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Abstract

Anthropogenic greenhouse gas emissions have continuously grown since the In-
dustrial Revolution. Global warming is the result of increasing concentrations of
these gases in the atmosphere, which create imbalances between inflow and out-
flow radiation that lead to the increase of the mean temperature of the planet.
There is scientific consensus on that the prolonged temperature rise of oceans and
land has altered the climate and jeopardised the biosphere. Temperature increase
above 1.5◦C with respect to pre-industrial levels is likely to produce deep changes
in natural ecosystems, alter biodiversity, and threaten human health and secu-
rity. Therefore, current mitigation policies aim at reducing the overall emissions
of greenhouse gases to restrain this temperature rise.

Decarbonisation of the power sector will play a fundamental role in the abate-
ment of global warming as it is the largest CO2 emitter and electrification of
other industries is becoming an essential approach to reduce their greenhouse gas
emissions. Deployment of intermittent renewable energy sources, mainly wind
and solar, has concentrated most of the efforts to reduce the emissions associated
with the power sector. However, a broader portfolio of technologies is necessary
to meet the increasing power demand whilst ensuring safe and sustainable power
generation. In this context, flexibility is and will be the cornerstone of a reliable
and efficient electric market. Thermal power plants integrated with carbon cap-
ture and storage (CCS) systems can deliver low-carbon electricity at a large scale
and balance the differences between power demand and supply originated by the
increasing share of renewable sources. Thus, these power generation systems are
expected to be one of the foundations of the power sector.

This thesis is a summary of a set of scientific contributions that aimed at opti-
mising the flexible operation of thermal power plants integrated with absorption-
based post-combustion CO2 capture plants. These included the analysis of the
dominant dynamic of this type of power generation systems, the identification
of the main bottlenecks hindering their flexible operation and transient perfor-
mance, and the development of different methodologies that allowed overcoming
these restrictions and ensuring safe yet efficient dynamic operation.

Thermal power plants and post-combustion CO2 capture systems exhibit dis-
tinct dynamic behaviour because their dominant dynamics occur in different time
scales. Flexible operation requires understanding the main factors dictating the
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dynamic performance of each plant and how their integration affects power gen-
eration. A qualitative analysis discussed the components and processes governing
the dynamic behaviour of thermal power and capture plants, both individually
and integrated, whereas dynamic simulations demonstrated the almost negligible
effect of the capture plant in the power generation capacity of natural gas com-
bined cycles. This indicated that carbon capture does not limit the dispatchable
nature of this type of thermal power plants and highlighted the suitability of ther-
mal power with CCS to balance power markets with large shares of intermittent
renewable energy sources.

Thermal and mechanical stresses, however, do limit the ramping capacity of
thermal power plants. Thick-walled equipment experiences large temperature gra-
dients during flexible operation that generate high peaks of stress in the material
and might ultimately lead to deformations and failure. This thesis presents a
methodology to operate thermal power plants based on model predictive control
that incorporates the calculation of stress in critical components. This control
strategy computes optimal power generation ramps that result in the fastest pos-
sible operation with stress levels within allowable limits.

Stress monitoring can avoid the instant failure of critical components by re-
ducing the maximum peaks of stress. Nevertheless, regular operation of thermal
power plants induces damage in the equipment even with safe levels of stress.
Flexible operation increases this deterioration and reduces the lifetime operation
of the power plant due to the more frequent and pronounced thermal gradients
and their associated stress variations. Scheduling can consider these factors to de-
termine operation profiles for thermal power plants that maximise revenue while
reducing the deterioration of the equipment and considering the inherent un-
certainty associated with intermittent power generation from renewable energy
sources. This approach is proposed in a method that formulates the scheduling
of thermal power plants as a scenario-tree stochastic optimisation problem where
the damage of the equipment is a constraint.

Optimisation-based control strategies also enhance the transient performance
of thermal power plants integrated with post-combustion CO2 capture. Model
predictive control can consider the different dynamic behaviour of both plants and
compute optimal control actions according to their dominant dynamics. A control
strategy based on offset-free model predictive control is proposed to reinforce the
flexible power dispatch of thermal power plants and to stabilise the the main
process variables of integrated systems. Dynamic simulations demonstrated the
effectiveness of this control strategy to balance drastic changes on power demand,
keep specified capture ratios, and reduce the deviations achieved in the main
process performance variables of these power systems.
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Chapter 1

Introduction

This thesis analyses the dynamic behaviour of thermal power plants integrated
with CO2 capture and investigates different methodologies to enhance their flexi-
ble operation. The objectives and proposed methodologies do not correspond to an
unique field of study, but to a blend of disciplines, including process and mechan-
ical engineering, control and optimisation. This introductory chapter presents
the background that motivates the development of the studies included herein
and the main contributions achieved by combining these distinct fields. It also
includes a brief description of the structure of the contents, and a summary of the
publications derived from this Ph.D. thesis.

1.1 Background and motivation

Global warming mitigation is one of the greatest challenges in the twenty-first
century. The prolonged greenhouse gas emissions from human activities have lead
to a temperature rise that threatens to change natural ecosystems and climate be-
haviour (IPCC, 2014). There exist different approaches to combat global warming,
including mitigation and palliative policies. To date, global warming mitigation
has concentrated most of the efforts to limit the average temperature increase of
the planet, being the reduction of greenhouse gas emissions the cornerstone of this
endeavour (IPCC, 2018).

The power sector is the largest contributor to the global CO2 emissions be-
cause of its historical reliance on fossil fuels (IEA, 2019; IPCC, 2014). Thus, its
decarbonisation can produce significant progress towards the mitigation of global
warming. Furthermore, developing a sustainable power sector can ease the reduc-
tion of greenhouse emissions from other economic sectors, since electrification is
one of the main approaches to limit the global temperature rise (IEA, 2019).

Renewable energy sources are consistently gaining prominence in the power
sector, extensively increasing the deployment of large infrastructures and their
contribution to the overall power generation mix (IEA, 2019). Power generation
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from intermittent renewable energy sources, mainly wind and solar, can reduce
the CO2 emissions associated with the power sector at the expense of increasing
the variability of power supply. Energy storage is considered as a promising
technology that can balance sudden changes in renewable power generation, but
its application in a growing electricity market in the short- and mid-term is highly
limited by its cost-effectiveness, technology maturity and commercial availability
at large scale (IEA, 2014). Nevertheless, renewable power represents only one
element of the portfolio of technologies that will be required to deliver a technically
feasible and financially viable energy system.

In this context, thermal power generation with carbon capture and storage is
understood to play a uniquely important role, providing significant value through
flexible operation (Boot-Handford et al., 2014; IPCC, 2005). This refers to the
capacity of this type of energy systems to rapidly change their operating conditions
and balance large mismatches between power supply and demand. Thus, there
are several criteria that power generation systems must meet in order to deliver
flexible operation, including steep ramp rates, fast start-ups and shut-downs, high
off-design efficiency, broad operation ranges, low minimum compliant loads, and
the ability to frequently cycle among different operating points in a fast, safe and
yet efficient manner.

Thermal power plants can balance the variability renewable energy sources
introduce in the electric grid because of their capacity to provide large changes
of power within minutes, while carbon capture and storage reduces notably the
emissions associated with their operation. Therefore, it is of vital importance that
carbon capture technology can operate synergistically with intermittent renewable
power sources, and consequently ensuring that CCS does not inhibit the flexible
and dispatchable nature of thermal power plants. However, there is scarce knowl-
edge and experience on the flexible operation of capture systems and the effect
they have on thermal power plants during transient operation (Bui et al., 2014,
2018b). Consequently, there is need of understanding the processes that govern
the dynamic behaviour of these low-carbon power generation systems, identifying
the bottlenecks that hinder their flexible operation, and developing methodologies
and control strategies that enhance their capacity to balance the power grid with
reduced emissions. Chapter 2 provides a more thorough description of the current
energy scenario and discusses more extensively the requirements of future power
systems and the role thermal power plants with CCS might have.

1.2 Objectives

Flexible operation of thermal power plants integrated with carbon capture and
storage is the main objective of this Ph.D. thesis. The achievement of this goal
would allow to notably reduce the emissions associate with the power sector,
balance the electric grid more efficiently and in a reliable manner, support the
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deployment of renewable energy sources, and enhance the decarbonisation of other
sectors through electrification. However, this objective is too generic and big to be
addressed directly. Therefore, the approach in this Ph.D. thesis was to decompose
it into smaller and simpler objectives that can be managed individually. These
are:

1. Understanding the dynamic behaviour of thermal power plants and CO2

capture, the processes that govern their transient operation, and identify
the main bottlenecks limiting their flexible and faster performance.

2. Developing methodologies and control strategies that overcome these limita-
tions and enhance the flexible operation of thermal power plants integrated
with carbon capture and storage.

3. Address the additional issues that arise from the flexible operation this type
of power systems and propose solutions to mitigate their effect.

1.3 Contributions

This thesis presents a series of analysis, methodologies and control approaches to
enhance the flexible operation of thermal power systems with and without CO2

capture. The main contributions are:

1. Qualitative analysis of dominant dynamics and processes governing the tran-
sient performance of thermal power plants and CO2 capture systems.

2. Understanding the effect of integrating CO2 capture plants with thermal
power plants on the capacity to dispatch flexible power and balance the
electric grid.

3. Development of a control methodology that considers the stress in critical
equipment of thermal power plants and limits its maximum level.

4. Comparison of linear and nonlinear formulations for optimal control of ther-
mal power plants with stress monitoring.

5. Identification and construction of data-based linear surrogate models to pre-
dict nonlinear dynamic behaviour in thermal power plants and CO2 capture
systems.

6. Development of a scheduling method to maximise the revenue of flexible
thermal power plants, enhance their lifetime utilisation, and consider the
uncertainty associated with power generation from intermittent renewable
energy sources.

7. Evaluation of model predictive control methodologies for optimal and flexi-
ble operation of thermal power plants integrated with CO2 capture.
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These methodologies and control strategies were formulated in a generic manner
with the objective of easing their implementation in a broad range of power plants
and scenarios. There are many situations where these approaches can lead to
notable advances, including start-ups and shut-downs, that were not tested, and
there are even more refinements that might improve the proposed control and
scheduling approaches. The author hopes this work contributes to the academic
community and to the transition towards a better and more sustainable power
system.

1.4 Thesis structure

This thesis comprises six chapters that present the motivation and analysis in-
cluded in five journal papers. Chapter 2 describes the energy scenario since the In-
dustrial Revolution, presents the main available evidence supporting global warm-
ing, and briefly discusses the main approaches to mitigate its effects. This is the
foundation to discuss the fundamental purpose of the power sector in future en-
ergy systems and the role flexible thermal power plants and CCS can have. Then,
each chapter refers to an unique paper, except Chapter 4 that describes the con-
tent of two journal publications. These chapters are self-contained and should be
possible to read them independently. Nevertheless, the structure follows a logical
order, rather than chronological, to ease the understanding of the reader, motivate
topics covered in upcoming chapters, and describe methods or approaches needed
in future sections.

Chapter 3 analyses qualitatively the transient behaviour of both thermal power
plants and post-combustion capture systems, discusses the dominant dynamics
that govern their operation, identifies the main bottlenecks inhibiting better flex-
ible performance, and includes the results that demonstrate how the integration
of both plants has an almost negligible impact on the power generation of the
thermal power plant. Chapter 4 addresses one of the most important bottle-
necks of thermal power plants identified in the previous chapter, the thermal and
mechanical stresses in the equipment of the steam cycle, and presents a method-
ology to control the power plant and limit the stress within safety levels. This
chapter describes two formulations to ease the implementation of this control
methodology with stress monitoring. Chapter 5 considers a longer time scale of
operation of thermal power plants and includes a scheduling method to include
the uncertainty on power demand generated by large shares of renewable power
generation and enhance the integration, profit and lifetime utilisation of flexible
thermal power plants with and without CO2 capture. Chapter 6 discusses a model
predictive control strategy to stabilise and optimise the transient performance of
a natural gas combined cycle with post-combustion CO2 capture, and presents
an algorithm to achieve optimal reference tracking in this type of energy systems.
Finally, Chapter 7 summarises the main contributions of this Ph.D. thesis and dis-
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cusses possible future research paths to continue enhancing the flexible operation
of thermal power plants integrated with carbon capture and storage.

1.5 Publications and scientific dissemination

The work during these three years of Ph.D. has resulted in five journal papers,
four conference papers, and a six-month research stay at Imperial College London.

1.5.1 Journal articles

Rúa, J., Bui, M., Nord, L. O., and Mac Dowell, N. Does CCS reduce power
generation flexibility? A dynamic study of combined cycles with post-combustion
CO2 capture. International Journal of Greenhouse Gas Control, 95:102984, 2020.
(Chapter 3)

Rúa, J., Agromayor, R., Hillestad, M., and Nord, L. O. Optimal dynamic oper-
ation of natural gas combined cycles accounting for stresses in thick-walled com-
ponents. Applied Thermal Engineering, 170:114858, 2020. (Chapter 4)

Rúa, J. and Nord, L. O. Optimal control of flexible natural gas combined cycles
with stress monitoring: Linear vs nonlinear model predictive control. Applied
Energy, 265:114820, 2020. (Chapter 4)

Rúa, J., Verheyleweghen, A., Jäschke, J., and Nord, L. O. Optimal scheduling
of flexible thermal power plants with lifetime enhancement under uncertainty.
Applied Thermal Engineering, 191:116794, 2021. (Chapter 5)

Rúa, J., Hillestad, M., and Nord, L. O. Model predictive control for combined
cycles integrated with CO2 capture plants. Computers & Chemical Engineering,
146:107217, 2021. (Chapter 6)

1.5.2 Conference articles

Rúa, J., Montañés, R.M. and Riboldi, L., Nord, L.O. Dynamic Modeling and
Simulation of an Offshore Combined Heat and Power (CHP) Plant. In Proceedings
of the 58th Conference on Simulation and Modelling (SIMS 58), 25-27 September
2017, Reykjavik, Iceland, pages 241-250. Linköping University Electronic Press,
2017.
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Agromayor, R., Rúa, J. and Kristoffersen, R. Simulation of Starting and Stopping
Vortices of an Airfoil. In Proceedings of the 58th Conference on Simulation and
Modelling (SIMS 58), 25-27 September 2017, Reykjavik, Iceland, pages 66-75.
Linköping University Electronic Press, 2017.

Rúa, J. and Nord, L. O. Exergy Analysis for Combined Heat and Power (CHP)
Plants. In Proceedings of The 59th Conference on Simulation and Modelling
(SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway, pages
1–8. Linköping University Electronic Press, 2018.

Rúa, J. and Nord, L. O. Stress Monitoring During Optimal Dynamic Operation
of a Natural Gas Combined Cycle: Linear Vs Nonlinear Formulation. In Inter-
national Conference on Applied Energy, 12-15 August 2019, Väster̊as, Sweden.
Energy Proceedings, 2019.
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Chapter 2

Energy context

The Industrial Revolution marks a major turning point in history, shaping modern
societies and natural ecosystems. During the period between 1760 and 1840, facto-
ries transitioned from traditional production methods based on elementary tools
and manual labour to mechanised processes where machines and steam power
were the main driving forces. Industrialisation originated population and eco-
nomic growths, increased the standard of living of western societies, and changed
the structure of many industries and processes. However, the Industrial Revolu-
tion also set the beginning of a harmful period where the continuous temperature
rise of oceans and land has altered the climate and jeopardised the biosphere.

2.1 Global warming

Since the end of the Industrial Revolution, the atmospheric concentration of car-
bon dioxide, methane, nitrous oxides, and other greenhouse gases has increased
until levels not reached before. High concentration of these gases produces im-
balances in the radiation entering and leaving the atmosphere and, consequently,
a net energy increase that translates into global warming. Fig. 2.1 represents
the global average atmospheric concentration of CO2 and the average land-sea
temperature anomaly since the end of the Industrial Revolution. Measurements
of temperature anomaly by two independent institutions, Goddard Institute for
Space Studies (GISS) and Met Office Hadley Centre, show reasonable agreement
and correlate with the increasing CO2 concentration measured in the atmosphere.
Natural drivers may describe the variability in temperature anomalies before the
second half of the 20th century, but temperature data in the last decades can-
not be explained without considering anthropogenic forcings (Canty et al., 2013;
IPCC, 2014; Knutson et al., 2016, 2017).

Analysis of the data from the Vostok ice core extracted in Antarctica supports
the hypothesis that global warming is the result of human activity (Petit et al.,
1999). This project provides further evidence of the historic correlation existing
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Figure 2.1: Global average land-sea temperature anomaly and atmospheric CO2 con-
centration since the end of the industrial revolution. Data obtained from Morice et al.
(2012), Bereiter et al. (2015), Lenssen et al. (2019), GISTEMP Team (2020).
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Figure 2.2: Atmospheric CO2 concentration and temperature difference with respect
to the mean recent time value (i.e. corresponding departure from -438hmean deuterium
value) obtained from Vostok ice core data (Petit et al., 1999).
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between CO2 concentration and average global temperature millennia before hu-
man influence on climate, as shown in Fig. 2.2. Thus, the impossibility to explain
current global temperature with solely natural drivers, the historic relationship
between CO2 concentration and average global temperature, and the increase in
recent decades of anthropogenic greenhouse gas emissions and global temperature,
indicate that the human factor is the main responsible of global warming (IPCC,
2014).

Carbon dioxide has the largest impact on the overall temperature rise among
the many gases that contribute to the greenhouse gas effect (IPCC, 2014). This
occurs despite it has the lowest global warming potential (GWP), as the large
CO2 emissions compared to other greenhouse gases offset the difference in GWP
(IPCC, 2014). Therefore, most of the efforts to mitigate climate change have
concentrated on reducing the overall CO2 emissions.

Current mitigation strategies aim at limiting to 1.5 ◦C the temperature in-
crease with respect to pre-industrial levels in 2050, instead of the previous, less-
ambitious goal of 2 ◦C (IPCC, 2018). This temperature difference would reduce
risks related to health, livelihood, food and water supply, and human security;
lower most adaptation needs to mitigate climate change, which would benefit the
more threatened countries with less resources; and contain the effects on climate,
biodiversity and natural ecosystems (IPCC, 2018).

Mitigation policies defined under the Paris Agreement (UNFCCC, 2015) are
not sufficient to limit the temperature increase below 1.5 ◦C (IPCC, 2018). There
are, however, different pathways and several portfolios of measures that may limit
global warming to 1.5 ◦C with no or limited overshoot, but these alternatives need
to stay within a total carbon budget of 770-420 GtCO2 emissions with uncertain-
ties of ±1000 GtCO2 (IPCC, 2018, Summary for Policymakers, p. 14). Reduction
of energy and resource intensity, decarbonisation, and carbon dioxide removal are
the three types of measures that might achieve this objective. Their contribu-
tion varies depending on the pathway and technology portfolio considered, but all
scenarios require profound and fast transitions in all sectors to limit the temper-
ature rise below 1.5 ◦C and mitigate the effects of global warming (IPCC, 2018).
Furthermore, energy demand is expected to increase in future years (IEA, 2019).
Thus, this transition needs to address the dual challenge of mitigating climate
change while meeting the increasing energy demand.

Deployment of clean energy technologies and utilisation of low-carbon sources
might fulfil both objectives, but large investments and rapid changes across all
sectors will be necessary to reach a sustainable energy system. Fig. 2.3 represents
the energy consumption by source between 1949 and 2019. Nuclear and renewable
energy sources have progressively increased their contribution to the overall energy
consumption in this period. Nevertheless, they still represent a small share albeit
recent efforts on expanding the total installed capacity of renewable technologies.
Fossil fuels have historically been the main energy sources of the global energy
system, with their contribution growing over decades because of the increase in
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Figure 2.3: Global primary energy consumption by source between 1949 and 2019.
Source: U.S. Energy Information Administration (2020).
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energy demand. CO2 emissions have risen accordingly, although a plateau might
have been reached in the last two decades (see Fig. 2.4). The stabilisation of
CO2 emissions despite the increasing energy demand and reliance on fossil fuels
is the result of past environmental measures such as fuel switching from coal
to low-carbon energy sources, mainly natural gas, and the utilisation of clean
technologies. This proves the effectiveness of the transition towards a sustainable
energy system and points out the urgent need to accelerate deeper changes that
allow meeting the 1.5 ◦C goal.

The effects of the current transition towards a sustainable energy system are
also observable in the CO2 emissions and energy consumption of different sectors,
represented respectively in Figs. 2.4 and 2.5. Energy consumption from the resi-
dential, commercial and industrial sectors has slowly increased over time, whereas
the transport and power sectors have experienced more pronounced growths and
are responsible for the overall rise in energy demand.

Electrification of different processes, industries and technologies is the main
contributor to the rapid energy consumption increase in the power sector. This
trend is expected to continue as it eases the decarbonisation of other sectors
where there are fewer alternatives to reduce greenhouse gas emissions (IEA, 2019).
Therefore, the power sector will require profound changes in order to meet a con-
tinuously increasing demand whilst reducing CO2 emissions. This goal has been
partially achieved in the last decades since the increase of CO2 emissions associ-
ated to the power sector is not as acute as of its energy consumption (see Figs. 2.4
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Source: U.S. Energy Information Administration (2020).
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and 2.5). Nevertheless, the decarbonisation of the power sector will require fur-
ther measures, prompt action and technological advancement (Heuberger et al.,
2017, 2018).

2.2 Power sector: past, present and future

Historic reliance on fossil fuels and increasing demand of power due to the con-
tinuous electrification of other sectors make power generation the largest source
of CO2 emissions (see Fig. 2.4). Fig. 2.6 illustrates the contribution of different
sources to the total net electricity generation since 1949. Traditional thermal
power plants have been the foundation of current power sector as they are the
largest contributors. Coal-fired units were the main drivers in the past because of
the well-established technology and the low prices of the fuel. However, as a result
of the transition towards low-carbon technology, power plants based on burning
natural gas have increased their share in recent years at expense of reducing the
power generation of the more polluting and less efficient coal power plants.

Nuclear plants have been the largest power generation source among the tech-
nologies that can deliver electricity without greenhouse emissions. The role of this
energy source in the future is, however, uncertain. Whilst the recent accident in
Fukushima (Japan, 2011) and the memories from the nuclear disaster in Cher-
nobyl (Ukraine, 1986) turned part of the public opinion against this technology
and some countries have started phasing out their nuclear power plants, energy
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Figure 2.6: Global net electricity generation by source between 1949 and 2019. Source:
U.S. Energy Information Administration (2020).

12



2.2. Power sector: past, present and future

planning studies suggest nuclear power as one of the main drivers to reach the
target of limiting global warming to 1.5 ◦C respect to pre-industrial levels (Eser
et al., 2017; Heuberger et al., 2017; IEA, 2019). Thus, nuclear power generation
may be considered as one of the contributors in the future power sector.

The contribution of renewable energy sources to the power generation mix
was traditionally based on hydropower plants and biomass. Efforts in recent
years have concentrated in the deployment of onshore and offshore wind gener-
ators, and photovoltaic (PV) and thermal solar systems (IEA, 2019). Installed
power generation capacity of these renewable energy sources will continue to grow,
gaining progressive relevance within the power sector (IEA, 2019). This affects
specially offshore wind and PV solar plants owing to their large installation po-
tential, growing experience, and reduction of costs (Eser et al., 2017; IEA, 2019).
Hydropower is expected to contribute with 15% of the total power demand, a
share similar to recent years (IEA, 2019). Biomass may also play an important
role in the decarbonisation of the power sector since it can deliver carbon-neutral
electricity, or even negative emissions if combined with carbon capture and storage
in a technology known as BECCS (bio-energy CCS) (Bui et al., 2017; Fajardy and
Mac Dowell, 2017; IPCC, 2018), but its efficacy at large scale is yet to be demon-
strated (Bui et al., 2018a). Furthermore, biomass is an energy source that can
reduce the CO2 emissions of different sectors, including fuel-switching in different
industries, use of biofuels in the residential and transport sectors, and biomass for
heating in the residential, commercial and industrial sectors. This broad range of
applicability might limit the utilisation of biomass in the power sector and hence
its contribution to the delivery of low-carbon electricity.

Wind and solar power concentrate most of the efforts to decarbonise the pro-
duction of electricity, but these technologies also add uncertainty and reliability
issues associated with their intermittent power generation. Mismatches between
demand and supply can hence originate from this intermittent power generation.
Moreover, the increasing reliance on the power sector and growing share of energy
from wind and solar sources will intensify this problem.

Future energy systems need to address this issue and develop mechanisms to
compensate the volatility associated with power generation from renewable en-
ergy sources. Flexible dispatch of power refers to the capacity of power systems
to modify the power supply and balance the variability in the demand, and is
considered the cornerstone of an efficient, reliable and sustainable power sector
(IEA, 2019). Energy storage, interconnection between power systems, demand
management, curtailment, power conversion and rapid operation changes of dif-
ferent power plants are the main procedures to balance power generation and
demand (Kondziella and Bruckner, 2016; Lund et al., 2015). These mechanisms
are necessary to achieve a flexible power system, but their applicability differs in
the time scale and amount of power that needs balancing.

Rapid changes in power generation from renewable energy sources can mo-
mentarily alter the frequency and voltage of the power grid, whose control occurs
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in the short time scale, i.e. within milliseconds and seconds. There are different
electronic devices specifically installed in the power grid, e.g. supercapacitors,
to regulate these parameters. However, power suppliers also contribute to the
stabilisation of both frequency and voltage (Carrasco et al., 2006). Tradition-
ally, thermal power plants have modified the rotational speed of their turbines.
In future power systems with several flexible power dispatch mechanisms, energy
storage technologies with immediate response, e.g. electric batteries, and wind
turbines supplying active and reactive power will also contribute to the regulation
in the short time scale (Carrasco et al., 2006; Divya and Østergaard, 2009). There-
fore, the new power generation technologies will complement existing power plants
and provide power operators with more options to ensure adequate frequency and
voltage control.

Mismatches between power supply and demand occur in longer time scales,
i.e. in the order of seconds and minutes. This type of imbalance is arguably the
most complex issue related to volatility of wind and solar power. Thus, most
procedures and technologies to achieve flexible power generation focus on this
problem.

Energy storage with batteries can balance small power mismatches in the grid
for short periods of time but cannot provide or absorb significant amounts of power
for long periods because of their limited capacity (Dunn et al., 2011). Moreover,
their cost-effectiveness, technology maturity and commercial availability at large
scale restrict the deployment of this technology (Chen et al., 2009; IEA, 2014).
In contrast, thermal energy storage has larger capacity and can balance the grid
for longer periods of time (Farid et al., 2004). Thermal solar power is the main
application of this type of energy storage. This limits the effect of this technology
on the overall reserve capacity of the power grid since the contribution of thermal
solar power to the total electricity generation is small. Pumped-hydro storage
is the most mature technology and has the largest capacity of all energy storage
alternatives. The main drawbacks are its reliance on surplus of clean electricity in
energy systems with limited power from renewable energy sources and increasing
demand, and the need of adequate geographical conditions, which constraints its
installation to countries with suitable orography (Lund et al., 2015). Nevertheless,
the growing installed capacity predicted for the future of solar, and specially wind,
power will benefit pumped-hydro storage. Conversion of excess power to gas or
hydrogen is another energy storage approach that will profit from the increasing
renewable energy capacity, although it is currently limited by the shortage of
power from sustainable energy sources and the lack of production facilities and
distribution networks (Lund et al., 2015). Demand management can complement
these energy storage technologies as it provides mechanisms to smooth peak and
valley demands and achieve a more stable power system (Lund et al., 2015).

Grid interconnections ease the balance of power demand and supply by off-
setting a fraction of this difference to other power systems (Lund et al., 2015).
This is specially important for small energy systems where flexible power dispatch
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is more difficult because of the more limited mechanisms available (Huber et al.,
2014). While this approach allows sharing the balancing problem among different
power systems, it does not solve completely this issue since the power supply still
needs to meet the demand.

Overall, the technologies and mechanisms discussed so far that are able to
dispatch flexible power cannot address independently and simultaneously the main
two issues associated with intermittent power generation from renewable energy
sources: balancing large variations of power generation within short periods of
time. Some of these technologies can currently offer fast response for limited
power balance, or large power capacity for short periods of time. Other balancing
mechanisms show potential to contribute to flexible future energy systems, but
they still require further research, development, and investment in infrastructure.
Thermal power plants can address both issues (Alobaid et al., 2017; Hentschel
et al., 2016).

2.3 Flexible thermal power generation and CCS

Thermal power plants will play a fundamental role balancing supply and demand
in future energy systems. This type of power plants possess large energy capacity,
i.e. can deliver substantial power generation changes by modifying their operating
conditions, and are able to ramp up and down, start up and shut down in short
periods of time (Hentschel et al., 2016). Consequently, they can absorb the high
volatility from renewable power generators.

Base-load operation was the main power generation mode in the past. Thermal
power plants operated at nominal conditions most of the time with few start ups
and shut downs, which lead to efficient and profitable power generation. Deploy-
ment of renewable energy technologies and its associated variability will require
a change in the design and operation of thermal power plants (Lise et al., 2013;
Oswald et al., 2008). As a result, these units will cycle more frequently and
with steeper ramps, and will be exposed to more start ups and shut downs (Eser
et al., 2017; Gonzalez-Salazar et al., 2018; Huber et al., 2014; Lew et al., 2012;
Oswald et al., 2008). Steady-state operation at off-design conditions will be also
more common. This will require to modify the design of thermal power plants to
achieve higher efficiencies at different part loads (Riboldi and Nord, 2018).

Minimun load, start-up time and maximum load gradient are normally the
three criteria that assess the operational flexibility of thermal power plants (Alobaid
et al., 2017). Minimum load refers to the lowest possible power output that guar-
antees stable stable combustion and CO−NOx levels in compliance with emission
regulations. Gas turbines limit natural gas combined cycles to 40-50% of the
nominal load, although this level is expected to decrease to 20% with sequential-
combustion designs; whereas biomass and coal-fired power plants can operate at
20% of nominal conditions (Alobaid et al., 2017). Having a low minimum load
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allows thermal power plants to act as spinning reserves, avoid excessively frequent
start ups and shut downs, and balance more rapidly the variation in renewable
power generation.

Start up, shut down and ramping time depend on both design of the power
plant and the control strategy implemented. The design of flexible thermal power
plants is a trade-off among efficiency at nominal and off-design conditions, and
adequate transient performance. It determines size and geometry of steam gener-
ators in the steam cycle, and hence its heat capacitance, dynamic behaviour, and
time to start up and ramp up and down (see Chapter 3). However, the design
does not completely determine the transient performance of thermal power plants.
Suitable control strategies can reduce the time required to start up, shut down
and cycling between operating loads. Moreover, these control procedures may
be adapted over time according to the needs of every individual power plant, in
contrast to its design, which can only be modified under major remodelling work.
Therefore, the analysis of the dynamic behaviour and different control strategies
for flexible thermal power plants will be fundamental in the transition towards a
sustainable power sector.

Thermal power plants are the main responsible for the CO2 emissions through-
out history but, at the same time, they are expected to be one of the pillars during
the decarbonisation of the power sector. A natural question might arise at this
point: How can these two statements hold, if they are contradicting each other?
The key to deliver low-carbon electricity and provide flexible thermal power gen-
eration is carbon capture and storage (CCS).

Carbon capture and storage groups all technologies that can remove CO2

emissions from fixed-point sources and transport them to locations where can be
safely stored and isolated from the atmosphere (IPCC, 2005). Post-combustion,
pre-combustion and oxy-combustion are the fundamental methods to capture CO2

emissions that otherwise would be emitted to the environment (Boot-Handford
et al., 2014; Bui et al., 2018a; IPCC, 2005; MacDowell et al., 2010). Fig. 2.7
summarises the main characteristics of these three CO2 capture systems.

Integration of thermal power plants with any of these CCS technologies enables
flexible power generation with low or null CO2 emissions. Therefore, this type
of systems can balance the intermittent power generation from renewable energy
sources while reducing, or removing, the greenhouse emissions of the power sector
(Alie et al., 2009; Brouwer et al., 2015; Montañés et al., 2016). Moreover, CCS
could also deliver negative emissions if combined with biomass power plants (Bui
et al., 2017, 2018a; Fajardy and Mac Dowell, 2017).

Bio-energy CCS is considered essential to accomplish the target of limiting
the temperature increase 1.5 ◦C respect to pre-industrial levels (Daggash and
Mac Dowell, 2019; IPCC, 2018), but it is still at development stages (Bui et al.,
2018a). Rapid action is, however, necessary to do not exceed the available carbon
budget and meet the 1.5 ◦C goal. Delay in the deployment of renewable and
low-carbon technologies would impede energy system decarbonisation, and lead to
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Figure 2.7: Schematic representation of CO2 capture systems for power generation.

capacity over-sizing and higher costs (Heuberger et al., 2018). Thus, the utilisation
of available low-carbon technologies seems the most efficient and cost-effective
approach to decarbonise the power sector.

Post-combustion CO2 capture is arguably the most mature CCS technology
and the most likely to be deployed at large scale (Bui et al., 2018a; IPCC, 2005).
This type of capture plants can be easily integrated with thermal power plants
and can remove close to all carbon emissions. Nevertheless, the expansion of post-
combustion CO2 capture in future power sectors with large installed capacity of
renewable energy requires deep understanding of the dynamic behaviour of this
CCS system and the coupling effects when integrated with thermal power plants
(Alie et al., 2009; Montañés et al., 2016).

Despite there are already two full-scale coal-fired power plants integrated with
post-combustion CO2 capture and several pilot plants functioning (Bui et al.,
2018a), transient operation of these energy systems has not been extensively stud-
ied. Dynamic modelling and simulation remains the main tool to gain insight into
the dynamics of flexible thermal power with CCS (Bui et al., 2014, 2018b). There-
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fore, developing further knowledge and experience into the dynamic behaviour
could help improve the accuracy and robustness of dynamic process control and
scheduling during flexible operation, plant start-up and shut-down. This could
ultimately accelerate the deployment and utilisation of flexible thermal power
plants integrated with post-combustion CO2 capture.
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Chapter 3

Dynamic behaviour of thermal
power plants and CO2 capture
systems

Flexible operation of thermal power plants integrated with post-combustion CO2

capture requires frequent and rapid cycling between different loads, and more start
ups and shut downs. This performance expands the time these energy systems
operate in transient conditions and entails adequate procedures and control strate-
gies for different operation modes. Understanding the intrinsic dynamic behaviour
of thermal power plants, post-combustion CO2 capture units, and integrated sys-
tems is essential for the development of such strategies and the identification of
bottlenecks that inhibit better transient performance. Furthermore, coupling of
power and capture plants might affect power generation during dynamic opera-
tion. It is hence fundamental to ascertain whether power control strategies are
needed to compensate the effects of system integration. This chapter is based on
Rúa et al. (2020b) and describes the dynamic behaviour of thermal power gener-
ation and CO2 capture individually, and the combined transient performance of
the integrated system.

3.1 Thermal power plants

Heavy-duty thermal power plants are the main complement to post-combustion
CO2 capture within the power sector since this technology is more cost-effective
with large-emission sources (IPCC, 2005). Large-scale coal and biomass power
plants (CPP and BPP, respectively) operate under the same principle. Combus-
tion of the fuel provides the energy to produce pressurised, superheated steam
that generates power through its expansion in a steam turbine of several stages.
Supercritical coal-fired power plants use once-through steam generators, whereas
subcritical coal-fired and biomass plants have several sections at lower and higher
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pressures (Alobaid et al., 2017). These plants also include reheating and preheat-
ing of steam and water, as it increases the efficiency of the steam cycle (Alobaid
et al., 2017).

Similarly, natural gas combined cycles (NGCCs) consist of a steam cycle where
steam expanded in a multi-stage turbine generates electrical power. Reheating is
also part of contemporary configurations owing to its efficiency increase. How-
ever, steam cycles in modern NGCCs have three pressure levels to minimise the
temperature difference, and hence exergy destruction, between the exhaust gas
of the gas turbine and the working fluid in the steam cycle (Alobaid et al., 2017;
Bolland, 1991; Kehlhofer et al., 2009). One main difference between NGCCs and
CPPs/BPPs is the gas turbine. This component generates most of the power in
NGCCs while its exhaust gases are the energy source to produce steam in the
bottoming cycle. Because of the increasing efficiency of modern, heavy-duty gas
turbines, NGCCs can reach overall efficiencies of up to 64% with respect to the
lower heating value (LHV) of the fuel. In contrast, CPPs and BPPs have nomi-
nal efficiencies around 45% due to their exclusive reliance on the steam cycle to
generate power (Hentschel et al., 2016).

Gas turbines also change the transient behaviour of NGCCs compared to other
thermal power plants with power generation exclusively from the steam cycle. Tur-
bomachinery components, i.e. pumps, compressors, turbines, and electric motors,
can change their operating point within seconds. Thus, they introduce negligible
dynamics in the overall behaviour of thermal power plants. Gas turbines exhibit
this transient performance, albeit combustion stability and damage in the first
stage of turbine blades limit the maximum ramps (Kehlhofer et al., 2009). Mod-
ern, heavy-duty gas turbines can deliver up to 17.5%/min ramps. NGCCs inherit
this ramping capacity from gas turbines and can hence provide steep power ramps
within seconds. This enhances the utilisation of NGCCs as flexible power plants
to balance power demand and supply.

Steam generators are, on the contrary, the main limitation of large-scale ther-
mal power plants during transient operation (Alobaid et al., 2017; Kehlhofer et al.,
2009). These power systems require substantial amounts of energy to produce
pressurised, superheated steam and hence electricity. Heat transfer between en-
ergy source and steam cycle occurs at small temperature differences to minimise
exergy destruction, which results in large heat transfer areas. Consequently, steam
generators are bulky equipment with large mass of metal. The heat capacitance of
this type of components allows the storage of large amounts of energy. This pro-
duces a delay between the change of conditions in the energy source side and the
water/steam counterpart, and slows down the transient operation of the overall
thermal power plant.

Steam turbines generate all the power in CPPs and BPPs. Therefore, for a
given nominal power output, these plants need larger mass flow rates of steam than
NGCCs. This requirement leads to bigger and bulkier steam generators in CPPs
and BPPs, and thus to slower transient operation. Moreover, gas turbines account
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for most of the power output in NGCCs, which enhances the rapid dynamic
behaviour and balancing capability of this type of thermal power plant (Alobaid
et al., 2017; Kehlhofer et al., 2009). Fig. 3.1 shows a generic dynamic behaviour
of different thermal power plants of similar nominal power output and illustrates
their different transient performance and minimum load.

There exist different approaches to enhance the rapid transient operation of
large-scale thermal power plants. Valves at the inlet of steam turbines can control
power generation, although this approach should be avoided to reduce the overall
energy losses in the steam cycle and maximise efficiency. Faster changes in the
gas turbine load in NGCCs and the fuel consumption in CPPs and BPPs can
also lead to rapid dynamic behaviour. However, drastic operation changes in
the steam generator can increase the thermal and mechanical stresses in thick-
walled components and damage the equipment. This phenomena is one of the
main bottlenecks inhibiting faster dynamic behaviour in thermal power plants,
and needs to be considered during transient operation (see Chapter 4). Adequate
scheduling may also deliver flexible thermal power generation, since it allows to
anticipate variations on power demand and plan the change of operation according
to the dynamic behaviour of each thermal power plant (see Chapter 5).

Figure 3.1: Generic dynamic behaviour of different thermal power plants of similar
size. Maximum and minimum loads and power generation shares depend on power plant
design. The vertical line indicates increasing load dynamic behaviour. The nomenclature
is as follows. GT: gas turbine, NGCC: natural gas combined cycle, SC: steam cycle.
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3.2 Post-combustion capture plants

Post-combustion capture plants remove CO2 from flue gases of thermal power
plants. There are several chemical methods to separate CO2 from the exhaust gas,
being absorption the most mature approach (Bui et al., 2018a; IPCC, 2005). This
type of carbon capture comprises two unit operations: absorption and desorption
(or regeneration) (MacDowell et al., 2010).

Absorption CO2 capture uses a liquid solvent, normally a solution of water
and monoethanolamine (MEA), to remove CO2 from the main stream of gases.
Carbon removal occurs inside a packed absorber column where lean, liquid solvent
and exhaust gas flow in a counter-current configuration to enhance the absorption
of CO2. In this context, lean indicates low mole fraction of CO2 in the liquid
solvent, whereas rich refers to high mole fractions. The low-carbon exhaust gas is
released at the top of the column into the atmosphere, whereas the liquid solvent
rich in CO2 circulates to the desorption section from the bottom of the absorber.

Regeneration of rich solvent includes three elementary units: desorber column,
reboiler and condenser. In this second packed column, the desorption process
between the rich-loading solvent and a vapour stream removes the excess CO2 from
the solvent, which leaves the column at the bottom and enters the reboiler. This
unit provides heat to the liquid in order to break the chemical bonds formed during
the absorption process and generate the vapour stream that flows upwards in the
desorber and enters the condenser at the top. The purpose of this component is
to isolate the CO2 for future compression and transport, and to produce a liquid
reflux that recirculates back to the desorber column.

Capture plants with this configuration also include auxiliary equipment to
improve the efficiency of the process, ease the control of the plant during transient
operation, and overcome pressure losses. Some of these components are blowers,
pumps, compressors, valves, heat exchangers and storage tanks. This equipment
behaves differently during transient operation. Therefore, the overall dynamic
behaviour of the capture plant depends on the individual contributions of the
different components.

Blowers, compressors and pumps, i.e. the rotating equipment, do not intro-
duce any dynamic disturbance during transient operation since these components
have almost negligible dynamics. They can modify their operation within seconds
and hence are the fastest equipment in post-combustion capture plants. Simi-
larly, piping and heat exchangers do not introduce any dynamic behaviour during
the transient of the capture plant, although they are responsible for long delays
because of the circulating time in this equipment (Flø et al., 2016; Montañés
et al., 2018). Large vessels such as absorber and desorber sumps, storage tanks
or reboiler hotwells introduce significant inertia, which buffers and smooths the
overall dynamic behaviour of the capture plant (Flø et al., 2016; Montañés et al.,
2018). Liquid hold-up in the absorber and desorber columns has a similiar effect,
smoothing possible variations along both components. However, their contribu-
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tion to the overall dynamics of the capture plant is significantly smaller because
of the reduced amount of stored liquid in the packing material. Therefore, the
dynamic behaviour of post-combustion capture plants is not governed by the mass
balance but by the total volume of solvent, the volumetric capacity of the plant,
and the solvent circulation time.

Exhaust gas and steam are the two main inputs of absorption-based capture
plants. Thus, transient operation of these plants results from changes in the
conditions of any of these flows, i.e. mass flow rate, temperature, pressure or
composition. From a control perspective, variations in the exhaust gas are con-
sidered as disturbances, whereas the steam conditions are normally regarded as
manipulated variables.

Changes in the exhaust gas flow rate during open-loop operation illustrate
the small effect of mass balance compared to storage volume in the dynamic be-
haviour of capture plants. This type of variations principally affects the absorber
column. Different conditions in the exhaust gas modify the amount of CO2 in the
packing material and alter the absorption process. As a result, there is a change
of energy released in this exothermic reaction, which leads to shifts in the temper-
ature profile along the absorber and offsets in CO2 capture rate (Bui et al., 2016;
Kvamsdal and Rochelle, 2008; Montañés et al., 2018; Tait et al., 2016). Chemical
and thermal inertia dominate these variations since the stabilization time of both
absorber temperature profile and CO2 capture rate are larger than the rise time
of flue gas flow rate (Montañés et al., 2018). However, these changes in the ab-
sorption section do not propagate significantly throughout the capture plant for
moderate disturbances in the exhaust gas and constant mass flow rates of solvent,
which shows the smoothing effect of large volumes of solvent (Bui et al., 2016,
2018b; Flø et al., 2016; Lawal et al., 2010; Montañés et al., 2017a, 2018). Never-
theless, sufficiently large changes in the exhaust gas conditions should overcome
this buffering capacity and propagate to the desorption section.

Modifications of the steam flow conditions also affect the dynamic behaviour
of CO2 capture plants. These changes alter the temperature in the reboiler, and
consequently the vapour stream state and operating conditions in the desorber,
which ultimately lead to different lean loading in the solvent leaving the column
(Bui et al., 2020; Flø et al., 2016; Garkarsdóttir et al., 2015; Lawal et al., 2010;
Montañés et al., 2017a). Notable deviations in lean loading might propagate to
the absorption section, affecting the absorption capacity of the solvent and the
energy released in these chemical reactions, which shift the temperature profile
in the absorber column and the CO2 capture rate (Bui et al., 2016; Flø et al.,
2016; Lawal et al., 2010; Montañés et al., 2017a, 2018). If these operation changes
also affect the rich loading of the solvent leaving the absorber, the conditions in
the desorber can further change because of the different stripping conditions of
the solvent entering the desorption section. This results in a continuous feedback
between both sections of the capture plant that lead to slow dynamic behaviour
and long stabilisation time. Similarly, small variations in the lean loading may be
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buffered by the large volumes of solvent along the capture plant.

Overall, the slow transient performance of post-combustion capture plants is a
combination of individual factors. Transport delay introduced by heat exchangers
and piping, long residence time because of large solvent vessels, and total volume
of solvent stored or held-up in the capture plant are arguably the main contribu-
tions to the long stabilisation time and slow dynamics observed in CO2 capture
plants. These factors enhance the interaction between the absorbtion and des-
orption columns. Modifications in the exhaust gas or steam conditions drive the
transient operation of capture plants, whereas the absorber and desorber define
the dynamic behaviour that propagates throughout the capture plants and feed-
back each other with continuous operation changes. During this process, large
storage tanks, sumps and hotwells buffer and smooth these dynamics, whilst pip-
ing and heat exchangers introduce delays. This set of individual contributions
shapes the dynamic behaviour of CO2 capture plants.

