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Abstract

Automated design methods are emerging as a powerful tool for the fluid-dynamic
design of turbomachinery components. Such automated methods integrate math-
ematical models of different level of sophistication with numerical optimization
techniques to explore large design spaces in a systematic way. This, in turn,
allows the designer to achieve higher performance gains and shorten the develop-
ment time with respect to traditional design workflows based on trial-and-error.
In this context, the present thesis proposes a collection of models and methods
for the preliminary and aerodynamic design optimization of turbomachinery that
addresses some of the limitations of the design methods currently in use.

With regards to the preliminary design phase, this work proposes a design
optimization method for axial turbines with any number of stages. The method
is based on a new mean-line model that accepts arbitrary equations of state to
evaluate the thermodynamic properties of the fluid and empirical loss models to
estimate the entropy generation. In addition, the kinetic energy recovered at the
exit of the last stage is predicted using a new one-dimensional annular diffuser
model based on the balance equations for mass, momentum, and energy. In con-
trast with existing methods, the preliminary design problem was formulated as
a constrained optimization problem and solved using a gradient-based algorithm.
This choice of optimization method allows the designer to: (1) integrate the tur-
bine, diffuser, and loss models in a simple way by means of equality-constraints
and (2) find the optimal solution of multi-stage design problems with tens of de-
sign variables at a low computational cost. The preliminary design method was
applied to a case study and a sensitivity analysis revealed that there exists a lo-
cus of maximum efficiency in the specific speed and diameter plane (i.e, the Baljé
diagram) that can be predicted with a simple analytical expression.

Concerning the aerodynamic design phase, the present work proposes a uni-
fied geometry parametrization method based on computer-aided design (CAD)
for axial, radial and mixed-flow turbomachinery blades. The method uses conven-
tional engineering parameters (e.g., chord, metal angles, thickness distribution)
and it exploits the mathematical properties of non-uniform rational basis spline
(NURBS) curves and surfaces to produce blades with continuous curvature and
rate of change of curvature. In addition, the method provides the sensitivity of the
blade coordinates with respect to the design variables by means of the complex-
step method, allowing the integration of the parametrization into automated,
gradient-based shape optimization workflows. The proposed parametrization also
allows one to replicate the geometry of an existing blade given by scattered point
coordinates by solving a two-step optimization problem. The capabilities of this
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reverse engineering strategy were demonstrated by replicating the geometry of
eight turbomachinery blades in two and three dimensions with an accuracy com-
parable to the tolerances of current manufacturing technologies.

Furthermore, this thesis proposes an aerodynamic design method for turbo-
machinery blades operating under non-ideal thermodynamic conditions. The pro-
posed method supports the simultaneous optimization of multiple blade rows in
two dimensions and it relies on a new gradient-based shape optimization frame-
work that integrates the proposed CAD-based parametrization with a Reynolds-
Averaged Navier-Stokes (RANS) solver and its discrete adjoint counterpart. The
aerodynamic design method developed in this work offers three main advantages
with respect to other design systems: (1) the real-gas flow solver enables the opti-
mization of unconventional turbomachinery (e.g., organic Rankine cycle turbines,
supercritical carbon dioxide compressors) in which the fluid properties deviate
from ideal gas behavior, (2) the discrete adjoint solver allows the designer to
evaluate the cost function gradients at a computational cost that is essentially
independent of the number of design variables, which, in turn, enables the explo-
ration of large design spaces that would be untractable with gradient-free methods,
and (3) compared with mesh-based parametrization methods, the CAD-based
parametrization allows the designer to impose high-level geometric constraints,
such as constant axial chord length, minimum trailing edge thickness, or smooth
curvature distribution in a straightforward way.

In order to demonstrate the capabilities of the automated design tools de-
veloped during this project, the proposed preliminary and aerodynamic design
methods are applied to design a new single-stage axial turbine operating with
isobutane (R600a) that is is going to be built and tested in the EXPAND fa-
cility at the Norwegian University of Science and Technology. The preliminary
design method was successfully applied to design a turbine geometry and velocity
triangles that maximize the total-to-total isentropic efficiency of the turbine and
satisfy the technical constraints imposed by the EXPAND facility. In addition,
the aerodynamic design method was used to define stator and rotor blade shapes
that minimize the entropy generation within the turbine and satisfy the design
specifications established during the preliminary design phase. In particular, the
gradient-based shape optimization framework was able to reduce the entropy gen-
eration by 36%, relative to the baseline geometry, which corresponds to a total-to-
total isentropic efficiency increase of about 4 percentage points. Furthermore, the
aerodynamic optimization did not only produce a quantitative improvement in
performance, but also caused qualitative changes in the flow field. Most notably,
the baseline stator cascade featured a trailing edge shock pattern and a shock-
induced separation bubble that were eliminated as a result of the optimization.
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Nomenclature

Latin symbols

a Speed of sound m/s

A Flow area m2

A Coefficient matrix several

AR Area ratio –

b Diffuser channel height m

b̂in Diffuser inlet channel height m

c Blade chord m

cax Blade axial chord m

cp Specific heat capacity at constant pressure J/kg K

Cf Skin friction coefficient –
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Chapter 1

Introduction

1.1 Background and motivation

Before the advent of digital computers, the design of turbomachinery was dom-
inated by experimental campaigns and simple design rules based on physical in-
tuition and the experience gained from previous designs. Prototypes were built
and tested, and the experience acquired was used to guide the design process
until a satisfactory performance was obtained. Over time, however, advances in
computational power and numerical analysis allowed a significant fraction of the
experimental efforts to be replaced by computer simulations. As a result, the
fluid-dynamic design of turbomachinery currently relies on a range of mathemat-
ical models of different level of sophistication, and it is often conceptualized into
the preliminary and aerodynamic design phases (Pini et al. 2017).

During the preliminary design phase, the objective of the designer is to select a
machine architecture and an approximate geometry that satisfies the design spec-
ifications obtained from a system-level analysis. In this phase, the performance of
the machine is estimated using a mean-line model, whereby the flow is assumed to
be uniform along the blade span and the balance equations for mass and rothalpy
are solved at the inlet and outlet of each cascade (Dixon et al. 2013). By contrast,
the objective of the aerodynamic design phase is to define detailed blade shapes
that produce a flow field satisfying the aerodynamic targets established during
the preliminary design phase (e.g., flow angles, degree of reaction). To this aim,
the geometry is defined in a computer-aided design (CAD) environment and the
equations governing the flow are solved by means of computational fluid dynamics
(CFD) to determine the machine performance (Denton et al. 1998).

Despite significant advances in turbomachinery flow modeling, the trial-and-
error nature of the design process has largely endured and many designs are still
carried out by manually sampling the design space until a configuration with an
acceptable performance is found (Denton 2010). These manual design workflows
may be feasible for design problems involving only a handful of design variables,
but they rapidly become time-consuming and error-prone as the complexity of
the problem increases. In addition, the design variables are often interrelated in
complicated ways and it is easy to miss potential interactions that could lead to
superior designs. As an alternative, automated design workflows that integrate
flow models with numerical optimization techniques are emerging as a powerful

1



Chapter 1. Introduction

tool that enables the systematic exploration of large design spaces. This, in turn,
allows the designer to achieve higher performance gains, shorten the development
time of new products, and make the design process reproducible (Van den Braem-
bussche 2008). Moreover, automated design workflows offer a great potential for
unconventional applications, in which a large body of previous design experience
does not yet exist. Prominent among these, are turbomachines operating in the
Non-Ideal Compressible Fluid Dynamics (NICFD) regime (Kluwick 2017; Vitale
et al. 2017), including the turbines and compressors used in organic Rankine cy-
cle (ORC) and supercritical carbon dioxide (sCO2) power systems (Colonna et al.
2008; Romei et al. 2020).

Thanks to these advantages, automated design methods based on numerical
optimization are expected to play a significant role in the fluid-dynamic design of
turbomachinery components (Verstraete 2019). At the time of this writing, the
majority of automated design systems rely on gradient-free optimization methods.
Presumably, this is because of their robustness, ease of integration with black-box
models, and ability to handle non-smooth or discontinuous optimization problems
(Audet et al. 2017). However, gradient-free methods require a large number of
function evaluations to converge to the optimum solution, especially when the
problem involves many design variables. This, in turn, results in high execution
times that hinder the application of these methods to complex industrial design
problems. Consequently, the fluid-dynamic design of turbomachinery may benefit
significantly from the development of differentiated design chains and the adoption
of efficient gradient-based optimization methods (Pini et al. 2017).

Moreover, one limitation of many of the design methods currently in use is
that they assume that the fluid behaves as an ideal gas. However, this is not
appropriate in some unconventional applications, such as ORC or sCO2 power
systems, where the fluid is often being expanded or compressed in the thermody-
namic region close to the critical point or to the vapor saturation line (Colonna
et al. 2008). In such applications, it is recognized that the fluid-dynamic design of
turbomachinery may benefit significantly from the use of systematic optimization
methods and accurate equations of state (Vitale et al. 2017; Persico et al. 2019).

Despite recent advances in the field, automated turbomachinery design meth-
ods still need to be improved and become more mature before they can be rou-
tinely used to solve complex industrial design problems or explore unconventional
turbomachinery concepts for which no previous design experience is available.

1.2 Objectives and scope

Considering the limitations of the existing design systems, the goal of this
Ph.D. thesis is to develop a set of automated methods for the fluid-dynamic design
of turbomachines operating under NICFD conditions. This principal goal was
divided into four objectives that could be managed individually:
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• Develop an optimization strategy for turbomachinery preliminary design.

• Develop a CAD-based parametrization method for turbomachinery blades.

• Integrate the proposed parametrization method with a high-fidelity flow
solver to develop an aerodynamic design method for turbomachinery blades
operating under non-ideal thermodynamic conditions.

• Demonstrate the capabilities of the proposed methods by carrying out the
complete fluid-dynamic design of a new turbomachine.

As the scope of the present thesis is the development of fluid-dynamic design
methods, the influence of other disciplines, such as stress analysis, conjugate heat
transfer, or aero-elasticity, was not considered. In addition, the automated design
methods proposed in this thesis rely on physical models and gradient-based opti-
mization algorithms, and the use of gradient-free algorithms and meta-modeling
techniques was not investigated. Furthermore, the methods developed herein are
formulated from a deterministic point of view and the uncertainty in the model
predictions was not quantified or accounted for. Finally, this thesis does not
contain any experimental work, but the proposed models were validated against
experimental data when possible.

1.3 Contributions

The main contributions of this thesis can be summarized as:

• Development of a one-dimensional model for annular diffusers.

• Development of a mean-line model for axial turbines.

• Development of an optimization strategy for the preliminary design of tur-
bomachinery that integrates the axial turbine and diffuser models.

• Development of a unified CAD-based parametrization for axial, radial, and
mixed-flow turbomachinery blades that also provides the sensitivity of the
geometry with respect to the design variables.

• Development of a reverse engineering method that enables the parametriza-
tion of an existing blade geometry defined by a set of scattered coordinates.

• Development of an aerodynamic shape optimization framework that com-
bines the proposed CAD-based parametrization with a real-gas, multi-row
turbomachinery flow solver and its discrete adjoint counterpart.

• Application of the proposed preliminary and aerodynamic design methods
to accomplish the complete fluid-dynamic design of a new single-stage axial
turbine using isobutane (R600a) as working fluid.
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The novel aspects of each contribution are discussed in the context of the rele-
vant scientific literature in the body of the thesis. With regards to authorship, the
proposed annular diffuser model, axial turbine mean-line model, and preliminary
design optimization strategy were developed solely by the author, whereas the
CAD-based parametrization and shape optimization framework were developed
in collaboration with Ph.D. candidate Nitish Anand at TU Delft.

To date, most of the computational turbomachinery research has been carried
out using in-house or proprietary codes, thus hindering the widespread adoption
of new methods and the replication of published results. As an alternative, the
open-source paradigm offers several advantages from the scientific standpoint,
including: transparency, reproducibility, and ease of development (e.g., fixing er-
rors, extending the code with new features). For this reason, the author decided
to follow the example set by Denton (2017) and release the computer implemen-
tations of the contributions documented in this thesis under open-source licenses
and make them available in public repositories:

• AxialOpt v1.0 (2019). doi: https://doi.org/10.5281/zenodo.2635586

• Parablade v1.0 (2020). doi: https://doi.org/10.5281/zenodo.3894778

By doing so, the author hopes that these codes may be useful to other re-
searchers and industry practitioners and, perhaps, serve as a basis for the devel-
opment of new turbomachinery design methods.

1.4 Thesis organization

This document is structured as a collection of articles and it comprises this
introduction, four chapters based on scientific publications, and one final chapter
that summarizes the conclusions drawn from this work and suggests directions for
further research. A brief summary of the four main chapters is provided here.

Chapter 2 describes the formulation of a one-dimensional annular diffuser
model intended for the preliminary design of NICFD turbomachinery. The model
is validated against experimental data and the accuracy of the numerical solution
is verified against analytical results. In addition, a sensitivity analysis is performed
to investigate the influence of several input parameters on the performance of the
diffuser and draw design guidelines.

Chapter 3 documents the development of a mean-line model for axial tur-
bines operating in the NICFD regime. The accuracy of the model is validated
against experimental data from two different test cases. In addition, the prelimi-
nary turbomachinery design problem is formulated as a constrained optimization
problem that integrates the proposed mean-line and annular diffuser models by
means of equality-constraints. The design optimization method is applied to a
case study and a sensitivity analysis is carried out to investigate the influence of
several design variables on the optimal turbine design.
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Chapter 4 presents a CAD-based parametrization method for two-dimensional
blade profiles and three-dimensional axial, radial, and mixed-flow turbomachinery
blades. The method is based on conventional engineering parameters (e.g., chord,
metal angles, thickness distribution) and it exploits the mathematical properties
of NURBS curves and surfaces to produce blades with continuous curvature and
rate of change of curvature. Moreover, the proposed method is capable of re-
parametrizing an existing blade geometry given by a set of scattered point coordi-
nates by solving a two-step optimization problem. The capabilities of the method
are demonstrated by replicating eight turbomachinery blades with an accuracy
comparable to the tolerances of current manufacturing technologies.

Chapter 5 proposes a gradient-based shape optimization framework for the
aerodynamic design of turbomachinery blades operating under NICFD conditions.
The framework supports the simultaneous optimization of multiple blade rows in
two dimensions and it integrates the proposed CAD-based parametrization with a
real-gas turbomachinery flow solver and its discrete adjoint counterpart. The flow
solver is validated against experimental data from three different linear cascades
and the accuracy of the adjoint-based gradient evaluation is verified against a finite
difference approximation. In addition, the capabilities of the proposed preliminary
and aerodynamic design methods are demonstrated by carrying out the design
optimization of a single-stage axial turbine operating with isobutane (R600a).

1.5 List of publications

The research carried out during this Ph.D. project resulted in four journal
publications that are compiled in this thesis and are subject to evaluation. More-
over, during the course of the present project, the author was involved in three
additional journal publications and five conference papers. These works are not
part of this thesis and are not subject to evaluation.

Publications included in the thesis

R. Agromayor, B. Müller, and L. O. Nord (2019a). “One-Dimensional Annular
Diffuser Model for Preliminary Turbomachinery Design”. International Journal
of Turbomachinery, Propulsion and Power 4.3, pp. 1–31. doi: https://doi.

org/10.3390/ijtpp4030031 (Chapter 2)

R. Agromayor and L. O. Nord (2019b). “Preliminary Design and Optimization
of Axial Turbines Accounting for Diffuser Performance”. International Journal
of Turbomachinery, Propulsion and Power 4.3, pp. 1–32. doi: https://doi.

org/10.3390/ijtpp4030032 (Chapter 3)

R. Agromayor, N. Anand, J.-D. Müller, M. Pini, and L. O. Nord (2021a).
“A Unified Geometry Parametrization Method for Turbomachinery Blades”.
Computer-Aided Design 133, pp. 1–16. doi: https://doi.org/10.1016/j.

cad.2020.102987 (Chapter 4)
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Chapter 2

One-Dimensional Flow
Model for Annular Diffusers

Part of the contents of this chapter appear in:

R. Agromayor, B. Müller, and L. O. Nord (2019a). “One-Dimensional An-
nular Diffuser Model for Preliminary Turbomachinery Design”. International
Journal of Turbomachinery, Propulsion and Power 4.3, pp. 1–31. doi: https:
//doi.org/10.3390/ijtpp4030031

Abstract

This chapter presents a one-dimensional annular diffuser model indented for
the preliminary design of turbomachinery. The model formulation is more general
than that of previous works, allowing one to use arbitrary equations of state and
to include the effects of area change, heat transfer, and friction. The mathemati-
cal model poses an implicit system of ordinary differential equations that can be
solved when the Mach number in the meridional direction is different than one.
The model was verified against a reference case to assess that: (1) the stagna-
tion enthalpy is conserved and (2) the entropy computation is consistent, finding
that the error of the numerical solution was always lower than the prescribed
integration tolerance. In addition, the model was validated against experimental
data, finding that deviation between the predicted and measured pressure recov-
ery coefficients was less than 2% when the best-fit skin friction coefficient is used.
Finally, the influence of several design variables on the performance of the diffuser
was investigated, concluding that: (1) the area ratio is not a suitable optimiza-
tion variable because the pressure recovery coefficient increases asymptotically as
this variable tends to infinity, (2) the diffuser should be designed with a posi-
tive mean wall cant angle to recover the tangential component of kinetic energy,
(3) the performance of the diffuser declines when the hub-to-tip ratio of the last
turbomachinery stage increases because the diffuser channel height is reduced.
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2.1 Introduction

A diffuser is a device used to reduce the velocity and increase the static pressure
of a fluid flow. The performance of the diffuser is usually characterized in terms
of the pressure recover coefficient, which is defined as

Cp =
pout − pin

p0,in − pin
, or as Cp,inc =

pout − pin
1
2ρv

2
in

(2.1)

for the limiting case of incompressible flow (White 2011, pp. 404–408). In the
context of turbomachinery, annular diffusers are frequently used to recover the
kinetic energy at the discharge of compressors and turbines and increase their
total-to-static isentropic efficiency (Lohmann et al. 1979). However, the design of
an effective diffuser is a challenging task due to the presence of adverse pressure
gradients. Indeed, if the adverse pressure gradient is strong enough, the boundary
layer close to the wall will separate and lead to flow reversal, reducing the pressure
recovery (Lohmann et al. 1979).

The diffuser has a strong influence on the design and performance of turbo-
machines. For instance, Macchi et al. (1981) showed that the optimal design
(i.e., maximum efficiency) of axial turbines can vary significantly depending on
the amount of kinetic energy that can be recovered at the exit of the last stage.
Similarly, Bahamonde et al. (2017) recognized that, in the absence of a diffuser,
the discharge kinetic energy can be one of the main mechanisms of efficiency loss.
Despite its strong influence, the diffuser is often overlooked during the prelim-
inary design phase. As surveyed in Table 2.1, many works ignore the diffuser,
while others account for it in a simplistic way by considering that an arbitrary
fraction of the outlet kinetic energy is recovered. In addition, some works assume
that only the meridional component of the kinetic energy is recovered when, in
fact, most annular diffusers also recover the swirling kinetic energy as the diffuser
radius increases (Lohmann et al. 1979). Furthermore, none of the works surveyed
in Table 2.1 considered the influence of the diffuser design on the kinetic energy
recovery and, to the knowledge of the author, a preliminary design method that
combines the turbomachinery and diffuser models is still lacking.

Although the diffuser performance can be predicted and optimized using high-
fidelity flow simulations and shape optimization, this approach would be computa-
tionally expensive and unpractical during the preliminary design phase. Instead,
one-dimensional flow models that account for the main features of the flow, such
as the effects of geometry (e.g., flow area, mean radius), heat transfer, and friction
are better suited for the level of detail required in the preliminary design phase.
There are several one-dimensional models for the flow within annular diffusers
available in the open literature, including the ones proposed by Stanitz (1952),
Johnston et al. (1966), Elgammal et al. (1981), and Dubitsky et al. (2008), see
Table 2.2. These models were developed for vaneless diffusers downstream com-
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Table 2.1: Survey of diffuser modeling in context of turbine preliminary design.

Reference Turbine type Diffuser modeling

Macchi et al. (1981) Axial flow Fixed recoverya

Lozza et al. (1982) Axial flow Fixed recoverya

Da Lio et al. (2014) Axial flow Fixed recoveryb

Astolfi et al. (2015) Axial flow Fixed recoveryb

Da Lio et al. (2016) Axial flow Fixed recoveryb

Al Jubori et al. (2016) Axial flow Not considered
Talluri et al. (2017) Axial flow Not considered
Tournier et al. (2010) Axial flow Not considered
Meroni et al. (2016a) Axial flow Not considered
Meroni et al. (2016b) Axial flow Not considered
Meroni et al. (2018a) Axial flow Fixed recoveryb

Perdichizzi et al. (1987) Radial inflow Fixed recoverya

Uusitalo et al. (2015) Radial inflow Not considered
Rahbar et al. (2015) Radial inflow Not considered
Da Lio et al. (2017) Radial inflow Not considered
Pini et al. (2013) Radial outflow Fixed recoverya

Casati et al. (2014) Radial outflow Fixed recoverya

Bahamonde et al. (2017)
Axial flow

Radial inflow
Radial outflow

Not considered

a Fixed recovery of the total kinetic energy.
b Fixed recovery of the meridional kinetic energy.

pressors and pumps (i.e., diffusers without guiding vanes), but they can be used
for annular ducts in general because the flow is governed by the same equations.

Ideally, the diffuser model should accept any equation of state and account
for the effects of area change, heat transfer, and friction. However, none of the
models available in the literature meets all these requirements. For instance, the
model proposed by Stanitz (1952) accounts for the effects of area change, heat
transfer, and friction, but it assumes that the fluid behaves as a perfect gas.
Similarly, the models proposed by Johnston et al. (1966) and Elgammal et al.
(1981) also account for the effects of area change and friction, but they assume
that the flow is adiabatic and incompressible. Lastly, the model proposed by
Dubitsky et al. (2008) is the most advanced. It is formulated as a two–zone
model that accounts for real gas effects, area change, and friction, but it neglects
heat transfer. Moreover, one limitation of the model proposed by Dubitsky et al.
(2008) is that it is necessary to specify several ad-hoc parameters that might not
be known in the early design phase such as the turbulence mixing loss coefficient
or the secondary flow area fraction.
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Table 2.2: Survey of one-dimensional diffuser models.

Reference Friction Heat transfer Fluid properties

Stanitz (1952) Yes Yes Ideal gas
Johnston et al. (1966) Yes No Incompressible
Elgammal et al. (1981) Yes No Incompressible
Dubitsky et al. (2008) Yes No Non-ideal gas
Present work Yes Yes Non-ideal gas

In view of the limitations of the existing models, this work presents a one-
dimensional annular diffuser model intended for the preliminary design of turbo-
machinery. The equations governing the flow are similar to those presented in
previous works, refer to Table 2.2, but are formulated in a general way to ac-
count for heat transfer, friction, and arbitrary geometry and equations of state.
The solution algorithm and discussion of the mathematical properties in terms of
the meridional Mach number of the flow are original. In addition, the detailed
derivation of the equations, which is omitted in other works, and the physical
interpretation of the different terms are presented. Furthermore, the model was
verified against a reference case to assess that the numerical solution is correct
and validated against experimental data from a test case documented in the open
literature. Finally, a sensitivity analysis with respect to (1) the skin friction co-
efficient, (2) inlet hub-to-tip ratio, (3) mean wall cant angle, (4) inlet swirl angle,
and (5) inlet Mach number was performed to gain insight into the impact of these
variables on diffuser performance and design.
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2.2. Diffuser model

(a) Three-dimensional view. (b) Axial–radial view.

Figure 2.1: Geometry of a general annular diffuser.

2.2 Diffuser model

This section describes the diffuser model proposed in this work. First, the
geometry of annular diffusers and the conventions for the velocity vector are de-
scribed. After that, the treatment for the equations of state is presented. Finally,
the mathematical model for the flow and the solution algorithm are explained.

2.2.1 Diffuser geometry

A sectioned view of a general annular diffuser geometry is shown in Figure 2.1a.
The fluid flows within the annular duct defined by the inner and outer surfaces
and the static pressure increases as the kinetic energy of the fluid is reduced. More
specifically, the tangential component of velocity decreases as the mean radius of
the channel increases and, for subsonic flow, the meridional component of velocity
decreases when the flow area increases (Lohmann et al. 1979).

In general, the meridional direction m will not be exactly aligned with the
axial x or the radial r directions. This is illustrated in Figure 2.1b, where an
axial–radial view of the diffuser is presented. The mean line of the diffuser can
be parametrized as r = r(m) and x = x(m) such that the meridional, radial, and
axial directions are related by the angle φ given by

tanφ =
dr

dx
=

(
dr

dm

)
·
(

dx

dm

)−1

. (2.2)

In addition, the flow area of the annular duct is given by

A = 2πr b, (2.3)

where r is the mean radius of the annular channel and b is height of the channel,
measured normal to the meridional direction. The channel height can be pre-
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Figure 2.2: Decomposition of the velocity vector.

scribed as an arbitrary function of the meridional direction b(m). Furthermore,
the area ratio is defined as the ratio of the outlet to the inlet areas

AR =
A out

A in
. (2.4)

The geometry relations Eqs. (2.2) to (2.4) are valid for any annular channel. The
particular geometry of straight-walled annular diffusers is described in detail under
the heading geometry sub-model.

2.2.2 Velocity vector conventions

The velocity is denoted by the symbol v, and its components are denoted by
the subscripts θ–tangential, m–meridional, x–axial, and r–radial. The velocity
vector is illustrated in Figure 2.2 and the different components are given by

vm = v cos (α), (2.5)

vθ = v sin (α), (2.6)

vx = vm cos (φ) = v cos (φ) cos (α), and (2.7)

vr = vm sin (φ) = v sin (φ) cos (α), (2.8)

where the flow angle α is measured from the meridional to the tangential direction.

2.2.3 Thermodynamic properties

The diffuser model was formulated in a general way such that the properties of
the working fluid can be computed with any thermodynamic library that support
pressure–density function calls such as Lemmon et al. (2013) or Bell et al. (2014).
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2.2. Diffuser model

2.2.4 Mathematical model

The diffuser model is based on the transport equations for mass, meridional
and tangential momentum, and energy in an annular channel. It assumes that
the flow is steady, axisymmetric, and varies only the meridional direction. In
addition, the model accounts for effects of area change, heat transfer, and friction
and the fluid properties can be described by any thermophysical model. Under
these conditions the governing equations of the flow are given by

vm
dρ

dm
+ ρ

dvm
dm

= −ρvm
b r

d

dm
(b r), (2.9)

ρvm
dvm
dm

+
dp

dm
=
ρv2
θ

r
sin (φ)− 2τw

b
cos (α), (2.10)

ρvm
dvθ
dm

= −ρvθvm
r

sin (φ)− 2τw

b
sin (α), and (2.11)

ρvm
dp

dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b
(
∂e
∂p

)
ρ

, (2.12)

where ρ is the density, p is the static pressure, e is the internal energy, a is the
speed of sound, τw is the shear stress at the walls, and q̇w is the heat flux at
the walls. These equations are derived from the mass, momentum, and energy
balances applied to the infinitesimal control volume shown in Figure 2.3. The
detailed derivation of these equations and a discussion of the physical meaning of
the different terms is presented in Appendix A.

Eqs. (2.9) to (2.12) pose a system of Ordinary Differential Equations (ODE)
that can be expressed compactly in matrix-form as

A
dU

dm
= S, (2.13)

where U = [vm, vθ, ρ, p] is the solution vector, A is the coefficient matrix

A =




ρ 0 vm 0
ρvm 0 0 1

0 ρvm 0 0
0 0 −ρvm a2 ρvm


 , (2.14)

and S is the source term vector given by

S =




−ρvm
b r

d
dm(b r)

ρv2
θ
r sin (φ)− 2τw

b cos (α)
−ρvθvm

r sin (φ)− 2τw
b sin (α)

2(τwv+q̇w)

b
(
∂e
∂p

)
ρ



. (2.15)
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It can be readily shown that the determinant of matrix A is given by

det(A) = ρ3v2
m a

2

(
v2
m

a2
− 1

)
= ρ3v2

m a
2
(

Ma2
m − 1

)
, (2.16)

which means that, if the Mach number in the meridional direction is different
than unity, the linear system of equations given by Eq. (2.13) can be solved to
compute the derivatives of the solution vector. Furthermore, the singular case

Mam = 1 (2.17)

corresponds to choked flow conditions and it implies that diffuser can only be
choked due to the meridional component of velocity (Stanitz 1952).

In order to solve the problem, the vector dU
dm is computed from Eq. (2.13) using

Gaussian elimination and then provided as input for an explicit ODE solver. In
this work, the adaptative solver based on fourth- and fifth-order explicit Runge-
Kutta methods proposed by Shampine et al. (1997) was used to perform the
numerical integration. The initial conditions for the integration are given by

U0 = [vm, vθ, ρ, p]
0 = [vm, vθ, ρ, p]

out, (2.18)

where it is assumed that the flow variables do not change from the exit of the
turbine or compressor to the inlet of the diffuser. In order to evaluate the source
term vector, it is necessary to prescribe the variation of the channel height b(m)
and radius r(m) and to provide models for the shear stress τw and heat flux q̇w

at the walls.

Figure 2.3: Differential control volume used to derive the flow governing equations.
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2.2. Diffuser model

Geometry sub-model

The diffuser model was formulated in a general way so that the geometry can
be described by any set of arbitrary functions r(m), x(m), and b(m). However, the
proposed model is not conceived to define the detailed shape of the diffuser, but
to estimate the exhaust pressure recovery during the preliminary design phase.

In this context, the geometry of the diffuser was defined in a simple way by
assuming that the inner and outer surfaces are straight. This type of diffusers
are known as conical or straight-walled annular diffusers and their geometry is
illustrated in Figure 2.4. For this particular geometry, the angle φ is constant
and it is given by the arithmetic mean of the inner and outer wall cant angles,
φ = (φ1 + φ2)/2. In addition, the relations for r(m), x(m), and b(m) can be
deduced from Figure 2.4 and they are given by

r(m) = r̂ in +m sin (φ), (2.19)

x(m) = x̂ in +m cos (φ), and (2.20)

b(m) = b̂ in + 2m tan (δ), (2.21)

where δ = (φ2 − φ1)/2 is the divergence semi-angle. A depicted in Figure 2.5,
the mean radius r̂ in and channel height b̂ in at the inlet of the diffuser can computed
according to

r̂ in = R out and (2.22)

b̂ in = H out / cos (φ) (2.23)

where, R out is the turbomachine outlet mean radius and H out is the turbo-
machine outlet blade height, establishing the connection between the proposed
diffuser model and a generic mean-line turbomachinery model.

Friction sub-model

The friction is modeled as a body force that does not do work. This approach is
often used in the context of one-dimensional flow models because they do not take
into account the velocity gradient in the direction normal to the wall (Stanitz 1952;
Dubitsky et al. 2008). The viscous stress at the wall τw is computed according to

τw = Cf
ρv2

2
, (2.24)

where Cf is the skin friction coefficient. The viscous force is assumed to have
the opposite direction as the velocity vector such that the friction components in
the meridional and tangential direction are given by −τw cos (α) and −τw sin (α),
respectively, see Figure 2.3.
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Figure 2.4: Axial–radial cross section of
an annular diffuser with straight walls.

Figure 2.5: Connection of the diffuser
model with a generic turbomachine model.

To the knowledge of the author, there are no available correlations to predict
the skin friction coefficient in annular channels with swirling flow. Using ordinary
skin friction correlations for internal flows is discouraged because they do not con-
sider the influence of swirl on the shear stress at the wall. However, it is possible
to estimate a reasonable value for the skin friction coefficient based on experimen-
tal data from existing vaneless diffusers. For example Brown (1947) measured the
local skin friction coefficient for different vaneless diffusers and obtained values in
the range from 0.003 to 0.010. In the absence of better estimates, Johnston et al.
(1966) recommend values within the range from 0.005 to 0.010 for the global skin
friction coefficient. In a similar way, Dubitsky et al. (2008) suggested 0.010 as a
reasonable estimate for the global skin friction coefficient, but noted that values
from 0.005 to 0.020 may be required to fit experimental data, depending on the
application. The values that were reported in this paragraph are representative
of well-designed diffusers without flow separation.

Heat transfer sub-model

The most common approach in the design and analysis of diffusers for tur-
bomachinery applications is to neglect the heat transfer and to assume that the
flow is adiabatic q̇w = 0. To the knowledge of the author, Stanitz (1952) is the
only reference that accounts for the effect of heat transfer in the energy transport
equation. Although heat transfer is usually neglected, the heat transfer modeling
is discussed in this section for the sake of completeness.

Stanitz (1952) suggested that the heat flux is proportional to the temperature
difference between the fluid and the wall,

q̇w = Uh (Tw − T0), (2.25)
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where Uh is the heat transfer coefficient, T0 is the stagnation temperature of the
fluid, and Tw(m) is the wall temperature, which is prescribed as a function of
the meridional direction. Eq. (2.25) involves the stagnation rather than the static
temperature of the fluid because the fluid is at rest at the wall and it is assumed
that the energy recovery factor in the boundary layer is equal to one.

In addition, Stanitz (1952) suggested to use the Reynolds analogy given by

Nu =
1

2
Cf Re Pr and (2.26)

Uh =
ρvcp

2
Cf (2.27)

to obtain an approximate value for the heat transfer coefficient in terms of the skin
friction coefficient, where the usual definitions for the Nusselt number Nu = UDh

k ,

Reynolds number Re = ρvDh
µ , and Prandtl Pr =

cpµ
k are used. The hydraulic

diameter of an annular duct is given by the channel height (i.e., Dh = b), but it
is immaterial for the computation of the heat transfer coefficient.

Alternatively, the heat transfer coefficient can be estimated using the Chilton–
Colburn analogy (Cengel 2002, pp. 358–360) given by

Nu =
1

2
Cf Re Pr1/3 and (2.28)

Uh =
ρvcp

2
Cf Pr−2/3. (2.29)

This analogy extends the Reynolds analogy to fluids with a Prandtl number dif-
ferent than unity. Both these analogies can be used to get a rough estimate of the
heat transfer coefficient from a known value of the skin friction coefficient. Using
ordinary heat transfer correlations for internal flows is discouraged, because they
do not take into account the impact of the swirl into the heat transfer process.

2.3 Verification and validation of the model

The aim of this section is the verification (i.e., solving the equations right)
and validation (i.e., solving the right equations) of the proposed diffuser model.
In order to verify the model, the reference case summarized in Table 2.3 was
analyzed and the error of the numerical solution in terms of stagnation enthalpy
and entropy was assessed. The case study proposed considers a subsonic annular
diffuser with air as working fluid. The skin friction coefficient was assumed to
be Cf = 0.010, which is deemed to be a realistic value based on the suggestions
from Johnston et al. (1966); Dubitsky et al. (2008); Brown (1947), and the heat
transfer was neglected.
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Figure 2.6: Enthalpy and entropy error
analyses for the reference case of Table 2.3.

Figure 2.7: Comparison of model output
with the data from Kumar et al. (1980).

In the absence of heat transfer, the stagnation enthalpy of the flow remains
constant, see Appendix A, and any change in stagnation enthalpy can be at-
tributed to the error in the numerical solution. The stagnation enthalpy error as
a function of the area ratio in shown in Figure 2.6 and it was evaluated using

h0, error =
|h0 − h0, in|

h0, in
, (2.30)

where the stagnation enthalpy is computed according to

h0 = h(p, ρ) +
v2
m

2
+
v2
θ

2
. (2.31)

It can be seen that the stagnation enthalpy is properly conserved and that the
relative error is of the order of 10−9, which is smaller than the prescribed relative
tolerance of 10−6 for the integration of the ODE system.

The entropy error was analyzed in a similar way. The entropy of the flow was
computed with pressure–density function calls using the Lemmon et al. (2013)
thermodynamic library at each integration step,

sEoS = s(p, ρ), (2.32)

and also evaluated integrating the transport equation for entropy given by

ρvm

(
dsgen

dm

)
= σ̇ = 2

τwv

b T
, (2.33)

where σ̇ is the rate of entropy generation per unit volume due to friction. See
Appendix A for the details about the derivation of the transport equation for
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entropy. The entropy error was thus computed according to

s error =
|sEoS − sgen|

sEoS
(2.34)

and it is shown as a function of the diffuser area ratio in Figure 2.6. It can be
observed that the entropy error is of the order of 10−7, which is smaller than the
prescribed integration tolerance of 10−6. As both the stagnation enthalpy and
entropy errors are smaller than the prescribed tolerance, it can be concluded that
the solution algorithm solves the flow equations satisfactorily.

In addition, the diffuser model was validated against the annular diffuser ex-
perimental data from Kumar et al. (1980). The conditions that define this case
are summarized in Table 2.4 and the experimental and computed pressure recov-
ery coefficients are compared in Table 2.5 and in Figure 2.7. The heat transfer
was neglected for the validation (Uh = 0) because the experimental data from Ku-
mar et al. (1980) corresponds to an open-loop, low-speed annular diffuser where
the difference between fluid temperature and wall temperature is expected to be
very small. The skin friction coefficient was fitted to minimize the two-norm of
the error between the experimental data and the model output. In addition, the
range of variation of the pressure recovery coefficient for skin friction coefficients
ranging between ±20% of the best-fit value is shown as a shaded area to illustrate
the impact of this parameter on the diffuser performance.

Ignoring the point corresponding to AR = 1.082, it can be observed that the
relative deviation of the pressure recovery coefficient is always less than 2% when
the best-fit skin friction coefficient (Cf = 0.029) is used. Likely, the deviation
between experiment and model when AR = 1.082 is due to the development of
the flow at the inlet of the diffuser. This analysis showed that the model can be
used to make accurate predictions when skin friction coefficient can be fitted to
experimental data.

2.4 Sensitivity analysis

This section contains a sensitivity analysis of the reference case summarized
in Table 2.3 to gain insight about the impact of several input parameters on
diffuser performance and design. The next sections investigate the influence of:
(1) the skin friction coefficient, (2) inlet hub-to-tip ratio, (3) mean wall cant
angle, (4) inlet swirl angle, and (5) inlet meridional Mach number on the pressure
recovery coefficient as a function of the area ratio of the diffuser. The divergence
semi-angle was not included in the analysis because increasing this parameter
may lead to boundary layer separation close to the walls and the one-dimensional
model used in this work cannot predict this phenomenon1. Each case analyzes

1Kline et al. (1959) provide stability maps that can be used to predict flow separation for
straight-walled and conical diffusers as a function of divergence semi-angle and area ratio. How-
ever, the author is not aware of similar maps for annular diffusers in the open literature.
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Table 2.3: Definition of the reference case.

Variable Symbol Value Unit

Working fluid – Air –
Inlet static pressure p in 101.3 kPa
Inlet static temperature T in 20.0 ◦C
Inlet meridional Mach number Ma m,in 0.30 –
Inlet swirl angle α in 30.0 ◦

Turbomachine outlet radius R out 1.0 m
Outlet hub-to-tip ratio (rh/rt) out 0.7 –
Mean wall cant angle φ 30.0 ◦

Divergence semi-angle δ 5.0 ◦

Diffuser area ratio AR 1.0–5.0 –
Skin friction coefficient Cf 0.010 –
Heat transfer coefficient Uh 0 W/m2 K

the influence of one variable while the other parameters are the same as in the
reference case (i.e., one-at-a-time sensitivity analysis) and the ranges of variation
were selected to cover the flow conditions encountered in most turbomachinery
applications. In addition, the influence of heat transfer on diffuser performance
was analyzed for different wall temperatures using the Chilton–Colburn analogy
to estimate the heat transfer coefficient. As it could be expected, heat addition
accelerates the flow and penalizes the pressure recovery coefficient. However, the
details of the heat transfer investigations are not reported because the influence
of heat addition was secondary compared to that of the other parameters.

2.4.1 Influence of the skin friction coefficient

As discussed in Section 2.2, the author is not aware of any correlations to
predict the skin friction coefficient in annular channels with swirling flow. In this
analysis, the friction factor was varied from 0.00 (i.e., frictionless) to 0.03 (i.e.,
high friction) and the impact on the pressure recovery coefficient as a function of
the area ratio is shown in Figure 2.8.

It can be observed that increasing the friction factor decreases the pressure
recovery in a linear way (i.e., the different curves are equispaced) and that the
effect is more notable when the area ratio increases because the length of the
channel is larger. In addition, the pressure recovery increases monotonously with
the area ratio and has an asymptotic behavior, irrespective of the numerical value
of the friction coefficient. This suggests that an optimum value of the area ratio
that maximizes the pressure recovery does not exist and that the pressure recovery
always increases with the area ratio up to a limiting value. This, perhaps counter-
intuitive, result may be explained as the consequence of two conflicting effects.
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Table 2.4: Definition of the validation case from Kumar et al. (1980).

Variable Symbol Value Unit

Working fluid – Air –
Inlet static pressure p in 101.3 kPa
Inlet static temperature T in 20.0 ◦C
Inlet meridional Mach number Ma m,in 0.07 –
Inlet swirl angle α in 0.0 ◦

Inlet mean radius r̂ in 57.8 mm

Inlet channel height b̂ in 39.5 mm
Mean wall cant angle φ 15.0 ◦

Divergence semi-angle δ 0.0 ◦

Diffuser area ratio AR 1.0–3.0 –
Skin friction coefficient Cf Fitted –
Heat transfer coefficient Uh 0 W/m2 K

Table 2.5: Comparison of the model output with the data from Kumar et al. (1980).

AR Cexp
p Cmodel

p Relative error

1.082 0.101 0.122 21.27%
1.317 0.349 0.347 -0.64%
1.561 0.467 0.475 1.73%
1.832 0.552 0.557 0.89%
2.012 0.593 0.592 -0.14%
2.308 0.626 0.631 0.89%
2.560 0.651 0.653 0.23%
2.779 0.670 0.666 -0.58%
2.863 0.681 0.670 -1.67%

On the one hand, when the area ratio increases the diffuser length and wetted
surface also increase. However, as the area ratio increases, the velocity and shear
stress at the wall are reduced because the shear stress is proportional to the
dynamic pressure. If this second effect dominates, friction becomes negligible and
the pressure recovery increases asymptotically as the area ratio tends to infinity.

2.4.2 Influence of the inlet hub-to-tip ratio

In order to accommodate the changes in density, the hub-to-tip ratio is usually
high at the outlet of compressors and low at the outlet of turbines. In this section
the hub-to-tip ratio at the inlet of the diffuser was varied between 0.50 and 0.95
and the results were plotted in Figure 2.9. It can be observed that the diffuser
performance is penalized as the hub-to-tip ratio increases and that this effect is
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Figure 2.8: Influence of the skin friction
coefficient as a function of the area ratio.

Figure 2.9: Influence of the hub-to-tip
ratio as a function of the area ratio.

not linear. Indeed, the pressure recovery coefficient is reduced more rapidly at
high hub-to-tip ratios. The reason for this behavior is that, as the hub-to-tip ratio
increases, the channel height of the diffuser is reduced according to

b̂ in = H out / cos (φ) = 2R out

(
1− (rh/rt)

1 + (rh/rt)

)

out

/ cos (φ) (2.35)

and, since the channel height appears in the denominator of the friction terms
of the momentum equations, Eqs. (2.10) and (2.11), the diffuser performance
declines. Another possible interpretation based on physical intuition is that the
channel height is the hydraulic diameter of the annular diffuser and reducing this
parameter will increase the friction losses.

2.4.3 Influence of the mean wall cant angle

Figure 2.10 shows the pressure recovery coefficient as a function of the area
ratio when the mean cant angle is varied from 0◦ to 40◦. It can be seen that
the pressure recovery coefficient is very low when φ = 0◦ because the radius of
the diffuser remains constant and the tangential component of velocity is not
recovered. Moreover, the pressure recovery coefficient increases rapidly when the
mean cant angle is small, see the change from 0◦ to 10◦, and slowly for higher
cant angles: the change from 30◦ to 40◦ is almost insignificant.

The same results are plotted as a function of the normalized axial length,
rather than the area ratio, in Figure 2.11. The end of the lines corresponds to the
point where AR = 5. It can be be observed that, for a fixed diffuser axial length,
the pressure recovery coefficient increases as the mean wall cant angle increases
because both the area and the mean radius of the channel increase. These results
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Figure 2.10: Influence of the mean wall
cant angle as a function of the area ratio.

Figure 2.11: Influence of the mean wall
cant angle as a function of the axial length.

illustrate that the mean cant angle is not a critical parameter when there are no
space limitations, but that adopting a high mean wall cant angle is advantageous
when the maximum axial length of the diffuser is constrained.

2.4.4 Influence of the inlet swirl angle

The results from Figure 2.12 show that, for a fixed inlet meridional velocity,
increasing the swirl angle decreases the pressure recovery coefficient and that this
effect is more marked at higher swirl angles. The reason for this is that the
presence of swirl increases the available dynamic pressure at the inlet and, for
this reason, the area ratio required to reach the same pressure recovery coefficient
as for the case α = 0◦ is higher. Moreover, the presence of swirl leads to wall
shear stress in the circumferential direction that increases the friction losses.

2.4.5 Influence of the inlet Mach number

The influence of the inlet Mach number (i.e., compressibility effects) on the
diffuser performance, including the limiting case of incompressible flow, is shown
in Figure 2.13. This analysis was performed assuming frictionless flow instead of
Cf = 0.010 so that the numerical results can be compared with the analytical
formula for inviscid, incompressible flow, which is given by

Cp,inc = 1−
tan (αin)2 +

(
b̂in
b

)2

1 + tan (αin)2 ·
(
r̂in

r

)2

. (2.36)

Eq. (2.36) is a well-known result (Lohmann et al. 1979) that can be proved in-
tegrating the mass and momentum equations, Eqs. (2.9) to (2.11), for constant
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Figure 2.12: Influence of the inlet swirl
angle as a function of the area ratio.

Figure 2.13: Influence of the inlet Mach
number as a function of the area ratio.

density and zero wall shear stress. It can be observed that the model predicts a
modest increase on the pressure recovery coefficient as the inlet Mach number in-
creases. In addition, the results obtained when the inlet meridional Mach number
is 0.30 or lower (i.e., low speed flow) are consistent with the analytical results for
incompressible flow. This result can be regarded as part of the model verification.

2.5 Conclusions

A one-dimensional flow model for annular diffusers was proposed and the con-
nection of this model with the preliminary design of turbomachinery was dis-
cussed. The model formulation is more general than that of previous works,
allowing one to use arbitrary equations of state and to include the effects of area
change, heat transfer, and friction. The mathematical model poses a system of
ordinary differential equations and it was shown that: (1) the solution does not
exist when the meridional Mach number is equal to one and (2) the circumfer-
ential Mach number does not compromise the solution. In addition, the detailed
derivation of the equations, which is omitted in other works, was presented in
Appendix A to provide physical insight about the flow in annular channels.

The model was verified against a reference case assessing that: (1) the stag-
nation enthalpy is conserved and (2) the entropy generation computed using the
equations of state and using the second law of thermodynamics are consistent; and
it was found that the error of the numerical solution was always smaller than the
prescribed integration tolerance. Moreover, the model was validated against the
experimental data from Kumar et al. (1980), finding that the relative deviation
between the predicted and measured pressure recovery coefficients was always less
than 2% when the best-fit skin friction coefficient is used.
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Furthermore, the influence of the: (1) skin friction coefficient, (2) inlet hub-to-
tip ratio, (3) mean wall cant angle, (4) inlet swirl angle, and (5) inlet meridional
Mach number on the diffuser performance was investigated and the following
conclusions were gathered:

• The pressure recovery coefficient increases asymptotically as the area ratio
tends to infinity, regardless of the value of the skin friction coefficient. This
suggests that the area ratio is not a suitable optimization variable if the size
of the diffuser is not constrained.

• The hub-to-tip ratio of the last turbomachinery stage has a strong impact on
the pressure recovery because it is closely related to the channel height of the
diffuser. The pressure recovery is penalized as the hub-to-tip ratio increases
and the effect is more marked at high hub-to-tip ratios. This implies that,
in general, the design of efficient diffusers for compressors (high hub-to-tip
ratios and short blades at the last stage) is more challenging than that of
turbines (low hub-to-tip ratios and long blades at the last stage).

• The pressure recovery is low when the mean wall cant angle is zero because
the radius of the diffuser remains constant and the tangential component of
velocity is not recovered. This indicates that the diffuser should be designed
with an increasing mean radius in order to recover the kinetic energy of
swirling flows effectively.

• Assuming that there is no flow separation, increasing the mean wall cant
angle always improves the pressure recovery. In cases when the area ratio
is fixed, the mean wall cant angle only has a small impact on the pressure
recovery, whereas, in cases when the axial length is fixed, increasing the wall
cant angle can improve the pressure recovery significantly. This implies that
the mean wall cant angle is not a critical parameter when there are no space
limitations, but that adopting a high mean wall cant angle is advantageous
when the maximum axial length of the diffuser is constrained.

• Increasing the swirl angle at the inlet of the diffuser reduces the pressure
recovery coefficient because the wall shear stress in the circumferential direc-
tion increases. This implies that the diffuser performance will be improved
if the velocity triangle of the last turbomachinery stage is designed so that
the absolute velocity has a small tangential component.

