eq. 17 is σ(t) � _x

2
. Using this result into Eq. 14, and the equality

_x � dx/dt, we obtain the irreversible entropy change

ΔiS(x) � ∫x

0

n(x)
N

_xdx. (26)

4 RESULTS AND DISCUSSION

In this section, we obtain analytic expressions and numerical
results for the dynamics and energetics of the stretching process
assuming a uniform distribution of the strength thresholds of the
fibers, P(x) � x. In order to simplify the notation, from now on, x
will stand for the average value x.

4.1 Dynamics and Energetics for Small
Fluctuations
4.1.1 Dynamics
The average stretching velocity for a uniform distribution is
obtained from Eq. 25, which is now written as

_x(t) � 1
f
+ 1
1 − x

− κx. (27)

Its derivative with respect to the elongation given by

d _x(t)
dx

� 1

(1 − x)2 − κ (28)

has a minimum around x � 1 − ���
1/κ

√
, for κ≥ 1, indicating that for

large enough values of κ, the stretching velocity exhibits a non-
monotonic behavior. By integrating Eq. 27, we obtain the
expression relating t and x:

t � − 1
2κ

ln[1 − κx(1 − x)] − 1�������(4 − κ)κ√ {tan−1[
�
κ

√ (1 − 2x)����
4 − κ

√ ]
− tan−1(

�
κ

√����
4 − κ

√ )}.
(29)

For κ≥ 4, this equation diverges or is imaginary, which indicates
that the process is not possible. From this relation, we can
anticipate the asymptotic form of x through the behavior of
the inverse tangent.

4.1.2 Energetics
From the dynamic of the process, we can compute the work, the
energies, and the heat involved. The work follows from Eqs.
10, 11:

W � −x(lnx − 1). (30)

The breaking energy, computed from Eq. 9, is

ΔEb � κ

6
x3. (31)

As expected, the breaking energy increases as the elongation
increases. From Eq. 8, the elastic energy change is

ΔEe � κ

2
(1 − x)x2, (32)

and its derivative

dΔEe

dx
� κ

2
x(2 − 3x) (33)

From these expressions, we observe that the maximum of ΔEe is
located at x � 2/3, whereas the maximum of dΔEe

dx is found at
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x � 1/3. Through these values, we can analyze the different stages
of the process. At x � 1/3, the system loses its capacity to store
energy and the process enters a metastable regime. At x � xc, the
capacity to respond effectively to the action of the external load
decreases and the process enters an unstable state. Finally, at
x � 2/3, the system cannot store more energy in the form of
elastic energy and falls into an imminent failure regime.

On the other hand, the energy dissipated (Eq. 15) is

ΔEd ≈
x
f
(1 − x

2
) + x − κ

12
(4 − 3x)x3, (34)

which decreases when κ increases because at a large elastic
constant, more elastic energy can be stored to be subsequently
transformed into kinetic energy after the breaking of the fibers.
The first derivative of the energy dissipated, given by

dΔEd

dx
≈
1
f
(1 − x) + 1 − κ(1 − x)x2, (35)

must be positive, according to the second law which imposes that
0≤ κ≤ 13/2, for f ≫ 1. Combining this restrictionwith that inherent
to Eq. 29, we conclude that the stretching process is feasible for
0≤ κ≤ 4. Analyzing the derivative of the dissipated energy, we find
that it has a minimum at x ≈ 2/3, located close to the maximum of
the elastic energy. The dissipated energy may thus give us
information about the transition to the imminent failure regime.

Finally, the reversible heat Qr is obtained by using Eq. 7:

Qr � W − ΔEd − ΔEe − ΔEb (36)

Its derivative with respect to the elongation

dQr

dx
� −lnx − 1

f
(1 − x) − 1 − κx(1 − x)2 (37)

shows that the maximum of Qr depends on κ and is given by

x* ≈ (368 − 54κ + 4κ2)/1000. (38)

From this expression, one can see that for κ≥ 3/4, the maximum
of Qr lies before the maximum of the derivative of the elastic

energy. This result indicates that by measuring the maximum of
the reversible heat (the point at which the process becomes
exothermic dQr/dx < 0), we can know beforehand what is the
state at which the system reaches the metastable regime. For
0≤ κ≤ 3/4, the maximum lies in between x � 1/3 and x � 0.368,
that is, in the metastable region.