3.3 Thermal power plants integrated with CO2 cap-
ture plants

Integration of thermal power plants with CO2 capture requires different level
of structural and operational modifications in both systems depending on the
approach. There are essentially two ways to integrate power and capture plants.
The simplest form is an “end of pipe” solution. It connects the exhaust gas of
the thermal capture plant to the CO2 capture process, where a external supply
source produces the energy required in solvent regeneration. This alternative does
not impose any operational limitation and efficiency penalty in the thermal power
plant, but it presents the challenge of mitigating the emissions associated with
the external energy source. The second approach considers steam extraction from
the power plant as energy source for the regeneration of solvent in the capture
plant. This method removes the necessity to mitigate the additional emissions
related to solvent regeneration, although it affects the operation of the power
plant and involves minor structural adjustments. Despite these drawbacks, this
second option is normally preferred.

There are different process configurations to integrate thermal power and CO2

capture plants (Botero et al., 2009; Jonshagen et al., 2012; Jordal et al., 2012;
Lucquiaud et al., 2009; Mac Dowell and Shah, 2014). Steam extraction from
the crossover between the intermediate- and low- pressure (IP-LP) sections of the
steam turbine is the most preferred option (Garkarsdóttir et al., 2017; Lawal et al.,
2012; Montañés et al., 2017b). This configuration reduces the net power output
of thermal power plants but avoids using external energy sources and additional
mechanisms to mitigate their CO2 emissions. Furthermore, pressurised water
from different sections of the steam generator or the condenser can be extracted
to control the temperature of the steam fed into the reboiler (Fernandez et al.,
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2016; Garkarsdóttir et al., 2017; Montañés et al., 2017b). Fig. 3.2 represents a pro-
cess diagram of a natural gas combined cycle integrated with a post-combustion
capture plant where steam extraction occurs at the IP-LP crossover and spray
cooling with pressurised water controls its temperature.

The steam requirement of CO2 capture plants is smaller than the steam avail-
able in thermal power plants at different operation points (Jordal et al., 2012;
Rezazadeh et al., 2015). Therefore, steam extraction from the steam cycle is not
a constraint during transient operation of the integrated system. The dynamics
of this process are almost negligible, since valves normally regulate the amount
of extracted steam and can move from fully open to close within seconds. Con-
sequently, steam extraction can affect the dynamic behaviour of both power and
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Figure 3.2: Process diagram of a natural gas combined cycle integrated with a
post-combustion capture plant. Steam extraction occurs at the crossover between the
intermediate- and low- pressure steam turbines. Spray cooling with pressurised water
regulates the temperature of the steam. The nomenclature is as follows. E: economiser,
B: boiler, S: super-heater, R: reheater, P: pressure, L: low, I: intermediate, H:high, FWC:
feed-water cooling, RS: reheated steam, SS: superheated steam, SE: steam extraction,
DCC: direct contact cooler, c.w.: cooling water.
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capture plants.

Different time scales govern the dynamic behaviour of integrated systems.
Heat capacitance in the steam generator limits the transient operation of thermal
power plants, whose stabilisation time is in the order of minutes, whereas the
large volume of solvent, transport delays and long residence times prolong the
dynamic operation of CO2 capture plants, needing hours to completely stabilise
(Garkarsdóttir et al., 2017; Lawal et al., 2012; Montañés et al., 2017b). System
integration must consider the distinctive dynamic behaviour of thermal power and
capture plants, and address the process interactions that may arise associated with
this difference during transient operation.

Power demand defines the operation of thermal power plants. This determines
the exhaust gas conditions, i.e. mass flow rate, temperature, and CO2 concen-
tration, and thus the performance of post-combustion capture plants. Changes
in the exhaust gas are disturbances to the capture plant, since they cannot be
controlled and depend exclusively on the power demand and generation. Control
strategies usually modify the amount of steam fed into the reboiler to remove the
offset of key process variables and balance the alterations introduced by varying
power demand in the capture plant (Salvinder et al., 2019; Wu et al., 2020). There
are several more control actions used to stabilise CO2 capture plants, but steam
extraction is the unique one that interacts with the power plant.

Steam extraction changes in long time scales, i.e. in the time scale dictated
by the slow dynamics of capture plants, lead to longer stabilisation times and
small fluctuations in power generation from the low-pressure section of the steam
turbine (Garkarsdóttir et al., 2017; Lawal et al., 2010; Montañés et al., 2017b).
This interaction is not significant for thermal power plants, since their faster dy-
namics stabilise the net power generation within minutes and the small variations
in steam extraction in longer time scales do not influence the overall power output
(Garkarsdóttir et al., 2017; Lawal et al., 2010; Montañés et al., 2017b). However,
steam extraction in the short time scale, i.e. within the dominant dynamics of
thermal power plants, might affect power generation because of the interaction
with the transient performance in the steam cycle. Flexible operation of ther-
mal power plants integrated with CO2 capture systems must consider this issue
and study the possible dynamic interaction between power generation and steam
extraction in the short time scale.

3.4 Power generation flexibility

Steam extraction in the short time scale affects power generation during transient
operation of thermal power plant. This interaction might limit the balancing
capacity of these energy systems. To study the dynamic interaction between
power generation and steam extraction, a modern NGCC integrated with liquid-
absorption CO2 capture was excited with high-frequency signals. Integration be-
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tween the thermal power and capture plants occurred at the IP-LP crossover of
the steam turbine. Therefore, the excitation signals were superimposed in the
steam extraction valve. This allowed the identification of possible dynamic inter-
actions between both plants and tested whether CO2 capture affects notably the
power generation capacity of the NGCC.

This study used a physics-based dynamic model of a 615 MW NGCC with
triple pressure steam cycle and reheating integrated with a 30 wt% MEA-based
post-combustion capture process. Fig. 3.2 represents the process diagram of this
model. Details about the design, dynamic modelling and validation are presented
in the work by Montañés et al. (2017b). The signal superimposed in the steam
extraction valve was a damping sine with an offset of 0.69, amplitude of 0.29,
and natural and damping frequencies of 0.01 and 0.001 Hz, respectively. A signal
with these characteristics ensures that variations in the steam extraction occur
faster than the dominant dynamics of the NGCC, despite highly oscillating valve
movements do not occur in practice during open-loop operation. Nevertheless, this
analysis provides insight into the transient effects of variations in steam extraction
on power generation.

Both thermal power and capture plant had only regulatory controllers to guar-
antee stable operation. This included the stabilisation of steam temperature at
the steam turbine inlet, pressures in the deaerator and the low-pressure drum, and
inventory control throughout the integrated system. However, the solvent mass
flow rate remained constant at nominal conditions, which allowed the variation of
the CO2 capture ratio and the temperature in the reboiler.

The implementation of an excitation signal in the steam extraction valve dur-
ing a change of load in the gas turbine from 100% to 70% highlighted the inter-
action between power generation in the NGCC and steam extraction from the
capture process. Fig. 3.3 illustrates the effect of varying steam extraction on
the net power output and the different steam turbine sections during transient
operation of the NGCC. Steam extraction had negligible influence on the high-
pressure section of the steam cycle, and hence in the power generation from the
high-pressure steam turbine (Fig. 3.3b). In contrast, steam extraction had the
largest effect on the low-pressure section of the steam turbine because of the con-
tinuous variation on the available mass flow rate (Fig. 3.3d). Power generation
from the intermediate-pressure section also fluctuated considerably as a result of
the changes of intermediate pressure originated by the varying mass flow rate of
steam and sliding-pressure operation of the steam cycle (Fig. 3.3c), although the
effect of steam extraction was more pronounced in the low-pressure steam turbine.

Overall, the net power output of the NGCC was almost not affected by the
varying power generation from the intermediate- and low-pressure sections of the
steam turbine (Fig. 3.3a). This behaviour originates from a dual contribution:
the contrary performance of the IP and LP steam turbines and the distinct shares
of the gas and steam turbine in the net power output of the NGCC. Figs. 3.3c and
3.3d show how steam extraction had an opposite effect on the power generation
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from the intermediate- and low-pressure sections of the steam turbine, which bal-
anced the net power output produced by these two sections. Fig. 3.4 represents
the power generation share produced by the gas turbine and each of the sections
of the steam turbine at different operation loads. The gas turbine produces most
of the power output of the NGCC at both nominal and part-load, whereas the
intermediate- and low-pressure steam turbines have smaller contributions. Thus,
small variations in these power generation shares lead to almost negligible vari-
ations in the overall power generation of the NGCC. High-frequency oscillations
in steam extraction do not have a notable effect on total power generation and,
consequently, the NGCC can produce power independently of the capture process.

(a) Total power generation of the natural gas
combined cycle.

(b) Power generation of the high-pressure
steam turbine.

(c) Power generation of the intermediate-
pressure steam turbine.

(d) Power generation of the low-pressure
steam turbine.

Figure 3.3: Power generation during a gas turbine load change from 100% to 70% with
and without fast dynamic fluctuations in the steam extraction valve.

The exhaust gas conditions and steam availability dictate the transient per-
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Figure 3.4: Power distribution of the natural gas combined cycle with CCS at different
gas turbine loads. Nomenclature: gas turbine(GT), high-pressure steam turbine (HPT),
intermediate-pressusre steam turbine (IPT), low-pressure steam turbine (LPT).

formance of post-combustion capture plants. Fig. 3.5 represents the dynamic
behaviour of key process variables in the CO2 capture plant during a load change
in the NGCC. Two different dynamics occur simultaneously in these parameters
and hence in the capture plant.

Load changes in the gas turbine lead to mass flow rate variations of the exhaust
gas that drive the long-term transient operation of the capture plant. Less steam
is available in the steam cycle of the power plant because of the decrease of gas
turbine load. As a result, there is a reduction of steam extraction for a given
opening of the steam extraction valve. Fig. 3.5c shows the drastic drop of steam
mass flow rate in the reboiler that follows the load reduction in the gas turbine, and
the long stabilisation period arising from the slow dynamics of the capture plant.
The reboiler temperature followed similar variations as a consequence of this steam
mass flow rate reduction (Fig. 3.5d), which, in turn, affected the lean loading of
the solvent at the outlet of the desorber column (Fig. 3.5b) and the capture
ratio (Fig. 3.5a). This dynamic behaviour originates from heat capacitance of the
reboiler, which creates a delay between the changes in the mass flow rate of the
extracted steam and the temperature in the reboiler. Similarly, the residence time
within the desorber and the chemical and thermal inertia in the packing material
lead to smoother changes in the lean loading of the solvent in the long time
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scale. In contrast, the capture ratio experienced fast and drastic variations since
modifications in the exhaust gas conditions affect directly the absorber column
and thus this process variable. Variations in the lean loading of the solvent also
contribute to the transient behaviour of the capture ratio, although its effect is
delayed by the long circulation time and large volumes of solvent.

Fast dynamic fluctuation in the steam extraction and the process variables
of the capture plant aroused from the high-frequency signal superimposed on
the opening of the extraction valve. However, these variations did not disrupt
the transient behaviour of the plant as the main process variables followed the
same trajectory as in the scenario without fluctuations (Fig. 3.5). This dynamic
behaviour highlights that steam availability in the power plant has a more pro-
nounced effect on the dynamic response of the capture plant than the fast dynam-

(a) CO2 capture ratio. (b) Lean solvent CO2 concentration.

(c) Steam mass flow rate. (d) Reboiler temperature.

Figure 3.5: Dynamic behaviour of key process variables in the post-combustion capture
plant during a gas turbine load change from 100% to 70% with and without fast dynamic
fluctuations in the steam extraction valve.
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ics of the steam extraction valve. Furthermore, the high-frequency fluctuations
in steam extraction become smoother throughout the capture plant. Because of
these variations being so rapid, there is insufficient time to affect the heat transfer
in the reboiler and thus affect its temperature, the lean loading of the solvent at
the outlet of the desorber column, and the capture ratio in the absorption section.
Fig. 3.5 illustrates the smoothing effect of the high-frequency variations.
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Chapter 4

Flexible operation with stress
monitoring

Future power generation systems will require faster cycling and more frequent
start ups and shut downs of thermal power plants to balance the intermittent
power generation from renewable energy sources. Chapter 3 described the dy-
namic behaviour of distinct thermal power plants and identified the main bot-
tlenecks inhibiting better transient performance of these systems. Thermal and
mechanical stresses are one of the main limitations during changes in load, as
it restrains the maximum power generation ramps this type of power plants can
achieve.

A model predictive control (MPC) strategy is proposed to overcome the limita-
tions imposed by thermal and mechanical stresses and enhance flexible operation
of thermal power plants. This methodology models the stresses arising in thick-
walled components, e.g. high-pressure steam drums and steam turbine rotors,
and includes them in the dynamic optimisation problem of the MPC controller as
inequality constraints. This ensures that the changes of load are optimal without
exceeding the maximum allowable stresses in critical equipment.

This chapter describes this MPC strategy and is based on Rúa and Nord
(2020); Rúa et al. (2020a). It follows a building-block approach, where modelling
of stresses and simplified models of the power plant are firstly presented. Subse-
quently, the description of the dynamic optimisation program details how these
models are included in the MPC strategy. Both linear and nonlinear formulations
are considered. Finally, a case study illustrates the effectiveness of the proposed
methodology.

4.1 Thermal and mechanical stresses

Equipment with thick walls presents the largest stresses in thermal power plants.
This includes high-pressure steam drums, rotors of the steam turbines, casings,
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blades, piping and tubes in superheating and reheating sections of steam gener-
ators (Viswanathan, 1989; Viswanathan and Stringer, 2000). These components
operate at high temperature and pressure, which lead to large mechanical stresses
and temperature gradients that originate thermal stresses (Kim et al., 2000). Fur-
thermore, the rotating equipment presents centrifugal forces that contribute to
the effect of mechanical stresses (Can Gülen and Kim, 2014). Adequate control
strategies with stress monitoring must consider these different sources of stress
and combine them in a common framework.

High-pressure steam drums and rotors in the first-stage of steam turbines are
sensitive equipment to thermal and mechanical stress. Stress modelling of these
two components simplifies because of their geometry, which eases their imple-
mentation in MPC strategies. Steam drums may be approximated by cylinders
where plane strain applies, whereas rotors posses disk shapes with plane stress
(Timoshenko and Goodier, 1951).

Thermal stresses depend on temperature gradients (Kim et al., 2000; Timo-
shenko and Goodier, 1951). Computation of these gradients requires to know the
temperature distribution along the wall of the equipment. Because of the geom-
etry of drums and rotors, temperature can be assumed to exclusively vary in the
radial direction. The one-dimensional heat equation in cylindrical coordinates,
Eq. 4.1, provides hence the temperature distribution in these components.

1

r

∂

∂r

(
r
∂T

∂r

)
=

1

α

∂T

∂t
(4.1)

Here, T refers to the temperature difference respect to the design temperature
of the equipment, r is a generic radius, and α is the thermal diffusivity of the
material.

An implicit Crank-Nicolson method was used to discretise Eq. 4.1. This al-
lowed including and solving the heat equation during each iteration of the dynamic
optimisation problem in the MPC strategy. Evaporative steam convection was the
boundary condition in the inner wall of the steam drum, whereas natural convec-
tion with air at ambient temperature, i.e. 25 ◦C, determined the heat losses of
the outer wall. Similarly, forced convection with superheated, pressurised steam
was the boundary condition in the outer wall of the rotor, whilst a von Neumann
condition set to zero the variation of the temperature at the centre of the disk.
The implementation of these boundary conditions in the discretised heat equa-
tion is described in Rúa et al. (2020a) and the supplementary material included
therein.

4.1.1 Plane strain

Plane strain applies to geometries where the longitudinal direction is notably
larger than any of the other two directions and implies that the longitudinal
strain is zero (Timoshenko and Goodier, 1951). To develop an expression for
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4.1. Thermal and mechanical stresses

the thermal and mechanical stresses arising in a steam drum, consider the linear
momentum equation in cylindrical coordinates assuming variations only in the
radial direction:

dσr
dt

+
1

r
(σr − σθ) + Fr = 0 (4.2)

the strain-displacement relations:

εr =
dud

dr
(4.3a)

εθ =
ud

r
(4.3b)

and the constitutive relations between stress and strain (Timoshenko and Good-
ier, 1951):

εr − α∗ T =
1

E

[
σr − υ (σθ + σz)

]
(4.4a)

εθ − α∗ T =
1

E

[
σθ − υ (σr + σz)

]
(4.4b)

εz − α∗ T =
1

E

[
σz − υ (σθ + σr)

]
(4.4c)

where σ and ε indicate stress and strain, respectively, in the radial, r, axial, θ,
and longitudinal, z, directions; Fr is the centrifugal force, E Young’s modulus, υ
Poisson’s coefficient, and α∗ the thermal expansion coefficient. The strain in the
longitudinal direction, εz, is zero because of the plane strain assumption.

Combine Eqs. 4.2, 4.3, and 4.4 to obtain an ordinary differential equation
relating displacement, temperature gradient and centrifugal forces:

d2ud

dr2
+

1

r

dud

dr
− ud

r2
=

(1 + υ)

(1− υ)
α∗

dT

dr
− (1− 2υ) (1 + υ)

(1− υ)
ρω2 r (4.5)

with u being the displacement, and the centrifugal force defined as Fr = ρω2 r.
Expressions for the stress components are found by inserting Eq. 4.3 into

Eq. 4.4:

σr =
Eυ

(1− 2υ)(1 + υ)

[
1− υ
υ

dud

dr
+
ud

r

]
− Eα∗

1− 2υ
T (4.6a)

σθ =
Eυ

(1− 2υ)(1 + υ)

[
dud

dr
+

1− υ
υ

ud

r

]
− Eα∗

1− 2υ
T (4.6b)

σz =
Eυ

(1− 2υ)(1 + υ)

[
dud

dr
+
ud

r

]
− Eα∗

1− 2υ
T (4.6c)
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Mechanical stresses generated by inner and outer pressure in the steam drum
enter Eq. 4.6 as boundary conditions:

σr = pi for r = ri

σr = po for r = ro

Integration routines can solve simultaneously Eqs. 4.5 and 4.6. These equations
may be also discretised and combined with the temperature distribution to ob-
tain a linear system of equations that can be easily included in linear dynamic
optimisation problems. This approach is described in Rúa et al. (2020a). More-
over, Eq. 4.5 can be analytically integrated and combined with Eq. 4.6 to obtain
a third method to compute the thermal and mechanical stresses. This approach
is presented in Rúa and Nord (2020) and leads to:

σr =
(

1− r2
i

r2

) E α∗

(1 + υ)(1− 2υ)

∫ ro
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(4.8c)

There are two possible approaches to solve Eq. 4.8. Numerical integration can
compute the different stress components, although this approach leads to nonlin-
ear solutions. In contrast, the integrals in Eq. 4.8 can be discretised using the
trapezoidal rule, which allows writing the stress components as a linear system of
equations.

4.1.2 Plane stress

In contrast to plan strain, plane stress applies to geometries where the longi-
tudinal direction is negligible compared to the radial and axial directions, and
indicates that the longitudinal stress is zero (Timoshenko and Goodier, 1951).
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4.1. Thermal and mechanical stresses

The development of expressions for the stresses in the other two directions also
requires the linear momentum equation in radial direction, Eq. 4.2, and the strain-
displacement relations in Eq. 4.3. The constitutive relations between stress and
strain with the plane stress assumption reduce to:

σr =
E

1− υ2

[
εr + υ εθ − (1 + υ)α∗ T

]
(4.9a)

σθ =
E

1− υ2

[
εθ + υ εr − (1 + υ)α∗ T

]
(4.9b)

Combine Eqs. 4.2, 4.3, and 4.9 to obtain an ordinary differential equation relating
displacement, temperature gradient and centrifugal forces under the assumption
of plane stress:

d2ud

dr2
+

1

r

dud

dr
− ud

r2
= (1 + υ)α∗

dT

dr
− 1− υ2

E
ρω2 r (4.10)

Insert 4.3 into 4.9 to obtain expressions for the stress components:

σr =
E

1− υ2

[
dud

dr
+ υ

ud

r
− (1 + υ)α∗ T

]
(4.11a)

σθ =
E

1− υ2

[
υ

dud

dr
+
ud

r
− (1 + υ)α∗ T

]
(4.11b)

Mechanical stress due to pressure also enters these expressions as boundary con-
ditions. However, two approaches might be available to model mechanical stress
in the rotor in the first-stage of the high-pressure steam turbine. If the shaft
where the rotor lies is hollow, the boundary conditions are:

σr = pi for r = ri

σr = po for r = ro

whereas, if the shaft is solid and rigid, these boundary conditions become:

ud(r) = 0 for r = ri

σr = po for r = ro

Similarly to the plane strain case, integration routines can solve Eqs. 4.1, 4.10
and 4.11 to obtain the temperature distribution, displacement and stress compo-
nents in the rotor. These equations can also be discretised and combined into a
linear system that allows their direct solution. This approach is detailed in (Rúa
et al., 2020a). Further analytical development is also possible by combining and
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integrating Eqs. 4.10, 4.11. This removes the displacement from the computation
of the stresses and leads to the expressions (Rúa and Nord, 2020):
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[
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(4.14b)

Applying the trapezoidal rule to Eq. 4.14 allows expressing these equations as a
linear system, which may be combined with Eq. 4.1 to compute the temperature
distribution and stress components directly (Rúa and Nord, 2020).

4.1.3 Effective stress

Stresses in different directions are not suitable to evaluate the overall state of ma-
terials and impose constraints in optimisation-based procedures. The von Mises
equivalent, or effective, stress defined in Eq. 4.15 is a scalar measure of the over-
all effective stress that predicts the yielding of materials under complex loading.
Therefore, it is an appropriate parameter to implement constraints related to
material deformation and damage.

σ2
eff = σ2

r + σ2
θ + σ2

z − (σr σθ + σθ σz + σz σr) (4.15)

Linear MPC requires linear equality and inequality constraints. Eq. 4.15 was
hence linearised to include a scalar measure of the overall stress in the linear
formulation of the MPC strategy. Eq. 4.16 represents this first-order Taylor ap-
proximation:

σ2
effl = σ2

effl,0 +∇σ2
effl,0∆σ +O(∆x2) (4.16)
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Simulations with finite element methods (FEMs) validated the effectiveness of the
different stress models to predict the mechanical, thermal and von Mises stress
under the assumptions of plane strain and stress. Fig. 4.1 presents validation
results for both high-pressure steam drum and rotor following two approaches:
1) computing simultaneously temperature distribution, displacement and stresses
in different directions with Eqs. 4.6 and 4.11; and 2) computing temperature
distribution and stress components with Eqs. 4.8 and 4.14.

(a) Temperature of the drum along six
equidistant radii.

(b) Temperature of the rotor along six equidis-
tant radii.

(c) von Mises stress in the drum along six
equidistant radii.

(d) von Mises stress in the rotor along six
equidistant radii.

Figure 4.1: Validation results of the stress models for the two proposed approaches. A
refers to the results obtained in ANSYS, Dis refers to the modelling approach based on
computing the displacement, and Int to the approach based on applying the trapezoidal
rule to the integrals in Eqs. 4.8 and 4.14.
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4.2 System identification

Model predictive control requires the periodic solution of dynamic optimisation
problems. The frequency of these solutions depends on the dynamic behaviour
of the controlled system and the computational cost of the optimisation problem.
Good control strategies must anticipate the dominant dynamics and determine
suitable control actions that stabilise the system. Large-scale NGCCs have domi-
nant dynamics within a few hundred seconds, which limits the time spam to solve
the dynamic optimisation problem to approximately a minute or less (Peng et al.,
2001; Prasad et al., 1998). This inhibits the utilisation of high-fidelity dynamic
models in MPC strategies since this type of models needs longer computational
times for a single simulation. Therefore, simplified models able to predict the
performance of these dynamic systems with reduced computational cost were re-
quired.

System identification refers to the process of constructing dynamic data-based
models (Ljung, 1987). Simulations of the high-fidelity dynamic model at different
operation points, i.e. distinct gas turbine loads, provided the data to obtain
simplified models. These simulations were in closed-loop with random Gaussian
signals (RGS) superimposed simultaneously in the set-points of the controllers as
this approach leads to richer data and hence better identification (Forssell and
Ljung, 1999; Gevers, 2005; Gevers and Ljung, 1986; Gevers et al., 2006; Mǐsković
et al., 2008).

Auto-regressive models with exogeneous variables (ARXs) were fitted to the
different sets of data. Eq. 4.17 represents the general structure of this type of
model:

y(t)+a1 y(t−1)+· · ·+any y(t−ny) = b1 u(t−1)+· · ·+bnu u(t−nu)+ε(t) (4.17)

where ny and nu are the number of past outputs and inputs, and ε(t) is white-
noise.

ARX models cannot predict the behaviour of nonlinear systems over a broad
operation range because of their linearity. However, several local ARX models
were developed at different operation range and combined into a local model
network (LMN) (Johansen and Foss, 1993). Fig. 4.2 illustrates the structure of
a local model network composed of several ARX models. A Gaussian validity
function determined the contribution of every local ARX model to overall output
of the local model network. Eq. 4.18 defines the form of the this validity function:

ξi(γ) =
exp
(
− 1

2

[
(γ − ci)/wi

]2)
∑M

k=1 exp
(
− 1

2

[
(γ − ci)/wi

]2) (4.18)

with ci and wi setting, respectively, the centres and widths of the local interpola-
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Figure 4.2: Structure of a local model network.

tion functions; whereas Eq. 4.19 determines the output of the LMN:

ŷ(t) =
M∑
k=1

fi(κ) ξi(γ) (4.19)

where M is the number of local models, fi(κ) is the evaluation of the each ARX
model under the conditions defined by κ, ξ is the local validity function associated
to each ARX model, and γ is the parameter defining the current operating point,
i.e. the current GT load.

There are different approaches to identify the parameters of the different ARX
local models (Johansen and Foss, 1993):

1. Select the centres and widths based on the knowledge of the system and
compute the ARX model parameters based on existing methods as predic-
tion error, maximum likelihood or least squares.
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2. Calculate the ARX model parameters based on existing methods and then
optimise the value of the validity function variables in order to minimise the
global prediction error.

3. Select the validity function variables based on experience and then compute
the parameters of the ARX models with the objective of minimising the
global prediction error.

4. Compute simultaneously the validity function variables and the model pa-
rameters with a multi-variable nonlinear optimisation whose objective func-
tion is the global prediction error.

Fitting methods that consider all local models simultaneously, i.e. minimise the
global error of the LMN, lead to better identification than approaches that treat
the ARX models individually. In contrast, optimising the parameters of the va-
lidity does not improve significantly the prediction (Johansen and Foss, 1993;
Prasad et al., 1998). Therefore, the parameters of the different local ARX models
integrating the LMN were fitted with a least-squares method that minimised the
global error while keeping the centres and widths of the validity function constant.

Identification of the local ARX parameters improves with suitable pre-processing
of the data. Thus, the nominal values of each variable was substrated from the
original data. Therefore, the LMN computes the deviation of the different pro-
cess variables from their set-point or nominal value. This approach also eases the
formulation of the dynamic optimisation problem embedded in the MPC strategy.

4.3 Model predictive control

Model predictive control is a suitable strategy for stress monitoring because it
allows computing the effective stress arising in the equipment and imposing con-
straints that limit the maximum level it can achieve. Stress modelling depends
on the geometry of the equipment and might lead to nonlinear models. There-
fore, both linear and nonlinear formulations of the dynamic optimisation problem
included in the proposed MPC strategy are presented. Section 4.3.1 describes
the linear MPC formulation and how to include in the optimisation problem the
models from Sections 4.1 and 4.2, whereas Section 4.3.2 details the nonlinear
MPC strategy. Section 4.3.3 compares the computational cost of both formula-
tions, since this is one of the main limitations associated with optimisation-based
control strategies.

4.3.1 Linear formulation

Linear model predictive control relies on the periodic solution of a quadratic pro-
gramming (QP) problem. The mathematical formulation of this optimisation
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problem is:

min
z∈Rn

f(z) =
1

2
zT Qz + d z (4.20a)

subject to

Aeq z = Beq (4.20b)

Aineq z ≤ Bineq (4.20c)

zlow ≤ z ≤ zup (4.20d)

with

Q < 0 (4.20e)

Vector z represents the optimisation variables in the QP problem. These include
the responses and manipulated variables of the simplified models, i.e. y and u in
Eq. 4.17, and the temperature, displacement, and stress models included in the
linear system of equations described in Section 4.1. The degrees of freedom are
the manipulated variables u, which affect the behaviour of the simplified models
and hence determine the boundary conditions of the equipment where stress is
monitored.

Eq. 4.20b is the linear equality constraint of the optimisation problem. It
includes all the simplified and stress models, and ensures that they are satisfied
independently of the changes in the degrees of freedom. The inequality constraints
are Eqs. 4.20c and 4.20d. The latter includes lower and upper bounds for all opti-
misation variables and thus limits the maximum effective stress in the equipment,
whereas Eq. 4.20c adds extra inequality constraints such as maximum ramping of
the gas turbine. Eqs. 4.20a is the objective function, which aims at minimising
the deviation of different process variables from their set-points. The weighting
matrix Q and vector d in Eqs. 4.20a determine the control priority, i.e. the vari-
ables that require tighter control, and balance the different orders of magnitude
that might exist among the optimisation variables.

This optimisation problem is repeated over time, with a period fixed by the
sampling time at which measurements from the power plant are taken. The result
of this computation is a set of control sequences of all manipulated variables. The
first control action is implemented in the actual power plant. The length of these
sequences is a trade-off between computational cost and performance prediction.
Longer control sequences, i.e. larger time horizons, lead to better predictions of
the transient performance of the system, but increase the number of optimisation
variables and degrees of freedom and hence the computational cost. Therefore, the
selection of adequate sampling times and time horizons depends on the knowledge
of the dynamic behaviour of the system and the time available for computing the
optimal sequence of control actions.
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4.3.2 Nonlinear formulation

Nonlinear model predictive control solves a nonlinear programming (NLP) prob-
lem every sampling time to compute the control action implemented in a system.
The mathematical formulation of an NLP problem is:

min
z∈Rn

f(z) (4.21a)

subject to

ceq(z) = 0 (4.21b)

cineq(z) ≤ 0 (4.21c)

Aeq z = Beq (4.21d)

Aineq z ≤ Bineq (4.21e)

zlow ≤ z ≤ zup (4.21f)

Variable z represents the vector of optimisation variables with lower and upper
bounds defined in Eq. 4.21f. The nonlinear equality and inequality constraints
are, respectively, ceq and cineq in Eqs. 4.21b and 4.21c. The linear counterpart of
these constraints are Eqs. 4.21d and 4.21e, and have the same structure as those
in the QP problem. The objective function f(z) defined in Eq. 4.21a can be any
linear or nonlinear function.

In this formulation, the simplified and stress models can be either linear or
nonlinear constraints depending on their structure. This adds modelling flexibility
and ensures that the physics of the system and the monitored stresses are always
met regardless of the linearity of the models.

4.3.3 Computational time analysis

Computational performance can restrict the implementation of MPC strategies.
Dynamic optimisations must be carried out within the sampling time available to
guarantee the implementation of new control actions with sufficient frequency and
before taking new measurements. Thus, the evaluation of computational cost is
fundamental during the selection of suitable optimisation-based control strategies.

Linear and nonlinear MPC strategies differ on the dynamic optimisation prob-
lem they solve, which leads to different computational times. To compare the
performance of linear and nonlinear formulations of the same MPC strategy, the
same simplified models and linear system of equations describing the stresses
were implemented in the nonlinear optimisation problem. Therefore, the simpli-
fied models enter as a linear equality constraint in Eq. 4.21d and the constraint
in the gas turbine load ramp as a linear inequality constraint in Eq. 4.21e. In the
NLP problem, the von Mises equivalent stress defined in Eq. 4.15 is used instead
of the linearised version defined in Eq. 4.16 and implemented in the QP problem.
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This model represents a nonlinear constraint in the nonlinear dynamic optimisa-
tion problem. Table 4.1 summarises the computational time of a single dynamic
optimisation with a time horizon of 30 for each formulation and stress modelling
approach, i.e. computing the displacement or using the integral expressions, rel-
ative to the fastest optimisation.

Table 4.1: Relative computational time for both MPC formulations and stress modelling
approaches. Dis refers to the stress model based on the displacement calculation and Int
to the integral stress model.

Formulation Linear Nonlinear
Stress Model Dis Int Dis Int

Relative Time 1.88 1 41.02 27.19

Despite the utilisation of the same simplified and stress models, the QP prob-
lem shows superior computational performance compared to the NLP formulation.
This occurs because of the suitable numerical properties that QP problems pos-
sess. In this type of formulations, the calculation of gradients is analytical and
its convexity leads to global solutions. In contrast, NLP problems require the
numerical computation of gradients through finite differences and only local solu-
tions can be guaranteed. Calculating these gradients numerically supposes a large
penalty in the computational performance, which leads to longer computational
times. There exist several approaches to improve the calculation of gradients,
e.g. automatic differentiation or complex step methods, but these require further
analytical development, cannot generally equate the computational performance
of QP problems, and still lead to local solutions (Nocedal and Wright, 2006).

Better computational performance enables linear MPC strategies to expand
the time horizon to capture more dynamics, reduce the sampling time or include
stress monitoring in more pieces of equipment, which translates into superior
control and safer operation. Therefore, nonlinear formulations should be avoided
whenever is possible to formulate the control problem linearly. However, linear
modelling is not always possible without excessive loss of accuracy.

Stress modelling also affects the computational performance of the proposed
MPC strategy, although its effect is not as pronounced as the formulation approach
of the dynamic optimisation problem. Models based on the integral definitions
of the stress components, Eqs. 4.8 and 4.14, lead to slightly faster results than
those obtained from the model additionally computing the displacement, Eqs. 4.5,
4.6, 4.10 and 4.11. The computational improvement originates from the reduction
on optimisation variables, since the displacement is not calculated in the integral
stress models. This improvement offsets the drawback of having denser matrices
in the linear system of equations that arise from Eqs. 4.8 and 4.14. Less sparsity
indicates that the matrix of the linear system of equations modelling the stress
has more information, and hence this modelling approach needs less spatial and
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temporal discretizations to achieve the same accuracy. This factor further reduces
the number of optimisation variables in the optimisation problem where the in-
tegral models are used, which enhances its computational performance. Overall,
the difference in computational time is small between these modelling approaches,
so both are deemed suitable for MPC strategies with stress monitoring.

4.4 Stress monitoring during dynamic operation

Dynamic simulations where a modern NGCC needed to balance a reduction of
165 MW on power demand tested the effectiveness of the proposed MPC strategy
with stress monitoring. Two scenarios demonstrated the capability to compute
the optimal control actions whilst limiting the stress in the high pressure steam
drum and steam turbine rotor to allowable levels. The first scenario considered
yield stress limits provided by material specifications, whereas the second case
reduced the value to evaluate whether the MPC strategy could simultaneously
compute optimal control inputs and limit the stress development. Table 4.2 in-
cludes the physical and mechanical properties considered for the drum and rotor
disk (Viswanathan and Bakker, 2001a). Since the maximum allowable stress pre-
sented in Table 4.2 was not reached with a realistic value during the considered
scenario, a reduced value of the yield stress of 125 MPa was used to demonstrate
the capability of the control methodology to predict the stress and adapt the op-
eration of the power plant. Table 4.3 summarises the lower and upper bounds
imposed in the different optimisation variables during the dynamic simulations.

Constraints on the effective stress in different equipment can modify the over-
all operation of thermal power plants. These changes originate from the need
to reduce the temperature gradients in critical components and hence limit the
thermal stresses that arise because of operation changes. Fig. 4.3 illustrates the
effect of different stress constraints on the mechanical power generated by the
NGCC and the variation on gas turbine load to balance the changes in power de-
mand. The MPC strategy lead to drastic changes in the gas turbine load when the
maximum allowable stress was high, prioritising in this way the balance between
power demand and supply. The ramping capability was exclusively limited by
the constraint in the gas turbine ramps provided by the manufacturer, which was
15%/min in both scenarios. Furthermore, the MPC strategy lead to an undershoot

Table 4.2: Physical and mechanical properties of the materials considered for the high
pressure drum and rotor disk. The materials for the drum and rotor are, respectively,
SA-515 Grade 70 and X18CrMnMoNbVN12.

Component
ρ Cm km α∗ α E υ ho hi Yield

[kg/m3] [J/kgK] [W/mK] [m2/s] [1/K] [GPa] [−] [W/m2K] [W/m2K] [MPa]

Drum 7850 434 47 1.38e-05 1.36e-5 178 0.3 5000 0.065 190
Rotor 7700 460 29 8.19e-06 1.25e-5 127 0.292 4000 - 69
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Table 4.3: Lower and upper bounds of the optimisation variables.

LMN Drum Rotor

Lower Variable Upper Lower Variable Upper Lower Variable Upper

400 Ẇ 615.867 -∞ Twall ∞ -∞ Twall ∞
-10 TSH 15 -0.001 ud 0.001 -0.001 ud 0.001
-10 TRH 15 -∞ σr ∞ -∞ σr ∞
-∞ pturb ∞ -∞ σθ ∞ -∞ σθ ∞
-∞ Tdrum ∞ -∞ σz ∞ 0 σeffl 69
-∞ pdrum ∞ 0 σeffl 190/125
60 u1 100

-0.01655 u2 0.97345
-0.06882 u3 0.92188

of the gas turbine load to compensate for the slow transient performance of the
steam cycle. Therefore, the fast dynamics of the gas turbine dictated the flexible
and fast operation of the NGCC. This highlights the usefulness of optimisation-
based control strategies, since models describing the dominant dynamics of each
component can be included, which allows the improvement of the control inputs.

In contrast, lower constraints on the effective stress limited the ramping ca-
pacity of the NGCC (Fig. 4.3). This occured because these constraints became
active before those limiting the ramp of the gas turbine. Fig. 4.4 shows the ef-
fective stress arising in the high pressure steam drum and rotor disk during the
transient operation of the NGCC. With low limits in the equivalent stress, the
MPC strategy reduced the rate of decrease in the gas turbine load to achieve
smoother temperature gradients in the high pressure drum to avoid exceeding the

(a) Mechanical power generation with differ-
ent stress constraints in the drum.

(b) Gas turbine load profile with different
stress constraints in the drum.

Figure 4.3: Effect of stress constraints on power generation and gas turbine load.
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maximum allowable stress. Therefore, the dominant dynamics of the steam cycle
governed the transient operation of the NGCC instead the fast operation of the gas
turbine. The low stress limits required the reduction of temperature gradients in
the HRSG, a process dictated by the thermal capacitance of the equipment. As a
result, the overall dynamic behaviour was slower and required longer stabilisation
time.

Furthermore, Fig. 4.4 compares the stress estimated during the optimisation
in the MPC strategy and the exact stress computed a posteriori with the true tem-
perature and pressure profiles in the equipment. The equivalent stress predicted
by the MPC strategy during transient operation of the thermal power plant cap-
tured the overall tendency of stress development since the trajectory of both true
and predicted stress is similar. Nevertheless, the prediction of the MPC strategy
anticipated the dynamic behaviour of the stress arising in the equipment, specially
in the steam drum. The lack of detailed data of the temperature distribution in
the different components of the high-fidelity NGCC model might explain this be-
haviour. This forces the MPC controller to estimate the initial temperature along
the walls of the equipment at each sampling time and provide this information
to the dynamic optimisation problem. Stress prediction during the control of
the NGCC operation would improve if the detailed dynamic model of the NGCC
provided the actual temperature distribution.

Stress constraints also affected the temperature control of superheated and
reheated steam. Furthermore, Fig. 4.5 compares the dynamic behaviour of these
temperatures for high and low constraints on the equivalent stress of the high

(a) Equivalent stress in the high pressure
steam drum along three equidistant radii.

(b) Equivalent stress in the high pressure rotor
disk along three equidistant radii.

Figure 4.4: Effect of stress constraints on the effective stress arising in different com-
ponents during transient operation of the NGCC. Dashed lines indicate the values esti-
mated during the transient performance and solid lines refer to posterior calculations of
the effective stress using the computed gas turbine profile and stress models with more
discretizations.
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pressure steam drum. Lower stress limits lead to slower ramps in the gas turbine
and more progressive changes in the steam cycle. Consequently, the variations
in the superheated and reheated steam temperature followed also this progressive
evolution and eased the stabilisation of these two process variables. Moreover,
the slower transient performance in the steam cycle lead to smaller offset in these
temperatures. Nevertheless, the proposed MPC strategy can rapidly limit the
steam temperature variation without exceeding the temperature limitations in
both test cases.

(a) Superheated steam temperature with dif-
ferent stress constraints in the drum.

(b) Reheated steam temperature with differ-
ent stress constraints in the drum.

Figure 4.5: Effect of stress constraints on the superheated and reheated steam temper-
ature.

This case study demonstrated the effectiveness of model predictive control
strategies with stress monitoring to enhance the flexible operation of thermal
power plants whilst limiting the maximum stress arising in critical equipment.
This control strategy considers the distinct dynamic behaviour of the different
components and respects both operational and material constraints. Thus, when
the stress constraints were high, the MPC controller undershooted the gas turbine
load to overcome the slow response of the steam cycle and balance faster the power
demand. On the contrary, the proposed MPC strategy slows down the changes
in gas turbine load if there are tighter limits on the maximum allowable stress of
the equipment.
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Chapter 5

Scheduling under uncertainty
with lifetime enhancement

Thermal and mechanical stresses are one of the main limitations for flexible oper-
ation of thermal power plants. The combination of these individual contributions
can lead to excessively high effective stress values that result in deformation of
the equipment. Chapter 4 presented a methodology to compute optimal power
ramps while limiting the maximum value of the stress arising in thick-walled com-
ponents. However, regular operation induces damage in the equipment of thermal
power plants that reduces their lifetime even if these control strategies keep the
stress levels within safe limits (Viswanathan, 1989; Viswanathan and Stringer,
2000).

Creep and fatigue are arguably the main damage mechanisms that initiate
and grow cracks in highly loaded components of thermal power plants, ulti-
mately leading to lack of reliability and failures due to fractures or large de-
formations (Can Gülen and Kim, 2014; Viswanathan, 1989; Viswanathan and
Stringer, 2000). Creep is the damage associated with prolonged operation at
specific temperature and stress levels, which can result in deformations in the
short term, and crack growth and cavitation in the long term (Viswanathan and
Bakker, 2001a,b; Viswanathan and Stringer, 2000). Fatigue is the progressive
and persistent structural damage originating from cyclic loading in the material
(Suresh, 1998; Viswanathan, 1989; Viswanathan and Stringer, 2000). There exist
two main types of fatigue depending on the frequency of the loads acting on the
equipment: low- and high-cycle fatigue. The former affects the components of
thermal power plants that operate at high temperature and pressure, e.g. head-
ers, superheater and reheater tubes, steam turbine rotors; whereas high-cycle
fatigue affects the equipment that experiences vibration, e.g. turbomachinery
components (Mukhopadhyay et al., 1998; Viswanathan, 1989; Viswanathan and
Stringer, 2000). Additional damage phenomena that can affect the residual life-
time operation of thermal power plants are corrosion, embrittlement, oxidation,
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pitting and erosion (Viswanathan, 1989). Nevertheless, degradation of the equip-
ment in thermal power plants is normally a combination of different phenomena
(Barella et al., 2011; Das et al., 2003; Paterson and Wilson, 2002; Wang et al.,
2012).

Flexible operation of thermal power plants enhances the damage associated
with the two main degradation mechanisms because of the larger and more fre-
quent temperature gradients (Benato et al., 2014, 2015, 2016). The control strate-
gies described in Chapter 4 limit the maximum effective stress in the short-time
scale and inhibit the instant deformation of the equipment owing to momentary
peaks of stress. However, damage control and the associated improvement on
operational lifetime in critical equipment befalls in longer time scales (i.e. days,
weeks and months), or once the failure has already occurred. Scheduling accounts
for the daily and weekly variations of power demand and generation. Therefore,
damage control can be integrated during the scheduling of flexible thermal power
plants to enhance their lifetime utilisation. Scheduling of daily and weekly op-
eration of flexible thermal power plants in power markets with large shares of
renewable energy confronts three main challenges:

1. Determine an optimal power generation profile that balances the intermit-
tent power generation from renewable energy sources.

2. Consider the uncertainty associated with renewable power generation.

3. Enhance the lifetime of critical equipment in the thermal power plant by
limiting the damage during daily operation.

Modern scheduling methods rely on optimisation-based approaches where uncer-
tainty might be included (Nosratabadi et al., 2017; Pandžić et al., 2013; Saber and
Venayagamoorthy, 2011). However, damage analysis occurs normally after the
fault happens. Thus, there exist a decoupling between power generation schedul-
ing of thermal power plants and deterioration control in critical equipment. This
chapter is based on Rúa et al. (2021b) and presents a method to optimally sched-
ule power generation from thermal power plants that considers the uncertainty
associated with renewable energy sources and limits the deterioration of specific
components to enhance their lifetime utilisation. Section 5.1 describes the pro-
posed method and presents different deterioration models that might include the
case of a natural gas combined cycle. Section 5.2 details the mathematical formu-
lation of the scheduling methodology, including how to account for uncertainty
in power generation from renewable energy sources and include constraints on
the maximum damage in the equipment. A case study analysed in Section 5.3
illustrates the application of the proposed methodology to the scheduling of a
day-ahead power generation profile for a natural gas combined cycle. Finally,
Section 5.4 discusses the importance of adequate selection of design temperatures
in the equipment.
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5.1 Method

The economic viability of thermal power plants in power markets dominated by
the large deployment of renewable energy sources depends on their capacity to
deliver flexible power and balance the electric grid (Eser et al., 2017; Gonzalez-
Salazar et al., 2018). Scheduling considers the ramping ability of thermal power
plants to determine their operation profile according to the power demand and
supply from other energy sources, e.g. wind and solar. Flexible operation leads,
however, to large temperature gradients and more frequent cycling that accelerate
the deterioration of thermal power plants (Can Gülen and Kim, 2014; Kim et al.,
2000). Therefore, scheduling methods must consider the damage associated with
flexible operation to compute optimal power generation profiles that balance the
grid, are economically viable for the power plant operator, and enhance the life-
time utilisation of the power plant. Moreover, the uncertainty associated to power
generation from renewable sources affects the power demand, and plays hence a
fundamental role during the scheduling process. Fig. 5.1 presents the proposed
method to optimally schedule the power generation of thermal power plants under
uncertainty with enhancement of their lifetime.