• The pressure recovery coefficient increases as the inlet meridional Mach num-
ber increases. The effect on the inlet Mach number has only a modest impact
on the pressure recovery, compared with the other variables. In addition,
the results from the compressible and incompressible analyses are almost
identical when the inlet meridional Mach number is lower than 0.30.
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Chapter 3

Mean-Line Design Method
for Axial Turbines

Part of the contents of this chapter appear in:

R. Agromayor and L. O. Nord (2019b). “Preliminary Design and Optimization
of Axial Turbines Accounting for Diffuser Performance”. International Journal
of Turbomachinery, Propulsion and Power 4.3, pp. 1–32. doi: https://doi.
org/10.3390/ijtpp4030032

Abstract

This chapter presents a mean-line model and optimization methodology for
the preliminary design of axial turbines. The mean-line model was formulated in
a general way so as to use arbitrary equations of state and empirical loss models
and it accounts for the influence of the diffuser using the one-dimensional flow
model presented in Chapter 2. The mean-model was validated against two test
cases from the literature and it was found that the deviation between experimental
data and model prediction in terms of mass flow rate and power output was less
than 1.2% in both cases and that the deviation of the total-to-static efficiency was
within the uncertainty of the empirical loss model. In addition, the preliminary
design problem was formulated as a constrained optimization problem and solved
using a gradient-based algorithm. The proposed design method was applied to a
case study from the literature and a sensitivity analysis was performed to inves-
tigate the influence of several variables on turbine performance, concluding that:
(1) the minimum hub-to-tip ratio constraint is always active at the outlet of the
last stage and the value of this parameter should be selected as a trade-off of aero-
dynamic performance and mechanical integrity, (2) the total-to-static isentropic
efficiency of turbines without diffuser deteriorates rapidly when the pressure ratio
is increased, and (3) there exist a locus of maximum efficiency in the specific speed
and specific diameter plane (i.e., the Baljé diagram) that can be predicted with a
simple analytical expression.
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3.1 Introduction

Axial turbines are the most common turbine configuration for electric power
generation and propulsion systems, including: open gas turbine Brayton cycles
(Saravanamuttoo et al. 2009), closed Brayton cycles using helium (McDonald
2012) or carbon dioxide at supercritical conditions (Romei et al. 2020), and Rank-
ine cycles using steam (Kehlhofer et al. 2009) or organic substances (Colonna et
al. 2015) as working fluid. In addition, axial turbines are also used in cryogenic
applications such as gas separation processes and natural gas liquefaction (Flynn
2004). Axial turbines probably owe their widespread use to their versatility in
terms of power capacity and range of operating conditions. Indeed, the power
capacity of axial turbines can vary from a few kilowatts for some small-scale or-
ganic Rankine cycle power systems to hundreds of megawatts for large-scale steam
and gas turbine units. In addition, the operating temperatures range from below
−200◦C in some cryogenic applications to temperatures in excess of 1500◦C for
some advanced gas turbines, whereas the operating pressures can vary from a few
millibars at the exhaust of some steam turbines to hundreds of bars at the inlet
of supercritical steam and carbon dioxide power systems.

The fluid-dynamic design of axial turbines involves mathematical models of
different level of complexity ranging from mean-line models for the preliminary
design phase up to high-fidelity flow simulations for the aerodynamic design of
the blade shapes (Pini et al. 2017). Even if mean-line models are the simplest
approach to analyze the flow within turbomachinery, they still are an essential step
of the fluid-dynamic design chain because they provide the information required
by more advanced flow models (Denton 2017). Mean-line model assume that
the flow is uniform along the blade span and evaluate the flow conditions at the
inlet and outlet of each cascade using: (1) the balance equations for mass and
rothalpy, (2) a set of equations of state to compute thermodynamic and transport
properties, and (3) empirical loss correlations to evaluate the entropy generation
within the turbine (Dixon et al. 2013). Furthermore, mean-line models can be
readily integrated with numerical optimization methods in order to automate
the preliminary design phase. This, in turn, enables the systematic exploration
of large design spaces, which is especially advantageous to design new turbine
concepts for which there is no previous design experience (Pini et al. 2017).

Despite mean-line models are being covered to some extent in turbomachinery
textbooks (Saravanamuttoo et al. 2009; Dixon et al. 2013), only some scientific
publications present a comprehensive formulation of the preliminary design prob-
lem. Table 3.1 surveys some of the mean-line axial turbine models described in the
open literature. The main differences in the model formulation include: (1) consid-
ering single-stage or multistage turbines, (2) using the restrictive repeating-stage
assumption or not, (3) using the ideal gas law or arbitrary equations of state, and
(4) whether or not the model accounts for the influence of the diffuser on tur-
bine performance. In addition, one of the recurring limitations of many mean-line
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Table 3.1: Survey of axial turbine mean-line models documented in the open literature

Reference Optim.a Stagesb Rep.c Diffuserd Fluid propertiese Validationf

Balje et al. (1968b) Direct 1 No No Incompressible EXP
Macchi et al. (1981) Direct 1 No Fixed Ideal gas No
Lozza et al. (1982) Direct 1, 2, 3 No Fixed Ideal gas No
Astolfi et al. (2015) Direct 1 ,2, 3 No Fixed Non-ideal gas No
Tournier et al. (2010) No Any Yes No Non-ideal gas EXP
Da Lio et al. (2014) No 1 Yes Fixed Non-ideal gas No
Da Lio et al. (2016) No 1 Yes Fixed Non-ideal gas No
Meroni et al. (2016b) Direct 1 No Fixed Non-ideal gas EXP/CFD
Meroni et al. (2018a) Direct Any No Fixed Non-ideal gas EXP/CFD
Bahamonde et al. (2017) Direct Any No No Non-ideal gas CFD
Talluri et al. (2017) Direct 1 Yes No Non-ideal gas No
Denton (2017) No Any No No Ideal gas CFD
Present work Gradient Any No Yes Non-ideal gas EXP

a If applicable, type of optimization algorithm used: gradient-based or gradient-free (direct search).
b Number of turbine stages that the model can handle.
c Whether or not the model relies on the repeating-stage assumption (this reduces the design space significantly).
d Whether the model accounts for the influence of the diffuser or not. The models that accounted for the diffuser
assumed a fixed fraction of kinetic energy recovery and did not consider the flow within the diffuser.
e Thermodynamic model used to compute the properties of the fluid.
f Whether or not the model has been validated with experimental or CFD data.

models is the lack of validation against experimental data or CFD simulations.
Furthermore, to the knowledge of the author, all the works documented in the
open literature formulate the mean-line model as a system of nonlinear equations
and then explore the design space manually or by means of gradient-free opti-
mization methods, which, in turn, require a large number of function evaluations
to converge to the optimal solution.

In response to the shortcomings of the existing methods, this work proposes
a mean-line model and optimization approach for the preliminary design of axial
turbines. The mean-model was formulated in a general way so as to use arbitrary
equations of state and empirical loss models and it accounts for the influence of the
diffuser using the one-dimensional flow model presented in Chapter 2. In addition,
the preliminary design problem was formulated as a constrained optimization
problem and it was solved using a gradient-based method. In contrast with the
existing gradient-free approaches, adopting a gradient-based algorithm enabled:
(1) the optimization multi-stage design problems with tens of design variables
at a low computational cost and (2) the use equality-constraints to integrate
the turbine, diffuser, and loss models in a simple way. The proposed design
method was applied to a case study documented in the literature and the optimal
design was assessed in terms of total-to-static efficiency, angular speed, and mean
diameter. In addition, a sensitivity analysis was carried out to study the influence
of several input parameters on the optimal turbine design.
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Chapter 3. Preliminary Design Method for Axial Turbines

3.2 Axial turbine model

This section describes the proposed axial turbine model. First, the geometry of
axial turbines and the variables involved in the model are introduced. After that,
the conventions used for the velocity triangles are explained. Finally, the design
specifications (i.e., boundary conditions) and the mathematical model for the axial
turbine are described. This mathematical model is composed of three sub-models
that are used as building blocks: (1) the cascade model, (2) the loss model, and
(3) the diffuser model. These sub-models are combined in Section 3.4 to formulate
the turbine preliminary design as a constrained optimization problem.

3.2.1 Axial turbine geometry

Axial turbines are rotary machines that convert the energy from a fluid flow
into work. An axial turbine is composed of one or more stages in series and each
stage consists of one cascade of stator blades that accelerate the flow and one
cascade of rotor blades that deflect the flow, converting the enthalpy of the fluid
into work as a result of the net change of angular momentum.

As illustrated in Figure 3.1a, turbine blades are characterized by a mean cam-
ber line halfway between the suction and pressure surfaces. The most forward
point of the camber line is the leading edge and the most rearward point is the
trailing edge. The blade chord c is the length of the straight line connecting the
leading and the trailing edges. The blade thickness is the distance between the
pressure and suction surfaces, measured perpendicular to the camber line. The
aerodynamic performance of the blade is highly influenced by the maximum thick-
ness tmax and the trailing edge thickness tte. The angle between the axial direction
and the tangent to the camber line is the metal angle θ and the difference between
inlet and outlet metal angles is the camber angle ∆θ = |θin − θout|.

An axial–tangential cross section of a turbine stage is shown in Figure 3.1b.
The blade pitch or spacing s is the circumferential separation between two con-
tiguous blades and the opening o is defined as the distance between the trailing
edge of one blade and the suction surface of the next one, measured perpendicular
to the direction of the outlet metal angle. The angle between the axial direction
and the chord line is the stagger angle or setting angle ξ and the projection of
the chord onto the axial direction is known as the axial chord cax. The cascade
spacing sax is the axial separation between one blade cascade and the next one.

An axial–radial cross section of a three-stage axial turbine is depicted in Fig-
ure 3.1c. The working fluid flows parallel to the shaft within the annular duct
defined by the inner and outer diameters. The hub is the surface defined by the
inner diameter and the shroud is the surface defined by the outer diameter. The
blade height H is defined as the difference between the blade radius at the tip rt

and the blade radius at the hub rh and the spacing between the tip of the rotor
blades and the shroud is known as tip clearance gap tcl. The mean radius r is
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3.2. Axial turbine model

(a) Geometry of a blade section. (b) Axial-tangential view of a cascade.

(c) Axial-radial view of an axial turbine. (d) Annular diffuser geometry.

Figure 3.1: Geometry of a general axial turbine and exhaust diffuser.
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Figure 3.2: Velocity triangle showing the notation and conventions used in this work.

often defined as the arithmetic mean of the hub and tip radii, but other definitions
are possible. The blade height can vary along the axial direction, but the flaring
angle δfl should be limited to avoid flow separation close to the annulus walls.

In some cases, the kinetic energy of the flow at the outlet of the last stage can be
significant and, for this reason, it is common to use a diffuser to recover the exhaust
kinetic energy and increase the turbine power output. The cross sectional view of
an annular diffuser is shown in Figure 3.1d. The fluid leaving the last turbine stage
enters the annular channel and it reduces its meridional component of velocity as
the flow area increases (for subsonic flow) and its tangential component of velocity
as the mean radius of the channel increases. The flow area of the diffuser is given
by A = 2πr̂ b̂, where r̂ is the mean radius and b̂ is the channel height of the diffuser.
The area ratio is defined as the ratio of outlet to inlet areas, AR = Aout/Ain. As
described in Chapter 2, a diffuser with straight inner and outer walls is known as
a conical annular diffuser and its geometry can be parametrized in terms of the
mean wall cant angle φ and the divergence semi-angle δ.

3.2.2 Velocity vector conventions

In this work, the symbol v is used for the absolute velocity, w for the relative
velocity, and u for the blade velocity. The components of velocity in the tangential
and meridional directions are denoted with the subscripts θ and m, respectively.
For the case of axial turbines the meridional direction coincides with the axial
direction. Regarding the sign convention for the velocity components, the positive
axial direction is taken along the shaft axis from the inlet of the turbine to the
outlet and the positive radial direction is taken as the turbine radius increases.
The positive circumferential direction is taken in the direction of the blade speed.

Moreover, the symbol α is used to denote the absolute flow angle, whereas β is
used for the relative flow angle. As shown in the velocity triangle of Figure 3.2, all
angles are measured from the meridional towards the tangential direction. This
is the usual convention in gas turbines and it limits the flow angles to the interval
[−π

2 ,
π
2 ] (Saravanamuttoo et al. 2009, p. 316). The main advantage of this angle

convention is that it allows one to use single-input inverse trigonometric functions.
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3.2. Axial turbine model

For the sake of consistency, this work uses the same sign convention for the stator
and rotor blades. However, the loss model that is used in this work (Kacker et al.
1982) employs a different sign convention for stator and rotor blades and some of
the formulas of the loss model had to be adapted, see Appendix B.

3.2.3 Design specifications

A turbine is a component of a larger system (e.g., a power cycle or a chemical
process) that will impose some requirements on its design such as: (1) stagnation
state at the inlet of the turbine, (2) static pressure at the outlet of the turbine,
and (3) mass flow rate. Alternatively, it is possible to specify the isentropic power
output instead of the mass flow rate because both are related according to

Ẇs = ṁ (h01 − h2s) = ṁ∆hs, (3.1)

where the subscripts 1 and 2 refer to the states at the inlet and outlet of the
turbine, respectively, and the subscript s refers to an isentropic expansion. These
design requirements can be regarded as the thermodynamic boundary conditions
for the expansion and they are given inputs for the turbine model.

3.2.4 Cascade model

This section describes the equations used to model the flow within each row of
blades. All flow variables are evaluated at the inlet and outlet of each cascade at a
constant mean radius. The cascade model presented herein is solved sequentially
and it contains three blocks: (1) computation of the velocity triangles, (2) deter-
mination of the thermodynamic properties using the principle of conservation of
rothalpy and equations of state, and (3) calculation of the cascade geometry.

Velocity triangles

The equations used to compute the velocity diagrams for rotor and stator rows
are the same, provided that the blade velocity is given by u = 0 for the stators
and u = Ω r for the rotors, where the angular speed Ω and mean radius r are
given as input variables.

The velocity triangles at the inlet of each cascade are computed according to

vθ = v sin (α), (3.2)

vm = v cos (α), (3.3)

wθ = vθ − u, (3.4)

wm = vm, (3.5)

w =
√
w2
θ + w2

m, and (3.6)

β = arctan

(
wθ
wm

)
, (3.7)
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where the subscripts that refer to inlet conditions have been dropped for simplicity.
For the first stator, the absolute velocity v and flow angle α are given as inputs.
For the rest of cascades the absolute velocity and flow angle are obtained from
the outlet of the previous cascade. Similarly, the velocity triangles at the outlet
of each cascade are computed according to

wθ = w sin (β), (3.8)

wm = w cos (β), (3.9)

vθ = wθ + u, (3.10)

vm = wm, (3.11)

v =
√
v2
θ + v2

m, and (3.12)

α = arctan

(
vθ
vm

)
, (3.13)

where the subscripts that refer to outlet conditions have been dropped for sim-
plicity. The relative velocity w and flow angle β at the outlet of each cascade are
provided as an input for the model.

Thermodynamic properties

The axial turbine model was formulated in a general way so that the thermody-
namic properties of the working fluid can be computed with any thermodynamic
library that supports pressure–enthalpy and enthalpy–entropy function calls such
as Lemmon et al. (2013) or Bell et al. (2014). The stagnation state at the inlet
of the first stator (e.g., temperature and pressure) is an input for the model and
the corresponding static state is determined according to

hin = h0,in −
1

2
v2

in, (3.14)

sin = s
(
p0,in, h0,in

)
, and (3.15)

[T, p, ρ, a, µ] in = [T, p, ρ, a, µ] (hin, sin) . (3.16)

The static thermodynamic properties at the inlet of of the remaining cascades are
obtained from the outlet of the previous cascade.

In addition, the thermodynamic properties at the outlet of each row of blades
is computed exploiting the fact that rothalpy is conserved in the stator and rotor
cascades (Dixon et al. 2013, pp. 10–11). For purely axial turbines (i.e., constant
mean radius), the conservation of rothalpy is reduced to the conservation of rel-
ative stagnation enthalpy, and the static enthalpy at the outlet of each cascade
can be computed according to

hout = hin +
1

2
w2

in −
1

2
w2

out. (3.17)
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3.2. Axial turbine model

Since the entropy at the outlet of each cascade is provided as an input to
the model, any other static thermodynamic property can be determined with
enthalpy–entropy function calls,

[T, p, ρ, a, µ] out = [T, p, ρ, a, µ] (hout, sout) . (3.18)

Cascade geometry

The geometry of the annulus is obtained from the principle of conservation of
mass and the geometric relations given by

A =
ṁ

ρ vm
, (3.19)

H =
A

2πr
, (3.20)

rh = r −H/2, (3.21)

rt = r +H/2, and (3.22)

λ =
rh

rt
, (3.23)

where the mass flow rate ṁ is given as an input for the model. Eqs. (3.19) to (3.23)
are valid both at the inlet and outlet of the cascade and the subscripts were not
included for simplicity. In addition, the mean blade height of the cascade is
determined as the inlet and outlet blade height arithmetic mean,

H =
1

2
(Hin +Hout) . (3.24)

The blade chord is determined from the blade aspect ratio (input variable) and
the mean blade height according to

c =
H(
H/c

) , (3.25)

whereas the blade spacing is determined from the pitch to chord ratio (input
variable) and the blade chord,

s = c ·
(
s/c
)
. (3.26)

The incidence i and deviation δ angles are assumed to be zero and, therefore,
the metal angle at the inlet and outlet of each cascade are given by

θin = βin − i = βin, and (3.27)

θout = βout − δ = βout. (3.28)
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The blade opening is approximated by the cosine rule (Saravanamuttoo et al.
2009, pp. 343–344), which is given by

o ≈ s · cos (θout). (3.29)

The maximum blade thickness is computed according to the formula proposed
by Kacker et al. (1982) that correlates the blade maximum thickness to chord
ratio with the camber angle as given by

(tmax/c) =





0.15 for ∆θ ≤ 40◦ (3.30)

0.15 + 1.25 · 10−3 · (θ − 40) for 40◦ ≤ ∆θ ≤ 120◦ (3.31)

0.25 for ∆θ ≥ 120◦, (3.32)

where the blade camber angle is defined as ∆θ = |θin − θout|.
The stagger angle is computed according to

ξ =
1

2
(θin + θout) , (3.33)

which assumes that the blades have a circular-arc camberline (Dixon et al. 2013,
p. 72). Alternatively, the stagger angle could be computed from the graphical
relation proposed by Kacker et al. (1982) or given as an input for the model.

The axial chord is computed from the chord and stagger angle according to

cax = c · cos (ξ). (3.34)

and is used in combination with the change in blade height across the cascade to
compute the flaring angle,

tan (δfl) =
Hout −Hin

2 cax
. (3.35)

The trailing edge thickness is computed using the trailing edge thickness to
opening ratio (input variable) and the cascade opening and is given by

tte = o ·
(
tte/o

)
. (3.36)

In addition, the axial spacing between cascades sax can be computed as fraction
of the axial chord. However, this variable does not affect the performance pre-
dicted by the model because the Kacker et al. (1982) loss correlations neglect the
influence of this parameter. Saravanamuttoo et al. (2009, pp. 332–333) suggests
that axial spacing to axial chord ratios between 0.20 and 0.50 are satisfactory.
Finally the tip clearance gap of the rotor blades tcl is given as a fixed input to the
model that depends on manufacturing limits.

The geometry relations presented in this section describe the turbine geometry
in a level of detail that is adequate for preliminary design purposes. A more
detailed description of the turbine geometry that is suitable for the aerodynamic
design phase is presented in Chapter 4.
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3.2. Axial turbine model

3.2.5 Loss model

During the preliminary design phase, it is common to rely on empirical cor-
relations to estimate the losses within the turbine. These sets of correlations are
known as loss models. A loss can be interpreted as any mechanism that leads to
entropy generation and reduces the power output of the turbine, such as viscous
friction in boundary layers, wake mixing, or shock waves. The work of Denton
(1993) presents a detailed description of loss mechanisms in turbomachinery.

Perhaps, the most popular loss model for axial turbines is the one proposed
by Ainley et al. (1951b); Ainley et al. (1951a) and its subsequent refinements by
Dunham et al. (1970) and Kacker et al. (1982). The Kacker–Okapuu loss model
has been further refined to account for off-design performance by Moustapha et
al. (1982) and by Benner et al. (1997). One remarkable aspect of the Ainley–
Mathieson family of loss methods is that it has been updated with new exper-
imental data several times since the first version of the method was published.
This was not the case for other loss prediction methods such as the ones proposed
by Balje et al. (1968a), Craig et al. (1971), Traupel (1982), or Aungier (2006a).

In this work, the Kacker et al. (1982) loss model was adopted because of its
popularity and maturity. The improvements of this loss model to account for
off-design performance were not considered because the proposed methodology is
aimed towards the optimization of the turbine performance at its design point.
The Kacker–Okapuu loss model is described in detail in Appendix B. The original
formulation of the loss model has been adapted to the nomenclature and sign
conventions used in this work for the convenience of the reader.

As described by Denton (1993) and by Dahlquist (2008), there are several
possible definitions for the loss coefficient. In this work, the stagnation pressure
loss coefficient was used because the Kacker–Okapuu loss model was developed
based on this definition. This loss coefficient is meaningful for stator or rotor
cascades with a constant mean radius and it is defined as the ratio of relative
stagnation pressure drop across the cascade to relative dynamic pressure at the
outlet of the cascade,

Y =
p0rel,in − p0rel,out

p0rel,out − pout
. (3.37)

When the proposed axial turbine model is evaluated, the loss coefficient computed
from its definition, Eq. (3.37), and the loss coefficient computed using the loss
model, Appendix B, may not have the same value. In Section 3.4, the turbine
design is formulated as an optimization problem that relies on equality constraints
to ensure that the value of both loss coefficients are consistent for each cascade.
Therefore, the loss coefficient error is given by

Yerror = Ydefinition − Yloss model. (3.38)
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3.2.6 Diffuser model

The flow within the exhaust diffuser was modeled with the one-dimensional
model presented in Chapter 2. This model is based on the transport equations for
mass, meridional and tangential momentum, and energy for steady and axisym-
metric flow in an annular duct. The model can use arbitrary equations of state
and it accounts for effects of area change, heat transfer, and friction. Under these
conditions, the governing equations of the flow are given by

vm
dρ

dm
+ ρ

dvm
dm

= −ρvm
b̂ r̂

d

dm
(b̂ r̂), (3.39)

ρvm
dvm
dm

+
dp

dm
=
ρv2
θ

r̂
sin (φ)− 2τw

b̂
cos (α), (3.40)

ρvm
dvθ
dm

= −ρvθvm
r̂

sin (φ)− 2τw

b̂
sin (α), and (3.41)

ρvm
dp

dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b̂
(
∂e
∂p

)
ρ

. (3.42)

The viscous term is modeled using a constant skin friction coefficient Cf such that

τw = Cf
ρv2

2 and heat transfer is neglected, q̇w = 0. The inner and outer surfaces
of the diffuser are assumed to be straight, see Figure 3.1d. For this particular
geometry, the diffuser channel height b̂ and mean radius r̂ are given by

r̂(m) = r̂ in +m sin (φ) = r +m sin (φ), and (3.43)

b̂(m) = b̂ in + 2m tan (δ) = H out / cos (φ) + 2m tan (δ), (3.44)

where the mean cant angle φ and divergence semi-angle δ are given as input
parameters for the model.

The initial conditions required to integrate the system of ordinary differential
equations are prescribed assuming that the thermodynamic state and velocity
vector do not change from the turbine outlet to the diffuser inlet. The integration
starts from the initial conditions and stops when the prescribed value of outlet to
inlet area ratio AR is reached. In this work, the adaptive solver based on fourth-
and fifth-order explicit Runge-Kutta methods proposed by Shampine et al. (1997)
was used to perform the numerical integration.

In general, the static pressure given as a design specification from a system-level
analysis will not match the pressure at the outlet of the diffuser evaluated from the
model. In Section 3.4, the turbine design is formulated as an optimization problem
that uses an equality constrain to ensure that the static pressure at the outlet of
the diffuser and the target pressure are consistent. Therefore, the dimensionless
outlet static pressure error is given by

perror =
pdiff

out − ptarget

ptarget
. (3.45)

38



3.3. Validation of the axial turbine model

Table 3.2: Validation of the axial turbine model against experimental data.

Number of stages Variablea,b,c Kofskey et al. (1972) Present work Deviation

1 stage

T01 22.5 ◦C Same n.a.
p01 1.380 bar Same n.a.
PR 2.298 Same n.a.
Ω 15533 rpm Same n.a.
ṁ 2.695 kg/s 2.729 kg/s 0.91%

Ẇ 136.17 kW 135.03 kW -0.42%
ηts 80.00% 78.85% 1.15 points

2 stages

T01 25.8 ◦C Same n.a.
p01 1.240 bar Same n.a.
PR 4.640 Same n.a.
Ω 15619 rpm Same n.a.
ṁ 2.407 kg/s 2.434 kg/s 1.12%

Ẇ 212.06 kW 211.10 kW -0.46%
ηts 82.00% 81.40% 0.60 points

a Kofskey et al. (1972) reported the turbine performance in terms of equivalent variables. These were
converted to ordinary variables using ambient conditions at sea level (101.325 kPa and 288.15 K).
b The power output is computed from the measured torque and angular speed.
c The total-to-static isentropic efficiency is a dependent variable that is computed from the thermodynamic
conditions, mass flow rate, and power output.

3.3 Validation of the axial turbine model

The aim of this section is to validate the proposed axial turbine model using the
experimental data of the one- and two-stage turbines reported by Kofskey et al.
(1972). The flow in both turbines is subsonic and they use air as working fluid. To
validate the model, the geometry and operating conditions reported by Kofskey et
al. (1972) were replicated and the design-point performance of both test cases was
compared with the output of the model, see Table 3.2. The inlet thermodynamic
state, angular speed, and total-to-static pressure ratio were matched at the design
point and the validation was performed analyzing the deviation in mass flow rate,
power output, and total-to-static isentropic efficiency. This approach is consistent
with the definition of the design point given by Kofskey et al. (1972).

The data reported in Table 3.2 shows that the agreement between the pre-
dicted and measured mass flow rates and power outputs is satisfactory and that
the relative deviation is less than 1.2% for both turbines. In addition, the devia-
tion of total-to-static isentropic efficiency between model and experiment is 1.15
percentage points for the one-stage turbine and 0.60 points for the two-stage tur-
bine, which is within the efficiency-prediction uncertainty of the loss model of ±1.5
percentage points (Kacker et al. 1982). This analysis showed that the axial tur-
bine model can be used to predict the design-point performance of turbines with
one or more stages. However, the validation was restricted to subsonic turbines
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Figure 3.3: Automated workflow for preliminary turbomachinery design.

using air and it is likely that the efficiency predictions will not be as accurate for
cascades operating at supersonic conditions or when the fluid behavior deviates
from ideal gas, such as in Rankine cycles using organic fluids with high molecular
complexity or in supercritical carbon dioxide power systems.

3.4 Optimization problem formulation

The sub-models presented in Section 3.2 can be integrated to formulate the
preliminary turbine design as a nonlinear, constrained optimization problem. In
order to formulate this problem it is necessary to specify: (1) the objective func-
tion to be optimized, (2) the design variables and fixed parameters, and (3) the
inequality and equality constraints that limit the design space.

Once the problem is formulated, the workflow illustrated in Figure 3.3 is used
to carry out the preliminary design systematically. First, the fixed parameters
and an initial guess for the design variables are provided and the mean-line axial
turbine model is evaluated. After that, the optimization algorithm uses values
and gradients of the objective function and constraints to determine the values
of the design variables for the next iteration. This process is repeated until the
solution meets the termination criteria and the optimal turbine design is found.

3.4.1 Objective function

The objective function is an performance indicator of interest that is minimized
or maximized. The total-to-static and total-to-total isentropic efficiencies are
often used as objective function for the preliminary design of turbomachinery
(Dixon et al. 2013, pp. 23–24). These performance indicators are defined as

ηts =
h01 − h02

h01 − h2s
and ηtt =

h01 − h02

h01 − h2s + v2
2/2

, (3.46)

where the subscripts 1 and 2 refer to the states at the inlet and outlet of the
turbine, respectively, and the subscript s refers to an isentropic expansion.

40



3.4. Optimization problem formulation

3.4.2 Design variables

The choice of design variables, also known as independent variables, is not
unique and different sets of variables can be used to formulate the same problem.
Ideally, the set of design variables should allow one to compute the dependent
variables in a sequential way and avoid inner iterations in the evaluation of the
model. In addition, it is preferable to use a properly scaled set of independent
variables (i.e., design variables with a similar order of magnitude) because this can
increase the convergence rate of some algorithms and reduce the round-off error
when the problem gradients are evaluated using a finite difference approximation
(Nocedal et al. 2006, pp. 26–27).

Table 3.3 contains the set of design variables adopted in this work as well
as the lower and upper bounds that were used to formulate the optimization
problem for the case study discussed in Section 3.5. This formulation uses 6 design
variables per cascade (i.e., 12 design variables per stage) plus three additional
global design variables. This set of independent variables is well-scaled and it
enables the evaluation of the turbine model in a sequential way with no inner
iterations1 from the inlet of the first stator to the exit of the diffuser. The lower
and upper bounds of the design variables were selected to span a large design space
that respects the range of applicability of the Kacker et al. (1982) loss system.

The specific speed and specific diameter were selected as independent variables,
rather than the angular speed and mean diameter, because they have an order
of magnitude of unity and it is easier to provide a reasonable initial guess since
they are independent of the scale of the problem (Balje et al. 1968a). The angular
speed and mean diameter can be readily obtained from their specific counterparts

Ωs = Ω

(
ṁ/ρ2s

)1/2

(h01 − h2s)
3/4

and ds = d
(h01 − h2s)

1/4

(ṁ/ρ2s)1/2
. (3.47)

In addition, the flow velocities were normalized using the isentropic velocity,
which is also known as the spouting velocity

v0 =
√

2 (h01 − h2s). (3.48)

The entropy at the exit of each cascade was normalized using the inlet entropy
and bounded by a reference entropy value sref computed according to

sref = s(p2, href) and (3.49)

href = h01 − ηref · (h01 − h2s) . (3.50)

The remaining design variables did not need to be scaled.

1Except for the inner iterations that may occur when interrogating the thermodynamic library.
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3.4.3 Fixed parameters

In order to evaluate the model and compute the dependent variables, it is
necessary to provide several fixed parameters that do not change during the opti-
mization. Table 3.3 contains the fixed parameters that are used as input for the
axial turbine model as well as the numerical values used for the case study. The
isentropic power output, given by Eq. (3.1), and thermodynamic boundary condi-
tions are kept constant because they are given by the system design requirements,
see Section 3.2.3. Notably, all independent variables are dimensionless and the
isentropic power output is the parameter that scales-up the problem. In addition,
the flow angle at the inlet of the first stator is fixed because it is assumed that
there is no swirl at the inlet of the turbine. Furthermore, the tip clearance gap is
constant and it is given by manufacturing limits. Finally, the diffuser model in-
puts are given as fixed parameters because the total-to-static isentropic efficiency
is a monotonic function of these variables, see Chapter 2.

3.4.4 Constraints

In addition to the bounds for the degrees of freedom, the axial turbine model
relies on nonlinear equality and inequality constraints to guarantee that the model
is consistent and that the design is feasible. These constraints and the numerical
values used for the case study are summarized in Table 3.3. The pressure ratio
in each cascade was constrained to avoid compression within the turbine, which
is equivalent to constrain the degree of reaction between zero and one, and the
flaring angle was limited to avoid designs that result in flow separation close to
the annulus walls (Ainley et al. 1951b). In addition, the constrains for the inlet
relative flow angles were imposed to avoid blades with too low deflection (Kacker
et al. 1982) and the meridional component of the Mach number at the inlet of the
diffuser was constrained to ensure that the diffuser model, Eqs. (3.39) to (3.42),
is not singular, see Chapter 2. Furthermore, the hub-to-tip ratio was constrained
because this parameter is a dependent variable that the designer might want to
control as it has a great influence on: (1) the optimal angular speed and diameter
and (2) the centrifugal and gas bending stresses (Saravanamuttoo et al. 2009).
Finally, as discussed in Section 3.2.5 and Section 2.2, equality constrains were
imposed on the loss coefficient error and the outlet static pressure error to ensure
that the model is consistent. Depending on each application, it is possible to
implement additional constraints or to ignore some of them.

3.4.5 Optimization algorithm

Optimization algorithms can be classified as gradient-free or gradient-based
depending on the use of derivative information. Gradient-based methods are par-
ticularly suited to solve differentiable problems involving a large number of design
variables and they use the gradients of the objective function and constraints to
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determine the next iterate (Nocedal et al. 2006). Gradient-free methods, on the
other hand, only use the values of the objective function and constraints and, for
this reason, they can be used when the gradients of the problem are not available
or when the problem is not smooth or even discontinuous (Audet et al. 2017).
However, gradient-free methods require a large number of model evaluations to
converge, especially when the number of design variables is large, and they are
not well-suited to solve problems with equality constraints.

In this work, a gradient-based optimization algorithm was adopted because
the proposed mean-line axial turbine model is smooth2 and it involves several
tens of design variables for multistage configurations. In particular, a Sequential
Quadratic Programming (SQP) algorithm (Nocedal et al. 2006, pp. 526–572) that
is capable to handle equality and inequality constraints was adopted. The problem
gradients were estimated using first order finite differences with an step-size equal
to the square-root of machine epsilon (Press et al. 2007, pp 8–11).

3.5 Design optimization of a case study

The aim of this section is to assess the optimization methodology proposed in
this work. To this aim, the model was applied to optimize two axial turbine ref-
erence cases from Macchi et al. (2017). The two cases consider pentaflueroethane
(R125) expanding from 155 ◦C and 36.2 bar (stagnation properties) to 15.85 bar
(static pressure). The mass flow rate is selected to achieve an isentropic power
of 250 kW in the first case and 5000 kW in the second case. These cases are
representative of a small-scale and a large-scale Rankine cycle used to generate
power from a low-temperature heat source (Colonna et al. 2015).

The values of the fixed parameters, design variable bounds, and constrains used
to formulate the optimization problem are summarized in Table 3.3 and the total-
to-static isentropic efficiency was set as objective function. The minimum hub-to-
tip ratio constraint is always active at the exit of the last stage, see Section 3.6.3,
and its value has a great influence on the optimal angular speed and diameter.
For this reason, the comparison of optimal speed and diameter will only be fair
if the minimum hub-to-tip ratio is the same as in the reference case. The value
λmin = 0.60 reported in Table 3.3 is the same value used by Macchi et al. (2017)3.

The results of the optimization for the two cases considered are shown in
Table 3.4. It can be observed that the optimal angular speed and diameter of
the reference case agree well with the results obtained with the turbine model
presented in this work and that the maximum relative deviation is less than 6%.

2Some of the loss model equations are are not differentiable (e.g., piece-wise functions or func-
tions involving absolute values), see Appendix B. Despite these non-smooth points, experience
showed that the optimization problem can be solved reliably using gradient-based methods.

3In fact, the minimum-hub-to tip ratio used in Macchi et al. (2017) was not reported in the
original publication, but it was confirmed by M. Astolfi in a personal communication.
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Table 3.3: Optimization problem formulation and definition of the reference cases.

Fixed parameters

Number of stages N = 1 –

Isentropic power output Ẇs = 250 | 5000 kW
Turbine inlet stagnation temperature T01 = 155 ◦C
Turbine inlet stagnation pressure p01 = 36.2 bar
Turbine outlet static pressure p2 = 15.85 bar
Tip clearance gap tcl = 0.50 mm
First stator inlet flow angle αin = 0.0 deg
Diffuser mean cant angle φ = 30.0 deg
Diffuser divergence semi-angle δ = 5.0 deg
Diffuser area ratio AR = 2.5 –
Diffuser skin friction coefficient Cf = 0.010 –

Independent variables

Specific speed Ωs ∈ [0.10, 10.0] –
Specific diameter ds ∈ [0.10, 10.0] –
Normalized first stator inlet velocity vin/v0 ∈ [0.01, 1.00] –
Normalized outlet relative velocitya wout/v0 ∈ [0.01, 1.00] –
Outlet relative flow angle (stator)a βout, S ∈ [+40.0, +80.0] deg
Outlet relative flow angle (rotor)a βout,R ∈ [−80.0,−40.0] deg
Normalized outlet entropya,c sout/sin ∈ [1.00, sref/sin] –
Aspect ratioa H/c ∈ [1.00, 2.00] –
Pitch to chord ratioa s/c ∈ [0.75, 1.10] –
Trailing edge thickness to opening ratioa tte/o ∈ [0.05, 0.40] –

Nonlinear constraints

Inlet relative flow angle (stator)a βin, S ≤ +15.0 deg
Inlet relative flow angle (rotor)a βin,R ≥ −15.0 deg
Flaring anglea δfl ∈ [−10.0, +10.0] deg
Hub-to-tip ratiob λ ∈ [0.60, 0.95] –
Cascade pressure ratioa PR c ≥ 1.00 –

Diffuser inlet meridional Mach number Madiff
m, in ≤ 1.00 –

Outlet static pressure error perror = 0.00 –
Cascade loss coefficient errora Yerror = 0.00 –

a One value per cascade (rotor or stator).
b Two values per cascade (inlet and outlet).
c sref corresponds the outlet entropy assuming ηref

ts = 50%.
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Table 3.4: Output of the optimization methodology for the two reference cases.

Isentropic power Variable Macchi et al. (2017) Present work Deviation

Ẇs = 250 kW

Ω 31000 rpm 29231 rpm -5.71%
d 0.086 m 0.087 m 1.27%

Ẇ 219.3 kW 224.4 kW 2.36%
ηts 87.70% 89.77% 2.07 points

Ẇs = 5000 kW

Ω 6000 rpm 6144 rpm 2.40%
d 0.420 m 0.395 m -5.87%

Ẇ 4535.0 kW 4576.5 kW 0.92%
ηts 90.70% 91.53% 0.83 points

In addition, the model presented in this work captures the trend of the optimal
angular speed and diameter as the power output changes. The values of total-to-
static efficiency from the reference case and the ones obtained in the present work
are comparable, although there are is a difference of 2.07 and 0.83 percentage
points in the small scale and large scale cases, respectively. This difference is
not surprising considering that the Craig et al. (1971) loss model was used in the
reference case while the Kacker et al. (1982) model was used in the present work
and that the efficiency prediction uncertainty of these empirical loss models is
approximately ±1.5 percentage points, if not higher (Kacker et al. 1982).

3.6 Sensitivity analysis

This section contains a sensitivity analysis of the 5000 kW reference case an-
alyzed in the previous section to gain insight about the impact of several input
parameters on turbine performance. The next subsections investigate the influence
of the: (1) isentropic power output, (2) tip clearance gap, (3) minimum hub-to-tip
ratio, (4) diffuser area ratio, (5) diffuser skin friction coefficient, (6) total-to-static
pressure ratio, (7) number of stages and (8) angular speed and mean diameter on
the total-to-static isentropic efficiency. Other variables were not considered be-
cause they have a secondary influence or because they are inactive constraints.
Each sensitivity analysis considers the influence of one variable on the optimal
solution while the rest of parameters are the same as in the 5000 kW reference
case summarized in Table 3.3.

3.6.1 Influence of isentropic power output

The isentropic power output was varied from 10 kW to 10 MW and the max-
imum attainable total-to-static efficiency is shown in Figures 3.4 and 3.5. This
range of power output was selected to cover a wide spectrum of turbine scales.
According to the classification for organic Rankine power systems proposed by
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Colonna et al. (2015), this range of power output covers the mini, small, medium,
and large power capacities. It can be observed that the efficiency increases
monotonously with the isentropic power and that the effect is more marked when
the power output is small. The reason for this is that the size of the turbine
increases and therefore: (1) the blade height H increases and the tcl/H ratio de-
creases, which in turn reduces the tip clearance losses and (2) the blade chord of
the cascades increases, which in turn increases the Reynolds number and reduces
the profile losses.

3.6.2 Influence of tip clearance gap

Figure 3.4 shows the total-to-static efficiency as a function of the isentropic
power when the tip clearance gap is varied from 0.00 mm (i.e., no clearance) to
1.00 mm (i.e., large clearance). It can be observed that the isentropic efficiency
decreases when the tip clearance is increased and that the trend is not linear.
For instance, increasing the tip clearance from 0.00 mm to 0.25 mm penalizes the
efficiency more than from 0.25 to 0.50 mm. It can also be seen that the efficiency
drop due to tip clearance is more marked when the isentropic power is low because
the ratio tcl/H is increased due to the reduction in blade height. In addition, the
total-to-static efficiency increases with the isentropic power output even for the
case when the rotor tip clearance is zero due to the effect of the Reynolds number.

3.6.3 Influence of the hub-to-tip ratio constraint

The influence of the lower limit for the hub-to-tip ratio constraint on the per-
formance of the turbine is depicted in Figure 3.5 as a function of the isentropic
power output. The lower value λ = 0.40 is representative of low-pressure steam
turbine stages and the higher value λ = 0.80 is representative of the high-pressure
stages of steam or gas turbines. The results of the optimization showed that the
constraint for the minimum hub-to-tip ratio is always active at the outlet of the
turbine. In other words, the turbine model proposed in this work predicts that
the isentropic efficiency will always increase when the lower limit for the hub-to-
tip ratio is decreased. The reason for this is that the blade height is increased
when the minimum hub-to-tip ratio decreases and, as a result of this: (1) the tip
clearance to blade height ratio tcl/H and the clearance losses decrease and (2) for
a fixed aspect ratio, the blade chord and Reynolds number increase and the profile
losses are reduced.

In addition, the diffuser height increases according to b̂in = H out / cos (φ), see
Figure 3.1d. This effect reduces the friction losses in the diffuser because the chan-
nel height appears in the denominator of the friction terms, Eqs. (3.40) to (3.42).
The effect of the hub-to-tip ratio on the friction losses of the diffuser agrees with
the results presented in Chapter 2, but its impact on the isentropic efficiency is
marginal compared with that of the profile and tip clearance losses.
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Figure 3.4: Influence of the isentropic
power output and tip clearance gap on ηts.

Figure 3.5: Influence of the isentropic
power output and hub-to-tip ratio on ηts.

3.6.4 Influence of the diffuser area ratio

The effect of the diffuser area ratio on the total-to-static isentropic efficiency is
shown in Figures 3.6 and 3.7. The limits of the area ratio were selected to include
cases ranging from the absence of diffuser (AR = 1), to cases where a large
fraction of the kinetic energy is recovered (AR = 5). The upper limit was selected
on the basis that, for the case of inviscid, incompressible flow with no inlet swirl, a
diffuser with an area ratio of AR = 5 would recover 96% of the available dynamic
pressure, see Eq. (2.36). Both Figures 3.6 and 3.7 indicate that the isentropic
total-to-static efficiency increases with the area ratio in an asymptotic way. A
small increase of area ratio from the case with no diffuser (AR = 1) increases
the total-to-static efficiency significantly, whereas, as the area ratio is higher, the
improvement of isentropic efficiency becomes less marked because there is less
kinetic energy to recover at the diffuser exit. The results of the optimization
showed that adopting an area ratio in the range 2.0–2.5 leads to 70–80% of the
maximum efficiency gain. In addition, it was found that the optimum absolute
flow angle at the outlet of the last stage was very close to zero (i.e., no swirl) for
all cases, regardless of the area ratio of the diffuser.

3.6.5 Influence of the diffuser skin friction coefficient

To the knowledge of the author, there are no correlations available to pre-
dict the skin friction coefficient for swirling flow in annular ducts. However it
is possible to estimate a reasonable value for the skin friction coefficient based
on experimental data from vaneless diffusers without flow separation. Brown
(1947) measured the local skin friction coefficient for different vaneless diffusers
and obtained values in the range 0.003–0.010. In the absence of better estimates,
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Figure 3.6: Influence of the diffuser area
ratio and skin friction coefficient on ηts.

Figure 3.7: Influence of the diffuser area
ratio and pressure ratio on ηts.

Johnston et al. (1966) recommend values within the range 0.005-0.010 for the
global skin friction coefficient. In a similar way, Dubitsky et al. (2008) suggest
0.010 as a reasonable estimate for the global skin friction coefficient, but noted
that values from 0.005 to 0.020 were required to fit experimental data, depending
on the application. Based on these considerations, the friction factor was varied
from 0.000 (frictionless) to 0.030 (high friction) and the impact on the turbine
total-to-static isentropic efficiency as a function of the area ratio is illustrated in
Figure 3.6. It can be observed that increasing the friction factor decreases the
total-to-static isentropic efficiency in a linear way (i.e., the different curves are
equispaced). In addition the impact of friction factor on the efficiency drop is
more notable as the area ratio is high because the length of the channel increases.
However, the effect of the friction factor has only a modest impact on the total-
to-static efficiency as it causes an efficiency drop of about 0.3 percentage points
for the worst case considered in Figure 3.6.

3.6.6 Influence of the total-to-static pressure ratio

The effect of the pressure ratio as a function of the diffuser area ratio is depicted
in Figure 3.7. The pressure at the outlet of the turbine was kept constant and the
pressure at the inlet was varied to achieve pressure ratios ranging from PR = 2
(subsonic flow) to PR = 10. It can be observed that increasing the pressure ratio
from PR = 2 to PR = 4 causes a small efficiency drop and that further increasing
the pressure ratio to PR = 6 causes a much larger efficiency drop. The reason
for this is that the Mach number at the outlet of the cascades becomes higher
than unity when PR ≈ 4 and the supersonic correction factor of the Kacker
et al. (1982) loss system, see Eq. (B.4), penalizes the total-to-static isentropic
efficiency. In addition, Figure 3.7 also shows that the total-to-static isentropic
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Figure 3.8: Influence of the pressure ratio
and number of stages on ηts.

Figure 3.9: Baljé diagram of the reference
case and optimal blade speed rule.

efficiency of turbines without diffuser deteriorates rapidly as the pressure ratio
is increased. This is because increasing the turbine pressure ratio also increases
the flow velocities within the turbine and the amount of kinetic energy that is
potentially wasted at the exhaust of the turbine. This highlights the importance
of using a diffuser when the pressure ratio is high.

3.6.7 Influence of the number of stages

Figure 3.8 shows the total-to-static efficiency of turbines with one, two, and
three stages as a function of the pressure ratio. Again, the pressure ratio was
achieved varying the pressure at the inlet of the turbine while keeping the outlet
pressure constant. However, in this case, the upper limit of the pressure ratio was
increased to PR = 14. In can be seen that there is a peak of efficiency and that
the performance deteriorates sharply when the pressure ratio increases beyond
this point because the flow becomes supersonic and the Mach number correction
factor penalizes the profile loss coefficient, see Eq. (B.4). Moreover, the range of
pressure ratios for which the isentropic efficiency is high becomes wider as the
number of stages increase because the expansion can be distributed over more
cascades and the number of optimization variables increases.

3.6.8 Influence of the angular speed and diameter

The results presented in the previous subsections correspond to the optimal
angular speed and mean diameter. However, depending on the application, it
might not be possible to achieve the point of optimal angular speed and diameter
because of technical constraints that were not considered in the analysis such
as the frequency of the electrical grid, mechanical stress, or space limitations.
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Therefore, the objective of this section is to analyze the impact of using a non-
optimal angular speed and diameter on the total-to-static efficiency of the turbine.

Figure 3.9 illustrates the contours of maximum total-to-static isentropic effi-
ciency in the Ωs–ds plane for the 5000 kW reference case of Table 3.3. In this
diagram, known as Baljé diagram, each point corresponds to a pair of specific
speed and diameter, while the rest of the design variables are optimized. It can
be observed that there is an optimum combination of specific speed and diameter
that maximizes the total-to-static isentropic efficiency. In addition, it can be seen
that there is a narrow region where the efficiency is close to its maximum value and
that moving away from this region leads to a rapid efficiency drop. Interestingly,
the locus of maximum efficiency is approximately given by the hyperbola

1

2
(Ωs ds) = u/

√
∆hs = 1. (3.51)

This suggests that the efficiency penalty away from the point of optimal specific
speed and diameter is small if the dimensionless blade velocity u/

√
∆hs is close to

unity. This simple result can be explained from Euler’s turbomachinery equation,

∆h = [u vθ] in,R − [u vθ] out,R, (3.52)

and the behavior of the solutions that maximize efficiency. On the one hand, close-
to-optimal solutions tend to minimize the swirling kinetic energy lost at the exit
of the turbine, see Section 3.6.4. As a consequence, the absolute flow angle and
tangential velocity at the rotor exit are close to zero (αout → 0 and vθ, out → 0).
On the other hand, close-to-optimal solutions also tend to have a relative flow
angle at the inlet of the rotor that is close to zero (βin → 0) because the Kacker
et al. (1982) loss system predicts low profile losses for reaction blades with small
relative inlet angles, see Eq. (B.7). As a result, the absolute tangential velocity
at the inlet of the rotor approaches the blade velocity (vθ in → u). Under these
conditions, the actual enthalpy change approaches the isentropic enthalpy change
(∆h→ ∆hs) and Euler’s turbomachinery equation, Eq. (3.52), is reduced to

∆hs = u2 ⇒ u√
∆hs

=
1

2
(Ωs ds) = 1, (3.53)

which corresponds to the hyperbola of maximum efficiencies in the Baljé diagram.

This analysis was valid for single-stage turbines, but it can be extended to
turbines with more than one stage. For the case of multistage turbines, the locus
of maximum efficiency is approximately given by the hyperbola

1

2
(Ωs ds) = u/

√
∆hs =

1√
Ns
, (3.54)

where Ns is the number of stages. This equation can also be explained from
Euler’s turbomachinery when vθ, out → 0 and vθ, in → u hold for every stage.
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Table 3.5: Comparison of the specific blade speed rule with the optimization results.

Variable
Sample
pointsa

Number
of stages

Proposed
1
2(Ωs ds)

ref
Optimizationb

1
2(Ωs ds)

mean
Relative

errorc

2 ≤ PR ≤ 14
37 1 1 0.978 3.22%

37 2 1/
√

2 0.706 1.56%

37 3 1/
√

3 0.592 0.90%

10 kW ≤ Ẇs ≤ 10 MW

23 1 1 1.014 2.05%

23 2 1/
√

2 0.725 1.42%

23 3 1/
√

3 0.599 1.29%

a Number of points (N) used to sample the PR and Ẇs intervals.
b Computed according to 1

2N

∑i=N
i=1 (Ωs ds)i.

c Computed according to 1
(Ωs ds)ref

√
1
N

∑i=N
i=1

[
(Ωs ds)i − (Ωs ds)ref

]2
.

To assess the validity of this result, the optimal blade speed predicted by
Eq. (3.54) was compared with the numerical optimization results for different
isentropic power outputs ranging between 10 kW and 10 MW and different pres-
sure ratios ranging between 2 and 14, see Table 3.5. It can be observed that
location of the point of maximum efficiency predicted by Eq. (3.54) agrees well
(relative deviation < 4%) with the optimization results for axial turbines of 1, 2,
and 3 stages regardless of the pressure ratio and the isentropic power output.

3.7 Conclusions

A mean-line model and optimization methodology for axial turbines with any
number of stages was proposed. The model was formulated in a general way so
as to use arbitrary equations of state and empirical loss models and it accounts
for the influence of the diffuser using the one-dimensional flow model proposed in
Chapter 2. To the knowledge of the author, this is the first time that the coupling
of a one-dimensional diffuser model and an axial turbine mean-line model has
been documented. The axial turbine preliminary design was formulated as a con-
strained optimization problem and was solved using a SQP algorithm. Employing
a gradient-based algorithm, rather than a gradient-free one, enabled: (1) the op-
timization of multi-stage design problems with tens of design variables at a low
computational cost and (2) the use equality-constraints to integrate the cascade,
loss, and diffuser sub-models in a simple way.