Another way to find alarming signals is to calculate the
intersection point of the curves dΔEe/dx and dQr/dx, x*,
which can be obtained from Eqs. 33, 37, for f ≫ 1:

x* ≈ (368 − 118κ + 24κ2 − 2κ3)/1000. (39)

For 1/3≤ κ≤ 4, this point is located at the metastable regime.
Thus, by measuring the heat released and computing the elastic
energy, we can estimate the value of elongation just before the
system enters the metastable region. Finally, from Eq. 28, we see
that for 1≤ κ≤ 9/4, the minimum of the stretching velocity is
located before the maximum of the change of the elastic energy
(x � 1/3), whereas for 9/4≤ x ≤ 4 it is situated in the metastable
regime, before the process reaches the unstable stage.

4.2 Fokker–Planck Approach
To analyze the dynamic and the energetics of the process in the
case in which fluctuations are not necessarily small, we will use
the Fokker–Planck equation (Eq. 21) from which we can obtain
the average elongation of the fibers and the energy dissipated. We
have solved this equation by implementing the finite difference
method in the software MATLAB 2017b. The results for ρ,
represented in Figure 3, show a Gaussian-like behavior. We
can observe that as the process progresses, the solution
displaces to the right. In the inset, we represent the variance
for f ≫ 1, which increases linearly with the elongation of the
fibers. The small value of the variance indicates that the
assumption of small fluctuations is justified in this case.

By using Eqs. 2, 22, we compute the average elongation and the
number of non-broken fibers which are represented in Figure 4.
Both quantities exhibit a quasi-linear behavior and an asymptotic
behavior close to the breaking point. This comes from the fact
that by decreasing the number of non-broken fibers, the force

FIGURE 3 | Probability density as a function of the elongation y at different times, for κ � 2. Gaussian-like solutions displace to the right because of the action of the
external force. The inset shows the variance of the probability distribution as a function of the average elongation of the set of fibers x. The variance increases linearly, then
nonlinearly, and finally it decays to zero.
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exerted per fiber increases, thus triggering an accumulative
effect, typical of catastrophic events. The inset of the figure
shows a non-monotonic behavior of the damage rate,
evidencing the competition between the elastic and external
forces in the stretching process in which finally the load force
per fiber becomes much higher and the rate increases
exponentially.

The stretching velocity _x follows from the dynamics of x. By
taking the derivative of _x with respect to x, we obtain the change
of the stretching velocity as a function of the average elongation.
In Figure 5, we show the behavior of both quantities for κ � 2.
We observe the existence of a minimum of the stretching velocity
around x � 0.29 which appears before the system reaches the
maximum change of the elastic energy (the transition toward the
metastable regime).

From the dynamics of the process, we can calculate the energy
dissipated by using Eqs. 14, 15, 17. Figure 6 shows the energetics
of the process. As predicted from the analytical results, we observe
a maximum of the elastic energy and of the reversible heat.
Furthermore, the maximum of Qr is located around x � 0.366,
independently of the values of κ. Additionally, the net reversible
heat at the end of the process (Qr(x � 1)) is zero, which shows
that the stretching process is endothermic at small deformations

and exothermic at larger deformations. The irreversible heat
released results in measurable changes in the temperature of
the environment.

The derivatives of the different energies with respect to x are
represented in Figure 7. Before the imminent failure regime, the
behavior of the temporal derivatives coincides with that of
the spatial derivatives due to the fact that in this regime, x is
linear in time, as follows from Eq. 29. The results obtained confirm
that the derivative of the elastic energy has a maximum at x � 1/3
and its primitive a maximum at x � 2/3, while the derivative of the
breaking energy always grows. They also confirm that both
derivatives take the same value at x � 1/2. The derivative of the
reversible heat always decreases, which indicates that the net flux of
reversible heat is much higher at the beginning of the process. The
curve of this derivative intersects that of the derivative of the elastic
energy around x � 1/5, for κ � 2, while for lower values of κ, the
intersection point moves to the right, being κ � 1/2 the highest
value of κ at which the crossing takes place before the process
reaches the metastable regime.

From Figure 7, we also confirm the fact that the derivative of
the dissipated energy is always positive, in accordance with the
second law of thermodynamics. Interestingly, the minimum of
this derivative is found around x � 1/2 (independently of the

FIGURE 4 | Average elongation of the set of fibers x (continuous line) and fraction of non-broken fibers n/N (dashed line) as a function of time t, for κ � 2. The inset
represents the rate of damage to the fiber bundle, which exhibits a non-monotonic behavior, thus evidencing the competition between elastic and external forces in the
stretching process.