This method relies on formulating the scheduling of power generation from
thermal power plants as a stochastic optimisation problem. Deregulated power
markets offer one-day ahead estimations of power demand. This allows power
plant operators to offer selling prices for specific shares of the total power gen-
eration throughout the day. Thus, the boundary conditions of the optimisation
problem are the estimation of power demand, its associated uncertainty, and the
selling price of electricity. The case study in Section 5.3 does not include uncer-
tainty on the selling price, but the scheduling method can include it similarly to
the uncertainty associated with power demand. These boundary conditions define
a stochastic optimisation problem that aims at maximising the revenue obtained
by the plant operator while it limits the damage originated in the equipment by
the computed operation profile. Therefore, the damage in specific components is
a constraint within the optimisation problem. This method also offers the possi-
bility of including the damage in the objective function together with a penalty
term, although finding a trade-off between the weights of the revenue and deteri-
oration in the objective function might not be easy and possibly case-dependant.
In contrast, determining a value for the constraint that sets the maximum allow-
able damage in a specific component attends to the properties of the material and
the scheduled maintenance, which are both known by plant operators.

Damage calculation is a sequential procedure where the optimal power gener-
ation profile considered at each iteration during the optimisation is the boundary
condition of a dynamic simulation that recreates the behaviour of an actual ther-
mal power plant. This simulation provides data to compute the stresses and
strains in the equipment of interest throughout the operation period. Damage is
subsequently computed by considering these stresses and strains and the adequate
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Figure 5.1: Method to optimally schedule the power generation profile of thermal power
plants with lifetime enhancement under uncertainty.
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experimental data for the material of the equipment. The total deterioration ow-
ing to the different damage mechanisms is the result of a linear summation rule.
Fig. 5.1 presents this procedure to obtain the damage generated by different mech-
anisms from the operation profile of a thermal power plant.

Estimation of the damage generated by a given operation profile requires differ-
ent steps and involves several models. Section 5.1.1 describes the dynamic model
of the natural gas combined cycle considered in the case study, and the simplified
models used during the optimisation that replicate its behaviour. Section 5.1.2
presents different methods to model the damage that arises in the equipment.

5.1.1 Dynamic modelling of a natural gas combined cycle

The proposed method for scheduling thermal power plants requires a model that
replicates the behaviour of these power generation systems to compute the deteri-
oration in their equipment. The case study used to prove the effectiveness of this
method in Section 5.3 considers a triple-pressure NGCC with reheating. Fig. 3.2
represents the process diagram of this thermal power plant, while Section 3.4 de-
scribes the dynamic modelling approach followed to develop a model that behaves
as an actual thermal power plant.

Methodologies relying on optimisation-based procedures cannot use high-fidelity
models since their computational cost inhibits their utilisation. Simplified models
that capture the behaviour of the high-fidelity counterparts must be used instead.
System identification is a suitable approach to develop simple dynamic models, as
discussed in Section 3.2. However, scheduling captures the long-term operation
of thermal power plants and does not require detail representation of the fast dy-
namics of thermal power plants. Quasi-steady state models are thus sufficient to
model the behaviour of actual power systems without excessive loss of accuracy.
Consequently, the development of these models reduces to standard regression
procedures.

Temperatures and pressures in the equipment of interest are normally the ther-
modynamic variables estimated by simplified models, as they are the boundary
conditions of the stress models that allow the computation of creep and fatigue,
which are the two main mechanisms inducing damage in this type of power plants.
This method eases the implementation of other deterioration mechanisms such as
hot corrosion, which would only require the development of simplified models to
estimate the composition of the flue gas and its deposition in specific components.
In addition, a simplified model for predicting the power generation of the thermal
power plant is also needed.

There are many pieces of equipment in a thermal power plant that deterio-
rate from frequent cycling and severe temperature gradients (Viswanathan, 1989;
Viswanathan and Stringer, 2000). The tubes in the superheating section of the
heat-recovery steam generator (HRSG) face both challenges during regular opera-
tion and are hence considered to prove the effectiveness of the proposed method in
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the case study in Section 5.3. Creep is a major issue for this type of components
because of the high temperature of the steam and exhaust gas, and the drastic
operation changes originated from frequent ramping, start-ups and shut-downs.

The estimation of creep damage in this components requires knowledge of the
inner and outer temperatures, and the pressure of the steam. The pressure of
the exhaust gas may be approximated to atmospheric pressure without loss of
accuracy. The quasi-steady state behaviour of these variables exhibits a direct
relation with the gas turbine load. Thus, linear polynomials with the structure
presented in Eq. 5.1 lead to adequate estimations.

x = a+ b u (5.1)

Here, x represents the predicted variables, i.e. mechanical power generation, and
inner and outer pressure and temperature in the superheated tubes; u is the
manipulated variable, which is the gas turbine load as it dictates the operation
profile of the NGCC, and parameters a and b are fitted to the high-fidelity model
for each variable. Table 5.1 summarises the fitting parameters of each variable and
presents the coefficient of determination R2 that measures the agreement between
the high-fidelity and simplified models. Fig. 5.2 presents a comparison between the
high-fidelity and simplified models for the considered temperatures and pressure.
The high values of the coefficient of determination R2 demonstrate these models
based on Eq. 5.1 can predict the quasi-steady state performance of the process
variables of interest with high accuracy albeit their simplicity. Therefore, they
are suitable to replace the high-fidelity models in the stochastic optimisation.

Table 5.1: Fitting parameters of the simplified models and coefficient of determination
R2.

x Power Inner pressure Inner temperature Outer temperature

a 90 6.48 377.17 768.57
b 5.25 0.08 1.83 -1.45

R2[%] 99.95 99.88 95.58 93.43

5.1.2 Damage estimation methods

There are many damage mechanisms that contribute to the deterioration of the
equipment in thermal power plants (Viswanathan, 1989). Creep and low cycle
fatigue are arguably the ones mostly related to flexible operation. These dam-
age phenomena depend on the stress and strain levels. Therefore, these variables
must be calculated before estimating the degradation in the power plant. Sec-
tion 4.1 describes two different approaches to compute stresses and strains under
the assumptions of plane stress and strain.
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Figure 5.2: Comparison between the prediction of the high-fidelity and simplified mod-
els.

Experimental data and charts are the foundation of damage calculations (Suresh,
1998; Viswanathan, 1989). There are many procedures to obtain this data for dif-
ferent degradation mechanisms. Fig. 5.3 represents the charts normally used to
estimate the creep damage. This type of experimental data relates the stress level
and the temperature at which occurs with the maximum operating time that a
material can hold before failure (Viswanathan, 1989).
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Figure 5.3: Diagram with experimental data to estimate the creep damage. The black
lines represent the data obtained experimentally whereas the blue lines are linear regres-
sion models used during the optimisation.
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The damage induced by creep in the equipment of the thermal power plant is
the summation of the ratios between the actual time that a component operates
at specific temperature and stress levels and the time before failure at those con-
ditions, which obtained from the charts. Mathematically, the definition of creep
damage is:

Dcreep =
m∑
i=1

toper

texp
(5.2)

where toper is the time that a component of the power plant operates at a specific
temperature and stress level, texp is the maximum operational time obtained ex-
perimentally at those levels, and m is the number of operation points considered.

Charts to estimate the maximum operation time before failure are a compo-
sition of many discrete points obtained from experiments. Therefore, obtaining
the maximum operational time given a pair of stress-temperature values requires
a two-dimensional interpolation. This type of calculations is not suitable for
optimisation-based approaches since it may lead to convergence issues owing to
points lying outside the data range during the iteration process. To avoid this nu-
merical issue, linear models of the experimental data were developed by standard
least-squares to have continuous models that ease the convergence of the optimi-
sation. Fig. 5.3 compares the experimental data and the creep data estimation
by these regression models.

Fatigue is the damage associated with cycling loading in any component during
regular operation (Suresh, 1998). The calculation of this deterioration mechanism
also relies on experimental data. Damage owing to high-cycle fatigue correlates
with the stress cycles, whereas low-cycle fatigue is related with the strain (Schijve,
2003; Suresh, 1998). Therefore, the estimation of the damage originated by fatigue
needs the stress and strain profiles throughout the operation of thermal power
plants. These profiles are the result of complex multi-axial loading. However,
the experimental data obtained in a lab originate from uni-axial loading test in
uniform samples. To utilise this data in the calculation of fatigue damage under
multi-axial loading, the stress and strain profiles must be standardised, i.e. the
variable spectrum within the stress and strain profiles is transformed into uniform
loading profiles. Rainflow counting is a procedure that extracts the hysteris cycles
from the loading spectrum and generates uniform loading cycles from non-uniform
stress and strain profiles (Downing and Socie, 1982; Marsh et al., 2016; Matsuishi
and Endo, 1968; Sunder et al., 1984; Suresh, 1998). This results in a set of
amplitudes and mean stress, or strain, ranges with an associated number of cycles
(see Fig. 5.1 - Rainflow counting).

Similarly to the creep damage calculation, the damage due to fatigue is the
ratio between the number of cycles at a given amplitude and the maximum number
of cycles at that amplitude before failure. Eq. 5.3 represents this computation,
known as the linear cumulative damage hypothesis formulated by Miner-P̊almgren
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(Fatemi and Yang, 1998; Miner, 1945; Schijve, 2003):

Dfatigue =

nr∑
i=1

noper

nf
(5.3)

where noper is the number of operation cycles for a given strain amplitude and
mean strain, nr is the number of the different considered ranges, and noper is the
experimental data for the maximum number of cycles before failure. This ex-
perimental data is normally represented by the Coffin-Manson equation (Schijve,
2003; Suresh, 1998):

∆ε

2
=

∆εe

2
+

∆εp

2
=
σ
′
f

E
(2nf)

b + ε
′
f (2nf)

c (5.4)

with σ
′
f and ε

′
f being, respectively, the tensile strength and ductility coefficient

scaled to fit the experimental data, and b and c are fitting parameters. The
elastic contribution to the overall strain amplitude is ∆εe/2, whereas ∆εp/2 is
the plastic component. Fig. 5.4 illustrates the experimental fatigue data fitted to
the Coffin-Manson equation.
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Figure 5.4: Diagram with experimental data to estimate the fatigue damage. The black
line represents the maximum experimental number of cycles to failure given that a strain
amplitude is a combination of elastic and plastic effects.
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The overall damage originating from the simultaneous deterioration from dif-
ferent phenomena is the summation of the individual contributions:

D = Dcreep +Dfatigue (5.5)

5.2 Stochastic optimisation

Intermittent power generation from renewable energy sources adds variability to
the electric grid. Scheduling of power generation from thermal power plants be-
comes hence more complex since they need to balance these fluctuations whilst
being profitable and durable. To consider the intrinsic variability of energy sys-
tems with large deployment of renewable sources and expand the lifetime opera-
tion of balancing power plants, the proposed scheduling method determines the
power generation profile of flexible thermal units through a scenario-based mul-
tistage optimisation with constraints imposed on the maximum damage. This
approach defines the scheduling problem as a stochastic optimisation problem
with deterioration constraints.

Scenario-based multistage optimisation models uncertainty as discrete reali-
sations of a probability density function. It considers the different possible com-
binations of these realisations, and integrates them in an optimisation framework
that aims at finding the optimal solution of all possible uncertain scenarios (Lucia
et al., 2013). This formulation is suitable for scheduling problems because it can
consider only specific variations on power demand that represent the entire uncer-
tainty associated with intermittent energy sources. Moreover, optimisation-based
approaches can include both equality and inequality constraints, which allows
limiting the maximum damage on the equipment of power plants and enhance
their lifetime utilisation. Fig. 5.5 represents schematically a scenario-based multi-
stage optimisation. Given a known initial operation point, x0, this approach uses
a scenario-tree to expand M different uncertainty realisations, d, over a robust
time horizon Nr, i.e. the period of time until uncertainty is branched. These
realisations represent possible power demands that the thermal power plant must
balance by modifying its manipulated variable, u, which is the gas turbine load
in NGCCs and the fuel input in coal and biomass power plants, to produce the
adequate amount of power.

The selection of the number of uncertainty realisations, Munc, and the length of
the robust time horizon, Nr, is a trade-off between covering more uncertainty and
computational cost. The size of scenario-based multistage optimisation problems
grows exponentially with these parameters, as shown by Eq. 5.6. Therefore, it is
not possible to infinitely increase the number of uncertainty realisation and robust
horizon to cover all possible scenarios.

S = MNr
unc (5.6)
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Figure 5.5: Schematic representation of a scenario-tree with Mr = 3 uncertainty reali-
sations and a robust time horizon Nr = 2.

A solution to the scalability issue associated with scenario-based optimisation
is to re-solve the optimisation problem continuously with updated information,
e.g. every two hours. This means that it is not necessary to branch the scenario
tree until the end of the prediction horizon. Instead, its expansion might be
stopped after a short robust horizon that includes variability in the near future,
and from this moment on consider the uncertainty unchanging. This simplification
significantly reduces the computational cost (see Eq. 5.6), and is possible because
information about the far future does not need to be accurately represented at the
time when the decision is made, because the decisions will be refined in the next
optimisation, when the scheduling problem is solved again with new information.

The mathematical formulation of the scheduling problem as a scenario-tree
optimisation problem is:

min
xi,j , ui,j

S∑
i=1

ωi

N−1∑
j=0

`(xi,j , ui,j , P rj) (5.7a)
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subject to

xi,0 = xinit ∀i ∈ S (5.7b)

xi,j = f(xi,j , ui,j , di,j) ∀i ∈ S, ∀j ∈ N (5.7c)

cineq(xi,j , ui,j) ≤ Dmax ∀i ∈ S, ∀j ∈ N (5.7d)

(xi,j , ui,j)
low ≤ (xi,j , ui,j) ≤ (xi,j , ui,j)

up ∀i ∈ S, ∀j ∈ N (5.7e)

S∑
i=1

E∗i ui = 0 ∀i ∈ S (5.7f)

where the subscripts (·)i,j refer to the ith scenario at the jth sample time, S is
the set of scenarios S := {1, . . . , S}, and N denotes the set of indices j defining
the sampling time such N := {1, . . . , N}.

The cost function in Eq. 5.7a is a weighted average of the individual cost
functions of each scenario, where ωi is the coefficient that determines the weight
of each scenario. Since scheduling problems aim at maximising the operating
profit, the cost function is defined as:

`(xi,j , ui,j , P rj) = −xT
i,j Prj (5.8)

with Prj representing the price of the generated power and xi,j the scheduled
power generation, which is a vector including the discrete sequence of operation
points that define the quasi-steady state net power production of the NGCC
throughout each scenario.

Eq. 5.7c represents the equality constraints of the stochastic optimisation prob-
lem. It includes the simplified models for power generation, inner pressure and
temperature, and outer temperature in Eq. 5.1 and Table 5.1, and ensures that
the solution to the scheduling problem satisfies the behaviour of the considered
thermal power plant. These simplified models, and thus Eq. 5.7c, only guaran-
tee that the solution satisfies the quasi-steady state performance of the power
plant. This opposes to the original model predictive control application where
the equality constraints predict future dynamic behaviour of the system (Lucia
et al., 2013).

The inequality constraint in Eq. 5.7d defines the maximum allowable damage
in every piece of equipment considered in the thermal power plant, Dmax. There-
fore, this inequality constraint compares the result from the procedure in Fig. 5.1
to compute the damage in different components by distinct mechanisms with the
maximum damage determined by plants operators. Eq. 5.7e represents the re-
maining inequality constraints of the optimisation problem, which are the lower
and upper bounds of the computed thermodynamic variables in the equipment x,
i.e. temperatures, pressures and power; and the manipulated variable u. Eq. 5.7b
sets the initial conditions of the power plant, which are common for all scenarios.

Scenario-tree optimisations include the uncertainty in the process by the con-
tinuous branching of different scenarios. This approach considers a broader range
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5.3. Scheduling of a natural gas combined cycle

of operating conditions, but it also imposes extra restrictions during the optimi-
sation. As the disturbances associated with the uncertainty cannot be predicted,
the control inputs must not anticipate them and the power plant states x in every
node must be equal. This implies that the control inputs leading to a node within
the robust horizon are equal for the different scenarios branching from that node
(Krishnamoorthy et al., 2016, 2018; Lucia et al., 2013; Thombre et al., 2020).
These restrictions are the non-anticipativity constraints, and are enforced in the
optimisation problem by Eq. 5.7f, where ui = [ui,0, ui,1, ui,2, . . . , ui,N−1] ∈ RN .

5.3 Scheduling of a natural gas combined cycle

A case study demonstrates the effectiveness of the proposed method to schedule
the power generation of a flexible NGCC while limiting the creep damage in the
tubes of its superheater. Fig. 5.6 represents the power demand profile estimated
by the grid operator and scaled down to the power generation range of the actual
power plant. This demand curve is a coarser simplification of the actual profile
since scheduling aims at defining overall power generation profiles and NGCCs
can respond within seconds to small, unscheduled variations in power demand
(Alobaid et al., 2017; Kehlhofer et al., 2009). In addition, Fig. 5.6 includes the
representation of two different uncertainty profiles to illustrate how this scheduling
method can accommodate any type of variability. This case study considered ±5%
constant uncertainty in the estimated power demand, i.e. the grey area in Fig. 5.6.
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Figure 5.6: Demand profile estimated in day-ahead markets with a coarse simplification
and intervals for constant and increasing uncertainty.
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This case study also considered time and robust horizons of 24 and 2 hours,
respectively, with a sampling time of 1 hour; whereas 3 uncertainty realisations
were considered, leading to a total of 9 scenarios that were equally weighted,
i.e. ωi = 1/9. Consequently, Fig. 5.5 represents this stochastic problem for the
considered realisations and robust time horizon. Fig. 5.7 illustrates the price curve
of the electricity considered in this case study.
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Figure 5.7: Demand profile estimated in day-ahead markets with a coarse simplification
and deterministic electricity prices.

The stochastic optimisation problem was solved using a sequential least-squares
quadratic programming (SLSQP) algorithm (Kraft, 1988, 1994) included in the
nonlinear optimisation package NLOPT (Johnson, 2020). Creep was the only
damage mechanisms considered in the tubes of the superheater since this is the
main deterioration phenomena in this type of component (Viswanathan, 1989;
Viswanathan and Stringer, 2000). T91 was the material considered for these
tubes as this is a martensitic steel for high temperature applications. Table 5.2
details the main physical and mechanical properties of this material (Spigarelli
et al., 1999). This case study also assumed that the design temperature of these
tubes was 510 ◦C.

Table 5.2: Physical and mechanical properties of T91 martensitic steel.

ρ [kg/m3] Cm[J/kgK] km[W/mK] α∗[m2/s] α[1/K] E[MPa] υ[−] ho[W/m2K] hi[W/m2K]

7750 770 33 5.53e-05 1.3e-5 180000 0.3 2000 400

64



5.3. Scheduling of a natural gas combined cycle

The scheduling problem was firstly solved without a constraint in the damage
to obtain a set of results that maximised the profit and served as a benchmark.
Subsequently, the stochastic optimisation problem was resolved with a maximum
total damage Dmax = 0.00017. This value was lower than that obtained in the
unconstrained optimisation1, and thus the scheduling method needed to address
this challenge.

The nomenclature referring to the different scenarios in the stochastic optimi-
sation problem follows the sequence of uncertainty realisations, where H, M and L
indicate the high (105%), medium (100%) and low (95%) values of the power de-
mand estimated by the grid operator. Thus, a pair of letters defines each scenario
since the robust time horizon considered in this work is 2. The first letter refers
to the uncertainty realisation in the first sampling time and the second letter in-
dicates the next one. For instance, the pair HL refers to the scenario where the
scheduled power considers the highest demand in the first sampling time, and the
lowest in the second. Moreover, the letter X is used to indicate all uncertainty re-
alisations (e.g. XH refers to all scenarios where the second uncertainty realisation
represents the higher demand profile, independently of the first realisation).

Fig. 5.8 compares the accumulated damage in the tubes of the superheater
resulting from the two power generation profiles computed with and without dam-
age constraint. The proposed scheduling method did not exceed the maximum
allowable damage and satisfied the inequality constraint in Eq. 5.7d. This con-
straint was active in the HH scenario, which becomes the bottleneck that inhibits
more power generation from the NGCC. This limitation on the HH scenario also
affected the HM and HL scenarios. This coupling occured because of the non-
anticipativity constraints in Eq. 5.7f, which enforced the set of scenarios HX to
coincide in the first uncertainty realisation, i.e. in the first sampling time of the
robust horizon. This generated that the HL scenario changed when the constraint
in the damage is imposed, albeit it had not reached this limit in the unconstrained
case. This illustrates the effects of combining in a stochastic optimisation prob-
lem the damage limitation of the equipment with the uncertainty in the estimated
power demand.

Imposing constraints on the maximum allowable damage affects the net power
generation profile and thus the total revenue of the NGCC. Fig. 5.9 compares the
revenue obtained at each scenario in the constrained and unconstrained schedul-
ing problems. Revenue in the MX and LX scenarios remained equal because these
did not exceed the maximum allowable damage in the unconstrained optimisation
and reached hence the same optimal solution in the constrained case. However,
the damage and non-anticipativity constraints modified the power generation pro-
files in the HX scenarios, which resulted in a reduction of the total power pro-
duction (see Figs. 5.10a and 5.10b). This decrease was negligible compared to

1In this context, unconstrained refers to the case where there was no limitation on the max-
imum damage. However, the optimisation problem still included the remaining equality and
inequality constraints.
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Figure 5.8: Total creep damage in the tubes of the superheater for the different sce-
narios considered in the stochastic optimisation. H, M and L indicate the high (105%),
medium (100%) and low (95%) values of the power demand. A pair of letters defines two
uncertainty realisations and hence the trajectory of each scenario.
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Figure 5.9: Revenue for the different scenarios considered in the stochastic optimisation
with and without damage constraints. H, M and L indicate the high (105%), medium
(100%) and low (95%) values of the power demand. A pair of letters defines two uncer-
tainty realisations and hence the trajectory of each scenario.
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5.4. Effect of design temperature on creep damage

the total power generation of the NGCC within a day and occurred mostly in a
period of mid-range prices. Therefore, the reduction of the revenue in the HX
scenarios (0.11% in the HH scenario) is insignificant with respect to the damage
abatement. This trade-off demonstrates the advantage of the proposed scheduling
method. The formulation of the scheduling problem as a stochastic optimisation
with damage constraints allows to modify power generation profiles where it leads
to significant reductions on the deterioration of the equipment while affecting min-
imally the overall revenue of the power plant. This approach is specially relevant
for damage mechanisms that concentrate at specific periods of time such as creep.
The main disadvantage of this method is the sub-optimal results obtained in some
scenarios, e.g. HL, as a consequence of the non-anticipativity constraints. Never-
theless, this penalty might be mitigated by updating and resolving the scheduling
problem more frequently.

Fig. 5.10 presents the main process variables relevant for scheduling of thermal
power plants for different scenarios after optimising the power generation profile
with and without damage constraints. There are the scheduled power, the maxi-
mum wall temperature, the highest von Mises stress and the creep damage in the
tubes of the superheater. Figs. 5.10a and 5.10b show the change in the power
generation profile of the HX scenarios that originated from the constraints on the
accumulated damage. These changes lead to different operating conditions in the
NGCC, including lower temperatures in the wall of the tubes in the superheated,
Figs. 5.10c and 5.10d, and smaller values of effective stress, Figs. 5.10e and 5.10f,
which resulted in less deterioration due to creep, Figs. 5.10g and 5.10h. This anal-
ysis shows that small modifications in the power generation profile of the NGCC
significantly reduced the maximum value of creep damage. Such behaviour stems
from the effect of a combined reduction of wall temperature and effective stress on
the overall creep damage (see Fig. 5.3), and proves the effectiveness of including
damage control methods in the scheduling process.

5.4 Effect of design temperature on creep damage

Temperature and stress determine the damage in the equipment originated by
creep. The operating conditions of thermal power plants define the wall temper-
ature in different pieces of equipment, so it is a boundary condition during the
deterioration process. In contrast, the thermal component of the overall effec-
tive stress depends on the temperature distribution along the wall and the design
temperature of the equipment as described in Section 4.1. Both boundary condi-
tions and thermal properties of the material define the temperature gradient in
the wall, whereas the design temperature is a design choice. This selection refers
to the temperature where the component is free of stress and fixes the relative
value from where stress arises. Therefore, it has a critical impact on the damage
of thermal power plants during regular operation. Fig. 5.11 shows the effect of
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(a) Power without damage constraints.
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(b) Power with damage constraints.
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(c) Maximum wall temperature without dam-
age constraints.
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(d) Maximum wall temperature with damage
constraints.
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(e) Maximum von Mises stress without dam-
age constraints.
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(f) Maximum von Mises stress with damage
constraints.
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(g) Total damage without damage con-
straints.
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(h) Total damage with damage constraints.

Figure 5.10: Optimal scheduling of a flexible NGCC with and without damage limitation
under uncertainty.
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5.4. Effect of design temperature on creep damage

the design temperature on the shape and magnitude of von Mises stress of the
superheater tubes in the unconstrained HH scenario. The wall temperature and
stress profiles show opposite behaviour when the design temperature is higher
than the maximum temperature in the wall (see, e.g., the lines for 590 ◦C and 570
◦C in Fig. 5.11). However, both wall temperature and von Mises stress follow the
same trajectory when the wall temperature is above the design temperature lines
for (510 ◦C and 490 ◦C in Fig. 5.11). Consequently, when the design tempera-
ture switches between being higher or lower than the wall temperature because
of changes in the operating conditions, the profile over time of the von Mises ef-
fective stress is a combination of both trajectories (lines for 550 ◦C and 530 ◦C in
Fig. 5.11).
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Figure 5.11: Effective stress in the unconstrained HH scenario for different design tem-
peratures. The maximum wall temperature for this scenario is included for shape com-
parison.

The inverse tendency between wall temperature and effective stress indicate
that the power generation profile that maximises the revenue also minimises the
damage when the design temperature is always higher than the wall temperature
and if there exists direct relation between power generation and wall temperature,
i.e. more power leads to higher wall temperatures. This condition is key to
understand the effect of design temperature on damage. If the design temperature
of the equipment is above the peak of the wall temperature, e.g. lines for 590 ◦C
and 570 ◦C in Fig. 5.11, and this condition holds, a reduction in power generation
leads to lower wall temperature and hence to larger temperature difference with
the design temperature and more thermal stress. In this case, the increased on
effective stress overcomes the reduction of wall temperature, leading to higher
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damage due to creep. Therefore, the optimal solution is the upper bound of
power generation, a limit where the creep damage cannot be further reduced. On
the contrary, the proposed methodology can find an operating profile that reduces
the damage compared to the upper bound of the power generation if there is not
a direct relation between power generation and wall temperature.

Creep damage depends on the effective stress and the temperature of the
material at which occurs. The design temperature affects these two factors si-
multaneously. Fig. 5.11 illustrates the different peak levels of stress for different
design temperatures and how this maximum value switches among different times.
Therefore, the adequate selection of design temperature can notably reduce the
total creep damage because of this combined effect. Table 5.3 compares the maxi-
mum effective stress value, the associated wall temperature at the instant it occurs
and the accumulated damage, for three different scenarios and a broad range of
design temperatures. These results demonstrate the trade-off existing between
wall temperature and effective stress, since the lowest accumulated damage at
each scenario occurred at the lowest combination of both variables, and not at
the smallest value of the maximum stress. Design temperatures closer to the high-
est wall temperature cause the maximum stress at the lowest wall temperatures
because of the larger temperature difference (e.g. rows for design temperatures in
the range 570 – 550 ◦C in Table 5.3), whilst design temperatures similar to the
mean of the wall temperature reduce the overall temperature difference through-
out the operation of the power plant but have the peak of stress at higher wall
temperatures (rows 550 – 520 ◦C in Table 5.3). Consequently, a balance between
maximum stress and wall temperature is necessary to reduce the creep damage
and enhance the lifetime utilisation of thermal power plants.

Table 5.3: Effect of design temperature on the maximum effective stress, wall tempera-
ture at which occurs and total damage for different scenarios. Data for the HH scenario
may be compared with Fig. 5.11.

Tdesign [◦C]
HH MM LL

σeff,max [MPa] Twall [◦C] Damage σeff,max [MPa] Twall [◦C] Damage σeff,max [MPa] Twall [◦C] Damage

590 196.75 509.77 7.08 10−5 210.39 503.92 1.09 10−4 224.13 498.07 1.6 10−4

570 146.09 509.77 5.44 10−7 159.19 503.92 9.95 10−7 172.50 498.07 1.74 10−6

560 123.98 509.77 4.54 10−8 136.61 503.92 8.12 10−8 149.57 498.07 1.55 10−7

550 102.96 509.77 3.39 10−8 114.82 503.92 8.34 10−9 127.22 498.07 1.14 10−8

540 96.12 563.34 3.38 10−7 94.38 503.92 3.10 10−8 105.84 498.07 9.21 10−9

530 115.53 563.34 3.84 10−6 104.35 554.72 3.85 10−7 104.23 554.65 1.09 10−7

520 136.57 563.34 3.68 10−5 124.14 554.72 4.34 10−6 124.02 554.65 1.26 10−6

510 158.60 563.34 2.84 10−4 144.92 554.72 3.94 10−5 144.79 554.65 1.17 10−5

500 181.32 563.34 1.77 10−3 168.60 562.40 2.86 10−4 168.40 562.32 8.74 10−5

490 204.46 563.34 9.22 10−3 192.95 562.40 1.70 10−3 192.74 562.32 5.30 10−4
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Chapter 6

Model predictive control for
combined cycles with CO2
capture

Flexible operation of thermal power plants requires the development of new design
methodologies, control strategies and scheduling approaches. There are several
bottlenecks that limit the cycling capacity of this type of power systems. Chap-
ter 4 described a control strategy to consider the stress arising in the equipment
of thermal power plants and optimise their dynamic operation, whereas Chapter 5
presented a scheduling method to enhance their lifetime utilisation and maximise
the revenue in power markets dominated by the uncertainty of renewable energy
sources. However, modern energy systems require a profound reduction of CO2

emissions from thermal power plants in addition to improved flexible operation
to balance the grid.

Carbon capture and storage is a technology that complements traditional
power systems to deliver low-carbon electricity (IPCC, 2005). There exist many
different methods to reduce the CO2 emissions associated with thermal power
generation, being post-combustion capture with liquid solvents the most mature
technology with two full-scale coal power plants already in operation (Bui et al.,
2018a). Nevertheless, the integration between post-combustion capture systems
and thermal power plants might create performance issues during transient op-
eration associated with the coupling of both systems. The deployment of this
technology in power markets with large shares of renewable energy requires that
system integration does not limit the intrinsic flexibility of thermal power plants
and control strategies to regulate the transient operation of both capture and
power plants.

Chapter 3 qualitatively discussed the dynamic behaviour of this type of energy
systems and demonstrated that integration of CCS with thermal power plants has
almost negligible influence on the flexibility of power generation. This chapter is
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based on Rúa et al. (2021a) and describes a model predictive control strategy to
optimise the dynamic operation of the integrated systems. Section 6.1 describes
the dynamic model of a modern NGCC used to replicate the behaviour of an
actual power plant and the simplified models developed and included in the MPC
strategy. Section 6.2 presents the model predictive control strategy, its mathemat-
ical formulation and discusses how to achieve offset-free tracking in the presence
of disturbances. A case study where the integrated system needs to balance a
decrease in power demand demonstrates the fast control without offset achieved
by the proposed MPC strategy in Section 6.3.

6.1 Dynamic modelling of NGCC-PCC systems

A dynamic high-fidelity model of a triple-pressure natural gas combined cycle
with reheating integrated with a full-scale post-combustion CO2 capture plant
was used to replicate the operation of an actual power generation system. Sec-
tion 3.4 described the main characteristic of this NGCC-PCC model and detailed
the modelling approach followed to capture its dynamic behaviour. Fig. 3.2 repre-
sents the process diagram of this thermal power plant integrated with the capture
system.

Model predictive control consists on the periodic solution of a dynamic op-
timisation problem to compute the control actions imposed on a system. The
high computational cost of large high-fidelity models inhibits their utilisation on
optimisation-based control strategies. Consequently, this type of control method-
ologies use instead simplified models that replicate the behaviour of the main
process variables of these systems. The development of these simplified models
followed the same approach described in Section 4.2, where data generated by im-
posing simultaneous RGS signals on the controllers of the dynamic model allowed
the identification of the local ARX models integrating a local model network ca-
pable of predicting nonlinear behaviour. The process variables identified in the
NGCC-PCC system were the net power generation of the NGCC, the superheat-
ing and reheating temperatures in the steam cycle, the capture ratio of the PCC
plant and the reboiler temperature. A polynomial model described the behaviour
of power generation because of the linear relationship between this variable and
the gas turbine load. Table 6.1 details the coupling between controlled and manip-
ulated variables and shows the prediction accuracy of the local model network for
each input-output pair measured by the coefficient of determination R2. The low
R2 of the superheating and reheating temperature originate from the nature of
the validation data. The RGS signals superimposed on the controllers fluctuated
faster than the dominant dynamics of the steam cycle, which lead to drastic and
fast changes in the controlled and manipulated variables. This created a challeng-
ing set of data to predict that allowed testing whether the local model network
could predict large and frequent fluctuations. In contrast, the PCC data does
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not show this behaviour because of the slower dominant dynamics of the capture
plant and its buffering effect, mainly through solvent vessels and liquid hold-ups
(Rúa et al., 2020b). This transient performance results in smoother and slower
variations easier to predict that lead to higher R2 values.

Table 6.1: Input-output pairs with model order and coefficient of determination.

Plant
Input-output pair Order Nominal

R2[%]
Controlled variable (y) Manipulated variable (u) ny nu ny nu

NGCC
Power generation Gas turbine load 99.95
Superheated steam temperature Opening attemperator valve 1 2 2 592.7 ◦C 0.02655 69.59
Reheated steam temperature Opening attemperator valve 2 2 2 592.5 ◦C 0.07882 74.37

PCC
Capture rate Mass flow lean solvent 1 1 90 % 614 98.40
Reboiler temperature Opening steam extraction valve 1 1 119.22 ◦C 0.69 99.09

ARX models are suitable for system identification procedures because the
computation of their coefficients becomes a simple least-square problem or a con-
vex optimisation, whereas other structures may involve more complex, possibly
non-convex, identification problems (Huusom et al., 2010). However, for analy-
sis purposes, state-space forms of ARX models are preferred. The realisation in
observable form of the ARX model in Eq. 4.17 is (Chen, 2013):

xk+1 = Axk +B uk (6.1a)

yk = C xk (6.1b)

with

A =


−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−any−1 0 0 · · · 1
−any 0 0 · · · 0

 B =


0
...
b1
...
bnu

 C = [1 0 . . . 0]

where B has ny − nu zeros, and x ∈ Rny , u, y ∈ R, A ∈ Rnyxny , B ∈ Rnyx1, and
C ∈ R1xny . This realisation is valid when the ARX model leads to proper rational
transfer functions, i.e. ny ≥ nu. The stochastic error term in Eq. 4.17 is not
included because of the deterministic data used during system identification.

6.2 Model predictive control formulation

The main objectives of thermal power plants with CO2 capture are the generation
of power to meet the demand and the capture of sufficient CO2 to reach the estab-
lished target of reduction of emissions. In power markets with large contributions
of intermittent renewable energy sources, these goals require efficient transient
performance of thermal power plants integrated with PCC systems and the tight
control of key process variables.
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Model predictive control for reference tracking is a suitable control strategy
that can address both issues. This approach formulates an optimisation problem
whose goal is to minimise the deviation of key process variables from their set-
points (Rawlings et al., 2017). However, this MPC formulation does not ensure
offset-free control because of possible plant-model mismatches and disturbances
affecting the actual system. Therefore, the reference tracking formulation is com-
bined with methods to achieve offset-free control (Borrelli and Morari, 2007).

Process and measurement disturbances also affect the performance of the con-
trol strategy because of differences between the actual states of the system and
the initial conditions used in the optimisation problem. Thus, this MPC strategy
includes a Kalman filter to update the state estimations and correct possible mis-
matches between the predictions of the responses by the simplified models and
the measurements from the NGCC-PCC system (Kalman, 1960). Fig. 6.1 shows
a diagram of the MPC strategy. This section presents the different blocks inte-
grating this control strategy and their mathematical formulation. Section 6.2.1
discusses reference tracking and offset-free MPC, and describes the formulation of
this optimisation problem, whereas Section 6.2.2 builds up on this and defines a
simpler dynamic optimisation problem, called delta-input formulation, that only
depends on the manipulated variables. Section 6.2.3 describes the estimator that
predicts the states on the actual NGCC-PCC systems.

6.2.1 Reference tracking and offset-free MPC

Reference tracking with MPC strategies consist on the solution of a dynamic
optimisation problem that minimises the difference between outputs of a system
and reference trajectories. The general formulation of linear MPC problems for
reference tracking is:

min
x,u

N−1∑
k=0

1

2
||Q (yk − yref)||+ ||R (uk − uk−1)|| (6.2a)

subject to

xk+1 = Axk +B uk (6.2b)

yk = C xk (6.2c)

ylow ≤ yk ≤ yup (6.2d)

ulow ≤ uk ≤ uup (6.2e)

where || · || represents the two-norm that leads to a quadratic programming (QP)
optimisation problem. Eq. 6.2b and 6.2c ensure that the state-space realisation
of the identified ARX models is satisfied. Eqs. 6.2d and 6.2e limit the minimum
and maximum values of the controlled and manipulated variables, respectively.
The objective function in Eq. 6.2a minimises the difference between controlled
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−
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Figure 6.1: Diagram of the proposed MPC strategy with a Kalman filter. Expressions
within the diagram are developed throughout Section 6.2, while the dynamic model of
the NGCC-PCC system is described in Section 3.4.

variables and their references yref , and imposes a penalty in excessive utilisation
of control inputs.

This formulation does not guarantee offset-free control because of possible
mismatches between plant and model, and the presence of disturbances. This issue
might be overcome by augmenting the models embedded in the MPC strategy, i.e.
Eq. 6.1, with disturbance models that act as integrators and remove the tracking
error (Pannocchia, 2015; Pannocchia and Rawlings, 2003; Rawlings et al., 2017).
The augmented state-space model is:

xa,k+1 = Aa xa,k +Ba uk (6.3a)

yk = Ca xa,k (6.3b)

with: [
xk+1

dk+1

]
=

[
A Bd

0 I

] [
xk
dk

]
+

[
B
0

]
uk

yk =
[
C Cd

] [xk
dk

]
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This formulation achieves offset-free control if the model is stabilisable, the pair
(A,C) is observable, the number of disturbances nd is equal to the number of
outputs:

nd = p = 1

and the following condition holds (Borrelli and Morari, 2007; Pannocchia, 2015;
Pannocchia and Rawlings, 2003; Rawlings et al., 2017):

rank

[
A− I Bd

C Cd

]
= ny + nd

This condition is satisfied if the pair (A,C) is observable, as the disturbance
matrices Bd ∈ Rnyxnd and Cd ∈ R1xnd can be chosen freely. The state-space
model is, however, in observable form. Thus, the pair (A,C) is always observable.
This indicates that offset-free control reduces to the adequate selection of the
disturbance model Bd and Cd.

The MPC formulation for the augmented system is:

min
x,u

N−1∑
k=0

1

2
||Q (yk − yref)||+ ||R (uk − uk−1)|| (6.4a)

subject to

xa,k+1 = Aa xa,k +Ba uk (6.4b)

yk = Ca xa,k (6.4c)

ylow ≤ yk ≤ yup (6.4d)

ulow ≤ uk ≤ uup (6.4e)

6.2.2 Delta-input formulation

The reference tracking problem augmented with a disturbance model in Eq. 6.4
already leads to optimal control actions that remove the tracking error. Neverthe-
less, delta-input formulations are more suited to this type of control problems since
they penalise directly the rate of change of the manipulated variables (Borrelli and
Morari, 2007). Furthermore, it reduces the number of optimisation variables and
the computational cost of the dynamic optimisation. Section 6.2.2.1 describes the
delta-input formulation of the MPC problem in Eq. 6.4, whereas Section 6.2.2.2
discusses how several state-space models can be merged into a common MPC
problem.
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6.2.2.1 Delta-input formulation for SISO systems

Define the delta-input control action that determines the rate of change of a
manipulated variable:

δuk := uk − uk−1 (6.5)

and augment the state-space equation in Eq. 6.3 with this new state and control
input:

x̃k+1 = Ã x̃k + B̃ δuk (6.6a)

yk = C̃ x̃k (6.6b)

which is expressed:[
xa,k+1

uk

]
=

[
Aa Ba

0 I

] [
xa,k

uk−1

]
+

[
Ba

I

]
δuk

yk = [Ca 0]

[
xa,k

uk−1

]
Define the vectors of controlled and manipulated variables over a time horizon N:

δuk = [δu0 δu1 . . . δuN−1]T

y = [y1 y2 . . . yN ]T

and eliminate the states in Eq. 6.6. The output equation, over the time horizon
N, becomes:

y = Hδu+A0x̃0 (6.7)

with

H =


H1 0 · · · · · · 0
H2 H1 0 · · · 0
...

. . .
. . .

. . .
...

... H2 H1 0
HN · · · · · · H2 H1

 A0 =


C̃ Ã

C̃ Ã2

C̃ Ã3

...

C̃ ÃN


where

Hi = C̃ Ãi−1 B̃ i ∈ {1, 2, . . . , N}
x̃0 = x̃[0]

Inserting this reduced output equation, Eq. 6.7, and the definition of the delta
control input in Eq. 6.5, into Eq. 6.4d and Eq. 6.4e, the inequality constraints of
the standard MPC formulation become:

−H
H
−Ψ
Ψ

 δu ≤

−(ylow −A0 x̃0)
yup −A0 x̃0

−(ulow − u−1)
uup − u−1

 (6.8)
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where Ψ is an unit lower triangular matrix:

Ψ =



1 0 · · · · · · 0

1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

1 · · · · · · 1 1


Following the same approach, the objective function Eq. 6.4a becomes:

J =
1

2

(
||Q(y − yref)||+ ||Rδu||

)
=

=
1

2

(
||Q(Hδu+A0x̃0 − yref)||+ ||Rδu||

)
=

=
1

2

[
δuT (HTQH +R)δu+

+ 2(A0x̃0 − yref)QHδu+

+ (A0x̃0 − yref)
TQ(A0x̃0 − yref)

]
(6.9)

where the last term may be dropped since is constant.
Therefore, the MPC strategy can be expressed as the QP problem:

min
δu∈RN

1

2
δuTΓ δu+ fT δu (6.10a)

subject to

g δu ≤ p (6.10b)

with the matrix and vector in Eq. 6.10b defined in Eq. 6.8, and:

Γ = HTQH +R

f = (A0x̃0 − yref)QH

6.2.2.2 Delta-input formulation for MIMO systems

This section extends the delta-input formulation to the case where there are sev-
eral controlled and manipulated variables. Consider m single-input single-output
(SISO) models with manipulated variables defined as delta-input control actions
and grouped in a vector as:

∆u := [δu1 δu2 . . . δum]T (6.11)

where each component is a sequence of control actions over a time horizon N for
a given manipulated variable:

δuj = [δuj,1 . . . δuj,N ]T j ∈ {1, . . . ,m}
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The MPC delta-input formulation can be extended as:

min
∆u∈R(Nxm)x1

1

2
∆uTΦ ∆u+ F T∆u (6.12a)

subject to

G∆u ≤ P (6.12b)

where

Φ =


Γ1 0 · · · 0

0 Γ2
. . .

...
...

. . .
. . . 0

0 · · · 0 Γm

 F =


f1

f2
...
fm



G =


g1 0 · · · 0

0 g2
. . .

...
...

. . .
. . . 0

0 · · · 0 gm

 P =


p1

p2
...
pm


6.2.3 Estimator

Measurements of process variables normally differ from the states in the actual
power plant. This difference originates from process and measurement noise and
might lead to the computation of suboptimal control actions. State observers
consider the uncertainty associated with the measurements and the process to
estimate the real state of the system, which becomes the initial conditions in
the optimisation problem (see Fig. 6.1). For the considered NGCC-PCC system,
state estimation includes the augmented system in Eq. 6.6, i.e. the main process
variables computed with the simplified models, the disturbances, and the new
state that originates from the definition of the delta-input control action.

The estimator computes the augmented state at each discrete time k as a
combination of the current, or a priori, state prediction and a correction based on
the measured output yk:

ˆ̃xk = Ã ˆ̃xk−1 + B̃ δuk−1 +K (yk − C̃ (Ã ˆ̃xk−1 + B̃ δuk−1)) (6.13)

where ·̂ indicates estimated variables, and K ∈ R(ny+1+nd) x p is the observer gain:

K :=

Kx

Kd

Ku


in which Kx, Kd, Ku are the observer gains for the states, disturbances and control
input, respectively.
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There are several approaches to choose the observer gain K. Observer sta-
bility is the only requirement constraining its selection, i.e. the eigenvalues of
the system (Ã − KC̃Ã) must lie inside the unit circle. Pole placement routines
compute observer gain matrices that fix the eigenvalues of a matrix pair in spe-
cific coordinates and make the estimator stable (see, e.g. (Pannocchia, 2015)).
Nevertheless, Kalman filters are arguably the most widely used observer gain ma-
trices (Kalman, 1960). Calculation of the Kalman filter matrix gain is a two-step

process. First, the a priori state ˆ̃x
−
k−1 and covariance matrix P−k are computed

from previous estimations:

ˆ̃x
−
k = Ã ˆ̃xk−1 + B̃ δuk−1 (6.14a)

P−k = Ã Pk−1 Ã
T +Qp (6.14b)

with Qp representing the covariance of the process noise w ∈ N (0, Qp). Then,
these a priori estimates are updated based on current measurements:

Kf =
P−k C̃T

C̃ P−k C̃
T +Rm

(6.14c)

ˆ̃xk = ˆ̃x
−
k +Kf (yk − C̃ ˆ̃x

−
k ) (6.14d)

Pk = (I −Kf C̃)P−k (6.14e)

where Rm is the covariance associated to the measurement noise v ∈ N (0, Rm),
and Kf is the Kalman filter used to estimate the current state ˆ̃xk and the covari-
ance matrix Pk required at the next sampling time.