The proposed model was validated against experimental data from two test
cases documented in the open literature and it was found that the deviation be-
tween the data and the model predictions in terms of mass flow rate and power
output was less that 1.2% for both cases and that the deviation in total-to-static
efficiency was only 0.27 percentage points for the one-stage case and 0.35 points for
the two-stage case. It was also concluded that the close match between measured
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and predicted efficiencies is within the uncertainty of the efficiencies predicted
by the loss model (about ±1.5 percentage points). In addition, the optimization
methodology was applied to a case study and a sensitivity analysis was performed
to investigate the influence of several design variables on the total-to-static isen-
tropic efficiency, gathering the following conclusions and design guidelines:

• The total-to-static isentropic efficiency increases when the tip clearance gap
decreases and this effect is more marked as the isentropic power output of
the turbine decreases. This highlights the importance of achieving small tip
clearances in small-scale applications.

• The minimum hub-to-tip ratio constraint is always active at the exit of
the last stage and the total-to-static isentropic efficiency increases when
the value of this constraint is reduced. However, reducing the minimum
hub-to-tip ratio also increases the centrifugal and gas bending stresses (Sar-
avanamuttoo et al. 2009). Therefore, the choice of minimum hub-to-tip ratio
must be a trade-off between fluid-dynamic and mechanical considerations.

• The total-to-static isentropic efficiency increases with the diffuser area ratio
in an asymptotic way, regardless of the value of the diffuser skin friction
coefficient, and the numerical optimization results showed that using an
area ratio in the range 2.0–2.5 results in 70–80% of the maximum efficiency
gain. Using a higher diffuser area ratio will increase the kinetic energy
recovery and power output; but it will also increase the turbine footprint,
which may be a disadvantage for applications with space limitations.

• The total-to-static isentropic efficiency decreases when the pressure ratio
is increased beyond a certain value because the Kacker et al. (1982) loss
model predicts a sharp increase of the profile loss coefficient when the flow
becomes supersonic. This effect becomes less marked as the number of
stages increases because the expansion can be distributed over more cas-
cades. In addition, the total-to-static efficiency of turbines without diffuser
deteriorates rapidly when the pressure ratio is increased, highlighting the
importance of using a diffuser when the pressure ratio is high.

• The results of the optimization showed that the maximum total-to-static
isentropic efficiency is attained when the absolute flow angle at the exit of
the last stage is close to zero (i.e., no exit swirl), regardless of the area ratio
of the diffuser. This agrees with the conclusions drawn in Chapter 2.

• It was found that the efficiency penalty away from the point of optimal
angular speed and diameter (i.e., the peak of the Baljé diagram) is small
if the combination of specific speed and diameter is close to the hyperbola
given by Ωs ds = 2/

√
Ns. This guideline can be used to select a suitable

combination of angular speed and diameter when one of these variables is
constrained by technical requirements.
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Chapter 4

Unified Geometry
Parametrization Method for
Turbomachinery Blades

Part of the contents of this chapter appear in:

R. Agromayor, N. Anand, J.-D. Müller, M. Pini, and L. O. Nord (2021a).
“A Unified Geometry Parametrization Method for Turbomachinery Blades”.
Computer-Aided Design 133, pp. 1–16. doi: https://doi.org/10.1016/j.

cad.2020.102987

Abstract

This chapter presents a unified blade parametrization method for axial, radial,
and mixed-flow turbomachinery blades. The method is based on conventional
engineering design variables and NURBS curves/surfaces and it produces blades
that have continuous curvature and rate of change of curvature. In addition, the
method is formulated explicitly and it defines the geometry of the blade and flow
domain with no trimming or intersection operations. The derivatives of the surface
coordinates with respect to the design variables are computed by means of the
complex-step method, thereby allowing the integration of the parametrization into
gradient-based shape optimization workflows. Furthermore, the method enables
the re-parametrization of a blade geometry defined by a cloud of points by solving
a two-step optimization problem. The capabilities of the proposed method were
demonstrated by replicating the geometry of eight turbomachinery blades in two
and three dimensions with an accuracy comparable to the tolerances of current
manufacturing technologies.
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4.1 Introduction

Driven by ever-increasing requirements in performance, development time, and
life-time cost, the aerodynamic design of turbomachinery components is increas-
ingly carried out by means of automated workflows (Verstraete 2019). These
workflows integrate geometry parametrization tools, high-fidelity physical mod-
els, and numerical optimization to systematically explore the design space. The
parametrization of the geometry is an essential aspect of the design chain because
it defines the design space where the optimization algorithm can search the op-
timal solution (Samareh 2001). Ideally, geometry parametrization methods for
turbomachinery blades should:

1. Support any type of blade configuration (i.e., axial, radial and mixed-flow)
and contain the shapes that achieve the required design objectives.

2. Allow the designer to impose geometric constraints due to mechanical or
manufacturing requirements in a simple way.

3. Provide the sensitivity of the shape with respect to the design variables to
enable gradient-based shape optimization (Banović et al. 2018).

4. Use conventional engineering design variables with an intuitive geometrical
meaning (e.g., chord, metal angles, thickness distribution).

5. Produce smooth geometries with continuous curvature (i.e., G2 continuity)
and continuous rate of change of curvature to avoid velocity spikes that may
lead to flow separation (Korakianitis et al. 1993b).

6. Retain compatibility with computer-aided design (CAD) software for further
analysis, geometry manipulation, and manufacturing.

7. Be computationally efficient in terms of execution time and memory usage.

Shape parametrization methods can be classified as deformation and construc-
tive methods. Deformation methods are suited to modify an existing geometry
(e.g., a mesh or a CAD model) and are widely used in the context of aerody-
namic shape optimization. These methods include mesh point displacement (Wu
et al. 2005; Walther et al. 2012), CAD model control point displacement (Pini
et al. 2014; Xu et al. 2015), superposition of shape functions such as Hicks-Henne
bumps (Luo et al. 2013; Walther et al. 2015c), space morphing based on free-form
deformation (Vitale et al. 2017; John et al. 2017), or space morphing based on ra-
dial basis function interpolation (Tang et al. 2018; Gagliardi et al. 2019). Although
these methods offer rich design spaces and lend themselves for differentiation, they
are not well-suited to impose geometric constraints (e.g., minimum trailing edge
thickness), making it difficult to obtain feasible shapes out of the optimization pro-
cess. As a notable exception, the NSPCC method proposed by Xu et al. (2015)
allows the designer to impose geometric and continuity constraints by evaluating
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Table 4.1: Survey of constructive parametrization methods for turbomachinery blades.

Reference Basis function Configuration Cont.a Grad.b

Dunham (1974) Monomial 2D profile G1 n.a.
Crouse et al. (1981) Monomial 3D axial G1 n.a
Ye (1984) Monomial 2D profile G2 n.a.
Pritchard (1985) Monomial 2D profile G1 n.a.
Korakianitis (1993a) Monomial 2D profile G2 n.a.
Aungier (2006b) Monomial 2D profile G2 n.a.
Engeli et al. (1974) Bézier 3D axial G2 n.a.
Casey (1983) Bézier 3D general G2 n.a.
Goel et al. (1996) Bézier 3D axial G2 n.a.
Giannakoglou (1999) Bézier 2D profile G1 n.a.
Trigg et al. (1999) Bézier 2D profile G1 n.a.
Pierret et al. (1999) Bézier 2D profile G2∗ n.a.
Pierret et al. (2000) Bézier 3D axial G2∗ n.a
Oyama et al. (2004) B-spline 3D axial G1 n.a.
Huppertz et al. (2007) B-spline 2D profile G1 n.a
Verstraete (2010) B-spline 3D axial G2∗ n.a.
Verstraete (2010) B-spline 3D general G2∗ n.a.
Siddappaji et al. (2012) B-spline 3D general G2 n.a.
Torreguitart et al. (2018) B-spline 2D profile G2∗ AD
Mykhaskiv et al. (2018) B-spline 3D axial G2 AD
Miller IV et al. (1996) NURBS 3D general G2 n.a.
Gräsel et al. (2004) NURBS 3D general G2 n.a.
Koini et al. (2009) NURBS 3D general G2 n.a.
Müller et al. (2017) NURBS 3D general G2∗ CS
Anand et al. (2018) NURBS 2D profile G2 FD
Present work NURBS 2D/3D general G2 CS

a Slope continuity (G1) or curvature continuity (G2).
b Method used to compute the gradient of the shape w.r.t the design variables: not available
(n.a.), Finite Differences (FD), Complex-Step (CS), or Algorithmic Differentiation (AD).
* The parametrization satisfies curvature continuity everywhere except at the trailing edge.

these constraints at a finite number of test-points and using a projected gradient
optimization method to maintain feasibility. In contrast, constructive methods
can be used to generate the geometry of a new blade from scratch, or possibly
using design variable values obtained during the preliminary design phase. In ad-
dition, these methods are suited to impose geometric constraints in a natural and
non-intrusive way. Due to these strengths, constructive methods are widely used
for turbomachinery blade parametrization and a large number of such methods
have been developed over the years. Table 4.1 provides a comprehensive review
of constructive blade parametrizations up to the present day.
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The early constructive parametrization methods used circular arcs and poly-
nomials in monomial-basis form (i.e., polynomials in the form

∑n
i=0 aix

i) to define
the geometry of the blades, see Table 4.1. This type of parametrization gained
significant popularity among industry practitioners, but it has severe limitations
arising from the use of a monomial basis. Specifically: (1) the polynomial coeffi-
cients convey little insight about the shape of the blade, (2) ensuring geometric
continuity at the connecting points between segments requires the solution of a
linear system that may not have a unique solution, (3) the surface of the blade
is prone to undesirable inflection points, and (4) the resulting shapes are not
compatible with the geometric representation used by modern CAD systems.

To overcome these shortcomings, several authors proposed new constructive
parametrizations based on Bézier , B-spline, and NURBS curves and surfaces, see
Table 4.1. These mathematical functions have become the standard to represent
geometric objects in modern CAD packages due to their favorable mathemati-
cal properties and the availability of a wide range of algorithms to define and
manipulate curves and surfaces (Piegl et al. 2012; Farin 2001). Currently, most
of the constructive CAD-based parametrizations for turbomachinery blades are
not suitable for automated design workflows. This is because they do not offer a
robust way to handle intersection operations (Taylor 2015) or do not provide sen-
sitivity information required by gradient-based optimization algorithms methods
(Banović et al. 2018). In addition, to optimize an existing blade, it is essential to
find a parametric representation of the baseline geometry, available, for instance,
in the form of a set of points in the Cartesian space. Solving this reverse engineer-
ing problem by trial and error is doable for simple cases (Torreguitart et al. 2018),
but it becomes impractical for complex blade geometries. Despite the practical
relevance of this problem, a robust and automatic method to re-parametrize the
geometry of a blade defined by a scattered set of points is still lacking.

In view of the limitations of the existing methods, this work presents a general
constructive parametrization method for axial, radial and mixed-flow turboma-
chinery blades. The method exploits conventional engineering design variables
(blade thickness, chord, metal angles, etc.) and NURBS curves and surfaces to
define the blade geometry. The method is formulated explicitly and it defines the
geometry of the blade and flow domain with no intersection operations. In addi-
tion, the blades satisfy G2 continuity by construction and the sensitivity of the
coordinates with respect to the design variables is computed with machine accu-
racy by means of the complex-step method. Furthermore, the method is capable
to re-parametrize the geometry of an existing blade defined by scattered point
coordinates. This problem, often referred to as blade matching, is formulated
as a two-step optimization problem and it allows one to find the design variable
values that best approximates the prescribed geometry in a systematic way. The
flexibility and accuracy of the proposed method is demonstrated by replicating
the geometry of eight turbomachinery blades in two and three dimensions.
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4.2 Background on NURBS curves and surfaces

The origin of Non-Uniform Rational Basis Spline (NURBS) curves and surfaces
can be traced back to the research efforts in computer-aided geometric design in
the late 60s and early 70s (Piegl 1991). Since then, NURBS have been universally
used for geometrical modeling thanks to their intuitive geometrical interpretation,
favorable mathematical properties, and efficient computational algorithms. A
NURBS curve, see Figure 4.1a, is a parametric curve defined by

C(u) =

n∑
i=0

Ni,p(u)wi Pi

n∑
i=0

Ni,p(u)wi

, with 0 ≤ u ≤ 1, (4.1)

where p is the degree of the curve, the coefficients Pi and wi are the coordinates
and weights of the n + 1 control points, and Ni,p are B-spline basis functions
defined on the non-decreasing, clamped knot vector

U = [0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , un︸ ︷︷ ︸
n−p

, 1, . . . , 1︸ ︷︷ ︸
p+1

] ∈ Rr+1, with r = n+ p+ 1. (4.2)

The B-spline basis functions are given by the recursive relation

Ni,0(u) =

{
1, if ui ≤ u < ui+1

0, otherwise
(4.3)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (4.4)

Similarly, a NURBS surface, see Figure 4.1b, is a parametric surface defined by

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)wi,j Pi,j

n∑
i=0

m∑
j=0

Ni,p(u)Nj,p(v)wi,j

, with 0 ≤ u, v ≤ 1, (4.5)

where p and q are the degrees of the surface in the u- and v-directions, the coeffi-
cients Pi,j and wi,j are bidirectional nets containing the coordinates and weights
of the (n + 1) × (m + 1) control points, and Ni,p(u)Nj,q(v) are the product of
univariate B-spline basis functions defined on the clamped knot vectors

U = [0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , un︸ ︷︷ ︸
n−p

, 1, . . . , 1︸ ︷︷ ︸
p+1

] ∈ Rr+1, with r = n+ p+ 1 (4.6)

V = [0, . . . , 0︸ ︷︷ ︸
q+1

, vq+1, . . . , vn︸ ︷︷ ︸
m−q

, 1, . . . , 1︸ ︷︷ ︸
q+1

] ∈ Rs+1, with s = m+ q + 1. (4.7)
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(a) NURBS curve construction. (b) NURBS surface construction.

Figure 4.1: Construction of a NURBS curve (left) and surface (right). Note that the
NURBS curve interpolates its endpoints and it is tangent to the control polygon at its
ends. The control net of the NURBS surface interpolates its four corner points and it was
represented at an offset distance in the x-direction for clarity.

The u-direction basis functions Ni,p(u) are given by Eqs. (4.3) and (4.4), whereas
the v-direction basis functions Ni,q(v) are defined in an analogous way replacing
the variable u by v and the indices i and p by j and q, respectively.

NURBS curves and surfaces have the following properties that make them
particularly suited for geometric modeling (Piegl et al. 2012, pp. 117–139):

• Affine invariance. It is possible to apply affine transformations such as
rotations, displacements, and scalings to NURBS curves and surfaces by
applying the transformation to their control points.

• Convex hull. NURBS curves and surfaces are within the convex hull of their
control points. When the control points are contained in a certain region of
space, this property guarantees that the curve or surface will not blow up
arbitrarily far away from this region.

• Endpoint interpolation NURBS curves and surfaces coincide with the poly-
tope formed by the control points at the endpoints.

• Endpoint tangency. NURBS curves and surfaces are tangent to the polytope
formed by the control points at the endpoints.

• Generalization. Bézier curves and surfaces are a special case of NURBS
when p = n and q = m. In addition, B-spline curves and surfaces are an
special case of NURBS when all the weights have the same value.

Most of the curves and surfaces used in the proposed blade parametrization
method are B-splines. However, the parametrization is formulated in a general
way using NURBS so that the designer can include the control point weights as
design variables to gain more control over the resulting geometry if desired.
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4.3 Blade parametrization in two dimensions

The proposed two-dimensional blade parametrization is based on typical blade
design variables which are listed in Table 4.2. The geometry of the blade is gener-
ated by defining a camber line and subsequently imposing on it two independent
thickness distributions in a way that ensures G2 continuity at the junction between
the upper and the lower sides.

The camber line Cc(u) is a cubic B-spline curve defined by four control points
as shown in Figure 4.2a. The coordinates of the control points are given by

Pc
0 =

[
xin

yin

]
(4.8)

Pc
1 = Pc

0 + din

[
c cos(θin)
c sin(θin)

]
(4.9)

Pc
2 = Pc

3 − dout

[
c cos(θout)
c sin(θout)

]
(4.10)

Pc
3 = Pc

0 +

[
c cos(ξ)
c sin(ξ)

]
, (4.11)

where ξ is the stagger angle, cax = c cos(ξ) is the axial chord length, θin and θout

are the inlet and outlet metal angles, and din and dout are the inlet and outlet
tangent proportions. This construction of the camber line ensures that the blade
has the specified axial chord length and that the slope at the leading and trailing
edges conforms with the input metal angles thanks to the endpoint tangency
property of B-spline curves (Piegl et al. 2012, p. 97). In cases where more control
over the shape of the camber line is required, the control point weights could also
be adjusted.

Table 4.2: Two-dimensional design variables. Each variable is provided as a scalar value,
except for the upper and lower thickness, which are given as sets of control points.

Variable name Symbol

Spacing s
Leading edge abscissa and ordinate xin, yin

Axial chord length cax

Stagger angle ξ
Inlet and exit metal angles θin, θout

Inlet and exit tangent proportions din, dout

Inlet and exit radii of curvature rin, rout

Upper and lower thickness distributions tu, tl
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(a) Camber line construction. (b) Blade profile construction.

(c) Thickness distribution. (d) Leading edge construction.

Figure 4.2: Construction of the blade geometry in two dimensions. The upper and lower
thickness distributions (bottom-left) are imposed in the direction normal to the camber
line (top-left) to compute the location of the blade control points (top-right). The second
and second-to-last control points are computed using a different relation to impose the
radii of curvature at the leading and trailing edges and to ensure that the blade profile
satisfies G2 continuity (bottom-right).
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The upper and lower sides of the blade, Cl(u) and Cu(u), are defined as
B-spline curves of degree four as it is the lowest degree that guarantees con-
tinuous rate of change of curvature at the spline knots. The coordinates of the
control points {Pl

i} and {Pu
i }, see Figure 4.2b, are computed according to

Pl
i =





Cc(ûi), for i = 0

Cc(ûi)− n(ûi) · f(rin), for i = 1

Cc(ûi)− n(ûi) · tl(ûi), for i = 2, . . . , n− 2

Cc(ûi)− n(ûi) · g(rout), for i = n− 1

Cc(ûi), for i = n

(4.12)

and

Pu
i =





Cc(ûi), for i = 0

Cc(ûi) + n(ûi) · f(rin), for i = 1

Cc(ûi) + n(ûi) · tu(ûi), for i = 2, . . . , n− 2

Cc(ûi) + n(ûi) · g(rout), for i = n− 1

Cc(ûi), for i = n

(4.13)

where the sampling values ûi in the above equations are given by

ûi =





0, for i = 0
i−1
n−2 , for i = 1, . . . , n− 1

1, for i = n.

(4.14)

Note that the first and last control points of the upper and lower sides coincide
with the endpoints of the camber line.

The upper and lower thickness distributions, tu(u) and tl(u), are given by
B-spline polynomials of degree three with an arbitrary number of control points,
{tui } and {tlj}, specified by the designer, see Figure 4.2c. In addition, the unitary
vectors normal to the camber line n(u) are computed from the unitary tangent
vector τ (u) according to

n(u) =

[
nx
ny

]
=

[
−τy
τx

]
, with τ (u) =

Ċc(u)

‖Ċc(u)‖
, (4.15)

where Ċc(u) is computed using analytical derivative formulas for B-spline curves
(Piegl et al. 2012, pp. 91–100).

The functions f(r) and g(r) appearing in Eqs. (4.12) and (4.13) are used
to impose the radii of curvature rin and rout at the leading and trailing edges,
ensuring that the parametrization satisfies G2 continuity by construction, see
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(a) Cascade of blades. (b) Construction of the flow domain.

Figure 4.3: Construction of the flow domain in two dimensions. The fluid-dynamic
performance of the blade cascade (left) can be evaluated analyzing the flow around a
single blade thanks to the periodicity of the problem. The flow domain is defined by four
boundaries: inflow, outflow, lower periodic, and upper periodic (right).

Figure 4.2d. This feature is important in the context of aerodynamic design of
turbomachinery blades because a sudden change in curvature could cause a spike
in the surface pressure distribution or even a local separation bubble (Korakianitis
et al. 1993b). The functions f(r) and g(r) are based on the end point curvature
formulas for NURBS curves and their derivation is detailed in Appendix C. Once
that the upper and lower sides are defined, they can be combined into a single
B-spline curve Cb(u) = Cl ∪Cu that represents the entire blade profile.

When performing the assessment of the fluid-dynamic performance of the
blades via computational fluid dynamics, it is necessary to define the geometry
of the flow domain around the blade. For the majority of turbomachinery flow
problems one can resort to the periodicity of the flow to reduce the size of the
computational domain. In such case, it is sufficient to describe the flow domain
around a single blade, which is characterized by the inflow, outflow, and peri-
odic boundaries, as illustrated in Figure 4.3. The periodic boundaries are given
by two cubic B-spline curves defined by extending the camber line while keeping
zero slope at the inlet and outlet. The periodic boundaries are located at an
offset distance of half of the blade spacing, s, with respect to the blade camber
line. Finally, the inflow and outflow boundaries are defined as two straight lines
connecting the upper and lower periodic boundaries.

The proposed parametrization produces blade profiles that have continuous
curvature and rate of change of curvature, therefore reducing the possibility of
flow separation (Korakianitis et al. 1993b). This contrasts with most of the
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two-dimensional methods described in the open literature, which produce blades
with discontinuous curvature (Dunham 1974; Pritchard 1985; Giannakoglou 1999;
Trigg et al. 1999; Huppertz et al. 2007), or discontinuous rate of change of curva-
ture (Ye 1984; Aungier 2006b; Korakianitis 1993a; Pierret et al. 1999). As notable
exceptions, the second and third methods proposed by Korakianitis (Korakianitis
1993a), see also (Korakianitis 1993b; Korakianitis et al. 1993a), produce blade
profiles with continuous curvature and slope-of-curvature. However, the methods
proposed by Korakianitis: (1) involve the solution of systems of equations, (2) are
not compatible with CAD representations, and (3) are not easily extended from
two to three dimensions. In addition, to the knowledge of the author, this is the
first time that the endpoint curvature formulas for NURBS curves were used to
impose the curvature of turbomachinery blades at the leading and trailing edges.
This differs from what is documented in previous publications (Verstraete 2010;
Anand et al. 2018; Mykhaskiv et al. 2018), where all the reported methods used
the endpoint curvature formulas for Bézier curves to ensure G2 continuity, with
the limitation that the curvature is not imposed exactly when the blades are
described by B-spline or NURBS curves.

Application

The flexibility of the proposed two-dimensional blade parametrization method
is demonstrated by reconstructing the four blade profiles illustrated in Figure 4.4.
Each blade profile was defined using 6 control points for each thickness distribu-
tion, resulting in a total of 22 design variables. The LS89 (Arts et al. 1990; Arts et
al. 1992) and T106A (Stadtmüller et al. 2001) are representative of high-pressure
and low-pressure axial gas turbine blade rows, respectively. In addition, the SIRT
profile is typical of a supersonic impulse turbine rotor (Anand et al. 2020) and
the STD10 profile is representative of an axial compressor blade derived from a
NACA 0006 airfoil profile (Fransson et al. 1993). It can be observed that the
parametrization method spans a wide range of shapes and produces blades with
smooth curvature variations, which is essential to avoid spikes and dips in the
surface-pressure distribution. The numerical values of the design variables used
to produce the blade profiles were computed from a set of scattered point coordi-
nates using the method described in Section 4.6.

4.4 Blade parametrization in three dimensions

The proposed three-dimensional parametrization is formulated as an extension
of the two-dimensional one and uses the design variables listed in Table 4.3. Sim-
ilar to the two-dimensional case, the parametrization starts by defining a camber
surface and subsequently imposing two independent thickness distributions per-
pendicular to the camber surface in a way that ensures G2 continuity.
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Figure 4.4: Geometry and curvature distribution of the LS89 (Arts et al. 1990; Arts
et al. 1992), T106A (Stadtmüller et al. 2001), SIRT (Anand et al. 2020), and STD10
(Fransson et al. 1993) blade profiles. The abscissa of the curvature distribution is the
normalized axial length.
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Table 4.3: Three-dimensional design variables. Each design variable is provided as a set
of control points, except for the number of blades that is a single integer value.

Variable name Symbol

Number of blades Nb

Leading edge control points x1, z1
Hub edge control points x2, z2
Trailing edge control points x3, z3
Shroud edge control points x4, z4
Leading edge abscissa∗ yin
Stagger angle∗ ξ
Inlet and exit metal angles∗ θin, θout
Inlet and exit tangent proportions∗ din, dout
Inlet and exit radii of curvature∗ rin, rin
Upper and lower thickness distributions tu, tl

* Law of evolution in the spanwise direction.

The camber surface is determined by the shape of the blade in the meridional
plane and the spanwise variation of the design variables. The shape of the blade
in the meridional plane is described by four curves, namely, leading edge, trailing
edge, hub, and shroud, as illustrated in Figure 4.5. Each of these boundaries is
defined as a B-spline curve of, at most, degree three with an arbitrary number of
control points see Figure 4.6. In contrast with other parametrization methods that
are limited to axial turbomachines (Crouse et al. 1981; Engeli et al. 1974; Goel
et al. 1996; Pierret et al. 2000; Oyama et al. 2004), the proposed method is suited
to describe any kind of turbomachinery configuration, including axial, radial, and
mixed-flow machines. The number of control points required to describe the shape
of the blade in the meridional plane depends on the complexity of the geometry.
For instance, it is possible to define a purely axial turbine using only four control
points, but it may be necessary to use 10–20 control points to describe the shape
of a mixed-flow machine such as a centrifugal compressor.

Figure 4.5: Geometry of the blade, hub, and shroud surfaces in the meridional plane.
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Figure 4.6: Construction of the four B-splines that define the shape of the blade in
the meridional plane (left) and point evaluation by transfinite interpolation (right). Note
that the corner control points of the B-splines curves are shared.

Figure 4.7: Evolution of a design variable
along the blade spanwise direction.

Figure 4.8: B-spline defining the tangen-
tial coordinates of the camber line.

Figure 4.9: Camber surface control points. Figure 4.10: Blade surface control points.
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The spanwise variation of the some design variables α(v), see Table 4.3 foot-
note, is defined as law of evolution through a B-spline of, at most, degree three
with an arbitrary number of control points as illustrated in Figure 4.7. The num-
ber of control points used for each design variable is specified by the designer, and
its selection is based on the complexity of the blade geometry. As an example, it
is sufficient to use a single constant value to define a prismatic blade, but it might
be necessary to use 3–6 control points to describe the geometry of a blade with
large twist from the root to the tip.

As illustrated in Figure 4.9, the camber surface Sc(u, v) is defined as a bi-
quartic B-spline surface with control points Pc

i,j = [xc
i,j , y

c
i,j , z

c
i,j ]. The coordinates

of the control points are computed using the shape of the blade in the meridional
plane and the spanwise evolution of the design variables. More specifically, the
(x, z) coordinates of the camber surface control points are computed by transfinite
interpolation (Gordon et al. 1973) of the four curves that define the meridional
plane, see Figure 4.6, and are given by

[
xc(u, v)

zc(u, v)

]
= (1 − u) ·Cm

1 (v) + u ·Cm
3 (v) + (1 − v) ·Cm

2 (u) + v ·Cm
4 (u)

−
[
(1 − v)(1 − u) ·Qm

1,2 + v u ·Qm
3,4 + v (1 − u) ·Qm

4,1 + (1 − v)u ·Qm
2,3

]
,

(4.16)

In addition, the y coordinates of the camber surface control points at each spanwise
location v are given by a third order cubic B-spline curve yc(u, v) with control
points {yc

0, y
c
1, y

c
2, y

c
3} that are computed according to

yc
0(v) = yin (4.17)

yc
1(v) = yc

0 + din ·L tan θin (4.18)

yc
2(v) = yc

3 − dout ·L tan θout (4.19)

yc
3(v) = yin + L tan ξ (4.20)

This formulation ensures that the metal angles at the leading and trailing edges,
θin and θout, are respected, as illustrated in Figure 4.8. The arc length of the
blade meridional plane at each span location L(v) is defined as

L(v) =

∫ u=1

u=0

√(
∂xc

∂u

)2
+
(
∂zc

∂u

)2
du (4.21)

and it is computed using 8th order Gaussian quadrature (Golub et al. 1969), which
provides a satisfactory trade-off between computational speed and accuracy.

The upper and lower sides of the blade, Sl(u, v) and Su(u, v), are defined as
B-spline surfaces of degree four as it is the lowest degree that guarantees continu-
ous rate of change of curvature at the spline knots. The coordinates of the control
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points {Pl
i,j} and {Pu

i,j}, see Figure 4.10, are computed according to

Pl
i,j =





Sc(ûi, v̂j), for i = 0

Sc(ûi, v̂j)− n(ûi, v̂j) · f(rin(v̂j)), for i = 1

Sc(ûi, v̂j)− n(ûi, v̂j) · tl(ûi, v̂j), for i = 2, . . . , n− 2

Sc(ûi, v̂j)− n(ûi, v̂j) · g(rout(v̂j)), for i = n− 1

Sc(ûi, v̂j), for i = n

(4.22)

and

Pu
i,j =





Sc(ûi, v̂j), for i = 0

Sc(ûi, v̂j) + n(ûi, v̂j) · f(rin(v̂j)), for i = 1

Sc(ûi, v̂j) + n(ûi, v̂j) · tu(ûi, v̂j), for i = 2, . . . , n− 2

Sc(ûi, v̂j) + n(ûi, v̂j) · g(rout(v̂j)), for i = n− 1

Sc(ûi, v̂j), for i = n

(4.23)

where the sampling values (ûi, v̂j) are given by

ûi =





0, for i = 0
i−1
n−2 , for i = 1, . . . , n− 1

1, for i = n

and v̂j =
j

m
, for j = 0, . . . , m.

(4.24)

The upper and lower thickness distributions, tu(u, v) and tl(u, v), are given by
bi-variate B-spline polynomials of degree three with an arbitrary number of control
points {tui,j} and {tli,j}, specified by the designer. In addition, the unitary vectors
normal to the camber surface n(u, v) are computed from the tangent vectors τu
and τv according to

n = − τu × τv
‖τu × τv‖

, with τu =
∂Sc

∂u
and τv =

∂Sc

∂v
. (4.25)

The partial derivatives of the camber surface with respect to u and v are computed
analytically using B-spline derivative formulas (Piegl et al. 2012, pp. 110–115).

The functions f(r) and g(r) appearing in Eqs. (4.22) and (4.23) are used to
impose the radius of curvature at the leading and trailing edges, ensuring that
the upper and lower surfaces of the blade are smoothly joined with G2 continuity.
The derivation of the functions f(r) and g(r) is detailed in Appendix C. Once that
the upper and lower sides are defined, they can combined into a single B-spline
surface Sb(u, v) = Sl ∪ Su that represents the entire blade.

The parametrization just described is suitable to model linear cascades, which
are commonly used for wind tunnel tests. However, in actual turbomachines, the
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(a) Hub surface as a Coons patch. (b) Hub and shroud boundaries.

(c) Inlet and outlet boundaries. (d) Periodic boundaries.

Figure 4.11: Construction of the blade flow domain in three dimensions.

blades are arranged in an axisymmetric way forming an annular cascade. In order
to achieve this, the linear blade configuration is transformed into an annular one
with the mapping H : R3 → R3 given by

Pb
annular = H{Pb

linear} = H{[x, y, z]} =
[
x, z · sin (y/z), z · cos (y/z)

]
. (4.26)

The rationale behind this transformation is to associate the Cartesian coordinates
(x, y, z) of a linear cascade with the cylindrical coordinates (x, rθ, r) of an annular
cascade and then convert from cylindrical to Cartesian coordinates.

The flow domain around a blade is characterized by the hub, shroud, inlet,
outlet, and periodic boundaries as illustrated in Figure 4.11. The hub boundary
consists of two surfaces that conform with the blade at its root, see Figure 4.11a.
Each of these surfaces is defined as a Coons patch (Piegl et al. 2012, pp. 456–
507) that is characterized by four edges. The blade edge is given by a B-spline
curve formed by extending the lower side of the blade into the upstream and
downstream directions following the slope of the camber line at the leading and
trailing edges, respectively. The periodic edge is formed by extending the camber
line in a similar way and rotating the resulting B-spline about the x-axis through
an angle θb/2, where θb = 2π/Nb. Finally, the inlet and outlet edges are defined
as NURBS circular arcs that connect the periodic edge with the blade edge. The
shroud surface, see Figure 4.11b, is defined in an analogous way and, for the case of

69



Chapter 4. Parametrization Method for Turbomachinery Blades

rotor blades, it is possible specify a clearance between the tip of the blade and the
shroud. Once that the hub and shroud surfaces are defined, it is straightforward to
construct the inlet, outlet and periodic surfaces as ruled surfaces (Piegl et al. 2012,
pp. 337–340) that connect the limits of the hub and shroud surfaces as illustrated
in Figures 4.11c and 4.11d. Note that the parametrization of the blade and flow
domain is watertight by construction and it does not rely on intersection and
trimming operations. This contrasts with other blade parametrization methods
(Verstraete 2010; Siddappaji et al. 2012; Mykhaskiv et al. 2018; Miller IV et
al. 1996; Gräsel et al. 2004; Koini et al. 2009; Müller et al. 2017) that rely on
intersection operations between the blade surface and the hub/shroud surfaces
and produce trimmed NURBS patches that would have to be specially treated
during a shape optimization workflow (Taylor 2015; Xu et al. 2017).

Application

The flexibility of the proposed three-dimensional blade parametrization method
is demonstrated by reconstructing the geometry of the four blades illustrated in
Figures 4.12 to 4.15. The first example, Figure 4.12, is a prismatic axial turbine
stator blade (Stephan et al. 2001). The meridional plane is defined by 4 control
points and the design variables are constant in the spanwise direction (i.e., 1 con-
trol point), resulting in a total of 26 design variables. Figure 4.13 illustrates the
geometry of an axial compressor rotor blade (Pierzga et al. 1985; Pierzga et al.
1989). The blade is highly twisted due to the change in blade speed from root to
tip and it was necessary to use 4 control points to describe the spanwise varia-
tion of the design variables, resulting in a total of 111 design variables. Similarly
Figure 4.14 illustrates the geometry of an aircraft propeller blade (van Arnhem
et al. 2020). In this case it was necessary to use 5 control points to describe the
twist of the blades, resulting in 113 design variables. Finally, Figure 4.15 shows
the geometry of a mixed-flow turbine (radial-inflow, axial-outflow) (Jones 1996;
Keep et al. 2017). The complex shape of the blade in the meridional plane was
described using 14 control points and the spanwise variation of the blade sections
was described using 3 control points per design variable, giving rise to 86 de-
sign variables. The numerical values of the design variables used to produce the
blades were computed from a set of scattered point coordinates using the method
described in Section 4.6.

4.5 Sensitivity computation and verification

One simple way to approximate partial derivatives of a function is by using a
finite difference approximation such as forward finite differences given as

∂F

∂α
=
F (α+ h)− F (α)

h
+O(h), (4.27)

70



4.5. Sensitivity computation and verification

Figure 4.12: Geometry of the AACHEN stator blade (Stephan et al. 2001).

Figure 4.13: Geometry of the NASA R67 blade (Pierzga et al. 1985; Pierzga et al. 1989).

Figure 4.14: Geometry of the XPROP propeller blade (van Arnhem et al. 2020).
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Figure 4.15: Geometry of the APU rotor blade (Jones 1996; Keep et al. 2017).

or central finite differences given as

∂F

∂α
=
F (α+ h)− F (α− h)

2h
+O(h2), (4.28)

where F (α) can be identified with Cb(u, α) in two dimensions or Sb(u, v, α) in
three dimensions and h is the step size used for finite difference computation. Fi-
nite difference approximations are susceptible to cancellation error when the step
size is small because of the subtraction of very similar numbers in the numerator
(Press et al. 2007, pp 229–232). As a result, one is faced with the dilemma of
selecting a small step size that minimizes the truncation error but does not lead
to a large cancellation error.

An alternative method that avoids the occurrence of cancellation error is the
complex-step method (Lyness et al. 1967; Squire et al. 1998; Martins et al. 2003).
This method uses a complex argument to compute the first derivative of a real-
valued function. Indeed, the Taylor series expansion of F (α) in the imaginary
axis gives

F (α+ ih) = F (α) + ih
∂F

∂α
− h2

2!

∂2F

∂α2
− ih3

3!

∂3F

∂α3
+O(h4). (4.29)

Re-arranging the imaginary part of the equation gives

∂F

∂α
=

Im
(
F (α+ i h)

)

h
+O(h2), (4.30)

which is the complex-step method formula. In contrast to finite difference approx-
imations, this method is not susceptible to subtraction error, therefore allowing
one to compute first derivatives accurate to the round-off precision of floating
point arithmetic by using an arbitrarily small step size.

Algorithmic Differentiation (AD) provides yet another alternative to compute
the derivatives of a function with machine precision (Griewank et al. 2008). AD
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Figure 4.16: Sensitivity of the blade geometry with respect to a thickness distribution
control point. The sensitivity of the 2D case (left) is represented as a quiver plot. The
sensitivity of the 3D case (right) is represented as a colormap of the scalar field given by
the dot product of the sensitivity and the unitary vector normal to the blade surface.

is a set of techniques to numerically evaluate the derivatives of a function speci-
fied as a computer program by applying the chain rule of differentiation to each
arithmetic operation of the program. This method offers more functionality and
computational efficiency (first and higher order derivatives, forward and reverse
modes) than the complex-step method (first derivatives and forward mode only),
but it is also more difficult to implement (Martins et al. 2003).

In this work, the complex-step method was adopted to compute the sensitivity
of the surface coordinates with respect to the design variables due to its accuracy,
simplicity, and ease of implementation. Figure 4.16 illustrates the sensitivity of
the blade surface with respect to one thickness distribution control point in two
and three dimensions. It can be observed that the sensitivity of the blade changes
from point to point and that there may be regions where the sensitivity is zero.

To verify the correctness of the sensitivity computation, a convergence study
comparing the sensitivities computed using forward finite differences, central fi-
nite differences, and the complex-step method was carried out for the NASA rotor
67 test case (Pierzga et al. 1985; Pierzga et al. 1989). The geometry of the NASA
rotor 67, see Figure 4.13, was sampled with 10000 uniformly spaced points within
the box (u, v) ∈ [0, 1]× [0, 1] and the sensitivity was computed with respect to one
design variable (the stagger angle at the hub section) for different step sizes in the
interval h ∈ [10−1, 10−15]. The error of the sensitivity computation was defined
as the mean-square-root deviation between the exact and the estimated sensitiv-
ities. The exact sensitivity was assumed to be the sensitivity computed with the
complex-step method using an step size h = 2.22 · 10−16, which corresponds to
the machine precision of double-precision arithmetic (Press et al. 2007, pp 8–11).

The results of the convergence study are shown in Figure 4.17. For the case
of the complex-step method (line labeled as CS), reducing the step size decreases
the error until the trend flattens to a value close to the machine precision. In
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Figure 4.17: Two-norm error of the NASA rotor 67 root-section-stagger-angle sensitivity
computation as a function of the step size when using the complex-step method (CS),
forward finite differences (F-FD), and central finite differences (C-FD).

contrast, the forward finite difference (line labeled as F-FD) and central finite
difference (line labeled as C-FD) errors decrease as the step size decreases down
to a minimum value and then increase because the cancellation error becomes
more prominent than the truncation error. In addition, it can be observed that
the complex-step method and the central finite differences agree in interval when
the truncation error dominates (h . 10−6). This verifies that the implementation
of the complex-step method is correct. Although not shown here for brevity, the
author performed similar convergence studies for all the design variables of each
of the test cases summarized in Table 4.4 and obtained similar results.

4.6 Blade matching methodology

In order to optimize the performance of an existing turbomachinery blade, it
is essential to find a parametric representation of its geometry, which is usually
available as a set of scattered points coordinates Qi, with i = 1, 2, ..., NQ obtained
from a mesh, from sampling a CAD model, or from laser scan measurements.
This section proposes a systematic method to find the set of design variables that
best approximates the shape of a prescribed blade geometry. The method can be
divided in two phases: (1) the point projection phase and (2) the geometry update
phase. It is assumed that the designer starts from an initial guess for the design
variables that roughly approximates the existing geometry, see Figure 4.18a.

In the point projection phase, the goal is to find the parametric values ui,
in two dimensions, or (ui, vi) in three dimensions, that minimize the distance
with respect to each prescribed point Qi. The two-dimensional point projection
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(a) Initial guess. (b) Point projection phase. (c) Geometry update phase.

Figure 4.18: Illustration of the blade matching problem in two dimensions. The devi-
ation between the prescribed and parametrized blades after the geometry update phase
was exaggerated to improve visibility.

problem can be formulated as

minimize
u∈R

J(u) =
1

2
‖Cb(u)−Qi‖2, (4.31)

subject to 0 ≤ u ≤ 1,

where J is the distance between the prescribed and the parametrized point. The
gradient of the objective function J can be computed analytically as

∇J =
∂J

∂u
=
(
Cb(u)−Qi

)
·
∂Cb

∂u
. (4.32)

Similarly, in three dimensions, the point projection problem is given by

minimize
(u,v)∈R2

J(u, v) =
1

2
‖Sb(u, v)−Qi‖2, (4.33)

subject to 0 ≤ u, v ≤ 1

and the gradient of the objective function can be computed according to

∇J =




∂J

∂u
∂J

∂v


 =




(
Sb(u, v)−Qi

)
·
∂Sb

∂u
(
Sb(u, v)−Qi

)
·
∂Sb

∂v


 . (4.34)

Note that the geometry of the parametrized blade does not change during the
point projection phase. One common pitfall when solving the point projection
problem is that the optimization may converge to a local minimum as illustrated
in Figure 4.18b. This limitation can be overcome by solving the point projection
problem from different starting points and then selecting the global minimum
among the various solutions or by sampling the parametrized blade at several
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locations and then starting the optimization from the test point that is closest to
Qi (Piegl et al. 2012, pp. 229-234).

In the geometry update phase, the goal is to find the set of design variables
α that minimizes the deviation between the parametrized and the prescribed
blades. This can be formulated as an unconstrained minimization problem where
the objective function is the sum of the distances between each projected point
and the corresponding prescribed point. This optimization problem is given by

minimize
α∈Rα

J(α) =

NQ∑

i=1

‖Cb(ui, α)−Qi‖2 (4.35)

in two dimensions and by

minimize
α∈Rα

J(α) =

NQ∑

i=1

‖Sb(ui, vi, α)−Qi‖2 (4.36)

in three dimensions, where α are the design variables listed in Tables 4.2 and 4.3,
respectively. The gradient of these objective functions is computed using the
complex-step method as described in Section 4.5. In contrast to the point projec-
tion phase, the geometry of the parametrized blade does change until the deviation
with respect to the prescribed geometry is minimized, see Figure 4.18c. In order
to improve the matching of (u, v) and α, the point projection and geometry up-
date problems can be solved alternatively until the relative deviation between the
prescribed and the parametrized blades does not change more than a small tol-
erance, e.g. 10−8. In this work, the optimization problems posed by the point
projection and geometry update phases were solved using the limited-memory
BFGS algorithm proposed by Nocedal (1980); Liu et al. (1989).

To demonstrate its flexibility and accuracy, the blade matching method was
applied to replicate the geometry of eight exemplary blades. The set of test
cases is summarized in Table 4.4 and it was conceived to cover a wide range of
turbomachinery blade geometries in two (Figure 4.4) and three dimensions (Fig-
ures 4.12 to 4.15). The results of the blade matching in terms of absolute and
relative error are summarized in Table 4.4. It can be seen that, the relative match-
ing error was below 0.38% for all cases and the highest absolute error is 0.127 mm
for the XPROP test case. This mismatch is of the same order of magnitude as the
tolerances used to manufacture axial gas turbine blade profiles, which are about
0.05 mm (Bunker 2009). In addition, the deviation could be further reduced by
increasing the number of control points used to parametrize the blade. This is
illustrated in the convergence study shown in Figure 4.19, where the number of
control points used to describe the thickness distribution of the T106A case is
increased from 3 to 10 points. Specifically, the mean deviation is reduced from
0.057 mm to 0.031 mm when the number of control points is increased from 6 to
10. Furthermore, Figure 4.19 also shows the curvature distribution for the T106A
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Table 4.4: Summary of the test cases and matching results.

Name Reference Dim. DVs
Error abs.a

(mm)
Error rel.b

(%)

LS89 Arts et al. (1990); Arts et al. (1992) 2D 22 0.047 0.067
T106A Stadtmüller et al. (2001) 2D 22 0.057 0.046
SITR Anand et al. (2020) 2D 22 0.067 0.087
STD10 Fransson et al. (1993) 2D 22 0.020 0.020
AACHEN Stephan et al. (2001) 3D 26 0.060 0.084
NASA R67 Pierzga et al. (1985); Pierzga et al. (1989) 3D 99 0.107 0.107
XPROP van Arnhem et al. (2020) 3D 113 0.127 0.377
APU Jones (1996); Keep et al. (2017) 3D 86 0.057 0.080

a Defined as the arithmetic mean deviation between the prescribed and the matched blades.
b Defined as the quotient of the mean error and the arc length of blade camber line (the camber line of the hub
section is used in three-dimensional cases).

Figure 4.19: Re-parametrization error as a function of the number of thickness distri-
bution control points for the T106A test case (left). Curvature distribution of the T106A
profile when the re-parametrization is performed using 6 and 10 control points (right).

blade described using 6 and 10 thickness distribution control points. It can be
observed that the curvature variation is smooth for both cases and that increas-
ing the number of control points does not introduce high-frequency undulations
that would deteriorate the fluid dynamic performance of the blade. These results
indicate that the parametrization and matching methodologies proposed in this
work enable the replication of a wide range of geometries with an accuracy com-
parable to the typical tolerances of modern manufacturing techniques and that
the re-parametrization accuracy can be increased by refining the design space.
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4.7 Conclusions

A general constructive parametrization method for turbomachinery blades was
presented. The method uses typical turbomachinery design variables and NURBS
curves and surfaces to produce blade geometries with continuous curvature and
rate of change of curvature. In contrast with existing methods, the parametriza-
tion of the blade and flow domain were formulated in an explicit way that avoids
intersection and trimming operations and the sensitivity of the geometry is com-
puted by means of the complex-step method, allowing the integration of the
parametrization into automated, gradient-based shape optimization workflows.

Furthermore, the method enables the systematic re-parametrization of a base-
line blade geometry defined by a set of scattered point coordinates by solv-
ing a two-step optimization problem. To demonstrate its capabilities, the re-
parametrization method was applied to replicate the geometry of eight exemplary
blades, showing that the proposed parametrization can reproduce the geometry
of a wide range of turbomachinery blades with an accuracy comparable to the
tolerances of current manufacturing techniques for axial gas turbine profiles.

78



Chapter 5

Aerodynamic Design Method
for Turbomachinery Blades
Operating in NICFD Conditions

Part of the contents of this chapter appear in:

R. Agromayor, N. Anand, M. Pini, and L. O. Nord (2021b). “Multi-row
Adjoint-based Optimization of NICFD Turbomachinery Using a CAD-based
Parametrization”. To be submitted to: Journal of Engineering for Gas Tur-
bines and Power

Abstract

This chapter presents a gradient-based shape optimization framework for the
aerodynamic design of turbomachinery blades operating under non-ideal thermo-
dynamic conditions. The proposed design system supports the simultaneous opti-
mization of multiple blade rows in two dimensions and it integrates the CAD-based
parametrization presented in Chapter 4 with a real-gas turbomachinery flow solver
and its discrete adjoint counterpart. In order to demonstrate the capabilities of
the tools developed in this thesis, the preliminary design method presented in
Chapter 3 and the aerodynamic design method described herein were applied to
carry out the design optimization of a single-stage axial turbine using isobutane
(R600a) as working fluid. Notably, the aerodynamic optimization respected the
minimum thickness constraint at the trailing edge of the stator and rotor blades
and reduced the entropy generation within the turbine by 36%, relative to the
baseline, which corresponds to a total-to-total isentropic efficiency increase of
about 4 percentage points. The analysis of the flow field revealed that the per-
formance improvement was achieved due to the reduction of the intensity of the
wakes downstream of the blades and the elimination of a shock-induced separation
bubble at the suction side of the stator cascade.
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5.1 Introduction

Automated design workflows are emerging as a powerful tool for the aerody-
namic design of turbomachinery components. These workflows integrate geometry
parametrization tools, high-fidelity physical models, and numerical optimization
techniques to explore large design spaces in a systematic way (Van den Braembuss-
che 2008). This, in turn, allows the designer to obtain higher performance gains
and shorten the development time with respect to traditional design workflows
based on trial-and-error (Denton 2010). Moreover, automated design workflows
offer a great potential for unconventional applications, in which a large body of
previous design experience does not yet exist, including ORC turbines (Colonna
et al. 2008; Pasquale et al. 2013; Persico et al. 2019), sCO2 turbines and compres-
sors (Baltadjiev et al. 2015; Romei et al. 2020), and refrigeration and heat-pump
turbo-compressors (Mounier et al. 2018; Meroni et al. 2018b).

The optimization methods used within automated workflows can be classified
according to the use of derivative information as gradient-free or gradient-based.
Gradient-free methods only require the evaluation of the cost function values and
they are widely used due to their robustness, simple integration with black-box
models, and ability to handle non-smooth or even discontinuous optimization
problems (Audet et al. 2017). Over the years, gradient-free methods have been
successfully applied for the aerodynamic design of turbines (Mueller et al. 2012;
De Servi et al. 2019; Persico et al. 2019) and compressors (Oyama et al. 2004;
Samad et al. 2008). However, these methods require a large number of function
evaluations to converge to the optimum solution, especially when the number of
design variables is large. This, in turn, results in high execution times that hinder
the application of gradient-free methods to complex industrial design problems
(Verstraete 2019). Gradient-based methods, on the other hand, are particularly
suited to solve differentiable problems involving a large number of design variables
(Nocedal et al. 2006). These methods require not only the values, but also the
gradients of the cost functions to determine the search direction, and they usually
converge to a local optimum in a comparatively low number of iterations. Con-
sequently, the aerodynamic design of turbomachinery may benefit significantly
from the development of differentiated design chains and the adoption of efficient
gradient-based optimization methods (Verstraete 2019).

In the context of fluid-dynamic shape optimization, the adjoint method has
emerged as a very efficient way to evaluate the gradient of a cost function with
respect to an arbitrary number of design variables (Giles et al. 2000; Peter et al.
2010). The application of this method to external aerodynamics was pioneered by
Pironneau (1974) and later revisited and extended by Jameson and coworkers, who
used it to optimize airfoils, wings, and complete aircraft configurations (Jameson
1988; Jameson 1995; Reuther et al. 1996). By contrast, the application of the
adjoint method to turbomachinery design has lagged behind, arguably, due to
the additional complexity involved in the derivation of the adjoint equations and
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Table 5.1: Survey of publications using the continuous or discrete adjoint method for
the aerodynamic design optimization of turbomachinery blades.