FIGURE 5 | Stretching velocity _x (left grid, black continuous line) and absolute value of d _x/dx (right grid, gray continuous line) as a function of the average elongation
x, for κ � 2 represented in the logarithmic scale.
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value of κ), which is the same value at which the derivatives of the
elastic and breaking energy coincide.

4.3 Role of the Fluctuations in the Stretching
Process
The role that fluctuations play in the process can be estimated by
comparing the value of the relevant quantities when we use the
small fluctuation approach or when we adopt a Fokker–Planck
description for the same value of κ. Figure 8 shows the change of
the stretching velocity with position. In particular, for κ � 2, the
location of the minimum of this quantity computed from both
approaches is the same, meaning that close to the minimum the
system is practically insensitive to the presence of fluctuations.
However, for small elongations, the velocities are slightly
different, while at the imminent failure regime, they differ
considerably due to the presence of fluctuations.

As shown in Figure 9, energy dissipation and reversible heat
are affected by fluctuations at all stages of the process. The
dissipated energy is overestimated in the approach of small

fluctuations, whereas the reversible net heat (Qr(x � 1)) is
very sensitive to fluctuations, as concluded from the fact that
this quantity is different in both approaches.

Figures 8, 9 show that the small fluctuation approach
adequately describes the dynamics but not the energetics. The
high accuracy in the dynamics is due to the almost Gaussian
nature of the probability with a sufficiently small variance which
is represented in Figure 3. The observed disparity in the
reversible heat and energy dissipated lies in the approximation
used. Additionally, the small deviation of the stretching velocity is
accumulated, thus affecting the energy dissipated in the case of
small fluctuation. Differences between both approaches become
evenmore patent at smaller values of κ and fwhen the effect of the
fluctuations is less important.

5 CONCLUSION

We have proposed a thermodynamic framework that analyses the
role played by dissipation in a fiber stretching process, describes

FIGURE 6 | Energetics as the stretching progress, for κ � 2. The work doneW (dotted black line) is computed from Eq.10, the elastic energy ΔEe (continuous black
line) is computed from Eq. 8, the breaking energy ΔEb (dashed black line) is computed from Eq. 9, the dissipated energy ΔEd (dashed gray line) is computed from Eqs.
14, 17, and the reversible heat Qr (continuous gray line) is computed from Eqs. 7, 12. The metastable regime threshold (light blue line) is located at x � 1/3, the unstable
regime threshold (blue line) is located at x � 1/2, while the imminent failure threshold (red line) is located at x � 2/3.

FIGURE 7 | Derivatives for the energies of the stretching process as a function of the average elongation x, for κ � 2. dΔEe/dx: continuous black line; dΔEb/dx:
dashed black lines; dΔEd/dx: dashed gray line; and dQr /dx: continuous gray line. Metastable regime transition: light blue line at x � 1/3; unstable regime transition: blue
line at x � 1/2; and imminent failure regime transition: red line at x � 2/3.
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its different stages, and obtains new alarming signals before the
whole set of fibers break. Our thermodynamic framework has
identified relevant regimes (metastable, unstable, and imminent
failure) as well as provided new transition indicators in terms of
stretching velocity variation and entropy production rate, which
is an important quantity to measure the energy efficiency of
processes [27]. Specifically, we have shown that the maximum of
the reversible heat may emerge before the process enters into the
unstable regime. For some values of κ and small fluctuations, this
maximum is located in the stable regime. In the same line, we
found that the minimum of the entropy production rate is located
around the transition to the unstable regime, and that for small
fluctuations, this minimum defines the starting of the imminent
failure regime for all values of κ. We have also proved that when
the heat release flux is equal to the entropy production rate, in this
intersection, the system is close to the transition toward the
metastable regime. Similarly, we found that the minimum of the
stretching velocity is always located in the stable zone, but the
exact location strongly depends on the value of κ.

Under this approach, a more general analysis of the stretching
process as a function of κ � keLm/F could be performed to

investigate the effect of the relation between force and elastic
constant on the dynamics. Additionally, for a small system with a
low number of fibers, the approach can be applied to investigate
biological stretching failure processes such as fiber muscle
elongations and biochemical stretching as in DNA chains.
Finally, as the stretching process releases heat and dissipates
energy, we can have considerable temperature changes which can
influence the individual failure of elements [28–30]. Further work
is therefore needed on this issue.
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