6.3 Dynamic operation of integrated systems

Natural gas combined cycles with CO2 capture are expected to balance the grid
within minutes. A case study where a NGCC integreted with a PCC plant needs
to balance a drastic change in power demand demonstrates the effectiveness of
the proposed MPC strategy to stabilise both plants with minimal deviations of
the main process variables from their set-points. During this dynamic simulation,
the sampling time was 30 seconds whereas the time horizon within the dynamic
optimisation covered 600 seconds, i.e. N = 20. These parameters ensured the
capture of the dominant dynamics of the NGCC, which are the fastest dynamics
of the NGCC-PCC system (see Chapter 3). Table 6.2 includes the bounds for the
controlled and manipulated variables considered during the dynamic simulations.
Furthermore, the maximum ramp rate of the gas turbine was limited to 15%/min
according to the standards suggested by manufacturers. Table 6.3 summarises
the matrices and vectors to create the augmented models, the estimator based on
the Kalman filter, and the weights in the objective function for each input-output
pair.
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Table 6.2: Lower and upper bounds of the controlled and manipulated variables.

Variable Lower Upper

Power [MW] 450 615
Gas turbine load [%] 60 100
Superheating temperature [◦C] 587.7 597.7
Attemperator valve 1 [-] 0.01 1
Reheating temperature [◦C] 587.5 597.5
Attemperator valve 2 [-] 0.01 1
Capture ratio [-] 0.85 0.95
Mass flow lean solvent [kg/s] 300 800
Reboiler temperature [◦C] 115.22 120.22
Steam extraction valve [-] 0.01 1

Table 6.3: Matrices and vectors defining the disturbance (Bd, Cd) and noise (Qp, Rm)
models; and weights for controlled variables (λQ) and penalties in movement of manipu-
lated variables (λR).

Variable Bd Cd Qp Rm λQ λR

Power - - - - 1 1

Superheating
temperature

 0
0

0.01

 0 I4x4 0.01 10 0.01

Reheating
temperature

 0
0

0.01

 0 I4x4 0.01 10 0.01

Capture ratio

[
0.1
0.1

]
0 I3x3 0.1 50000 0.001

Reboiler
temperature

[
0.01
0.01

]
0 I3x3 0.1 100 10

Transient operation of the NGCC-PCC system aroused from a step change re-
duction in the power demand that forced the power plant to reduce its load. This
operation change modified the exhaust gas and steam cycle conditions, which, in
turn, disturbed the post-combustion CO2 capture plant. Fig. 6.2 shows key pro-
cess variables in the NGCC-PCC system during dynamic operation and demon-
strates the effectiveness of the proposed MPC strategy to achieve optimal offset-
free control.

The NGCC stabilised first because of its faster dominant dynamics. Balancing
of the power demand occurred within 90 seconds owing to the negligible dynamics
of the gas turbine and albeit the constraint on its maximum ramp rate, which was
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Figure 6.2: Dynamic behaviour of process variables from the NGCC-PCC system with
the proposed MPC strategy during a power demand reduction of 70 MW.

active during the first instants of transient operation. The gas turbine compen-
sates the slower dynamic performance of the steam cycle since the heat capacitance
of the HRSG prolongs its stabilisation time. Temperature control of the super-
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heated and reheated steam shows this behaviour as they required more time to
return to their set-points. Nevertheless, the deviation of these variables was less
than 2◦C while the stabilisation time was 10 minutes, which is less than the values
obtained with traditional PID controllers (Montañés et al., 2017b; Prasad et al.,
1998; Rúa et al., 2020a). The tight control on the temperature of the hot sections
of the steam cycle is fundamental to ensure safe operation and avoid damaging
this equipment due to high temperatures. This resulted in aggressive changes in
the opening of both attemperator valves.

Post-combustion CO2 capture plants exhibit longer transient performance be-
cause of their slower dominant dynamics, which are governed by large vessels of
solvent, transports delays, and liquid hold-ups (see Chapter 3). Fig. 6.2 illustrates
this behaviour, especially in the stabilisation time of the reboiler temperature,
which needed 45 minutes to reach its set-point. However, the proposed MPC
strategy removed the offset of the capture ratio in a similar time than variables in
the steam cycle, equating the transient performance of this variable with those of
the power plant. Furthermore, the control of the capture ratio occurred with mini-
mal deviation from its set-point and without fluctuations. This smooth behaviour
originates from the utilisation of optimisation-based strategies, whose prediction
capability leads to better and faster performance during reference tracking. Tra-
ditional PIDs can also achieve offset-free control of different process variables in
NGCC-PCC systems, although they lead to larger deviations from the set-point
and require longer stabilisation time (Montañés et al., 2017b).

The reboiler temperature required more time to stabilise around its set-point
and occurred with more fluctuations. This dynamic behaviour resulted from
the interaction between the absorber and desorber sections in the capture plant.
Changes in the mass flow rate of lean solvent to control the capture ratio modify
the operation of the desorption column, which leads to different rich and lean
loading in the solvent and force the adjustment of the heat input to maintain a
stable temperature in the reboiler. Different lean loading at the outlet of the des-
orber influences the absorption process and hence requires further modifications
of its manipulated variable. Whilst changes of mass flow rate of lean solvent lead
to rapid control of the capture ratio, the continuous interaction, transport delay
and large liquid hold-ups between both absorption and desorption sections lead to
slow stabilisation of the reboiler temperature. Moreover, the heat capacitance of
the reboiler contributes to the long transient performance of the desorption pro-
cess. Despite these slow dominant dynamics, the proposed MPC strategy achieved
offset-free control of the reboiler temperature within 45 minutes with deviations
below 0.15◦C respect to the set-point. This is a significant improvement if com-
pared with PID controllers, which produce longer stabilisation time with larger
offsets (Montañés et al., 2017b). Furthermore, the reduction of the maximum devi-
ation allows increasing the nominal operating temperature of the reboiler without
reaching levels where solvent degration occurs, leading to an improvement of the
stripping efficiency and a potential reduction in steam extraction.
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This case study did not include any tuning procedure to enhance the per-
formance of the MPC strategy. However, adequate tuning of the weights in the
objective function, the noise models in the estimator and the disturbance models
in the augmented system could improve the dynamic behaviour of the NGCC-PCC
system.
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Chapter 7

Conclusions and future
research

Flexible operation of thermal power plants integrated with CO2 capture requires
understanding the dynamic behaviour of both systems, the identification of the
main bottlenecks inhibiting faster operation, and the development of adequate
procedures and control strategies that allow overcoming these limitations. This
thesis presents a set of scientific contributions that aim at enhancing the flex-
ible and safe operation of this type of power generation systems. Section 7.1
summarises the main findings achieved in this Ph.D. thesis, whereas Section 7.2
discusses future research paths to keep developing solutions that improve the cur-
rent performance of thermal power generation with carbon capture and storage.

7.1 Conclusions

Thermal power plants and post-combustion CO2 capture exhibit distinct tran-
sient behaviour because their dominant dynamics occur in different timescales.
Heat capacitance of steam generators is the main limitation of thermal power
plant. This type of equipment absorbs large amounts of energy owing to their
enormous mass of metal, which slows down the heat transfer between the energy
source and the working fluid, generates large temperature gradients and thermal
stresses, and leads to delayed changes of operation. In contrast, post-combustion
CO2 capture plants have several limiting factors that contribute to the overall
slow dynamic behaviour observed in pilot test campaigns and dynamic simula-
tions. Varying boundary conditions drive the transient operation of these capture
systems whereas the continuous interaction between the absorption and desorp-
tion sections prolong their stabilisation time. This coupling includes the change
of operating conditions within the absorption and desorption columns, the trans-
port delay introduced by heat exchangers and piping, and the long residence time
resulting from the large volume of solvent stored in vessels and held-up through-
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out the capture plant. This long stabilisation time of capture plants also affects
thermal power plants when these two systems are integrated, which leads to small
oscillations in the mass flow rate of steam extracted from the IP-LP crossover
in the steam turbine. However, dynamic simulations of a natural gas combined
cycle integrated with a post-combustion capture plant demonstrated that rapid
oscillations in steam extraction do not alter the overall power output of the power
plant and proved that CCS does not inhibit the flexible and dispatchable nature
of thermal power plants.

Thermal and mechanical stresses are one of the main limitations during cycling
operation of thermal power plants. Control strategies based on model predictive
control with stress monitoring can compute optimal control actions that do not
exceed the maximum allowable stress levels defined by the operator. Both lin-
ear and nonlinear formulations of these control strategy are available, so different
stress and power plant models can be included. However, linear formulations
proved to be computationally superior because of their more suitable numerical
properties and convexity. Dynamic simulations with drastic changes of power de-
mand and different stress limits showed that this control methodology can adjust
the transient behaviour of natural gas combined cycles to guarantee operating
conditions that do not exceed the stress limits. Moreover, these dynamic studies
also illustrated how this optimisation-based methodology with stress monitoring
under- and over-shoots the gas turbine load when there is not risk of exceeding
the maximum stress levels to compensate the slow transient performance of the
steam cycle. Therefore, the increase of ramping rates of gas turbines and the stress
limits of the material in critical equipment can enhance the flexible operation of
natural gas combined cycles.

Scheduling can also improve the flexible operation of thermal power plants
in electric markets dominated by intermittent renewable energy sources. Regular
operation deteriorates equipment subjected to high pressures and temperatures.
Cycling and more frequent start-ups and shut-downs expedite this process. The
scheduling method proposed in this thesis relies on the formulation of the schedul-
ing problem as a stochastic optimisation. It aims at computing optimal power
generation profiles while accounting for the variability associated with renewable
power generation and limiting the maximum damage in specific components of
thermal power plants. The scheduling of a natural gas combined cycle in a power
market with high variability in power demand demonstrated how this scheduling
method can restrain the deterioration of the equipment with almost negligible loss
of economic profit. Furthermore, this analysis highlighted the important role of
the design temperature of the equipment in the lifetime utilisation of the thermal
power plant. Its selection determines the stress and strain levels and, consequently,
can limit the cycling capabilities and lifetime operation of specific components.

Control strategies that consider the integration of thermal power plants with
CO2 capture systems can also improve their dynamic behaviour. Model predic-
tive control considers the distinct transient performance of these power generation
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systems to compute control actions that lead to optimal operation of both power
and capture plants. This approach results in smaller deviations of key process
variables from their set-point and shorter stabilisation times, which allows in-
creasing the efficiency of different processes by operating these systems closer to
their constraints.

Overall, the contributions of this Ph.D. thesis might be summarised as:

Optimisation-based methodologies can enhance the flexible operation of thermal
power plants with CO2 capture by computing optimal control actions and power
generation profiles that limit the maximum stress in the system, lead to faster
and tighter reference tracking of key process variables, and expand the plants

lifetime without reducing, or even increasing, the economic profit.

7.2 Future research

Start-up procedures for post-combustion CO2 capture plants is the biggest ques-
tion yet to answer in the field of carbon capture. Despite there is not sufficient
experience on actual operation of CCS systems and power generation with CO2

capture, dynamic simulations and pilot plant test campaigns have allowed under-
standing the steady-state and dynamic behaviour of these energy systems during
cycling operation. However, there is not knowledge on how to start-up a post-
combustion capture plant alone, the time needed to reach steady-state operation,
and the design of control strategies. Thus, there are several research questions
that need answers within the topic of start-up of post-combustion capture plants:

• Which is the sequence of processes that lead to safer and faster start-up?

• Is supplementary firing needed? If so, how can the supplementary emissions
be offset? Does supplementary firing impose higher capture rates?

• Can the start-up sequences of thermal power and capture plants be com-
bined to avoid supplementary firing? Does this integration limit the intrinsic
flexible operation of thermal power plants?

• Can the start-up sequence of CO2 capture plants be combined with indus-
trial processes?

• How is the design of control structures for start-up sequences?

• Is it necessary to switch between different control designs in the transition
from start-up to regular operation? If so, how?

Uncertainty will also play a major role in the deployment and operation of
CCS systems. Scheduling and control strategies must consider the uncertainty
associated with industrial processes and power generation systems to enhance the
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performance of CCS systems. Furthermore, it is necessary to develop refined sta-
tistical models that can predict the variability in power prices, power demand and
cost of CO2 emissions. This type of analysis will also affect the effect of different
carbon policies on the economic viability of CCS, as considering uncertainty can
create a competitive edge in cap and trade schemes.

Natural gas combined cycles are arguably one of the masterpieces of mechan-
ical engineering. Improvements in this field are limited, and progress is only
achieved by gradual minor modifications. The application of the proposed control
strategy with stress monitoring to start-ups and shut-downs can however improve
the actual sequences and reduce the time required to reach steady-state opera-
tion. Exhaust gas recirculation is probably the largest modification that can be
implemented in modern natural gas combined cycles. This technology can lead
to higher concentrations of CO2 in the exhaust gas of this type of thermal power
plants and notably improve the efficiency of the capture process. Therefore, the
development of exhaust gas recirculation processes and understanding its effect
on the gas turbine is a key research path within the field of power generation of
natural gas combined cycles with CO2 capture.
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Pandžić, H., Kuzle, I., and Capuder, T. Virtual power plant mid-term dispatch
optimization. Applied Energy, 101:134–141, 2013.

Pannocchia, G. Offset-free tracking MPC: A tutorial review and comparison of
different formulations. In 2015 European control conference (ECC), pages 527–
532. IEEE, 2015.

Pannocchia, G. and Rawlings, J. B. Disturbance models for offset-free model-
predictive control. AIChE journal, 49(2):426–437, 2003.

Paterson, I. and Wilson, J. Use of damage monitoring systems for component
life optimisation in power plant. International journal of pressure vessels and
piping, 79(8-10):541–547, 2002.

Peng, H., Ozaki, T., Toyoda, Y., and Oda, K. Exponential ARX model-based
long-range predictive control strategy for power plants. Control Engineering
Practice, 9(12):1353–1360, 2001.

Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I.,
Bender, M., Chappellaz, J., Davis, M., Delaygue, G., et al. Climate and atmo-
spheric history of the past 420,000 years from the Vostok ice core, Antarctica.
Nature, 399(6735):429, 1999.

Prasad, G., Swidenbank, E., and Hogg, B. A local model networks based multi-
variable long-range predictive control strategy for thermal power plants. Auto-
matica, 34(10):1185–1204, 1998.

Rawlings, J. B., Mayne, D. Q., and Diehl, M. Model predictive control: theory,
computation, and design, volume 2. Nob Hill Publishing Madison, WI, 2017.

Rezazadeh, F., Gale, W. F., Hughes, K. J., and Pourkashanian, M. Performance
viability of a natural gas fired combined cycle power plant integrated with post-
combustion CO2 capture at part-load and temporary non-capture operations.
International Journal of Greenhouse Gas Control, 39:397–406, 2015.

Riboldi, L. and Nord, L. O. Optimal design of flexible power cycles through
Kriging-based surrogate models. In Turbo Expo: Power for Land, Sea, and Air,
volume 51043, page V003T08A002. American Society of Mechanical Engineers,
2018.
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Publication I

To date, the deployment, integration, and utilisation of intermittent renewable
energy sources, such as wind and solar power, in the global energy system has
been the cornerstone of efforts to combat climate change. At the same time, it is
recognised that renewable power represents only one element of the portfolio of
technologies that will be required to deliver a technically feasible and financially
viable energy system. In this context, carbon capture and storage (CCS) is un-
derstood to play a uniquely important role, providing significant value through
flexible operation. It is therefore of vital importance that CCS technology can op-
erate synergistically with intermittent renewable power sources, and consequently
ensuring that CCS does not inhibit the flexible and dispatchable nature of thermal
power plants. This work analyses the intrinsic dynamic performance of the power
and CO2 capture plants independently and as an integrated system. Since the
power plant represents the fast dynamics of the system and the steam extraction
is the main point of integration between the CO2 capture and power plants, dis-
turbances with fast dynamics are imposed on the steam extraction valve during
steady state and dynamic operation of a natural gas combined cycle (NGCC) to
study the effects of the integration on power generation capacity. The results
demonstrate that the integration of liquid-absorbent based post-combustion CO2

capture has negligible impact on the power generation dynamics of the NGCC.
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A B S T R A C T

To date, the deployment, integration, and utilization of intermittent renewable energy sources, such as wind and
solar power, in the global energy system has been the cornerstone of efforts to combat climate change. At the
same time, it is recognized that renewable power represents only one element of the portfolio of technologies
that will be required to deliver a technically feasible and financially viable energy system. In this context, carbon
capture and storage (CCS) is understood to play a uniquely important role, providing significant value through
flexible operation. It is therefore of vital importance that CCS technology can operate synergistically with in-
termittent renewable power sources, and consequently ensuring that CCS does not inhibit the flexible and dis-
patchable nature of thermal power plants. This work analyses the intrinsic dynamic performance of the power
and CO2 capture plants independently and as an integrated system. Since the power plant represents the fast
dynamics of the system and the steam extraction is the main point of integration between the CO2 capture and
power plants, disturbances with fast dynamics are imposed on the steam extraction valve during steady state and
dynamic operation of a natural gas combined cycle (NGCC) to study the effects of the integration on power
generation capacity. The results demonstrate that the integration of liquid-absorbent based post-combustion CO2

capture has negligible impact on the power generation dynamics of the NGCC.

1. Introduction

Climate change mitigation is one of the greatest challenges in the
21st century. Anthropogenic greenhouse gas emissions since the in-
dustrial revolution have resulted in increasing temperatures and
changes in natural and human ecosystems (IPCC, 2014). Thus, a deep
decarbonization of all sectors is necessary to meet the target of not
exceeding the 1.5 °C temperature increase respect to pre-industrial le-
vels (IPCC, 2018).

Among the different possibilities available to reduce the greenhouse
gas emissions, carbon capture and storage (CCS) is a uniquely im-
portant technology for mitigating the CO2 emissions associated with the
energy sector and industry (IPCC, 2005, 2014). These two sectors ac-
count for more than 50% of the total global greenhouse gas emissions
(IPCC, 2014; IEA, 2018a).

Renewable energy sources will also contribute significantly to re-
ducing CO2 emissions (IEA, 2018b). Future energy systems are expected
to be characterized by a high penetration of intermittent renewable
sources. This will result in additional costs associated with load

balancing, additional firming capacity, energy storage, and inter-
connection capacity (Heuberger et al., 2017a,b).

Flexible dispatchable energy generation technologies such as
thermal power with CCS offer a cost effective way to balance this in-
termittency (Heuberger et al., 2016; Kondziella and Bruckner, 2016;
Montañés et al., 2016; Mac Dowell and Staffell, 2016). Consequently,
thermal power plants will be exposed to cycling operation and more
frequent start-ups and shut-downs (Eser et al., 2017; González-Salazar
et al., 2017). Thus, to deploy CCS technology in a power market
dominated by the high variability of renewable energy, it is necessary
to prove its adequacy for flexible operation (Adams and Mac Dowell,
2016).

Post-combustion CO2 capture is arguably the most mature CCS
technology (IPCC, 2005; Bui et al., 2018a). Therefore, deep under-
standing of the dynamic performance of these capture plants integrated
with thermal power plants is essential. Dynamic modelling and simu-
lation remains the primary medium to study the interaction of these
systems under transient operation due to the lack of full-scale experi-
ence (Bui et al., 2014, 2018a). Developing further detailed insight into
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the process dynamics could help improve the accuracy and robustness
of dynamic process control and scheduling during flexible operation,
plant start-up and shut-down.

The development of dynamic CO2 capture models was extensively
reviewed by Bui et al. (2014, 2018b). Whilst the vast majority of re-
search on flexible operation of CCS focuses on modelling the dynamics
of the capture plant, there are relatively few studies that model the
integrated system with a thermal power plant (Lawal et al., 2012; Mac
Dowell and Shah, 2013, 2015; Wellner et al., 2016; He and Ricardez-
Sandoval, 2016; Mechleri et al., 2017a,b; Garðarsdóttir et al., 2017;
Montañés et al., 2017b).

Lawal et al. (2012) studied the dynamic interaction between a coal-
fired power plant and a post-combustion capture plant with MEA, and
showed how tight control (i.e., rapidly responds to minimize deviation
between the controlled variable and its set-point) on the capture plant
may interfere with the power output of the power plant. For a similar
integrated system, Garðarsdóttir et al. (2017) found that power gen-
eration settling times are essentially independent of the integration of
the capture plant. However, inadequate control strategies may result in
unnecessary longer stabilization times. Both studies concluded that the
dynamics of the capture plant are significantly slower than the power
plant, leading to longer settling times in the absence of adequate control
structures, which may affect power plant performance. Retrofitted coal
power plants exhibit the same transient behaviour and the integration
with the capture plant acts as steam storage that can be rapidly adjusted
to meet peak power demands through the manipulation of the extrac-
tion valve (Wellner et al., 2016). Mac Dowell and Shah (2013, 2015),
and Mechleri et al. (2017a,b) also developed integrated systems of coal-
fired power plants with post-combustion capture plants to study the
economic performance during flexible operation accounting for varia-
tions in the electricity market, although the dynamic interaction was
not studied.

Commercial natural gas combined cycles integrated with full-scale
post-combustion capture plants show similar transient performance. He
and Ricardez-Sandoval (2016) and Montañés et al. (2017b) proved the
faster dynamics of the power plant compared to the capture plant,
which resulted in slow oscillations in the longer time-scales as a con-
sequence of the interaction between both plants. The analysis of
varying inputs in open-loop in the capture plant also showed the ben-
efits that may be obtained from close-loop control and simultaneous
scheduling of the power and CO2 capture plant (He and Ricardez-
Sandoval, 2016). Further, evaluation of several control structures in the
capture plant showed that different control couplings may lead to dis-
tinct long term dynamics in the low-pressure steam turbine. Never-
theless, the short-term transient behaviour of the natural gas combined
cycle is not affected as a result of the slow dynamic response of the post-
combustion capture plant (Montañés et al., 2017b).

These studies on the full-scale transient performance of integrated
systems showed that slow dynamic interactions between the thermal
power plant with the post-combustion CO2 capture plant do not affect
notably their power production capacity, albeit the stabilization time is
affected by the slow response of the capture plant. However, the dy-
namics of power generation are determined by the transient behaviour
of the steam cycle, that is, by the fast dynamics of the integrated system.
The decoupling of power generation capacity from the CCS process has
the potential to significantly enhance the economic efficiency and the
technical performance. Therefore, rapid dynamic disturbances must be
analysed in order to determine whether the CO2 capture plant limits the
electricity production capabilities of the thermal power plant.

The aim of this study is to investigate the extent to which fast dis-
turbances in the steam extraction affect the power generation capability
of the integrated system. Building on previous work, a thorough ana-
lysis of the dynamics governing the thermal power plant, the post-
combustion capture plant and the integrated system is included in
Section 2 to understand the physical mechanisms dictating their tran-
sient operation. Section 3 describes the modelling of the natural gas

combined cycle integrated with the post-combustion CO2 capture plant
and the special power generation characteristic of this type of power
generation systems. Results are presented and discussed in Section 4,
and the conclusions are presented in Section 5.

2. Dynamic analysis of thermal power plants integrated with CCS

Thermal power plants and post-combustion capture plants exhibit
distinct dynamic behaviour. This section identifies and evaluates the
process and dominant dynamics that significantly influence thermal
power plants integrated with post-combustion CO2 capture plants, in-
cluding passive elements that contribute to the dynamics but are not the
main source.

2.1. Thermal power plants

As post-combustion capture plants are a cost effective technology to
remove CO2 from large-emission sources, they are a suitable comple-
ment for heavy-duty natural gas combined cycles and coal- and bio-
mass-fired power plants (IPCC, 2005). Natural gas combined cycles rely
on gas turbines to control and produce most of the power and a steam
cycle that acts as a passive element, which utilizes the energy contained
in the exhaust gas to generate extra power. In contrast, power gen-
eration from solid fuels, namely coal and biomass, using subcritical and
supercritical power plant technology, produce electricity solely via the
steam cycle, which is driven by the combustion process in the furnace.

Fig. 1 shows the different operation range of each thermal power
plant. The minimum load of modern gas turbine is limited to 40% of its
full load owing to the combustion stability of the fuel and the associated
emissions (Alobaid et al., 2017; Eser et al., 2017). Therefore, since the
gas turbine accounts for a large share of the total power capacity of
natural gas combined cycles, this type of power plants cannot reduce its
power generation below this limit. Conversely, coal and biomass power
plants are not restricted by a gas turbine; and their minimum compliant
load is around 25% of their full load (Hentschel et al., 2016). This
broader operation range enhances the utilization of coal and biomass
power plants as spinning reserves.

A common characteristic of all thermal power plants is the heat
transfer in the steam generator between the combustion gases and the
working fluid of the Rankine cycle. In this equipment, the combustion
gases flow in a counter-current or cross-flow manner through several
tube bundles where energy is transferred progressively to produce the
superheated steam that drives the steam turbines. Steam generators are
bulky equipment whose enormous mass of metal stores large amounts
of energy due to its heat capacity. This leads to slow responses in the
steam cycle and hence the power generation in the steam turbines.
Thus, steam generators are the main limitation during the transient

Fig. 1. Generic dynamic behaviour of different thermal power plants of similar
size. Maximum and minimum loads and power generation shares depend on the
power plant design. The vertical line indicates the increasing load dynamic
behaviour. The nomenclature is as follows. GT: gas turbine, NGCC: natural gas
combined cycle, SC: steam cycle.
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operation of thermal power plants and consequently define their
dominant dynamics (Alobaid et al., 2017).

Two different time-scales dictate the dynamic operation of natural
gas combined cycles. Modern gas turbines are fast components that can
have load ramps up to 15% per minute and whose dominant dynamics
are in the order of seconds (Hentschel et al., 2016). Steam cycles are
limited by the heat capacitance of the steam generator and thus their
dominant dynamics are on the order of minutes. Fig. 1 represents the
general dynamic behaviour of a natural gas combined cycle. The gas
turbine drives the transient operation of the NGCC by changing its load,
whilst the steam cycle determines the time required to reach steady-
state (Kehlhofer et al., 2009). Nevertheless, natural gas combined cycles
are able to meet the power demand before the steam cycle reaches
steady-state by under- or over-shooting the gas turbine (Rúa et al.,
2020). This unique ability of the gas turbine compensates for the slow
transient performance of the steam cycle, enhancing the adequacy of
NGCC for flexible operation.

Coal and biomass power plants do not have a gas turbine to control
the power generation, thus governor valves are required at the inlet of
the steam turbine to guarantee tight power control during transient
operation. Fuel consumption is adjusted according to power demand to
regulate the part-load performance, but this strategy cannot be applied
in the time-scale of seconds owing to the heat capacitance of the steam
generator and the slow response of the steam cycle (see Fig. 1). Con-
sequently, the slow dynamics of the steam cycle dominate the transient
operation of coal and biomass power plants, making them slower than
modern NGCC and less suitable for flexible operation (Eser et al., 2017;
González-Salazar et al., 2017).

2.2. Post-combustion capture plants

Capture plants are passive systems whose operation is determined
by the conditions of the gas to be treated and the steam available for the
reboiler. From a dynamic operation perspective, the gas is a disturbance
to which the capture plant must adapt to, whereas the steam is con-
sidered a manipulated variable. The stripper condenser pressure is also
a boundary condition of the capture plant, however, this is considered
constant as it is rarely modified during dynamic operation.

In a post-combustion capture plant, the fastest units are the rotating
machinery (i.e., blowers, compressors and pumps), as they have almost
negligible dynamics with time constants in the order of a few seconds.
Thus, solvent flow rates stabilize within a few minutes, depending on
the size of the plant and the magnitude of the flow change (Flø et al.,
2016; Montañés et al., 2018). Heat exchangers and piping lead to
transport delays that do not affect the nature of the dynamics. Con-
versely, large vessels such as absorber and stripper sumps, reboiler
hotwells or buffer tanks introduce significant inertia, which buffers and
smooths the overall dynamic behaviour of the capture plant (Flø et al.,
2016). Liquid hold-up in the absorber and stripper also contributes to
this buffering effect, however, the effect on the solvent flow rate dy-
namics is small relative to that of sumps, storage tanks, etc. Therefore,
the dynamics of the post-combustion capture plant are not governed by
the mass balance but by the total volume of solvent, the volumetric
capacity of the plant, and the solvent circulation time.

Chemical and thermal equilibrium in the absorber and stripper
columns also affect the transient behaviour but has a minor influence
on the stabilization time of the capture plant (Flø et al., 2016; Tait et al.,
2016; Montañés et al., 2017a; Montañés et al., 2018). During open-loop
operation, changes in flue gas flow rate primarily impacts the absorp-
tion section, affecting the CO2 capture rate and shifting the temperature
profile as a result of the difference in released energy from the exo-
thermic chemical reactions (Kvamsdal and Rochelle, 2008; Bui et al.,
2016; Tait et al., 2016; Montañés et al., 2018). Both changes are
dominated by the chemical and thermal inertia within the absorber as
the stabilization times of the absorber temperature profile and CO2

capture rate are larger than the rise time of the flue gas flow rate

(Montañés et al., 2018).
For a given solvent flow rate, moderate changes to the exhaust gas

flow rate have a minor effect on the rich CO2 loading of the solvent
(Lawal et al., 2010; Flø et al., 2016; Bui et al., 2016, 2018b; Montañés
et al., 2017a; Montañés et al., 2018). However, sufficiently large var-
iations in the feed gas CO2 concentration or mass flow rate may lead to
more pronounced effects on rich solvent loading. Changes in flue gas
flow rate only affect the absorption section and the solvent loading, but
the effect of these changes on the overall stabilization time of the entire
capture plant is essentially negligible.

The steam flow rate to the reboiler is an important process para-
meter. Sufficiently large changes to the steam flow rate will vary the
temperature in the reboiler, and consequently the operating conditions
of the stripper column. Assuming the other process conditions remain
constant or are not adequately adapted, this would result in changes to
the lean CO2 loading exiting the stripper (Lawal et al., 2010;
Garðarsdóttir et al., 2015; Flø et al., 2016; Montañés et al., 2017a; Bui
et al., 2020). This change in lean loading affects the amount of CO2 the
solvent can absorb, which in turn influences the energy released during
the absorption reaction, the absorber column temperature profile and
the CO2 capture rate. These operation changes are expected to result in
different rich loadings, which will affect the stripper transient condi-
tions (Lawal et al., 2010; Flø et al., 2016; Bui et al., 2016; Montañés
et al., 2017a; Montañés et al., 2018).

Slow and long dynamics can limit the rate of transient behaviour
and increase solvent circulation time. There is a combination of factors
that contribute to slow dynamics, these include (i) total volume of
solvent stored or held-up in the capture plant, (ii) size of the vessels in
the system which impacts residence time, and (iii) transport delay in-
troduced by the heat exchangers and piping. There is also an observable
inter-column interaction between the stripper and absorber conditions.
In a plant with slow dynamics (e.g., owing to larger total liquid hold-
up), changes to the solvent flow rate lead to slow variation of the rich
and lean solvent loading. Thus, the slow interaction between the ab-
sorber and stripper columns due to the large liquid volumes (e.g., long
solvent circulation time or slow transient behaviour) is the main bot-
tleneck, slowing the response time during flexible operation of post-
combustion capture plants.

2.3. Thermal power plants integrated with post-combustion capture plants

Several process configurations to integrate the power and capture
plants have been studied (Botero et al., 2009; Lucquiaud et al., 2009;
Jordal et al., 2012; Jonshagen et al., 2012; Mac Dowell and Shah,
2014), with steam extraction from the crossover between the inter-
mediate- and low-pressure (IP-LP) steam turbines being the preferred
option (Lawal et al., 2012; Montañés et al., 2017b; Garðarsdóttir et al.,
2017). In this integration approach, the steam extracted from the steam
turbine may be mixed with low-pressure superheated steam in NGCC,
and temperature is controlled by evaporative spray cooling with pres-
surized water from the intermediate-pressure economizer (Montañés
et al., 2017b). In contrast, temperature control in coal or biomass power
plants is achieved by using feedwater downstream the condenser
(Fernandez et al., 2016; Garðarsdóttir et al., 2017).

Steam availability at the IP-LP crossover does not limit the dynamic
operation of integrated system. This is largely due to the steam re-
quirements of the CO2 capture plant being small compared to the large
amount of steam produced in the Rankine cycle of the thermal power
plant (Jordal et al., 2012; Rezazadeh et al., 2015). As a result, steam can
always be extracted by modifying the opening of the steam extraction
valve. This equipment can move from fully open to fully closed in
seconds and thus their dynamics are negligible compared to those
governing the thermal power plant and post-combustion capture plant.

System integration also includes the cooling and compression of the
exhaust gas leaving the heat recovery steam generator. From the per-
spective of dynamic operability, treatment of this flue gas is not a major
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concern due to the fast the dynamics of the blowers utilized to over-
come the absorber column pressure drop, and hence do not limit the
capture plant process dynamics. The direct contact cooler only in-
troduces time delays. Ideally, the equipment integrating the thermal
power plant with the post-combustion capture plant should not slow the
overall transient operation of the integrated system. However, this
coupling may lead to interactions between both plants that can affect
their dynamics.

As different time-scales govern the dynamic operation of thermal
power plants and post-combustion capture plants, system integration
must consider the distinctively different process dynamics. Whilst heat
capacitance in the steam generator limits the transient behaviour of
thermal power plants to an order of minutes, typically 10–20min for
power plants of several hundred MW, the large solvent volumes and
long circulation time in the CO2 capture plant may lead to stabilization
times in the order of hours (Lawal et al., 2012; Montañés et al., 2017b;
Garðarsdóttir et al., 2017).

The power demand defines the operation of the power plant and
hence the mass flow rate of the exhaust gas. Whereas changes in the
flue gas conditions do not affect the performance of the thermal power
plant, such changes are a disturbance for the capture plant, which must
adapt its operation to meet the CO2 capture targets. This may lead to
different steam extraction rates that also modify the operating condi-
tions in the power plant. If steam extraction variation occurs at a slow
dynamics scale, i.e., the time-scale defined by the capture plant, small
fluctuations and longer stabilization times are obtained in the power
generation of the low-pressure steam turbine (Lawal et al., 2012;
Garðarsdóttir et al., 2017; Montañés et al., 2017b). However, this type
of interaction between both plants is not critical as the thermal power
plants are faster than the slow-dynamic time-scales of the CO2 capture
plant. Furthermore, steam extraction does not significantly influence
the load of the power plant. On the contrary, steam extraction in the
fast dynamic time-scale occurs simultaneously with the change of
power plant load and may lead to dynamic interactions that compro-
mise the power generation capacity of the system. Therefore, it is im-
portant to address this possible issue by studying the dynamic inter-
action between the thermal power plant and the CCS system in the fast
dynamics time-scale, which are addressed in Sections 3 and 4.

3. Dynamic modelling

In this study, a physics-based model of a 615 MW NGCC integrated
with a 30wt% MEA-based post-combustion capture process was used to
study the dynamic interaction of NGCC integrated with absorption CO2

capture (Montañés et al., 2017b). Triple pressure steam cycles with
reheat are the most efficient and common configuration of modern
natural gas combined cycles (Alobaid et al., 2017; Kehlhofer et al.,
2009). GT PRO (Thermoflow, 2014) was utilized to design the natural
gas combined cycle as it provides detailed information about the geo-
metry of the plant. Full-physics dynamic modelling was carried out in
the Modelica-based (Modelica Association, 2019) software Dymola
(Dassault Systemes, 2016) using the specialized Thermal Power library
(Modelon, 2015).

Full-scale post-combustion capture plants are designed based on the
flue gas CO2 concentration and conditions (i.e., flow rate, temperature,
pressure), the required CO2 capture rate, the maximum pressure drops
in the absorber and stripper columns, column flooding limits and a
reasonable balance between capital and operational costs (Jordal et al.,
2012; Dutta et al., 2017). For the natural gas combined cycle con-
sidered in this work, a capture plant with two absorber columns in
parallel and one stripper for a nominal 90% CO2 capture rate was found
to meet these requirements (Montañés et al., 2017b). A dual absorber
process topology was selected due to the limits in column sizing and
construction (Dutta et al., 2017).

Integration of the power and capture plants was achieved by ex-
tracting steam from the crossover between the intermediate- and low-
pressure steam turbines (see Section 2.3). Thus, the low-pressure sec-
tion of the steam turbine was designed for nominal conditions where
steam is extracted to achieve a 90% capture rate. Fig. 2 represents the
layout of the natural gas combined cycle integrated with the post-
combustion capture plant. Details on the design data, performance in-
dicators, modelling assumptions and validation results are presented in
the work by Montañés et al. (2017b).

The design of the power plant steam cycle includes the extraction of
steam for the CO2 capture plant. Consequently, the power generation
distribution between the different turbines in this power plant differs
from modern NGCC without a capture plant. Fig. 3 represents the power
generation distribution at different gas turbine loads. The gas turbine

Fig. 2. Process diagram of the natural gas combined cycle
integrated with the post-combustion capture plant. The no-
menclature is as follows. E: economizer, B: boiler, S: super-
heater, R: reheater, P: pressure, L: low, I: intermediate, H:
high, FWC: feed-water cooling, RS: reheated steam, SS: su-
perheated steam, SE: steam extraction, DCC: direct contact
cooler.
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produces the majority of the power as in any combined cycle without
steam extraction, however, the contribution to the overall power gen-
eration of the low-pressure section of the steam turbine is halved due to
the steam extraction (Jordal et al., 2012; Rezazadeh et al., 2015).
Therefore, the contribution of the low pressure section in electricity
production and in the steam cycle diminishes as a result of the in-
tegration with the post-combustion capture system. The high- and

intermediate-pressure steam turbines contribute similarly as in NGCCs
without steam extraction. This leads to larger power generation from
the intermediate-pressure section because of the similar inlet tem-
perature owing to the reheating and its larger pressure ratio.

4. Results and discussion: dynamics of a NGCC with CO2 capture

The dynamics of the natural gas combined cycle occur in shorter
time scales compared to the overall transient operation of the in-
tegrated system. Thus, to study whether the steam extraction coupling
affects the power generation capacity in different dynamic operation
scenarios, the variations in the opening of the extraction valve must be
faster than the dominant dynamics of the thermal power plant (see
Section 2). A damping sine signal was hence superimposed on the ex-
traction valve opening to ensure fast dynamics in the interface between
the NGCC and the capture plant (Ljung, 1987). This signal was char-
acterized by an offset of 0.69 and an amplitude of 0.29, with a natural
and damping frequencies of 0.01 and 0.001 Hz, respectively. These
values ensure that variations in the steam extraction occur faster than
the dominant dynamics of the NGCC. Albeit highly oscillating valve
movements do not occur in practice during open loop operation (i.e., no
feedback control), these values generate a signal that provides sufficient
variation in steam extraction from the IP-LP crossover valve. This will
give insight into the transient effects of variations in steam extraction
on power generation.

Two different scenarios were considered to analyse the integration
effect on the power generation during both steady-state and transient
operation of the power plant. In the case where the NGCC is at steady-

Fig. 3. Power distribution of the natural gas combined cycle with CCS at dif-
ferent gas turbine loads.

Fig. 4. Variation in power generation in the natural gas combined cycle and the steam turbine sections (HP, IP and LP) due to the fluctuation in the steam extracted
from the IP-LP crossover at different gas turbine loads.
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state, the damping sine in the valve opening drives the dynamics of the
system. In contrast, when there is a load change in the power plant, the
dynamics are dictated by simultaneous changes occurring at the gas
turbine and the steam extraction. Varying gas turbine loads directly
affect power production. Secondly, steam cycle performance is influ-
enced by change in exhaust gas conditions (e.g., temperature and mass
flow rate), and variations in steam extraction.

As optimal operation of the integrated system is not the main ob-
jective of this work, the NGCC only had a regulatory control layer,
which regulates the steam temperature at the steam turbine inlet, levels
in drums and condenser, and the pressures in the deaerator and the low-
pressure drum. In the post-combustion capture plant, the levels in the
large vessels were exclusively controlled, fixing the solvent flow rate to
nominal conditions. Details of the implementation of this control
structure are included in the work by Montañés et al. (2017b).

4.1. Effect of steam extraction during steady state operation of the NGCC

In this study, a sinusoidal signal was imposed in the steam extrac-
tion valve during steady state operation of the NGCC to observe the
effect of disturbances in the interface of the integrated system. The
power generation distribution was analysed in the NGCC, whilst key
performance indicators of the capture plant such the carbon capture
ratio and the reboiler temperature were investigated.

4.1.1. Power generation performance
Several part-loads during steady state operation are considered in

order to cover a wide operational range of the NGCC integrated with
post-combustion CO2 capture. Fig. 4 represents the variation in me-
chanical power production in the NGCC and the different steam turbine
sections due to variation in steam extraction from the IP-LP crossover.
The opening of the steam extraction valve defines the mass flow rate of
working fluid available for expansion, which appears to have the
greatest impact on the low pressure section in Fig. 4d. The valve
opening also alters the intermediate and low pressure sections of the
steam cycle, leading to deviations in power generation by the inter-
mediate-pressure section of the steam turbine, albeit to a lesser extent
compared to the low-pressure counterpart.

The variation in power generation by the intermediate- and low-
pressure steam turbines has a negligible impact on the total power
produced by the NGCC. The reasons for this effect is the gas turbine
generates most of the total power and the average contribution from the
IP and LP steam turbine sections is 20% (see Fig. 3). Therefore, the
variations induced by the steam extraction valve in the NGCC power
generation during steady-state operation are negligible and can be ea-
sily compensated by the power controllers included in the gas turbine.
Fig. 4a demonstrates how the variation in steam extraction only creates
a small disturbances in the total power generation.

4.1.2. CO2 capture performance
Steam extraction dictates the steam flow rate to the reboiler of the

post-combustion capture plant, thereby influencing the CO2 capture
performance. Fig. 5 illustrates the effect of steam flow rate on reboiler
temperature, lean loading and CO2 capture rate. The steam flow rate
has an insignificant effect on the transient behaviour of the reboiler
temperature, where variation is less than 0.2 °C (shown in Fig. 5d).
Therefore, the operating conditions within the stripper column are re-
latively unaffected and the solvent lean loading (Fig. 5b) only deviates
slightly from its steady-state value. This results in almost constant CO2

capture ratios, defined as the ratio of CO2 product over CO2 in the feed
flue gas (see Fig. 5a).

Fig. 5 shows how the effect of large fluctuations in steam mass flow
rate (Fig. 5c) is dampened in the CO2 capture system (described in
Section 2.2). The dampening effect observed in these results are in line
with previous dynamic operation studies discussed in Section 2.2. As
steam flow rate fluctuates, the transfer of heat is limited by the heat

capacitance of the equipment and fluid. Consequently, the change in
reboiler temperature is dampened (Fig. 5d), that is, very little fluctua-
tion is observed. Hence, there is minor variation in the degree of solvent
regeneration, which leads to limited change in lean loading (Fig. 5b).
This contributes to the “smoothing” of the CO2 capture ratio trend
(Fig. 5a). Similarly, the volume of solvent hold-up in the plant (buffer/
storage tanks, column sumps) also has a role in buffering variations in
the system. Therefore, having large liquid vessels that limit the tran-
sient behaviour during slow disturbances are advantageous during fast
disturbances as they buffer the dynamics and prevent departure from
steady state set-points of the CO2 capture process. However, this only
occurs if the initial and final state of the disturbed variable are similar,
otherwise the time required to reach a new steady-state is dictated by
the large liquid hold-ups and the transport delays in the capture plant.

4.2. Effect of steam extraction during dynamic operation of the NGCC

In this case, the disturbance in the steam extraction valve was im-
posed simultaneously with a change of load in the gas turbine. The
same parameters, i.e., power generation distribution and key perfor-
mance indicators, were analysed in the NGCC and CO2 capture plant,
respectively.

4.2.1. Power generation performance
The damping sine signal in the steam extraction valve was im-

plemented during a gas turbine load change from 100% to 70%. This
demonstrates the effect of fast variations in the steam extraction during
transient operation of the NGCC. Fig. 6 represents the power generation
profile of the overall power plant and of each section of the steam
turbine. Fig. 7 shows key process variables of the CO2 capture plant
during the transient operation of the power plant with varying steam
extraction. Figs. 6 and 7 show performance with fast dynamic fluc-
tuations in the steam extraction valve (black line), and without fluc-
tuations (red line).

During transient operation, the change in gas turbine load dictates
power generation (Fig. 6a). This is because the oscillations generated by
the steam extraction valve have a negligible effect on power generation
in NGCC plants. This occurs regardless of the fluctuations in the IP and
LP steam turbines, represented in Fig. 6c and d respectively, due to the
low contribution of these units to the total power production (see
Fig. 3). As steam extraction does not have a notable effect on the total
power generation, the NGCC power plant may operate independently of
the capture plant without any penalty on its dynamic performance.

4.2.2. CO2 capture performance
The transient behaviour of the CO2 capture process is governed by

the variation in flue gas conditions due to changes in gas turbine load
and the steam flow rate fed to the reboiler, which depends on the steam
availability in the power plant and the opening of the steam extraction
valve. The gas turbine load determines steam availability for extraction
at the IP-LP crossover valve, and hence dictates the dynamic perfor-
mance of the reboiler and stripper. The scenario without fast dynamic
fluctuations in steam extraction is represented by the red line in Fig. 7,
whereas the behaviour with fast valve fluctuations is shown by the
black line.