Reference Dim. Flow Adjointa CEV Fluid prop. Blade rows Param.b

Yang et al. (2003) 2D Euler Cont. – Ideal Single Mesh
Wu et al. (2003) 2D Euler Cont. – Ideal Single Mesh
Wu et al. (2005) 3D RANS Cont. Yes Ideal Single Mesh

Arens et al. (2005) 2D Euler Cont. – Ideal Single CAD*

Li et al. (2006) 2D Euler Cont. – Ideal Single CAD*

Papadimitriou et al. (2006) 3D RANS Cont. Yes Ideal Single CAD*

Papadimitriou et al. (2006) 3D RANS Cont. Yes Ideal Single CAD*

Duta et al. (2007) 3D RANS Discr. No Ideal Single CAD
Corral et al. (2008) 3D RANS Discr. Yes Ideal Single Mesh
Wang et al. (2010a) 3D RANS Cont. Yes Ideal Multi Mesh
Wang et al. (2010b) 3D RANS Cont. Yes Ideal Multi Mesh
Luo et al. (2010) 3D Euler Cont. – Ideal Single Mesh
Walther et al. (2012) 2D RANS Discr. Yes Ideal Multi Mesh
Luo et al. (2013) 3D RANS Cont. Yes Ideal Single Mesh
Walther et al. (2014) 3D RANS Discr. Yes Ideal Multi Mesh

Pini et al. (2014) 2D Euler Discr. – Non-ideal Single CAD*

Xu et al. (2015) 3D RANS Discr. No Ideal Multi CAD*

Montanelli et al. (2015) 2D RANS Discr. Yes Ideal Single CAD
Luo et al. (2015) 3D RANS Cont. Yes Ideal Single Mesh
Walther et al. (2015a) 2D RANS Discr. Yes Ideal Multi Mesh
Walther et al. (2015c) 3D RANS Discr. Yes Ideal Multi Mesh
Walther et al. (2015b) 3D RANS Discr. Yes Ideal Multi Mesh
Tang et al. (2018) 3D RANS Discr. Yes Ideal Single Mesh
Müller et al. (2017) 3D RANS Discr. Yes Ideal Single CAD
Vitale et al. (2017) 2D RANS Discr. No Non-ideal Single Mesh

Luers et al. (2018) 3D RANS Discr. No Ideal Single CAD*

Anand et al. (2018) 2D RANS Discr. No Ideal Single Both
Mykhaskiv et al. (2018) 3D RANS Discr. No Ideal Single CAD
Torreguitart et al. (2018) 2D RANS Discr. Yes Ideal Single CAD
Torreguitart et al. (2019) 2D RANS Discr. Yes Ideal Single CAD
Russo et al. (2019) 2D RANS Discr. Yes Ideal Single CAD
Rubino et al. (2020) 2D RANS Discr. No Non-ideal Multi Mesh
Vitale et al. (2020) 3D RANS Discr. No Non-ideal Multi Mesh
Present work 2D RANS Discr. No Non-ideal Multi CAD

a Type of adjoint formulation, continuous or discrete.
b Type of geometry parametrization, mesh-based or CAD-based.
* This work uses the control points of the NURBS curves or surfaces that define the geometry as design variables. For this
special case, the derivatives of the surface displacements can be computed analytically in a simple way.

boundary conditions for internal flow problems. As surveyed in Table 5.1, most
of the applications of the adjoint method were limited to the optimization of a
single row of blades and used the assumption of Constant Eddy Viscosity (CEV) to
avoid the challenges associated with the differentiation of mixing-plane boundary
conditions and turbulence models. In addition, with the exception of some notable
works (Pini et al. 2014; Vitale et al. 2017; Vitale et al. 2020), all the flow and
adjoint solvers assumed that the fluid behaves as an ideal gas, preventing their
application to NICFD problems where the thermo-physical behavior of the fluid
is modeled by complex equations of state.
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Alongside with the choice of optimization method, the success of the aerody-
namic design is largely dependent on the geometry parametrization that defines
the design space where the optimizer can search for the optimal solution (Samareh
2001). In many cases, see Table 5.1, the geometry of the blades is updated at the
level of the computational grid using mesh-based parametrization methods such
as grid-point displacement (Walther et al. 2012; Walther et al. 2015a), superposi-
tion of Hicks-Henne bumps (Wang et al. 2010a; Wang et al. 2010b), superposition
of harmonic functions (Corral et al. 2008; Luo et al. 2015), free-form deforma-
tion morphing (Vitale et al. 2017; Vitale et al. 2020), or radial basis function
interpolation morphing (Tang et al. 2018). Although these methods offer a lot
of flexibility in terms of design space, they are not well-suited for optimization
problems involving geometric constraints (e.g., minimum trailing edge thickness)
(Vitale et al. 2017; Vitale et al. 2020). In addition, the optimized shape only
exists as a surface mesh that needs to be transferred back to a Computer-Aided
Design (CAD) format for further analysis or manufacturing. The reconstruction
of the CAD-model from the surface mesh, albeit possible, is not an straightforward
process and it may introduce fitting errors that can have a detrimental impact
on the fluid-dynamic performance of the resulting geometry (Becker et al. 2011;
Agromayor et al. 2021a). As an alternative, CAD-based parametrization methods
keep a consistent CAD representation of the geometry at every design iteration
and, as a result, the optimal shape is directly available in a CAD format (Xu
et al. 2015; Mykhaskiv et al. 2018). Moreover, these methods allow the designer
to impose geometric constraints in a natural and non-intrusive way, giving more
control over the shape to be optimized (Müller et al. 2017; Mykhaskiv et al. 2018).
Despite their advantages, CAD-based parametrizations are not widely applied in
combination with gradient-based optimization methods, in part, due to the chal-
lenges associated with the calculation of the shape derivatives with respect the
design variables controlling the CAD model (Banović et al. 2018).

In response to the limitations of the methods currently in use, this work pro-
poses an automated aerodynamic design method for turbomachinery blades op-
erating under non-ideal thermodynamic conditions. The aerodynamic design of
each row of row of blades is carried out simultaneously by means of a new gradient-
based shape optimization framework that integrates the CAD-based parametriza-
tion presented in Chapter 4 with a real-gas turbomachinery flow solver and its
discrete adjoint counterpart (Vitale et al. 2020). To demonstrate the capabilities
of the tools documented in this thesis, the preliminary design method described
in Chapter 3 and the aerodynamic design method presented herein were applied
to carry out the design optimization of a single-stage axial turbine usin isobutane
(R600a) as working fluid.
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5.2 Aerodynamic shape optimization framework

The proposed aerodynamic design method is based on the shape optimization
framework illustrated in Figure 5.1. The design system supports constrained and
unconstrained design problems involving one or multiple blade rows and it inte-
grates: a CAD-based parametrization, mesh generation and deformation routines,
a turbomachinery flow solver and its discrete adjoint counterpart, and a gradient-
based optimization algorithm that drives the design process. In what follows, the
components of the optimization framework are described in detail.

Figure 5.1: Outline of the optimization framework used for the aerodynamic design.

5.2.1 CAD parametrization

The geometry of the blades is defined using the CAD-based parametrization
method presented in Chapter 4. This method uses conventional engineering de-
sign variables (leading/trailing edge radius, metal angles, blade thickness, etc.)
and NURBS curves (Piegl et al. 2012) to represent the geometry of the blade
profiles. The design variables used to define one row of blades are listed in Ta-
ble 5.2. In contrast with most of the two-dimensional methods available in the

83



Chapter 5. Aerodynamic Design Method for Turbomachinery Blades

Table 5.2: Design variables of the parametric CAD model.

Variable name Symbol

Spacing s
Axial chord cax

Stagger angle ξ
Inlet and exit metal angles θin, θout

Inlet and exit tangent proportions din, dout

Inlet and exit radii of curvature rin, rout

Upper and lower thickness distributions* tu, tl

* In this chapter, each thickness distribution is a cubic B-Spline
polynomial defined by 6 control points.

open literature, this parametrization produces blade profiles that have continuous
curvature and rate of change of curvature by construction. This feature is im-
portant to avoid discontinuities in the surface pressure distribution that may lead
to flow separation and deteriorate the fluid-dynamic performance of the cascade
(Korakianitis et al. 1993b).

The construction of one blade profile and flow domain is illustrated in Fig-
ure 5.2. First, the camber line is determined by the axial chord cax = c cos ξ,
stagger angle ξ, metal angles θin and θout, and tangent proportions din and dout.
After that, two independent thickness distributions tu and tl are imposed normal
to the camber line to define the upper and lower sides of the blade. The normal
distance for the first and last control points is computed using the end-point cur-
vature equations for NURBS curves to prescribe the radius of curvature at the
leading and trailing edges rin and rout. Finally, the flow domain is defined by the
inflow and outflow boundaries as well as the two periodic boundaries located an
offset distance of half of the blade spacing s with respect to the blade camber line.

Figure 5.2: Outline of the CAD-based parametrization method used to generate the
geometry of the each row of blades and boundary conditions imposed at each edge.
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5.2. Aerodynamic shape optimization framework

5.2.2 Mesh generation and deformation

The flow domain corresponding to the baseline CAD model is discretized using
the unstructured mesh generator proposed by Geuzaine et al. (2009). The mesh
is only generated once for the baseline geometry and then deformed each time
that the CAD model is updated by a new set of design variables. To this aim, the
baseline blade coordinates are mapped into the CAD model using the point pro-
jection method described in Chapter 4. Then, at each design cycle, the boundary
deformation field given by the difference of updated and initial blade coordinates
is propagated into the flow domain using a mesh deformation algorithm based on
the linear elasticity equations (Dwight 2009). This approach was adopted instead
of mesh re-generation because the latter would change the topology of the un-
structured mesh and the discretization error of the flow solution, hindering the
convergence of the optimization algorithm.

5.2.3 Direct flow solver

The flow is described by the compressible Reynolds-Averaged Navier-Stokes
(RANS) equations (Alfonsi 2009). The RANS equations for a rotating frame of
reference with constant angular velocity Ω can be expressed in differential and
conservative form as

dU

dt
+∇ · (Fc − Fv)− S = 0, (5.1)

where the vector of conservative variables U, vector of convective fluxes Fc, vector
of viscous fluxes Fv, and source term S arising due to Coriolis acceleration are
given by

U =



ρ
ρv
ρE


 , Fc =




ρw
ρv ⊗w + p I
ρEw + pv


 , Fv =




0
τ

τ · v − q̇


 , S =




0
−ρΩ× v

0


 . (5.2)

In these equations ρ is the fluid density, p is the static pressure, T is the static
temperature, E = e + (v · v)/2 is the total energy, and e is the specific internal
energy. The density and specific internal energy are utilized as the independent
thermodynamic variables, while the rest of the fluid properties are computed
using the Peng-Robinson equation of state (Peng et al. 1976) as described in
Vitale et al. (2015). Moreover, the absolute velocity vector v is defined as the
sum of the relative velocity w and the velocity of the rotating frame of reference
Ω × X. Assuming that the fluid is Newtonian and that the Stokes’ hypothesis
holds (White 2006, pp. 62–67), the viscous stress tensor is given by

τ = (µ+ µt)

[
∇v +∇vT − 2

3
(∇ · v) I

]
, (5.3)

where µ is the molecular viscosity and µt is the turbulence viscosity, which is
computed utilizing the two-equation turbulence model proposed by Menter (1994).
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In a similar way, the heat flux is given by q̇ = −(k + kt)∇T , where k is the
molecular thermal conductivity and kt and is the turbulence thermal conductivity.

The continuous partial differential equations governing the flow are discretized
in space using an unstructured, vertex-based Finite Volume Method (FVM) (Barth
1991) within the SU2 multi-physics suite (Palacios et al. 2013; Economon et al.
2016). The semi-discretized integral form of the RANS equations is expressed as

∆Vi
dUi

dt
+
∑

j

(Fc
ij − Fv

ij)∆Sij −∆Vi Si = ∆Vi
dUi

dt
+ Ri(U) = 0, (5.4)

where Ui is the flow solution at node i, Ri is the numerical residual, Fc
ij and

Fv
ij are the numerical convective and viscous fluxes, respectively, Si is a uniform

reconstruction of the source term, ∆Vi is the volume of the dual control volume,
and ∆Sij is the area of the face associated with the edge ij. The convective fluxes
are computed using a real-gas version of Roe’s approximate Riemann solver (Roe
1981; Vinokur et al. 1990) and the numerical dissipation is controlled with the
entropy fix proposed by Harten and Hyman (Harten et al. 1983). A Monotonic
Upstream-centered Scheme for Conservation Laws (MUSCL) linear reconstruc-
tion (van Leer 1979) is used to achieve second order accuracy in space and the
van Albada slope limiter (Van Albada et al. 1997; Kemm 2011) is adopted to
suppress oscillations near discontinuities such as shock waves. In addition, the
convective fluxes of the turbulence model are computed using a first-order scalar
upwind scheme and all viscous fluxes are evaluated using a corrected average-
gradient method (Weiss et al. 1997). The gradients of the flow variables needed
to evaluate the convective and viscous fluxes are calculated using the weighted
least-squares method (Mavriplis 2003).

Once discretized in space, the governing equations are driven to steady-state
with an implicit Euler pseudo-time integration accelerated by local time-stepping
(Palacios et al. 2013). The complete discretization of the RANS equations is thus
given by

(
∆Vi
∆tni

δij +
∂Ri(U

n)

∂Uj

)
∆Un = P ∆Un = −R(Un), (5.5)

where ∆Un = Un+1 − Un and δij is the Kronecker delta function. This linear
system can be transformed into a fixed-point equation, such that the steady-state
solution of the discretized RANS equations is computed from the iteration

Un+1 = Un −P−1 R(Un) = G(Un), (5.6)

where G is the fixed-point operator. The product P−1 R is computed by solving
the sparse linear system given by Eq. (5.5) using a flexible Generalized Mini-
mal Residual (GMRES) method (Saad 2003, pp. 171–193) preconditioned by an
incomplete LU factorization with no filling (Saad 2003, pp. 301–319).
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5.2. Aerodynamic shape optimization framework

With regards to boundary conditions; an adiabatic, non-slip wall condition is
used at the surface of the blades. In addition, the inflow and outflow boundaries
use an extension of the characteristic-based, non-reflecting boundary conditions
proposed by Giles (1990); Giles (1991) that generalizes the original formulation
to fluids described by arbitrary equations of state (Vitale et al. 2017). The total
pressure, total temperature, flow direction, turbulence intensity, and viscosity
ratio are specified at the inlet of the first blade row, whereas the static pressure was
prescribed at the exit of the last blade row. The stator and rotor flow domains are
coupled using the conservative, non-reflecting mixing plane interface proposed by
Saxer et al. (1993); Saxer et al. (1994) with the modifications suggested by Vitale
et al. (2020). Finally, periodic boundary conditions are used in the tangential
direction to reduce the computational domain to a single blade per row.

5.2.4 Adjoint flow solver and gradient evaluation

Once that the flow equations are solved, the objective function and constraints
of the optimization problem (collectively known as cost functions J) can be com-
puted. In addition to their value, the gradient-based optimizer also requires their
derivatives with respect to the design variables ∇J. The dependence of a single
cost function J with respect to the design variables can be conceptualized as

α→ Xs → Xv → U→ J,

where α is the set of design variables, Xs are the mesh boundary coordinates, Xv

are the mesh interior coordinates, and U is the flow solution vector.

The derivatives of the cost function with respect to the surface coordinates
∂J
∂Xs

(often known as CFD sensitivities) are computed using the discrete adjoint
solver documented in Albring et al. (2016). The adjoint equations associated with
the cost function J can be derived from the following optimization problem

minimize J
(
U(Xs), Xv(Xs)

)
(5.7)

subject to U(Xs) = G
(
U(Xs), Xv(Xs)

)
(5.8)

Xv(Xs) = M(Xs), (5.9)

where Eqs. (5.8) and (5.9) are the constraints imposed by the discretized RANS
equations and the mesh deformation equations, respectively. The Lagrangian
function associated to this problem is given as

L = J
(
U(Xs), Xv(Xs)

)

+
(
G(U(Xs), Xv(Xs))−U(Xs)

)T
λ

+
(
M(Xs)−Xv(Xs)

)T
µ,

(5.10)

where λ and µ are the Lagrangian multipliers of the problem (also known as
adjoint variables). Using the chain rule for differentiation, the derivatives of the
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Lagrangian function with respect to the mesh surface coordinates are given by

∂L

∂Xs
=

(
∂M

∂Xs

)T
µ+

(
∂J

∂U
+

(
∂G

∂U

)T
λ− λ

)
∂U

∂Xs

+

(
∂J

∂Xv
+

(
∂G

∂Xv

)T
λ− µ

)
∂Xv

∂Xs
,

(5.11)

from which the adjoint equations are derived as

λ =
∂J

∂U
+

(
∂G

∂U

)T
λ (5.12)

µ =
∂J

∂Xv
+

(
∂G

∂Xv

)T
λ. (5.13)

If the adjoint variables λ and µ satisfy Eqs. (5.12) and (5.13), then the derivative
of the Lagrangian function (and the cost function) with respect to the mesh surface
coordinates is simply given by

∂L

∂Xs
=

∂J

∂Xs
=

(
∂M

∂Xs

)T
µ (5.14)

In order to solve the adjoint equations, λ is computed from Eq. (5.12) using the
fixed-point iteration

λn+1 =
∂J

∂U
+

(
∂G

∂U

)T
λn = N(λn) (5.15)

and, after that, the converged solution is inserted in Eq. (5.13) to obtain µ. One
important feature of the discrete adjoint formulation is that the primal and dual
fixed-point iterations satisfy

∥∥∥∥
∂N

∂λ

∥∥∥∥ =

∥∥∥∥
∂G

∂U

∥∥∥∥ (5.16)

and, as a result, the convergence properties of the RANS solver are preserved in
the adjoint solver (Albring et al. 2016).

All the derivatives occurring in the adjoint system, Eqs. (5.12) and (5.13), are
obtained by applying the CoDiPack algorithmic differentiation library (Sagebaum
et al. 2018; Sagebaum et al. 2019) to the top-level routine of the RANS solver. In
this way, all the features of the flow solver such as turbulence models, equations
of state, and boundary conditions, are directly inherited by the adjoint solver.
This differs with respect to the majority of adjoint solvers described in the open
literature, which are derived by manual differentiation or by selective application
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of automatic differentiation and often rely on simplifying assumptions such as the
CEV approximation to ease their development and implementation, see Table 5.1.

To complete the differentiation chain, the derivatives of the mesh surface coor-
dinates with respect to the design variables ∂Xs

∂α (often known as CAD sensitivities)
are computed by applying the complex-step method (Lyness et al. 1967; Squire
et al. 1998; Martins et al. 2003) to the parametric CAD model,

∂Xs

∂α
=

Im
(
Xs(α+ ih)

)

h
+O(h2). (5.17)

In contrast to finite differences, the complex-step method is not susceptible to
subtraction error and it can be used to compute derivatives accurate to round-off
precision by setting an arbitrarily small imaginary step size (i.e., h→ 0).

Once the CFD and the CAD sensitivities are computed, the gradient of the
cost function follows from the application of the chain rule for differentiation,

∇J =
∂J

∂Xs

∂Xs

∂α
. (5.18)

5.2.5 Optimization

The optimization framework is driven by a gradient-based optimization algo-
rithm that uses the values and gradients of the cost functions to update the design
variables. Formally, this can be represented as

αk+1 = A(J(αk), ∇J(αk)), (5.19)

where A( · ) stands for the algorithmic steps used by the optimizer at the k-th
iteration. The new set of design variables is used to update the CAD model,
deform the mesh, and re-evaluate the cost functions and gradients. This process
is repeated until the optimization algorithm converges to an optimum solution.
The optimizer adopted in this work is the SLSQP algorithm (Kraft 1988) imple-
mented in the SciPy library (SciPy v1.5 2020), which is a Sequential Quadratic
Programming (SQP) algorithm (Nocedal et al. 2006, pp. 526–572) capable to
handle general nonlinear constraints as well as bounds for the design variables.

5.3 Validation of the flow solver

Prior to its application for aerodynamic design, the predictive capability of the
flow solver was validated against three experimental test cases:

1. The subsonic linear cascade measured by Kiock et al. (1986) at DFVLR
Braunschweig. This case is representative of a high-pressure turbine rotor
and it features a thick trailing edge characteristic of coolable blades.
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Figure 5.3: Mach number and surface pressure for the Kiock et al. (1986) cascade.
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Figure 5.4: Mach number and surface pressure for the Hodson et al. (1987) cascade.
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Figure 5.5: Mach number and surface pressure for the Arts et al. (1992) cascade.
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Table 5.3: Boundary conditions of the validation test cases.

Reference αin [◦] T0,in [K] p0,in [kPa] pout [kPa] It,in [%] (µt/µ)in [–]

Kiock et al. (1986) 30.0 313.0 63.8 41.9 0.50 10.0b

Hodson et al. (1987) 38.8 298.0a 41.4 29.8 0.50 10.0b

Arts et al. (1992) 0.0 422.0 160.5 82.8 1.00 10.0b

a The original publication indicates that the inlet temperature is close to ambient.
b Assumed value. The solution has a weak dependence on this variable.

2. The subsonic linear cascade measured by Hodson et al. (1987) at the Whittle
Laboratory. This case is representative of the root section of a high-lift, low-
pressure turbine rotor with slender blades.

3. The transonic linear cascade measured by Arts et al. (1992) at the Von
Karman Institute. This case is representative of a high-pressure turbine
stator that features a long semi-bladed region downstream the throat.

The working fluid in all three test cases was air and the boundary conditions
that define each case are summarized in Table 5.3. The geometry of the blades
was available as a list of point coordinates with a limited number of decimal digits.
To avoid the noise introduced by coordinate round-off, the blade geometry was
smoothed using the re-parametrization methodology described in Chapter 4.

The flow solution in terms of Mach number and surface pressure distribution
along the percentage of chord (not axial chord) are shown in Figures 5.3 to 5.5.
The results indicate an excellent agreement between experimental data and the
surface pressure distributions predicted by the flow solver for all three cases. In
addition, with regards to the third case, the flow solver is able to predict the
formation of a normal shock at the rear part of the suction side that agrees with
the Schlieren visualizations depicted in the original publication (Arts et al. 1992).

5.4 Application to a case study: EXPAND facility

In order to demonstrate the capabilities of the proposed methods, the prelim-
inary design method described in Chapter 3 and the aerodynamic design method
documented in this chapter were applied to the design optimization of a single-
stage axial turbine with no diffuser that uses isobutane (R600a) as working fluid.
This turbine was specifically designed for experimental testing in the EXPAND
facility at the Norwegian University of Science and Technology (Pardiñas et al.
2019) with the aim to provide experimental datasets that contribute towards the
validation and refinement of the models currently used to analyze of ORC tur-
bines. To the knowledge of the author, this is the first time that the gradient-based
design optimization of a complete ORC turbine stage has been documented.
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Figure 5.6: T–s diagram of the expansion (left) and cross section of the turbine (right).

5.4.1 Preliminary design

The preliminary turbine design was carried out by means of the mean-line
model and optimization methodology documented in Chapter 3. This method
assumes that the flow is uniform along the spanwise and circumferential directions
and solves the balance equations for mass and rothalpy at the inlet and outlet of
each cascade, regardless of the detailed shape of the blades (lumped-parameter
approach). In addition, the method uses the Kacker et al. (1982) empirical loss
model to estimate the entropy generation in each row of blades. More specifically,
the original loss model was modified such that it takes into account the profile
and trailing edge losses (2D effects) and neglects the tip-leakage and secondary
losses (3D effects). This approach was adopted with the intent that the mean-line
model used for the preliminary design and the two-dimensional RANS solver used
for the aerodynamic design account for the same loss mechanisms.

The preliminary design was based on the specifications listed in Table 5.4 and
it was performed using the total-to-total isentropic efficiency as objective function.
This performance metric was adopted because it is an indication of the blading
efficiency and it does not penalize the kinetic energy that is not recovered at the
exhaust of the turbine. To ensure that the new turbine is compatible with the
EXPAND facility; the design mass flow rate, inlet total temperature and pressure,
outlet static pressure, hub and tip radii, and angular speed were the same as those
of an existing turbine designed by an industrial partner. In addition, the axial
chord of the stator and rotor blades was set to 10 mm (H/cax = 1.27) to obtain
an aspect ratio slightly above unity (Saravanamuttoo et al. 2009, p. 345), and the
axial spacing was set to 4 mm (sax/cax = 0.40) to reduce the vibrational stresses
induced in the rotor blades as they pass through the wakes of the stator blades
(Saravanamuttoo et al. 2009, p. 333). Furthermore, a trailing edge thickness of
0.50 mm was adopted due to manufacturing requirements.
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Figure 5.7: Velocity triangles at the inlet and outlet of the rotor cascade.

As depicted in the cross-sectional view of Figure 5.6, the design obtained with
the mean-line method is characterized by a constant annulus height and a rel-
atively high hub-to-tip ratio (rh/rt = 0.80). Under these conditions, the radial
variation of the flow is expected to be small (Saravanamuttoo et al. 2009, p. 204)
and the use of a two-dimensional flow solver to carry out the detailed blade design
is justified. The thermodynamic process within the turbine in the T–s diagram is
also illustrated in Figure 5.6, where it can be observed that the expansion takes
place in a thermodynamic region close to the vapor saturation line where the fluid
departs from ideal gas behavior (Zin ≈ 0.95). This highlights the importance of
using an accurate thermodynamic model to carry out the fluid-dynamic design
of the turbine. In addition, the velocity diagrams at the inlet and outlet of the
rotor blades are illustrated in Figure 5.7. It is interesting to note that, even if the
degree of reaction is Λ = 0.50, the velocity triangles are not symmetrical because
the axial velocity increases along the expansion to satisfy the mass conservation
equation. The output of the preliminary design in terms of geometric parameters
and operating conditions is reported with a greater level of detail in Appendix D.

5.4.2 Aerodynamic design

Baseline geometry

The baseline geometry of the stator and rotor blades was generated by trial
and error with the aim to satisfy the velocity triangles obtained during the pre-
liminary design phase. The boundary conditions used for the aerodynamic design
are summarized in Table 5.5 and the parameters used to describe the thermo-
physical behavior of the fluid are summarized in Table 5.6. The flow domain was
discretized using an unstructured grid, see Figure 5.8, and the number of mesh
elements was selected in accordance with the results of the mesh independence
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Table 5.4: Design specifications used for the preliminary design.

Variable Symbol Value Unit

Working fluid Isobutane –
Inlet total temperature T0,in 125.0 ◦C
Inlet total pressure p0,in 400.0 kPa
Outlet static pressure pout 160.0 kPa
Mass flow rate ṁ 1.600 kg/s
Angular speed Ω 20000 rpm
Radius at the hub rh 51.05 mm
Radius at the tip rt 63.75 mm
Axial chord cax 10.00 mm
Axial spacing sax 4.00 mm
Trailing edge thickness tte 0.50 mm
Degree of reaction Λ 0.50 –

Table 5.5: Boundary conditions used for the aerodynamic design.

Variable Symbol Value Unit

Inlet flow angle αin 0.0 ◦

Inlet total temperature T0,in 125.0 ◦C
Inlet total pressure p0,in 400.0 kPa
Outlet static pressure pout 160.0 kPa
Inlet turbulence intensity Iturb,in 1.00 %
Inlet viscosity ratio (µt/µ)in 10.0 –

Table 5.6: Thermophysical properties of isobutane (R600a).

Variable Symbol Value Unit

Gas constant R 143.1 J/kg K
Critical temperature Tcrit 407.8 K
Critical pressure pcrit 3629 kPa
Acentric factor ω 0.1835 –
Heat capacity ratioa γ 1.086 –
Dynamic viscositya µ 9.918 µPa s
Thermal conductivitya k 28.8 mW/m K

a Evaluated at the inlet and assumed to be constant.
All properties were obtained from the CoolProp library (Bell et al.

2014; Bücker et al. 2006; Vogel et al. 2000; Perkins 2002).
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Figure 5.8: Computational grid for the baseline stator and rotor flow domains.

study of Figure 5.9. In addition, the size of the cells in the direction normal to the
blade walls was controlled with inflation layers to ensure that the boundary layer
is resolved accurately (y+ < 1). The direct and adjoint problems were driven
to steady-state using a Courant-Friedrichs-Lewy (CFL) number of 25 and the
termination criterion was set to 5000 iterations, which corresponds to a residual
reduction of about 9 and 8 orders of magnitude, respectively. The convergence
history of the direct and adjoint solvers is shown in Figure 5.10. As expected,
both solvers have essentially the same convergence rate.

The flow field for the baseline geometry is illustrated in Figure 5.13 and it is
characterized by the presence of a shock wave pattern at the trailing edge of each
cascade. Both cascades operate at transonic conditions and the highest relative
Mach numbers within the stator and rotor domains are 1.48 and 1.38, respectively.
The stator surface pressure distribution, see Figure 5.15 (left), indicates that
the flow accelerates monotonously over the entire pressure side and also over
the suction side until x/c ≈ 0.58. At this location, the shock wave originating
at the trailing edge of the adjacent stator blade impinges on the suction side,
causing a steep increase of the surface pressure. This adverse pressure gradient
leads to the formation of a small separation bubble in the region downstream
of the impingement, see Figure 5.16 (left). The flow over the rotor blades is
similar, but, in this case, the shock wave impinging on the rotor suction side at
x/c ≈ 0.73 is weaker and does not cause flow separation. Instead, the boundary
layer remains attached and becomes thicker after the interaction with the shock
wave as illutrated in Figure 5.16 (right).
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Figure 5.9: Mesh independence study in
terms of total-to-total isentropic efficiency.
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Figure 5.10: Direct and adjoint solver
convergence for the baseline geometry.

Figure 5.11: Verification of the adjoint-
based sensitivities against finite differences.

Figure 5.12: Entropy generation and isen-
tropic total-to-total efficiency opt. history.

Optimal geometry

Once the baseline geometry was defined, the aerodynamic shape optimization
framework was used to minimize the entropy generation resulting from viscous
dissipation and shock waves (Denton 1993). To this aim, the shape of the stator
and rotor blades was optimized simultaneously using the CAD model parameters
listed in Table 5.2 as design variables. The blade spacing, axial chord, and stagger
angle were kept constant to maintain the same number of blades and axial length,
resulting in 36 degrees of freedom (18 per blade). In addition, the minimum
thickness was constrained to 0.50 mm to respect the manufacturing requirements.

The accuracy of the objective function gradient computation was verified prior
to the optimization. Figure 5.11 shows a comparison of the gradient computed
using the adjoint-based method against that computed using a forward finite dif-
ferences applied to the entire evaluation chain. The results indicate an excellent
agreement between the adjoint-based and finite difference gradients, confirming
that the CAD model and CFD solver are correctly differentiated. In addition,
these results demonstrate the superiority of the adjoint-based approach, which
only required one direct and one adjoint problem solutions to evaluate the gra-
dient. In contrast, the finite difference gradient evaluation required 36+1 direct
problem solutions, one for the baseline and one per perturbed design variable.
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Figure 5.13: Relative Mach number contours of the flow field for the baseline design.

Figure 5.14: Relative Mach number contours of the flow field for the optimal design.

The convergence history of the optimization problem is shown in Figure 5.12.
The optimization was stopped after 50 design cycles because the improvement of
the objective function value was marginal. The total run-time was approximately
60 hours on a 6 core computer with a CPU rate of 2.2 GHz. The entropy gener-
ation within the turbine was reduced by 36.2% relative to the baseline geometry,
which corresponds to a total-to-total isentropic efficiency increase of 3.94 percent-
age points. Notably, 75% of the objective function improvement took place in the
first 10 design cycles. In what follows, the causes that produced this fluid-dynamic
performance improvement are examined.
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Figure 5.15: Surface pressure distribution over the stator (left) and rotor (right) blades.

Figure 5.16: Boundary layer profile for the stator (left) and rotor blades (right).

Figure 5.17: Rotor boundary layer down-
stream the impinging suction side shock.
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Figure 5.18: Entropy distribution at the
plane 2 mm downstream the blades.
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5.5. Conclusions

The flow field for the optimal geometry is illustrated in Figure 5.14. It can
be observed that the optimizer reduced the curvature of the blades, especially at
the suction side, and that the minimum thickness constraint was respected. The
changes in curvature reduced the maximum Mach number in the stator cascade
from 1.48 to 1.17 and, as a result, the trailing edge shock pattern, as well as
the separation bubble caused by the shock-boundary layer interaction, were elim-
inated. For the case of the rotor, the maximum relative Mach number only de-
creased from 1.38 to 1.35. Despite this, the surface pressure distribution depicted
in Figure 5.15 (right) indicates that the shock impinging on the rotor suction side
is significantly weaker for the optimal geometry. As a result, the boundary layer
downstream of the impinging shock is thinner and more stable than that of the
baseline, see Figure 5.17. In addition, the optimizer also reduced the entropy gen-
eration due to mixing in the wakes downstream of the blades. Indeed, the area
under the entropy distributions shown in Figure 5.18 was reduced by 40.4% for the
stator and by 25.0% for the rotor, which is a significant improvement considering
that the optimizer respected the minimum trailing edge thickness constraint.

5.5 Conclusions

An aerodynamic design method for turbomachinery blades operating under
non-ideal thermodynamic conditions was presented. The method relies on a new
gradient-based shape optimization framework that integrates the differentiated
CAD-based parametrization developed in Chapter 4 with a real-gas RANS flow
solver and its discrete adjoint counterpart. In order to demonstrate the capa-
bilities of the methods developed in this thesis, the preliminary design method
presented in Chapter 3 and the aerodynamic design method described in this
chapter were applied to carry out the design optimization of a single-stage axial
turbine with isobutane (R600a) as working fluid. The following conclusions were
drawn from the results of this study:

• The flow solver was validated against three test cases corresponding to linear
cascades using air as working fluid. The results showed an excellent agree-
ment between the numerical solution and the experimental data, suggesting
that the flow solver is a suitable tool suitable to carry out the fluid dynamic
design of the blades.

• The accuracy of the objective function gradients obtained from the adjoint-
based method was verified against forward finite differences. The results
showed an excellent match between the two methods, confirming that the
parametric CAD model and the direct flow solver are correctly differentiated.

• The discrete adjoint solver enabled the evaluation of the objective function
gradient with a computational cost that is essentially independent of the
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number of design variables, enabling the exploration of a large design space
that would be untractable using a gradient-free optimization algorithm.

• The CAD-based parametrization enabled the definition of high-level geo-
metric constraints such as constant axial chord length, minimum trailing
edge thickness, and smooth curvature distribution in a straightforward way.
This is a significant advantage over mesh-based parametrization methods,
which are not well-suited to impose geometric constraints.

• The optimization framework was applied successfully to design the shape
of the blades and minimize the entropy generation within the turbine. In
particular, the optimizer reduced the entropy generation by 36.2% relative
to the baseline geometry in 50 design cycles, which corresponds to a total-
to-total isentropic efficiency increase of 3.94 percentage points.

• The aerodynamic design optimization did not only produce a quantitative
improvement in performance, but also caused qualitative changes in the
flow field. Most notably, the baseline stator cascade featured a trailing edge
shock pattern and a shock-induced separation bubble at the suction side
that were eliminated as a result of the optimization.
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

This PhD thesis proposed a set of automated methods aimed towards the fluid-
dynamic design of turbomachinery operating under non-ideal thermodynamic con-
ditions. The proposed methods combine mathematical models and numerical op-
timization techniques to explore the design space in a systematic way, thereby
allowing the designer to achieve higher performance gains and reduce the devel-
opment time with respect to traditional design workflows based on trial-and-error.

The first contribution of this thesis is a preliminary design method for axial
turbines with any number of stages. The proposed method is based on a new
mean-line model that accepts arbitrary equations of state to evaluate the thermo-
dynamic properties of the working fluid and empirical loss models to estimate the
entropy generation in each row of blades. In addition, the fraction of kinetic energy
recovered at the exit of the last stage is predicted using a new one-dimensional
annular diffuser model based on the balance equations for mass, momentum, and
energy. Even if this work only considered annular diffusers with straight walls,
the proposed one-dimensional flow model was formulated in a general way and
it can also be used for other annular geometries, such as the U-shaped ducts of
multi-stage radial machines. In contrasts with other design methods documented
in the literature, the preliminary design problem was formulated as a constrained
optimization problem and solved using a gradient-based algorithm. This choice
of optimization algorithm enabled: (1) the integration of the turbine, diffuser,
and loss models in a simple way by means of equality-constraints and (2) the
optimization of multi-stage design problems with tens of design variables at a
low computational cost. In the view of the author, this approach represents a
significant advantage over gradient-free design strategies which rely on internal
iterations to ensure that the model is consistent and require a large number of
function evaluations to converge to the optimum. The preliminary design method
proposed in this work was developed for the particular case of axial turbines.
However, the problem formulation and solution strategy can be easily extended
to other types of turbomachines, provided that an appropriate geometry descrip-
tion and empirical loss model are implemented.
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The second contribution of this thesis is a general CAD-based parametrization
method for axial, radial and mixed flow turbomachinery blades. The proposed
parametrization is based on conventional engineering parameters (e.g., chord,
metal angles, thickness distribution) and it exploits the mathematical properties of
NURBS curves and surfaces to produce blades with continuous curvature and rate
of change of curvature. This feature is of interest because sudden changes in curva-
ture can cause spikes in the surface pressure distribution or even local separation
bubbles that would deteriorate the aerodynamic performance of the blades. In ad-
dition, the method provides the sensitivity of the blade coordinates with respect to
the design variables by means of the complex-step method, which allows the inte-
gration of the parametrization into automated, gradient-based shape optimization
workflows. Furthermore, the proposed method is capable of re-parametrizing the
geometry of an existing blade defined by a set of scattered point coordinates. This
reverse engineering strategy was formulated as a two-step optimization problem
and it allows one to find the design variable values that best approximates the
prescribed geometry in a systematic way. Solving this fitting problem is essential
in the context of aerodynamic shape optimization because it is necessary to link
the CAD representation of the geometry with the surface mesh used for the flow
simulations.

The third contribution of this thesis is an aerodynamic design method for tur-
bomachinery blades operating under non-ideal thermodynamic conditions. The
proposed method supports the simultaneous optimization of multiple blade rows
in two dimensions and it relies on a gradient-based shape optimization framework
that integrates the proposed CAD-based parametrization with a multi-row tur-
bomachinery RANS solver and its discrete adjoint counterpart. In the view of
the author, the aerodynamic design method developed in this work offers three
main advantages with respect to other design systems: (1) the real-gas flow solver
enables the optimization of unconventional turbomachinery (e.g., ORC turbines,
supercritical CO2 compressors) in which the fluid deviates from ideal gas behav-
ior, (2) the discrete adjoint solver enables the evaluation of cost function gra-
dients at a computational cost that is essentially independent of the number of
design variables, which enables the exploration of large design spaces that would
be untractable with gradient-free methods, and (3) compared with mesh-based
methods, the CAD-based parametrization allows the designer to impose high-
level geometric constraints, such as constant axial chord length, minimum trailing
edge thickness, or smooth curvature distribution in a straightforward way.

In order to demonstrate the capabilities of the automated design tools devel-
oped in this thesis, the proposed preliminary and aerodynamic design methods
were applied to design a new single-stage axial turbine operating with isobutane
(R600a) that is is going to be built and tested in the EXPAND facility at the
Norwegian University of Science and Technology. The preliminary design method
was successfully applied to design a turbine geometry and velocity triangles that
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maximize the total-to-total isentropic efficiency of the turbine and satisfy the tech-
nical constraints imposed by the EXPAND facility. In addition, the aerodynamic
design method was used to define stator and rotor blade shapes that minimize
the entropy generation within the turbine and satisfy the design specifications es-
tablished during the preliminary design phase. In particular, the gradient-based
shape optimization framework was able to reduce the entropy generation by 36.2%,
relative to the baseline geometry, which corresponds to a total-to-total isentropic
efficiency increase of 3.94 percentage points. Furthermore, the aerodynamic op-
timization did not only produce a quantitative improvement in performance, but
also caused qualitative changes in the flow field. Most notably, the baseline stator
cascade featured a trailing edge shock pattern and a shock-induced separation
bubble that were eliminated as a result of the optimization. To the knowledge
of the author, this is the first time that the end-to-end fluid-dynamic design of a
complete ORC turbine has been carried out by means of gradient-based methods.

Ultimately, the work presented in this thesis showed that the fluid-dynamic de-
sign of turbomachinery can benefit significantly from automated workflows based
on mathematical models and numerical optimization. Far from trying to replace
the designer, such workflows aim to automate repetitive and error-prone tasks so
that the designer is free to focus on the creative aspects of the design process.
Nevertheless, the output from such automated workflows should not be accepted
blindly. Instead, the results should be carefully judged using previous design ex-
perience and a solid understanding of the physical laws, mathematical models,
and numerical algorithms involved in the problem.

6.2 Further work

Future work may be devoted to extend the axial turbine mean-line model to
other turbomachinery configurations such as radial turbines and axial/radial com-
pressors. In order to do this, it would be necessary to generalize the geometry
description and implement a suitable empirical loss model for each type of ma-
chine. In addition, the proposed preliminary design method could be extended to
predict the performance at off-design conditions or even to account for off-design
performance during the design phase (i.e., multi-point design optimization). To
this aim, it is recommended to take advantage of the proposed gradient-based
solution strategy and use equality constraints to ensure that the model equations
are satisfied at each design point.

At the onset of this project, none of the CAD kernels in existence offered func-
tionality to compute the shape derivatives that are required in gradient-based
shape optimization workflows. Due to this limitation, the proposed CAD-based
parametrization method was implemented using a lightweight NURBS library de-
veloped by the author which was differentiated with machine precision using the
complex-step method. However, Banović et al. (2018) recently applied algorith-
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mic differentiation to the entire OpenCascade CAD kernel and demonstrated its
use in the context of gradient-based shape optimization. Considering this step
forward, an interesting topic for further work would be to implement the pro-
posed parametrization method into the differentiated version of the OpenCascade
kernel. This, in turn, would provide a wide range of algorithms that could be used
to model complex geometric features such as blade endwall fillets, shroud seals,
or secondary flow systems.

Finally, further studies may be dedicated to extend the proposed shape opti-
mization framework to three-dimensional configurations. Even if the RANS flow
solver and CAD-based parametrization already support three-dimensional geome-
tries, further work would be necessary to improve the mesh generation and defor-
mation steps of the design chain. In addition, the shape optimization framework
could be extended to account for the influence other disciplines, such as stress
analysis, conjugate heat transfer, or aero-elasticity. Such multidisciplinary de-
sign chains are expected to play a significant role in the turbomachinery industry
as they reduce the interactions between engineering departments and contribute
towards a rapid market introduction of new products.
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Ed. by D. Thévenin and G. Janiga, pp. 147–189. doi: https://doi.org/10.
1007/978-3-540-72153-6_6.

van Leer, B. (1979). “Towards the Ultimate Conservative Difference Scheme. V.
A Second-Order Sequel to Godunov’s Method”. Journal of Computational
Physics 32.1, pp. 101–136. doi: https://doi.org/10.1016/0021-9991(79)
90145-1.

Verstraete, T. (2010). “CADO: A Computer Aided Design and Optimization Tool
for Turbomachinery Applications”. Proceedings of the 2nd International Con-
ference on Engineering Optimization, Lisbon, Portugal, pp. 1–10.

Verstraete, T. (2019). “Toward Gradient-Based Optimization of Full Gas Tur-
bines”. Mechanical Engineering 141.3, pp. 54–55. doi: https://doi.org/10.
1115/1.2019-MAR-7.
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Appendix A

Derivation of the Governing
Equations for the Flow in an
Annular Duct

This appendix contains the derivation the governing equations for steady, one-
dimensional flow in an annular channel with area change, heat transfer, and fric-
tion for the case of a fluid described by arbitrary equations of state, see Chapter 2.

A.1 Groundwork

The starting point for the derivation of the governing equations is the integral
form of the mass, momentum, energy, and entropy balance equations for a fixed
control volume. The integral form of these equations can be found in any fluid
mechanics textbook such as White (2011). The integral equations are applied to
the differential control volume depicted in Figure 2.3 to determine the differential
form of the equations. First, the transport equation for mass is derived and then
it is used to obtain the transport equation for a general quantity. After this, the
general transport equation is used to derive the momentum, energy, and entropy
equations in a systematic way. Once the differential equations are found, they are
simplified assuming that the flow is steady and axisymmetric to determine the
one-dimensional equations used to model the diffuser.

The symbol e is used to denote the unitary vectors in the different coordinate
directions: eθ–tangential, ex–axial, er–radial, em–meridional, and en–normal.
The unitary vectors in the meridional–normal plane are related to the unitary
vectors in the axial–radial plane according to

em = cos (φ) ex + sin (φ) er (A.1)

en = − sin (φ) ex + cos (φ) er. (A.2)

The derivatives of the meridional and tangential vectors along the meridional
and tangential directions are are given by Eqs. (A.3) to (A.6). These equations
can be derived using the chain rule for differentiation and geometric relations
between the coordinate directions. Space derivatives of the unitary vectors are
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Appendix A. Derivation of the Equations for the Flow in an Annular Duct

Table A.1: Normal vectors and surface elements of the differential control volume.

Face Number n dS

Front 1 −em rbdθ
Back 2 +em rbdθ
Left 3 −eθ bdm
Right 4 +eθ bdm
Bottom 5 −en r dθdm
Top 6 +en r dθdm

non-zero due to the curvature of the coordinate system and they are necessary to
derive the momentum transport equation. The term Rm is the radius of curvature
of the mean surface of the annular channel and it can be expressed in different
ways depending on the parametrization used. However, this term is not of concern
because it does not appear on the final equations for one-dimensional flow.

dem
dm

=
d2r

dx2
·

(
1 +

(
dr

dx

)2
)− 3

2

en =
1

Rm
en (A.3)

dem
dθ

= sin (φ) eθ (A.4)

deθ
dm

= 0 (A.5)

deθ
dθ

= −er = − sin (φ) em − cos (φ) en (A.6)

The velocity vector can be expressed in terms of the unitary vectors as

v = vm em + vθ eθ (A.7)

v = vx ex + vr er + vθ eθ (A.8)

The volume of the differential control volume is given by dV = b r dθdm, while
the normal vectors and surface elements of the differential control surface are
summarized in Table A.1. These variables are necessary to evaluate the integrals
appearing on the balance equations

A.2 Transport equation for mass

The integral form of the mass balance equation is given by Eq. (A.9). This
equation indicates that the rate of change of mass within the control volume plus
the net mass flow rate leaving the control volume is equal to zero (i.e., mass is
conserved). ∫

CV

∂ρ

∂t
dV +

∫

CS
ρ (v · n) dS = 0 (A.9)
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A.2. Transport equation for mass

The accumulation term is approximated by Eq. (A.10).

∫

CV

∂ρ

∂t
dV ≈ ∂ρ

∂t
dV =

∂ρ

∂t
b rdθdm (A.10)

The convective term is approximated by Eq. (A.11). This expression is found
integrating the mass flux over the six faces of the differential control volume using
the normal vectors and surface elements from Table A.1 and the velocity vector
given by Eq. (A.7).

∫

CS
ρ (v · n) dS ≈

6∑

i=1

ρi (vi · ni) dSi

≈ [ρvmr b dθ]2 − [ρvmr b dθ]1 + [ρvθbdm]4 − [ρvθbdm]3

(A.11)

The different summands of Eq. (A.11) are approximated by a first order Taylor
expansion. The Taylor expansions of a generic property β in the meridional and
tangential directions are given by Eqs. (A.12) and (A.13), respectively.

β2 − β1 =

(
β +

∂β

∂m

dm

2

)
−
(
β − ∂β

∂m

dm

2

)
+O(dm2) ≈ ∂β

∂m
dm (A.12)

β4 − β3 =

(
β +

∂β

∂θ

dθ

2

)
−
(
β − ∂β

∂θ

dθ

2

)
+O(dθ2) ≈ ∂β

∂θ
dθ (A.13)

Inserting the Taylor expansions into Eq. (A.11) leads to Eq. (A.14).

∫

CS
ρ (v · n) dS ≈ ∂

∂m
(ρvmr b) dmdθ +

∂

∂θ
(ρvθb) dmdθ (A.14)

Collecting the accumulation and the convective terms and dividing by dV leads
to Eq. (A.15).

∂ρ

∂t
+

1

b r

∂

∂m
(ρvmr b) +

1

b r

∂

∂θ
(ρvθb) = 0 (A.15)

Assuming steady and axisymmetric flow Eq. (A.15) reduces to Eq. (A.16),
where the partial differentials were replaced by total differentials because the only
variation is along the meridional direction.

d

dm
(ρvmr b) = 0 (A.16)

The final form of the mass transport equation, Eq. (A.17), is found using the
product rule for differentiation and rearranging.

vm
dρ

dm
+ ρ

dvm
dm

= −ρvm
b r

d

dm
(b r) (A.17)
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A.3 Transport equation for a general quantity

The integral form of a general balance equation is given by Eq. (A.18). This
equation indicates that the rate of change of any intensive quantity η within the
control volume plus the net flow rate of η leaving the control volume is equal to
the generation of η due to source terms Sη. In general, this quantity η can be a
scalar such as energy or entropy or a vector such as the velocity.

∫

CV

∂

∂t
(ρη) dV +

∫

CS
ρη (v · n) dS = Sη (A.18)

The accumulation term is approximated by Eq. (A.19).

∫

CV

∂

∂t
(ρη) dV ≈ ∂

∂t
(ρη) dV =

∂

∂t
(ρη) b rdθdm (A.19)

The convective term is approximated by Eq. (A.20). This expression is found
integrating the η-flux over the six faces of the differential control volume using
the normal vectors and surface elements from Table A.1 and the velocity vector
given by Eq. (A.7).

∫

CS

ρη (v · n) dS ≈
6∑

i=1

ρiηi (vi · ni) dSi

≈ [ρηvmr b dθ]2 − [ρηvmr b dθ]1 + [ρηvθbdm]4 − [ρηvθbdm]3

(A.20)

The different summands of Eq. (A.20) are approximated by first order Taylor
expansions, Eqs. (A.12) and (A.13), to find Eq. (A.21).