For a given steam extraction valve opening, the decrease in steam
availability that arises from the change in gas turbine load results in less
steam extraction (Fig. 7c), which leads to more pronounced variations
in the reboiler temperature and lean loading. Unlike the fast dis-
turbances of imposed fluctuations in the opening of the steam extrac-
tion valve, the gas turbine load change disturbance is slower. There is
sufficient time for heat transfer from the steam to the reboiler fluid,
thus reboiler temperature follows the same trajectory as the steam flow
rate. Similarly, as the reboiler temperature dictates the degree of sol-
vent regeneration, lean loading has the same trend. The variation in
reboiler temperature and lean loading have an apparent effect on the
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CO2 capture ratio.
In contrast, fast dynamic fluctuations in the steam extraction do not

disrupt the transient behaviour of the plant as the main process vari-
ables follow the same trajectory as in the scenario without fluctuations
(red and black lines in Fig. 7). Thus, steam availability in the steam
cycle has a more pronounced effect on the dynamic response of the CO2

capture plant than the opening of the steam extraction valve.
Similar to the steady-state operation results, a smoothing effect of

the fast fluctuations in steam extraction was observed during dynamic
operation. Due to the fluctuations in the steam valve being so rapid,
which subsequently results in equally rapid steam flow rate fluctua-
tions, there is insufficient time for heat to transfer from the steam to the
reboiler fluid. Thus, the reboiler temperature, lean loading and CO2

capture rate are practically the same with and without steam valve
fluctuations.

5. Conclusions

There are essentially two ways to integrate post-combustion CO2

capture with thermal power plants. The first simply connects the ex-
haust gas with the capture process, and the energy required for solvent
regeneration is supplied externally. Whilst this does present the chal-
lenge of mitigating any emissions associated with providing that en-
ergy, it does entirely avoid imposing constraints on the operability of
the power plant – this form of CCS is an entirely “end of pipe” solution.
The second, more commonly discussed, option involves the extraction
of steam from between the intermediate and low pressure steam tur-
bines. This avoids the challenge of having to mitigate additional
emissions, but has led to concerns as to the effect this strategy might
have on the operability of the power plant, since these two plants

operate in two different transient time-scales. This work seeks to ad-
dress this challenge by analysing the effect of disturbances on power
generation capacity, specifically disturbances with faster dynamics than
the dominant dynamics of the power plant.

Transient power generation was assessed during steady-state and
dynamic operation of the power plant by modifying the valve opening
for steam extraction in the short time-scales defined by the power plant.
Since the gas turbine generates most of the total power, fluctuations in
the steam extraction valve have no impact on the power generation
capacity. In steady-state power plant operation, the total power gen-
eration remains unaltered with small fluctuations around the steady-
state value that are easily compensated for with small adjustments in
the gas turbine. During transient operation of the power plant, the
change of load in the gas turbine drives the dynamic behaviour of the
NGCC. Hence, disturbances in steam extraction can be regarded as
noise around the transient value dictated by the gas turbine load.

Different behaviour may be expected from power plants where the
steam cycle generates most of the power, e.g., coal-fired power plants.
Valve opening fluctuations in this type of power plants might lead to
larger variations in the total power generation since larger steam mass
flow rates are required in the steam turbine. Therefore, steam extrac-
tion from power plants dominated by the steam cycle performance has
greater influence on power generation, and may add value to the
flexible performance of NGCCs. However, this behaviour is yet to be
demonstrated by dynamic studies.

The transient behaviour of the capture plant was similar to the
power plant since its dynamics is dominated by the operating condi-
tions in the gas turbine and steam cycle. A change in gas turbine load
results in different flue gas flow rate and steam availability, thereby
influencing the performance of the capture plant. The varying steam

Fig. 5. Dynamic behaviour of key process variables in the post-combustion capture plant during steady-state operation of the natural gas combined cycle. Transient
operation is driven by opening variations of the steam extraction valve.
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extraction only leads to small fluctuations, with the trends following the
same trajectory as the profile of the scenario without valve opening
variations. These small fluctuations disturb the process and are
smoothed along the capture plant. This effect is demonstrated by the
disturbance starting as significant fluctuations in steam flow rate, which
dampen to become smaller fluctuations in reboiler temperature and
lean loading, then finally resulting in a smooth CO2 capture ratio pro-
file. The dampening effect is attributed to the heat capacitance of the
system and the buffering of the disturbance in the large liquid hold-ups.
Thus, the large vessels of the capture plant are advantageous for small,
fast variations as they buffer disturbances, avoiding departure from
steady-state conditions. This phenomena occurs at both steady and
dynamic operation of the NGCC.

These results highlight the benefits and disadvantages of having
large liquid hold-ups in the capture plant. Large storage vessels allow
the buffering of the fast variations in the process variables. However,
these vessels also lead to slow transients, increasing the time to reach a
new steady state to several hours, which will potentially limit the
flexibility of the capture plant. This suggests that the post-combustion
capture plants can be operated optimally and independently of the
power plant. Imposing tight controls on specific variables to minimize
the difference between a value and its set-point could limit the flex-
ibility of the integrated system. Instead, the capture plant should aim at
finding a new optimal operation point given the boundary conditions
imposed by the power plant. This is because any changes in steam ex-
traction to achieve optimal operating conditions would not affect power
plant performance, as shown in this work. Therefore, the dec-
arbonization of an NGCC via post-combustion CO2 capture does not

appear to impose any limitation on the flexibility or operability of the
underlying power plant in terms of power generation.

Therefore, one key research challenge is to develop control strate-
gies and operation protocols that enable optimal operation of the cap-
ture plant that is essentially independent from the operation of the
power plant rather than load following mode with fixed capture ratios
(Sahraei and Ricardez-Sandoval, 2014; Bankole et al., 2018; Decardi-
Nelson et al., 2018). This may lead to improvements in the financial
viability of the CCS project as steam extraction fluctuations have no
impact on power generation. The development of process control
structures designed for flexible operation and dynamic conditions will
be an important area of future research (Åkesson et al., 2012; Hauger
et al., 2019). Finally, the development of reliable start-up and shut-
down protocols for CCS-equipped power plants so as to avoid increasing
the carbon intensity of these assets is a priority.
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Publication II

Flexible natural gas combined cycles will play a fundamental role in future electric
markets. Stresses in thick-walled components and gas turbine load ramps are
arguably the main limiting factors during transient operation. Classical control
strategies as PID are not suitable to incorporate technical constraints such as
stress limits. This work presents a control methodology based on model predictive
control where the stress in the walls of the high pressure drum and the first
high pressure steam turbine rotor are computed simultaneously with the optimal
control sequence. Thus, the maximum allowable stress in this equipment can be
set as a constraint and the control actions imposed in the power plant ensure
that these limits are not exceeded. Two cases simulating flexible operation under
realistic conditions and tight constraints on the stress limits are included. Results
show that with the proposed control methodology the natural gas combined cycle
can respond to load step changes of 165 MW in 300 seconds, and can operate close
to the material’s maximum stress limit without exceeding it. The robustness
and flexibility of this methodology allows its application to different operation
conditions such as start-ups and shut-downs.
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H I G H L I G H T S

• Maximum gas turbine’s load gradient is the main limitation during load changes.

• Gas turbine under-shooting compensates the steam cycle’s slow transient.

• Proposed control methodology is able to predict stresses in thick-walled components.• Stress monitoring allows optimal and safe control sequences under tight constraints.• Suitability of the proposed methodology for start-up and shut-down applications.
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A B S T R A C T

Flexible natural gas combined cycles will play a fundamental role in future electric markets. Stresses in thick-
walled components and gas turbine load ramps are arguably the main limiting factors during transient operation.
Classical control strategies as PID are not suitable to incorporate technical constraints such as stress limits. This
work presents a control methodology based on model predictive control where the stress in the walls of the high
pressure drum and the first high pressure steam turbine rotor are computed simultaneously with the optimal
control sequence. Thus, the maximum allowable stress in this equipment can be set as a constraint and the
control actions imposed in the power plant ensure that these limits are not exceeded. Two cases simulating
flexible operation under realistic conditions and tight constraints on the stress limits are included. Results show
that with the proposed control methodology the natural gas combined cycle can respond to load step changes of
165 MW in 300 s, and can operate close to the material maximum stress limit without exceeding it. The ro-
bustness and flexibility of this methodology allows its application to different operation conditions such as start-
ups and shut-downs.

1. Introduction

Anthropogenic greenhouse emissions have continuously increased
since the industrial revolution. If this tendency is maintained, global
warming is expected to reach temperatures of 1.5 °C above pre-in-
dustrial levels between 2030 and 2050 [1]. Power generation is the
largest source of greenhouse gas emissions, mainly because of its re-
liance on fossil fuels [2]. Consequently, significant progress towards the
Paris Agreement objectives of limiting the temperature increase to 2 °C
above pre-industrial levels can be achieved in this sector if adequate
measures are taken.

Electricity is progressively gaining relevance in the energy sector. It
currently accounts for 20% of the final energy global consumption and

this amount is only expected to increase [3], reaching almost 40% in
2050 [4]. Therefore, the power generation system must undergone se-
vere modifications in order to be able to produce more electricity while
reducing its emissions. Renewable energy sources will play a major role
in this new energy scenario and will have large shares in the electricity
mix, predicted to reach about 40% of the power generation in 2040 [3].
Nevertheless, traditional thermal power plants will remain the largest
source of electricity production [3].

In this context of increasing power generation from renewable en-
ergy sources, flexibility is and will be the foundation of a reliable and
efficient electric system [3–8]. The lack of dispatchability of some re-
newable energy sources, mainly wind and solar, requires the existence
of power generation alternatives that always allow to meet the power
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demand [9]. Energy storage is considered as a promising technology
supporting decarbonisation [10], but its application in a growing
electricity market in the short- and mid-term is highly limited by its
cost-effectiveness, technology maturity and commercial availability at
large scale. Therefore, flexible operation of thermal power plants may
be arguably considered as the main complement for renewable elec-
tricity production.

In the future European energy market, high renewable penetration
will significantly increase the cycling operation of thermal power plants
[11]. Modern gas-fired power plants are faster, less polluting and more
efficient than coal-fired units at both full and minimum complaint load
[12]. Thus, and despite of their utilization as based-load units, coal
power plants will be less competitive because of the increase in both
coal prices and CO2 taxes, and due to their lack of flexibility and low
part-load efficiency. On the contrary, the high efficiency of natural gas
combined cycles at part-loads and their capability to face the fast cy-
cling of renewables will lead to an increase of their share in the future
European electricity market [11].

Operational flexibility in thermal power plants is normally assessed
by three criteria: mimimun complaint load, start-up time and maximum
load gradient [13]. The minimum complaint load of a natural gas
combined cycle depends mainly on the gas turbine, as stable combus-
tion and acceptable emissions limits must be guaranteed. Modern heavy
duty gas turbines may offer a minimum load of 40–50% of the full load,
but this level is expected to decrease to 30% [12,13]. In addition, if the
power plant is expected to operate for long periods at low loads, the
steam cycle design may be adapted to these conditions in order to in-
crease the overall efficiency at part-load [14]. Start-up time and load
gradients are influenced by the size of the equipment and the control

strategy imposed on the system. Bulk components with high heat ca-
pacity store large amounts of energy for long periods of time and hence
prolong the transient of thermal power plants, leading to slow start ups
and low ramp rates. Optimal design of flexible natural gas combined
cycles must address this limitation, leading to power cycles where both
high efficiency and fast response are achieved. Once the power plant is
designed, the implemented control determines its adequate dynamic
operation aiming at reducing the transient while ensuring safe and ef-
ficient operation.

Thermal stresses in thick-walled components are the primary lim-
iting factor in the combined cycle transient as they may reduce its ex-
pected lifetime due to creep and fatigue. Therefore, proper control
strategies may reduce the start-up time and increase the load gradient
without exceeding the safety limit of the materials. Traditional control
strategies in thermal power plants rely on PID controllers whose ob-
jective is fast system stabilization. Alobaid et al. [15] showed that start-
up times can be halved without lost of stability if the gas turbine load
gradient is increased and proper control of temperatures, pressures and
levels is imposed on the power plant. However, material stresses were
not assessed and hence it could not be verified whether this approach
can be implemented in a real unit. Kim et al. [16] analysed the thermal
stress development in the steam drum of a heat-recovery steam gen-
erator under three different start-up strategies. Results showed that the
selection of the wrong approach and bad operational control may lead
to excessive stresses that deteriorate the equipment. Can Gülen and Kim
analyzed the stresses in the rotor and high-pressure drum of a natural
gas combined cycle, showing the limitations they impose during the
start-up and how appropriate control routines are required to avoid
damaging this equipment [17]. Improvements in boiler’s start-ups can

Nomenclature

Latin Symbols

A System of equations matrix [–]
a Coefficients of the responses [–]
B System of equations vector [–]
b Coefficients of the manipulated variables [–]
C Specific heat capacity [J/kgK]
c Validity function centre [–]
d Optimization weight vector [–]
E Young’s Modulus [MPa]
e Stochastic error [–]
h Convection coefficient [W/m2K]
k Heat conduction coefficient [W/mK]
M Number of local models [–]
N Time horizon [–]
n Number of discretizations or variables [–]
p Pressure [bar]
Q Optimization weight matrix [–]
r Radius [m]
T Temperature deviation from design [K]
t Time [s]
U Manipulated variable [–]
u Displacement [m]
w Validity function width [–]
X System of equations solution vector [–]
y Response [–]
z Vector of optimization variables [–]

Greek Symbols

Thermal diffusivity [m2/s]
* Thermal expansion coefficient [1/K]

x Space discretization size [m]
Current operation point [–]
Current measurement vector [–]
Objective function weights [–]
Rotational speed [rad/s]
Density [kg/m3]
Stress [MPa]
Vector of coefficients [–]
Poisson’s ratio [–]
Validity function [–]

Subscripts

Tangential direction
0 Initial conditions
drum High-pressure drum
eq Equality
eql Linearised equivalent stress
i Inner radius
ineq Inequality
LMN Local model network
m Metal
o Outer radius
r Radial direction
rotor First-stage steam turbine rotor
U Past manipulated variables
y Past responses
z Longitudinal direction

Superscripts

high Higher bound
low Lower bound
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also be achieved with suitable temperature and mass flow control
[18–20].

Optimization of dynamic operation can further improve the tran-
sient performance of thermal power plants. In this approach, both start-
up and load gradient are treated as dynamic optimization problems
[21]. Heuristic rules may be included in this type of control strategies to
reduce the computational power required [22,23], but the strength of
numerical optimization is partially lost by introducing experience-
based constraints. Optimal start-up sequences that do not exceed the
stress limits of critical components can be computed with this approach
[24,25]. Casella and Petrolani [26] proposed two strategies to reduce
the start-up time or the maximum peak stress of a three-pressure
combined cycle with reheat. However, these strategies cannot be con-
sidered as optimal since no dynamic optimization was utilized. Optimal
load gradient profiles can also be computed, ensuring that power is
varied as fast as possible without violating the imposed constraints
[27].

Model predictive control (MPC) enhances the strong capabilities of
dynamic optimization. In this control methodology, a dynamic opti-
mization problem that computes the optimal control sequence over a
time horizon is solved at each control step. The first control action is
subsequently implemented in the power plant. Thus, optimal control
actions ensuring that the operational limits are not exceeded are always
imposed. Prasad et al. [28,29] and Peng et al. [30,31] implemented an
MPC algorithm to limit and control the superheated and reheated steam
temperatures and the steam pressure in thermal power plants, obtaining
faster behaviour of the system than with traditional PID controllers. A
similar approach was followed by Lu and Hogg [32], who utilized an
MPC to control the drum level, the steam pressure and the power
generated by a thermal power plant. Model predictive control was also
tested in industrial applications, leading to improvements over tradi-
tional approaches without exceeding the maximum allowable stresses
in critical components [33]. Sindareh-Esfahani et al. [34] utilized
model predictive control to improve the start-up of a power plant and
impose constraints that limit the deterioration of the equipment.
However, these constraints were imposed on the temperature gradients
in critical components and not on the stress in their walls, which is the
variable related to material deterioration and the actual limiting factor.
Therefore, sub-optimal load ramps may be expected from this metho-
dology.

As thermal and mechanical stresses in thick-walled equipment of
thermal power plants are the main responsible of creep and fatigue
[17,35–38], conservative control strategies are traditionally im-
plemented in these power plants. To overcome this limitation, the
stresses arising in sensitive components must be considered by the
control strategy. Traditional approaches such as PID controllers do not
allow to incorporate stress estimation and hence optimization-based
strategies are required to impose constraints on these variables. This
work proposes the first control methodology, based on MPC, that de-
termines the optimal load ramp rates in the gas turbine whilst computes
both mechanical and thermal stresses in critical components and im-
poses constraints on them at every control step. This control metho-
dology ensures that the fastest load changes are achieved without ex-
ceeding the maximum allowable stress in the material of the equipment
and the maximum load gradient in the gas turbine.

The different models used to develop the proposed control metho-
dology and to test its application in a thermal power plant are described
in Section 2. This includes the high-fidelity dynamic model of the NGCC
that replicates the operation of a real power plant, and the stress and
simplified models embedded in the optimization problem of the MPC
that predict, respectively, the stresses in critical equipment, and power
generation, temperatures and pressures in the power plant. Section 3
discusses the control problem in modern NGCCs, the proposed control
methodology that accounts for the stresses in thick-walled components,
and its mathematical formulation in the form of a quadratic program-
ming problem embedded in an MPC. The results of the tests carried out

using the proposed control methodology are presented in Section 4.
Conclusions are summarized in Section 5. Supplementary Material (SM)
with a thorough development of the stress and simplified models, and
their integration in the optimization problem in the MPC control
strategy is provided with this work for the sake of completeness and
reproducibility.

2. Power plant description and stress modelling

Several models of different complexity are utilized in this study. A
physics-based dynamic model of a NGCC was used to replicate the
operation of a modern thermal power plant. As this type of models
cannot be implemented in optimization problems due to their com-
plexity and long computational time, simplified models that predict the
future state of relevant thermodynamic variables in the NGCC were
developed to be included in the optimization problem of the MPC
strategy. To predict the thermal and mechanical stresses arising in the
high pressure steam drum and in the rotor disk in the first stage of the
high pressure steam turbine, physics-based models of these stresses
were also developed and included in the optimization problem of the
MPC strategy. This section describes these models and provides details
about the assumptions considered during their development.

2.1. Natural gas combined cycle dynamic model

Modern natural gas combined cycles are composed of a heavy-duty
gas turbine and a triple pressure steam cycle with reheating. In this
work, the model also includes steam extraction from the steam turbine
and the heat-recovery steam generator (HRSG). The power plant layout
is represented in Fig. 1. GT PRO [39] was used to design the NGCC as it
provides detailed information of the geometry of the equipment and the
materials needed for the dynamic model.

The dynamic full-physics model of the NGCC was developed with
the specialized Thermal Power library [40] in the software Dymola
[41], based on the Modelica language [42]. As the transient behaviour
of thermal power plants is highly dependent on the size of the equip-
ment, dimensions and geometry of the components designed in GT PRO
were imported to the dynamic model. Software to software validation
at both full and part-load between the Thermoflow and Dymola models
was performed. Results were in good agreement. Detailed description of
the design, dynamic modelling, and validation of the NGCC dynamic
model can be found in the work carried out by Montañés et al. [43].

2.2. Simplified models of the natural gas combined cycle

Model predictive control strategies require the periodic solution of a
dynamic optimization problem. The period of time between optimiza-
tions, i.e. the sampling time of the MPC, is determined by the dominant
dynamics of the system as they indicate when the majority of the
transient has occurred. Good control strategies should anticipate the
dominant dynamics and act frequently during this period of time. Step
responses in the manipulated variables of the MPC with only the drum
level controllers switched on showed that the dominant dynamics of the
system occur in 250–300 s. Therefore, in order to meet the dynamics of
the power plant and have enough time to carry out the dynamic opti-
mization, a sampling time of 30 s was selected. This sampling time
prevents the utilization of the dynamic full-physics model in the opti-
mization algorithm and thus simplified models were used instead.
System identification [44] was employed to develop a local network of
linear ARX models that encompasses the entire power plant operation
range [28,45].

System identification refers to the process of constructing dynamic
data-based models [44]. Data was obtained from simulations performed
in the full-physics dynamic model in Dymola. Closed-loop experiments
were carried out because of its superior effectiveness for several ap-
plications, specially for control [46,47]. Among the closed-loop
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experiment alternatives, a direct approach was followed [44,48]. In this
approach, excitation signals are superimposed in the set-points of the
controllers of interest, and measurements of the inputs and outputs are
collected. All inputs were imposed simultaneously as it leads to better
identification of dynamics than doing it individually [49,50]. Pseudo-
random binary signals (PRBS) and random Gaussian signals (RGS) were
tested as they are persistently exciting and cover properly the input
spectrum. Despite that PRBS signals are widely utilized due to their
optimum crest factor, RGS proved to lead to better identification.

From this set of data, a model structure was fitted by varying the
model parameters. Autoregressive models with exogeneous variable
and without noise integration (ARX models) were selected. The general
structure of an ARX model is:

+ + + =
+ + +

y t a y t a y t n
b U t b U t n e t

( ) ( 1) ( )
( 1) ( ) ( )

n y

n U

1

1

y

U (1)

where ny and nU represent the number of past outputs and inputs in-
cluded in the model, and e t( ) is a white-noise term that enters the
equation as a direct error in the difference equation. If e t( ) is considered
as the prediction error, the predictor is given in vector form by:

= =y t t t^ ( ) ( ) ( )T T (2)
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T

1 2 1y U
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ARX models are linear and cannot be used to predict the nonlinear
behaviour of NGCCs. Consequently, a local model network (LMN) was
used to capture and predict the high nonlinearities of the system. This
simplified model relies on the development of several local linear
models at different operating regimes and their interpolation according
to the operating conditions. Nonlinearities can hence be captured by a
set linear models with adequate interpolation. Fig. 2 represents the
general structure of a local model network with several local models.
This approach was firstly proposed by Johansen and Foss [45], and
Prasad et al. [28] proved its efficacy for capturing the nonlinear

dynamics of a thermal power plant.
Local ARX models were developed over the operating region of in-

terest of the NGCC. Defining such local regions is an heuristic proce-
dure. The gas turbine load was chosen as the main criterion. Thus,
linear models were utilized to predict the nonlinear behaviour around
the 100%, 90%, 80%, 70%, and 60% load of the gas turbine. Since the
transition among local regions is a smooth process, the local models
need to be interpolated accordingly in order to predict the overall plant
performance over its global operating region. Neighbouring local
models should contribute more to the solution than local models of
regimes far from the operating conditions. This is accomplished by

Fig. 2. Structure of a generic local model network.

Fig. 1. Process model of the natural gas combined cycle.The nomenclature in the HRSG is as follows. E: Economizer, B: Boiler, S: Superheater, R: Reheater P: Presure,
L: Low, I: Intermediate, H: High.
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associating a validity function to each local ARX model and combining
all the predicted responses in the final output:

=
=

y t f( ) ( ) ( )
k

M

i i
1 (3)

where M is the number of local models, f ( )i is the evaluation of the
each ARX model under the conditions defined by , is the local va-
lidity function associated to each ARX model, and is the parameter
defining the current operating point, which is the current GT load.

A Gaussian validity function was selected as interpolator of the local
models [45]:
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where ci and wi are, respectively, the centres and widths of the local
interpolation functions.

As recommended by Johansen and Foss [45] and Prasad et al. [28],
the local model and validity function parameters were computed by a
nonlinear optimization that aimed at minimizing the global predicting
error of the local model network. Local ARX models of second order
were considered suitable for predicting the temperature deviation at the
outlet of the superheater and reheater. The power plant net power ARX
model was selected to be of first order. Linear polynomials were defined
to obtain the saturation pressure and temperature in the high pressure
drum, and the pressure at the inlet of the steam turbine. Local model
and validity function parameters are included in the Supplementary
Material (SM).

Validation of the local model network was performed by testing its
prediction and interpolation capabilities in the intermediate load
ranges, i.e. at 95%, 85%, 75%, and 65% of the GT load. Random
Gaussian signals were also utilized to generate the validation data. For
the linear polynomials, ramp changes over the NGCC operation range
were employed. Table 1 summarizes the validation results based on the
R2 value. Despite the lower values of the model predicting the net
power generation of the power plant, the model is capable of predicting
the dynamics of the system with high accuracy. These results may be
observed in the Supplementary Material (SM) together with all the
graphical representation of the validation results.

Because of the linearity of the polynomials and the local models
integrating the LMN, this simplified model may be expressed as a linear
system of equations. Expanding these simplified models over time, an
overall system of equations representing the relation among the re-
sponses and manipulated variables in a finite time horizon is achieved.
Therefore, this system can be written as:

=A X bLMN LMN LMN (5)

where XLMN is the vector containing the different predicted responses,
y, and manipulated variables, U, in a time horizon. Matrix ALMN and
vector bLMN are defined in the Supplementary Material (SM).

2.3. Thermal and mechanical stress modelling

Thick-walled components are the most sensitive equipment in
NGCCs as large temperature differences that lead to thermal stresses
arise in the wall. In addition, mechanical stresses are present as these
components are exposed to the highest pressures of the power plant and
may be subjected to rotation. Adequate control of combined cycles must
hence ensure the operating conditions do not damage this critical
equipment. The high pressure drum and the high pressure steam tur-
bine rotor disk were the components considered in this work. Because
of their geometry, plane strain was assumed in the steam drum and
plane stress was considered in the rotor.

The temperature profile along the wall is required to compute the
thermal stresses. Temperature was assumed to vary in radial direction

and thus its distribution is obtained from the one-dimensional heat
equation in radial direction:

=
r r

r T
r

T
t

1 1
(6)

An implicit Crank-Nicolson discretization scheme was utilized to com-
pute the temperature distribution along the wall. Both drum and rotor
encounter different fluids and thermodynamic states in their inner and
outer surfaces. The high pressure drum is on contact with saturated
water and steam on the inner surface and with air in the outer, whereas
the high pressure turbine rotor is in contact with superheated steam on
the outer surface and the shaft at an unknown state on the inner wall.
Therefore, different boundary conditions must be imposed. The im-
plementation of the different boundary conditions is detailed in the
Supplementary Material (SM).

Thermal and mechanical stresses were modelled together following
a common approach for both plane stress and plane strain. Given the
constitutive equations that relate the stress with the strain and com-
bining them with the strain-displacement relations, the stress in each
direction can be expressed in terms of the displacement and the tem-
perature in radial direction [51]. Inserting these equations into the
radial equilibrium equation, an ordinary differential equation relating
the displacement with the temperature gradient and the centrifugal
force due to rotation is obtained [51]. Pressure enters in these equations
as boundary conditions in the radial stress equation. The systems of
equations for the cases of plane strain and plane stress are defined in
Eqs. (2) and (3), respectively.
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The stress components in the different directions are combined in an
scalar measure of the overall equivalent, or effective, stress. This

Table 1
Validation R2 results for the local network of ARX models and linear poly-
nomials.

Variable Symbol
GT Load

95% 85% 75% 65% Ramp

Net Power y1 61.77% 76.11% 74.97% 73.97% –
Superheated Steam

Temperature
y2 95.51% 98.40% 99.03% 99.14% –

Reheated Steam
Temperature

y3 93.18% 94.65% 90.37% 92.49% –

Turbine’s Steam Inlet
Pressure

y4 – – – – 86.16%

Drum’s Saturation
Temperature

y5 – – – – 85.22%

Drum’s Saturation
Pressure

y6 – – – – 86.62%
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parameter can be implemented as a constraint in the optimization
problem included in the MPC strategy. The von Mises equivalent stress
defined in Eq. (9) is used as this measure.

= + + + +( )r z r z z reff
2 2 2 2 (9)

Since the von Mises equivalent stress is a nonlinear equation and linear
MPC is the proposed control strategy, a linearisation of the von Mises
equivalent stress is used to integrate the equivalent stress in the linear
optimization algorithm:

= + + x( )eql
2

eql,0
2

eql,0
2 2O (10)

These stress equations are discretized with central finite differences and
combined with the temperature distribution expressions in a common
system of equations that allows to compute simultaneously the tem-
perature, the displacement, each of the stress components and the
linearised von Mises effective stress. Combining these system of equa-
tions over time, the evolution of these variables in both space and time
can be obtained from a larger system of equations:

=A X Bdrum|rotor drum|rotor drum|rotor (11)

where Xdrum|rotor is a vector containing the temperature difference from
the design point, the displacement and the stresses in the wall dis-
cretizations over time. Adrum|rotor and Bdrum|rotor are defined for both
components in the Supplementary Material (SM).

The temperature and stress models where implemented in MATLAB
[52] and validated in the specialized software ANSYS [53]. Structural
steel was assumed as the material to ensure well-known physical
properties in both models. A time discretization of 1 s was selected,
whereas 50 and 800 spatial discretizations were chosen for the rotor
and drum, respectively. Heating and cooling of both components was
implemented by steam temperature ramp changes in the boundary
conditions. A summary of the boundary conditions imposed during the
validation is presented in Table 2. Figs. 3 and 4 represent, respectively,
the drum and rotor validation results at six different radii.

3. Control methodology for optimal operation accounting for
stresses

Control of thermal power plants matches generated power to the
power demand from the electrical grid, and modifies adequately the
temperatures, pressures and mass flows to ensure a safe, stable and
efficient operation. This section presents the control problem en-
countered in modern NGCCs, describes the proposed methodology to
optimally control the power plant whilst monitoring the stresses in
critical equipment, and details its implementation as a quadratic opti-
mization program embedded in an MPC.

3.1. Control problem

Natural gas combined cycles are integrated by two thermodynamic
cycles characterized by different dynamics. Gas turbines are fast com-
ponents that can adapt their operation within seconds. In contrast,
steam bottoming cycles are slow units limited by the large heat capa-
citance of the heat-recovery steam generator, as it induces delays of
10–20 min with respect to the gas turbine operation [54,55]. Therefore,

power control in modern NGCCs is achieved by adjusting the gas tur-
bine load. The steam cycle follows the gas turbine operation acting as a
passive element that generates power with the steam available in the
HRSG.

The operation of the gas turbine is determined by the performance
map of its components. Automatic control is normally incorporated in
these units to ensure high turbine inlet and exhaust temperatures at
nominal and part-loads down to 40% [54]. This control is achieved by
adapting the variable guide vanes (VGV) of the compressor, which
modify the air flow rate. As gas turbines have almost negligible dy-
namics compared with those of the steam cycle and their operating
conditions may be defined by their load, a quasi-static model is utilized
in this work to represent the gas turbine. Exhaust gas mass flow and
temperature are hence determined by the load control assuming in-
mediate adjustment of fuel mass flow and VGV position. These are the
boundary conditions imposed on the steam cycle [13].

The operation of the steam cycle is based on sliding pressure. In this
operation strategy, the admission valves of the steam turbine are close
to fully open, allowing the pressure upstream of the steam turbine to
vary freely. This keeps the volume flow close to constant in the steam
turbine at part load, leading to evenly distributed pressure ratios that
reduce the temperature gradients within the turbine and to high isen-
tropic efficiency at different operating conditions [56]. Sliding pressure
operation may be applied until 50% load, after which throttling control
is required [54]. Therefore, for the power generation changes con-
sidered in this work, steam pressure control is not necessary. Control of
the steam bottoming cycle is hence reduced to inventory control of the
steam drums and condenser, pressure control of the low pressure drum
and the deaerator, and limiting the superheated and reheated steam
temperature. Furthermore, this work proposes the control of the
stresses developing in thick-walled components, as excessively fast load
changes may lead to stresses that can damage this equipment.

3.2. Control methodology

A regulatory control layer is utilized in the control strategy of the
natural gas combined cycle to stabilize its operation. This includes the
level control of the intermediate and high pressure drums and the
condenser, and the pressure control of the deaerator and the low
pressure drum. Three-element controllers are normally utilized to
control the drum level [54]. In this type of controller, the drum level,
the feedwater flow and the live-steam flow are processed with a PID
cascade structure that acts on the feedwater valves [43]. The low
pressure of the cycle is controlled with a PI controller that measures the
pressure in the deaerator and acts on the low pressure valve. A detailed
diagram of this control structure can be found in the work by Montañés
et al. [43].

Model predictive control is utilized to control the power generation
of the NGCC, the superheated and reheated steam temperatures, and
the maximum stresses arising in the considered components. Power
generation is controlled by modifying the gas turbine load, whilst two
attemperator valves are used to limit the superheated and reheated
steam temperatures. Stress control is achieved by limiting the ramp
changes of the gas turbine. This leads to slower changes in the steam
cycle, which result in smaller temperature gradients and slower

Table 2
Validation boundary conditions.

Component
Thermal Boundary Conditions Mechanical Boundary Conditions Rotation

Tinitial Ramp hi ho ri ro

Drum 340 [°C] ± 20 20000 [W/m K2 ] 0.065 [ °W/m C2 ] p = 150 [bar] p = 1 [bar] –
Rotor 590 [°C] ± 10 – 20000 [ °W/m C2 ] u = 0 [m] p = 140 [bar] 3000 [rpm]
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pressure variations in the high pressure drum and rotor. Therefore, the
effective stress in thick-walled components is reduced by limiting the
maximum load ramps of the gas turbine.

Linear quadratic control, i.e. an MPC strategy based on a quadratic
programming optimization problem, was selected because of its fast
computational time and convexity [57]. This type of optimization
problems guarantees that global minima are found if the weight ma-
trices are defined adequately [57]. The simplified models predicting the
performance and key thermodynamic variables in the NGCC are com-
bined with the physics-based stress models in a linear system of equa-
tions that enters the optimization problem as linear equality con-
straints. This methodology ensures that optimal control actions that
respect the stress constraints in specific equipment and the behaviour of
the NGCC are thus computed.

Since the gas turbine and steam cycle have different dynamics, an
extra linear MPC that only regulates the power of the gas turbine was
included. The sampling time of this control is 5 s as the gas turbine
dynamics are almost negligible. This control aims at complementing the
global MPC with more frequent power control and at narrowing the gap

between the demand and the production. With this overall control
strategy, the global MPC defines the control actions that stabilize the
NGCC every 30 s while the GT MPC adjusts the gas turbine load every 5
s. If the difference between the current stress in the critical components
and the maximum allowable effective stress is less than 15%, it is
considered that the steam cycle’s dynamics dominate the power plant
operation and hence the global MPC sets the control actions without
inputs from the GT MPC. This approach ensures that when there is not
enough margin between the current stress in the drum and rotor and
their limit, the global MPC accounts for the stresses that may arise,
whereas when the difference is large the GT MPC acts more frequently
to meet the power demand.

A schematic representation of the control strategy of the NGCC is
presented in Fig. 5. The physics-based NGCC dynamic model represents
the operation of an actual power plant with a regulatory control layer
already implemented. Measurements of key parameters, e.g. tempera-
tures, pressures and mass flow rates, are fed into both global and GT
MPC, where dynamic optimizations are carried out every 30 and 5 s.
The solution of these optimization problems are the optimal control

Fig. 4. Validation results for the rotor model.

Fig. 3. Validation results for the drum model.
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actions that must be imposed in the power plant. The novelty and
strength of the proposed control methodology lies in the global MPC, as
optimal control actions are computed simultaneously with the stresses
arising in critical equipment in an optimization framework. This en-
sures that the implementation of the computed control actions will not
lead to excessive stresses in the equipment of the actual NGCC.

3.3. Model predictive control formulation

The optimal quadratic programming (QP) control problem re-
presented by both global and GT linear MPCs is formulated as:

= +f z z Q z d zmin ( ) 1
2z

T
n (12a)

subject to

=A z Beq eq (12b)

A z Bineq ineq (12c)

z z zlow high (12d)

with

Q 0 (12e)

In the global MPC, vector z contains X X,LMN drum and Xrotor. It re-
presents the optimal sequence of responses, control inputs, and tem-
perature, displacement and stresses in both drum and rotor for several
space and time discretizations calculated over a time horizon N. These
variables are the dynamic optimization variables and are limited by
lower and upper bounds (Eq. (12d)), ensuring that the maximum al-
lowable stress in both drum and rotor is never exceeded. This optimi-
zation problem is subject to linear constrains (Eq. (12b)) that ensure the
simplified models (Eq. (5)) and the drum and rotor stress models (Eq.
(11)) are satisfied. In addition, linear inequality constraints (Eq. (12c))
are included in order to limit the load ramps in the gas turbine. The
degrees of freedom included in vector z are modified throughout the
optimization to minimize the objective function f z( ) in Eq. (12a). The
objective function considered in this work aims at minimizing the dif-
ference between the power generation and demand, and the deviation
of both superheated and reheated steam temperatures from their
nominal value. The description of these matrices and vectors is included
in the Supplementary Material (SM).

In the GT MPC, vector z includes the optimal sequence of net power
generation and gas turbine loads throughout the time horizon.
Therefore, the LMN for these two variables is the only equality con-
straint, and the maximum gas turbine load gradient is the only in-
equality constraint. Lower and upper bounds are also included for both

Fig. 5. Structure of the proposed control methodology accounting for stresses in critical components.
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variables. The detailed description of this GT MPC is also included in
the Supplementary Material (SM).

A diagram representing the logic of the MPC-based control metho-
dology for the NGCC is illustrated in Fig. 6. The full-physics dynamic

model developed in Dymola and the optimization algorithm in the MPC
developed in MATLAB were merged in Simulink through a Functional
Mock-up Unit (FMU). This FMU containing the detailed dynamic model
of the NGCC with the regulatory control layer represents an actual

NGCC Dymola FMU

Ẇnet, LoadGT

Sequence of opti-
mization variables

z = [ŷ1,U1]

Compute sequence
of predicted power
generation and gas
turbine loads with

the simplified models
over the time horizon.

Check if the con-
straints are violated:

Aeq z = Beq

Aineq z = Bineq

zlow ≤ z ≤ zhigh

Constraints violated?
Modify control

inputs and responses
Yes

Optimum sequence
of responses and
control inputs?

No

No

Select first op-
timal LoadGT

Yes

Demand

Ẇnet, TSH, TRH
pST, Tdrum, pdrum

LoadGT,
ValveSH, ValveRH

Sequence of optimiza-
tion variables z =

[XLMN , Xdrum, Xrotor]

Compute the estimated
responses with the
simplified models

and the temperarute,
displacement, and

stresses with the drum
and rotor models over

the time horizon.
Check if the con-

straints are violated:
Aeq z = Beq

Aineq z = Bineq

zlow ≤ z ≤ zhigh

Constraints violated?
Modify control

inputs and responses
Yes

Optimum sequence
of responses and
control inputs?

No

No

Select first control
input set [LoadGT,
ValveSH, ValveRH]

Yes

First optimum
drum and

rotor variables
[T, u, σr,θ,l,eql]

Yes

Fig. 6. Logic diagram of the MPC control strategy.

Table 3
Materials’ physical and mechanical properties.

Component Material [kg/m ]3 Cm [J/kg K] km [W/m K] [m /s]2 [1/K] E [MPa] [–] h [W/m K]o 2 h [W/m K]i 2 Yield stress [MPa]

Drum SA-515 Grade 70 7850 434 47 1.3796e-05 1.36e-5 178000 0.3 5000 0.065 190
Rotor X18CrMnMoNbVN12 7700 460 29 8.1875e-06 1.25e-5 127000 0.292 4000 – 69

Fig. 7. Net power generation of the natural gas combined cycle. Fig. 8. Load profile of the gas turbine with MPC optimization steps.
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NGCC, and provides the measurements of key parameters that are re-
quired in both MPCs to compute the optimal control actions.

4. Results and discussion

Load step change is a suitable scenario to test the control cap-
abilities of the methodology proposed in this work. A step change in the
power demand of 165 MW drives the transient operation of the natural
gas combined cycle. The main goal is to minimize the difference be-
tween the power demand and generation as fast as possible while sa-
tisfying the constraints of the system. Two cases are studied in order to
present the control capabilities of the proposed methodology. First, the
performance of the NGCC during the load ramp is analysed under
reasonable stress limitations that can be expected in current modern
power plants. Subsequently, the same dynamic behaviour is studied
under tight constraints on the allowable stress of the steam drum, as it
represents possible scenarios as start-ups. Table 3 includes the materials
considered in this work for the drum and rotor as well as their physical
and mechanical properties. The yield stress of the drum utilized in the
second analysis is 130 MPa instead of 190 MPa to guarantee that the
constraint is active.

The weights in the matrix and vector of the objective function in the
global MPC are = = =1, 10y y y1 2 3 , and = = = 2U U U1 2 3 (see
Supplementary Material (SM)). In the GT MPC, = 1y1 and = 0.1U1 . A
time horizon of 30 sampling times was considered to guarantee that the

system dynamics are captured, 200 and 50 spatial discretizations were
used in the drum and rotor walls respectively, and 3 time discretizations
per sampling time were utilized.

4.1. Optimal dynamic operation with realistic constraints

In this first case the transient performance of the NGCC is studied by
imposing constraints that may be expected in modern power plants.
This includes gas turbine load ramping rates up to 15% per minute, and
complex alloys for the rotor material capable of withstanding the high
temperature and pressure at the inlet of the steam turbine [58].

With these constraints imposed, the NGCC is able to meet the power
demand in 300 s (see Fig. 7). Since this time is half the stabilization
time of the steam cycle, it is clear that the gas turbine compensated the
slow response of the HRSG. This behaviour is represented in Fig. 8. The
gas turbine load is under-shot in order to compensate the slow transient
of the steam cycle and meet the power demand faster. As the steam
cycle reaches steady-state at part-load, the gas turbine increases pro-
gressively its load to keep the power generation constant. The GT stops
fluctuating after 600 s, which coincides with the stabilization time of
the steam cycle.

From a dynamic optimization perspective, the load of the gas tur-
bine is always dictated by the GT MPC, which finds a different and
smoother optimal trajectory than the global MPC as it is evaluated more
frequently. This is possible since the difference between the equivalent

Fig. 9. Estimated and exact equivalent stress in the drum at different radii.

Fig. 10. Estimated and exact equivalent stress in the rotor at different radii.

Fig. 11. Control of the superheat steam temperature.

Fig. 12. Control of the reheat steam temperature.
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stress in both drum and rotor and the maximum allowable stress is
always bigger than 15%. Figs. 9 and 10 show the stresses predicted by
the global MPC at each sampling time during the transient operation of
the NGCC.

The stress in both components was calculated with the exact profile
of temperatures and pressures from the dynamic high-fidelity model
and compared with the linearized equivalent stresses predicted during
the dynamic optimizations (see Figs. 9 and 10). Despite the predicted
stress overestimated slightly the equivalent stress in both components,
both in time and magnitude, it predicts adequately their tendency and
the largest value, ensuring that the components do not exceed the
maximum allowable limit. This discrepancy may be generated by the
utilization of simplified models and the lack of detailed wall tempera-
tures from the dynamic high-fidelity model. The simplified models
might over-predict the rate of change of the temperature and pressure
in both components, leading to faster dynamics than those encountered
in the detailed model. However, the the lack of detailed wall tem-
perature in the dynamic high-fidelity model may influence more the
difference between the predicted and exact stresses, as it prevents the
utilization of actual wall temperatures and forces the estimation of the
initial conditions along the wall at each optimization. Having detailed
data of the wall temperature every sampling time would smear out the
fluctuations of the stress predictions.

Superheat and reheat steam temperature profiles with PID con-
trollers in the attemperators were also calculated by imposing the gas
turbine load profile in the detailed dynamic model. The results are re-
presented in Figs. 11 and 12. Albeit being more aggressive, MPC out-
performs the PID temperature controllers as it is able to stabilize the
superheated and reheated steam temperatures faster and with smaller
deviations from their set-point.

During this transient response the inequality constraint limiting the
maximum gas turbine load gradient is always active for both MPC
controllers. Therefore, it is the gas turbine and not the stresses in thick-
walled components the main limitation for faster and more flexible
operation of natural gas combined-cycles during load changes. On the
contrary, during the start-up of the power plant, it is expected that the
stresses in these components are the limiting factor for faster operation.
Consequently, in order to prove that this control methodology is sui-
table also for start-up of natural gas combined cycles, the same scenario
is studied but ensuring that the maximum allowable stress is reached in
the steam drum. This was done by reducing the yield stress limit to
130 MPa.

4.2. Optimal dynamic operation with tight stress constraints

This case aims at showing the capabilities of the methodology

proposed in this work to control the power generation of the NGCC
under tight constraints imposed on the material of the equipment.
Fig. 13 shows the net power generation of the NGCC for these tight
constraints. As expected, the power plant requires more time to meet
the power demand since the stress limitation in the drum inhibits large
changes in the gas turbine load. Thus, and since the stabilization time is
longer than the 600 s required by the steam cycle, the stress in the high
pressure drum is the limiting factor during the transient operation of
the NGCC.

The slow transient response of the gas turbine is represented in
Fig. 14. In contrast with the previous case, the gas turbine load is dic-
tated by the global MPC, which leads in this case to a smoother gas
turbine control. As the margin between the maximum allowable stress
and the stress predicted by the global MPC is small, the GT MPC does
not influence the power plant operation.

From Fig. 15 can be observed that the constraint on the maximum
effective stress in the drum is active for a period of time during the
transient. This indicates that the MPC control strategy is able to ade-
quately predict the stress in the steam drum and obtain an optimal
control sequence that does not exceed the material allowable limits.
The comparison of the exact and the predicted effective stress in
Figs. 15 and 16 shows better agreement than in the previous case. This
is a result of the slower gas turbine load changes, leading to more
uniform conditions in the wall, which, in turn, make the predictions of
the initial conditions in the drum more accurate. This fact points out the
necessity of incorporating models to calculate the temperature profile
along the components wall in the dynamic high-fidelity models. As
occurred in the previous case, the abrupt step occurring in the effective
drum stress at the first instant after the step change in the power de-
mand may be originated by the simplified models, which over-estimate
the dynamic response of the pressure and temperature on the inner
surface of the drum.

5. Conclusions

This work proposes a control methodology based on linear MPC
with stress control. In the proposed methodology, the effective stress in
the high pressure drum and steam turbine inlet rotor are computed and
predicted together with relevant thermodynamic variables in specific
locations of the steam cycle in an optimization framework. Constraints
on the effective stress arising in critical equipment can be imposed with
this approach, which allows to compute optimal control actions that do
not exceed these material limitations.