∫

CS
ρη (v · n) dS ≈ ∂

∂m
(ρηvmr b) dmdθ +

∂

∂θ
(ρηvθb) dmdθ (A.21)

Collecting the accumulation, convective, and source terms leads to Eq. (A.22).

[
∂

∂t
(ρη) b r +

∂

∂m
(ρηvmr b) +

∂

∂θ
(ρηvθb)

]
dmdθ = Sη (A.22)

Using the product rule for differentiation and the transport equation for mass,
Eq. (A.22) can be expressed in non-conservative form as Eq. (A.23), where the
differential volume is given by dV = b r dθdm.

ρ

[
∂η

∂t
+ vm

∂η

∂m
+
vθ
r

∂η

∂θ

]
dV = Sη (A.23)

Eq. (A.23) is used in the next sections to derive the transport equations of
momentum, energy and entropy in a systematic way.
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A.4. Transport equations for momentum

A.4 Transport equations for momentum

The integral form of the momentum balance equation is given by Eq. (A.24).
This equation indicates that the rate of change of momentum within the control
volume plus the net flow rate of momentum leaving the control volume is equal to
the net pressure forces acting on the control surfaces plus the body forces acting
on the control volume. As discussed below, the viscous forces acting on the walls
are modeled as a volume force rather than as a surface force.

∫

CV

∂

∂t
(ρv) dV +

∫

CS
ρv (v · n) dS = −

∫

CS
pn dS +

∫

CV
ρf dV (A.24)

The left hand side of Eq. (A.24) is formulated in differential form, Eq. (A.25),
by making the identification η = v in the general transport equation, Eq. (A.23).

∫

CV

∂

∂t
(ρv) dV +

∫

CS
ρv (v · n) dS = ρ

[
∂v

∂t
+ vm

∂v

∂m
+
vθ
r

∂v

∂θ

]
dV (A.25)

The meridional, tangential, and normal components of the momentum equa-
tion are given by Eq. (A.26). This equation found inserting the velocity vector
given by Eq. (A.7) and using the product rule to account for the derivatives of
the velocity components and the unitary vectors given by Eqs. (A.3) to (A.6).

∫
CV

∂

∂t
(ρv) dV +

∫
CS

ρv (v ·n) dS = em

ρ[∂vm
∂t

+ vm
∂vm
∂m

+
vθ
r

∂vm
∂θ

− v2
θ

r
sin (φ)

]
dV


+ eθ

(
ρ

[
∂vθ
∂t

+ vm
∂vθ
∂m

+
vθ
r

∂vθ
∂θ

+
vmvθ
r

sin (φ)

]
dV

)

+ en

ρ[ v2
m

Rm
− v2

θ

r
cos (φ)

]
dV


(A.26)

The surface integral of the pressure forces can be approximated by Eq. (A.27),
where the first equality follows from a variation of the Gauss theorem for the
surface integral of a scalar field. The gradient of pressure for the curvilinear
coordinates used here is given by Eq. (A.28), see Aungier 2006a (Ch. 3).

−
∫

CS
pn dS = −

∫

CV
∇p dV ≈ ∇p dV (A.27)

∇p =
∂p

∂m
em +

1

r

∂p

∂θ
eθ +

∂p

∂n
en (A.28)

The viscous force is approximated by Eq. (A.29). This force is modeled as a
body force pointing in the opposite direction of the velocity vector and with mag-
nitude given by the product of the stress at the walls and the surface of the walls
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dS = 2r dθdm. The factor 2 arises to account for the inner and outer surfaces.
∫

CV
ρf dV ≈ τw dS = −τw

v

|v| dS = −2τw

[
cos (α) em + sin (α) eθ

]
r dθdm

(A.29)

Collecting all terms and dividing by dV , the meridional and tangential compo-
nents of the momentum equation are given by Eqs. (A.30) and (A.31), respectively.
The normal component is ignored because it is not used in the one-dimensional
diffuser model.

ρ

(
∂vm
∂t

+ vm
∂vm
∂m

+
vθ
r

∂vm
∂θ
− v2

θ

r
sin (φ)

)
= − ∂p

∂m
− 2τw

b
cos (α) (A.30)

ρ

(
∂vθ
∂t

+ vm
∂vθ
∂m

+
vθ
r

∂vθ
∂θ

+
vmvθ
r

sin (φ)

)
= −1

r

∂p

∂θ
− 2τw

b
sin (α) (A.31)

The final form of the momentum equations, Eqs. (A.32) and (A.33), is found
by assuming steady and axisymmetric flow. The partial differentials were replaced
by total differentials because the only variation is along the meridional direction.

ρvm
dvm
dm

+
dp

dm
=
ρv2
θ

r
sin (φ)− 2τw

b
cos (α) (A.32)

ρvm
dvθ
dm

= −ρvθvm
r

sin (φ)− 2τw

b
sin (α) (A.33)

A.5 Transport equations for energy

A.5.1 Total energy

The integral form of the energy balance equation is given by Eq. (A.34) or by

Eq. (A.35). Total energy is given by E = e+ v2

2 , whereas the term h0 = E+ p
ρ can

be recognized as the stagnation enthalpy of the flow. These equations indicate
that the rate of change of total energy within the control volume plus the net
flow rate of total energy leaving the control volume is equal to the net heat flow
rate entering the control volume plus the work done by pressure forces. The work
done by viscous forces (modeled as a body force) is neglected to model the no-slip
condition at the wall This aspect is is further discussed in the derivation of the
entropy transport equation.

∫

CV

∂

∂t
(ρE) dV +

∫

CS
ρE (v · n) dS = −

∫

CS
q̇ · n dS −

∫

CS
p (v · n) dS (A.34)

∫

CV

∂

∂t
(ρE) dV +

∫

CS
ρ

(
E +

p

ρ

)
(v · n) dS = −

∫

CS
q̇ · n dS (A.35)
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The left hand side of Eq. (A.35) is formulated in differential form, Eq. (A.36),
by making the identification η = E in the general transport equation, Eq. (A.23).

∫

CV

∂

∂t
(ρE) dV +

∫

CS
ρ

(
E +

p

ρ

)
(v · n) dS =

ρ

[
∂E

∂t
+ vm

∂

∂m

(
E +

p

ρ

)
+
vθ
r

∂

∂θ

(
E +

p

ρ

)]
dV

(A.36)

The heat flow rate is computed as the surface integral of heat flux into the
system at it is given by Eq. (A.37), where the factor 2 arises to account for the
inner and outer surfaces. This equation only accounts for the heat flux at the
walls q̇w, ignoring the heat transfer in the meridional and tangential directions.

−
∫

CS
q̇ · n dS ≈ 2q̇w r dθdm (A.37)

Collecting all terms and dividing by dV , the total energy transport equation
is given by Eq. (A.38).

ρ

(
∂E

∂t
+ vm

∂

∂m

(
E +

p

ρ

)
+
vθ
r

∂

∂θ

(
E +

p

ρ

))
=

2q̇w

b
(A.38)

Assuming that the flow is steady and axisymmetric, the total energy equation
transport reduces to Eq. (A.39), where the partial differentials were replaced by
total differentials because the only variation is along the meridional direction.
Eq. (A.39) indicates that in the absence of heat transfer, the stagnation enthalpy
of the flow remains constant (see Section 2.3 on model verification).

ρvm
d

dm

(
E +

p

ρ

)
= ρvm

d

dm

(
e+

v2
m

2
+
v2
θ

2
+
p

ρ

)
=

2q̇w

b
(A.39)

The transport equations for mass, momentum, and energy derived so far pose
a system of ordinary differential equations that can be solved if an equation of
state is provided to relate the density and pressure with enthalpy. Instead of using
this set of equations, a new form of the energy transport equation will be derived,
Eq. (2.12). This alternative version of the energy equation is used to show that
system of equations has a solution when the meridional Mach number of the flow
is different than unity.

A.5.2 Mechanical energy

To derive the mechanical energy equation, first multiply the meridional compo-
nent of the momentum equation by vm, Eq. (A.40), and the tangential component
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of the momentum equation by vθ, Eq. (A.41). The chain rule for differentiation
and some algebraic manipulations were used to obtain these two equations.

ρvm


 d

dm

(
v2
m

2

)
− v2

θ

r
sin (φ)


+ vm

dp

dm
= −2τwv

b
cos (α)2 (A.40)

ρvm


 d

dm

(
v2
θ

2

)
+
v2
θ

r
sin (φ)


 = −2τwv

b
sin (α)2 (A.41)

After that, Eq. (A.42) is found by summing Eqs. (A.40) and (A.41) and it is
known as the mechanical energy equation. This equation can be viewed as the
transport equation for kinetic energy. The physical interpretation is that the fluid
is decelerated (i.e., the kinetic energy decreases) due to positive pressure gradients
and viscous forces.

ρvm
d

dm

(
v2
m

2
+
v2
θ

2

)
= −vm

dp

dm
− 2τwv

b
(A.42)

A.5.3 Thermal energy

The thermal energy equation is derived subtracting the mechanical energy
equation, Eq. (A.42), from the total energy equation, Eq. (A.39).

ρvm
d

dm

(
e+

p

ρ

)
= vm

dp

dm
+

2

b
(τwv + q̇w) (A.43)

Eq. (A.43) can be simplified using the quotient rule for differentiation to reach
Eq. (A.44).

ρvm

(
de

dm
− p

ρ2

dρ

dm

)
=

2

b
(τwv + q̇w) (A.44)

Eq. (A.44) is known as the thermal energy equation and its physical interpre-
tation is that the internal energy is increased due to viscous dissipation and heat
transfer, as well as to the deformation of the fluid (i.e., the product of pressure
and density gradient).

The internal energy can be expressed in terms of pressure and density assuming
a general equation of state of the form e = e(p, ρ). First consider the Gibbs relation
between thermodynamic properties, Eq. (A.45), and insert the exact differential
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of internal energy given by Eq. (A.46) to reach Eq. (A.47).

Tds = de− p

ρ2
dρ (A.45)

de =

(
∂e

∂p

)

ρ

dp+

(
∂e

∂ρ

)

p

dρ (A.46)

Tds =

(
∂e

∂p

)

ρ

dp+

[(
∂e

∂ρ

)

p

− p

ρ2

]
dρ (A.47)

This equation reduces to Eq. (A.48) for an isentropic process and, since the

speed of sound is defined as a2 =
(
∂p
∂ρ

)
s
, we find that the speed of sound and the

derivatives of the internal energy are related according to Eq. (A.49).

0 =

(
∂e

∂p

)

ρ

(
∂p

∂ρ

)

s

+

[(
∂e

∂ρ

)

p

− p

ρ2

]
(A.48)

a2 =

(
∂e
∂ρ

)
p
− p

ρ2

(
∂e
∂p

)
ρ

(A.49)

Eq. (A.49) can be used to simplify the thermal energy equation given by
Eq. (A.44). First, replace the differential of internal energy given by Eq. (A.46)
to find Eq. (A.50).

ρvm



(
∂e

∂p

)

ρ

dp

dm
+

[(
∂e

∂ρ

)

p

− p

ρ2

]
dρ

dm


 =

2

b
(τwv + q̇w) (A.50)

Now divide this expression by
(
∂e
∂p

)
ρ

and use Eq. (A.49) to find Eq. (A.51),

which is the alternative version of the energy equation that we wanted to prove.

ρvm
dp

dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b
(
∂e
∂p

)
ρ

(A.51)

A.6 Transport equation for entropy

The transport equation for entropy is not required to model the flow within the
diffuser. However, it is interesting to consider this equation to compute the rate
of entropy generation. This is useful to: (1) check that the entropy generation is
caused by viscous forces and heat transfer at a finite temperature difference and
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(2) assess that the computation of entropy using the rate of entropy generation
and the equations of state is consistent (see Section 2.3 on model verification).

The integral form of the entropy balance equation is given by Eq. (A.52). This
equation indicates that the rate of change of entropy within the control volume
plus the net flow rate of entropy leaving the control volume is equal to the net
flow rate of entropy entering the control volume due to heat transfer plus the rate
of entropy generation due to irreversibilities.
∫

CV

∂

∂t
(ρs) dV +

∫

CS
ρs (v · n) dS = −

∫

CS

1

T
(q̇ · n) dS +

∫

CV
σ̇ dV (A.52)

The left hand side of Eq. (A.52) is formulated in differential form, Eq. (A.53),
by making the identification η = s in the general transport equation, Eq. (A.23).

∫

CV

∂

∂t
(ρs) dV +

∫

CS
ρs (v · n) dS = ρ

[
∂s

∂t
+ vm

∂s

∂m
+
vθ
r

∂s

∂θ

]
dV (A.53)

The entropy flow due to heat transfer is computed according to Eq. (A.54).
This equation only accounts for the heat flux at the walls q̇w at temperature Tw

and ignores the heat transfer in the meridional and tangential directions.

−
∫

CS

1

T
(q̇ · n) dS ≈ 2q̇w

Tw
r dθdm (A.54)

The entropy generation term is approximated according to Eq. (A.55).
∫

CV
σ̇ dV ≈ σ̇ dV (A.55)

Collecting all terms and dividing by dV , the entropy transport equation is
given by Eq. (A.56).

ρ

(
∂s

∂t
+ vm

∂s

∂m
+
vθ
r

∂s

∂θ

)
=

2

b

q̇w

Tw
+ σ̇ (A.56)

The final form of the entropy transport equation, Eq. (A.57), is found assuming
that the flow is steady and axisymmetric. The partial differentials were replaced
by total differentials because the only variation is along the meridional direction.

ρvm
∂s

∂m
=

2

b

q̇w

Tw
+ σ̇ (A.57)

Entropy generation

Inserting the entropy, Eq. (A.57), and energy, Eq. (A.44), transport equations
intro the Gibbs relation, Eq. (A.45), it is possible to find the expression for the
rate of entropy generation, Eq. (A.58).

σ̇ =
2

b T

[
(τwv +

(
1− T

Tw

)
q̇w

]
(A.58)
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Eq. (A.58) indicates that the one-dimensional model predicts that the entropy
generation is caused by viscous stress and heat transfer at a finite temperature
difference. This is satisfactory, as these are the two mechanisms that lead to
entropy generation in the real flow that is being modeled. It is interesting to note
that if the work done by viscous stress at the walls was not neglected, the viscous
stress would not lead to entropy generation. Clearly, an unsatisfactory result. The
reason for this is that the friction force was modeled as a body force and body
forces do not lead to entropy generation, for instance, gravity force or Coriolis
acceleration.
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Appendix B

Kacker–Okapuu Loss Model

This appendix describes the loss model proposed by Kacker et al. (1982) to com-
pute aerodynamic losses in axial turbines, see Chapter 3.

B.1 Overview of the method

The Kacker et al. (1982) loss system is a refinement of the correlations proposed
by Ainley et al. (1951a); Ainley et al. (1951b) and by Dunham et al. (1970). The
general form of the loss model is given by

Y = fRe fMa Yp + Ys + Ycl + Yte (B.1)

The expressions used to compute each term as a function of the cascade geometry
and flow variables are presented in the next sections. Some of the signs from the
original correlations were modified to comply with the angle conventions used in
this work. These modifications are explicitly mentioned in the text.

B.2 Reynolds number correction factor

The term fRe accounts for the effects of the Reynolds number and it is com-
puted according to Eq. (B.2).

fRe =

{ ( Re
2 · 105 )−0.40 for Re < 2 · 105

1 for 2 · 105 < Re < 1 · 106

( Re
1 · 106 )−0.20 for Re > 1 · 106

(B.2)

The Reynolds number is given by Eq. (B.3) and it is defined in terms of the
chord length and the density, viscosity, and relative velocity at the outlet of the
cascade.

Re =
ρoutwout c

µout
(B.3)
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B.3 Mach number correction factor

The term fMa accounts for losses associated with supersonic flows at the trailing
edge of the blades and it is computed according to Eq. (B.4).

fMa =
{ 1 for Ma rel

out ≤ 1
1 + 60 · (Ma rel

out − 1)2 for Ma rel
out > 1

(B.4)

The Mach number is given by Eq. (B.5) and it is defined by the relative velocity
and the speed of sound at the outlet of the cascade.

Ma rel
out = wout/aout (B.5)

B.4 Profile loss coefficient

The profile loss coefficient Yp is computed according to Eq. (B.6).

Yp = 0.914 ·
(

2

3
·Y ′p ·Kp + Yshock

)
(B.6)

The term Y ′p is given by Eq. (B.7), where the terms, Yp, reaction and Yp, impulse

are be obtained from the graphical data reproduced in Figures B.1 and B.2. The
subscript reaction refers to blades with zero inlet metal angle (i.e., axial entry)
and the subscript impulse refers to blades that have an inlet metal angle with
the same magnitude but opposite sign as the exit relative flow angle. The second
term of the right-hand side of Eq. (B.7) is a correction factor that accounts for
the effects of the maximum blade thickness. The sign of βout in Eq. (B.7) was
changed with respect to the original work of Kacker–Okappu to comply with the
angle convention used in this paper.

Y ′p =

[
Yp, reaction −

(
θin
βout

) ∣∣∣∣
θin
βout

∣∣∣∣ · (Yp, impulse − Yp, reaction)

]
·
(
tmax/c

0.20

)− θin
βout

(B.7)

The factor Kp from Eq. (B.6) accounts for compressible flow effects when the
Mach number within the cascade is subsonic and approaches unity. These effects
tend to accelerate the flow, make the boundary layers thinner, and decrease the
profile losses. Kp is a function on the inlet and outlet relative Mach numbers and
it is computed from Eqs. (B.8) to (B.10).

Kp = 1−K2 · (1−K1) (B.8)

K1 =

{ 1 for Ma rel
out < 0.20

1− 1.25 · (Ma rel
out − 0.20) for 0.20 < Ma rel

out < 1.00
0 for Ma rel

out > 1.00
(B.9)
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K2 =

(
Ma rel

in

Ma rel
out

)2

(B.10)

The term Yshock from Eq. (B.6) accounts for the relatively weak shock waves
that may occur at the leading edge of the cascade due to the acceleration of the
flow. After some algebra, the equations proposed in the Kacker–Okapuu method
can be condensed as Eq. (B.11), where fhub is given graphically in Figure B.3
and it is a function of the hub-to-tip ratio only. Note that the nomenclature
used in Kacker et al. (1982) is different than that used in this work, in particular
q ≡ p0rel − p and ∆P ≡ p0rel,in − p0rel,out.

Yshock = 0.75 ·
(
fhub · Ma rel

in − 0.40
)1.75

·

(
rhub

rtip

)

in

·

(
p0rel,in − pin

p0rel,out − pout

)
(B.11)

B.5 Secondary loss coefficient

The secondary loss coefficient Ys is computed according to Eq. (B.12).

Ys = 1.2 ·Ks ·

[
0.0334 · fAR ·Z ·

(
cos(βout)

cos(θin)

)]
(B.12)

The factor 1.2 is included to correct the secondary loss for blades with zero
trailing edge thickness. Trailing edge losses are accounted independently.

The factor Ks accounts for compressible flow effects present when the Mach
number approaches unity. These effects tend to accelerate the flow, make the end
wall boundary layers thinner, and decrease the secondary losses. Ks is computed
from Eq. (B.13), where Kp is given by Eq. (B.8) and K3 is given by Eq. (B.14)).
K3 is a function of the axial aspect ratio H/b only.

Ks = 1−K3 ·
(
1−Kp

)
(B.13)

K3 =

(
1

H/b

)2

(B.14)

fAR accounts for the blade aspect ratio H/c and it is given by Eq. (B.15).

fAR =
{ 1−0.25 ·

√
2−H/c

H/c for H/c < 2
1
H/c for H/c > 2

(B.15)

The Ainley-Mathieson loading parameter Z is given by Eqs. (B.16) to (B.18),
where the sign of βout was changed with respect to the original work of Kacker
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et al. (1982) to comply with the angle convention used in this paper.

Z =

(
CL

s/c

)2 cos(βout)
2

cos(βm)3
(B.16)

(
CL

s/c

)
= 2 cos(βm)

[
tan(βin)− tan(βout)

]
(B.17)

tan(βm) =
1

2

[
tan(βin) + tan(βout)

]
(B.18)

B.6 Tip clearance loss coefficient

The clearance loss coefficient Ycl is computed according to Eq. (B.19), where
the influence of the number of seals is neglected.

Ycl = B ·Z ·
(
c

H

)
·
(
tcl

H

)0.78

(B.19)

In this equation, Z is given by Eqs. (B.16) to (B.18). The Kacker-Okapuu
loss system proposes B = 0.37 for rotor blades with shrouded tips, and B = 0.00
for stator blades. In addition, Kacker and Okapuu warn that using B = 0.47, as
suggested by Dunham et al. (1970), over-predicts the loss for rotor blades with
plain tips.

B.7 Trailing edge loss coefficient

The trailing edge loss coefficient Yte is computed according to Eq. (B.20).

Yte ≈ ζ =
1

φ2
− 1 =

1

1−∆φ2
− 1 (B.20)

Where the pressure loss coefficient Y was approximated by the enthalpy loss
coefficient ζ and then related to the kinetic energy loss coefficients φ2 and ∆φ2.
See the work by Dahlquist (2008) for details about the definitions of the different
loss coefficients and the relations among them. The parameter ∆φ2 is computed
by interpolation of impulse and reaction blades according to Eq. (B.21). The sign
of βout in Eq. (B.21) was changed with respect to the original work of Kacker–
Okappu to comply with the angle convention used in this paper.

∆φ2 = ∆φ2
reaction −

(
θin

βout

) ∣∣∣∣
θin

βout

∣∣∣∣ · (∆φ2
impulse −∆φ2

reaction) (B.21)

∆φ2
reaction and ∆φ2

impulse are the kinetic energy loss coefficients of reaction and
impulse blades and they are a function of the trailing edge thickness to opening
ratio tte/o only. The functional relation was published in graphical form, and it
is reproduced in Figure B.4.
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B.7. Trailing edge loss coefficient

Figure B.1: Profile loss for reaction
blades as a function of the exit flow angle.

Figure B.2: Profile loss for impulse
blades as a function of the exit flow angle.

Figure B.3: Ratio of Mach number at the
hub to Mach number at the mean radius.

Figure B.4: Trailing edge energy loss co-
efficient for impulse and reaction blades.
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Appendix C

Derivation of the Curvature
Formulas at the Leading
and Trailing Edges of a
Blade Profile

This appendix contains the derivation of the functions f(rin) and g(rout) that are
used to impose the radii of curvature rin and rout at the leading and trailing edges
of turbomachinery blades, see Chapter 4.

Following Goldman (2005), the curvature of a curve C(u) is given by

κ(u) =

∥∥∥C̈(u)× Ċ(u)
∥∥∥

∥∥∥Ċ(u)
∥∥∥

3 . (C.1)

In addition, it can be shown (Piegl et al. 2012, pp. 125–127), that the first and
second derivatives of a NURBS curve at its start point are given by

Ċ(u = 0) =

(
p

up+1

)(
w1

w0

)
(P1 −P0) (C.2)

C̈(u = 0) = +
p(p− 1)

up+1

(
1

up+2

)(
w2

w0

)
(P2 −P0) +

− p(p− 1)

up+1

(
1

up+1
+

1

up+2

)(
w1

w0

)
(P1 −P0) +

+
2p2

u2
p+1

(
w1

w0

)(
1− w1

w0

)
(P1 −P0) ,

(C.3)

where p is the degree of the curve, uk are the knot values, Pk are the control point
coordinates, and wk are the control point weights. Inserting these expressions into
the curvature definition and using the fact that the vector cross product of two
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parallel vectors is zero we find

κ(u = 0) =

(
p− 1

p

)(
up+1

up+2

)(
w0w2

w2
1

) ∥∥(P2 −P0)× (P1 −P0)
∥∥

‖P1 −P0‖3
. (C.4)

Noting that unitary vector perpendicular to the camber line at the leading edge
(n) points from P0 to P1, see Figure 4.2d, the previous equation simplifies to

κin =
1

rin
=

(
p− 1

p

)(
up+1

up+2

)(
w0w2

w2
1

) ∥∥(P2 −P0)× n
∥∥

‖P1 −P0‖2
. (C.5)

Solving for ‖P1 −P0‖, the location of the control point P1 that guarantees that
the radius of curvature at the leading edge is rin is given by

P1 = P0 ±‖P1 −P0‖ · n = P0 ± f(rin) · n, (C.6)

where the plus and minus signs correspond to the upper and lower sides of the
blade, respectively, and the function f(rin) is given by

f(rin)2 = rin

(
p− 1

p

)(
up+1

up+2

)(
w0w2

w2
1

)
∥∥(P2 −P0)× n

∥∥ . (C.7)

The derivation for the trailing edge is analogous. The first and second deriva-
tives of a NURBS curve at its end point are given by

Ċ(u = 1) =

(
p

1− un

)(
wn−1

wn

)
(Pn −Pn−1) (C.8)

C̈(u = 1) = +
p (p− 1)

1− un

(
1

1− un−1

)(
wn−2

wn

)
(Pn−2 −Pn) +

− p (p− 1)

1− un

(
1

1− un
+

1

1− un−1

)(
wn−1

wn

)
(Pn−1 −Pn) +

+
2p2

(1− un)2

(
wn−1

wn

)(
1− wn−1

wn

)
(Pn−1 −Pn) ,

(C.9)

respectively. Inserting these expressions into the curvature definition we find

κ(u = 1) =

(
p− 1

p

)(
1− un

1− un−1

)(
wnwn−2

w2
n−1

) ∥∥(Pn−2 −Pn)× (Pn−1 −Pn)
∥∥

‖Pn−1 −Pn‖3
.

(C.10)

Noting that unitary vector perpendicular to the camber line at the trailing edge
(n) points from Pn to Pn−1, the previous equation simplifies to

κout =
1

rout
=

(
p− 1

p

)(
1− un

1− un−1

)(
wnwn−2

w2
n−1

) ∥∥(Pn−2 −Pn)× n
∥∥

‖Pn−1 −Pn‖2
. (C.11)
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Solving for ‖Pn−1 −Pn‖, the location of the control point Pn−1 that guarantees
that the radius of curvature at the trailing edge is rout is given by

Pn−1 = Pn ±‖Pn−1 −Pn‖ · n = Pn ± g(rout) · n, (C.12)

where the plus and minus signs correspond to the upper and lower sides of the
blade, respectively, and the function g(rout) is given by

g(rout)
2 = rout

(
p− 1

p

)(
1− un

1− un−1

)(
wnwn−2

w2
n−1

)
∥∥(Pn−2 −Pn)× n

∥∥ . (C.13)

Note that this construction guarantees that the blade is G2 continuous at the
leading and trailing edges since the radius of curvature is the same at the points
connecting the upper and lower sides of the blade.
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Appendix D

Design Data of the
EXPAND Turbine

This appendix summarizes the main geometric parameters and operating con-
ditions of the single-stage axial turbine considered in Chapter 5. The variables
reported only at index (1) refer to the turbine as a whole, whereas those reported
at indices (1,2) refer to the stator and rotor rows, and those reported at indices
(1,2,3) refer to the flow stations indicated in Figure 5.6. The operating conditions
of the baseline geometry and optimal geometry columns were computed from area-
averaged quantities obtained by post-processing the CFD solution.

Table D.1: Preliminary and aerodynamic design of EXPAND test rig turbine.

Variable Unit
Mean-line model Aerodynamic baseline Aerodynamic optimal

1 2 3 1 2 3 1 2 3

Ω rpm 20000 — — 20000 — — 20000 — —
ṁ kg/s 1.600 — — 1.507 — — 1.660 — —

Ẇ kW 57.02 — — 52.58 — — 58.41 — —
ηts % 72.75 — — 71.66 — — 72.44 — —
ηtt % 93.11 — — 89.10 — — 93.04 — —
Λ – 0.500 — — 0.493 — — 0.492 — —
Y – 0.061 0.072 — 0.124 0.118 — 0.066 0.089 —
Nb – 42 51 — 42 51 — 42 51 —
c mm 12.20 10.06 — 14.32 10.98 — 14.32 10.98 —
cax mm 10.00 10.00 — 10.00 10.00 — 10.00 10.00 —
s mm 8.59 7.07 — 8.59 7.07 — 8.59 7.07 —
o mm 2.92 3.36 — 2.95 3.34 — 3.16 3.57 —
tte mm 0.50 0.50 — 0.50 0.50 — 0.50 0.50 —
rh mm 51.05 51.05 51.05 51.05 51.05 51.05 51.05 51.05 51.05
rt mm 63.75 63.75 63.75 63.75 63.75 63.75 63.75 63.75 63.75
p kPa 391.4 252.4 160.0 392.4 251.5 159.9 390.8 252.2 159.9
T ◦C 124.4 112.5 100.6 124.4 111.0 97.9 124.2 110.4 97.0
a m/s 238.2 237.4 235.8 238.9 237.6 235.5 238.9 237.4 235.2
Z – 0.959 0.971 0.980 0.955 0.968 0.978 0.955 0.968 0.978

Ma – 0.204 0.918 0.621 0.191 0.892 0.585 0.211 0.913 0.624
Marel – 0.204 0.475 1.020 0.191 0.446 0.991 0.211 0.474 1.017
α ◦ 0.00 70.12 -38.62 0.00 70.82 -39.35 0.00 69.35 -37.01
β ◦ 0.00 48.83 -61.61 0.00 48.92 -62.83 0.00 47.19 -60.67
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Abstract: Annular diffusers are frequently used in turbomachinery applications to recover the
discharge kinetic energy and increase the total-to-static isentropic efficiency. Despite its strong
influence on turbomachinery performance, the diffuser is often neglected during the preliminary
design. In this context, a one-dimensional flow model for annular diffusers that accounts for the
impact of this component on turbomachinery performance was developed. The model allows use of
arbitrary equations of state and to account for the effects of area change, heat transfer, and friction.
The mathematical problem is formulated as an implicit system of ordinary differential equations that
can be solved when the Mach number in the meridional direction is different than one. The model
was verified against a reference case to assess that: (1) the stagnation enthalpy is conserved and
(2) the entropy computation is consistent and it was found that the error of the numerical solution
was always smaller than the prescribed integration tolerance. In addition, the model was validated
against experimental data from the literature, finding that deviation between the predicted and
measured pressure recovery coefficients was less than 2% when the best-fit skin friction coefficient
is used. Finally, a sensitivity analysis was performed to investigate the influence of several input
parameters on diffuser performance, concluding that: (1) the area ratio is not a suitable optimization
variable because the pressure recovery coefficient increases asymptotically when this variable tends
to infinity, (2) the diffuser should be designed with a positive mean wall cant angle to recover the
tangential fraction of kinetic energy, (3) the mean wall cant angle is a critical design variable when
the maximum axial length of the diffuser is constrained, and (4) the performance of the diffuser
declines when the outlet hub-to-tip ratio of axial turbomachines is increased because the channel
height is reduced.

Keywords: axial; radial; centrifugal; turbine; compressor; pump; vaneless; organic rankine cycle;
steam turbine; gas turbine; supercritical carbon dioxide

1. Introduction

A diffuser is a device used to decelerate a flow and increase the static pressure of the fluid.
Annular diffusers are frequently used in turbomachinery applications to recover the kinetic energy
at the discharge of compressors and turbines to increase their total-to-static isentropic efficiency [1].
The design of an effective diffuser is a challenging task due to the presence of adverse pressure
gradients. If the adverse pressure gradient is strong enough, the boundary layer close to the wall will
separate and lead to flow reversal, reducing the pressure recovery [1]. The performance of a diffuser
is often measured using the pressure recovery coefficient given by Equation (1), which reduces to
Equation (2) for the limiting case of incompressible flow [2] (pp. 404–408).
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Cp =
p out − p in

p0, in − p in
(1)

Cp =
p out − p in

1
2 ρv2

in
(2)

The performance of the diffuser has a strong influence on the efficiency and design of
turbomachinery. Specifically, Macchi and Perdichizzi [3] showed that the optimal design (maximum
efficiency) of axial turbines depends on the amount of kinetic energy that can be recovered from the
last stage. In addition, the work of Bahamonde et al. [4] indicates that the discharge kinetic energy can
be one of the main mechanisms of efficiency loss when the influence of the diffuser is not accounted
during the preliminary design. Despite this, the impact of the diffuser on the overall performance
of turbomachines is often neglected or modeled in a very simple way during the preliminary design
(mean-line models).

Table 1 summarizes the treatment of the diffuser in several publications about the preliminary
design of turbines. Many works ignore the influence of the diffuser while others account for the
impact of the diffuser in a simplistic way by assuming that an arbitrary fraction of the outlet kinetic
energy is recovered. In addition, some of the works assumed that only the meridional fraction of the
kinetic energy can be recovered when, in fact, most annular diffusers also recover the swirling kinetic
energy (the tangential component of velocity decreases as the radius of the diffuser increases [1]).
However, none of the works contained in Table 1 considered the influence of the diffuser design on
the kinetic energy recovery and, to the knowledge of the authors, there are no studies that propose a
methodology that accounts for the design of the diffuser during the preliminary turbine design.

Table 1. Treatment of the diffuser in the literature about turbine preliminary design.

Reference Turbine Type Diffuser Modeling

Macchi and Perdichizzi [3] Axial flow Fixed recovery a

Lozza et al. [5] Axial flow Fixed recovery a

Da Lio et al. [6] Axial flow Fixed recovery b

Astolfi and Macchi [7] Axial flow Fixed recovery b

Da Lio et al. [8] Axial flow Fixed recovery b

Al Jubori et al. [9] Axial flow Not considered
Talluri and Lombardi [10] Axial flow Not considered
Tournier and El-Genk [11] Axial flow Not considered
Meroni et al. [12] Axial flow Not considered
Meroni et al. [13] Axial flow Not considered
Meroni et al. [14] Axial flow Fixed recovery b

Perdichizzi and Lozza [15] Radial inflow Fixed recovery a

Uusitalo et al. [16] Radial inflow Not considered
Rahbar et al. [17] Radial inflow Not considered
Da Lio et al. [18] Radial inflow Not considered
Pini et al. [19] Radial outflow Fixed recovery a

Casati et al. [20] Radial outflow Fixed recovery a

Bahamonde et al. [4]
Axial flow

Radial inflow
Radial outflow

Not considered

a Fixed recovery of the total kinetic energy. b Fixed recovery of the meridional
kinetic energy.

The diffuser performance can be predicted and optimized using detailed flow modes based on
CFD simulations and shape optimization, but this approach is unpractical during the preliminary
turbomachinery design. Instead, simplified one-dimensional flow models that account for the main
features of the flow such as the effects of geometry (area change), heat transfer, and friction are better
suited for the level of detail required during the preliminary design. There are several one-dimensional
models for the flow within annular diffusers including the ones proposed by Stanitz [21], Johnston
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and Dean [22], Elgammal and Elkersh [23], and Dubitsky and Japikse [24], see Table 2 . These models
were developed for the vaneless diffuser of compressors and pumps, but they can also be used for
turbine diffusers because the flow is governed by the same equations.

Table 2. One-dimensional diffuser models in the open literature.

Reference Friction Heat Transfer Fluid Properties

Stanitz [21] Yes Yes Perfect gas
Johnston and Dean [22] Yes No Incompressible
Elgammal and Elkersh [23] Yes No Incompressible
Dubitsky and Japikse [24] Yes No General
Present work Yes Yes General

Ideally, the diffuser model should accept any equation of state and account for the effects of
area change, heat transfer, and friction. None of the models available in the literature meets all these
requirements. The model proposed by Stanitz [21] accounts for the effects of area change, heat
transfer, and friction, but it assumes that the fluid behaves as a perfect gas. Similarly, the models
proposed by Johnston and Dean [22] and Elgammal and Elkersh [23], also account for the effects of
area change and friction, but they assume that the flow is adiabatic and incompressible. Finally, the
model proposed by Dubitsky and Japikse [24] is the most advanced. It is formulated as a two–zone
model that accounts for real gas effects, area change, and friction (although it neglects heat transfer).
One limitation of the model proposed by Dubitsky and Japikse [24] is that it is necessary to specify
several ad-hoc parameters that might not be known in the early design phase such as the turbulent
mixing loss coefficient or the secondary flow area fraction.

The purpose of this paper is to propose a one-dimensional flow model and solution algorithm
for annular diffusers that can be coupled with the preliminary design of turbomachinery (pumps,
compressors, and turbines). The flow equations are similar to those presented in previous works, refer to
Table 2, but are formulated in a general way to account for heat transfer, friction, and arbitrary geometry
and equations of state. The solution algorithm and discussion of the mathematical properties in terms
of the meridional Mach number of the flow are original and they are presented in Section 2. In addition,
the detailed derivation of the equations (omitted in other works) and the physical interpretation of
the different terms are presented in the Appendix A. The model was verified against a reference case
in Section 3 to assess that: (1) the stagnation enthalpy is conserved, (2) the computation of entropy
is consistent. In addition, the model was validated against experimental data from the literature.
Finally, a sensitivity analysis with respect to (1) the skin friction coefficient, (2) inlet hub-to-tip ratio,
(3) mean wall cant angle, (4) inlet swirl angle, and (5) inlet Mach number was performed and presented
in Section 4 to gain insight into the impact of these variables on diffuser performance and design.
The authors would like to mention that the source code of the diffuser model proposed in this work is
openly available in an online repository [25], see Supplementary Materials.

2. Diffuser Model

This section describes the diffuser model proposed in this work. First, the geometry of annular
diffusers and the conventions for the velocity vector are described. After that, the treatment for the
equations of state is presented. Finally, the mathematical model for the flow within the diffuser and
the solution algorithm are explained.

2.1. Diffuser Geometry

A sectioned view of a general annular diffuser geometry is shown in Figure 1a. The kinetic energy
decreases and the static pressure increases as the fluid flows within the annular duct defined by the
inner and outer surfaces. For the case of subsonic diffusers, the meridional component of velocity
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decreases when the flow area increases and the tangential component of velocity decreases when the
mean radius of the channel increases [1].

In general, the meridional direction m will not be exactly aligned with the axial x or the radial
r directions. This is illustrated in Figure 1b, where an axial–radial view of the diffuser is presented.
The mean line of the diffuser can be parametrized as r = r(m) and x = x(m) such that the meridional,
radial, and axial directions are related by the angle φ given by Equation (3).

tan φ =
dr
dx

=

(
dr
dm

)
·
(

dx
dm

)−1
(3)

With this geometry the flow area is given by Equation (4), where r is the mean radius of the annular
channel and b is height of the channel, measured normal to the meridional direction. The channel
height can be prescribed as an arbitrary function of the meridional direction b = b(m). The area ratio
is defined as the ratio of outlet to inlet areas and is given by Equation (5).

A = 2πr b (4)

AR =
A out

A in
(5)

This section described the geometry of a general annular diffuser. The particular geometry of
straight wall annular diffusers is described under the heading geometry model.

(a) Three-dimensional view (b) Axial–radial view.

Figure 1. Geometry of a general annular diffuser

2.2. Velocity Vector

In this work, the velocity is denoted by the symbol v, and the components are denoted by the
subscripts θ—tangential, m—meridional, x—axial, and r—radial. The velocity vector is illustrated in
Figure 2 and the different components are given by Equations (6)–(9). The angle α is measured from
the meridional towards the tangential direction.

vm = v cos (α) (6)

vθ = v sin (α) (7)

vx = vm cos (φ) = v cos (φ) cos (α) (8)

vr = vm sin (φ) = v sin (φ) cos (α) (9)
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Figure 2. Decomposition of the velocity vector.

2.3. Equations of State

The diffuser model was formulated in a general way and the thermodynamic properties of the
working fluid can be computed with any set of equations of state that support pressure–density function
calls. In this work, the REFPROP fluid library [26] was used for the computation of thermodynamic
properties. The partial derivatives of fluid properties were computed using finite differences.

2.4. Mathematical Model

The diffuser model presented in this work is based on the transport equations for mass,
meridional and tangential momentum, and energy in an annular channel. It assumes that the
flow is one-dimensional (in the meridional direction), steady (no time variation), and axisymmetric
(no circumferential variation). The model can use arbitrary equations of state and it accounts for
effects of area change, heat transfer, and friction. Under these conditions the governing equations
of the flow are given by Equations (10)–(13). These equations can be derived considering the mass,
momentum, and energy balances for the infinitesimal control volume shown in Figure 3. The detailed
derivation of these equations and a discussion of the physical meaning of the different terms is
presented in the Appendix A.

vm
dρ

dm
+ ρ

dvm

dm
= − ρvm

b r
d

dm
(b r) (10)

ρvm
dvm

dm
+

dp
dm

=
ρv2

θ

r
sin (φ)− 2τw

b
cos (α) (11)

ρvm
dvθ

dm
= − ρvθvm

r
sin (φ)− 2τw

b
sin (α) (12)

ρvm
dp
dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b
(

∂e
∂p

)
ρ

(13)

Equations (10)–(13) pose a system of ordinary differential equations (ODE) that can be expressed
more compactly in matrix form as given by Equation (14). The solution vector U, coefficient matrix A,
and source term vector S are given by Equation (15).
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A
dU
dm

= S (14)

A =




ρ 0 vm 0
ρvm 0 0 1

0 ρvm 0 0
0 0 −ρvm a2 ρvm


 U =




vm

vθ

ρ

p


 S =




− ρvm
b r

d
dm (b r)

ρv2
θ

r sin (φ)− 2τw
b cos (α)

− ρvθ vm
r sin (φ)− 2τw

b sin (α)
2(τwv+q̇w)

b
(

∂e
∂p

)
ρ




(15)

It can be readily shown that the determinant of matrix A is given by Equation (16). This means
that if the Mach number in the meridional direction is different than one, the matrix A can be inverted
to compute the vector of derivatives dU

dm according to Equation (17). In practice, matrix A is not
inverted, instead the linear system of equations given by Equation (14) is solved using Gaussian
elimination. It can be shown that the condition Ma m = 1 corresponds to a choked diffuser. This means
that the diffuser can only be choked due to the meridional component of velocity and that the
tangential component of velocity can be decelerated from supersonic to subsonic velocities without
shock waves [21].

det(A) = ρ3v2
m a2

(
v2

m
a2 − 1

)
= ρ3v2

m a2
(

Ma2
m − 1

)
(16)

dU
dm

= A−1S (17)

The vector dU
dm can be computed in this way for any integration step and then used as input for

an explicit numerical method to solve ordinary differential equations. The integration starts from the
initial values (see Section 2.5) and stops when the prescribed value of the outlet to inlet area ratio
AR is reached. In this work, the MATLAB function ode45 [27] was used to perform the numerical
integration. This function uses an automatic-stepsize-control solver that combines fourth and fifth
order Runge–Kutta methods.

To compute the source term vector, it is necessary to prescribe the geometry of the diffuser, i.e.,
the variation of the channel height b(m) and radius r(m) in the meridional direction, and to provide
models for the shear stress τw and the heat flux q̇w at the walls.

Figure 3. Differential control volume used to derive the diffuser governing equations.

2.4.1. Geometry Sub-Model

The diffuser model was formulated in a general way such that the geometry can be described
by any set of arbitrary functions r = r(m), x = x(m), and b = b(m). Although the one-dimensional
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model presented in this work can accept any geometry as input, it is not able to predict flow features
such as boundary layer separation. For this reason, this type of simplified model is not well suited for
a detailed geometry design of the diffuser.

Despite this, one-dimensional models can give a good indication of the expected performance
of a well-designed diffuser (in terms of the pressure recovery coefficient). For this reason, the main
purpose of the diffuser model presented in this paper is to serve as a realistic boundary condition at
the outlet of turbomachinery that reacts to changes in the design variables during the preliminary
design and optimization. In addition, the diffuser geometry obtained from this type of analysis can be
used as the starting point for a more detailed diffuser design such as a CFD-based shape optimization.
Within this context, the geometry of the diffuser was modeled in a simple way assuming that the inner
and outer surfaces are straight. These types of diffusers are known as conical wall annular diffusers
(also as straight wall annular diffusers) and their geometry is shown in Figure 4.

Figure 4. Axial–radial view of an annular diffuser with straight walls.

For this particular geometry, the angle φ is constant and it is given as the arithmetic mean of the
inner and outer wall cant angles, φ = (φ1 + φ2)/2. The relations r = r(m), x = x(m), and b = b(m)

can be deduced from Figure 4 and they are given by Equations (18)–(20), where δ = (φ2 − φ1)/2 is the
divergence semi-angle.

r(m) = r in + m sin (φ) (18)

x(m) = x in + m cos (φ) (19)

b(m) = b in + 2m tan (δ) (20)

2.4.2. Friction Sub-Model

The friction is modeled as a body force that does not do work (this models the no-slip condition
at the walls). This is the approach often used in one-dimensional flow models because they cannot
take into account the velocity gradient in the direction normal to the wall [21,24].

The viscous stress at the wall τw is computed in terms of the skin friction coefficient Cf as given
by Equation (21). The viscous force is assumed to have the opposite direction as the velocity vector
such that the friction components in the meridional and tangential direction are given by −τw cos (α)
and −τw sin (α), respectively, see Figure 3.

τw = Cf
ρv2

2
(21)
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To the knowledge of the authors there are no available correlations to predict the skin friction
coefficient in annular channels with swirling flow. Using ordinary skin friction correlations for internal
flows is discouraged because they do not consider the influence of swirl on the shear stress at the wall.

However, it is possible to estimate a reasonable value for the skin friction coefficient based
on experimental data from existing vaneless diffusers. Brown [28] measured the local skin friction
coefficient for different vaneless diffusers and obtained values in the range 0.003–0.010. In the absence
of better estimates, Johnston–Dean [22] recommend values within the range 0.005–0.010 for the global
skin friction coefficient. In a similar way, Dubitsky–Japikse [24] suggest 0.010 as a reasonable estimate
for the global skin friction coefficient, but noted that values from 0.005 to 0.020 were required to fit
experimental data, depending on the application. The values that were reported in this paragraph are
meaningful for well-designed diffusers without flow separation.

2.4.3. Heat Transfer Sub-Model

The universal approach in the design and analysis of diffusers for turbomachinery applications is
to neglect heat transfer and assume that the flow is adiabatic q̇w = 0. To the knowledge of the authors,
Stanitz [21] is the only reference that accounts for the effect of heat transfer in the energy transport
equation. Although heat transfer is usually neglected, the heat transfer modeling is discussed in this
section for the sake of completeness.

Stanitz [21] suggests that the heat flux is proportional to the temperature difference between the
fluid and the wall as given by Equation (22), where the wall temperature is prescribed as a function of
the meridional direction Tw(m). This equation uses the stagnation temperature of the fluid instead of
the static temperature because the fluid is at rest at the wall (a recovery factor of unity is assumed).

q̇w = U (Tw − T0) (22)

In addition, Stanitz [21] suggests to use the Reynolds analogy given by Equations (23) and (24),
to obtain an approximate value for the heat transfer coefficient in terms of the skin friction coefficient,
where the usual definitions for the Nusselt number Nu = UDh

k , Reynolds number Re = ρvDh
k ,

and Prandtl number Pr =
cpµ

k are used. The hydraulic diameter of an annular duct is given by
the channel height (Dh = b), but it is immaterial for the computation of the heat transfer coefficient.

Nu =
1
2

Cf Re Pr (23)

U =
ρvcp

2
Cf (24)

It is also possible to use the Chilton–Colburn analogy [29] (pp. 358–360) given by Equations (25)
and (26) to estimate the heat transfer coefficient. This analogy extends the Reynolds analogy to fluids
with a Prandtl number different from one.

Nu =
1
2

Cf Re Pr1/3 (25)

U =
ρvcp

2
Cf Pr−2/3 (26)

Both these analogies can be used to get a rough estimate of the heat transfer coefficient from a
known value of the skin friction coefficient. Using ordinary heat transfer correlations for internal
flows is discouraged, because they do not take into account the impact of the swirl into the heat
transfer process.

2.5. Connection with a Turbomachinery Model

This section describes the link between the diffuser model presented in this work and a generic
turbomachinery model. The initial conditions for the integration of the diffuser model are given by
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Equation (27), where it is assumed that the thermodynamic state and velocity vector do not change
from the turbomachine outlet to the diffuser inlet.

U0 =




vm

vθ

ρ

p




0

=




vm

vθ

ρ

p




out

(27)

To describe the geometry of the diffuser, the mean radius r in and the channel height b in at
the inlet are obtained from the turbomachine outlet radius R out and blade height H out as given by
Equations (28) and (29), see Figure 5.

r in = R out (28)

b in = H out / cos (φ) (29)

In addition, it is necessary to prescribe the area ratio AR as the termination criterion for the
integration of the ODE system and the inner φ1 and outer φ2 wall angles. Equivalently, it is possible
to prescribe the mean cant angle φ = (φ1 + φ2)/2 and the divergence semi-angle δ = (φ2 − φ1)/2.
These geometric parameters can be specified as fixed parameters or independent variables during the
preliminary design and optimization of a turbomachine.

Figure 5. Connection of the diffuser model with a generic turbomachine model.

3. Verification and Validation of the Model

The aim of this section is the verification (solving the equations right) and validation (solving the
right equations) of the diffuser model and solution algorithm proposed in this work. To verify the
model, the reference case summarized in Table 3 was analyzed and the error of the numerical solution
in terms of stagnation enthalpy and entropy was assessed. The case study proposed considers a
subsonic flow of air within the annular diffuser at the outlet of an axial turbine or compressor. The skin
friction coefficient was assumed to be Cf = 0.010 based on the suggestions from [22,24,28] and the heat
transfer was neglected.
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In the absence of heat transfer, the stagnation enthalpy of the flow remains constant, see the
Appendix A, and any change in stagnation enthalpy is due to numerical error. The relative stagnation
enthalpy error was evaluated using Equations (30) and (31) and it is shown as a function of the diffuser
area ratio in Figure 6. It can be seen that the stagnation enthalpy is properly conserved and the relative
error is of the order of 10−9, which is smaller than the prescribed relative tolerance of 10−6 for the
integration of the ODE system.

h0, error =
|h0 − h0, in|

h0, in
(30)

h0 = h(p, ρ) +
v2

m
2

+
v2

θ

2
(31)

In a similar way, the entropy error was analyzed. The entropy of the flow was computed using
pressure–density function calls to the equation of state (EoS) at each integration step, Equation (32),
and also evaluated integrating the transport equation for entropy given by Equation (33), where σ̇

is the rate of entropy generation per unit volume due to friction. See the Appendix A for the details
about the derivation of the transport equation for entropy. The entropy error was evaluated using
Equation (34) and it is shown as a function of the diffuser area ratio in Figure 6. It can be observed
that the relative entropy error is of the order of 10−7, which is smaller than the prescribed integration
tolerance of 10−6. As both the stagnation enthalpy and entropy errors are smaller than the prescribed
tolerance, we can conclude that the solution algorithm solves the flow equations satisfactorily.

s EoS = s(p, ρ) (32)

ρvm

(
dsgen

dm

)
= σ̇ = 2

τwv
b T

(33)

s error =
|s EoS − sgen|

s EoS
(34)

In addition, the diffuser model was validated against the annular diffuser experimental data
from Kumar and Kumar [30]. The conditions that define this case are summarized in Table 4
and the experimental and computed pressure recovery coefficients are compared in Table 5 and in
Figure 7. The heat transfer was neglected for the validation (U = 0) because the experimental data
from Kumar and Kumar [30] corresponds to a low-speed annular diffuser where the difference between
fluid temperature and wall temperature is expected to be very small. The skin friction coefficient was
fitted to minimize the two-norm of the error between the experimental data and the model output.
In addition, the range of variation of the pressure recovery coefficient for skin friction coefficients
ranging between ±20% of the best-fit value is shown as a shaded area to illustrate the impact of this
parameter on the diffuser performance.