Temperature and stress models for the wall of the drum and rotor
were developed and validated with finite element method software,
whilst simplified ARX and linear polynomial models were created to

Fig. 13. Net power generation of the natural gas combined cycle. Fig. 14. Load profile of the gas turbine with MPC optimization steps.
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predict key thermodynamic variables in the steam cycle such as tem-
peratures and pressures during the optimization. The stress and sim-
plified power plant models were embedded as linear equality con-
straints in the quadratic optimization algorithm within the MPC
strategy, which computes the optimal set of control actions and im-
plements them in the thermal power plant every sampling time.

Two cases that simulated load step changes of the NGCC were
presented. The first case imposed constraints equivalent to those en-
countered in modern combined cycles, whereas the second case dras-
tically reduced the maximum allowable stress in the steam drum. The
results showed the NGCC is able to reduce the load by 165 MW in 300 s
by under-shooting the GT load to compensate the slow transient be-
haviour of the steam cycle. In this case, the GT MPC defined the load
profile of the gas turbine because of the broad margin between the
effective and maximum allowable stress in the critical equipment.
When the stress limitations were tighter as in the second case, the
global MPC defined the gas turbine load profile as the maximum al-
lowable stress limited the ramping capabilities of the NGCC. These re-
sults demonstrate that the maximum gas turbine load gradient, and not
the stresses in critical components, is the main limitation of flexible
natural gas combined cycles during load changes. Therefore, improve-
ments towards enhanced flexibility of this type of thermal power plants
requires gas turbines capable of ramping up and down faster.

A comparison in these two cases between the exact and predicted
linearised equivalent stress in both drum and rotor showed a good
agreement of the results. Despite the simplified models may lead to
over-prediction in the initial stress dynamics, it is considered that the
discrepancy between predicted and exact effective stresses was origi-
nated by the lack of detailed wall temperatures from the dynamic high-
fidelity model and thus the need of estimating these initial optimization
conditions. Nevertheless, the exact stress never exceeded the stress
predicted by the MPC. Thus, the proposed methodology proved to be an
effective control strategy suitable to incorporate technical constraints as
stress limits in different components and with a faster response and less
overshooting in process variables than traditional feedback control
strategies.

This control methodology based on MPC with stress control can be
extended to other components such as pipes, headers, downcomers,
casings or combustors, if stress models for these components are
available. The main limitation is the computational time, as more
models add more optimization variables to the dynamic optimization
problem, which has to be solved within the sampling time spam.
Furthermore, the methodology can only handle linear or linearised
constraints and nonlinear stress models cannot be included. The
methodology proposed in this work could be extended to nonlinear
MPC. This is a research gap that must be considered for complicated

geometries that lead to nonlinear stress models.
The application of this methodology to start-ups and shut-downs of

thermal power plants to obtain optimal operating sequences is a pro-
mising future research step, as stress limitations dominate the time
required in this type of operation. Moreover, the flexibility of this
methodology allows to tune the objective function to explore different
control actions, include online model estimation to account for changes
in the power plant such as fouling, and easily include Kalman filters or
additional variables that may be needed during the start-up as, for in-
stance, bypass valves and steam mass flow and temperature prediction
models in different location of the steam cycle. This methodology could
also be combined with fatigue analysis in an economic MPC, where the
objective may be to find a trade-off between the damage in specific
equipment and the economic revenue from gas turbine ramps or start-
ups and shut-downs. Scheduling will be a relevant issue in future power
markets, and combining stress and fatigue analyses with power plant
control and damage studies can lead to economic benefits.
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Publication III

In future energy markets, traditional thermal power plants will have to cycle
more to adapt their operation to the intermittent power generation of renewable
energy sources. Gas turbine load ramps and stresses in thick-walled equipment are
arguably the main limitations in the flexible operation of natural gas combined cy-
cles. This work proposes a control strategy based on model predictive control with
stress monitoring to overcome both limitations and enhance the flexible operation
of thermal power plants. The linear and nonlinear formulation of the optimization
problem included in the model predictive control strategy are described, and two
different modelling approaches for the stresses in the high pressure drum and ro-
tor are presented. The results demonstrate that the proposed control strategy is
capable of computing optimal control sequences without exceeding the maximum
allowable stress in critical components and the ramp rates of the gas turbine.
The comparison between the linear and nonlinear formulation shows the superior
performance of linear model predictive control and suggests that the nonlinear
formulation should only be used when the stress models can not be expressed as
a linear system of equations.
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H I G H L I G H T S

• Maximum gas turbine load gradient is the main limitation during load changes

• Linear MPC shows superior performance than nonlinear MPC

• Possible to resort to nonlinear MPC when linear stress modelling is not feasible

• Proposed control methodology is able to predict stresses in thick-walled components

• Stress monitoring allows optimal and safe control sequences under tight constraints
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A B S T R A C T

In future energy markets, traditional thermal power plants are expected to cycle more to adapt their operation to
the intermittent power generation of renewable energy sources. Gas turbine load ramps and stresses in thick-
walled equipment of the steam cycle are arguably the main limitations in the flexible operation of natural gas
combined cycles. This work proposes a control strategy based on model predictive control with stress monitoring
to overcome both limitations and enhance the flexible operation of thermal power plants. The linear and non-
linear formulation of the problem included in the model predictive control strategy are described, and two
different modelling approaches for the stresses in the high pressure drum and steam turbine rotor are presented.
The results demonstrate that the proposed control strategy is capable of computing optimal control sequences
without exceeding the maximum allowable stress in critical components and the ramp rates of the gas turbine.
The comparison between the linear and nonlinear formulations shows the superior performance of linear model
predictive control and suggests that the nonlinear formulation should only be used when the stress models can
not be expressed as a linear system of equations.

1. Introduction

Atmospheric concentrations of greenhouse gases are increasing as a
result of the anthropogenic emissions since the industrial revolution
[1]. According to the Intergovernmental Panel on Climate Change
(IPCC), the temperature increase with respect to pre-industrial levels
must not exceed 1.5 °C to limit the consequences of global warming in
natural and human ecosystems [2]. Thus, a major reduction of green-
house emissions in all sectors is necessary to migate the effects of cli-
mate change [2].

The energy sector is the main contributor to the global CO2 emis-
sions owing to its reliance on fossil fuels [3]. Renewable energy sources

have increased their contribution in recent years in an effort to reduce
the greenhouse emissions in this sector [3]. In line with this trend, more
capacity will be installed with the objective of reaching 40% power
generation from renewable energy sources by 2050 [4]. Consequently,
thermal power plants will likely need to compensate the intermittency
of renewable power generation and partly balance the load in the grid
[5–9].

Flexible operation of thermal power plants will require enhanced
cycling capabilities and more frequent start-ups and shut-downs
[10–12]. Natural gas combined cycles (NGCC) offer the fastest opera-
tion with higher performance and lower emissions than traditional coal-
fired power plants [13]. Therefore, NGCCs are expected to increase
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their share in future energy markets [10].
Gas turbine load ramps and stresses in thick-walled components of

the steam cycle are arguably the main limitations during the dynamic
operation of NGCCs [14]. Fast load ramps may lead to combustion is-
sues in the gas turbine, whilst excessive stress levels generate creep and
fatigue in the walls of the equipment and reduce their expected op-
erational lifetime. The maximum gas turbine load ramps are de-
termined by the manufacturer and depend exclusively on the gas tur-
bine model. In contrast, the stresses arising on the walls of the power
plant equipment depend mainly on temperature gradients, inner and
outer pressures, and centrifugal forces. These stresses can be limited by
an adequate control strategy [15].

Monitoring the stress development on thick-walled components
(e.g. high pressure steam turbine rotor and high pressure drum) is
fundamental to enhance the flexible operation of thermal power plants
and ensure their integrity [16–20]. Kim et al. [16] and Taler et al.
[19,20] demonstrated how the adequate control of temperature and
mass flow rates can limit the stress in a steam drum, whereas Can Gülen
and Kim [18] showed the stress development in the high pressure drum
and rotor of a combined cycle during the start-up sequence, pointing
out the critical stresses that arise in this equipment. Alobaid et al. [17]
proved that the start-up time can be reduced with adequate control
strategies using PID controllers. As a result, larger temperature gra-
dients and pressure differences built up in the equipment, leading to
stresses that could damage these components. Stress monitoring was
recommended to ensure that the proposed control did not exceed the
limits of the material but was not included in their analysis.

Traditional PID control is not suitable for flexible operation of
thermal power plants with stress prediction and monitoring as it is not
possible to impose constraints on the controlled variables. Dynamic
optimisation is a more advanced control approach where the control
sequence is the result of an optimisation problem [21]. Therefore, the
stress development can be computed simultaneously with the control
actions where constraints may be imposed. As a result, optimal start-up
sequences and load gradients that do not exceed the stress limits can be
obtained with this approach [22–24].

Model predictive control (MPC) is a control methodology based on
the periodic solution of a dynamic problem and the update of the op-
timal control actions. MPC predicts the performance of the power plant
and selects the best control action based on the current state of the
system. This control strategy can adjust the operation of the power
plant to disturbances and demand changes by solving a dynamic opti-
misation problem periodically. In thermal power plants, MPC leads to
better temperature, pressure and level control than traditional PID
controllers or control strategies based on single dynamic problems
[25–29]. In addition, Sindareh et al. [30] demonstrated the MPC ca-
pacity to control the temperature gradient in the steam turbine rotor
and reduce its deterioration. However, the application of this control
strategy is limited since deterioration depends on the stresses and not
on the temperature gradient.

The first control methodology that included stress and load ramp
limitation in the MPC control strategy of an NGCC was proposed by Rúa
et al. [15]. Linear MPC was utilized for temperature control in the
power plant and limit the stresses in the high pressure drum and the

Nomenclature

Latin Symbols

A system of equations matrix –
a responses coefficients –
B system of equations vector–
b manipulated variables coefficients–
C specific heat capacity J/kgK
c nonlinear constraints–
cv validity function centre –
d QP optimization weight vector–
E Young’s Modulus MPa
e stochastic error –
f nonlinear objective function –
h convection coefficient W/m2K
k heat conduction coefficient W/mK
M number of local models –
N time horizon –
p pressure bar
Q QP optimization weight matrix–
r radius m
T temperature deviation from design K
t time s
U manipulated variable –
u displacement m
W mechanical power generation MW
w validity function width –
y predicted response –
y response –
z vector of optimiaztion variables –

Greek Symbols

thermal diffusivity m2/s
thermal expansion coefficient 1/K

current operation point –
current measurement vector –
objective function weights –
rotational speed rad/s
density kg/m3

stress MPa
Poisson’s ratio –
validity function –

Subscripts

tangential direction
nU number past manipulated variables
ny number past responses
0 initial conditions
dist displacement formulation
drum high-pressure drum
eff effective von Mises stress
effl linearised von Mises stress
eq equality
i inner radius
ineq inequality
int integral formulation
m metal
o outer radius
r radial direction
RH reheated steam
SH superheated steam
turb first-stage steam turbine rotor
wall wall of the equipment
z longitudinal direction

Superscripts

high higher bound
low lower bound
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high pressure steam turbine rotor. The results demonstrated that the
proposed methodology was capable of computing the optimal control
actions without exceeding the maximum allowable stresses.

This work complements and expands the previous work by pro-
posing a novel stress modelling for both high pressure drum and rotor,
and formulating the problem linearly and nonlinearly. Since thermal
power plants are highly integrated by equipment with complex and
different geometries, stress modelling may lead to nonlinear systems
where linearisation is not accurate. Therefore, linear MPC is not sui-
table and nonlinear formulations of the optimal control problem with
stress monitoring are necessary to ensure a safe yet efficient operation
of thermal power plants. The two formulations proposed in this study
ensure that this methodology can be applied to all control problems and
any stress model can be embedded in the control strategy. This en-
hances the applicability range of the proposed methodology, as stress
modelling of difficult geometries can be included in a nonlinear MPC
for their application in control. Section 2 describes the dynamic model
of the case study power plant, the simplified models implemented in the
MPC, and the stress models of the drum and rotor. The control strategy
and its mathematical formulation are described in Section 3. A com-
parison between the computational performance of the linear and
nonlinear MPC formulations is presented in Section 4 with a case study
that demonstrates the capability of the proposed control methodology
to limit the stress development in the NGCC. Section 5 summarizes the
main findings of this study.

2. Power plant and stress modelling

This work utilizes several models of different complexity to describe
the stress in the equipment, predict the power plant performance and
simulate the MPC application in a modern NGCC. This section describes
the dynamic high-fidelity model utilized to replicate the transient be-
haviour of a thermal power plant, the simplified models implemented
in the MPC to estimate the future thermodynamic state of the power
plant at specific locations, and the stress models that are also embedded
in the MPC optimisation problem to avoid that the limits of the mate-
rials are exceeded.

2.1. Natural gas combined cycle dynamic model

Natural gas combined cycles with triple pressure steam cycles and
reheating are the thermal power plants that offer the highest efficiency
with the lowest emissions [14,31]. A dynamic high-fidelity model of a
modern NGCC is utilized in this work to study the performance of the
proposed MPC methodology on this type of power plants and replicate
the behaviour of a real NGCC. Fig. 1 represents the configuration of the
NGCC considered in this work. The steady state design was carried out
in GT PRO [32] because it provides detailed information of the geo-
metry of the equipment that is necessary for the dynamic model, e.g.
the dimensions, materials and number of units of the different com-
ponents.

The dynamic high-fidelity model of the NGCC was constructed using
the Thermal Power library [33] in the software Dymola [34], which is
based on the Modelica language [35]. This dynamic model is based on
first principle equations for fluid flow, includes thermodynamic prop-
erties for the different fluids in the NGCC, and switches among different
pressure and heat transfer correlations depending on the fluid state.
Pump modelling is based on maps of performance from operation data,
whilst the steam turbine model is defined by Stodola cone law. Since
the gas turbine transient performance is orders of magnitude faster than
the steam cycle, a quasi-steady state model was used to provide the
mechanical power output, and the temperature and pressure of the
exhaust gas. Software to software validation at design and off-design
operation demonstrated the accuracy and reliability of the dynamic
NGCC model. A thorough description of the modelling approach and
validation of the NGCC model is presented in the work by Montañés
et al. [36].

2.2. Simplified models of the natural gas combined cycle

Good control strategies must be capable of anticipating the domi-
nant dynamics of the system to maintain a stable and efficient opera-
tion. Therefore, the dominant dynamics of the system dictate the fre-
quency of the control actions. For control strategies based on MPC,
computational speed is the main limitation. As model predictive control

Fig. 1. Process model of the natural gas combined cycle. The nomenclature in the HRSG is as follows. E: Economizer, B: Boiler, S: Superheater, R: Reheater P:
Pressure, L: Low, I: Intermediate, H: High.
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relies on the periodic solution of a dynamic optimisation, fast dominant
dynamics require fast online optimisation and control. The dominant
dynamics of modern NGCCs with 600MW power output occur ap-
proximately in 300 s. Thus, the control actions should be imposed every
15–30 s to anticipate and meet the transient operation of the power
plant. A sampling time of 30 s was found as a reasonable trade-off
between controllability and computational time for the dynamic opti-
misation. The dynamic high-fidelity model cannot be used in the MPC
strategy because it would lead to excessively high optimisation times
for online operation with current computational power, owing to its
complexity. Simplified models that predict the behaviour of key ther-
modynamic variables in the power plant must be used instead.

Autoregressive models with exogenous variables (ARX) are linear
data-based models that can predict the dynamic performance of a
system. These models are suitable for dynamic optimisation because of
their simplicity and accuracy within the training data range [37].
System identification was the approach followed to develop the ARX
models and combined them in a local model network that can predict
nonlinear behaviour with a set of linear local models [25,38].

The data to train and test the ARX models was obtained by super-
imposing random gaussian signals (RGS) in the controllers of the dy-
namic high-fidelity model in closed-loop [39–42]. Different sets of data
were generated for each operation regime and variable, and least
squares were used to fit the training data to the general ARX model
structure:

+ + + =
+ + +

y t a y t a y t n
b U t b U t n e t

( ) ( 1) ( )
( 1) ( ) ( )

n y

n U

1

1

y

U (1)

where ny and nU denote the order of the model, y represents the pre-
dicted variable, U are independent variables, and e t( ) is a white-noise
term that enters in the regression as prediction error.

The operation regime defines the prediction range of each linear
local model. Several local models are necessary to cover the operation
range of a variable in the high-fidelity model, which normally exhibits
nonlinear behaviour. A local model network combines the local models
and interpolates their prediction according to the operating point of the
NGCC. The interpolation is achieved by associating to each local model
a validity function, which weights the contribution of the local models
to the final output depending on the operating point. This approach
ensures that neighbouring local models contribute more to the final
output than local models for distant operation regimes [25,38]. Fig. 2
represents the structure of a generic local model network.

A Gaussian validity function was selected to interpolate the different
local models of each variable [38]:
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where cvi and wi are, respectively, the centres and widths of the local
Gaussian interpolation functions.

The final output of the local model network is a combination of all
local outputs:

=
=

y t y( ) ( ) ( )
i

M

i i
1 (3)

where M is the number of local models, y ( )i represents the outputs of
the local ARX models under the conditions defined by the inputs , is
the local validity function associated to each ARX model, and is the
parameter defining the current operating point.

In this work, the variable defining the operating point ( ) was the
gas turbine load and 5 equidistant local models in the range 100–60%
were defined for each of the predicted variables. The mechanical net
power generation of the NGCC, and the superheated and reheated
steam temperatures were the predicted variables using local model

networks. The parameters of the Gaussian validity function were se-
lected by a nonlinear optimisation [25,38]. A screening of different
model orders, ny and nU , defined the ARX model structure that better
predicted the testing data for 1 and 20 steps-ahead prediction (Fig. 3).

In addition, simplified models for the saturation temperature and
pressure in the steam drum and the inlet pressure in the steam turbine
were also developed. Linear polynomials as in Eq. (4) are suitable
models for these variables as they can be directly related to the gas
turbine load.

= +y t a b U t( ) ( 1)0 1 (4)

Table 1 summarizes the structure and main validation results of the
models implemented in the MPC strategy. From these results, accurate
predictions can be expected throughout the time horizon in the dy-
namic optimisation.

Fig. 2. Structure of a generic local model network.

Fig. 3. Screening of different orders for the simplified model of the superheated
steam temperature. One step-ahead prediction in the left and 20 step-ahead
prediction in the right.
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2.3. Stress modelling

Equipment with thick walls normally suffers the largest stresses in
the thermal power plant. The main causes of these stresses are the large
temperature gradients along the walls, the centrifugal forces due to
rotation, and the high pressures this equipment must withstand. The
high pressure drum and the rotor disk in the first stage of the high
pressure steam turbine are arguably the most sensitive equipment in an
NGCC [14,18]. Therefore, it is critical to ensure that the maximum
allowable stress in those components is not exceeded during transient
operation.

Thermal stresses depend on the temperature gradients along the
wall. Thus, the temperature distribution is necessary to compute the
thermal component of the stress in both drum and rotor. The tem-
perature was assumed to vary exclusively in radial direction, reducing
the modelling of the temperature distribution to the one-dimensional
heat equation:

=
r r

r T
r

T
t

1 1
(5)

where T refers to the temperature difference respect to the equipment
design temperature, r is a generic radius, and is the thermal diffusivity
of the material.

An implicit Crank-Nicolson scheme was used to discretize Eq. (5)
and compute the temperature distribution along the walls. Different
boundary conditions apply to the steam drum and rotor disk. The im-
plementation of these boundary conditions and the mathematical de-
velopment to express Eq. (5) as a linear system of equations are detailed
in the work by Rúa et al. [15].

Stress modelling in the rotor and drum assumes plane strain and
plane stress, respectively. These assumptions are valid because the
longitudinal length of the steam drum is notably larger than in the other
two directions, and negligible in the case of the rotor disk [43].

This work proposes and compares two different physical approaches
to model the thermal and mechanical stresses with the considered as-
sumptions. Both methods rely on the constitutive equations that relate
the stress and strain, the strain-displacement relations, and the radial
equilibrium equation. In addition, the mechanical stress due to the
centrifugal force originated by the rotation enters as a body force, and
the mechanical stress due to pressure appears as a boundary condition.
The first modelling approach combines these equations to express the
stress components in terms of the radial temperature distribution and the
displacement. These expressions and a thorough description of the pro-
cess to transform them in a linear system of equations can be found in the
work by Rúa et al. and the supplementary material included therein [15].

In the second modelling approach, the ordinary differential equa-
tion obtained for the displacement is solved analytically. Thus, the
displacement is not a computed variable and the stress components
only depend on the temperature distribution, the rotational speed and
the pressure. The stress components of the drum and rotor are defined
in Eqs. (6) and (7), respectively.
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Table 1
Structure and 20 step-ahead validation results of the simplified models.

Variable Model Order R20
2

Wnet LMN (1,1) 99.95%
TSH LMN (2,2) 76.97%
TRH LMN (2,2) 92.82%
Tdrum Polynomial 86.16%
pdrum Polynomial 85.22%
pturb Polynomial 86.62%

Table 2
Validation boundary conditions.

Component Thermal Boundary Conditions Mechanical Boundary Conditions Rotation

Tinitial Ramp hi ho ri ro

Drum 340 [°C] ± 20 20000 [W/m K2 ] 0.065 [ °W/m C2 ] p = 150 [bar] p = 1 [bar] –
Rotor 590 [°C] ± 10 - 20000 [ °W/m C2 ] u = 0 [m] p = 140 [bar] 3000 [rpm]
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Linear MPC requires that the models implemented in the dynamic op-
timisation problem are linear. Therefore, the trapezoidal rule was ap-
plied to Eqs. (6) and (7) so they can be expressed as a linear system of
equations.

The von Mises equivalent, or effective, stress defined in Eq. (8) is a
scalar measure of the overall effective stress, as it is combination of the
different stress components. Therefore, a constraint is imposed on the
von Mises equivalent stress in the optimisation problem to ensure that
the maximum effective stress is not exceeded. A linearisation of the von
Mises stress, defined in Eq. (9), is used in the linear MPC formulation.

= + + + +( )r z r z z reff
2 2 2 2 (8)

= + + x( )effl
2

effl,0
2

effl,0
2 2O (9)

Model validation of the two approaches considered in this work was
carried out with the specialized software ANSYS [44]. Table 2 sum-
marizes the boundary conditions imposed to the models during the
validation procedure. Structural steel was the material assumed for
both drum and rotor as it has well-known properties. A comparison
between the accuracy of both approaches is presented in Fig. 4.

3. Control methodology with stress monitoring

Natural gas combined cycles exhibit two different dominant dy-
namics. Gas turbines have negligible dynamics and can change their
operation point within a few seconds. In contrast, the large metal mass
of the heat recovery steam generator (HRSG) in the steam cycle limits
its transient operation. The heat capacity of this bulk component leads
to dominant dynamics between 10 and 20min, depending on the size of
the NGCC. Power generation is however not limited by the slow dy-
namics of the steam cycle as gas turbines can over- and under-shoot to
compensate its slow response, leading to tight power generation control
[15].

As power control relies mainly on the gas turbine, the steam cycle
normally operates in sliding pressure mode due to the higher efficiency
of this strategy [31,45]. This type of operation keeps the admission
valves of the steam turbine close to fully open to maintain the volume
flow constant whilst the pressure of the steam cycle can vary freely.
Throttling at the inlet of the steam turbine is hence avoided until about
50% load, where it becomes necessary for the HRSG operation [31].

The control of the steam cycle between 100% and 50% load reduces
to limiting the steam temperature at the inlet of the steam turbine, and

control of the fluid inventory and low pressure in the cycle. Both tra-
ditional PID controllers and more advanced MPC strategies can be used
to ensure the adequate operation of the steam cycle [27–29,46]. In this
work, inventory and low pressure control in the steam cycle was carried
out by PID controllers [36], whereas MPC was implemented to control
the power generation of the NGCC and limit the superheated and re-
heated steam temperature at the inlet of the steam turbine. Attem-
perator valves regulate the temperature of the steam at the inlet of the
steam turbine, and the gas turbine load controls the power generation
of the NGCC. In addition, stress monitoring and control was included in
the MPC strategy to ensure that the maximum allowable stress in the
high pressure drum and rotor disk were not exceeded during the tran-
sient operation of the NGCC. Stress levels close to the limit of the ma-
terial impose restrictions on the load change of the gas turbine and may
slow down the NGCC.

In some cases, stresses in different equipment might only be ex-
pressed as nonlinear models; whereas linear formulations are ex-
clusively used in other applications. Therefore, both linear and non-
linear formulations of the dynamic optimisation problem in the MPC
strategy are presented so any stress model can be implemented. This
expands the applicability range of the proposed control methodology to
any type of control problem with stress monitoring.

3.1. Linear MPC formulation

Linear MPC solves a dynamic quadratic programming (QP) problem
every sampling time. The mathematical formulation of this optimisa-
tion problem is:

= +f z z Q z d zmin ( ) 1
2z

T
n (10a)

subject to

=A z Beq eq (10b)

A z Bineq ineq (10c)

z z zlow high (10d)

with

Q 0 (10e)

Vector z represents the optimisation variables of the optimisation
problem. These are the manipulated variables defining the control

Fig. 4. Validation results of the stress models for the two proposed approaches. A refers to the results obtained in ANSYS, Dis refers to the modelling approach based
on computing the displacement, and Int to the approach based on applying the trapezoidal rule to the integrals in Eqs. (6) and (7).
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actions (U in Eqs. (1) and (4)), the responses y associated to them, and
the temperature distribution, stress components and linearised
equivalent stress in the wall of the drum and rotor disk. Eq. (10d) in-
cludes the lower and upper bounds of these optimisation variables,
including the maximum allowable stress that the material of the
equipment can withstand.

The simplified models and the stress linear system of equations
developed in Section 2 enter in the optimisation problem as linear
equality constraints in Eq. (10b). This ensures that the solution respects
the stress physics and the thermodynamic behaviour of the NGCC. Si-
milarly, the limitation in the maximum load ramp of the gas turbine is
implemented in Eq. (10c).

During the dynamic optimisation, the degrees of freedom, i.e. the
manipulated variables of the system, are continuously modified until a
set of optimisation variables z that minimizes the objective function
defined by Eq. (10a) is obtained. Minimizing the difference between
power generation and demand, and the deviation of the superheated
and reheated steam temperature from their set-points were the objec-
tives in this work. Q and d are a weight matrix and vector, respectively.
The description of the matrices and vectors in Eq. (10) with the stress
modelling approach including the displacement can be found in the
work by Rúa et al. [15].

3.2. Nonlinear MPC formulation

The nonlinear programming (NLP) problem used in the nonlinear
MPC strategy is mathematically formulated as:

f zmin ( )
z n (11a)

subject to

=c z( ) 0eq (11b)

c z( ) 0ineq (11c)

=A z Beq eq (11d)

A z Bineq ineq (11e)

z z zlow high (11f)

where z represents the vector of optimisation variables with lower
and upper bounds defined in Eq. (11f), ceq and cineq are, respectively,
nonlinear equality and inequality constraints, and Eqs. (11b) and (11c)
are their linear counterparts. The objective function f z( ) defined in Eq.
(11a) can be any linear or nonlinear function.

This mathematical formulation adds modelling flexibility as the
simplified and stress models can enter the dynamic optimisation in Eqs.
(11b) or (11d), and ensures that the physics of the system and the
stresses are always met regardless of the linearity of the models. Eqs.
(11c) and (11e) provide the same benefits with the inequality con-
straints.

The same simplified models and linear system of equations de-
scribing the stresses were implemented in the nonlinear optimisation
problem to compare the linear and nonlinear MPC formulation and the
two proposed approaches to model the stresses in the drum and rotor
disk. Therefore, the simplified models enter as a linear equality con-
straint in Eq. (11d) and the constraint in the gas turbine load ramp as a
linear inequality constraint in Eq. (11e). In the NLP problem, the von
Mises equivalent stress defined in Eq. (8) is used instead of the linear-
ized version defined in Eq. (9) and implemented in the QP problem.
This model represents a nonlinear constraint in the nonlinear dynamic
optimisation problem.

Albeit the only difference between the linear and nonlinear MPC
formulation is the utilization of a different equation to calculate the
equivalent von Mises stress, the optimisation problem changes notably.
In the QP optimisation problem, the linearized von Mises equivalent
stress is expressed together with the models of the temperature

distribution, displacement (if the first modelling approach is con-
sidered) and stress components in a linear system of equations. All these
variables are hence optimisation variables since this system of equa-
tions is implemented in the optimisation problem as a linear equality
constraint. In contrast, the only optimisation variable in the NLP pro-
blem is the von Mises equivalent stress. As the nonlinear inequality
constraint in Eqs. (11c) does not require an entire system of equations,
only the variables of interest may be defined as optimisation variables.

Therefore, the QP optimisation problem in the linear MPC for-
mulation has more optimisation variables than the NLP problem.
However, checking whether the nonlinear constraints are satisfied re-
quires more evaluations of the stress models than in the QP problem.
Section 4 illustrates which of these two optimisation problems, and thus
MPC formulations, leads to better computational performance.

4. Results and discussion

Linear and nonlinear MPC with stress control differ on the number
of optimisation variables and how evaluate the stress models. The
computational performance of the QP and NLP optimisation problems is
crucial for the utilization of MPC as control strategy due to the limited
time to carry out the dynamic online optimisation. Thus, the compu-
tational time required by both formulations with the two stress mod-
elling approaches proposed in this work was compared for a single
optimisation.

The proposed control methodology was also tested in a case study
where tight limitations on the maximum allowable stress in the drum
were included. This reduced the operational margin of the NGCC and
forced the MPC controller to adequate the control actions imposed on
the manipulated variables. These scenarios are specially relevant in
power markets dominated by the large deployment of renewable energy
sources, where thermal power plants will most likely balance the grid,
leading to more frequent start-ups, shut-downs and faster load ramps
that will narrow the operational limits.

4.1. Computational time analysis

A dynamic optimisation with the simplified models defined in
Section 2 and a time horizon of 30 sampling times was the test case
used to compare the computational time of the QP and NLP optimisa-
tion problem. In addition, the stress models defined with the two pro-
posed approaches were included in order to compare their effect on the
computational cost. Table 3 summarizes the computational time for
each formulation and stress modelling approach relative to the fastest
optimisation.

Quadratic programming shows superior computational performance
independently of the stress modelling that is implemented. This de-
monstrates that, albeit having less optimisation variables, the evalua-
tion of the objective function gradients and the stress models as non-
linear constraints suppose big penalties on the computational cost that
lead to longer computational times. The gradients of the objective
function in the QP optimisation problem are computed analytically,
whilst in the NLP case the gradients are calculated numerically by finite
differences. This leads to an increase of performance of the linear for-
mulation. As a result, linear MPC can carry out more optimisations in a

Table 3
Relative computational time for the both MPC formulations and stress model-
ling approaches. Disp refers to the stress model based on the displacement
calculation and Int to the integral stress model.

Formulation Linear Nonlinear

Stress Model Disp Int Disp Int

Relative Time 1.88 1 41.02 27.19
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given period of time, which allows to increase the time horizon during
the optimisation, reduce the sampling time, or include more models in
the constraints of the QP problem. These modifications would result in
tighter and more frequent control actions that would improve perfor-
mance of the power plant, and could expand the stress monitoring to
other components that can also be critical in scenarios such start-ups
and shut-downs.

The stress modelling approach does not have a strong effect on the
computational time. The model based on the integral definitions of the
stress components leads to slightly faster results than those obtained
from the model additionally computing the displacement. This beha-
viour may be explained by the reduction of optimisation variables in
the integral-based approach as the displacement is not computed.
However, this approach leads to denser matrices in the linear system of
equations than those obtained with the displacement-based approach,
which are more sparse. The number of spatial discretizations along the
wall of the components is also different for each of these two modelling
approaches. Since the matrices obtained from the integral stress equa-
tions are denser due to the extra analytical development integrating the
ordinary differential equations, they have more information and hence
less spatial discretizations are needed. In contrast, the sparsity of the
matrices obtained from the displacement-based models require more
discretizations to capture the physics on the wall of the drum and rotor.
Therefore, the computational time of the dynamic optimisation is af-
fected by the number of spatial discrezations. Because of their similar
accuracy (see Fig. 4), the relative small difference in computational
time, and the difference in space discretizations needed by each model,
both stress modelling approaches are suitable for utilization in MPC
strategies.

4.2. Flexible operation with stress limitation

A load step change of 25% was the selected scenario to test the
control methodology proposed in this work. This simulates a reduction
in the power demand of 165MW that the NGCC needs to compensate by
decreasing its power generation as fast as possible without exceeding
the maximum allowable stress in the steam drum and rotor disk, and
limiting the maximum temperature at the inlet of the steam turbine.

These operational limitations were implemented in the optimisation
problem of the MPC strategy as the objective function and constraints
(see Section 3). The weights in the matrix Q and vector d of the ob-
jective function used in this simulation were = 1y1 for the power
generation, and = = 10y y2 3 for the temperature deviations from the
set-point. The penalties in the manipulated variables, i.e. gas turbine
load and attemperator valves, were = = = 2U U U1 2 3 . The time hor-
izon was 30 to guarantee that the system dynamics were captured, and
a sampling time of 30 ensured that the control actions were im-
plemented with enough frequency to anticipate the dominant dynamics
of the system. For the stress models of the high pressure drum and rotor
disk, 200 and 50 spatial discretizations were selected, respectively,
whilst 3 time discretizations per sampling time were used.

Table 4 summarizes the physical and mechanical properties con-
sidered for the drum and rotor disk [47]. Since the maximum allowable
stress presented in Table 4 was not reached with a realistic value during
the considered scenario, a reduced value of the yield stress of 125MPa
was used to demonstrate the capability of the control methodology to

predict the stress and adapt the operation of the power plant. Both si-
mulations limited the maximum gas turbine load ramp to 15% per
minute. Table 5 includes the lower and upper bounds of the optimisa-
tion variables.

Stress constraints may notably affect the operation of thermal power
plants. Fig. 5 shows how the maximum allowable stress in the high
pressure steam drum slows down the reduction in mechanical power
generation. Lower limits in the equivalent stress of the equipment re-
duce the operating region of the NGCC. The MPC strategy is still able to
compute optimal control sequences but the power ramp down is slower
than in the case with looser constraints. Fig. 6 presents the two optimal
load profiles of the gas turbine that the MPC computed for the two
scenarios with different stress limits on the steam drum. Albeit the gas
turbine load varies identically in the first seconds, the stress develop-
ment due to the transient operation of the NGCC forces the MPC
strategy to reduce the rate of change of the gas turbine load and hence
the reduction of power generation.

The stress in three equidistant radii of the wall of the steam drum
and rotor disk during the change of operation of the NGCC is re-
presented in Figs. 7 and 8, respectively. Lower stress limits change the
stress development profiles in the wall of this equipment because of the
different transient operation determined by the MPC strategy. Fig. 7
illustrates how the dynamic optimisation problem in the MPC strategy
reaches the maximum allowable stress constraint in the drum, which is
active during 300–400 s, thus inhibiting larger changes in the gas tur-
bine load and slowing the transient operation of the NGCC. The stress
profile where the maximum allowable stress is 190MPa (black lines)
demonstrates that higher limits on the material allow larger stress de-
velopments and enhance the flexible operation of the NGCC. Therefore,
the power plant can ramp down faster and meet the power demand in
less than 300 s by under-shooting the gas turbine to compensate the
slowness of the steam cycle.

Both the stress estimated during the optimisation in the MPC
strategy and the exact stress computed with the true temperature and
pressure profiles are compared in Figs. 7 and 8. The stress prediction
during the dynamic optimisation captures the tendency of the stress
development, as the different between the true stress and this predic-
tion is small. However, the stress models over-predict the effective
stress when the transient operation starts, specially in the steam drum.
This behaviour may be explained by the lack of detailed data of the
temperature distribution in the high-fidelity NGCC model, which forces
the MPC controller to estimate the initial temperature along the walls of
the equipment and provide this information to the dynamic optimisa-
tion problem. Stress prediction during the control of the NGCC opera-
tion would improve if the actual temperature distribution was provided
by the detailed dynamic model of the NGCC.

Temperature control is also affected by the limitations imposed by
the maximum allowable stress. Figs. 9 and 10 show the different tem-
perature profiles obtained during the two test cases. Tighter stress limits
lead to slower ramps in the gas turbine and more progressive changes in
the steam cycle. Slower temperature variations are thus observed in the
superheated and reheated steam. Consequently, tighter limits on the
effective stress in the equipment of the NGCC ease the temperature
control. Nevertheless, the proposed MPC strategy can rapidly limit the
steam temperature variation without exceeding the temperature lim-
itations in both test cases.

Table 4
Physical and mechanical properties of the materials considered for the drum and rotor disk.

Component Material [kg/m3] Cm [J/kg K] km [W/m K] [m2/s] [1/K] E [MPa] [ ] ho [W/m2 K] hi [W/m2 K] Yield stress [MPa]

Drum SA-515 Grade 70 7850 434 47 1.3796e−05 1.36e−5 178000 0.3 5000 0.065 190
Rotor X18CrMnMoNbVN12 7700 460 29 8.1875e−06 1.25e−5 127000 0.292 4000 – 69
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5. Conclusions

Thermal power plants will need to ramp faster and more frequently
to balance the intermittent power generation from renewable energy
sources in the future energy sector. Gas turbine load ramps and thermal
stresses limit the power generation rate. This work addresses both
limitations by proposing a control strategy based on model predictive
control with stress monitoring.

Two modelling approaches for the stresses in the walls of the high
pressure steam drum and the rotor disk of the first stage of the steam

turbine were proposed. Furthermore, both linear and nonlinear MPC
formulations were described to cover all possible control problems and
modelling approaches of the stresses in different equipment. Local
model networks of simplified models were also developed to predict
specific thermodynamic variables of the NGCC during the dynamic
optimisation.

A comparison of the computational cost of the linear and nonlinear
dynamic optimisation problems proved the superior performance of the
linear MPC formulation. Nonlinear MPC requires more evaluations of

Table 5
Lower and upper bounds of the optimisation variables.

LMN Drum Rotor

Lower Variable Upper Lower Variable Upper Lower Variable Upper

400 W 615.867 − Twall − Twall

−10 TSH 15 −0.001 u 0.001 −0.001 u 0.001
−10 TRH 15 − r − r
− pturb − −
− Tdrum − z 0 eql 69
− pdrum 0 eql 190/125
60 U1 100

−0.01655 U2 0.97345
−0.06882 U3 0.92188

Fig. 5. Mechanical power generation with different stress constraints in the
drum.

Fig. 6. Gas turbine load profile with different stress constraints in the drum.

Fig. 7. Equivalent stress in the high pressure steam drum along three equidi-
stant radii.

Fig. 8. Equivalent stress in the high pressure rotor disk along three equidistant
radii.
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the stress models than the linear formulation to compute numerically
the gradients of the optimisation problem by finite differences, leading
to longer computational times despite having less optimisation vari-
ables. Thus, linear MPC is more advantageous when is possible to em-
ploy linear models to predict the thermodynamic variables of the NGCC
and the stress development in the walls of the selected equipment. It is
possible to resort to nonlinear MPC when modelling of the stresses or
simplified models cannot be carried out with linear formulations.

The two proposed modelling approaches to estimate the equivalent
stress in the walls of the steam drum and rotor disk proved similar
accuracy during their validation. Both stress models led to similar
computational times during the dynamic optimisation. The difference
showed in Table 3 is originated by the different spatial discretizations.
Since these two modelling approaches lead to linear system of equa-
tions with different sparsity in the matrices, different spatial dis-
cretizations are required. However, both models result in similar
computational time for equivalent accuracy, pointing out that the dis-
tinguishing factor is the linearity of the optimisation problem.

To test the controlling capability of the proposed MPC methodology,
two test cases with different maximum allowable stresses in the steam
drum were studied. The stress limit in the first case assumed maximum
stresses according to the utilization of modern alloys, whilst the second
test case imposed tight limits on the maximum stress to ensure that this
limit was reached. The MPC strategy with stress monitoring was able to
compute the optimal control actions without exceeding the imposed

constraints. The gas turbine ramp rate limited the operation in the first
case as the stress limits were not reached. In the second test, the con-
straint on the effective stress was active during a period of time. These
two studies demonstrate the suitability of the proposed MPC strategy to
optimally control flexible NGCC with stress monitoring.

Low stress limits reduce the power generation flexibility of the
NGCC. When the maximum allowable stress was reached, the control
strategy decreased the gas turbine load ramps to ensure that larger
temperature gradients did not arise. As a result, the load change re-
quired more time compared to the test case where stress limits for
modern alloys were considered.

Temperature control was also accomplished with the MPC metho-
dology, limiting the maximum temperature variation to below 5 °C.
Lower stress limits eased the control of the superheated and reheated
steam temperature. Since lower maximum allowable stress constraints
lead to slower ramp rates, the temperature fluctuation in the steam was
reduced.

This work proposes a optimal control methodology with both linear
and nonlinear formulations for control of flexible thermal power plants
with stress monitoring. Overall, this study demonstrates that (1) MPC is
an adequate control strategy to include stress monitoring; (2) both
linear and nonlinear formulations can limit the maximum effective
stress in different components, and thus the proposed methodology can
be applied to any geometry (e.g. turbine blades and rotor, steam turbine
casings, piping, headers) and power system; and (3) the linear for-
mulation shows superior computational performance and should be
preferred over the nonlinear case if linear stress models are available.
Furthermore, the proposed MPC methodology with stress monitoring
can be applied to start-ups and shut-downs, as these are procedures
where large stresses arise owing to the large temperature gradients.
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Publication IV

Renewable energy sources have been the focal point to decarbonise the power sec-
tor. The large deployment of these intermittent power generation units requires
mechanisms to balance the grid. Thermal power plants can provide this service
by increasing the number of start-ups, shut-downs, and intraday ramps at the ex-
pense of higher deterioration in critical equipment, including high-pressure steam
drums, turbine rotors and blades, and high-temperature heat exchangers and
pipes. This work proposes a method to formulate the power generation schedul-
ing of thermal power plants as a stochastic optimisation problem with limitations
on the maximum damage in critical components. This method models the uncer-
tainty associated with intermittent power generation from renewable sources with
a scenario-tree whilst computing the deterioration of the equipment in each sce-
nario to limit the maximum damage. Scheduling of a flexible natural gas combined
cycle demonstrated how this methodology can reduce the deterioration of the su-
perheating heat exchanger of the power plant with minimum detriment in power
generation and revenue. Furthermore, the effect of the design temperature of the
material on the total damage was analysed for a broad range of temperatures
and operating profiles, showing how adequate selection of design temperature can
reduce the deterioration of the equipment and enhance its lifetime.
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A B S T R A C T   

Renewable energy sources have been the focal point to decarbonise the power sector. The large deployment of 
these intermittent power generation units requires mechanisms to balance the grid. Thermal power plants can 
provide this service by increasing the number of start-ups, shut-downs, and intraday ramps at the expense of 
higher deterioration in critical equipment, including high-pressure steam drums, turbine rotors and blades, and 
high-temperature heat exchangers and pipes. This work proposes a method to formulate the power generation 
scheduling of thermal power plants as a stochastic optimisation problem with limitations on the maximum 
damage in critical components. This method models the uncertainty associated with intermittent power gener-
ation from renewable sources with a scenario-tree whilst computing the deterioration of the equipment in each 
scenario to limit the maximum damage. Scheduling of a flexible natural gas combined cycle demonstrated how 
this methodology can reduce the deterioration of the superheating heat exchanger of the power plant with 
minimum detriment in power generation and revenue. Furthermore, the effect of the design temperature of the 
material on the total damage was analysed for a broad range of temperatures and operating profiles, showing 
how adequate selection of design temperature can reduce the deterioration of the equipment and enhance its 
lifetime.   

1. Introduction 

The decarbonisation of the power sector is a fundamental measure to 
reduce global anthropogenic greenhouse gas emissions and mitigate 
climate change [1,2]. There exists a broad portfolio of technologies that 
can deliver low-carbon electricity whilst meeting the increasing power 
demand associated with the growing population and electrification of 
other economic sectors. Among the different available alternatives, 
renewable energy sources, mainly wind and solar, have concentrated 
most of the efforts to reduce CO2 emissions in this sector [2]. However, it 
is also recognised that the intermittent power generation nature of these 
renewable energy sources requires an heterogeneous and flexible power 
system to balance such variability and guarantee reliable, clean and 
efficient generation of electricity [3–5]. 

Thermal power plants, especially natural gas combined cycles 
(NGCCs), are expected to play a fundamental role in the future power 
sector since they can accommodate large power fluctuations in a short 
period of time [6,7]. These power plants are thus arguably considered as 
an important complement for intermittent renewable energy sources. 

Furthermore, if carbon capture and storage (CCS) is integrated with 
thermal power plants, low carbon electricity can be provided whilst 
balancing the power grid [8]. 

In a power system dominated by rapid and large deployment of 
renewable energy, thermal power plants will face more frequent start- 
ups and shut-downs, and faster ramping rates in order to balance the 
grid [6,9,10]. This aggressive operation will originate larger and more 
periodic thermal and mechanical stresses in the equipment of thermal 
power plants, which may lead to irreversible damages if the maximum 
stress limits of the material are exceeded. High-pressure steam drums, 
boiler tubes with superheated and reheated steam, headers, and first- 
stage rotor disks, blades and casings of high-pressure steam turbines 
are some of the equipment that endures the highest stress levels during 
start-ups, shut-downs and ramping operation [11–19]. 

There are several procedures and control methodologies to avoid 
exceeding the maximum allowable stresses in these critical components. 
Bypassing a fraction of the flue gas is a common and effective start-up 
procedure to limit the maximum stress in the steam drums and boiler 
tubes during the start-up of a power plant, as it reduces the temperature 
gradient in the walls and hence the effective stress peaks [13,15]. This 
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enables the control of the heating rate within the boiler, which can be 
progressively modified to achieve faster warm-ups with limited 
maximum stresses [16,17]. A similar procedure is followed in the steam 
turbine, where the steam is initially bypassed to accommodate the warm 
up of the steam turbine and avoid excessively high thermal stresses 
[14,15,19]. The maximum allowable stress in this critical equipment can 
also be embedded in optimisation-based control strategies so the con-
straints imposed by the material can be considered when computing the 
control actions [20,21]. Therefore, this type of methodologies allow the 
computation of optimal control sequences that never exceed the 
maximum stress levels the equipment can tolerate and enhance the 
flexible operation of thermal power plants. 