Ignoring the point corresponding to AR = 1.082, it can be observed that the relative deviation
of the pressure recovery coefficient is always less than 2% when the best-fit skin friction coefficient
(Cf = 0.029) is used. It is plausible that the deviation between experiment and model when AR = 1.082
is due to the development of the flow at the inlet of the diffuser. This analysis shows that the model
can be used to make accurate predictions when skin friction coefficient can be fitted to experimental
data or approximate predictions in cases where there is no experimental data available.
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Figure 6. Enthalpy and entropy error analyses for the reference case defined in Table 3.

Figure 7. Comparison of model output with the data from Kumar and Kumar [30].

Table 3. Definition of the reference case.

Variable Symbol Value

Working fluid - Air
Inlet static pressure p in 101.3 kPa
Inlet static temperature Tin 20.0 ◦C
Inlet meridional Mach Ma m,in 0.30
Inlet swirl angle α in 30.0◦

Turbomachine outlet radius R out 1.0 m
Outlet hub-to-tip ratio (rh/rt) out 0.7
Mean wall cant angle φ 30.0◦

Divergence semi-angle δ 5.0◦

Diffuser area ratio AR 1.0–5.0
Skin friction coefficient Cf 0.010
Heat transfer coefficient U 0 W/m2·K
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Table 4. Definition of the validation case from Kumar and Kumar [30].

Variable Symbol Value

Working fluid - Air
Inlet static pressure p in 101.3 kPa
Inlet static temperature Tin 20.0 ◦C
Inlet meridional Mach Ma m,in 0.07
Inlet swirl angle α in 0.0◦

Inlet mean radius r in 57.8 mm
Inlet channel height b in 39.5 mm
Mean wall cant angle φ 15.0◦

Divergence semi-angle δ 0.0◦

Diffuser area ratio AR 1.0–3.0
Skin friction coefficient Cf Fitted to data
Heat transfer coefficient U 0 W/m2·K

Table 5. Comparison of the model output with the experimental data from Kumar and Kumar [30].

AR Cexp
p Cmodel

p Relative Error

1.082 0.101 0.122 21.27%
1.317 0.349 0.347 −0.64%
1.561 0.467 0.475 1.73%
1.832 0.552 0.557 0.89%
2.012 0.593 0.592 −0.14%
2.308 0.626 0.631 0.89%
2.560 0.651 0.653 0.23%
2.779 0.670 0.666 −0.58%
2.863 0.681 0.670 −1.67%

4. Sensitivity Analysis

This section contains a sensitivity analysis of the reference case from Table 3 to gain insight about
the impact of several input parameters on diffuser performance. The next sections investigate the
influence of: (1) skin friction coefficient, (2) inlet hub-to-tip ratio, (3) mean wall cant angle, (4) inlet
swirl angle, and (5) inlet meridional Mach number on the pressure recovery coefficient as a function of
diffuser area ratio. The divergence semi-angle was not included in the analysis because increasing
this parameter may lead to boundary layer separation close to the walls and the model used in this
work cannot predict this phenomenon (Kline et al. [31] provide stability maps that can be used to
predict flow separation for straight-walled and conical diffusers as a function of divergence semi-angle
and area ratio. However, the authors are not aware of similar maps for annular diffusers in the open
literature). Each of the analyses studies the influence of one variable while the other parameters are
the same as in the reference case (one-at-a-time sensitivity analysis) and the ranges of the variables
were selected to cover the flow conditions typical of most turbomachinery applications.

In addition, the influence of heat transfer on diffuser performance was analyzed for different wall
temperatures using the Chilton–Colburn analogy to estimate the heat transfer coefficient. As expected,
heat addition accelerates the flow and penalizes the pressure recovery coefficient. The details of the
heat transfer investigations are not reported because the influence of heat addition was secondary
compared to that of the other input parameters.

4.1. Influence of the Skin Friction Coefficient

As discussed in Section 2, to the knowledge of the authors, there are no correlations available to
predict the skin friction coefficient in annular channels with swirling flow, but it is possible to estimate
a realistic value based on the existing literature. The friction factor was varied from 0.000 (frictionless)
to 0.030 (high friction) and the impact on the pressure recovery coefficient as a function of the area
ratio is shown in Figure 8.
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It can be observed that increasing the friction factor decreases the pressure recovery in a linear way
(the different curves are equispaced) and that the effect is more notable when the area ratio increases
(since the length of the channel increases). For the reference case considered, the pressure recovery
increases with the area ratio in a monotonous manner and has an asymptotic behavior, irrespective of
the numerical value of the friction coefficient. This suggest that an optimum value of the area ratio
that maximizes the pressure recovery does not exist and that the pressure recovery always increases
with the area ratio up to a limiting value.

This, perhaps counter-intuitive, result may be explained as the consequence of two conflicting
effects. On the one hand, when the area ratio increases the diffuser length and wetted surface increase.
However, as the area ratio increases the velocity and shear stress at the wall are reduced (the shear
stress is proportional to the dynamic pressure). If this second effect dominates, friction becomes
negligible and the pressure recovery increases asymptotically as the area ratio tends to infinity.

Figure 8. Influence of skin friction coefficient.

4.2. Influence of the Inlet Hub-to-Tip Ratio

To accommodate the density change, the hub-to-tip ratio is usually high at the outlet of axial
compressors and low at the outlet of axial turbines. In this section, the hub-to-tip ratio at the inlet of the
diffuser was varied between 0.50 and 0.95 and the results were plotted in Figure 9. It can be observed
that the diffuser performance is penalized as the hub-to-tip ratio increases and that the effect is not
linear: the pressure recovery coefficient is reduced more rapidly at high hub-to-tip ratios.

The reason for this behavior is that when the hub-to-tip ratio increases, the channel height of the
diffuser is reduced according to Equation (35) and, since the channel height appears in the denominator
of the friction terms of the momentum equations, Equations (11) and (12), the diffuser performance
declines. Another interpretation based on physical intuition is that the channel height is the hydraulic
diameter of the annular diffuser and that reducing this parameter will increase the friction losses.

b in = H out / cos (φ) = 2 R out

(
1− (rh/rt)

1 + (rh/rt)

)

out
/ cos (φ) (35)
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Figure 9. Influence of the hub-to-tip ratio.

4.3. Influence of the Mean Wall Cant Angle

Figure 10a shows the pressure recovery coefficient as a function of the area ratio when the mean
cant angle is varied from 0◦ to 40◦. It can be seen that the pressure recovery coefficient is very low
when φ = 0◦ because the radius of the diffuser remains constant and the tangential component of
velocity is not recovered and that it increases very quickly as the mean cant angle increases (for instance
from 0◦ to 10◦). Further increasing the mean wall cant angle will only improve the pressure recovery
marginally (the change from 30◦ to 40◦ is almost inappreciable).

The same results are plotted as a function of the normalized axial length (instead of the area ratio)
in Figure 10b. The end of the lines corresponds to the point where AR = 5. It can be observed that for
a fixed diffuser axial length, the pressure recovery coefficient increases as the mean wall cant angle
increases because both the area and the mean radius of the channel increase.

These results illustrate that the mean cant angle is not a critical parameter when there are no space
limitations, but that adopting a high mean wall cant angle is advantageous when the maximum axial
length of the diffuser is constrained.

(a) (b)

Figure 10. Influence of the mean wall cant angle on the pressure recovery coefficient as a function of
the area ratio (a) and as a function of the axial length (b).
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4.4. Influence of the Inlet Swirl Angle

In this section, the influence of the inlet swirl angle for a fixed meridional velocity was investigated.
The results from Figure 11 show that increasing the inlet swirl angle decreases the pressure recovery
coefficient of the diffuser and that this effect is more marked at higher swirl angles. The reason for this
is that the presence of swirl increases the available dynamic pressure at the inlet and, for this reason,
the area ratio required to reach the same pressure recovery coefficient as for the case α = 0◦ is higher.
Moreover, the presence of swirl leads to wall shear stress in the circumferential direction that increases
the friction losses.

Figure 11. Influence of the inlet swirl angle.

4.5. Influence of the Inlet Mach Number

The influence of the inlet Mach number (compressibility effects) on the diffuser performance,
including the limiting case of incompressible flow, is shown in Figure 12. The analysis presented on
this section was performed assuming frictionless flow instead of Cf = 0.010 in order to compare the
results at different inlet Mach numbers with the analytical results for inviscid, incompressible flow
given by Equation (36). This equation is a well-known result [1,22] that can be proved integrating the
mass and momentum equations, Equations (10)–(12), for constant density and zero wall shear stress.

It can be observed that the model predicts a modest increase on the pressure recovery coefficient
as the inlet Mach number increases. In addition, the results obtained when the inlet meridional Mach
number is 0.30 or lower (low-speed flow) are consistent with the analytical results for incompressible
flow. This result can be regarded as part of the model verification.

Cp ,incompressible = 1−
tan (α in)

2 +
(

b in
b

)2

1 + tan (α in)
2 ·

( r in

r

)2
(36)
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Figure 12. Influence of the inlet Mach number.

5. Conclusions

A one-dimensional flow model for annular diffusers was proposed and the connection of this
model with the preliminary design and optimization of turbomachinery was discussed. The model
formulation is more general than that of previous literature as it is possible to use arbitrary equations of
state and include the effects of area change, heat transfer, and friction. The mathematical model poses a
system of ordinary differential equations and it was shown that: (1) the solution is undetermined when
the Mach number in the meridional direction is one (the flow is choked) and (2) the Mach number in
the circumferential direction does not compromise the solution. In addition, the detailed derivation of
the equations (omitted in other works) was presented in the Appendix A to provide physical insight
about the flow in annular channels.

The model was verified against a reference case assessing that: (1) the stagnation enthalpy is
conserved, (2) the entropy generation computed using the equation of state and using the second
law of thermodynamics is consistent and it was found that the error of the numerical solution was
always smaller than the prescribed integration tolerance. In addition, the model was validated against
the experimental data from Kumar and Kumar [30], finding that the relative deviation between the
predicted and measured pressure recovery coefficients was always less than 2% when the best-fit skin
friction coefficient is used.

A sensitivity analysis was performed to investigate the influence of the: (1) skin friction coefficient,
(2) inlet hub-to-tip ratio, (3) mean wall cant angle, (4) inlet swirl angle, and (5) inlet meridional Mach
number on the diffuser performance. The ranges of these variables were selected to cover the flow
conditions typical of most turbomachinery applications. The following conclusions were gathered:

• The pressure recovery coefficient increases asymptotically as the area ratio tends to infinity,
regardless of the value of the skin friction coefficient. This suggest that the area ratio is not
a suitable optimization variable during the diffuser design when the size of the diffuser is
not constrained.

• The inlet hub-to-tip ratio has a strong impact on the pressure recovery because it is closely related
to the channel height of the diffuser. The pressure recovery is penalized when the hub-to-tip ratio
increases, and the trend is nonlinear: the pressure recovery coefficient is reduced more rapidly
at high hub-to-tip ratios. This implies that in general, the design of efficient diffusers for axial
compressors (high hub-to-tip ratios and short blades at the last stage) is more challenging than
that of axial turbines (low hub-to-tip ratios and long blades at the last stage).

• The pressure recovery is very low when the mean wall cant angle is zero because the radius of the
diffuser remains constant and the tangential component of velocity is not recovered. This shows
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that the diffuser should be designed with an increasing mean radius to recover the kinetic energy
of swirling flows effectively.

• Assuming that there is no flow separation, increasing the mean wall cant angle always improves
the pressure recovery. However, for a given area ratio the mean wall cant angle has only a small
impact on the pressure recovery, while for a given axial length increasing the mean wall cant angle
improves the pressure recovery significantly. This implies that the mean wall cant angle is not a
critical parameter when there are no space limitations, but that adopting a high mean wall cant
angle is advantageous when the maximum axial length of the diffuser is constrained.

• Increasing the swirl angle at the inlet of the diffuser reduces the pressure recovery coefficient
because the wall shear stress in the circumferential direction is increased. This implies that the
diffuser performance will be improved if the velocity triangle of the last turbomachinery stage is
designed so that the absolute velocity has a small tangential component.

• The pressure recovery coefficient increases as the inlet meridional Mach number increases.
The effect on the inlet Mach number has only a modest impact on the pressure recovery,
compared with the other variables. In addition, it was found that when the inlet meridional
Mach number is lower than 0.30 the results from the compressible and incompressible analyses
are almost identical.

Supplementary Materials: The source code of the diffuser model proposed in this work is openly available in an
online repository (doi:10.5281/zenodo.2634095).

Author Contributions: Conceptualization, R.A. and L.O.N.; methodology, R.A.; software, R.A; validation, R.A.;
resources, L.O.N.; writing–original draft preparation, R.A.; writing–review and editing, R.A., L.O.N. and B.M.

Funding: The authors gratefully acknowledge the financial support from the Research Council of Norway (EnergiX
grant no. 255016) for the COPRO project, and the user partners Equinor, Hydro, Alcoa, GE Power Norway, and
FrioNordica.

Conflicts of Interest: All authors of the article, Roberto Agromayor, Bernhard Müller, and Lars O. Nord, declare
that they have no conflict of interest.

Nomenclature

Latin symbols
A Annulus area or coefficient matrix m2

a Speed of sound m/s
AR Area ratio –
b Diffuser channel height m
Cf Skin friction coefficient –
Cp Pressure recovery coefficient –
cp Specific heat capacity at constant pressure J/kg K
Dh Hydraulic diameter m
e Internal energy J/kg
h Static specific enthalpy J/kg
h0 Stagnation specific enthalpy J/kg
H out Outlet turbomachinery blade height m
k Heat conductivity W/m K
Nu Nusselt number –
p Static pressure Pa
p0 Stagnation pressure Pa
Pr Prandtl number –
q̇w Heat flux at the wall W/m2

r Mean radius m
R out Outlet turbomachinery radius m
Re Reynolds number –
S Source term vector –
s Specific entropy J/kg K
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T Static temperature K
T0 Stagnation temperature K
Tw Temperature at the wall K
U Solution vector or heat transfer coefficient W/m2 K
v Velocity m/s
x Axial distance m

Greek symbols
α Angle between the velocity vector the meridional direction ◦

δ Divergence semi-angle ◦

θ Tangential angle ◦

ρ Density kg/m3

σ̇ Entropy generation per unit volume W/m3 K
τw Shear stress at the wall Pa
φ Mean wall cant angle or angle between the radial a meridional directions ◦

φ1 Inner wall cant angle ◦

φ2 Outer wall cant angle ◦

Abbreviations
CFD Computational Fluid Dynamics
EOS Equation of State
ODE Ordinary Differential Equation

Subscripts
gen Refers to entropy generation
in Refers to the inlet
m Refers to the meridional direction
out Refers to the outlet
r Refers to the radial direction
x Refers to the axial direction
θ Refers to the tangential direction

Appendix A. Derivation of the Governing Equations

This appendix contains the derivation the governing equations for the one-dimensional flow in
an annular channel with area change, heat transfer, and friction using arbitrary equations of state.
The final version of the equations derived in this appendix were presented within a box and they
correspond to Equations (10)–(13) in the main text.

Appendix A.1. Groundwork

The starting point for the derivation of the governing equations is the integral form of the mass,
momentum, energy, and entropy balance equations for a fixed control volume. The integral form
of these equations can be found in any fluid mechanics textbook such as [2]. The integral equations
are applied to the differential control volume shown in Figure 3 to determine the differential form
of the equations. First, the transport equation for mass is derived and then it is used to obtain the
transport equation for a general quantity. After this, the general transport equation is used to derive
the momentum, energy, and entropy equations in a systematic way. Once the differential equations
are found, they are simplified assuming that the flow is steady and axisymmetric to determine the
one-dimensional equations used to model the diffuser.

The additional notation used in this appendix was not included in the nomenclature.
Instead, it was preferred to introduce the new notation along the way to make the derivations easier
to follow. The symbol e (vector quantities were typeset in boldface) is used to denote the unitary
vectors in the different coordinate directions: eθ—tangential, ex—axial, er—radial, em—meridional,
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and en—normal. The unitary vectors in the meridional–normal plane are related to the unitary vectors
in the axial–radial plane according to Equations (A1) and (A2).

em = cos (φ) ex + sin (φ) er (A1)

en = − sin (φ) ex + cos (φ) er (A2)

The derivatives of the meridional and tangential vectors along the meridional and tangential
directions are given by Equations (A3)–(A6). These equations are given without proof, but they can
be derived using the chain rule for differentiation and geometric relations between the coordinate
directions. Space derivatives of the unitary vectors are non-zero due to the curvature of the coordinate
system and they are necessary to derive the momentum transport equation. The term Rm is the radius
of curvature of the mean surface of the annular channel and it can be expressed in different ways
depending on the parametrization used (we will not be concerned about this term because it does not
appear on the final equations of the diffuser model).

dem

dm
=

d2r
dx2 ·

(
1 +

(
dr
dx

)2
)− 3

2

en =
1

Rm
en (A3)

dem

dθ
= sin (φ) eθ (A4)

deθ

dm
= 0 (A5)

deθ

dθ
= −er = − sin (φ) em − cos (φ) en (A6)

The velocity vector can be expressed in terms of the unitary vectors according to Equations (A7)
and (A8).

v = vm em + vθ eθ (A7)

v = vx ex + vr er + vθ eθ (A8)

The volume of the differential control volume is given by dV = b r dθdm, while the normal vectors
and surface elements of the differential control surface are summarized in Table A1. These parameters
are necessary to evaluate the integrals appearing on the balance equations

Table A1. Normal vectors and surface elements of the differential control volume.

Number Face n dS

1 Front −em rb dθ
2 Back +em rb dθ
3 Left −eθ b dm
4 Right +eθ b dm
5 Bottom −en r dθdm
6 Top +en r dθdm

Appendix A.2. Transport Equation for Mass

The integral form of the mass balance equation is given by Equation (A9). This equation indicates
that the rate of change of mass within the control volume plus the net mass flow rate leaving the
control volume is equal to zero (mass is conserved).

∫

CV

∂ρ

∂t
dV +

∫

CS
ρ (v · n) dS = 0 (A9)
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The accumulation term is approximated by Equation (A10).

∫

CV

∂ρ

∂t
dV ≈ ∂ρ

∂t
dV =

∂ρ

∂t
b rdθdm (A10)

The convective term is approximated byEquation (A11). This expression is found integrating the
mass flux over the six faces of the differential control volume using the normal vectors and surface
elements from Table A1 and the velocity vector given by Equation (A7).

∫

CS
ρ (v · n) dS ≈

6

∑
i=1

ρi (vi · ni) dSi

≈ [ρvmr b dθ]2 − [ρvmr b dθ]1 + [ρvθb dm]4 − [ρvθb dm]3

(A11)

The different summands of Equation (A11) are approximated by a first order Taylor expansion.
The Taylor expansions of a generic property β in the meridional and tangential directions are given by
Equations (A12) and (A13), respectively.

β2 − β1 =

(
β +

∂β

∂m
dm
2

)
−
(

β− ∂β

∂m
dm
2

)
+O(dm2) ≈ ∂β

∂m
dm (A12)

β4 − β3 =

(
β +

∂β

∂θ

dθ

2

)
−
(

β− ∂β

∂θ

dθ

2

)
+O(dθ2) ≈ ∂β

∂θ
dθ (A13)

Inserting the Taylor expansions into Equation (A11) leads to Equation (A14).

∫

CS
ρ (v · n) dS ≈ ∂

∂m
(ρvmr b) dmdθ +

∂

∂θ
(ρvθb) dmdθ (A14)

Collecting the accumulation and the convective terms and dividing by dV leads to Equation (A15).

∂ρ

∂t
+

1
b r

∂

∂m
(ρvmr b) +

1
b r

∂

∂θ
(ρvθb) = 0 (A15)

Assuming steady and axisymmetric flow Equation (A15) reduces to Equation (A16), where
the partial differentials were replaced by total differentials because the only variation is along the
meridional direction.

d
dm

(ρvmr b) = 0 (A16)

The final form of the mass transport equation, Equation (A17), is found using the product rule for
differentiation and rearranging.

vm
dρ

dm
+ ρ

dvm

dm
= −ρvm

b r
d

dm
(b r) (A17)

Appendix A.3. Transport Equation for A General Quantity

The integral form of a general balance equation is given by Equation (A18). This equation indicates
that the rate of change of any intensive quantity η within the control volume plus the net flow rate of
η leaving the control volume is equal to the generation of η due to source terms Sη . In general, this
quantity η can be a scalar such as energy or entropy or a vector such as the velocity.

∫

CV

∂

∂t
(ρη) dV +

∫

CS
ρη (v · n) dS = Sη (A18)
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The accumulation term is approximated by Equation (A19).

∫

CV

∂

∂t
(ρη) dV ≈ ∂

∂t
(ρη) dV =

∂

∂t
(ρη) b rdθdm (A19)

The convective term is approximated by Equation (A20). This expression is found integrating
the η-flux over the six faces of the differential control volume using the normal vectors and surface
elements from Table A1 and the velocity vector given by Equation (A7).

∫

CS
ρη (v · n) dS ≈

6

∑
i=1

ρiηi (vi · ni) dSi

≈ [ρηvmr b dθ]2 − [ρηvmr b dθ]1 + [ρηvθb dm]4 − [ρηvθb dm]3

(A20)

The different summands of Equation (A20) are approximated by first order Taylor expansions,
Equations (A12) and (A13), to find Equation (A21).

∫

CS
ρη (v · n) dS ≈ ∂

∂m
(ρηvmr b) dmdθ +

∂

∂θ
(ρηvθb) dmdθ (A21)

Collecting the accumulation, convective, and source terms leads to Equation (A22).

[
∂

∂t
(ρη) b r +

∂

∂m
(ρηvmr b) +

∂

∂θ
(ρηvθb)

]
dmdθ = Sη (A22)

Using the product rule for differentiation and the transport equation for mass, Equation (A22)
can be expressed in non-conservative form as Equation (A23), where dV = b r dθdm.

ρ

[
∂η

∂t
+ vm

∂η

∂m
+

vθ

r
∂η

∂θ

]
dV = Sη (A23)

Equation (A23) is used in the next sections to derive the transport equations of momentum,
energy and entropy in a systematic way.

Appendix A.4. Transport Equations for Momentum

The integral form of the momentum balance equation is given by Equation (A24). This equation
indicates that the rate of change of momentum within the control volume plus the net flow rate of
momentum leaving the control volume is equal to the net pressure forces acting on the control surfaces
plus the body forces acting on the control volume. The viscous forces acting on the walls of the annular
channel are modeled as a volume force instead of as a surface force as discussed below.

∫

CV

∂

∂t
(ρv) dV +

∫

CS
ρv (v · n) dS = −

∫

CS
pn dS +

∫

CV
ρf dV (A24)

The left hand side of Equation (A24) is formulated in differential form, Equation (A25), by making
the identification η = v in the general transport equation, Equation (A23).

∫

CV

∂

∂t
(ρv) dV +

∫

CS
ρv (v · n) dS = ρ

[
∂v
∂t

+ vm
∂v
∂m

+
vθ

r
∂v
∂θ

]
dV (A25)

The meridional, tangential, and normal components of the momentum equation are given by
Equation (A26). This equation found inserting the velocity vector given by Equation (A7) and using
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the product rule to account for the derivatives of the velocity components and the unitary vectors that
are given by Equations (A3)–(A6).

∫

CV

∂

∂t
(ρv) dV +

∫

CS
ρv (v · n) dS = em

(
ρ

[
∂vm

∂t
+ vm

∂vm

∂m
+

vθ

r
∂vm

∂θ
− v2

θ

r
sin (φ)

]
dV

)

+ eθ

(
ρ

[
∂vθ

∂t
+ vm

∂vθ

∂m
+

vθ

r
∂vθ

∂θ
+

vmvθ

r
sin (φ)

]
dV
)

+ en

(
ρ

[
v2

m
Rm
− v2

θ

r
cos (φ)

]
dV

)
(A26)

The surface integral of the pressure forces can be approximated by Equation (A27), where the
first equality follows from a variation of the Gauss theorem for the surface integral of a scalar
field. The gradient of pressure for the curvilinear coordinates used here is given by Equation (A28),
see [32] (Ch. 3).

−
∫

CS
pn dS = −

∫

CV
∇p dV ≈ ∇p dV (A27)

∇p =
∂p
∂m

em +
1
r

∂p
∂θ

eθ +
∂p
∂n

en (A28)

The viscous force is approximated by Equation (A29). This force is modeled as a body force
pointing in the opposite direction of the velocity vector and with magnitude given by the product of
the stress at the walls and the surface of the walls dS = 2r dθdm. The factor 2 arises to account for the
inner and outer surfaces.

∫

CV
ρf dV ≈ τw dS = −τw

v
|v| dS = −2τw [cos (α) em + sin (α) eθ ] r dθdm (A29)

Collecting all terms and dividing by dV, the meridional and tangential components of the
momentum equation are given by Equations (A30) and (A31), respectively. The normal component is
ignored because it is not used in the one-dimensional diffuser model.

ρ

(
∂vm

∂t
+ vm

∂vm

∂m
+

vθ

r
∂vm

∂θ
− v2

θ

r
sin (φ)

)
= − ∂p

∂m
− 2τw

b
cos (α) (A30)

ρ

(
∂vθ

∂t
+ vm

∂vθ

∂m
+

vθ

r
∂vθ

∂θ
+

vmvθ

r
sin (φ)

)
= −1

r
∂p
∂θ
− 2τw

b
sin (α) (A31)

The final form of the momentum equations, Equations (A32) and (A33), is found assuming steady
and axisymmetric flow. The partial differentials were replaced by total differentials because the only
variation is along the meridional direction.

ρvm
dvm

dm
+

dp
dm

=
ρv2

θ

r
sin (φ)− 2τw

b
cos (α) (A32)

ρvm
dvθ

dm
= −ρvθvm

r
sin (φ)− 2τw

b
sin (α) (A33)

Appendix A.5. Transport Equations for Energy

Appendix A.5.1. Total Energy

The integral form of the energy balance equation is given by Equation (A34) or by Equation (A35).
Total energy is given by E = e + v2

2 and the term h0 = E + p
ρ can be recognized as the stagnation
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enthalpy of the flow. These equations indicate that the rate of change of total energy within the control
volume plus the net flow rate of total energy leaving the control volume is equal to the net heat flow
rate entering the control volume plus the work done by pressure forces. The work done by viscous
forces (modeled as a body force) is neglected to model the no-slip condition at the wall (this is further
discussed in the derivation of the entropy transport equation).

∫

CV

∂

∂t
(ρE) dV +

∫

CS
ρE (v · n) dS = −

∫

CS
q̇ · n dS−

∫

CS
p (v · n) dS (A34)

∫

CV

∂

∂t
(ρE) dV +

∫

CS
ρ

(
E +

p
ρ

)
(v · n) dS = −

∫

CS
q̇ · n dS (A35)

The left hand side of Equation (A35) is formulated in differential form, Equation (A36), by making
the identification η = E in the general transport equation, Equation (A23).

∫

CV

∂

∂t
(ρE) dV +

∫

CS
ρ

(
E +

p
ρ

)
(v · n) dS = ρ

[
∂E
∂t

+ vm
∂

∂m

(
E +

p
ρ

)
+

vθ

r
∂

∂θ

(
E +

p
ρ

)]
dV (A36)

The heat flow rate is computed as the surface integral of heat flux into the system at it is given by
Equation (A37), where the factor 2 arises to account for the inner and outer surfaces. This equation
only accounts for the heat flux at the walls q̇w, ignoring the heat transfer in the meridional and
tangential directions.

−
∫

CS
q̇ · n dS ≈ 2q̇w r dθdm (A37)

Collecting all terms and dividing by dV, the total energy transport equation is given
by Equation (A38).

ρ

(
∂E
∂t

+ vm
∂

∂m

(
E +

p
ρ

)
+

vθ

r
∂

∂θ

(
E +

p
ρ

))
=

2q̇w

b
(A38)

Assuming that the flow is steady and axisymmetric, the total energy equation transport reduces
to Equation (A39), where the partial differentials were replaced by total differentials because the only
variation is along the meridional direction. Equation (A39) indicates that in the absence of heat transfer,
the stagnation enthalpy of the flow remains constant. This result is used in the main body of the paper
to verify the numerical solution of the model, see Section 3.

ρvm
d

dm

(
E +

p
ρ

)
= ρvm

d
dm

(
e +

v2
m
2

+
v2

θ

2
+

p
ρ

)
=

2q̇w

b
(A39)

The transport equations for mass, momentum, and energy derived so far pose a system of ordinary
differential equations that can be solved if an equation of state is provided to relate the density and
pressure with enthalpy. Instead of using this set of equations, a new form of the energy transport
equation will be derived, Equation (13). This alternative version of the energy equation is used to show
that system of equations has a solution when the meridional Mach number of the flow is different than
one (see Section 2).

Appendix A.5.2. Mechanical Energy

To derive the mechanical energy equation, first multiply the meridional component of the
momentum equation by vm, Equation (A40), and the tangential component of the momentum equation
by vθ , Equation (A41). The chain rule for differentiation and some algebraic manipulations were used
to obtain these two equations.
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ρvm

(
d
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(
v2

m
2

)
− v2

θ
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sin (φ)

)
+ vm

dp
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= −2τwv
b

cos (α)2 (A40)
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(
d
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v2

θ

2

)
+

v2
θ

r
sin (φ)

)
= −2τwv

b
sin (α)2 (A41)

Equation (A42) is found summing both expressions and it is known as the mechanical energy
equation. This equation can be viewed as the transport equation for kinetic energy. The physical
interpretation is that the fluid is decelerated (decreasing kinetic energy) by positive pressure gradients
and viscous forces.

ρvm
d

dm

(
v2

m
2

+
v2

θ

2

)
= −vm

dp
dm
− 2τwv

b
(A42)

Appendix A.5.3. Thermal Energy

The thermal energy equation is derived subtracting the mechanical energy equation,
Equation (A42), from the total energy equation, Equation (A39).

ρvm
d

dm

(
e +

p
ρ

)
= vm

dp
dm

+
2
b
(τwv + q̇w) (A43)

Equation (A43) can be simplified using the quotient rule for differentiation to reach Equation (A44).

ρvm

(
de
dm
− p

ρ2
dρ

dm

)
=

2
b
(τwv + q̇w) (A44)

Equation (A44) is known as the thermal energy equation and its physical interpretation is that the
internal energy is increased due to viscous dissipation and heat transfer, as well as to the deformation
of the fluid (product of pressure and density gradient).

The internal energy can be expressed in terms of pressure and density assuming a general
equation of state of the form e = e(p, ρ). First consider the Gibbs relation between thermodynamic
properties, Equation (A45), and insert the exact differential of internal energy given by Equation (A46)
to reach Equation (A47).

Tds = de− p
ρ2 dρ (A45)

de =
(

∂e
∂p

)

ρ

dp +

(
∂e
∂ρ

)

p
dρ (A46)

Tds =
(

∂e
∂p

)

ρ

dp +

[(
∂e
∂ρ

)

p
− p

ρ2

]
dρ (A47)

This equation reduces to Equation (A48) for an isentropic process and, since the speed of sound is
defined as a2 =

(
∂p
∂ρ

)
s
, we find that the speed of sound and the derivatives of the internal energy are

related according to Equation (A49).

0 =

(
∂e
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)

ρ

(
∂p
∂ρ

)

s
+

[(
∂e
∂ρ

)

p
− p

ρ2

]
(A48)
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(
∂e
∂ρ

)
p
− p

ρ2

(
∂e
∂p

)
ρ

(A49)
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Equation (A49) can be used to simplify the thermal energy equation given by Equation (A44).
First, replace the differential of internal energy given by Equation (A46) to find Equation (A50).

ρvm

((
∂e
∂p

)

ρ

dp
dm

+

[(
∂e
∂ρ

)

p
− p

ρ2

]
dρ

dm

)
=

2
b
(τwv + q̇w) (A50)

Now divide this expression by
(

∂e
∂p

)
ρ

and use Equation (A49) to find Equation (A51), which is

the alternative version of the energy equation that we wanted to prove.

ρvm
dp
dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b
(

∂e
∂p

)
ρ

(A51)

Appendix A.6. Transport Equation for Entropy

The transport equation for entropy is not required to model the flow within the diffuser. However,
it is interesting to consider this equation to compute the rate of entropy generation. This is useful to:
(1) check that the entropy generation is caused by viscous forces and heat transfer at a finite temperature
difference and (2) assess that the computation of entropy using the rate of entropy generation and the
equations of state is consistent (see Section 3 on model verification).

The integral form of the entropy balance equation is given by Equation (A52). This equation
indicates that the rate of change of entropy within the control volume plus the net flow rate of entropy
leaving the control volume is equal to the net flow rate of entropy entering the control volume due to
heat transfer plus the rate of entropy generation due to irreversibilities.

∫

CV

∂

∂t
(ρs) dV +

∫

CS
ρs (v · n) dS = −

∫

CS

1
T

(q̇ · n) dS +
∫

CV
σ̇ dV (A52)

The left hand side of Equation (A52) is formulated in differential form, Equation (A53), by making
the identification η = s in the general transport equation, Equation (A23).

∫

CV

∂

∂t
(ρs) dV +

∫

CS
ρs (v · n) dS = ρ

[
∂s
∂t

+ vm
∂s
∂m

+
vθ

r
∂s
∂θ

]
dV (A53)

The entropy flow due to heat transfer is computed according to Equation (A54). This equation
only accounts for the heat flux at the walls q̇w at temperature Tw and ignores the heat transfer in the
meridional and tangential directions.

−
∫

CS

1
T

(q̇ · n) dS ≈ 2q̇w

Tw
r dθdm (A54)

The entropy generation term is approximated according to Equation (A55).
∫

CV
σ̇ dV ≈ σ̇ dV (A55)

Collecting all terms and dividing by dV, the entropy transport equation is given
by Equation (A56).

ρ

(
∂s
∂t

+ vm
∂s
∂m

+
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r
∂s
∂θ

)
=

2
b

q̇w

Tw
+ σ̇ (A56)
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The final form of the entropy transport equation, Equation (A57), is found assuming that the flow
is steady and axisymmetric. The partial differentials were replaced by total differentials because the
only variation is along the meridional direction.

ρvm
∂s
∂m

=
2
b

q̇w

Tw
+ σ̇ (A57)

Entropy Generation

Inserting the entropy, Equation (A57), and energy, Equation (A44), transport equations intro the
Gibbs relation, Equation (A45), it is possible to find the expression for the rate of entropy generation,
Equation (A58).

σ̇ =
2

b T

[
(τwv +

(
1− T

Tw

)
q̇w

]
(A58)

Equation (A58) indicates that the one-dimensional model predicts that the entropy generation
is caused by viscous stress and heat transfer at a finite temperature difference. This is satisfactory,
as these are the two mechanisms that lead to entropy generation in the real flow that we are tying to
model. It is interesting to note that if the work done by viscous stress at the walls was not neglected,
the viscous stress would not lead to entropy generation (clearly, an unsatisfactory result). This is
because the friction force was modeled as a body force and body forces do not lead to entropy
generation, for instance, gravity force or Coriolis acceleration.
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Abstract: Axial turbines are the most common turbine configuration for electric power generation
and propulsion systems due to their versatility in terms of power capacity and range of operating
conditions. Mean-line models are essential for the preliminary design of axial turbines and,
despite being covered to some extent in turbomachinery textbooks, only some scientific publications
present a comprehensive formulation of the preliminary design problem. In this context, a mean-line
model and optimization methodology for the preliminary design of axial turbines with any
number of stages is proposed. The model is formulated to use arbitrary equations of state and
empirical loss models and it accounts for the influence of the diffuser on turbine performance
using a one-dimensional flow model. The mathematical problem was formulated as a constrained,
optimization problem, and solved using gradient-based algorithms. In addition, the model was
validated against two test cases from the literature and it was found that the deviation between
experimental data and model prediction in terms of mass flow rate and power output was less than
1.2% for both cases and that the deviation of the total-to-static efficiency was within the uncertainty
of the empirical loss models. Moreover, the optimization methodology was applied to a case study
from the literature and a sensitivity analysis was performed to investigate the influence of several
variables on turbine performance, concluding that: (1) the minimum hub-to-tip ratio constraint is
always active at the outlet of the last rotor and that its value should be selected as a trade-off of
aerodynamic performance and mechanical integrity; (2) that the total-to-static isentropic efficiency of
turbines without diffuser deteriorates rapidly when the pressure ratio is increased; and (3) that there
exist a loci of maximum efficiency in the specific speed and specific diameter plane (Baljé diagram)
that can be predicted with a simple analytical expression.

Keywords: turbomachinery; mean-line; multistage; annular diffuser; gradient-based; loss model;
baljé diagram; organic rankine cycle; cryogenic; supercritical carbon dioxide

1. Introduction

Axial turbines are the most common turbine configuration for electric power generation and
propulsion systems, including: open Brayton cycles [1], closed Brayton cycles using helium [2] or
carbon dioxide at supercritical conditions [3], and Rankine cycles using steam [4] or organic working
fluids [5]. In addition, they are also used in cryogenic applications such as gas separation processes
and liquefaction of natural gas [6]. Arguably, axial turbines owe their popularity to their versatility in
terms of power capacity and range of operating conditions. The power capacity of axial turbines can
vary from tens of kilowatts for small-scale Rankine power systems using organic fluids to hundreds of
megawatts for large-scale steam and gas turbine power plants. In addition, the operating temperatures
range from below −200 ◦C in some cryogenic applications to temperatures in excess of 1500 ◦C for
some advanced gas turbines, whereas the operating pressures can vary from a few millibars at the

Int. J. Turbomach. Propuls. Power 2019, 4, 32; doi:10.3390/ijtpp4030032 www.mdpi.com/journal/ijtpp



Int. J. Turbomach. Propuls. Power 2019, 4, 32 2 of 29

exhaust of some steam turbines to hundreds of bars at the inlet of supercritical steam and carbon
dioxide power systems.

The fluid-dynamic or aerodynamic design of axial turbines can be divided in several steps
involving mathematical models of different levels of complexity ranging from low-fidelity models for
the preliminary design (mean-line and through-flow models) to high-fidelity models for the detailed
blade shape definition (solution of the Navier–Stokes equations with turbulence models) [7]. Even if
mean-line models are the simplest approach to analyze the thermodynamics and fluid dynamics
of turbomachinery, they are still an essential step of the fluid-dynamic design chain because they
provide the information required to use more advanced flow models [8]. Mean-line models assume
that the flow is uniform at a mean radius and evaluate the conditions at the inlet and outlet of each
cascade using the balance equations for mass and rothalpy, a set of equations of state to compute
thermodynamic and transport properties, and empirical loss models to evaluate the entropy generation
within the turbine [9]. In addition, to automate the preliminary design, it is possible to formulate
the mean-line model as an optimization problem. This is especially advantageous to design new
turbine concepts because it allows exploration of the design space in a systematic way and account for
technical limitations in the form of constraints [7].

Despite mean-line models being covered to some extent in turbomachinery textbooks [1,9],
only some scientific publications present a comprehensive formulation of the preliminary design
problem. Table 1 contains a non-exhaustive survey of mean-line axial turbine models in the open
literature. Some of the differences in the model formulation include: considering single-stage or
multistage turbines, using restrictive assumptions such as repeating stages or not, using simplified
equations of state or real gas fluid properties, and whether or not to account for the influence of the
diffuser on turbine performance. In addition, some works formulate the preliminary design as an
optimization problem and then solve it using gradient-based or direct search optimization algorithms,
while other works formulate the design problem as system of equations and then do parametric studies
to explore the design space. One of the recurring limitations of the scientific literature is that most
mean-line models have not been validated against experimental data or CFD simulations. Finally,
to the knowledge of the authors, no publication has made the mean-line model source code openly
available to the research community and industry, with the notable exception of the Meangen code by
Denton [8].

In this work, a mean-line model and optimization methodology for the preliminary design of
axial turbines with any number of stages is proposed. The model is presented in Section 2 and it
was formulated to use arbitrary equations of state and empirical loss models and to account for the
influence of the diffuser on turbine performance using a one-dimensional flow model from a previous
publication [10]. In addition, Section 3 contains the validation of the model against experimental
data from two well-documented test cases reported in the literature. After that, the design problem
is formulated as a constrained optimization problem in Section 4 and the proposed optimization
methodology was applied to a case study from the literature in Section 5 to assess the optimal design
in terms of total-to-static efficiency, angular speed, and mean diameter. Finally, Section 6 contains a
sensitivity analysis of the case study with respect to: (1) isentropic power output, (2) tip clearance
height, (3) minimum hub-to-tip ratio, (4) diffuser area ratio, (5) diffuser skin friction coefficient,
(6) total-to-static pressure ratio, (7) number of stages and (8) angular speed and mean diameter to gain
insight about the impact of these variables on the performance of the turbine and to extract general
design guidelines. The authors would like to mention that the source code with the implementation of
the mean-line model and optimization methodology described in this paper is available in an online
repository [11], see Supplementary Materials.



Int. J. Turbomach. Propuls. Power 2019, 4, 32 3 of 29

Table 1. Non-exhaustive survey of axial turbine mean-line models.

Reference Optimization a Stages b Repeating c Diffuser d Properties e Validation f

Balje and Binsley [12] Direct 1 No No Incompressible Exp.
Macchi and Perdichizzi [13] Direct 1 No Fixed Perfect gas No
Lozza et al. [14] Direct 1, 2, 3 No Fixed Perfect gas No
Astolfi and Macchi [15] Direct 1, 2, 3 No Fixed Real gas No
Tournier and El-Genk [16] No Any Yes No Real gas Exp.
Da Lio et al. [17] No 1 Yes Fixed Real gas No
Da Lio et al. [18] No 1 Yes Fixed Real gas No
Meroni et al. [19] Direct 1 No Fixed Real gas Exp./CFD
Meroni et al. [20] Direct Any No Fixed Real gas Exp./CFD
Bahamonde et al. [21] Direct Any No No Real Gas CFD
Talluri and Lombardi [22] Direct 1 Yes No Real gas No
Denton [8] No Any Optional No Perfect gas CFD
Present work Gradient Any Optional 1D model Real gas Exp.

a If applicable, type of optimization algorithm used (gradient-based or direct search). b Number of turbine
stages that the model can handle. c Whether or not the model uses the repeating-stage assumption (this reduces
the design space significantly). d Whether the model accounts for the influence of the diffuser or not. The
models that accounted for the diffuser assumed a fixed fraction of kinetic energy recovery and did not model the
flow within the diffuser. e Equation of state used to compute the properties of the fluid. f Whether or not the
model has been validated with experimental data or CFD simulations.

2. Axial Turbine Model

Axial turbines are rotary machines that convert the energy from a fluid flow into work. An axial
turbine is composed of one or more stages in series and each stage consists of one cascade of stator
blades that accelerate the flow and one cascade of rotor blades that deflect the flow, converting the
enthalpy of the fluid into work as a result of the net change of angular momentum. The kinetic energy
of the flow at the outlet of the last stage can be significant and, for this reason, it is possible to install a
diffuser to recover the kinetic energy and increase the turbine power output.

This section describes the axial turbine model proposed in this work. First, the geometry of axial
turbines and the variables involved in the model are introduced. After that, the conventions used for
the velocity triangles are explained. Finally, the design specifications (boundary conditions) and the
mathematical model for the axial turbine is described. This mathematical model is composed of three
sub-models that are used as building blocks: (1) the cascade model, (2) the loss model, and (3) the
diffuser model. In Section 4 these sub-models are used to formulate the turbine preliminary design as
a nonlinear, constrained optimization problem.

2.1. Axial Turbine Geometry

The geometry of a turbine blade is shown in Figure 1a. Blades are characterized by a mean
camber line halfway between the suction and the pressure surfaces. The most forward point of the
camber line is the leading edge and the most rearward point is the trailing edge. The blade chord c is
the length of the straight line connecting the leading and the trailing edges. The blade thickness is
the distance between the pressure and suction surfaces, measured perpendicular to the camber line.
The aerodynamic performance of a blade is influenced by the maximum thickness tmax and the trailing
edge thickness tte. The angle between the axial direction and the tangent to the camber line is the metal
angle θ and the difference between inlet and outlet metal angles is the camber angle ∆θ = |θin − θout|.

The axial–tangential view of a turbine stage is shown in Figure 1b. The blade pitch or spacing
s is the circumferential separation between two contiguous blades and the opening o is defined
as the distance between the trailing edge of one blade and the suction surface of the next one,
measured perpendicular to the direction of the outlet metal angle. The angle between the axial
direction and the chord line is the stagger angle or setting angle ξ and the projection of the chord onto
the axial direction is known as the axial chord b. The cascade spacing sc is the axial separation between
one blade cascade and the next one.
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The axial–radial view of a three-stage axial turbine is shown in Figure 1c. The working fluid flows
parallel to the shaft within the annular duct defined by the inner and outer diameters. The hub is the
surface defined by the inner diameter and the shroud is the surface defined by the outer diameter.
The blade height H is defined as the difference between the blade radius at the tip rt and the blade
radius at the hub rh and the spacing between the tip of the rotor blades and the shroud is known as
clearance gap height tcl. The mean radius r is often defined as the arithmetic mean of the hub and tip
radii, although other definitions are possible. The blade height can vary along the turbine, but the
flaring angle δfl should be limited to avoid flow separation close to the annulus walls. The geometry
of an annular diffuser is shown in Figure 1d. The fluid leaving the last stage of the turbine enters
the annular channel and it reduces its meridional component of velocity as the flow area increases
(for subsonic flow) and its tangential component of velocity as the mean radius of the channel increases.
The flow area of the diffuser is given by A = 2πr̂ b̂, where r̂ is the mean radius of the diffuser and
b̂ is the channel height of the diffuser. The area ratio is defined as the ratio of outlet to inlet areas,
AR = Aout/Ain. When the inner and outer walls of the diffuser are straight, the diffuser is known as a
conical-wall annular diffuser and its geometry can be parametrized in terms of the mean wall cant
angle φ and the divergence semi-angle δ.

(a) Geometry of a blade section. (b) Axial-tangential view of a cascade.

(c) Axial-radial view of an axial turbine. (d) Annular diffuser geometry.

Figure 1. Geometry of a general axial turbine and exhaust diffuser.
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2.2. Velocity Vector Conventions

In this work the symbol v is used for the absolute velocity, w for the relative velocity, and u for the
blade velocity. The components of velocity in the tangential and meridional directions are denoted with
the subscripts θ and m, respectively. For the case of axial turbines, the meridional direction coincides
with the axial direction. Regarding the sign convention for the velocity components, the positive axial
direction is taken along the shaft axis from the inlet of the turbine to the outlet and the positive radial
direction is taken as the turbine radius increases. The positive circumferential direction is taken in the
direction of the blade speed.

The symbol α is used to denote the absolute flow angle while β is used for the relative flow angle.
As shown in the velocity triangle of Figure 2, all angles are measured from the meridional towards the
tangential direction. This is the usual convention in the gas turbine industry and it bounds the flow
angles to the interval [−π

2 , π
2 ] [1] (p. 316). The advantage of this angle convention is that it is possible

to use single-input inverse trigonometric functions directly. In addition, the same sign convention is
used for stator and rotor blades for the sake of consistency. However, the loss model that is used in this
paper [23] employs a different sign convention for stator and rotor blades and some of the formulas of
the loss model had to be adapted, see Appendix A.

Figure 2. Velocity triangle showing the notation and conventions used in this work.

2.3. Design Specifications

A turbine is a component of a larger system that will impose some requirements on the turbine
design, including: (1) stagnation state at the inlet of the turbine, (2) static pressure at the outlet
of the turbine, and (3) mass flow rate. Alternatively, it is possible to specify the isentropic power
output instead of the mass flow rate because both are related according to Equation (1), where the
subscripts 1 and 2 refer to the states at the inlet and outlet of the turbine, respectively, and the subscript
s refers to an isentropic expansion.

Ẇs = ṁ (h01 − h2s) = ṁ ∆hs (1)

These design requirements can be regarded as the thermodynamic boundary conditions for the
expansion and they are given inputs for the turbine model.

2.4. Cascade Model

This section describes the equations used to model the flow within stator and rotor cascades.
All flow variables are evaluated at constant mean radius at the inlet and outlet of each cascade
(mean-line model). The cascade model presented in this section is solved sequentially and it contains
three blocks: (1) computation of the velocity triangles, (2) determination of the thermodynamic
properties using the principle of conservation of rothalpy and equations of state, and (3) calculation of
the cascade geometry.
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2.4.1. Velocity Triangles

The equations used to compute the velocity diagrams for rotor and stator sections are the same,
provided that the blade velocity is given by u = 0 for the stators and u = ω r for the rotors, where the
angular speed ω and mean radius r are given as input variables.

The velocity triangles at the inlet of each cascade are computed according to Equations (2)–(7),
where the subscripts that refer to inlet conditions have been dropped for simplicity. For the first stator,
the absolute velocity v and flow angle α are given as inputs. For the rest of cascades, the absolute
velocity and flow angle are obtained from the outlet of the previous cascade.

vθ = v sin (α) (2)

vm = v cos (α) (3)

wθ = vθ − u (4)

wm = vm (5)

w =
√

w2
θ + w2

m (6)

β = arctan
(

wθ

wm

)
(7)

The velocity triangles at the outlet of each cascade are computed according to Equations (8)–(13),
where the subscripts that refer to outlet conditions have been dropped for simplicity. The relative
velocity w and flow angle β at the outlet of each cascade are provided as an input for the model.

wθ = w sin
(

β
)

(8)

wm = w cos
(

β
)

(9)

vθ = wθ + u (10)

vm = wm (11)

v =
√

v2
θ + v2

m (12)

α = arctan
(

vθ

vm

)
(13)

2.4.2. Thermodynamic Properties

The axial turbine model was formulated in a general way and the thermodynamic properties of
the working fluid can be computed with any set of equations of state that supports enthalpy–entropy
function calls. In this work, the REFPROP fluid library was used for the computation of thermodynamic
and transport properties [24].