Nevertheless, regular operation induces damage in the equipment of 
thermal power plants that reduces its lifetime even if these procedures 
and control strategies keep the stress levels within safe limits. Creep and 
fatigue are arguably the main damage mechanisms that initiate and 
grow cracks in highly loaded components, ultimately leading to lack of 
reliability and failures due to fractures or large deformations [11,12]. 
Creep refers to the damage originated by the continuous operation at 
specific temperature and stress levels, which can result in deformations 
in the short term, and crack growth and cavitation in the long term 
[12,22,23]. Fatigue is the progressive and persistent structural damage 
originating from cyclic loading in the material [11,12,24]. Low-cycle 
fatigue occurs in the components of thermal power plants that operate 
at high temperature and pressure (e.g. headers, superheater and 
reheater tubes, steam turbine rotors), whereas high-cycle fatigue affects 
the equipment that experiences vibration (e.g. turbomachinery compo-
nents) [11,12,25]. Additional damage phenomena that can affect the 
residual lifetime operation of thermal power plants are corrosion, 
embrittlement, oxidation, pitting and erosion [11]. 

Damage and degradation of thermal power plant components are 
normally generated by a combination of mechanisms. Barella et al. [26] 
studied the failure of a steam turbine rotor with finite element methods 
(FEMs), concluding that high thermal stress concentration initiated the 
cracks that were propagated by mechanical fatigue. Similar crack de-
velopments can be observed in the failure of steam turbine blades [27]. 
Mechanical fatigue is also the propagation mechanism of the crack, 
whereas crack initiation can occur by corrosion. Creep is another dam-
age phenomena that can initiate cracks in the rotors of steam turbines 
because of the high temperatures and stresses this type of components 
must withstand. Thus, the combination of creep and fatigue is a common 
failure mechanism in steam turbines [12,28,29]. Creep and creep- 
fatigue damage is also typical in the tubes of superheaters and reheat-
ers because of their operating conditions, with high inner and outer 
temperatures and high pressure steam flowing inside the tubes. 
Furthermore, these components experience large and frequent temper-
ature gradients owing to the ramping operation of thermal power plants, 
which generates larger stresses and more cyclic loading that enhance the 
damage through creep and thermo-mechanical fatigue [30]. The oper-
ation profile hence influences the damage in the equipment and its 
lifetime reduction. Benato et al. [31,32] compared different flexible 
operation profiles for a three pressure level heat recovery steam 
generator (HRSG) and a combined cycle, and observed that the faster 
ramp rates substantially increased the degradation of the superheater 
tubes. These components are also sensitive to the composition of the 
exhaust gas as it may contain chemical components that generate hot 
corrosion in the presence of certain elements, which results in wall 
thinning and premature failure without the adequate maintenance [33]. 

Whilst the limitation of maximum stress levels occurs in the short 
timescales (i.e. orders of seconds and minutes) and depends on the 

Nomenclature 

Latin symbols 
a Coefficients of polynomials [–] 
b Coefficients of polynomials [–] 
C Specific heat capacity [J/kgK] 
D Damage [–] 
d Uncertainty realisation [–] 
E Young’s Modulus [MPa] 
E* Non-anticipativity matrix [-] 
h Convection coefficient [W/m2K] 
k Heat conduction coefficient [W/mK] 
M Number of uncertainty realisations [–] 
Nr Robust time horizon [–] 
N Time horizon [–] 
n Number of cycles [–] 
P Price [–] 
p Pressure [MPa] 
r Radius m 
S Number of scenarios [–] 
T* Temperature deviation from design [◦C] 
T Temperature [◦C] 
t Time [s] 
u Manipulated variable [–] 
x Estimated thermodynamic variables [–] 

Greek symbols 
α Thermal diffusivity [m2/s] 
α* Thermal expansion coefficient [1/K] 
Δε Strain amplitude [m] 
ω Scenario weights [–] 
ρ Density [kg/m3] 

σ Stress [MPa] 
σ′

f Tensile strength coefficient [MPa] 
υ Poisson’s ratio [–] 
ε Strain [–] 
ε′

f Ductility coefficient [–] 

Subscripts 
θ Tangential direction 
creep Creep damage 
design Design 
e Elastic 
eff Effective stress 
exp Experimental 
f Failure 
fatigue Fatigue damage 
i Inner radius 
ineq Inequality 
init Initial conditions 
m Metal 
max Maximum 
o Outer radius 
oper Operation 
p Plastic 
r Radial direction 
wall Wall of the tubes 
z Longitudinal direction 

Superscripts 
b Elastic fitting parameter 
c Plastic fitting parameter 
low Lower bound 
up Upper bound  
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regulatory and supervisory control layers [20,21], the evaluation of 
creep and fatigue damage and the associated reduction of operational 
lifetime in critical equipment owing to the operation of thermal power 
plants befall in longer time scales (i.e. days, weeks and months), or once 
the failure has already occurred. Damage in critical equipment may also 
be monitored online to quantify its deterioration and allow more 

accurate assessments of possible repairs and maintenance [28,34]. 
Nevertheless, online monitoring of the damage is only valid for failure 
prevention since the power generation profile, which determines the 
operation and hence the damage in the equipment of thermal power 
plants, is normally defined one day ahead in deregulated power markets. 

Therefore, scheduling of daily and weekly operation of thermal 

Fig. 1. Method to optimally schedule the power generation profile of thermal power plants with lifetime enhancement under uncertainty.  
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power plants in power markets with large shares of renewable energy 
confronts three main challenges: (1) adapt the operation profile to 
intermittent power generation from renewable energy sources and de-
mand variations, (2) consider the uncertainty associated with this type 
of technology, and (3) limit the deterioration of critical equipment 
because of the flexible operation required to balance power generation 
and demand. Traditional scheduling methods focus on point (1), with 
modern approaches progressively including the uncertainty from 
renewable power generation and demand fluctuation [35–37], whereas 
damage analysis is decoupled from the scheduling stage and carried out 
once the fault has already occurred. 

This study presents a methodology that addresses these three re-
quirements. In this scheduling strategy, power generation profiles of 
thermal power plants are the result of an optimisation problem where 
the maximum deterioration of the equipment by different damage 
phenomena is limited. Furthermore, this optimisation is formulated as a 
scenario-tree stochastic optimisation problem to consider the uncer-
tainty associated with the intermittent renewable energy sources. Thus, 
the main contribution of this work is the combination of the scheduling 
process with the uncertainty associated with renewable energy sources 
and the deterioration of the equipment in a stochastic optimisation 
framework. This approach enables thermal power plants to balance the 
grid under different scenarios whilst enhancing the lifetime of sensitive 
equipment and maximising their economical performance. 

This methodology involves several models that are merged in an 
optimisation framework, whereas its formulation allows including 
different types of uncertainty and deterioration mechanisms. The 
structure of this work follows a modular approach to show how this 
methodology can be easily adapted to different applications and sce-
narios. Section 2 describes the overall method and presents the different 
models required during the optimisation to estimate the dynamic power 
plant behaviour, the stress and strain arising in different equipment, and 
the damage caused by different phenomena. Section 3 presents the 
mathematical formulation of the proposed scheduling method, and de-
tails how these models are combined in a scenario-tree stochastic opti-
misation problem that limits the damage in the equipment. A case study 
analysed in Section 4 illustrates the application of the proposed meth-
odology to the scheduling of a day-ahead power generation profile for a 
natural gas combined cycle and discusses the importance of adequate 
selection of design temperatures in the equipment. Conclusions and final 
remarks are included in Section 5. 

2. Method for stochastic scheduling with lifetime enhancement 

Flexible operation of thermal power plants may result in a substan-
tial reduction of their operational lifetime. It is thus fundamental to 
consider the deterioration generated by this type of operation to assess 
the economic viability of these power generation systems. The meth-
odology presented in this paper aims at limiting the damage in the 
components of a power plant whilst optimally scheduling the power 
generation profile. Moreover, the uncertainty in the power demand and 
the power generation from intermittent renewable energy sources is 
considered by formulating the scheduling of power generation as a 
stochastic optimisation problem. Fig. 1 summarises the methodology 
proposed in this study. 

In deregulated power markets, one-day ahead predictions of the 
demand are available so the power producers can schedule their oper-
ation and offer a selling price for the produced electricity. The proposed 
methodology considers hence that an estimation of the demand and the 
uncertainty attached to this prediction are known. In addition, a price 
profile for the given demand is also assumed, albeit several prices with 
different uncertainties may be considered to cover a broad range of 
scenarios where the plant operator can adjust the electricity price to 
obtain more revenue or be more competitive. These demand and price 
profiles and their associated uncertainties are used to define a stochastic 
optimisation problem to schedule a power generation profile that 
maximises revenue and does not exceed the maximum allowable dam-
age in the components of the thermal power plant. 

In this optimisation process, the deterioration of the different com-
ponents of the power plant is a constraint. Therefore, the different power 
generation profiles computed by the optimisation algorithm are used to 
calculate the damage in specific equipment and check if the constraints 
are satisfied (see Fig. 1). The damage calculation is a sequential pro-
cedure where the possible optimal power generation profile is utilised to 
carry out a dynamic simulation that attempts to recreate the behaviour 
of an actual thermal power plant. Stresses and strains throughout the 
operation period can thus be obtained for the equipment of interest. 
Damage is subsequently computed by considering these stresses and 
strains and the adequate experimental data for the material of the 
considered equipment. The total deterioration owing to the different 
damage mechanisms is the result of a linear summation rule. This pro-
cedure to compute the damage generated by different phenomena from 
the operation profile of a thermal power plant is illustrated in Fig. 1. 

Fig. 2. Process model of the natural gas combined cycle.The nomenclature in the HRSG is as follows. E: Economiser, B: Boiler, S: Superheater, R: Reheater P: 
Pressure, L: Low, I: Intermediate, H: High. 
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Damage estimation is a procedure that requires several types of 
models. The remainder of this section includes the description of the 
dynamic models that replicate the operation of an actual thermal power 
plant in Section 2.1, the modelling approach to compute the stresses and 
strains in the equipment in Section 2.2, and the methods to estimate the 
damage depending on different mechanisms in Section 2.3. 

2.1. Dynamic modelling of a natural gas combined cycle 

This study considers a natural gas combined cycle with three- 
pressure levels and reheating. This type of thermal power plant is the 
most efficient, flexible and less polluting fossil-fueled plant available 
[18,38]. Thus, they are expected to ramp more frequently to balance the 
intermittent power generation from renewable energy sources [6,7]. 
Deterioration of these thermal power plants may become an issue 
without the adequate scheduling, and hence a modern NGCC is used to 
demonstrate the application of the proposed methodology. 

The design of the NGCC was performed with GT PRO [39] because it 
provides details about the material of the equipment, the geometry and 
dimensions of individual components, maps of performance for the 
pumps, and experimental data for the exhaust conditions and power 
generation of the gas turbine. Fig. 2 represents the process layout of the 
NGCC considered in this work. The dynamic model of the NGCC was 
developed with the specialised thermal power library [40] in the soft-
ware Dymola [41], which is based on the Modelica language [42]. This 
model relies on conservation laws, detailed heat transfer and pressure 
drop correlations, maps of performance and experimental data to 
adequately simulate the dynamic operation of the NGCC. A thorough 
description of the modelling principles and validation results of this 
dynamic model can be found in the work by Montañés et al. [43]. 

High-fidelity dynamic models representing large energy systems are 
not suitable for optimisation because of their high computational cost. 
Simplified models that capture the dynamic behaviour of thermody-
namic variables of interest must thus be used instead. System identifi-
cation can be implemented to obtain dynamic data-based models that 
predict the overall transient performance of specific variables [44]. 
However, since scheduling captures the long-term dynamic behaviour of 
thermal power plants, quasi-steady state models may be used without 
excessive loss of accuracy and standard regression approaches can be 
applied. 

Temperatures and pressures in the equipment of interest are nor-
mally the thermodynamic variables estimated by simplified models, as 
they are the boundary conditions of the stress models that allow 
computation of creep and fatigue damage. If other deterioration mech-
anisms such as hot corrosion are considered, simplified models to esti-
mate the composition of specific chemical components in the flue gas 
could also be developed and implemented in the proposed methodology. 
In addition, a simplified model for predicting the power generation of 
the thermal power plant is also needed. 

The tubes in the superheating section of the heat-recovery steam 
generator (HRSG) of the NGCC are considered. Creep is a major issue for 
this type of components because they experience many drastic operation 
changes during regular operation of NGCCs as a result of the frequent 
ramping, start-ups and shut-downs [11,12]. Therefore, the tubes in the 
superheaters are a suitable and illustrative example to demonstrate the 
lifetime enhancement capability of the methodology proposed in this 
work. 

This component only requires simplified models to predict the inner 
temperature and pressure, and outer temperature since creep is the 
unique failure phenomenon. The outlet pressure in the HRSG is almost 
constant because of the minimal changes in the pressure drop of the 
exhaust gas. A direct relation may be established between the gas tur-
bine load and the quasi-steady state value of these variables. Therefore, 
linear polynomials with the structure presented in Eq. (1) lead to 
adequate estimations, where x represents the different predicted vari-
ables (i.e. mechanical power generation, and inner and outer pressure 
and temperature in the superheated tubes), u is the manipulated vari-
able, which is the gas turbine load as it dictates the operation profile of 
the NGCC, and parameters a and b are fitted to the high-fidelity model 
for each variable. Table 1 summarises the fitting parameters of each 
variable and presents the coefficient of determination R2 that measures 
the agreement between the high-fidelity and simplified models. 
Fig. A.11 presents a comparison between the high-fidelity and simplified 
models for the considered temperatures and pressure. 

x = a+ b u (1)  

2.2. Stress and strain modelling 

In thermal power plants, there are several components that must 
withstand high temperatures and pressures. These operating conditions 
originate both thermal and mechanical stresses, which lead to the pro-
gressive deterioration of the equipment. Thermal stresses depend on the 
temperature gradient along the wall of the component and the design 
temperature of the material, whereas the mechanical contribution is 
proportional to the applied mechanical forces (e.g. pressure or centrif-
ugal force). The temperature distribution along the wall of any circular 
equipment (e.g. pipes, tubes or rotors) is obtained with the heat equation 
assuming that heat transfer occurs exclusively in the radial direction: 

1
r

∂
∂r

(

r
∂T*

∂r

)

=
1
α

∂T*

∂t
(2)  

where r is a generic radius, α is the thermal diffusivity of the material, 
and T* refers to the temperature difference respect to the design tem-
perature of the equipment. 

The temperatures in the inner and outer surfaces are the boundary 
conditions that define the temperature distribution in the wall. Thermal 
stresses can hence be computed considering this temperature profile. The 
method to calculate these stresses depends on the geometry of the 
component. Plane strain is a suitable modelling approach for equipment 
where the longitudinal dimension is notably larger than in the radial or 
tangential directions [45]. Pipes, drums, headers, downcomers and any 
component with a cylindrical shape can be modelled under the plain strain 
assumption. In contrast, if the longitudinal dimension is almost negligible 
compared to the other two dimensions, plane stress can be assumed to 
model the stress [45]. This modelling approach describes the stresses that 
arise in the rotor disks of the steam turbines (see, e.g., the work by Rúa et al. 
[20,21]). More detailed and intricate stress modelling approaches, or even 
finite element methods (FEMs), may be necessary to determine the stress 
generated in complex geometries such as turbine blades. 
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Table 1 
Fitting parameters of the simplified models and coefficient of determination R2.  

x a b R2[%]

Power 90 5.25 99.95 
Inner pressure 6.48 0.08 99.88 
Inner temperature 377.17 1.83 95.58 
Outer temperature 768.57 − 1.45 93.43  
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Both modelling approaches are based on the stress–strain constitu-
tive equations, the strain–displacement relations and the radial equi-
librium equation. Expressions for the principal stress components are 
obtained if these relations are combined and the ordinary differential 
equation that determines the displacement is solved analytically. The 
mechanical stresses enter these expressions by including the inner and 
outer pressure as boundary conditions and the centrifugal force as an 
additional term in the radial equilibrium equation. A detailed develop-
ment of the equations describing the principal stresses under the as-
sumptions of plane strain and strain can be found in the work by Rúa 
et al. [20,21]. Eq. (3) defines the principal stress components under the 
plane strain assumption, which is the modelling approach that describes 
the stresses arising in the tubes of the superheater. Thermal stresses arise 
when the temperature distribution in the wall is different from the 
design temperature at which the component was produced. Therefore, 
the temperature T* in any stress or strain expression refers to the devi-
ation with respect to that initial temperature. 

The von Mises equivalent, or effective, stress is a scalar measure that 
represents the overall effect of the principal stress components. This 
variable, defined in Eq. (4), is therefore suitable to estimate the overall 
damage induced by a power generation profile. 

σ2
eff = σ2

r + σ2
θ + σ2

z − (σr σθ + σθ σz + σz σr) (4)  

Strains are computed from the temperature profile along the wall, the 
principal stress components and the stress–strain constitutive relations 
[45]. If plane strain is assumed to model the stresses and strains in a 
component, the strain in the longitudinal direction is zero. Thus, the 
strains for the tubes in the superheater are: 

εr =
1
E
(σr − υ(σθ + σz)) − α* T* (5a)  

εθ =
1
E
(σθ − υ(σr + σz)) − α* T* (5b)  

Similar to the stress models, an overall effective strain can be defined 
following the von Mises criteria [24]: 

ε2
eff = ε2

r + ε2
θ + ε2

z − (εr εθ + εθ εz + εz εr) (6)  

These temperature, stress and strain models were validated using high- 
fidelity finite element methods for the same operating conditions. 
Fig. A.12 illustrates the agreement between the stresses and strains of 
the proposed models and the FEM analysis. 

2.3. Damage estimation methods 

Deterioration of the equipment in thermal power plants occurs as a 
result of a combination of different damage phenomena [11,12]. Creep 
and low cycle fatigue are arguably the most common and relevant 
failure mechanisms caused by the cyclic operation of flexible power 
plants [12,31,32]. Therefore, this work describes the main methods to 
estimate the deterioration caused by both phenomena. 

The calculation of damage relies on experimental data obtained by the 
repetition of different tests in samples of specific materials [11,24]. 
Different procedures are hence applied to obtain this data depending on the 
damage mechanisms. Creep is normally computed with charts as in Fig. 3 
that relate the operating stress level and temperature with the maximum 
operating time at these conditions before failure [11]. Thus, the total creep 
damage generated during the operation of a thermal power plant is: 

Dcreep =
∑m

i=1

toper

texp
(7)  

where toper is the time that a component of the power plant operates at a 
specific temperature and stress level, texp is the maximum operational 
time obtained experimentally at those levels, and m is the number of 
considered operation points. 

Experimental data are discrete. Therefore, the computation of creep 
damage given the operating temperature and stress profiles from the 
models described in Section 2.1 and Section 2.2, respectively, requires a 
two-dimensional interpolation to obtain the experimental time that the 
equipment can operate at such conditions. Interpolation is not suitable 
for optimisation since different iterations may lead to points that lay 
outside the experimental data set and hence to convergence issues. 
Linear models of the experimental data were thus developed by standard 
least-squares to have continuous models that ease the convergence of 
the optimisation. The creep data estimated by the regression models is 
compared to the experimental data in Fig. 3. 

Fatigue depends on the cyclic loading that the equipment undergoes 
during regular operation. Rotating machinery can experience vibrations 
and hence high cycle fatigue. In contrast, high-temperature components 
in thermal power plants suffer low cycle fatigue because of the low fre-
quency of the operation changes [11,12,24,31,32]. Damage originated 
by both fatigue mechanisms is also calculated with procedures based on 
experimental data, although stress profiles are normally used to correlate 
the operating conditions with the high cycle fatigue deterioration and 
strain profiles to compute the low cycle fatigue damage [24,46]. 

The stress and strain profiles are not uniform since they depend on 
the operation of the thermal power plants. However, the experimental 
data utilised to compute the fatigue damage is obtained by applying 
uniform cyclic loading to the samples of material. Standardisation 
techniques that transform the variable spectrum of stresses and strains 
into uniform loading profiles are therefore required to calculate the fa-
tigue damage. Rainflow counting is a procedure that extracts the hys-
teris cycles from the loading spectrum and generates uniform loading 
cycles from non-uniform stress and strain profiles [24,47–50]. This re-
sults in a set of amplitudes and mean stress or strain ranges with an 
associated number of cycles (see Fig. 1). The fatigue damage is calcu-
lated by comparing the number of cycles obtained from the rainflow 
counting procedure and the experimental maximum number of cycles 
for a specific amplitude and mean stress/strain [24,46]. Eq. (8) repre-
sents the computation of the fatigue damage following the linear cu-
mulative damage hypothesis formulated by Miner-Pålmgren [46,51,52]: 

Dfatigue =
∑nr

i=1

noper

nf
(8) 

Fig. 3. Diagram with experimental data to estimate the creep damage. The 
black lines represent the data obtained experimentally whereas the blue lines 
are linear regression models used during the optimisation. 
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where noper is the number of operation cycles for a given strain amplitude 
and mean strain, nr is the number of the different considered ranges, and 
nf is the experimental data for the maximum number of cycles before 
failure. This experimental data is normally represented by the Coffin- 
Manson equation [24,46]: 

Δε
2

=
Δεe

2
+

Δεp

2
=

σ′

f

E
(2nf )

b
+ ε′

f (2nf )
c (9)  

with σ′

f and ε′

f being, respectively, the tensile strength and ductility 
coefficient scaled to fit the experimental data, and b and c are fitting 
parameters. The elastic contribution to the overall strain amplitude is 
Δεe/2, whereas Δεp/2 is the plastic component. Fig. 4 illustrates the 
experimental fatigue data fitted to the Coffin-Manson equation. 

Experimental fatigue data represents the effect of uniaxial loading in 

the deterioration of samples of a specific material. The equipment of 
thermal power plants is however exposed to multiaxial loading. There-
fore, to estimate the fatigue damage with uniaxial experimental data, the 
effective values of the stress and strain defined in Eqs. (4) and (6) are used 
[24,53,54]. This allows the utilisation of available experimental uniaxial 
data to compute the fatigue damage from complex multiaxial loading. 

The total damage of a component results from the summation of the 
individual contributions of the different damage phenomena: 

D = Dcreep +Dfatigue (10)  

This method to compute the deterioration of the equipment in thermal 
power plants eases the inclusion of different damage mechanisms. For 
instance, hot corrosion could be added by developing a model that 
predicted the deposition of eroding elements in the equipment and a 
expression that correlated this deposition with the operating conditions 
and the generated damage. 

3. Scheduling as a stochastic optimisation problem 

Scheduling of thermal power plants in deregulated markets is a chal-
lenging procedure because of the large deployment of intermittent 
renewable energy sources. The intrinsic uncertainty associated with the 
power generation from solar and wind power sources imposes drastic 
operation profiles on traditional thermal power plants to balance the grid. 
This work proposes the utilisation of scenario-based multistage optimi-
sation to consider the uncertainty associated with renewable power gen-
eration and schedule the operation of flexible thermal power plants whilst 
limiting the maximum damage in their critical components. The sched-
uling problem becomes hence a stochastic optimisation problem where the 
different scenarios represent the uncertainty in the power demand and the 
deterioration of the equipment is a constraint. This section describes the 
mathematical formulation of the method illustrated in Fig. 1. 

Scenario-based multistage optimisation models the uncertainty of a 
process as discrete realisations of a probability density function repre-
senting such uncertainty, considers the different possible combinations of 
these realisations, and integrates them in an optimisation framework that 

Fig. 5. Schematic representation of a scenario-tree with M = 3 uncertainty realisations and a robust time horizon Nr = 2.  

Fig. 4. Diagram with experimental data to estimate the fatigue damage. The 
black line represents the maximum experimental number of cycles to failure 
given that a strain amplitude is a combination of elastic and plastic effects. 
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aims at finding the optimal solution of all possible uncertain scenarios 
[55]. Therefore, its application to the one-day ahead scheduling of power 
generation from thermal power plants in flexible power markets may 
enhance the optimal utilisation of this type of power plants. Furthermore, 
since the scheduling problem is expressed as a stochastic optimisation 
problem, the maximum damage induced by the regular operation of the 
power plant can be included as a constraint, which may expand the life-
time of traditional thermal power plants. Fig. 5 represents the scenario- 
tree evolution embedded in the optimisation problem. Given a known 
initial operation point, M different uncertainty realisations, d, consider 
the power generation uncertainty of the intermittent renewable energy 
sources. These realisations represent possible power demands that the 
thermal power plant must balance by modifying its manipulated variable, 
u, which is the gas turbine load in NGCCs and the fuel input in coal and 
biomass power plants, to produce the adequate amount of power. 

The robust time horizon, Nr, limits the extension to which the un-
certainty is considered, as the size of the optimisation problem, i.e. the 
number of scenarios, increases exponentially, S = MNr , with this hori-
zon. In contrast to design problems, where the stochastic optimisation 
problem is solved only once, this scheduling method may re-solve the 
optimisation problem continuously with updated information (e.g. 
every two hours). This means that it is not necessary to branch the 
scenario tree until the end of the prediction horizon. Instead, the 
expansion of the scenario tree might be stopped after a robust horizon, 
and from this point on consider the uncertainty unchanging. The main 
reasoning is that information about the far future need not be accurately 
represented at the time when the decision is made, because the decisions 
will be refined in the next optimisation, when the scheduling problem is 
solved again with new information. 

The mathematical formulation of the scheduling problem as a 
scenario-tree optimisation problem is: 

min
xi,j , ui,j

∑S

i=1
ωi

∑N− 1

j=0
ℓ(xi,j, ui,j, Pj) (11a)  

subject to
xi,0 = xinit ∀i ∈ S

(11b)  

xi,j = f (xi,j, ui,j, di,j) ∀i ∈ S , ∀j ∈ N (11c)  

cineq(xi,j, ui,j)⩽Dmax ∀i ∈ S , ∀j ∈ N (11d)  

(
xi,j, ui,j

)low⩽
(
xi,j, ui,j

)
⩽
(
xi,j, ui,j

)up
∀i ∈ S , ∀j ∈ N (11e)  

∑S

i=1
E*

i ui = 0 ∀i ∈ S (11f)  

where the subscripts (⋅)i,j refer to the ith scenario at the jth sample time, 
S is the set of scenarios S := {1,…,S}, and N denotes the set of indices 
j defining the sampling time such N := {1,…,N}. The cost function in 
Eq. (11a) is a weighted average of the individual cost functions of each 
scenario, where ωi is the coefficient that determines the weight of each 
scenario. Since scheduling problems aim at maximising the operating 
profit, the cost function is defined as: 

ℓ(xi,j, ui,j, Pj) = − xT
i,j Pj (12)  

with Pj representing the price of the generated power and xi,j the 
scheduled power generation, which is a vector including the discrete 
sequence of operation points that define the quasi-steady state net power 
production of the NGCC throughout each scenario. 

The equality constraints in Eq. (11c) ensure that the models 
describing the behaviour of the thermal power plant (i.e. the simplified 
models for power generation, inner pressure and temperature, and outer 
temperature in Eq. (1) and Table 1 are satisfied for all uncertainty 

realisations di,j. In contrast to the original model predictive control 
application where the equality constraints predict future dynamic 
behaviour of the system [55], Eq. (11c) only guarantees that the solution 
satisfies the quasi-steady state performance of the power plant but does 
not include any prediction, as each point of the sequence defining the 
power generation profile is independent. The inequality constraints 
represented by Eq. (11d) include the computation of the damage in the 
equipment over the time horizon N and limit its value to a maximum 
allowable level specified by Dmax, whereas Eq. (11e) defines the lower 
and upper bounds of the computed thermodynamic variables in the 
equipment x (i.e. temperatures, pressure and power) and the manipu-
lated variable u. Eq. (11b) sets the initial conditions of the power plant, 
which are common for all scenarios. 

Scenario-tree optimisations include the uncertainty in the process by 
the continuous branching of different scenarios. This approach hence 
considers a broader range of operating conditions, but it also imposes 
extra restrictions during the optimisation. As the disturbances associated 
with the uncertainty cannot be predicted, the control inputs must not 
anticipate them and the power plant states x in every node must be 
equal. This implies that the control inputs leading to a node within the 
robust horizon are equal for the different scenarios branching from that 
node [55–58]. These restrictions are the non-anticipativity constraints, 
and are enforced in the optimisation problem by Eq. (11f), where ui =

[ui,0, ui,1, ui,2, …, ui,N− 1] ∈ RN. 

4. Optimal scheduling of flexible natural gas combined cycles: a 
case study 

The scheduling of a flexible NGCC was considered to illustrate the 
application of the methodology proposed in this work. Section 4.1 pre-
sents a case study where the maximum creep damage in the tubes of the 
superheater is limited whilst maximising the power generation of the 
NGCC. Moreover, since stress, and consequently creep damage, are 
profoundly affected by the design temperature of the equipment, the 
effect of this parameter on both effective stress and deterioration is 
studied for a broad range of temperatures in Section 4.2. 

4.1. Optimal scheduling with lifetime enhancement 

The power demand profile estimated by the grid operator and scaled 
to the power generation range of the actual power plant is represented in 
Fig. 6. This demand was simplified to a coarser profile since scheduling 
aims at defining overall power generation profiles and NGCCs can 
respond within seconds to small, unscheduled variations in power 

Fig. 6. Demand profile estimated in day-ahead markets with a coarse simpli-
fication and intervals for constant and increasing uncertainty. 
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demand [20,21]. Furthermore, Fig. 6 illustrates two different types of 
uncertainty that can be included in the stochastic optimisation. This 
work assumed a ±5% constant uncertainty in the estimated power de-
mand (grey area in Fig. 6). The time and robust horizons were, respec-
tively, 24 and 2 h, with a sampling time of 1 h, whereas 3 uncertainty 
realisations were considered, leading to a total of 9 scenarios that were 
equally weighted. Fig. 5 represents this stochastic problem for the 
considered realisations and robust time horizon. This number of un-
certainty realisations and robust time horizon was considered a 
reasonable trade-off between adequate consideration of uncertainty and 
computational cost. The price of electricity is shown in Fig. B.13. 

Scheduling of the power generation from the NGCC was first carried 
out without damage constraints to obtain an operation profile bench-
mark that maximised the revenue. The sequential least-squares 
quadratic programming (SLSQP) algorithm [59,60] included in the 
nonlinear optimisation package NLOPT [61] was used in the optimisa-
tion. A maximum total damage Dmax = 0.00017 was then included in the 
stochastic optimisation problem. This allows identifying the main re-
strictions imposed by the constraint in the maximum damage and points 
out its effect on the shape of the power generation profiles in different 
scenarios. This study only considers creep damage in the tubes of the 
superheater as this is the main deterioration mechanism in this type of 
components [11,12]. The material of the tubes was T91, a martensitic 
steel for high temperature applications with its physical and mechanical 
properties summarised in Table 2 [62]. The design temperature of the 
tubes considered in this case study was 510 ◦C. 

The nomenclature referring to the different scenarios in the sto-
chastic optimisation problem is based on the sequence of uncertainty 
realisations, where H, M and L indicate the high (105%), medium 
(100%) and low (95%) values of the power demand estimated by the 
grid operator. Since the robust time horizon considered in this work is 2, 
a pair of letters defines each scenario. The first letter refers to the un-
certainty realisation in the first sampling time and the second letter 
indicates the next one. For instance, the pair HL refers to the scenario 
where the scheduled power considers the highest demand in the first 
sampling time, and the lowest in the second. Moreover, the letter X is 
used to indicate all uncertainty realisations (e.g. XH refers to all sce-
narios where the second uncertainty realisation represents the higher 
demand profile, independently of the first realisation). 

Fig. 7 shows the scheduled power for each scenario and the time dis-
tribution of the associated wall temperature, von Mises stress and the 
creep damage in the tubes of the superheater. Fig. 8 represents the 
accumulated deterioration for the scheduled power generation profiles. 
The maximum damage limitation, Dmax = 0.0017, only affected the HX 
scenarios since they produced a higher deterioration in the uncon-
strained1 case. Despite the reduction in the deterioration of the equipment 
to meet the maximum damage constraint could be also achieved in the 
final hours of operation (Fig. 7g and h), the scheduling methodology 
performed the entire damage reduction in the first operating period since 
the electricity price was lower. A change in the operation profile of the 
NGCC (Fig. 7a and b) lead to different operating conditions that resulted 
in lower temperature (Fig. 7c and d) and effective stress (Fig. 7e and f) in 
the wall of the superheater tubes, and hence in smaller creep damage 
because of the combined effect of a reduction in both variables (see Fig. 3). 

Modifying the power generation profile in the HH scenario to meet 

the damage constraint also affected the HM and HL scenarios. This 
coupling occurs because of the non-anticipativity constraints in Eq. 
(11f), which enforces the set of scenarios HX to coincide in the first 
uncertainty realisation. Therefore, all HX scenarios consider the same 
uncertainty level in the first sampling time of the robust horizon. The HL 
scenario hence changes when the constraint in the damage is imposed, 
albeit it had not reached this limit in the unconstrained case. This il-
lustrates the effects of combining in a stochastic optimisation problem 
the damage limitation of the equipment with the uncertainty in the 
estimated power demand. 

A comparison between the accumulated revenue for all scenarios and 
the unconstrained and constrained problems is presented in Fig. 9. 
Revenue did not change in the MX and LX scenarios since the damage 
limitation was not exceeded in the unconstrained case. In contrast, the 
change in the power generation profile of the HX scenarios reduced the 
accumulated revenue owing to the constraint on the maximum allowable 
deterioration. However, this reduction is almost negligible (0.11% in the 
HH scenario) because of the limited change in the operation profile and 
the mid-range prices where it occurred. This proves the suitability and 
advantages provided by the scheduling methodology presented in this 
work. The formulation of the scheduling problem with lifetime 
enhancement as a stochastic optimisation problem allows the limitation 
of damage in the equipment by modifying the power generation profiles 
where it has the largest effect on damage reduction and the minimum 
decrease in revenue. This is specially relevant when there is creep dam-
age, as this deteriorating phenomena concentrates at specific periods of 
time where the operation of the thermal power plant originates high level 
of temperature and stress that may be largely reduced by small changes in 
the operation of the thermal power plant. Moreover, the intrinsic un-
certainty attached to renewable energy sources can be included, and thus 
maximum profits can be achieved under different conditions. 

4.2. Effect of design temperature on effective stress and creep damage 

Creep damage depends on the temperature and stress of the equip-
ment. Whilst the wall temperature is an absolute variable that only 
varies with the operation of the power plant, the thermal stresses that 
contribute to the effective stress are computed relatively to a design 
temperature where the material is free of this type of stress. Therefore, 
the damage of the power plant equipment is highly affected by its design 
temperature. Fig. 10 shows how the design temperature modifies the 
shape and magnitude of the effective stress in the unconstrained HH 
scenario. Higher design temperatures than that encountered in the wall 
of the superheater tubes generate inverse profiles of temperature and 
von Mises effective stress (see, e.g., the lines for 590 ◦C and 570 ◦C in 
Fig. 10). In contrast, the wall temperature and effective stress profiles 
follow the same tendency if the design temperature is lower than the 
wall temperature (see, e.g., the lines for 510 ◦C and 490 ◦C in Fig. 10). 
When the design temperature is between the maximum and minimum 
temperature of the wall for a given operation profile, the von Mises 
effective profile is a combination of both trajectories depending on 
whether the current wall temperature is above or below the design 
temperature (lines for 550 ◦C and 530 ◦C in Fig. 10). 

Moreover, the inverse trajectories between the wall temperature and 
the effective stress for design temperatures above the maximum wall 
temperature reveal that the power generation profile that maximises the 
revenue also minimises the damage if there is a direct relation between 
the power generation and the wall temperature, i.e. more power leads to 
higher wall temperatures. When this condition is met and the design 
temperature of the equipment is above the peak of the wall temperature, 

Table 2 
Physical and mechanical properties of T91 martensitic steel.  

ρ [kg/m3] Cm[J/kgK] km[W/mK] α*[m2/s] α[1/K] E[MPa] υ[ − ] ho[W/m2K] hi[W/m2K]

7750 770 33 5.53e− 05 1.3e− 5 180000 0.3 2000 400  

1 In this context, unconstrained refers to the case where there is no limitation 
on the maximum damage. However, the remaining equality and inequality 
constraints are still included. 
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Fig. 7. Optimal scheduling of a flexible NGCC with and without damage limitation under uncertainty.  
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e.g. lines for 590 ◦C and 570 ◦C in Fig. 10, reducing the power generation 
leads to lower wall temperatures and thus higher temperature differ-
ences. As a result, the thermal stresses and the associated creep damage 
increase. Therefore, the optimal solution is the upper bound of the 
power generation, a limit where the creep damage cannot be further 
reduced. This solution does not hold if the wall temperature does not 
exhibit a proportional relation with the power generation, in which case 
the proposed methodology can find an operating profile that reduces the 
damage compared to the upper bound of the power generation. 

The design temperature also influences the maximum value of the 
effective stress and temperature of the wall at which it occurs. Thus, the 
selection of an adequate design temperature can reduce notably the 
creep damage owing to the combined effect of these two variables. 
Table 3 compares the maximum effective stress value, the associated 
wall temperature at the instant it occurs and the accumulated damage, 
for three different scenarios and a broad range of design temperatures. 
These results demonstrate the trade-off existing between wall temper-
ature and effective stress, since the lowest accumulated damage at each 
scenario occurred at the lowest combination of both variables, and not at 

the smallest value of the maximum stress. Design temperatures closer to 
the highest wall temperature cause the maximum stress at the lowest 
wall temperatures because of the larger temperature difference (e.g. 
rows for design temperatures in the range 570–550 ◦C in Table 3), whilst 
design temperatures similar to the mean of the wall temperature reduce 
the overall temperature difference throughout the operation of the 
power plant but have the peak of stress at higher wall temperatures 
(rows 550–520 ◦C in Table 3). 

5. Conclusions 

Thermal power plants are expected to cycle more frequently and 
increase their number of start-ups and shut-downs in order to balance 
the intermittent power generation from renewable energy sources. In 
the long term, this type of operation may lead to larger deterioration of 
the equipment. Adequate scheduling of the power dispatched by flexible 
thermal power plants must hence consider the uncertainty associated to 
the increasing renewable energy sources whilst limiting the damage 
generated by the flexible operation of these thermal power units. This 
work seeks to address this challenge by proposing a methodology where 
the scheduling of power generation is formulated as a stochastic opti-
misation problem that considers the uncertainty in the power demand 
and limits the maximum deterioration of specific equipment. 

Uncertainty in the power demand owing to the intermittent power 
generation of renewable energy sources was included in this method-
ology by formulating the scheduling problem as a scenario-tree based 
optimisation. This method considers several discrete realisations of the 
uncertainty associated to renewable power generation and combines 
them over time in a set of different scenarios that represent alternative 
profiles of power demand. Therefore, this optimisation problem aims at 
finding a set of optimal solutions that maximise the weighted sum of 
scenario revenues. 

Deterioration of the equipment is embedded in the optimisation 
problem as a nonlinear constraint. This is achieved by a sequential 
procedure that calculates the damage over the considered operation 
time. During every iteration of the optimisation problem, the computed 
power generation profiles for each scenario are used to simulate the 
dynamic behaviour of the thermal power plant, which allows the esti-
mation of temperature, pressure, stress and strain in specific equipment. 
Damage owing to different deterioration phenomena can subsequently 
be computed with these variables and experimental data. Since this is a 
general and sequential procedure, any damage mechanism (e.g. hot 

Fig. 9. Revenue for the different scenarios considered in the stochastic 
optimisation. 

Fig. 8. Total creep damage in the tubes of the superheater for the different 
scenarios considered in the stochastic optimisation. 

Fig. 10. Effective stress in the unconstrained HH scenario for different design 
temperatures. The maximum wall temperature for this scenario is included for 
shape comparison. 
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corrosion, vibration, erosion, oxidation) can be included if the necessary 
variables to estimate the deterioration of the component can be obtained 
from the dynamic simulation of the thermal power plant. 

Scheduling of a flexible natural gas combined cycle with limitation of 
creep damage in the tubes of the superheater demonstrated that the 
proposed methodology can enhance the lifetime operation of critical 
equipment by controlling its deterioration whilst maximising the eco-
nomic revenue. This was achieved by modifying the set of power gen-
eration profiles in the time periods where the smaller changes in 
operation and revenue generation lead to the largest reduction in the 
damage. Therefore, the application of the proposed methodology to 
thermal power plants in deregulated power markets with a large 
deployment of renewable energy sources can enhance their lifetime with 
minimal detriment in the revenue. 

The scheduling of the NGCC showed that the design temperature of 
the material notably affected the creep damage in the equipment. A 
comparison of its effect on the maximum effective stress, wall temper-
ature and deterioration for a broad range of temperatures demonstrated 
that design temperatures close to the mean and peak values of the wall 
temperature in the tubes of the superheater substantially reduce the 
total damage generated by a given power generation profile, provided 
that the wall temperature and power generation are directly related (i.e. 
both increase or decrease simultaneously). In contrast, design temper-
atures larger than the maximum wall temperature lead to the trivial 
solution where the maximum power generation minimises the overall 
creep damage. 

These results highlight the benefit of the scheduling methodology 
proposed in this work. Damage can be limited and controlled with minor 

modifications on the scheduled power generation profile and economic 
revenue, which enhances the operational lifetime and profitability of the 
power units. Furthermore, this methodology may ease the selection of 
adequate design temperatures of materials for critical equipment in the 
design phase of the thermal power plant. Scheduling of start-ups and 
shut-downs can also be carried out provided they can be simulated 
within the optimisation framework. 
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Appendix A. Model validation 

This section presents the validation results of the models developed 
throughout this work. Fig. A.11 compares the high-fidelity and simpli-
fied models for the considered temperatures and pressure, whereas 
Fig. A.12 shows the agreement between the stresses and strains of the 
proposed models and the FEM analysis. 

Table 3 
Effect of design temperature on the maximum effective stress, wall temperature at which occurs and total damage for different scenarios. Data for the HH scenario may 
be compared with Fig. 10.  

Tdesign [◦C]  HH MM LL 

σeff,max [MPa]  Twall [◦C]  Damage σeff,max [MPa]  Twall [◦C]  Damage σeff,max [MPa]  Twall [◦C]  Damage 

590 196.75 509.77 7.08 10− 5  210.39 503.92 1.09 10− 4  224.13 498.07 1.6 10− 4  

570 146.09 509.77 5.44 10− 7  159.19 503.92 9.95 10− 7  172.50 498.07 1.74 10− 6  

560 123.98 509.77 4.54 10− 8  136.61 503.92 8.12 10− 8  149.57 498.07 1.55 10− 7  

550 102.96 509.77 3.39 10− 8  114.82 503.92 8.34 10− 9  127.22 498.07 1.14 10− 8  

540 96.12 563.34 3.38 10− 7  94.38 503.92 3.10 10− 8  105.84 498.07 9.21 10− 9  

530 115.53 563.34 3.84 10− 6  104.35 554.72 3.85 10− 7  104.23 554.65 1.09 10− 7  

520 136.57 563.34 3.68 10− 5  124.14 554.72 4.34 10− 6  124.02 554.65 1.26 10− 6  

510 158.60 563.34 2.84 10− 4  144.92 554.72 3.94 10− 5  144.79 554.65 1.17 10− 5  

500 181.32 563.34 1.77 10− 3  168.60 562.40 2.86 10− 4  168.40 562.32 8.74 10− 5  

490 204.46 563.34 9.22 10− 3  192.95 562.40 1.70 10− 3  192.74 562.32 5.30 10− 4   

Fig. A.11. Comparison between the high-fidelity and simplified model predictions.  
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Appendix B. Power demand and price 

Fig. B.13 presents the day-ahead demand profile used in the case 
study in Section 4, its coarse simplification, and the deterministic elec-
tricity price throughout the considered scheduling range. 
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[9] R.M. Montañés, M. Korpås, L.O. Nord, S. Jaehnert, Identifying operational 
requirements for flexible CCS power plant in future energy systems, Energy Proc. 
86 (2016) 22–31. 

[10] H. Kondziella, T. Bruckner, Flexibility requirements of renewable energy based 
electricity systems–a review of research results and methodologies, Renew. 
Sustain. Energy Rev. 53 (2016) 10–22. 

[11] R. Viswanathan, Damage mechanisms and life assessment of high temperature 
components, ASM International, 1989. 

[12] R. Viswanathan, J. Stringer, Failure mechanisms of high temperature components 
in power plants, J. Eng. Mater. Technol. 122 (3) (2000) 246–255. 

[13] T. Kim, D. Lee, S. Ro, Analysis of thermal stress evolution in the steam drum during 
start-up of a heat recovery steam generator, Appl. Therm. Eng. 20 (11) (2000) 
977–992. 
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Publication V

Flexible thermal power plants integrated with CO2 capture systems can bal-
ance the intermittent power generation of renewable energy sources with low-
carbon electricity. Among these power systems, natural gas combined cycles will
play a fundamental role because of their faster operation and higher efficiency.
Optimisation-based control strategies can enhance the flexible power dispatch of
these systems and improve their performance during transient operation. This
work proposes a model predictive control (MPC) strategy to stabilise these power
plants with post-combustion CO2 capture based on temperature swing chemical
absorption and provide offset-free reference tracking. A delta-input formulation
with disturbance modelling is proposed, as it provides more efficient computation
with offset-free control. Data-based models were developed to replicate the perfor-
mance of the actual power and capture plants. Prediction of nonlinear behaviour
was accomplished by creating a network of local linear models, which allowed the
formulation of the dynamic optimisation program in the MPC strategy as a con-
vex quadratic programming problem. A case study demonstrated the effectiveness
of the proposed MPC to balance drastic changes on power demand and keep spec-
ified capture ratios. Furthermore, the reduced deviations achieved in the reboiler
temperature suggest that the nominal value of this parameter could be increased
to improve the desorption process without risks of reaching temperatures where
the solvent would degradate.
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trol. Data-based models were developed to replicate the performance of the actual power and capture 

plants. Prediction of nonlinear behaviour was accomplished by creating a network of local linear models, 

which allowed the formulation of the dynamic optimisation program in the MPC strategy as a convex 

quadratic programming problem. A case study demonstrated the effectiveness of the proposed MPC to 

balance drastic changes on power demand and keep specified capture ratios. Furthermore, the reduced 

deviations achieved in the reboiler temperature suggest that the nominal value of this parameter could 

be increased to improve the desorption process without risks of reaching temperatures where the solvent 

would degradate. 
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1. Introduction 

Climate change mitigation requires a profound reduction of 

greenhouse gas emissions ( IPCC, 2014; 2018 ). By sector, power gen- 

eration is the main contributor to global CO 2 emissions because 

of its reliance on fossil fuels ( IEA, 2019 ). Deployment of intermit- 

tent renewable energy sources, mainly wind and solar, has concen- 

trated most of the effort s to decarbonise this sector ( IEA, 2019 ). 