The stagnation state at the inlet of the first stator (for instance temperature and pressure) is an input
for the model and the corresponding static state is determined according to Equations (14) and (15).
The remaining static properties at the inlet of the first stator are determined with enthalpy–entropy
function calls to the REFPROP library, see Equation (16). The static thermodynamic properties at the
inlet of all the other cascade are obtained from the outlet of the previous cascade.

hin = h0,in −
1
2

v2
in (14)

sin = s
(

p0,in, h0,in
)

(15)

[T, p, ρ, a, µ] in = [T, p, ρ, a, µ] (hin, sin) (16)

The thermodynamic properties at the outlet of each cascade are computed using the fact that
rothalpy is conserved both in rotor and stator cascades [9] (pp. 10–11). For purely axial turbines
(constant mean radius), the conservation of rothalpy is reduced to the conservation of relative
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stagnation enthalpy, and the static enthalpy at the outlet of each cascade can be computed according
to Equation (17). In addition, the entropy at the outlet of each cascade is provided as an input to the
model. Therefore, any other static thermodynamic property can be determined with enthalpy–entropy
function calls to the REFPROP library, Equation (18).

hout = hin +
1
2

w2
in −

1
2

w2
out (17)

[T, p, ρ, a, µ] out = [T, p, ρ, a, µ] (hout, sout) (18)

2.4.3. Cascade Geometry

The geometry of the annulus is obtained from the principle of conservation of mass and geometric
relations, Equations (19)–(23), where the mass flow rate ṁ is given as an input for the model.
These equations are valid both for the inlet and outlet of the cascade and the subscripts were not
included for simplicity.

A =
ṁ

ρ vm
(19)

H =
A

2πr
(20)

rh = r− H/2 (21)

rt = r + H/2 (22)

λ =
rh
rt

(23)

The mean blade height of the cascade is determined as the arithmetic mean of the blade height at
the inlet and outlet of the cascade,

H =
1
2
(Hin + Hout) (24)

The blade chord is determined from the blade aspect ratio (input variable) and the mean blade height
using Equation (25). Similarly, the blade pitch (also known as spacing) is determined from the pitch to
chord ratio (input variable) and the blade chord according to Equation (26).

c =
H

(H/c)
(25)

s = c · (s/c) (26)

The incidence i and deviation δ angles are assumed to be zero and, therefore, the metal angle at
the inlet and outlet of each cascade are given by Equations (27) and (28), respectively.

θin = βin − i = βin (27)

θout = βout − δ = βout (28)

The blade opening is given by Equation (29). This equation is an approximation that neglects the
effect or the curvature of the blade suction surface [1] (pp. 343–344).

o ≈ s · cos (θout) (29)
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The maximum blade thickness is computed according to the formula proposed by Kacker and
Okapuu [23] that correlates the blade maximum thickness to chord ratio with the camber angle as
given by Equation (30). The blade camber angle is defined as ∆θ = |θin − θout|.

(tmax/c) =





0.15 for ∆θ ≤ 40◦

0.15 + 1.25 · 10−3 · (θ − 40) for 40◦ ≤ ∆θ ≤ 120◦

0.25 for ∆θ ≥ 120◦
(30)

The stagger angle is computed according to Equation (31), which assumes that circular-arc blades
are used, Dixon and Hall [9] (p. 72). Alternatively, the stagger angle could be computed using the
graphical relation proposed by Kacker and Okapuu [23] or given as an input for the model. The axial
chord of the blades is determined using the geometric relation given by Equation (32).

ξ =
1
2
(θin + θout) (31)

b = c · cos (ξ) (32)

The axial chord and blade height difference between inlet and outlet are used to compute the
flaring angle of the cascade according to Equation (33).

tan (δfl) =
Hout − Hin

2 b
(33)

The trailing edge thickness is computed using the trailing edge thickness to opening ratio
(input variable) and the cascade opening according to Equation (34).

tte = o · (tte/o) (34)

In addition, the axial spacing between cascades sc can be computed as fraction of
the axial chord. However, this variable does not affect the performance predicted by the
model because the Kacker and Okapuu [23] loss correlations neglect the influence of this
parameter. Saravanamuttoo et al. [1] (pp. 332–333) suggests that axial spacing to chord ratios between
0.20 and 0.50 are satisfactory. Finally, the tip clearance height of the rotor blades tcl is given as a fixed
input to the model that depends on manufacturing limits. The geometry relations presented in this
section allow a description of the turbine geometry in a level of detail that is adequate for preliminary
design purposes. A more detailed design of the turbine geometry, such as the definition of the shape
of the blades, requires more advanced mathematical models based on the fluid dynamics within the
turbine rather than the algebraic loss models used in this work.

2.5. Loss Model

During the preliminary design phase, it is common to use empirical correlations to estimate the
losses within the turbine. These sets of empirical correlations are known as loss models. Losses can
be interpreted as any mechanism that leads to entropy generation within the turbine (which in turn
reduces the power output), such as viscous friction in boundary layers or shock waves. See the work
by Denton [25] for a detailed description of loss mechanisms in turbomachinery.

Perhaps, the most popular loss model for axial turbines is the one proposed by
Ainley and Mathieson [26,27] and its subsequent refinements by Dunham and Came [28]
and Kacker and Okapuu [23]. The Kacker–Okapuu loss model has been further refined to account for
off-design performance by Moustapha et al. [29] and by Benner et al. [30]. One of the remarkable aspects
of the Ainley–Mathieson family of loss methods is that it has been updated with new experimental
data several times since the first version of the method was published. This was not the case for
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other loss prediction methods such as the ones proposed by Balje and Binsley [31], Craig and Cox [32],
Traupel [33], or Aungier [34]. A comprehensive review of different loss models is given by Wei [35].

In this work, the Kacker and Okapuu [23] loss model was selected because of its popularity
and maturity. The improvements of this loss model to account for off-design performance were not
considered because the axial turbine methodology proposed in this paper is meant for the optimization
of design performance. The Kacker–Okapuu loss model is described in detail in Appendix A.
The formulation of the loss model has been adapted to the nomenclature and sign conventions
used in this work for the convenience of the reader.

As described by Denton [25] and by Dahlquist [36], there are several definitions for the loss
coefficient. In this work, the stagnation pressure loss coefficient was used because the Kacker–Okapuu
loss model was developed using this definition. This loss coefficient is meaningful for cascades with
a constant mean radius and it is defined as the ratio of relative stagnation pressure drop across the
cascade to relative dynamic pressure at the outlet of the cascade, Equation (35). This definition is valid
for both rotor and stator cascades.

Y =
p0rel,in − p0rel,out

p0rel,out − pout
(35)

In general, the loss coefficient computed from its definition, Equation (35), and the loss coefficient
computed using the loss model, Appendix A, will not match for an arbitrary set of input parameters.
In Section 4, the turbine design is formulated as an optimization problem that uses equality constraints
to ensure that the value of both loss coefficients matches for each cascade. The loss coefficient error is
given by Equation (36).

Yerror = Ydefinition −Yloss model (36)

2.6. Diffuser Model

The diffuser model is based on the transport equations for mass, meridional and tangential
momentum, and energy in an annular channel. It assumes that the flow is one-dimensional
(in the meridional direction), steady (no time variation), and axisymmetric (no tangential variation).
The model can use arbitrary equations of state and it accounts for effects of area change,
heat transfer, and friction. Under these conditions, the governing equations of the flow are given
by Equations (37)–(40). The detailed derivation of these equations and a discussion of the physical
meaning of the different terms is presented in the Appendix of Agromayor et al. [10].

vm
dρ

dm
+ ρ

dvm

dm
= −ρvm

b̂ r̂
d

dm
(b̂ r̂) (37)

ρvm
dvm

dm
+

dp
dm

=
ρv2

θ

r̂
sin (φ)− 2τw

b̂
cos (α) (38)

ρvm
dvθ

dm
= −ρvθvm

r̂
sin (φ)− 2τw

b̂
sin (α) (39)

ρvm
dp
dm
− ρvm a2 dρ

dm
=

2(τwv + q̇w)

b̂
(

∂e
∂p

)
ρ

(40)

The viscous term is modeled using a constant skin friction coefficient Cf such that τw = Cf
ρv2

2
and heat transfer is neglected, q̇w = 0. The geometry of the diffuser was modeled in a simple way
assuming that the inner and outer surfaces are straight, see Figure 1d. For this particular geometry,
the diffuser channel height b̂ and mean radius r̂ are given by Equations (41) and (42), where the mean
cant angle φ and divergence semi-angle δ are given as input parameters.

r̂(m) = r̂ in + m sin (φ) = r + m sin (φ) (41)

b̂(m) = b̂ in + 2m tan (δ) = H out / cos (φ) + 2m tan (δ) (42)
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The initial conditions required to integrate the system of ordinary differential equations (ODE)
are prescribed assuming that the thermodynamic state and velocity vector do not change from the
turbine outlet to the diffuser inlet. The integration starts from the initial conditions and stops when the
prescribed value of outlet to inlet area ratio AR is reached. In this work, the MATLAB function ode45
was used to perform the numerical integration [37]. This function uses an automatic-stepsize-control
solver that combines fourth and fifth order Runge–Kutta methods to control the error of the solution.

In general, the static pressure that is given as a design specification from a system analysis will
not match the pressure at the outlet of the diffuser computed by the model. In Section 4, the turbine
design is formulated as an optimization problem that uses an equality constrain to ensure that the
static pressure at the outlet of the diffuser and the target pressure match. The dimensionless outlet
static pressure error is given by Equation (43).

perror =
pdiff

out − ptarget

ptarget
(43)

3. Validation of the Axial Turbine Model

The aim of this section is to validate the axial turbine model presented in Section 2 using the
experimental data of the one- and two-stage turbines reported by Kofskey and Nusbaum [38]. The flow
in both turbines is subsonic and they use air as working fluid. To validate the model, the geometry and
operating conditions reported by Kofskey and Nusbaum [38] were replicated and the design-point
performance of both test cases was compared with the output of the model, see Table 2. The inlet
thermodynamic state, angular speed, and total-to-static pressure ratio were matched at the design
point and the validation was performed analyzing the deviation in mass flow rate, power output,
and total-to-static isentropic efficiency. This approach is consistent with the definition of the design
point given by Kofskey and Nusbaum [38]. The data reported in Table 2 shows that the agreement
between the predicted and measured mass flow rates and power outputs is satisfactory and that
the relative deviation is less than 1.2% for both turbines. In addition, the deviation of total-to-static
isentropic efficiency between model and experiment is 1.15 percentage points for the one-stage turbine
and 0.60 points for the two-stage turbine, which is within the efficiency-prediction uncertainty of the
loss model of ±1.5 percentage points [23]. The turbines reported in [38] did not have a diffuser to
recover the exhaust kinetic energy and therefore could not be used to validate the diffuser model.
Nevertheless, the diffuser model used in this work has been validated in a previous publication [10].

The analysis presented in this section showed that the axial turbine model can be used to predict
the design-point performance of turbines with one or more stages. However, the validation was
restricted to subsonic turbines using air as working fluid and it is likely that the efficiency predictions
will not be as accurate for turbines with transonic–supersonic cascades or when the fluid behavior
deviates from ideal gas, such as in Rankine cycles using organic fluids with high molecular mass or in
supercritical carbon dioxide power systems.
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Table 2. Validation of the axial turbine model against experimental data.

Number of Stages Variable a,b,c Kofskey and Nusbaum [38] Present Work Deviation

1 stage

T01 22.5 ◦C Same n.a.
p01 1.380 bar Same n.a.
PR 2.298 Same n.a.
ω 15,533 rpm Same n.a.
ṁ 2.695 kg/s 2.729 kg/s 0.91%
Ẇ 136.17 kW 135.03 kW −0.42%
ηts 80.00% 78.85% 1.15 points

2 stages

T01 25.8 ◦C Same n.a.
p01 1.240 bar Same n.a.
PR 4.640 Same n.a.
ω 15,619 rpm Same n.a.
ṁ 2.407 kg/s 2.434 kg/s 1.12%
Ẇ 212.06 kW 211.10 kW −0.46%
ηts 82.00% 81.40% 0.60 points

a Kofskey and Nusbaum [38] reported the turbine performance in terms of equivalent variables. These were
converted to ordinary variables using ambient conditions at sea level (101.325 kPa and 288.15 K). b The power
output is computed from the measured torque and angular speed. c The total-to-static isentropic efficiency is a
dependent variable that is computed from the thermodynamic conditions, mass flow rate, and power output.

4. Optimization Problem Formulation

The sub-models presented in Section 2 can be integrated to formulate the design of the turbine as
a nonlinear, constrained optimization problem. To formulate this problem, it is necessary to specify: (1)
the objective function to be optimized, (2) the independent variables and fixed parameters, and (3) the
inequality and equality constraints that limit the design space. Once the problem is formulated, it is
possible to find the optimal solution that satisfies the constraints using a numerical algorithm.

4.1. Objective Function

The objective function is any indicator of interest that must be minimized or maximized. In this
work the total-to-static isentropic efficiency was used as objective function because it is assumed that
the kinetic energy at the outlet of the diffuser is wasted [9] (pp. 23–24). The total-to-static isentropic
efficiency is given by Equation (44), where the subscripts 1 and 2 refer to the states at the inlet and
outlet of the turbine, respectively, and the subscript s refers to an isentropic expansion.

ηts =
h01 − h02

h01 − h2s
(44)

4.2. Independent Variables

The choice of independent variables is not unique and different sets of variables can be used to
formulate the same problem. Ideally, it should be easy to provide a set of independent variables and
this set should allow computation of the dependent variables in a sequential way, avoiding iterations
when the model is evaluated. In addition, it is preferable to use a set of independent variables that
is not poorly scaled, Nocedal and Wright [39] (pp. 26–27). An appropriate scaling of the problem
increases the convergence rate of some algorithms and will reduce the numerical rounding error when
the gradient of the objective function and constraints are evaluated using finite differences.

Table 3 shows the set of independent variables adopted in this work as well as the lower and
upper bounds that were used to formulate the optimization problem for the case study discussed in
Section 5. This formulation uses 6 independent variables per cascade (or 12 independent variables
per stage) plus three additional global independent variables. This set of independent variables is
well-scaled (all variables have a similar order of magnitude) and it allows evaluation of the turbine
model in a sequential way without inner iterations from the inlet of the first stator to the exit of the
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diffuser. The lower and upper bounds of the independent variables were selected to span a large
design space that respects the range of applicability of the Kacker and Okapuu [23] loss system.

The specific speed and specific diameter were selected as independent variables instead of the
angular speed and mean diameter because they have an order of magnitude of unity and it is easier
to provide a reasonable initial guess since they are independent of the scale of the problem [31].
The definitions of the specific speed and diameter are given by Equations (45) and (46). The angular
speed and mean diameter can be readily obtained from their specific counterparts.

Table 3. Optimization problem formulation and definition of the reference cases.

Fixed parameters

Number of stages N = 1 –
Isentropic power output Ẇs = 250|5000 kW
Turbine inlet stagnation temperature T01 = 155 ◦C
Turbine inlet stagnation pressure p01 = 36.2 bar
Turbine outlet static pressure p2 = 15.85 bar
Tip clearance height tcl = 0.50 mm
First stator inlet flow angle αin = 0.0 deg
Diffuser mean cant angle φ = 30.0 deg
Diffuser divergence semi-angle δ = 5.0 deg
Diffuser area ratio AR = 2.5 –
Diffuser skin friction coefficient Cf = 0.010 –

Independent variables

Specific speed ωs ∈ [0.10, 10.0] –
Specific diameter ds ∈ [0.10, 10.0] –
Normalized first stator inlet velocity vin/v0 ∈ [0.01, 1.00] –
Normalized outlet relative velocity a wout/v0 ∈ [0.01, 1.00] –
Outlet relative flow angle (stator) a βout, S ∈ [+40.0, +80.0] deg
Outlet relative flow angle (rotor) a βout, R ∈ [−80.0,−40.0] deg
Normalized outlet entropy a,c sout/sin ∈ [1.00, sref/sin] –
Aspect ratio a H/c ∈ [1.00, 2.00] –
Pitch to chord ratio a s/c ∈ [0.75, 1.10] –
Trailing edge thickness to opening ratio a tte/o ∈ [0.05, 0.40] –

Nonlinear constraints

Inlet relative flow angle (stator) a βin, S ≤ +15.0 deg
Inlet relative flow angle (rotor) a βin, R ≥ −15.0 deg
Flaring angle a δfl ∈ [−10.0, +10.0] deg
Hub-to-tip ratio b λ ∈ [0.60, 0.95] –
Cascade pressure ratio a PR c ≥ 1.00 –
Diffuser inlet meridional Mach number Madiff

m, in ≤ 1.00 –
Outlet static pressure error perror = 0.00 –
Cascade loss coefficient error a Yerror = 0.00 –

a One value per cascade (rotor or stator). b Two values per cascade (inlet and outlet). c sref corresponds the
outlet entropy assuming ηref

ts = 50%.

ωs = ω

(
ṁ/ρ2s

)1/2

(h01 − h2s)
3/4 (45)

ds = d
(h01 − h2s)

1/4

(ṁ/ρ2s)1/2 (46)
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In addition, the flow velocities were normalized using the isentropic velocity (also known as
spouting velocity), see Equation (47), and the entropies were normalized using a reference entropy
value computed assuming an isentropic turbine efficiency, see Equations (48) and (49).

v0 =
√

2 (h01 − h2s) (47)

sref = s(p2, href) (48)

href = h01 − ηref · (h01 − h2s) (49)

The remaining independent variables did not need to be scaled.

4.3. Fixed Parameters

To compute the dependent variables, it is also necessary to provide several fixed parameters that
will not change during the optimization. Table 3 contains the set of fixed parameters that are used as
input for the axial turbine model as well as the numerical values used for the case study.

The isentropic power output, given by Equation (1), and thermodynamic boundary conditions
are kept constant because they are given by the system design requirements, see Section 2.3. It is
interesting to note that the set of independent variables is dimensionless and that the isentropic power
output (or the mass flow rate) is the variable that scales-up the problem.

The flow angle at the inlet of the first stator was not selected as an optimization variable because
it was assumed that there is no swirl at the inlet of the turbine and the tip clearance height was set as a
fixed parameter because it is given by manufacturing limits. Finally, the diffuser model inputs were
set as fixed parameters because the total-to-static isentropic efficiency is a monotonic function of these
variables, see Agromayor et al. [10].

4.4. Constraints

In addition to the bounds for the degrees of freedom, the axial turbine model includes nonlinear
equality and inequality constraints to guarantee that the model is consistent and that the design is
feasible. These constraints and the numerical values used for the case study are summarized in Table 3.
Depending on each application, it is possible to implement additional constraints for the model or to
ignore some of the constraints suggested in Table 3. The pressure ratio in each cascade was constrained
to avoid compression within the turbine (this is equivalent to constrain the degree of reaction between
zero and one) and the constraint on the flaring angle was set to avoid flow separation close to the
annulus walls [26]. In addition, the constrains for the inlet relative flow angles were imposed to avoid
blades with too low deflection [23]. The meridional component of the Mach number at the inlet of the
diffuser was constrained to ensure that the ODE system of the diffuser model, Equations (37)–(40),
is not singular [10].

The constrain for the hub-to-tip ratio was set because the hub-to-tip ratio is a dependent variable
that the designer might want to control since it has a great influence on the optimal angular speed
and diameter, on the aerodynamic design of the blades (radial variation of flow angles), and on the
centrifugal and gas bending stresses [1].

Finally, as discussed in Sections 2.5 and 2.6, equality constrains were imposed on the loss
coefficient error and the outlet static pressure error to ensure that the model is consistent.

4.5. Optimization Algorithm

The are two main families of optimization methods, gradient-based method and direct search or
derivative-free methods. Gradient-based methods are suitable for problems that are continuous and
smooth, and they use derivative information of the objective function and constraints to determine
the next iterate, while direct search methods use only sampled values of the objective function
and constraints. For this reason, direct search methods can be used when gradient information



Int. J. Turbomach. Propuls. Power 2019, 4, 32 14 of 29

is not available or to solve non-smooth or even discontinuous problems. However, direct search
methods have slower convergence rates and they are not well suited to handle problems with equality
constraints [39] (pp. 220–223).

The axial turbine model proposed in this work is continuous and smooth, except for some
of the equations of the loss model that are not differentiable (piece-wise functions or functions
involving absolute values), see Appendix A. Despite these non-smooth points, experience shows that
the optimization problem can be solved successfully using gradient-based optimization algorithms.
In particular, the sequential quadratic programming algorithm of the MATLAB Optimization Toolbox
was used to optimize the axial turbine design [40].

4.6. Optimization Strategy

Once the optimization problem is formulated it is possible to find the optimal solution that
satisfies the constraints using a numerical algorithm. The optimization strategy for axial turbines is
summarized in Figure 3. The optimization requires an initial guess for the independent variables
and the values of the fixed parameters listed in Table 3. In addition, it is necessary to specify the
choice of optimization algorithm and the tolerances for the termination criteria. In the first iteration,
the optimization algorithm uses the initial guess to evaluate the axial turbine model. Once the axial
turbine model is evaluated, the gradients of the objective function and the constraints are calculated
by finite differences and they are used by the optimization algorithm to determine the values of the
independent variables in the next iteration. This process is repeated until the solution meets the
termination criteria and the optimal turbine design is saved.

Yes
Optimality 
conditions 
achieved?

Axial turbine model

   – Cascade model
   – Loss model
   – Diffuser model

Optimization 
algorithm

Save 
results

Compute 
objective 

function and 
constraints

Problem formulation

 – Objetive function
 – Independent variables

Initial guess
Bounds

 – Fixed parameters
 – Constrains
 – Optimization algorithm
 – Termination criteria

Update 
independent 

variables
No

Figure 3. Axial turbine optimization strategy flow diagram.

5. Optimization of a Case Study

The aim of this section is to assess the optimization methodology proposed in this work. To do
this, the model was tested against two reference axial turbine optimization problems presented in
Macchi and Astolfi [41]. The two cases consider pentaflueroethane (R125) expanding from 155 ◦C and
36.2 bar (stagnation properties) to 15.85 bar (static pressure). The mass flow rate is selected to achieve
an isentropic power of 250 kW in the first case and 5000 kW in the second case. These two case studies
are representative of a small-scale and a large-scale Rankine cycles used to generate power from a
low-temperature heat source as in a geothermal, solar, biomass, or waste heat recovery application [5].

The values of the fixed parameters, bounds of the optimization variables, and the nonlinear
constrains used to formulate the optimization problem are summarized in Table 3. The minimum
hub-to-tip ratio constraint is always active at the exit of the last rotor, see Section 6.3, and it has a
great influence on the optimal angular speed and diameter. For this reason, the comparison of optimal
speed and diameter will only be fair if the minimum hub-to-tip ratio is the same as in the reference
case. The value λmin = 0.60 reported in Table 3 is the same value used by Macchi and Astolfi [41]
(the minimum-hub-to tip ratio used by Macchi and Astolfi was not reported in the original publication,
but it was confirmed by M. Astolfi in a personal communication).
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The results of the optimization for the two cases considered are shown in Table 4. It can be
observed that the optimal angular speed and diameter of the reference case agree well with the results
obtained with the turbine model presented in this work and that the maximum relative deviation is
less than 6%. In addition, the model presented in this work captures the trend of the angular speed
and diameter as the power output changes. The values of total-to-static efficiency from the reference
case and the ones obtained in the present work are comparable although there are is a difference of
2.07 and 0.83 percentage points in the small-scale and large-scale cases, respectively. This difference is
not surprising considering that the Craig and Cox [32] loss model was used in the reference case while
the Kacker and Okapuu [23] model was used in the present work and that the efficiency-prediction
uncertainty of these empirical loss models is approximately ±1.5 percentage points, if not higher [23].

Table 4. Output of the optimization methodology for two reference optimization problems.

Isentropic Power Variable Macchi and Astolfi [41] Present Work Deviation

Ẇs = 250 kW

ω 31,000 rpm 29,231 rpm −5.71%
d 0.086 m 0.087 m 1.27%

Ẇ 219.3 kW 224.4 kW 2.36%
ηts 87.70% 89.77% 2.07 points

Ẇs = 5000 kW

ω 6000 rpm 6144 rpm 2.40%
d 0.420 m 0.395 m −5.87%

Ẇ 4535.0 kW 4576.5 kW 0.92%
ηts 90.70% 91.53% 0.83 points

6. Sensitivity Analysis

This section contains a sensitivity analysis of the 5000 kW reference case analyzed in the
previous section to gain insight about the impact of several input parameters on turbine performance.
The next subsections investigate the influence of: (1) isentropic power output, (2) tip clearance
height, (3) minimum hub-to-tip ratio, (4) diffuser area ratio, (5) diffuser skin friction coefficient,
(6) total-to-static pressure ratio, (7) number of stages and (8) angular speed and mean diameter on
the total-to-static isentropic efficiency. Each of the analyses of this section studies the influence of
these variables on the optimal solution while all other fixed parameters are the same as in the 5000 kW
reference case summarized in Table 3. The ranges of the variables were selected to cover a wide span
of flow conditions and they are justified in each subsection. Other variables were not considered for
the sensitivity analysis because they have a secondary influence on turbine performance or because
they are inactive constraints.

6.1. Influence of Isentropic Power

The isentropic power output was varied from 10 kW to 10 MW and the maximum attainable
total-to-static efficiency is shown in Figure 4a,b. This range of power output was selected to cover
a wide spectrum of turbine scales. According to the classification for Rankine power systems using
organics working fluids proposed by Colonna et al. [5], this range of power output covers the mini,
small, medium, and large power capacities.

It can be observed that the efficiency increases monotonously with the isentropic power and
that the effect is more marked when the power output is small. The reason for this is that the size
of the turbine increases and therefore: (1) the blade height H increases and the tcl/H ratio decreases,
which in turn reduces the tip clearance loss coefficient, see Equation (A19), and (2) the blade chord
of the cascades increases, which in turn increases the Reynolds number and reduces the profile loss
coefficient, see Equation (A1).
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(a) Influence of the tip clearance height. (b) Influence of the minimum hub-to-tip ratio constraint.

Figure 4. Total-to-static isentropic efficiency as a function of the isentropic power output and (a) tip
clearance height or (b) minimum hub-to-tip ratio constraint.

6.2. Influence of Tip Clearance

Figure 4a shows the total-to-static efficiency as a function of the isentropic power when the tip
clearance height is varied from 0.00 mm (no clearance) to 1.00 mm (high clearance). It can be observed
that the isentropic efficiency decreases when the tip clearance is increased and that the trend is not
linear. For instance, increasing the tip clearance from 0.00 mm to 0.25 mm penalizes the efficiency more
than from 0.25 to 0.50 mm.

It can also be seen that the efficiency drop due to tip clearance is more marked when the isentropic
power is low because the ratio tcl/H is increased both due to blade height reduction and tip clearance
increase. In addition, note that total-to-static efficiency increases with the isentropic power output
even for the case when the rotor tip clearance is zero due to Reynolds number effects.

6.3. Influence of the Hub-to-Tip Ratio

The influence of the lower limit for the hub-to-tip ratio constraint on the turbine performance as a
function of the isentropic power is shown in Figure 4b, where the low value λ = 0.40 is representative
of low-pressure steam turbine stages and the high value λ = 0.80 is representative of gas turbines or
high-pressure steam turbine stages. The results of the optimization showed that the constraint for the
minimum hub-to-tip ratio is always active at the outlet of the turbine, i.e., the turbine model proposed
in this work predicts that the isentropic efficiency will always increase when the allowable lower limit
for the hub-to-tip ratio is decreased.

The reason for this is that the blade height is increased when the minimum hub-to-tip ratio
decreases and, as a result of this, (1) the tip clearance to blade height ratio tcl/H and the clearance loss
coefficient decrease and (2) for a fixed aspect ratio, the blade chord and Reynolds number increase
and the profile loss coefficient is reduced. In addition, the channel height of the diffuser increases
according to b̂in = H out / cos (φ), see Figure 1d. This in turn reduces the friction losses in the diffuser
because the channel height appears in the denominator of the friction terms of the diffuser model,
Equations (38)–(40). The effect of the hub-to-tip ratio on the friction losses of the diffuser agrees with
the results obtained by the authors in a previous work [10], but its impact on the isentropic efficiency
is marginal compared with the impact of profile and tip clearance losses.

6.4. Influence of the Diffuser Area Ratio

The effect of the diffuser area ratio on the total-to-static isentropic efficiency is shown in Figure 5a,b.
The limits of the area ratio were selected to include cases ranging from the absence of diffuser (AR = 1),
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to cases where a large fraction of the kinetic energy is recovered (AR = 5). This upper limit was
selected because, for the case of inviscid, incompressible flow with no inlet swirl, a diffuser with an
area ratio of AR = 5 would recover 96% of the available dynamic pressure [10].

Both Figure 5a,b show that the isentropic total-to-static efficiency increases with the area ratio in
an asymptotic way. A small increase of area ratio from the case with no diffuser (AR = 1) increases
the total-to-static efficiency significantly, whereas, as the area ratio is higher, the improvement of
isentropic efficiency becomes less marked because there is less kinetic energy to recover at the diffuser
exit. The results of the optimization showed that using an area ratio in the range 2.0–2.5 achieves
70–80% of the maximum efficiency gain. In addition, it was found that the optimum absolute flow
angle at the outlet of the last rotor was very close to zero (no swirl) for all cases, regardless of the area
ratio of the diffuser.

(a) Influence of the skin friction coefficient. (b) Influence of the pressure ratio.

Figure 5. Total-to-static isentropic efficiency as a function of the diffuser area ratio and (a) skin friction
coefficient or (b) pressure ratio.

6.5. Influence of the Skin Friction Coefficient

To the knowledge of the authors, there are no correlations available to predict the skin
friction coefficient for annular channels with swirling flow. However, it is possible to estimate a
reasonable value for the skin friction coefficient based on experimental data from vaneless diffusers
without flow separation. Brown [42] measured the local skin friction coefficient for different
vaneless diffusers and obtained values in the range 0.003–0.010. In the absence of better estimates,
Johnston and Dean [43] recommend values within the range 0.005–0.010 for the global skin friction
coefficient. In a similar way, Dubitsky and Japikse [44] suggest 0.010 as a reasonable estimate for
the global skin friction coefficient, but noted that values from 0.005 to 0.020 were required to fit
experimental data, depending on the application.

In this section, the friction factor was varied from 0.000 (frictionless) to 0.030 (high friction) and
the impact on the turbine total-to-static isentropic efficiency is shown in Figure 5a as a function of the
area ratio. This range of skin friction factor is representative of well-designed diffusers with attached
boundary layers. If the adverse pressure gradient is too high and causes flow separation, the friction
losses in the diffuser would increase significantly reducing the pressure recovery and the turbine
total-to-static isentropic efficiency [45].

It can be observed that increasing the friction factor decreases the total-to-static isentropic
efficiency in a linear way (the different curves are equispaced). In addition, the impact of friction
factor on the efficiency drop is more notable as the area ratio is high because the length of the channel
increases. However, the effect of the friction factor has only a modest impact on the total-to-static
efficiency as it causes an efficiency drop of ∼0.3 percentage points for the worst case of Figure 5a.
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6.6. Influence of the Total-to-Static Pressure Ratio

The effect of the pressure ratio as a function of the diffuser area ratio is shown in Figure 5b.
The pressure at the outlet of the turbine was kept constant and the pressure at the inlet was varied
to achieve pressure ratios ranging from PR = 2 (subsonic flow) to PR = 10. It can be observed
that increasing the pressure ratio from PR = 2 to PR = 4 causes a small efficiency drop and that
further increasing the pressure ratio to PR = 6 causes a much larger efficiency drop. The reason for
this is that the Mach number at the outlet of the cascades becomes higher than unity when PR ≈ 4
and the supersonic correction factor of the Kacker and Okapuu [23] loss system, see Equation (A4),
penalizes the total-to-static isentropic efficiency.

In addition, Figure 5b also shows that the total-to-static isentropic efficiency of turbines without
diffuser deteriorates rapidly when the pressure ratio is increased. This is because increasing the turbine
pressure ratio increases the flow velocities within the turbine and the amount of kinetic energy that is
potentially wasted at the outlet. This highlights the importance of using a diffuser when the pressure
ratio is high.

6.7. Influence of the Number of Stages

Figure 6 shows the total-to-static efficiency of turbines with one, two, and three stages as a
function of the pressure ratio. Again, the pressure ratio was achieved varying the pressure at the inlet
of the turbine while keeping the outlet pressure constant. However, in this case, the upper limit of the
pressure ratio increased to PR = 14.

In can be seen that there is a peak of efficiency and that the performance deteriorates rapidly when
the pressure ratio increases beyond this point because the flow becomes supersonic and the Mach
number correction factor penalizes the profile loss coefficient, see Equation (A4). Moreover, the range
of pressure ratios for which the isentropic efficiency is high becomes wider as the number of stages
increase because the expansion can be distributed over more cascades and the number of optimization
variables increases.

Figure 6. Influence of the pressure ratio and number of stages.

6.8. Influence of the Angular Speed and Diameter

The results presented in the previous subsections correspond to the optimal values of angular
speed and diameter because the specific speed and specific diameter were independent optimization
variables with inactive upper and lower bounds. Depending on the application, it might not be
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possible to achieve the point of optimal angular speed and diameter because of technical constraints
that were not considered in the analysis such as the frequency of the electrical grid, mechanical stress,
or space limitations. The objective of this section is to analyze the impact of using a non-optimal
angular speed and diameter on the total-to-static efficiency of the turbine. To make the conclusions
general, the analysis is presented in terms of dimensionless variables.

Figure 7 shows the contours of maximum total-to-static isentropic efficiency in the ωs-ds plane for
the 5000 kW reference case of Table 3. In this diagram, often referred as Baljé diagram, the specific speed
and specific diameter are regarded as fixed parameters while the rest of the independent optimization
variables are free. It can be observed that there exist an optimum specific speed and specific diameter
that maximize the total-to-static isentropic efficiency. In addition, there is a narrow region where
the efficiency is close to its maximum value and that moving away from this region leads to a rapid
decrease in efficiency. Interestingly, the loci of maximum efficiencies are approximately given by the
hyperbola of Equation (50).

1
2
(ωs ds) = u/

√
∆hs = 1 (50)

This suggests that the efficiency penalty away from the point of optimal specific speed and specific
diameter is small if the dimensionless blade velocity u/

√
∆hs is close to unity. This simple result can

be explained from Euler’s turbomachinery equation and the behavior of the solutions that maximize
efficiency. On the one hand, close-to-optimal solutions tend to minimize the swirling kinetic energy
lost at the exit of the turbine, see Section 6.4. As a consequence, the absolute flow angle and tangential
velocity at the rotor exit are close to zero (αout → 0 and vθ, out → 0). On the other hand, close-to-optimal
solutions also tend to have a relative flow angle at the inlet of the rotor that is close to zero (βin → 0)
because the Kacker and Okapuu [23] loss system predicts low profile losses for reaction blades with
small relative inlet angles, see Equation (A7). As a result, of this, the absolute tangential velocity at the
inlet of the rotor approaches the blade velocity (vθ in → u).

Figure 7. Balje diagram of the reference case.

Under these conditions, the actual enthalpy change approaches the isentropic enthalpy change
(∆h → ∆hs) and Euler’s turbomachinery equation, Equation (51), is reduced to Equation (52),
which corresponds to the hyperbola of maximum efficiencies in the Baljé diagram.
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∆h = [u vθ ] in,R − [u vθ ] out,R (51)

∆hs = u2 ⇒ u√
∆hs

=
1
2
(ωs ds) = 1 (52)

This analysis was valid for single-stage turbines, but it can be extended to turbines with more than
one stage. For the case of a multistage turbine, it was observed that the loci of maximum efficiencies
are approximately given by the hyperbola of Equation (53). This relation can also be explained from
Euler’s turbomachinery when vθ, out → 0 and vθ, in → u hold for every stage.

1
2
(ωs ds) = u/

√
∆hs =

1√
N

(53)

To assess the validity of this result, the optimal blade speed predicted by Equation (53) was
compared with the results of numerical optimization for different isentropic power outputs ranging
between 10 kW and 10 MW and different pressure ratios ranging between 2 and 14, see Table 5. It can
be observed that location of the point of maximum efficiency predicted by Equation (53) agrees well
(relative deviation <4%) with the optimization results for axial turbines of 1, 2, and 3 stages regardless
of the pressure ratio and the isentropic power output.

Table 5. Comparison of the suggested optimal specific blade speed with the optimization results.

Variable Sample
Points a

Number
of Stages

Proposed
1
2 (ωs ds)ref

Optimization b

1
2 (ωs ds)mean

Relative
Error c

2 ≤ PR ≤ 14
37 1 1 0.978 3.22%
37 2 1/

√
2 0.706 1.56%

37 3 1/
√

3 0.592 0.90%

10 kW ≤ Ẇs ≤ 10 MW
23 1 1 1.014 2.05%
23 2 1/

√
2 0.725 1.42%

23 3 1/
√

3 0.599 1.29%
a Number of points (N) used to sample the PR and Ẇs intervals. b Computed according to 1

2N ∑i=N
i=1 (ωs ds)i

where the index i = 1, 2, . . . , N corresponds to each of the sample points. c Computed according to
1

(ωs ds)ref

√
1
N ∑i=N

i=1
[
(ωs ds)i − (ωs ds)ref

]2.

7. Conclusions

A mean-line model and optimization methodology for axial turbines with any number of stages
was proposed. The model was formulated to use arbitrary equations of state and empirical loss models
and it accounts for the influence of the diffuser on turbine performance using a one-dimensional
flow model proposed by the authors in a previous publication [10]. To the knowledge of the
authors, this was the first time that a diffuser model has been coupled with a mean-line model
for the optimization of axial turbines. The axial turbine preliminary design was formulated as
a constrained optimization problem and was solved using a sequential quadratic programming
algorithm. Employing a gradient-based algorithm (instead of a direct search one) allowed to use
equality constraints to integrate the cascade, loss, and diffuser sub-models in a simple way.

The model was validated against two test cases from the literature and it was found that the
deviation between experimental data and model prediction in terms of mass flow rate and power
output was less than 2.5% for both cases and that the deviation in total-to-static efficiency was only 0.27
percentage points for the one-stage case and 0.35 points for the two-stage case. It was also concluded
that the close match between measured and predicted efficiencies is probably incidental because the
uncertainty of the efficiencies predicted by the loss model is approximately ±1.5 percentage points.
In addition, the optimization methodology was applied to a case study from the literature and a
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sensitivity analysis was performed to investigate the influence of several design variables on the
total-to-static isentropic efficiency, gathering the following conclusions and design guidelines:

• The total-to-static isentropic efficiency increases when the tip clearance height decreases, and this
effect is more marked as the isentropic power output of the turbine decreases. This highlights the
importance of using small tip clearances in small-scale applications.

• The total-to-static isentropic efficiency increases when the minimum hub-to-tip ratio constraint is
reduced (this constraint is always active at the exit of the last rotor). However, reducing the
minimum hub-to-tip ratio also increases the centrifugal and gas bending stresses [1].
Therefore, the choice of minimum hub-to-tip ratio must be a trade-off between the fluid-dynamic
and the mechanical designs.

• The total-to-static isentropic efficiency increases with the diffuser area ratio in an asymptotic way,
regardless of the value of the diffuser skin friction coefficient, and the results of the optimization
showed that using an area ratio in the range 2.0–2.5 achieves 70–80% of the maximum efficiency
gain. Using a higher diffuser area ratio will increase the kinetic energy recovery and the power
output; but it will also increase the turbine footprint, which may be a disadvantage for applications
with space limitations.

• The total-to-static isentropic efficiency decreases when the pressure ratio is increased beyond a
certain value because the Kacker and Okapuu [23] loss model predicts an increase of the profile
loss coefficient when the flow becomes supersonic. This effect becomes less marked as the number
of stages increases because the expansion can be distributed over more cascades. In addition,
the total-to-static efficiency of turbines without diffuser deteriorates rapidly when the pressure
ratio is increased, highlighting the importance of using a diffuser when the pressure ratio is high.

• The results of the optimization showed that the maximum total-to-static isentropic efficiency is
attained when the absolute flow angle at the exit of the last stage is close to zero (no exit swirl),
regardless of the area ratio of the diffuser. This agrees with the conclusions drawn in a previous
work from the authors where the flow within the diffuser was examined in more detail [10].

• It was found that the efficiency penalty away from the point of optimal angular speed and
diameter, peak of the Baljé diagram, is small if the combination of specific speed and diameter
is close to the hyperbola given by ωs ds = 2/

√
N. This guideline can be used to select a suitable

combination of angular speed and diameter when one of these variables is imposed by technical
constraints such as the frequency of the electrical grid, mechanical stress, or space limitations.
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Nomenclature
Latin symbols
a Speed of sound m/s
A Flow area m2

AR Diffuser area ratio –
b Blade axial chord m
b̂ Diffuser channel height m
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c Blade chord m
Cf Diffuser skin friction coefficient –
d Turbine mean diameter m
ds Turbine specific diameter –
h Static specific enthalpy J/kg
h0 Stagnation specific enthalpy J/kg
∆hs Total-to-static isentropic specific enthalpy change J/kg
H Blade height m
ṁ Mass flow rate kg/s
N Number of turbine stages –
o Blade opening m
p Static pressure Pa
p0 Stagnation pressure Pa
PR Total-to-static pressure ratio –
q̇w Heat flux at the diffuser wall W/m2

r Turbine mean radius m
r̂ Diffuser mean radius m
rh Radius at the hub of the blades m
rt Radius at the tip of the blades m
s Blade pitch or specific entropy m or J/kg K
sc Cascade spacing m
T Static temperature K
T0 Stagnation temperature K
tcl Tip clearance height m
tmax Maximum blade thickness m
tte Trailing edge thickness m
u Blade velocity m/s
v Absolute flow velocity m/s
v0 Isentropic velocity (also known as spouting velocity) m/s
w Relative flow velocity m/s
Ẇ Actual power output W
Ẇs Isentropic power output W
Y Stagnation pressure loss coefficient –

Greek symbols
α Absolute flow angle ◦

β Relative flow angle ◦

δ Deviation angle or diffuser semi-divergence angle ◦

δfl Blade flaring angle ◦

ηts Total-to-static isentropic efficiency –
∆θ Camber angle ◦

θ Metal angle ◦

i Incidence angle ◦

λ Hub-to-tip radii ratio –
µ Dynamic viscosity Pa s
ξ Stagger angle (also known as setting angle) ◦

ρ Density kg/m3

τw Shear stress at the diffuser wall Pa
φ Diffuser mean wall cant angle or kinetic energy loss coefficient (φ2 + ∆φ2 = 1) ◦ or –
ω Angular speed rad/s
ωs Specific speed –

Abbreviations
CFD Computational Fluid Dynamics
ODE Ordinary Differential Equation

Subscripts
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0 Stagnation state
1 Inlet of the turbine
2 Outlet of the turbine
in Inlet of the cascade
out Outlet of the cascade
error Violation of an equality constraint
m Meridional direction
r Radial direction
ref Turbine exit state assuming a reference isentropic efficiency
rel Relative to the rotating frame of reference
s Isentropic expansion
x Axial direction
θ Tangential direction

Appendix A. Kacker–Okapuu Loss Model

This appendix describes the loss model proposed by Kacker and Okapuu [23] to compute
aerodynamic losses in axial turbines. This model is a refinement of the correlations proposed by
Ainley and Mathieson [26,27] and by Dunham and Came [28]. The general form of the Kacker-Okapuu
loss system given by Equation (A1).

Y = fRe fMa Yp + Ys + Ycl + Yte (A1)

The expressions used to compute each term of this equation as a function of the cascade geometry
and the thermodynamic and kinematic variables of the flow are presented in the next subsections.
Some of the signs from the original correlations were modified to comply with the angle convention
used in this work. These modifications are explicitly mentioned in the text.

Appendix A.1. Reynolds Number Correction Factor

The term fRe accounts for the effects of the Reynolds number and it is computed according to
Equation (A2).

fRe =





( Re
2·105 )

−0.40 for Re < 2 · 105

1 for 2 · 105 < Re < 1 · 106

( Re
1·106 )

−0.20 for Re > 1 · 106
(A2)

The Reynolds number is given by Equation (A3) and it is defined in terms of the chord length and
the density, viscosity, and relative velocity at the outlet of the cascade.

Re =
ρout wout c

µout
(A3)

Appendix A.2. Mach Number Correction Factor

The term fMa accounts for losses associated with supersonic flows at the trailing edge of the
blades and it is computed according to Equation (A4).

fMa =

{
1 for Ma rel

out ≤ 1
1 + 60 · (Ma rel

out − 1)2 for Ma rel
out > 1

(A4)

The Mach number is given by Equation (A5) and it is defined by the relative velocity and the
speed of sound at the outlet of the cascade.

Ma rel
out = wout/aout (A5)
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Appendix A.3. Profile Loss Coefficient

The profile loss coefficient Yp is computed according to Equation (A6).

Yp = 0.914 ·
(

2
3
·Y′p · Kp + Yshock

)
(A6)

The term Y′p is given by Equation (A7), where the terms, Yp, reaction and Yp, impulse are be obtained
from the graphical data reproduced in Figures A1 and A2. The subscript reaction refers to blades with
zero inlet metal angle (axial entry) and the subscript impulse refers to blades that have an inlet metal
angle with the same magnitude but opposite sign as the exit relative flow angle. The second term of
the right-hand side of Equation (A7) is a correction factor that accounts for the effect of the maximum
blade thickness. The sign of βout in Equation (A7) was changed with respect to the original work of
Kacker–Okappu to comply with the angle convention used in this paper.

Y′p =


Yp, reaction −

(
θin

βout

) ∣∣∣∣∣
θin

βout

∣∣∣∣∣ · (Yp, impulse −Yp, reaction)


 ·
(

tmax/c
0.20

)− θin
βout

(A7)

The factor Kp from Equation (A6) accounts for compressible flow effects when the Mach number
within the cascade is subsonic and approaches unity. These effects tend to accelerate the flow, make the
boundary layers thinner, and decrease the profile losses. Kp is a function on the inlet and outlet relative
Mach numbers and it is computed from Equations (A8)–(A10).

Kp = 1− K2 · (1− K1) (A8)

K1 =





1 for Ma rel
out < 0.20

1− 1.25 · (Ma rel
out − 0.20) for 0.20 < Ma rel

out < 1.00
0 for Ma rel

out > 1.00
(A9)

K2 =

(
Ma rel

in

Ma rel
out

)2

(A10)

The term Yshock from Equation (A6) accounts for the relatively weak shock waves that may occur
at the leading edge of the cascade due to the acceleration of the flow. After some algebra, the equations
proposed in the Kacker–Okapuu method can be summarized as Equation (A11), where fhub is
given graphically in Figure A3 and it is a function of the hub-to-tip ratio only. Please note that
the nomenclature used in Kacker and Okapuu [23] is different than then one used in this work,
in particular q ≡ p0rel − p and ∆P ≡ p0rel,in − p0rel,out.

Yshock = 0.75 ·
(

fhub ·Ma rel
in − 0.40

)1.75
·
(

rhub
rtip

)

in

·
(

p0rel,in − pin

p0rel,out − pout

)
(A11)

Appendix A.4. Secondary Loss Coefficient

The secondary loss coefficient Ys is computed according to Equation (A12).

Ys = 1.2 · Ks ·

0.0334 · fAR · Z ·

(
cos(βout)

cos(θin)

)
 (A12)

The factor 1.2 is included to correct the secondary loss for blades with zero trailing edge thickness.
Trailing edge losses are accounted independently.

The factor Ks accounts for compressible flow effects when the Mach number within the cascade is
subsonic and approaches unity. These effects tend to accelerate the flow, make the end wall boundary
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layers thinner, and decrease the secondary losses. Ks is computed from Equation (A13), where Kp is
given by Equation (A8) and K3 is given by Equation (A14). K3 is a function of the axial blade aspect
ratio H/b only.

Ks = 1− K3 ·
(

1− Kp

)
(A13)

K3 =

(
1

H/b

)2
(A14)

fAR accounts for the blade aspect ratio H/c and it is given by Equation (A15).

fAR =

{ 1−0.25·
√

2−H/c
H/c for H/c < 2

1
H/c for H/c > 2

(A15)

The Ainley-Mathieson loading parameter Z is given by Equations (A16)–(A18), where the sign of
βout was changed with respect to the original work of Kacker and Okapuu [23] to comply with the
angle convention used in this paper.

Z =

(
CL

s/c

)2 cos(βout)2

cos(βm)3 (A16)
(

CL

s/c

)
= 2 cos(βm)

[
tan(βin)− tan(βout)

]
(A17)

tan(βm) =
1
2
[
tan(βin) + tan(βout)

]
(A18)

Appendix A.5. Tip Clearance Loss Coefficient

The clearance loss coefficient Ycl is computed according to Equation (A19), where the influence of
the number of seals is neglected.

Ycl = B · Z ·
(

c
H

)
·
(

tcl
H

)0.78
(A19)

In this equation, Z is given by Equations (A16)–(A18). The Kacker-Okapuu loss system proposes
B = 0.37 for rotor blades with shrouded tips, and B = 0.00 for stator blades. In addition, Kacker and
Okapuu warn that using B = 0.47, as suggested by Dunham and Came [28], over-predicts the loss for
rotor blades with plain tips.

Appendix A.6. Trailing Edge Loss Coefficient

The trailing edge loss coefficient Yte is computed according to Equation (A20).

Yte ≈ ζ =
1

φ2 − 1 =
1

1− ∆φ2 − 1 (A20)

where the pressure loss coefficient Y was approximated by the enthalpy loss coefficient ζ and then
related to the kinetic energy loss coefficients φ2 and ∆φ2. See the work by Dahlquist [36] for details
about the definitions of the different loss coefficients and the relations among them. The parameter ∆φ2

is computed by interpolation of impulse and reaction blades according to Equation (A21). The sign of
βout in Equation (A21) was changed with respect to the original work of Kacker–Okappu to comply
with the angle convention used in this paper.

∆φ2 = ∆φ2
reaction −

(
θin

βout

) ∣∣∣∣∣
θin

βout

∣∣∣∣∣ · (∆φ2
impulse − ∆φ2

reaction) (A21)
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∆φ2
reaction and ∆φ2

impulse are the kinetic energy loss coefficients of reaction and impulse blades and
they are a function of the trailing edge thickness to opening ratio tte/o only. The functional relation
was given graphically, and it is reproduced in Figure A4.

Appendix A.7. Final Remarks

The Kacker–Okapuu loss model was developed to estimate the performance of competent turbine
designs and its predictions will not be accurate if the input parameters are outside the range of the
experimental data used to develop the correlations. This situation is often encountered before the
optimization algorithm converges since, in general, it is not possible to satisfy constraints for each
iterate of a nonlinear programming problem. For this reason, some of the variables used within
the Kacker–Okapuu loss model were bounded to avoid numerical problems that might prevent the
convergence to a feasible solution. For instance, some variables were forced to be non-negative because
the correlations were not developed to cover such cases. These modifications do not affect the final
results of the optimization and they are not reported in this paper although they are documented in
detail within the code.

Figure A1. Profile loss of reaction blades (axial entry blades).

Figure A2. Profile loss of impulse blades.
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Figure A3. Ratio of Mach number at the hub to Mach number at the mean radius.

Figure A4. Trailing edge energy loss coefficient for impulse and reaction blades.
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a b s t r a c t

Turbomachinery design is increasingly carried out by means of automated workflows based on high-
fidelity physical models and optimization algorithms. The parametrization of the blade geometry is an
essential aspect of such workflows because it defines the design space in which an optimal solution
can be found. Currently, parametrization methods used for this purpose are often tailored to one
particular type of turbomachinery blade, do not provide shape derivatives required for gradient-
based optimization, or are not suited to re-parametrize a baseline blade geometry defined by a
set of scattered point coordinates in a systematic way. This paper thus presents a general blade
parametrization method for axial, radial, and mixed flow blades based on typical turbomachinery
design variables and NURBS curves and surfaces. The shape derivatives are computed by means of
the complex-step method, allowing the integration of the parametrization into gradient-based shape
optimization workflows. In addition, the method enables the re-parametrization of a blade geometry
defined by a cloud of points by solving a two-step optimization problem. The capabilities of the method
are demonstrated by replicating eight blade geometries in two and three dimensions with an accuracy
comparable to the tolerances of current manufacturing technologies.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Driven by the ever-increasing requirements in performance,
environmental impact, and life-time cost, turbomachinery design
is increasingly carried out by means of automated workflows [1].
These workflows integrate geometry parametrization tools, high-
fidelity physical models, and optimization algorithms to system-
atically explore the design space. The parametrization of the
geometry is an essential aspect of the design chain because it
defines the design space within which the optimization algo-
rithm can find the optimal solution [2]. Ideally, a parametrization
method for turbomachinery blades should:

1. Support any type of blade configuration and contain the
shapes that achieve the required design objectives.

2. Allow the designer to impose geometric constraints due to
mechanical or manufacturing requirements.

3. Provide the sensitivity of the shape with respect to the
design variables to enable gradient-based shape optimiza-
tion [3].

✩ This paper has been recommended for acceptance by Xiaoping Qian.
∗ Corresponding author.

E-mail address: roberto.agromayor@ntnu.no (R. Agromayor).

4. Use conventional engineering parameters with an intuitive
geometrical meaning.

5. Produce smooth geometries with continuous curvature (G2

continuity) and continuous rate of change of curvature to
avoid velocity spikes that may lead to flow separation [4].

6. Retain compatibility with Computer-Aided Design (CAD)
software for further analysis, geometry manipulation, and
manufacturing.

7. Be computationally cheap in terms of execution time and
memory usage.

Shape parametrization methods can be classified into defor-
mation and constructive methods. Deformation methods can be
used to modify an existing geometry (a mesh or a CADmodel) and
are widely used in the context of turbomachinery shape optimiza-
tion. These methods include mesh point displacement [5,6], CAD
model control point displacement [7,8], superposition of shape
functions such as Hicks–Henne bumps [9,10], and space mor-
phing methods based on Free-Form Deformation (FFD) [11,12]
or on Radial Basis Function (RBF) interpolation [13,14]. Although
these methods enable the exploration of rich design spaces, they
are not suited for an effective handling of geometric constraints,
making it difficult to obtain feasible shapes out of the opti-
mization process. As a notable exception, the NSPCC method [8]

https://doi.org/10.1016/j.cad.2020.102987
0010-4485/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Latin symbols

c Chord length (m)
cax Axial chord length (m)
C(u) NURBS curve values (m)
d Tangent proportion (-)
f , g NURBS endpoint curvature functions (m)
h Step size (-)
J Objective function (m2)
L Arc length (m)
Nb Number of blades (-)
NQ Number of prescribed points (-)
Ni,p, Nj,q B-spline basis polynomials (-)
n Unitary normal vector (-)
n, m NURBS highest indices (-)
p, q NURBS degree (-)
Pi, Pi,j NURBS control point coordinates (m)
Qi Prescribed point coordinates (m)
r Radius of curvature or radial direction (m)
S(u, v) NURBS surface values (m)
s Blade spacing, also known as pitch (m)
t Thickness distribution (m)
u, v NURBS parametric coordinates (-)
û, v̂ NURBS sample points (-)
U, V NURBS knot vectors (-)
wi, wi,j NURBS control point weights (-)
x, y, z Cartesian coordinates (m)

Greek symbols

α Set of design variables (-)
θ Metal angle or circumferential angle (◦)
κ Curvature (m−1)
ξ Stagger angle, also known as setting angle (◦)
τ Unitary tangent vector (-)

Abbreviations

AD Algorithmic Differentiation
B-spline Basis Spline
BFGS Broyden–Fletcher–Goldfarb–Shanno
C-FD Central Finite Differences
CAD Computed-Aided Design
CS Complex-Step
F-FD Forward Finite Differences
FD Finite Differences
FFD Free Form Deformation
NSPCC NURBS-based Parametrization with

Complex Constraints
NURBS Non Uniform Rational Basis Spline
RBF Radial Basis Functions

Subscripts and superscripts

b Blade
c Camber
in, out Inlet and outlet
l, u Lower and upper sides
m Meridional
u, v u and v parametric directions
1, 2, 3, 4 Meridional channel edges

allows the designer to impose geometric and continuity con-
straints by evaluating these constraints at a finite number of
test-points and using a projected gradient optimization algorithm
to maintain feasibility. In contrast, constructive methods can be
used to generate the geometry of a new blade from scratch,
or possibly using design variable values obtained from prelim-
inary design models such as mean-line [15,16] or throughflow
models [17,18]. In addition, they allow one to impose geometric
constraints such as minimum blade thickness in a natural and
non-intrusive way. Due to these strengths, constructive methods
are widely used for turbomachinery blade parametrization and
a large number of such methods have been developed over the
years. Table 1 provides a comprehensive review of constructive
blade parametrizations up to the present day.

The early constructive parametrization methods used circu-
lar arcs and polynomials in monomial-basis form (that is, poly-
nomials in the form

∑n
i=0 aix

i) to define the geometry of the
blades [19–24]. This type of parametrization gained significant
popularity among industry practitioners, but it has severe lim-
itations arising from the use of a monomial basis. Specifically:
(1) the polynomial coefficients convey little insight about the
shape of the blade, (2) ensuring geometric continuity at the
connecting points between segments requires the solution of
a linear system that may not have a unique solution, (3) the
surface of the blade is prone to undesirable inflection points, and
(4) the resulting shapes are not compatible with the geometric
representation used by modern CAD systems.

To overcome these shortcomings, several authors proposed
new constructive parametrizations based on Bézier [25–31], B-
spline [32–37], and NURBS [38–42] curves and surfaces. These
mathematical functions have become the standard to represent
geometric objects in modern CAD packages due to their favorable
mathematical properties and the availability of a wide range of
algorithms to define and manipulate curves and surfaces [43,44].
Currently, most of the constructive CAD-based parametrizations
for turbomachinery blades described in the open literature are
not suitable for automated design workflows. This is because they
do not offer a robust way to handle trimming and intersection
operations [45,46] or do not provide sensitivity information re-
quired by gradient-based optimization algorithms [3]. In addition,
to optimize an existing blade, it is essential to find a parametric
representation of the baseline geometry, available, for instance,
in the form of a large set of points in the Cartesian space. Solving
this reverse engineering problem by trial and error is doable
for simple cases [36,42], but it becomes impractical for complex
blade geometries. Despite the practical relevance of this problem,
a robust and automatic method to re-parametrize the geometry
of a blade defined by a scattered set of points is still lacking.

In response to the limitations of the existing methods, this
paper presents a general constructive parametrization method
for axial, radial, and mixed-flow turbomachinery blades. The
method exploits conventional engineering design variables (lead-
ing/trailing edge radius, metal angles, blade thickness, etc.) and
NURBS curves and surfaces to represent the blade geometry. The
method is formulated in an explicit way that avoids the use of
intersection and trimming operations to define the geometry of
the blade and flow domain and produces blades satisfying G2

continuity by construction. The sensitivity of the geometry with
respect to the design variables is computed with machine accu-
racy by means of the complex-step method [47–49]. In addition,
the method is also adapted to re-parametrize the geometry of an
existing blade defined by a scattered set of point coordinates. This
problem, often referred to as blade matching, is formulated as a
two-step optimization problem and it allows one to find the set
of design variable values that best approximates the prescribed
geometry in a systematic way. The flexibility and accuracy of the
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Table 1
Review of constructive blade parametrization methods documented in the open literature.
Reference Basis function Configuration Cont.a Grad.b

Dunham (1974) [19] Monomial 2D profile G1 n.a.
Crouse (1981) [20] Monomial 3D axial G1 n.a
Ye (1984) [21] Monomial 2D profile G2 n.a.
Pritchard (1985) [22] Monomial 2D profile G1 n.a.
Korakianitis (1993) [23] Monomial 2D profile G2 n.a.
Aungier (2006) [24] Monomial 2D profile G2 n.a.
Engeli et al. (1974) [25] Bézier 3D axial G2 n.a.
Casey (1983) [26] Bézier 3D general G2 n.a.
Goel et al. (1996) [27] Bézier 3D axial G2 n.a.
Giannakoglou (1999) [28] Bézier 2D profile G1 n.a.
Trigg et al. (1999) [29] Bézier 2D profile G1 n.a.
Pierret et al. (1999) [30] Bézier 2D profile G2c n.a.
Pierret et al. (2000) [31] Bézier 3D axial G2c n.a
Oyama et al. (2004) [32] B-spline 3D axial G1 n.a.
Huppertz et al. (2007) [33] B-spline 2D profile G1 n.a
Verstraete (2010) [34] B-spline 3D axial G2c n.a.
Verstraete (2010) [34] B-spline 3D general G2c n.a.
Siddappaji et al. (2012) [35] B-spline 3D general G2 n.a.
Torreguitart et al. (2018) [36] B-spline 2D profile G2c AD
Mykhaskiv et al. (2018) [37] B-spline 3D axial G2 AD
Miller et al. (1996) [38] NURBS 3D general G2 n.a.
Gräsel et al. (2004) [39] NURBS 3D general G2 n.a.
Koini et al. (2009) [40] NURBS 3D general G2 n.a.
Müller et al. (2017) [41] NURBS 3D general G2c CS
Anand et al. (2018) [42] NURBS 2D profile G2 FD
Present work NURBS 2D/3D general G2 CS

aSlope continuity (G1) or curvature continuity (G2).
bMethod used for gradient computation: not available (n.a.), Finite Differences (FD), Complex-Step (CS), or
Algorithmic Differentiation (AD).
cThe parametrization satisfies curvature continuity everywhere except at the trailing edge.

proposed method is demonstrated by replicating the geometry of
eight turbomachinery blades in two and three dimensions.

The rest of the paper is organized as follows. Section 2 docu-
ments the definition and properties of NURBS curves and surfaces.
The blade parametrization in two and three dimensions is de-
scribed in Sections 3 and 4, respectively, and the computation
of the geometry sensitivity using the complex-step method is
introduced and verified in Section 5. The blade matching method
is presented and applied to replicate a wide range of blade
geometries in Section 6. Finally, the software implementation
of the method is described in Section 7 and the conclusions are
summarized in Section 8.

2. Background on NURBS curves and surfaces

The origin of Non-Uniform Rational Basis Spline (NURBS)
curves and surfaces can be traced back to the research efforts in
computer-aided geometric design in the late 60s and early 70s
[50]. Since then, NURBS curves and surfaces have been universally
used for geometrical modeling thanks to their intuitive geo-
metrical interpretation, favorable mathematical properties, and
efficient computational algorithms. A NURBS curve, see Fig. 1(a),
is a parametric curve defined by

C(u) =

∑n
i=0 Ni,p(u)wi Pi∑n
i=0 Ni,p(u)wi

, with 0 ≤ u ≤ 1, (1)

where p is the degree of the curve, the coefficients Pi and wi
are the coordinates and weights of the n + 1 control points, and
Ni,p are B-spline basis functions defined on the non-decreasing,
clamped knot vector

U = [0, . . . , 0  
p+1

, up+1, . . . , un  
n−p

, 1, . . . , 1  
p+1

] ∈ R
r+1 (2)

with r = n + p+ 1. The B-spline basis functions are given by the
recursive relation

Ni,0(u) =

{
1, if ui ≤ u < ui+1

0, otherwise
(3)

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (4)

Similarly, a NURBS surface, see Fig. 1(b), is a parametric surface
defined by

S(u, v) =

∑n
i=0
∑m

j=0 Ni,p(u)Nj,q(v)wi,j Pi,j∑n
i=0
∑m

j=0 Ni,p(u)Nj,p(v)wi,j
,

with 0 ≤ u, v ≤ 1,

(5)

where p and q are the degrees of the surface in the u- and
v-directions, the coefficients Pi,j and wi,j are bidirectional nets
containing the coordinates and weights of the (n + 1) × (m + 1)
control points, and Ni,p(u)Nj,q(v) are the product of univariate B-
spline basis functions defined on the non-decreasing, clamped
knot vectors

U = [0, . . . , 0  
p+1

, up+1, . . . , un  
n−p

, 1, . . . , 1  
p+1

] ∈ R
r+1 (6)

V = [0, . . . , 0  
q+1

, vq+1, . . . , vn  
m−q

, 1, . . . , 1  
q+1

] ∈ R
s+1, (7)

with r = n + p + 1 and s = m + q + 1. The u-direction basis
functions Ni,p(u) are given by Eqs. (3) and (4), whereas the v-
direction basis functions Ni,q(v) are defined in an analogous way
replacing the variable u by v and the indices i and p by j and q,
respectively.

NURBS curves and surfaces have the following mathemati-
cal properties that make them particularly suited for geometric
modeling [43, pp. 117–139]:
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Fig. 1. Construction of a NURBS curve (left) and surface (right). Note that the NURBS curve interpolates its endpoints and it is tangent to the control polygon at its
ends. The control net of the NURBS surface interpolates its four corner points and it was represented at an offset distance in the x-direction for clarity.

Table 2
Two-dimensional design variables. Each design variable is provided as a scalar
value, except for the upper and lower thickness that are given as sets of control
points.
Variable name Symbol

Spacing s
Leading edge abscissa and ordinate xin, yin
Axial chord length cax
Stagger angle ξ

Inlet and exit metal angles θ in, θout
Inlet and exit tangent proportions din, dout
Inlet and exit radii of curvature r in, rout
Upper and lower thickness distributions tu, t l

• Affine invariance. It is possible to apply affine transforma-
tions such as rotations, displacements, and scalings to
NURBS curves and surfaces by applying the transformation
to their control points.

• Convex hull. NURBS curves and surfaces are within the con-
vex hull of their control points. When the control points are
contained in a certain region of space, this property guaran-
tees that the curve or surface will not blow up arbitrarily far
away from this region.

• Endpoint interpolation NURBS curves and surfaces coincide
with the polytope formed by the control points at the end-
points.

• Endpoint tangency. NURBS curves and surfaces are tangent to
the polytope formed by the control points at the endpoints.

• Generalization. Bézier curves and surfaces are a special case
of NURBS when p = n and q = m. In addition, B-spline
curves and surfaces are an special case of NURBS when all
the weights have the same value.

Most of the curves and surfaces used in the proposed blade
parametrization method are B-splines. However, the parametriza-
tion is formulated in a general way using NURBS so that the user
can include the control point weights as design variables to gain
more control over the resulting geometry.

3. Blade parametrization in two dimensions

The proposed two-dimensional blade parametrization is based
on typical blade design variables which are listed in Table 2.
The geometry of the blade is generated by defining a camber
line and subsequently imposing on it two independent thickness
distributions in a way that ensures G2 continuity at the junction
between the upper and the lower sides.

The camber line Cc(u) is a cubic B-spline curve defined by four
control points as shown in Fig. 2(a). The coordinates of the control
points are given by

Pc
0 =

[
xin
yin

]
, (8)

Pc
1 = Pc

0 + din

[
c cos(θ in)
c sin(θ in)

]
, (9)

Pc
2 = Pc

3 − dout

[
c cos(θout)
c sin(θout)

]
, (10)

Pc
3 = Pc

0 +

[
c cos(ξ )
c sin(ξ )

]
, (11)

where ξ is the stagger angle, cax = c cos(ξ ) is the axial chord
length, θ in and θout are the inlet and outlet metal angles, and
din and dout are the inlet and outlet tangent proportions. This
construction of the camber line ensures that the blade has the
specified axial chord length and that the slope at the leading and
trailing edges agrees with the input metal angles thanks to the
endpoint tangency property of B-spline curves [43, p. 97].

The upper and lower sides of the blade, Cl(u) and Cu(u), are
defined as B-spline curves of degree four as it is the lowest degree
that guarantees continuous rate of change of curvature at the
spline knots. The coordinates of the control points {Pl

i} and {Pu
i },

see Fig. 2(b), are computed according to

Pl
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cc(ûi), for i = 0
Cc(ûi) − n(ûi) · f (r in), for i = 1
Cc(ûi) − n(ûi) · t l(ûi), for i = 2 : n − 2
Cc(ûi) − n(ûi) · g(rout), for i = n − 1
Cc(ûi), for i = n

(12)

and

Pu
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cc(ûi), for i = 0
Cc(ûi) + n(ûi) · f (r in), for i = 1
Cc(ûi) + n(ûi) · tu(ûi), for i = 2 : n − 2
Cc(ûi) + n(ûi) · g(rout), for i = n − 1
Cc(ûi), for i = n.

(13)

The sampling values ûi are given by

ûi =

⎧⎨⎩
0, for i = 0
i−1
n−2 , for i = 1 : n − 1
1, for i = n.

(14)

The upper and lower thickness distributions, tu(u) and t l(u), are
given by B-spline polynomials of degree three with an arbitrary
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Fig. 2. Construction of the blade geometry in two dimensions. The upper and lower thickness distributions (bottom-left) are imposed in the direction normal to the
camber line (top-left) to compute the location of the blade control points (top-right). The second and second-to-last control points are computed in a special way
to impose the radii of curvature at the leading and trailing edges and to ensure that the blade profile is G2 continuous (bottom-right).

number of control points, {tui } and {t lj}, specified by the user, see
Fig. 2(c). The unitary vectors normal to the camber line n(u) are
computed from the unitary tangent vector τ(u) according to

n(u) =

[
nx
ny

]
=

[
−τy
τx

]
, with τ(u) =

Ċc(u)
∥Ċc(u)∥

, (15)

where Ċc(u) is computed using analytical derivative formulas for
B-spline curves [43, pp. 91–100]. The functions f (r) and g(r)
appearing in Eqs. (12) and (13) are used to impose the radii of
curvature r in and rout at the leading and trailing edges, ensuring
that the parametrization satisfies G2 continuity by construction,
see Fig. 2(d). This feature is important for the aerodynamic design
of turbomachinery blades because a sudden change in curvature
could cause a spike in the surface pressure distribution or even
a local separation bubble [4]. The functions f (r) and g(r) are

based on the end point curvature formulas for NURBS curves and
their derivation is detailed in the Appendix. Once that the upper
and lower sides are defined, they can be combined into a single
B-spline curve Cb(u) = Cl

∪ Cu that represents the entire blade
profile.

When performing the assessment of the fluid-dynamic per-
formance of the blades via computational fluid dynamics, it is
necessary to define the geometry of the flow domain around the
blade. For the majority of turbomachinery flow problems one
can resort to the periodicity of the flow to reduce the size of
the computational domain. In this case, it is therefore sufficient
to describe the flow domain around a single blade, which is
characterized by the inflow, outflow, and periodic boundaries, as
illustrated in Fig. 3. The periodic boundaries are given by two
cubic B-spline curves defined by extending the camber line while
keeping zero slope at the inlet and outlet. The periodic boundaries
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Fig. 3. Construction of the blade flow domain in two dimensions. The fluid-
dynamic performance of the blade cascade (left) can be evaluated analyzing the
flow around a single blade. The flow domain is defined by four boundaries:
inflow, outflow, lower periodic, and upper periodic (right).

are located at an offset distance of half of the blade spacing, s,
with respect to the blade camber line. Finally, the inflow and
outflow boundaries are defined as two straight lines connecting
the upper and lower periodic boundaries.

The proposed parametrization produces blade profiles that
have continuous curvature and rate of change of curvature, there-
fore reducing the possibility of flow separation [4]. This con-
trasts with most of the two-dimensional methods available in
the open literature, which produce blades with discontinuous
curvature [19,22,28,29,33], or rate of change of curvature [21,23,
24,30]. As a notable exception, the second and third methods pro-
posed by Korakianitis [23], see also [51,52], produce blade profiles
with continuous curvature and slope-of-curvature. However, the
methods proposed by Korakianitis involve the solution of systems
of equations, are not compatible with CAD representations, and
are not easily extended from two to three dimensions. In addition,
to the knowledge of the authors, it is the first time that the
endpoint curvature formulas for NURBS curves are used to impose
the curvature of turbomachinery blades at the leading and trailing
edges. This is different than what is documented in previous
publications [34,37,42], where all the reported methods used
the endpoint curvature formulas for Bézier curves to ensure G2

continuity, with the limitation that the curvature is not imposed
exactly when the blades are described by B-spline or NURBS
curves.

Application

The flexibility of the proposed two-dimensional blade param-
etrization method is demonstrated by reconstructing the four
blade profiles illustrated in Fig. 4. Each blade profile was defined
using 6 control points for each thickness distribution, resulting in
a total of 22 design variables. The LS89 [53,54] and T106A [55]
are representative of high-pressure and low-pressure axial gas
turbine blade rows, respectively. In addition, the SIRT profile is
typical of a supersonic impulse turbine rotor [56] and the STD10
profile is representative of an axial compressor blade derived
from a NACA 0006 airfoil profile [57]. It can be observed that the
parametrization method produces blades with smooth curvature
variations, which is essential to avoid spikes and dips in the
surface-pressure distribution. The numerical values of the design
variables used to produce the blade profiles were computed from
a set of scattered point coordinates using the method described
in Section 6.

Fig. 4. Geometry and curvature distribution of the two-dimensional test cases.
From top to bottom: LS89 [53,54], T106A [55], SIRT [56], and STD10 [57]. The
abscissa of the curvature distribution is the normalized axial length.

Table 3
Three-dimensional design variables. Each design variable is provided as a set
of control points that defines a continuous variation, except for the number of
blades that is a single integer value.
Variable name Symbol

Number of blades Nb
Leading edge control points x1, z1
Hub edge control points x2, z2
Trailing edge control points x3, z3
Shroud edge control points x4, z4
Leading edge abscissaa yin
Stagger anglea ξ

Inlet and exit metal anglesa θ in, θout
Inlet and exit tangent proportionsa din, dout
Inlet and exit radii of curvaturea r in, r in
Upper and lower thickness distributions tu, t l

aLaw of evolution in the spanwise direction.

4. Blade parametrization in three dimensions

The proposed three-dimensional parametrization is formu-
lated as an extension of the two-dimensional parametrization and
uses the design variables listed in Table 3. Similar to the two-
dimensional case, the parametrization starts by defining a camber
surface and subsequently imposing two independent thickness
distributions perpendicular to the camber surface in a way that
ensures G2 continuity.

The camber surface is determined by the shape of the blade
in the meridional plane and the spanwise variation of the design
variables. The shape of the blade in the meridional plane is
described by four curves, namely, leading edge, trailing edge,
hub, and shroud, as illustrated in Fig. 5. In contrast with other

6



R. Agromayor, N. Anand, J.-D. Müller et al. Computer-Aided Design 133 (2021) 102987

Fig. 5. Geometry of the blade in the meridional plane.

parametrization methods that are limited to axial turbomachines
[20,25,27,31,32], the proposed method is suited to describe any
kind of turbomachinery configuration, including axial, radial, and
mixed-flow machines. The number of control points required to
describe the shape of the blade in the meridional plane depends
on the complexity of the geometry. For instance, it is possible to
define a purely axial turbine using only four control points, but
it may be necessary to use 10–20 control points to describe the
shape of a mixed-flow machine such as a centrifugal compressor.

The spanwise variation of the some design variables α(v), see
Table 3 footnote, is defined as law of evolution through a B-spline
of, at most, degree three with an arbitrary number of control
points as illustrated in Fig. 7. The number of control points used
for each design variable is specified by the user, and its selection
is based on the complexity of the blade geometry. As an example,
it is sufficient to use a single constant value to define a prismatic
blade, but it might be necessary to use 3–6 control points to
describe the geometry of a blade with large twist from the root
to the tip.

As illustrated in Fig. 9(a), the camber surface Sc(u, v) is de-
fined as a bi-quartic B-spline surface with control points Pc

i,j =

[xci,j, yci,j, zci,j]. The coordinates of the control points are computed
using the shape of the blade in the meridional plane and the
spanwise evolution of the design variables. More specifically,
the (x, z) coordinates of the camber surface control points are
computed by transfinite interpolation [58] of the four curves that

define the meridional plane, see Fig. 6, and are given by[
xc(u, v)
zc(u, v)

]
= (1 − u) · C1

m(v) + u · C3
m(v)

+ (1 − v) · C2
m(u) + v · C4

m(u)
− (1 − v)(1 − u) · Qm

1,2 − v u · Qm
3,4

− v (1 − u) · Qm
4,1 − (1 − v) u · Qm

2,3,

(16)

In addition, the y coordinates of the camber surface control
points at each spanwise location v are given by a third order
B-spline curve yc(u, v) with control points {yc0, yc1, yc2, yc3} that
are computed according to

yc0(v) = yin (17)

yc1(v) = yc0 + din · L tan θ in (18)

yc2(v) = yc3 − dout · L tan θout (19)

yc3(v) = yin + L tan ξ (20)

This formulation ensures that the metal angles at the leading
and trailing edges, θ in and θout, are respected, as illustrated in
Fig. 8. The arc length of the blade meridional plane at each span
location L(v) is defined as

L(v) =

∫ u=1

u=0

√(
∂xc
∂u

)2
+

(
∂zc
∂u

)2
du (21)

and it is computed using 8th order Gaussian quadrature [59],
which provides a satisfactory trade-off between computational
speed and accuracy.

The upper and lower sides of the blade, Sl(u, v) and Su(u, v),
are defined as B-spline surfaces of degree four as it is the lowest
degree that guarantees continuous rate of change of curvature at
the spline knots. The coordinates of the control points {Pl

i,j} and
{Pu

i,j}, see Fig. 9(b), are computed according to

Pl
i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sc(ûi, v̂j), for i = 0
Sc(ûi, v̂j) − n(ûi, v̂j) · f (r in(v̂j)), for i = 1
Sc(ûi, v̂j) − n(ûi, v̂j) · t l(ûi, v̂j), for i = 2 : n − 2
Sc(ûi, v̂j) − n(ûi, v̂j) · g(rout(v̂j)), for i = n − 1
Sc(ûi, v̂j), for i = n

(22)

Fig. 6. Construction of the four B-splines that define the shape of the blade in the meridional plane (left) and point evaluation by transfinite interpolation (right).
Note that the corner control points of the B-splines are shared.
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Fig. 7. Spanwise variation of a design variable.

Fig. 8. Tangential camber line coordinate.

and

Pu
i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sc(ûi, v̂j), for i = 0
Sc(ûi, v̂j) + n(ûi, v̂j) · f (r in(v̂j)), for i = 1
Sc(ûi, v̂j) + n(ûi, v̂j) · tu(ûi, v̂j), for i = 2 : n − 2
Sc(ûi, v̂j) + n(ûi, v̂j) · g(rout(v̂j)), for i = n − 1
Sc(ûi, v̂j), for i = n

(23)

where the sampling values (ûi, v̂j) are given by

ûi =

⎧⎨⎩
0, for i = 0
i−1
n−2 , for i = 1 : n − 1
1, for i = n

and (24)

v̂j =
j
m

, for j = 0 : m. (25)

The upper and lower thickness distributions, tu(u, v) and
t l(u, v), are given by bi-variate B-spline polynomials of degree
three with an arbitrary number of control points {tui,j} and {t li,j},
specified by the user. The unitary vectors normal to the camber
surface n(u, v) are computed according to

n = −
τu × τv

∥τu × τv∥
, (26)

where the tangent vectors τu and τv are given by

τu =
∂Sc

∂u
and τv =

∂Sc

∂v
. (27)

The partial derivatives of the camber surface with respect to u
and v are computed analytically using B-spline surface derivative

Fig. 9(a). Control points defining the camber surface.

Fig. 9(b). Control points defining the blade surface.

formulas [43, pp. 110–115]. In addition, the functions f (r) and
g(r) appearing in Eqs. (22) and (23) are used to impose the radius
of curvature at the leading and trailing edges, ensuring that the
upper and lower surfaces of the blade are smoothly joined with
G2 continuity. The derivation of the functions f (r) and g(r) is
detailed in the Appendix. Once that the upper and lower sides
are defined, they can combined into a single B-spline surface
Sb(u, v) = Sl ∪ Su that represents the entire blade.

The parametrization just described is suitable to model lin-
ear cascades, which are commonly used for wind tunnel tests.
However, in actual turbomachines, the blades are arranged in
an axisymmetric way forming an annular cascade. In order to
achieve this, the linear blade configuration is transformed into an
annular one with the mapping H : R3

→ R3 given by

Pb
annular = H{Pb

linear} = H{[x, y, z]}
= [x, z · sin (y/z), z · cos (y/z)] .

(28)

The rationale behind this transformation is to associate the Carte-
sian coordinates (x, y, z) of a linear cascade with the cylindrical
coordinates (x, rθ, r) of an annular cascade and then convert from
cylindrical to Cartesian coordinates.

The flow domain around a blade is characterized by the hub,
shroud, inlet, outlet, and periodic boundaries as illustrated in
Fig. 10. The hub boundary consists of two surfaces that conform
with the blade at its root, see Fig. 10(a). Each of these surfaces is
defined as a Coons patch [43, pp. 456–507] that is characterized
by four edges. The blade edge is given by a B-spline curve formed
by extending the lower side of the blade into the upstream and
downstream directions following the slope of the camber line at
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Fig. 10. Construction of the blade flow domain in three dimensions.

the leading and trailing edges, respectively. The periodic edge
is formed by extending the camber line in a similar way and
rotating the resulting B-spline about the x-axis through an angle
θb/2, where θb = 2π/Nb. Finally, the inlet and outlet edges
are defined as NURBS circular arcs that connect the periodic
edge with the blade edge. The shroud surface, see Fig. 10(b), is
defined in an analogous way and, for the case of rotor blades, it
is possible specify a clearance between the tip of the blade and
the shroud. Once that the hub and shroud surfaces are defined,
it is straightforward to construct the inlet, outlet and periodic
surfaces as ruled surfaces [43, pp. 337–340] that connect the
limits of the hub and shroud surfaces as illustrated in Figs. 10(c)
and 10(d). Note that the parametrization of the blade and flow
domain is watertight by construction and it does not rely on
intersection and trimming operations. This contrasts with other
blade parametrization methods [34,35,37–41] that rely on inter-
section operations between the blade surface and the hub/shroud
surfaces and produce trimmed NURBS patches that have to be
specially treated during a shape optimization workflow [45,46].

Application

The flexibility of the proposed three-dimensional blade
parametrization method is demonstrated by reconstructing the
four blade geometries shown in Fig. 11. The first example, the
AACHEN case, is a prismatic axial turbine stator blade [60]. The
meridional plane is defined by 4 control points and the design
variables are constant in the spanwise direction (1 control point),
resulting in a total of 26 design variables. The second case,
NASA R67, is an axial compressor rotor blade [61,62]. The blade
is highly twisted due to the change in blade speed from root
to tip and it was necessary to use 4 control points to describe
the spanwise variation of the design variables, resulting in a

total of 111 design variables. Similarly the XPROP case illus-
trates the geometry of an aircraft propeller blade [63]. In this
case it was necessary to use 5 control points to describe the
twist of the blades, resulting in 113 design variables. Finally, the
APU blade is the rotor of a mixed-flow turbine (radial-inflow,
axial-outflow) [64,65]. The complex shape of the blade in the
meridional plane was described using 14 control points and the
spanwise variation of the blade sections was described using
3 control points per design variable, giving rise to 86 design
variables. The numerical values of the design variables used to
produce the blades were computed from a set of scattered point
coordinates using the method described in Section 6.

5. Sensitivity computation and verification

One simple way to approximate partial derivatives of a func-
tion is by using a finite difference approximation such as forward
finite differences given as

∂F
∂α

=
F (α + h) − F (α)

h
+ O(h), (29)

or central finite differences given as

∂F
∂α

=
F (α + h) − F (α − h)

2h
+ O(h2), (30)

where F (α) can be identified with Cb(u, α) in two dimensions or
Sb(u, v, α) in three dimensions and h is the step size used for
finite difference computation. Finite difference approximations
are susceptible to cancellation error when the step size is small
because of the subtraction of very similar numbers in the numer-
ator [66, pp 229–232]. As a result, one is faced with the dilemma
of selecting a small step size that minimizes the truncation error
but does not lead to a large cancellation error.
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Fig. 11. Geometry of the three-dimensional test cases. From top to bottom:
AACHEN stator [60], NASA R67 [61,62], XPROP propeller [63], APU rotor [64,65].

An alternative method that avoids the occurrence of cancella-
tion error is the complex-step method [47–49]. This method uses
a complex argument to compute the first derivative of a real-
valued function. Indeed, the Taylor series expansion of F (α) in
the imaginary axis gives

F (α + ih) = F (α) + ih
∂F
∂α

−
h2

2!
∂2F
∂α2 + O(ih3). (31)

Fig. 12. Sensitivity of the blade geometry with respect to a thickness distribution
control point. The sensitivity of the 2D case (left) is represented as a quiver plot.
The sensitivity of the 3D case (right) is represented as a colormap of the scalar
field given by the dot product of the sensitivity and the unitary vector normal
to the blade surface.

Re-arranging the imaginary part of the equation leads to

∂F
∂α

=
Im (F (α + i h))

h
+ O(h2), (32)

which is the complex-step method formula. In contrast to finite
difference approximations, this method is not susceptible to sub-
traction error, allowing one to compute first derivatives accurate
to the round-off precision of floating point arithmetic by using an
arbitrarily small step size.

Algorithmic Differentiation (AD) provides yet another alter-
native to compute the derivatives of a function with machine
precision [67]. AD is a set of techniques to numerically evaluate
the derivatives of a function specified as a computer program
by applying the chain rule of differentiation to each arithmetic
operation of the program. This method offers more functionality
and computational efficiency (first and higher order derivatives,
forward and reverse modes) than the complex-step method (first
derivatives and forward mode only), but it is also more difficult
to implement [49].

In this work, the complex-step method was adopted to com-
pute the sensitivity of the surface coordinates with respect to
the design variables due to its accuracy, simplicity, and ease of
implementation. Fig. 12 illustrates the sensitivity of the blade
surface with respect to one thickness distribution control point
in two and three dimensions. It can be observed that the sen-
sitivity of the blade changes from point to point and that there
may be regions where the sensitivity is zero as a result of the
compact-support property of NURBS basis functions [43, p.118].

To verify the correctness of the sensitivity computation the
authors performed a convergence study comparing the sensi-
tivities computed using forward finite differences, central finite
differences, and the complex-step method for the NASA R67 test
case [61,62]. The geometry of the NASA R67 rotor, see Fig. 11,
was sampled with 10000 uniformly spaced points within the box
(u, v) ∈ [0, 1] × [0, 1] and the sensitivity was computed with
respect to one design variable (the stagger angle at the hub) for
different step sizes in the interval h ∈ [10−1, 10−15

]. The error
of the sensitivity computation was defined as the mean-square-
root deviation between the exact and the estimated sensitivities.
The exact sensitivity was assumed to be that computed with
the complex-step method using an step size h = 2.22 · 10−16,
which corresponds to the machine epsilon of double-precision
arithmetic [66, pp 8–11].

The results of the convergence study are shown in Fig. 13. For
the case of the complex-step method (CS), reducing the step size
decreases the error until the trend flattens to a value close to
the machine precision. In contrast, the forward finite difference
(F-FD) and central finite difference (C-FD) errors decrease as the
step size decreases down to a minimum value and then increase
because the cancellation error becomes more prominent than the
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Table 4
Summary of the test cases and matching results.
Name and reference Description Dim. DVs Error abs.a (mm) Error rel.b (%)

LS89 [53,54] High-stagger reaction turbine profile 2D 22 0.047 0.067
T106A [55] High-deflection reaction turbine profile 2D 22 0.057 0.046
SITR [56] Supersonic impulse turbine profile 2D 22 0.067 0.087
STD10 [57] Slender compressor profile 2D 22 0.020 0.020
AACHEN [60] Axial flow turbine stator blade 3D 26 0.060 0.084
NASA R67 [61,62] High-twist turbo fan blade 3D 99 0.107 0.107
XPROP [63] High-twist propeller blade 3D 113 0.127 0.377
APU [64,65] Mixed-flow turbine rotor blade 3D 86 0.057 0.080

aDefined as the arithmetic mean deviation between the prescribed and the matched blades.
bDefined as the quotient of the mean error and the arc length of blade camber line (three-dimensional cases use the camber line at the hub).

Fig. 13. Sensitivity error at different step sizes for the complex-step method
(CS), forward finite differences (F-FD), and central finite differences (C-FD).

truncation error. In addition, it can be observed that the complex-
step method and the central finite differences agree in interval
when the truncation error dominates (h ≲ 10−6). This verifies
that the implementation of the complex-step method is correct.
Although not shown here for brevity, the authors performed
similar convergence studies for all the design variables of each of
the test cases summarized in Table 4 and obtained similar results.

6. Blade matching methodology

In order to optimize the performance of an existing turboma-
chinery blade, it is essential to find a parametric representation of
its geometry, which is usually available as a set of scattered points
coordinates Qi, with i = 1, 2, . . . , NQ obtained from a mesh,
from sampling a CAD model, or from laser scan measurements.
This section proposes a systematic method to find the set of
design variables that best approximates the shape of a prescribed
blade geometry. The method can be divided in two phases: (1) the
point projection phase and (2) the geometry update phase. It is
assumed that the designer starts from an initial guess for the de-
sign variables that roughly approximates the existing geometry,
see Fig. 14(a).

In the point projection phase, the goal is to find the parametric
values ui, in two dimensions, or (ui, vi) in three dimensions, that
minimize the distance with respect to each prescribed point Qi.
The two-dimensional point projection problem can be formulated
as

minimize
u∈R

J(u) =
1
2

∥Cb(u) − Qi∥
2, (33)

subject to 0 ≤ u ≤ 1,

where J is the distance between the prescribed and the param-
etrized point. The gradient of the objective function J can be
computed analytically as

∇J =
∂ J
∂u

=
(
Cb(u) − Qi

)
·
∂Cb

∂u
. (34)

Similarly, in three dimensions, the point projection problem is
given by

minimize
(u,v)∈R2

J(u, v) =
1
2

∥Sb(u, v) − Qi∥
2, (35)

subject to 0 ≤ u, v ≤ 1

and the gradient of the objective function can be computed
according to

∇J =

⎡⎢⎣ ∂ J
∂u
∂ J
∂v

⎤⎥⎦ =

⎡⎢⎣(Sb(u, v) − Qi
)
·
∂Sb

∂u(
Sb(u, v) − Qi

)
·
∂Sb

∂v

⎤⎥⎦ . (36)

Note that the geometry of the parametrized blade does not change
during the point projection phase. One common pitfall when
solving the point projection problem is that the optimization
may converge to a local minimum as illustrated in Fig. 14(b).
This limitation can be addressed by solving the point projection
problem from different starting points and then selecting the
global minimum among the various solutions or by sampling
the parametrized blade at several locations and then starting
the optimization from the test point that is closest to Qi [43,
pp. 229–234].

In the geometry update phase, the goal is to find the set of
design variables α that minimizes the deviation between the
parametrized and the prescribed blades. This can be formulated
as an unconstrained minimization problem where the objective
function is the sum of the distances between each projected
point and the corresponding prescribed point. This optimization
problem is given by

minimize
α∈Rα

J(α) =

NQ∑
i=1

∥Cb(ui, α) − Qi∥
2 (37)

in two dimensions and by

minimize
α∈Rα

J(α) =

NQ∑
i=1

∥Sb(ui, vi, α) − Qi∥
2 (38)

in three dimensions, where α are the design variables listed
in Tables 2 and 3, respectively. The gradient of these objective
functions is computed using the complex-step method as de-
scribed in Section 5. In contrast to the point projection phase,
the geometry of the parametrized blade is updated until the
deviation with respect to the prescribed geometry is minimized,
see Fig. 14(c). In order to improve the matching of (u, v) and α,
the point projection and geometry update problems are solved
alternatively until the relative deviation between the prescribed
and the parametrized blades does not change more than a small
tolerance, e.g. 10−8.

To demonstrate its flexibility and accuracy, the blade matching
method was applied to replicate the geometry of eight exemplary
blades. The set of test cases is summarized in Table 4 and it
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Fig. 14. Illustration of the blade matching problem in two dimensions. The deviation between the prescribed and parametrized blades after the geometry update
phase was exaggerated to improve visibility.

Fig. 15. Matching error as a function of the number of thickness distribution
control points for the T106A test case.

was conceived to cover a wide range of turbomachinery blade
geometries in two (Fig. 4) and three dimensions (Fig. 11). The
results of the blade matching in terms of absolute and relative
error are summarized in Table 4.

The relative matching error is below 0.38% for all cases and
the highest absolute error is 0.127 mm for the XPROP test case,
which is of the same order of magnitude as the tolerances used
to manufacture axial gas turbine blades (≈ 0.05 mm) [68]. In
addition, the deviation could be further reduced by increasing
the number of control points used to parametrize the blade. This
is illustrated in the convergence study shown in Fig. 15, where
the number of control points used to describe the thickness
distribution of the T106A case is increased from 3 to 10 points.
Specifically, the mean deviation is reduced from 0.057 mm to
0.031 mm when the number of control points is increased from
6 to 10. In addition, Fig. 16 shows the curvature distribution for
the T106A blade described using 6 and 10 thickness distribution
control points. It can be observed that the curvature variation is
smooth for both cases and that increasing the number of control
points does not introduce high-frequency undulations that would
deteriorate the fluid dynamic performance of the blade. These
results indicate that the parametrization and matching method-
ologies proposed in this work enable the replication of a wide
range of geometries with an accuracy comparable to the typical
tolerances of modern manufacturing techniques and that the re-
parametrization accuracy can be increased by refining the design
space.

Fig. 16. Curvature distribution of the T106A profile when the matching is
performed using 6 and 10 control points.

7. Software structure

The blade parametrization method proposed in this work
was implemented in the Python programming language [69] and
released under a permissive open source license as the Para-
Blade software package [70]. The code was written using object-
oriented programming principles and the structure of the package
is subdivided in the classes shown in Fig. 17. The implementa-
tion integrates the in-house NurbsPy package [71] to define and
manipulate NURBS curves and surfaces. In addition, ParaBlade
relies on the NumPy library [72] for array operations and on the
Pagmo/Pygmo optimization library [73] to solve the blade match-
ing optimization problems by means of the limited-memory BFGS
algorithm [74,75].

8. Conclusions

This paper presented a general constructive parametrization
method for turbomachinery blades. The method uses typical tur-
bomachinery design variables and NURBS curves and surfaces to
produce blade geometries with continuous curvature and rate of
change of curvature. In contrast with existing methods, the flow
domain parametrization was formulated in an explicit way that
avoids intersection and trimming operations and the sensitivity of
the geometry is computed by means of the complex-step method,
allowing the integration of the parametrization into automated,
gradient-based shape optimization workflows.

In addition, the method enables the re-parametrization of a
baseline blade geometry defined by a set of scattered point coor-
dinates in a systematic way by solving a two-step optimization
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Fig. 17. Class diagram of the ParaBlade and NurbsPy packages. Each class is represented by a box with three compartments containing its name and main
attributes/methods. The diamond-ended arrows (♦) represent a composition relation between two classes. This means that the class next to the diamond symbol
contains one or more instances of the class at the other end of the line. For instance, the BladeMatch3D contains one instance of the BladeGeom3D class, which
in turn contains several NurbsCurve and NurbsSurface objects.

problem. To demonstrate its capabilities, the re-parametrization
method was applied to replicate the geometry of eight exemplary
blades, showing that the proposed parametrization can replicate
the geometry of a wide range of turbomachinery blades with an
accuracy comparable to the tolerances of current manufacturing
techniques for axial gas turbine profiles.
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Appendix. Derivation of the endpoint curvature formulas

This appendix contains the derivation of the functions f (r in)
and g(rout) that are used to impose the radii of curvature r in and
rout at the leading and trailing edges. According to Goldman [76],
the curvature of a parametric curve C(u) is given by

κ(u) =

C̈(u) × Ċ(u)
Ċ(u)3 . (A.1)

In addition, it can be shown [43, pp. 125–127], that the first
and second derivatives of a NURBS curve at its start point are
given by

Ċ(u = 0) =

(
p

up+1

)(
w1

w0

)
(P1 − P0) (A.2)
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and

C̈(u = 0) = +
p(p − 1)
up+1

(
1

up+2

)(
w2

w0

)
(P2 − P0) +

−
p(p − 1)
up+1

(
1

up+1
+

1
up+2

)(
w1

w0

)
(P1 − P0) +

+
2p2

u2
p+1

(
w1

w0

)(
1 −

w1

w0

)
(P1 − P0) ,

(A.3)

respectively, where p is the degree of the curve, uk are the knot
values, Pk are the control point coordinates, and wk are the con-
trol point weights. Inserting these expressions into the curvature
definition and using the fact that the vector cross product of two
parallel vectors is zero we find

κ(u = 0) =

(
p − 1
p

)(
up+1

up+2

)(
w0 w2

w2
1

)
×

∥(P2 − P0) × (P1 − P0)∥

∥P1 − P0∥
3 .

(A.4)

Noting that unitary vector perpendicular to the camber line at the
leading edge (n) points from P0 to P1, see Fig. 2(d), the previous
equation simplifies to

κ in =
1
r in

=

(
p − 1
p

)(
up+1

up+2

)(
w0 w2

w2
1

)
∥(P2 − P0) × n∥

∥P1 − P0∥
2 .

(A.5)

Solving for ∥P1 − P0∥, the location of the control point P1 that
guarantees that the radius of curvature at the leading edge is r in
is given by

P1 = P0 ± ∥P1 − P0∥ · n = P0 ± f (r in) · n, (A.6)

where the plus and minus signs correspond to the upper and
lower sides of the blade, respectively, and the function f (r in) is
given by

f (r in)2 = r in

(
p − 1
p

)(
up+1

up+2

)(
w0 w2

w2
1

)
∥(P2 − P0) × n∥ . (A.7)

The derivation for the trailing edge is analogous. The first and
second derivatives of a NURBS curve at its end point are given by

Ċ(u = 1) =

(
p

1 − un

)(
wn−1

wn

)
(Pn − Pn−1) (A.8)

and

C̈(u = 1)

= +
p (p − 1)
1 − un

(
1

1 − un−1

)(
wn−2

wn

)
(Pn−2 − Pn) +

−
p (p − 1)
1 − un

(
1

1 − un
+

1
1 − un−1

)(
wn−1

wn

)
(Pn−1 − Pn) +

+
2p2

(1 − un)2

(
wn−1

wn

)(
1 −

wn−1

wn

)
(Pn−1 − Pn) ,

(A.9)

respectively. Inserting these expressions into the curvature defi-
nition we find

κ(u = 1) =

(
p − 1
p

)(
1 − un

1 − un−1

)(
wn wn−2

w2
n−1

)
×

∥(Pn−2 − Pn) × (Pn−1 − Pn)∥

∥Pn−1 − Pn∥
3 .

(A.10)

Noting that unitary vector perpendicular to the camber line at the
trailing edge (n) points from Pn to Pn−1, the previous equation
simplifies to

κout =
1

rout

=

(
p − 1
p

)(
1 − un

1 − un−1

)(
wn wn−2

w2
n−1

)
∥(Pn−2 − Pn) × n∥

∥Pn−1 − Pn∥
2 .

(A.11)

Solving for ∥Pn−1 − Pn∥, the location of the control point Pn−1
that guarantees that the radius of curvature at the trailing edge
is rout is given by

Pn−1 = Pn ± ∥Pn−1 − Pn∥ · n = Pn ± g(rout) · n, (A.12)

where the plus and minus signs correspond to the upper and
lower sides of the blade, respectively, and the function g(rout) is
given by

g(rout)2

= rout

(
p − 1
p

)(
1 − un

1 − un−1

)(
wn wn−2

w2
n−1

)
∥(Pn−2 − Pn) × n∥ .

(A.13)

Note that this construction guarantees that the blade is G2

continuous at the leading and trailing edges since the radius of
curvature is the same at the points connecting the upper and
lower sides of the blade.
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Abstract

The aerodynamic design of turbomachinery components is increasingly carried out by means of auto-
mated workflows that integrate high-fidelity physical models with numerical optimization techniques.
Currently, most of the adjoint-based design systems documented in the open literature assume that the
fluid behaves as an ideal gas, are restricted to the optimization of a single row of blades, or are not suited
to impose geometric constraints. In response to these limitations, this paper presents a gradient-based
shape optimization framework for the aerodynamic design of turbomachinery blades operating under
non-ideal thermodynamic conditions. The proposed design system supports the optimization of multiple
blade rows and it integrates a CAD-based parametrization with a RANS flow solver and its discrete
adjoint counterpart. The capabilities of the method were demonstrated by performing the design opti-
mization of a single-stage axial turbine that employs isobutane (R600a) as working fluid. Notably, the
aerodynamic optimization respected the minimum thickness constraint at the trailing edge of the stator
and rotor blades and reduced the entropy generation within the turbine by 36%, relative to the baseline,
which corresponds to a total-to-total isentropic efficiency increase of about 4 percentage points. The
analysis of the flow field revealed that the performance improvement was achieved due to the reduction
of the wake intensity downstream of the blades and the elimination of a shock-induced separation bubble
at the suction side of the stator cascade.

Keywords: turbine, compressor, gradient, discrete adjoint, CFD, SU2, open-source, ORC, organic
Rankine cycle, real gas, non-ideal compressible fluid dynamics.
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