However, a broader portfolio of technologies is necessary to meet 

the increasing power demand whilst ensuring a safe, efficient and 

sustainable electric market. In this context, the integration of flex- 

ible carbon capture and storage (CCS) with thermal power plants 

is expected to play a fundamental role in the reduction of the CO 2 

emissions associated with the power sector ( IPCC, 2005; 2014 ). 

Thermal power plants, especially natural gas combined cycles 

(NGCC), are recognised as a viable technology to accommodate the 

intermittent power generation from renewable energy sources and 

∗ Corresponding author. 

E-mail addresses: jairo.r.pazos@ntnu.no (J. Rúa), lars.nord@ntnu.no (L.O. Nord). 

balance the electric grid ( Kondziella and Bruckner, 2016; Eser et al., 

2017; González-Salazar et al., 2017 ). Flexible CCS may enhance this 

dispatchable nature of flexible thermal power plants by providing 

low carbon electricity in a cost effective manner ( Montañés et al., 

2016; Heuberger et al., 2016; 2017a; 2017b ). Post-combustion CO 2 

capture (PCC) based on liquid-absorbents is arguably the most ma- 

ture CCS technology, with two commercial-scale capture facilities 

integrated with coal power plants in operation ( Bui et al., 2018 ). 

Nevertheless, the deployment of this technology in power markets 

dominated by intermittent renewable energy sources requires the 

demonstration that integration of CCS and thermal power plants 

does not inhibit flexible and efficient power generation, and stable 

CO 2 capture. 

The dominant dynamics that govern the transient opera- 

tion of thermal power plants, CO 2 capture plants and systems 

integrated by both technologies were extensively analysed by 

Rúa et al. (2020b) . Two different dynamic behaviour define tran- 

sient operation of these technologies. Thermal power plants oper- 

ate in short time-scales and are limited by the large heat capaci- 

tance of the steam generator, whereas post-combustion CO 2 cap- 

https://doi.org/10.1016/j.compchemeng.2020.107217 

0098-1354/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

Latin Symbols 
ˆ ˜ A State estimation ˜ A Delta-input state matrix 

A State matrix 

A (q −1 ) Polynomial ARX model 

A a Augmented state matrix 

a Coefficients simplified models ˜ B Delta-input input matrix 

B Input matrix 

B (q −1 ) Polynomial ARX model 

B a Augmented input matrix 

B d Disturbance input matrix 

b Coefficients simplified models ˜ C Delta-input output matrix 

C Output matrix 

c Centre validity function 

C a Augmented output matrix 

C d Disturbance output matrix 

�u Delta-input control vector 

δu Delta-input control action 

d Disturbance vector 

F MIMO delta-input penalty vector 

f Delta-input penalty vector 

G MIMO delta-input inequality matrix 

g Delta-input inequality matrix 

H Delta-input matrix output equation 

I Identity matrix 

J Objective function 

K Observer gain matrix 

K f Kalman filter 

M number local ARX models 

N Time horizon 

P MIMO delta-input inequality vector 

p Delta-input inequality vector 

Q Weight matrix 

q −1 Backwards shift operator 

Q p Process noise covariance 

R Penalty vector 

R 2 Coefficient of determination 

R m 

Measurement noise covariance 

t Time (s) 

u Manipulated variable 

w Width validity function ˜ x Delta-input state vector 

x State vector 

x a Augmented input state vector 

y Predicted variable, output vector 

Z Estimator covariance matrix 

Greek Symbols 

� Delta-input weight matrix 

γ Local operating point 

λ Weights objective function 

� MIMO delta-input weight matrix 

� Unit lower triangular matrix 

ξ Local validity function 

σ 2 Covariance 

ε Stochastic error 

Subscripts 

0 Initial conditions 

d Disturbance 

n u Order ARX input 

n y Order ARX output 

pow Power 

ramp Ramping rate 

ref Reference trajectory 

u Inputs 

x States 

Superscripts 

- Previous estimation 

low Lower bound 

up Upper bound 

ture plants are characterised by slow responses and long time- 

scales owing to the large volumes of stored solvent, the impact 

of large vessels on residence time, and the transport delay intro- 

duced by some equipment. This different transient behaviour does 

not limit power generation since variable steam extraction from 

the intermediate and low pressure cross-over of the steam turbine 

does not significantly affect the steam cycle of the power plant, 

albeit it has an impact on process variables of the CO 2 capture 

plant ( Rúa et al., 2020b ). Thus, control strategies must consider 

the different dynamic nature of thermal power plants and post- 

combustion CO 2 capture plants to adequately stabilise the process 

variable of each plant within their operation time-scales. 

Control of traditional thermal power plants refers to match- 

ing the power generation to the demand and the stabilisation 

of the steam cycle. Natural gas combined cycles utilise the gas 

turbine to control power generation owing to their fast dynam- 

ics ( Kehlhofer et al., 2009 ). Coal and biomass power plants must 

adapt the fuel and air injected in the boiler and throttle the super- 

heated and reheated steam flow at the inlet of the steam turbine 

( Alobaid et al., 2017 ). Power generation control in coal and biomass 

power plants is hence dominated by the heat capacitance of the 

boiler. Therefore, the fast transient operation of gas turbines and 

their capability to adapt the power output within seconds make 

NGCCs more suitable for flexible operation and grid balance than 

coal and biomass power plants ( Hentschel et al., 2016; Eser et al., 

2017 ). Furthermore, NGCCs can under- and over-shoot the power 

generated by the gas turbine to compensate the slower transient 

of the steam cycle, enhancing the flexibility that this type of power 

plants provide to the grid ( Rúa et al., 2020a; Rúa and Nord, 2020 ). 

Steam cycle control includes the regulation of the fluid inven- 

tory in the steam drums, deaerators, condensers, and storage ves- 

sels; pressure control of the low-, medium- and high-pressure sec- 

tions of the steam cycle; and temperature limitation of the su- 

perheated and reheated steam to avoid damaging the pipe sys- 

tem and the steam turbine. Inventory control refers to the sta- 

bilisation of the mass flows so the steady-state mass balances 

for each of the components and the overall power plant are sat- 

isfied ( Aske and Skogestad, 2009 ). Proportional-integral (PI) con- 

trollers are normally used for control of water levels since the 

main objective of this control layer is to stabilise power plant 

operation, although three-element controllers where the drum 

level, feedwater flow and live-steam flow are embedded in a PID 

(proportional-integral-derivative) cascade controller are tradition- 

ally implemented in thermal power plants ( Mansour et al., 2003; 

Kehlhofer et al., 2009 ). These controllers adjust the feedwater mass 

flow by changing the speed of the pumps or the opening of the 

control valves, depending on the type and design of the power 

plant. Model predictive control (MPC) strategies lead to further im- 

provements in the inventory control of traditional power plants be- 

cause of the dynamic optimisation carried out to determine the 

most suitable control action ( Lu and Hogg, 1997; Prasad et al., 

20 0 0 ). 
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Pressure control is achieved by adjusting the feedwater mass 

flow rate and by valve throttling, specially in the lower-pressure 

sections of NGCCs where the pressure in the drum and deaerator 

may be controlled ( Casella and Pretolani, 2006; Montañés et al., 

2017c ). In the high-pressure section of the steam cycle, strategies 

such partial arc and sliding pressure control lead to better part- 

load performance ( Kehlhofer et al., 2009; Jonshagen and Genrup, 

2010 ). Partial arc control regulates the steam admittance into the 

steam turbine with several valves in the stator of the first stage. In 

contrast, these valves are close to fully-open during sliding pres- 

sure operation to allow the variation of the high pressure and 

keep almost constant volumetric flow in the turbine, which re- 

sults in higher part-load isentropic efficiency ( Jonshagen and Gen- 

rup, 2010 ). If the high pressure of the steam cycle is not allowed 

to fluctuate, optimisation-based strategies lead to improved control 

of this pressure as they reduce the deviation from its set-point ( Lu 

and Hogg, 1997; Prasad et al., 1998; 20 0 0; Peng et al., 2009 ) 

The temperature in the hot sections of the steam cycle, i.e. the 

outlet of the supeheater and reheater, must be controlled to avoid 

damaging the materials. Spray cooling is hence necessary to inject 

pressurised water in the steam flow and reduce its temperature. 

The opening of the attemperator valves regulating the flow of pres- 

surised water may be defined by PID controllers ( Alobaid et al., 

20 08; Kehlhofer et al., 20 09; Montañés et al., 2017c; Gar ðarsdóttir 

et al., 2017 ), adaptative controllers ( Matsumura et al., 1998 ), or 

optimisation-based controllers ( Peng et al., 2009; Prasad et al., 

1998, 20 0 0; Rúa et al., 2020a; Rúa and Nord, 2020 ). Among the 

different alternatives to regulate the maximum temperature in the 

steam cycle, model predictive control shows the minimum offset 

from the set-point and the fastest stabilisation time ( Rúa et al., 

2020a; Rúa and Nord, 2020 ). 

In contrast to thermal power plants, control of post-combustion 

CO 2 capture plants is not a mature field and most of the avail- 

able knowledge comes from dynamic studies and test campaigns 

in pilot plants. Basic control of PCC plants reduces to stabilise 

liquid levels in sumps of absorber and stripper columns, reboiler 

and condenser; regulate the temperature of lean solvent and con- 

denser; adapt the pressure of the reboiler and CO 2 product, and 

maintain a constant solvent composition ( Panahi and Skogestad, 

2011; Schach et al., 2013; Flø et al., 2015; 2016; Walters et al., 

2016; Montañés et al., 2017a; 2018; Wu et al., 2020 ). Temperature 

control is achieved by heat exchangers where the mass flow rate 

of cooling water is the manipulated variable, whereas inventory 

control requires several pumps to stabilise liquid levels in different 

equipment, although valves may also be used. Throttling regulates 

the pressure of product of CO 2 and the mass flow rate of make-up 

solvent, or water, needed for a constant composition. Control of all 

these process variables may lead to over-constrained systems, and 

some might be left uncontrolled. For instance, the level in the re- 

boiler is controlled and the sump level in the stripper varies freely 

in the Brindisi pilot plant ( Flø et al., 2016 ), whereas the opposite 

inventory control approach is implemented at Technology Centre 

Mongstad (TCM) ( Montañés et al., 2017a; 2018 ). 

This basic control strategy aims at stabilising the main process 

variables and ensuring safe operation of PCC plants. Therefore, PID 

controllers are normally implemented. This control layer is simi- 

lar among different pilot plants and dynamic process models (see 

e.g. the reviews by Salvinder et al. (2019) and Wu et al. (2020) ). 

The main difference in control strategies and performance of PCC 

plants lies on the pairings and methods used to control perfor- 

mance indicators, i.e. capture rate or CO 2 product, liquid solvent 

to gas (L/G) ratios, energy performance ratios, and reboiler per- 

formance, where the latter may refer to outlet solvent tempera- 

ture, outlet lean loading or heat duty. The majority of pairings be- 

tween controlled and manipulated variables originate from insights 

obtained during process dynamic simulations, albeit relative gain 

array (RGA) analyses and self-optimisation procedures have been 

proposed ( Panahi and Skogestad, 2011; 2012; Schach et al., 2013; 

Nittaya et al., 2014; Sahraei and Ricardez-Sandoval, 2014; Luu et al., 

2015; Manaf et al., 2016; Gaspar et al., 2016 ). Different control de- 

sign strategies may lead to distinct pairings with various perfor- 

mance, but none of the design methods have proved systematically 

superior. 

Traditional PID controllers are able to reject disturbances and 

track references of CO 2 capture rates by modifying the mass flow 

rate of lean/rich solvent at the inlet/outlet of the absorber column 

( Lawal et al., 2010; Nittaya et al., 2014; Gar ðarsdóttir et al., 2015; 

Luu et al., 2015; Manaf et al., 2016; Gaspar et al., 2016; Montañés 

et al., 2017a ), or the steam flow in the reboiler, i.e. the heat duty 

( Panahi and Skogestad, 2011; Nittaya et al., 2014; Montañés et al., 

2017a ). Similarly, PIDs can achieve close to contant reboiler tem- 

perature ( Lawal et al., 2010; Panahi and Skogestad, 2011; 2012; Nit- 

taya et al., 2014; Walters et al., 2016; Montañés et al., 2017a; 2018 ), 

L/G ratios ( Gar ðarsdóttir et al., 2015; Montañés et al., 2017a; 2018 ), 

lean solvent loading ( Gar ðarsdóttir et al., 2015; Gaspar et al., 2016 ) 

or energy performance indicators ( Luu et al., 2015; Manaf et al., 

2016 ) by manipulating the mass flow rate of solvent or the reboiler 

heat duty. These studies demonstrate PID controllers can stabilise 

PCC plants subjected to large disturbances within reasonable pe- 

riods of time, albeit the lack of agreement on the most adequate 

pairing for key process variables. 

Nevertheless, PID controllers may not be able to stabilise pro- 

cess variables within desirable bounds and can require excessively 

long settling times if the tuning is not adequate or the distur- 

bance too drastic ( Luu et al., 2015 ). Model predictive control can 

address these challenges by computing the control input through a 

dynamic optimisation problem where constraints in the controlled 

and manipulated variables ensure that process parameters remain 

within acceptable limits. MPC also originates less oscillations of 

smaller amplitude than PIDs for a given disturbance ( Arce et al., 

2012; Sahraei and Ricardez-Sandoval, 2014; Luu et al., 2015; Zhang 

et al., 2016; He et al., 2018; Li et al., 2018; Wu et al., 2018a; 2019a ). 

This behaviour is due to the optimisation of predicted trajecto- 

ries over a time horizon, which leads to shorter settling times and 

tighter control of PCC plants. Hauger et al. (2019) demonstrated 

the tight control achieved by MPC strategies in different tests per- 

formed in two pilot facilities (Tiller and TCM). 

Furthermore, economic criteria such as market prices or energy 

cost may be included in MPC formulations to reduce the penalty 

of CCS systems while keeping PCC plants stable ( Arce et al., 2012; 

Decardi-Nelson et al., 2018 ). This eases the integration of schedul- 

ing and control strategies since the outputs of the scheduling pro- 

cess may modify, in addition to the set-points of the controlled 

variables, tuning parameters in the optimisation problem included 

in the MPC ( He et al., 2016 ). 

Whilst there are several studies analysing control strategies for 

these different technologies operating independently, there are rel- 

ative few studies considering the control of thermal power plants 

integrated with post-combustion CO 2 capture plants ( Lawal et al., 

2012; Mechleri et al., 2017; Gar ðarsdóttir et al., 2017; Montañés 

et al., 2017c; Marx-Schubach and Schmitz, 2019; Wu et al., 2019b; 

2019c ). Decentralised PID controllers can stabilise these integrated 

systems within their different time-scales, where the dominant dy- 

namics of each plant dictate the settling time. However, the inte- 

gration of CO 2 capture plants increases the settling time of pro- 

cess variables (e.g. steam pressure) in coal and natural gas ther- 

mal power plants because of the long stabilisation periods of CO 2 

capture systems ( Lawal et al., 2012; Gar ðarsdóttir et al., 2017; 

Montañés et al., 2017c; Mechleri et al., 2017 ). Similarly to control 

strategies in individual PCC plants, pairing of controlled and ma- 

nipulated variables affects notably the performance of these de- 

centralised controllers, as it influences the amplitude of fluctua- 
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tion and settling time of different process variables in both plants 

( Gar ðarsdóttir et al., 2017; Montañés et al., 2017c; Mechleri et al., 

2017 ). Moreover, PID controllers can also regulate the start-up of 

integrated systems and achieve desirable CO 2 capture rates and 

power generation ( Marx-Schubach and Schmitz, 2019 ). 

Model predictive control can improve the control of thermal 

power plants integrated with CO 2 capture systems and reduce 

the settling time of key performance variables ( Wu et al., 2019b; 

2019c ). MPC also enables the definition of different operation 

modes, which allows prioritising power generation, grid balancing 

or CO 2 capture according to market conditions and current regu- 

lations ( Wu et al., 2019b; 2019c ). However, power generation from 

coal-fired power plants is still limited by the heat capacitance of 

the steam generator, and MPC strategies can only enhance their 

flexible operation by reducing the steam extraction from the CO 2 

capture plant, which leads to momentarily decreases of carbon 

capture ( Wu et al., 2019b; 2019c ). Natural gas combined cycles reg- 

ulate their power generation through the gas turbine, and do not 

need to modify the steam extraction from the capture plant to bal- 

ance the grid. Therefore, application of MPC strategies to NGCCs 

integrated with PCC plants can further enhance the flexible oper- 

ation of both systems while taking advantage of the fast transient 

operation of NGCCs to balance power generation and demand. 

This work demonstrates the application of model predictive 

control strategies to full-scale natural gas combined cycles inte- 

grated with post-combustion CO 2 capture plants with the objec- 

tive of minimising the deviation of key process variables from 

their set-points. Section 2 describes the dynamic, full-scale NGCC- 

PCC model and the simplified models used in the MPC strategy, 

while Section 3 discusses how to achieve offset-free MPC with 

these simplified models and details its mathematical formulation. 

Section 4 demonstrates the fast control achieved by the proposed 

MPC strategy through a case study where the integrated system 

needs to balance a decrease in power demand. Final remarks and 

conclusions are included in Section 5 . 

2. Modelling 

This section includes the different models developed to demon- 

strate the application of model predictive control strategies to 

natural gas combined cycles integrated with capture plants. 

Section 2.1 describes the high-fidelity model used to replicate the 

behaviour of the NGCC-PCC system, whereas Section 2.2 presents 

the simplified models included in the dynamic optimisation prob- 

lem to predict the future behaviour of the actual system. 

2.1. Dynamic modelling of a NGCC-PCC system 

Natural gas combined cycles are expected to balance the in- 

termittent power generation associated with renewable energy 

sources because of their fast and flexible operation. Moreover, 

triple-pressure NGCCs with reheating are the most efficient and 

less polluting fossil-fuelled thermal power plants ( Kehlhofer et al., 

2009; Alobaid et al., 2017 ). This study considers a full-scale 615 

MWe NGCC with this configuration. The design was carried out 

with GT PRO ( Thermoflow, 2014 ) because it provides detailed de- 

scriptions of the geometry of the equipment, off-design perfor- 

mance, and operation maps of pumps and gas turbines. This data 

was implemented in a high-fidelity dynamic model developed in 

Modelica ( Modelica Association, 2019; Dassault Systemes, 2016 ) 

with the specialized TPL library ( Modelon, 2015 ), which is based 

on conservation equations, detailed heat transfer and pressure 

drop correlations, and maps of performance for the turbomachin- 

ery components. 

This thermal power plant was integrated with a full-scale 30 

wt% MEA-based post-combustion capture process, as this is the 

most mature CCS technology available. System integration occurred 

between the intermediate- and low-pressure steam turbines of the 

NGCC and the reboiler of the PCC plant, where steam extracted 

from the steam cycle provides the energy to regenerate the solvent 

in the capture plant. The design of the low-pressure section of the 

steam turbine was adapted to nominal operating conditions, i.e. 

steam is extracted to achieve a 90% capture rate at 100% gas tur- 

bine load ( Jordal et al., 2012; Rezazadeh et al., 2015 ). Furthermore, 

the design of the PCC plant considered the nominal CO 2 capture 

rate, the exhaust gas CO 2 concentration and conditions (i.e. flow 

rate, temperature, pressure), the allowable pressure drops in the 

absorber and stripper columns, column flooding limits and a rea- 

sonable balance between capital and operational costs ( Jordal et al., 

2012; Dutta et al., 2017 ). Because of the size of the NGCC and the 

amount of flue gas generated, these requirements were met with a 

parallel configuration with two absorber columns and one stripper 

( Montañés et al., 2017c; Dutta et al., 2017 ). A detailed modelling 

description and thorough validation results of these dynamic mod- 

els can be found in the work by Montañés et al. (2017c) . Fig. 1 

represents the layout of the NGCC-PCC system. 

These plants exhibit different dynamic behaviour. Load changes 

in the gas turbine lead to immediate variations in the exhaust gas 

conditions. However, these changes affect progressively the steam 

cycle. Thus, the heat capacitance of the HRSG dominates the tran- 

sient performance of the NGCC. For thermal power plants of this 

type and size, step changes in the exhaust gas conditions show 

dominant dynamics of approximately 10 min, with stabilisation 

times of 20–25 min ( Hentschel et al., 2016; Montañés et al., 2017c ). 

PCC plants have slower transient performance because of the long 

residence time of the solvent, the transport delay introduced by 

heat exchangers, and the large amount of solvent stored in ves- 

sels and liquid hold-ups ( Rúa et al., 2020b ). Similarly, step changes 

in the exhaust gas conditions show that the dominant dynamics 

of PCC plants of this size occur in approximately 60 min with 

stabilisation times of several hours ( Lawal et al., 2010; 2012; Flø

et al., 2015; 2016; Gar ðarsdóttir et al., 2015; Montañés et al., 2017c; 

2017b ). 

2.2. System Identification 

The computational cost of simulating the high-fidelity dynamic 

model of the NGCC-PCC system described in Section 2.1 inhibits its 

utilisation in optimisation-based control strategies. Therefore, sim- 

plified models that replicate the behaviour of specific thermody- 

namic variables (e.g. reboiler temperature, capture rate, mechani- 

cal power generation) are required to predict the performance of 

the integrated system in the model predictive control strategy pro- 

posed in this work. 

System identification refers to the development of data-based 

dynamic models ( Ljung, 1987 ), and was utilised to develop auto- 

regressive models with exogenous variables (ARX) that predict the 

dynamic behaviour of variables of interest. Eq. (1) represents the 

general structure of an ARX model: 

A (q −1 ) y (t) = B (q −1 ) u (t) + ε(t) (1) 

where y is the predicted and controlled variable, u is the manip- 

ulated variable associated with it, A and B are polynomials in the 

backwards shift operator q −1 of order n y and n u , respectively, and 

ε ∈ N (0 , σ 2 ) . 

A (q −1 ) = 1 + a 1 q 
−1 + a 2 q 

−2 + · · · + a n y q 
−n y 

B (q −1 ) = b 1 q 
−1 + b 2 q 

−2 + · · · + b n u q 
−n u 

Table 1 summarises the set of input-output pairs, i.e. the con- 

trolled variable and its associated manipulated variable, consid- 

ered in this work to control the operation of the NGCC-PCC sys- 

tem. These input-output pairs present nonlinear behaviour and 
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Fig. 1. Process diagram of the natural gas combined cycle integrated with the post-combustion capture plant.The nomenclature is as follows. E: Economiser, B: Boiler, S: 

Superheater, R: Reheater P: Pressure, L: Low, I: Intermediate, H: High, FWC: Feed-water cooling, RS: Reheated steam, SS: Superheated steam, SE: steam extraction, DCC: 

Direct contact cooler, c.w.: cooling water. 

single ARX models cannot predict them accurately in broad opera- 

tion ranges because of their linearity. Local model networks of lin- 

ear ARX models can overcome this limitation ( Johansen and Foss, 

1993; Wu et al., 2018b; Jung et al., 2020 ). This modelling approach 

relies on the development of several linear ARX models at differ- 

ent operation points for each input-output pair. The overall pre- 

diction of a local model network is the result of interpolating the 

individual predictions of the local ARX models according to cur- 

rent operation point ( Johansen and Foss, 1993 ). Thus, local models 

neighbouring this operation condition contribute more to the over- 

all prediction than locals models of regimes far from the operation 

point. The output of a local model network is: 

y (t) = 

M ∑ 

i =1 

y i (t) ξi (γ ) (2) 

where M is the number of local models for each input-output pair, 

y i (t) represents the outputs of the local ARX models, ξ is the lo- 

cal validity function that weights the contribution of each local 

ARX model, and γ is the parameter defining the current operating 

point. This is equivalent to first interpolating the parameters (a, b) 

of the local ARX models using the local validity function ξ and 

then computing the output of the overall ARX model with these 

parameters. 

This work considered a Gaussian validity function because it 

satisfies a necessary condition to achieve arbitrarily good predic- 

tions with local model networks ( Johansen and Foss, 1993 ): 

ξi ( γ ) = 

exp 

(
− 1 

2 [ ( γ − c i ) /w i ] 
2 
)

∑ M 

j=1 exp 

(
− 1 

2 

[(
γ − c j 

)
/w j 

]2 
) (3) 

where c i and w i are, respectively, the centres and widths of the lo- 

cal Gaussian interpolation functions. Table A.4 includes the number 

of local models for each input-output pair, the parameters of each 

local ARX model, and the variables defining their validity functions. 

Data to generate these models was obtained from excitation of 

the high-fidelity model described in Section 2.1 at different oper- 

ation conditions. Therefore, each set of data was used to gener- 

ate a single local ARX model for every input-output pair. Random 

gaussian signals (RGS) were superimposed on the controllers of 

the NGCC-PCC system in closed-loop since this approach enhances 

the identification of ARX models ( Gevers and Ljung, 1986; Forssell 

and Ljung, 1999; Gevers, 2005; Gevers et al., 2006; Miškovi ́c et al., 

2008 ). In addition, an unique validation set of data covering the 

entire operation range of the NGCC-PCC system was generated fol- 

lowing the same approach. 

Table 1 summarises the prediction accuracy of the local model 

network for each input-output pair measured by the coefficient of 

determination R 2 . The low R 2 of the simplified models for the su- 

perheating and reheating temperature originate from the nature 

of the validation data. The RGS signals superimposed on the con- 

trollers to generate the identification data fluctuated faster than 

the dominant dynamics of the steam cycle, which lead to dras- 

tic and fast changes in the controlled and manipulated variables 

of the NGCC. This created a challenging set of data that allowed 

testing whether the local model network could predict large and 

frequent fluctuations. In contrast, the PCC data does not show this 

behaviour because of the slower dominant dynamics of the cap- 

ture plant and its buffering effect, mainly through solvent ves- 

sels and liquid hold-ups ( Rúa et al., 2020b ). This transient perfor- 

mance results in smoother and slower variations easier to predict 

that lead to higher R 2 values. Fig. B.4 illustrates this different be- 

haviour between the NGCC and PCC plants for a small set of the 

validation data, and how the ARX models of the NGCC adequately 

predict the trajectory of the output variables despite the lower R 2 

values. 
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Table 1 

Input-output pairs with model order and coefficient of determination. 

Plant 
Input-output pair Order Nominal 

R 2 [%] 
Controlled variable ( y ) Manipulated variable ( u ) n y n u n y n u 

Power generation Gas turbine load 99.95 

NGCC Superheated steam temperature Opening attemperator valve 1 2 2 592.7 ◦C 0.02655 69.59 

Reheated steam temperature Opening attemperator valve 2 2 2 592.5 ◦C 0.07882 74.37 

PCC 
Capture rate Mass flow lean solvent 1 1 90 % 614 98.40 

Reboiler temperature Opening steam extraction valve 1 1 119.22 ◦C 0.69 99.09 

In contrast to the other simplified models, the power generation 

of the NGCC was predicted using an unique polynomial over the 

entire set of operating conditions. A simple representation for this 

variable is possible owing to the linear relationship between the 

power generation of the NGCC and the load of the gas turbine over 

a broad operating region. The structure of this model is: 

y (t) = a + b u (t) (4) 

ARX models are suitable for system identification procedures 

because the computation of their coefficients becomes a sim- 

ple least-square problem or a convex optimisation, whereas other 

structures may involve more complex, possibly non-convex, identi- 

fication problems ( Huusom et al., 2010 ). However, for analysis pur- 

poses, state-space forms of ARX models are preferred. The realisa- 

tion in observable form of the ARX model in Eq. (1) is: 

x k +1 = A x k + B u k (5a) 

y k = C x k (5b) 

with 

A = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−a 1 1 0 · · · 0 

−a 2 0 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
−a n y −1 0 0 · · · 1 

−a n y 0 0 · · · 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

B = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

. . . 
b 1 
. . . 

b n u 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

C = [ 1 0 · · · 0 ] 

where B has n y − n u zeros, and x ∈ R 

n y , u, y ∈ R , A ∈ R 

n y x n y , B ∈ 

R 

n y x1 , and C ∈ R 

1x n y . This realisation is valid when the ARX model 

leads to proper rational transfer functions, i.e. n y ≥ n u . The stochas- 

tic error term in Eq. (1) is not included because of the determinis- 

tic data used during system identification. 

3. Model predictive control 

Control strategies based on MPC formulations require the devel- 

opment of different models and optimisation problems to ensure 

optimal computation of control inputs, offset-free tracking of con- 

trolled variables and adequate estimation of states. Fig. 2 shows 

a diagram of the MPC strategy proposed in this work. The high- 

fidelity dynamic model of the NGCC-PCC system described in 

Section 2.1 replicates the behaviour of a real power plant with 

post-combustion CO 2 capture. Measurements from this model al- 

low the estimation of the states in the system. This estimator uses 

a Kalman filter to update the state estimations and correct possi- 

ble mismatches between the predictions of the responses by the 

simplified models and the measurements from the dynamic simu- 

lation of the NGCC-PCC plant. These estimates define the current 

state, i.e. the initial conditions, from where the dynamic optimi- 

sation problem in the MPC strategy starts to compute the optimal 

sequence of control inputs. The first element of this sequence is 

the control action imposed in the actual system. This process is 

repeated periodically, with a frequency dictated by the sampling 

time, to stabilise the operation of the NGCC integrated with the 

Fig. 2. Diagram of the proposed MPC strategy with a Kalman filter. Expressions within the diagram are developed throughout Section 3 , while the dynamic model of the 

NGCC-PCC system is described in Section 2.1 . 
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PCC plant. This MPC strategy includes all simplified models in a 

single controller as shown in Fig. 2 . 

This section describes different models and formulations of the 

MPC strategy, and details how they are combined in the integrated 

control structure represented in Fig. 2 . Section 3.1 discusses ref- 

erence tracking and offset-free MPC, and describes the formulation 

of this optimisation problem, whereas Section 3.2 builds up on this 

formulation and defines a simpler dynamic optimisation problem, 

called delta-input formulation, that only depends on the manip- 

ulated variables. Section 3.3 describes the estimator that predicts 

the states on the actual NGCC-PCC systems and presents an algo- 

rithm to solve the MPC control problem. 

3.1. Reference tracking and offset-free MPC 

Reference tracking is one of the main applications of model pre- 

dictive control. This control strategy minimises the difference be- 

tween outputs of a system and reference trajectories by computing 

control inputs through dynamic optimisation problems and imple- 

menting the first element of the calculated control sequence. The 

general formulation of linear MPC problems for reference tracking 

is: 

min 

x,u 

N−1 ∑ 

k =0 

1 

2 

‖ Q (y k − y ref ) ‖ + ‖ R (u k − u k −1 ) ‖ (6a) 

s.t. 

x k +1 = A x k + B u k (6b) 

y k = C x k (6c) 

y low ≤ y k ≤ y up (6d) 

u 

low ≤ u k ≤ u 

up (6e) 

where ‖ · ‖ represents the two-norm that leads to a quadratic pro- 

gramming (QP) optimisation problem. Eq. (6b) and (6c) ensure that 

the state-space realisation of the identified ARX models is satis- 

fied. Eqs. (6d) and (6e) limit the minimum and maximum values 

of the controlled and manipulated variables, respectively. The ob- 

jective function in Eq. (6a) minimises the difference between con- 

trolled variables and their references y ref and imposes a penalty in 

excessive utilisation of control inputs. 

Nevertheless, reference tracking formulations of MPC strategies 

as in Eq. (6) can lead to offsets in the controlled variables due to 

unmeasured disturbances and plant-model mismatches. To over- 

come this limitation and ensure zero offset, models representing 

actual systems can be augmented with a disturbance model, which 

acts as an integrator driving the tracking error to zero. This al- 

lows finding the control inputs that minimise both the effect of the 

disturbance on the controlled variables and differences between 

model and system ( Pannocchia and Rawlings, 2003; Borrelli and 

Morari, 2007; Pannocchia, 2015; Rawlings et al., 2017 ). The state- 

space model in Eq. (5) becomes: 

x a ,k +1 = A a x a ,k + B a u k (7a) 

y k = C a x a ,k (7b) 

where vectors and matrices are: [
x k +1 

d k +1 

]
= 

[
A B d 

0 I 

][
x k 
d k 

]
+ 

[
B 

0 

]
u k 

y k = 

[
C C d 

][
x k 
d k 

]

This augmented model achieves offset-free tracking if the system 

is stabilisable, the pair (A, C) is observable, the number of distur- 

bances n d : 

n d = p = 1 

and the following condition holds ( Pannocchia and Rawlings, 2003; 

Borrelli and Morari, 2007; Pannocchia, 2015; Rawlings et al., 

2017 ): 

rank 

[
A − I B d 

C C d 

]
= n y + n d 

Since the disturbance matrices B d ∈ R 

n y x n d and C d ∈ R 

1x n d can be 

chosen freely, the last condition holds if (A, C) is observable. In this 

work, the state-space realisation of the identified ARX models was 

expressed in observable form, and hence the pair (A, C) is always 

observable ( Chen, 2013 ). Therefore, offset-free tracking reduces to 

the adequate selection of disturbance matrices B d and C d . 

The MPC formulation in Eq. (6) for the system augmented with 

a disturbance model becomes: 

min 

x,u 

N−1 ∑ 

k =0 

1 

2 

‖ Q (y k − y ref ) ‖ + ‖ R (u k − u k −1 ) ‖ (8a) 

s.t. 

x a ,k +1 = A a x a ,k + B a u k (8b) 

y k = C a x a ,k (8c) 

y low ≤ y k ≤ y up (8d) 

u 

low ≤ u k ≤ u 

up (8e) 

3.2. Delta-input formulation 

Delta-input formulations of the MPC described in Eq. (8) are 

more suitable for reference tracking problems, as they penalise di- 

rectly the rate of change of the manipulated variables ( Borrelli and 

Morari, 2007 ). Furthermore, it reduces the number of optimisa- 

tion variables and the computational cost of the dynamic optimi- 

sation. Section 3.2.1 describes the delta-input formulation of the 

MPC problem in Eq. (8) , whereas Section 3.2.2 discusses how sev- 

eral state-space models can be merged into a common MPC prob- 

lem. 

3.2.1. Delta-input formulation for SISO systems 

Define the delta-input control action that determines the rate 

of change of a manipulated variable: 

δu k := u k − u k −1 (9) 

and augment the state-space equation in Eq. (7) with this new 

state and control input: [
x a ,k +1 

u k 

]
= 

[
A a B a 

0 I 

][
x a ,k 
u k −1 

]
+ 

[
B a 

I 

]
δu k (10a) 

y k = [ C a 0 ] 

[
x a ,k 
u k −1 

]
(10b) 

which can be written: ˜ x k +1 = ̃

 A ̃

 x k + ̃

 B δu k 

y k = ̃

 C ̃  x k 

7 
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Define the vectors of controlled and manipulated variables over a 

time horizon N : 

δu = [ δu 0 δu 1 . . . δu N−1 ] 
T 

y = [ y 1 y 2 . . . y N ] 
T 

and eliminate the states in Eq. (10) . The output equation, over the 

time horizon N , becomes: 

y = Hδu + A 0 ̃  x 0 (11) 

where 

H = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

H 1 0 · · · · · · 0 

H 2 H 1 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . H 2 H 1 0 

H N · · · · · · H 2 H 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

A 0 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ C ̃  A ˜ C ̃  A 

2 ˜ C ̃  A 

3 

. . . ˜ C ̃  A 

N 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

with 

H i = ̃

 C ̃  A 

i −1 ˜ B i ∈ { 1 , 2 , . . . , N} 

˜ x 0 = ̃

 x [0] 

With this reduced output equation, Eq. (11) , and the definition of 

the delta control input in Eq. (9) , the inequality constraints in the 

standard MPC formulation, Eq. (8d) and Eq. (8e) , can be written as: ⎡ ⎢ ⎣ 

−H 

H 

−�
�

⎤ ⎥ ⎦ 

δu ≤

⎡ ⎢ ⎣ 

−(y low − A 0 ̃  x 0 ) 
y up − A 0 ̃  x 0 

−(u 

low − u −1 ) 
u 

up − u −1 

⎤ ⎥ ⎦ 

(12) 

where u −1 was the control action in the previous sampling time, 

and � is an unit lower triangular matrix: 

� = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 · · · · · · 0 

1 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 1 0 

1 · · · · · · 1 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Following the same approach, the objective function Eq. (8a) be- 

comes: 

J = 

1 

2 

( ‖ 

Q ( y − y ref ) ‖ 

+ ‖ Rδu ‖ ) 

= 

1 

2 

( ‖ 

Q ( Hδu + A 0 ̃  x 0 − y ref ) ‖ 

+ ‖ Rδu ‖ ) 

= 

1 

2 

[
δu 

T 
(
H 

T QH + R 

)
δu 

+2 ( A 0 ̃  x 0 − y ref ) QHδu 

+ ( A 0 ̃  x 0 − y ref ) 
T Q ( A 0 ̃  x 0 − y ref ) 

]
(13) 

where the last term may be dropped since is constant. 

Therefore, the MPC strategy can be expressed as the QP prob- 

lem: 

min 

δu ∈ R N 
1 

2 

δu 

T � δu + f T δu (14a) 

s.t. 

g δu ≤ p (14b) 

with the matrix and vector in Eq. (14b) defined in Eq. (12) , and: 

� = H 

T QH + R 

f = ( A 0 ̃  x 0 − y ref ) QH 

The development of the MPC delta-input formulation for the poly- 

nomial model in Eq. (4) follows the same approach and is summa- 

rized in Appendix C . 

3.2.2. Delta-input formulation for MIMO systems 

Systems generally require the control of several process vari- 

ables. Thus, the delta-input formulation of the MPC problem in 

Eq. (14) is expanded to consider multi-input multi-output (MIMO) 

systems. Consider m single-input single-output (SISO) models with 

manipulated variables defined as delta-input control actions and 

grouped in a vector as: 

�u := [ δu 1 δu 2 . . . δu m 

] T (15) 

where each component is a sequence of control actions over a time 

horizon N for a given manipulated variable: 

δu j = [ δu j, 1 . . . δu j,N ] 
T j ∈ { 1 , . . . , m } 

The MPC delta-input formulation can be extended as: 

min 

�u ∈ R (Nx m )x1 

1 

2 

�u 

T ��u + F T �u (16a) 

s.t. 

G �u ≤ P (16b) 

where 

� = 

⎡ ⎢ ⎢ ⎢ ⎣ 

�1 0 · · · 0 

0 �2 

. . . 
. . . 

. . . 
. . . 

. . . 0 

0 · · · 0 �m 

⎤ ⎥ ⎥ ⎥ ⎦ 

F = 

⎡ ⎢ ⎢ ⎣ 

f 1 
f 2 
. . . 

f m 

⎤ ⎥ ⎥ ⎦ 

G = 

⎡ ⎢ ⎢ ⎢ ⎣ 

g 1 0 · · · 0 

0 g 2 
. . . 

. . . 
. . . 

. . . 
. . . 0 

0 · · · 0 g m 

⎤ ⎥ ⎥ ⎥ ⎦ 

P = 

⎡ ⎢ ⎢ ⎣ 

p 1 
p 2 
. . . 

p m 

⎤ ⎥ ⎥ ⎦ 

3.3. Estimator 

States and disturbances need to be estimated from the mea- 

surements of the actual system at each sampling time to obtain the 

current state of the NGCC-PCC plant. The estimator, or observer, 

computes the augmented state at each discrete time k as a combi- 

nation of the current, or a priori, state prediction and a correction 

based on the measured output y k : 

ˆ ˜ x k = ̃

 A ̂

 ˜ x k −1 + ̃

 B δu k −1 + K (y k − ˜ C ( ̃  A ̂

 ˜ x k −1 + ̃

 B δu k −1 )) (17) 

where ˆ · indicates estimated variables, and K ∈ R 

(n y + n d +1) x 1 is the 

observer gain: 

K := 

[ 

K x 

K d 

K u 

] 

in which K x , K d , K u are the observer gains for the states, distur- 

bances and control input, respectively. This observer gain K is cho- 

sen so the observer is stable, i.e. the eigenvalues of the system 

( ̃  A − K ̃

 C ̃  A ) lie inside the unit circle. 

Pole placement routines compute observer gain matrices that 

fix the eigenvalues of a matrix pair in specific coordinates and 

make the estimator stable (see, e.g. Pannocchia, 2015 ). How- 

ever, this work considers a Kalman filter as observer gain matrix 

( Kalman, 1960 ). Calculation of the Kalman filter matrix gain is a 

two-step process. First, the a priori state ˆ ˜ x 
−
k −1 and covariance ma- 

trix Z −
k 

are computed from previous estimations: 

ˆ ˜ x 
−
k = ̃

 A ̂

 ˜ x k −1 + ̃

 B δu k −1 (18a) 

Z −
k 

= ̃

 A Z k −1 ̃
 A 

T + Q p (18b) 
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Algorithm 1 MPC for NGCC-PCC systems 

Require: coefficients (a, b) in Table~A.4 , B d , C d , Q p , R m 

, Q , R , y ref , 

y low , y up , u low , u up , GT ramp , � , N 

Require: ˆ ˜ x k −1 , �u k −1 , y k , ˙ m exhaust , Z k −1 

Compute: interpolated coefficients (a, b) with Eqs.~2 , 3 

Compute: ˜ A , ˜ B , ˜ C in Eq.~10 

Compute: H, A 0 in Eq.~11 

Compute: ˆ ˜ x k , Z k in Eq.~18 

Set: ̃  x 0 := ˆ ˜ x k 
Compute: g, p in Eq.~12 

Compute: �, f in Eq.~14a 

Compute: G , P , �, F in Eq.~16 

Solve: 

min 

�u ∈ R (Nx m )x1 

1 

2 

�u 

T ��u + F T �u 

s.t. 

G �u ≤ P 

return �u k , ˆ ˜ x k , P k 

with Q p representing the covariance of the process noise w ∈ 

N (0 , Q p ) . Then, these a priori estimates are updated based on cur- 

rent measurements: 

K f = 

Z −
k 

˜ C T 

˜ C Z −
k 

˜ C T + R m 

(18c) 

ˆ ˜ x k = 

ˆ ˜ x 
−
k + K f (y k − ˜ C ̂  ˜ x 

−
k ) (18d) 

Z k = (I − K f ̃
 C ) Z −

k 
(18e) 

where R m 

is the covariance associated to the measurement noise 

v ∈ N (0 , R m 

) , and K f is the Kalman filter used to estimate the cur- 

rent state ˆ ˜ x k and the covariance matrix Z k that will be used at the 

next sampling time. 

Algorithm 1 summarises the sequence of computations needed 

to implement the MPC strategy at each sampling time. The first 

require condition refers to the parameters, matrices and vectors 

provided off-line, whilst the second require condition indicates the 

parameters that are updated every sampling time. The mass flow 

rate of exhaust gas ˙ m exhaust belongs to this second group as it is 

the parameter needed to interpolate the coefficients of the local 

ARX models for the capture ratio and reboiler steam temperature 

(see Table A.4 ). Moreover, note that the first element of each input 

control sequence must be selected from �u k . 

4. Dynamic operation of NGCC-PCC integrated systems 

A case study where the NGCC-PCC system needs to reduce its 

power generation to balance the grid demonstrates the effective- 

ness of the proposed MPC strategy to respond to fast changes 

in power demand and stabilise the operation of the integrated 

plants. The dominant dynamics of the NGCC and PCC described 

in Section 2.1 occur within 10 and 60 min, respectively. Thus, the 

MPC strategy considered a sampling time of 30 s in order to cap- 

ture the transient behaviour in the shortest time-scale, i.e. the dy- 

namic operation of the NGCC. A time horizon N = 20 was hence 

selected to consider the entire period of dominant dynamics in 

the NGCC. Table 2 includes the bounds for the controlled and 

manipulated variables considered during the dynamic simulations. 

Table 3 summarises the matrices and vectors to create the aug- 

mented models, the estimator based on the Kalman filter, and the 

weights in the objective function for each input-output pair. These 

Table 2 

Lower and upper bounds of the controlled and manipu- 

lated variables. 

Variable Lower Upper 

Power [MW] 450 615 

Gas turbine load [%] 60 100 

Superheating temperature [ ◦C] 587.7 597.7 

Attemperator valve 1 [-] 0.01 1 

Reheating temperature [ ◦C] 587.5 597.5 

Attemperator valve 2 [-] 0.01 1 

Capture ratio [-] 0.85 0.95 

Mass flow lean solvent [kg/s] 300 800 

Reboiler temperature [ ◦C] 115.22 120.22 

Steam extraction valve [-] 0.01 1 

Table 3 

Matrices and vectors defining the disturbance ( B d , C d ) and noise ( Q p , R m ) models; 

and weights for controlled variables ( λQ ) and penalties in movement of manipu- 

lated variables ( λR ). 

Variable B d C d Q p R m λQ λR 

Power - - - - 1 1 

Superheating temperature 

⎡ ⎣ 

0 

0 

0 . 01 

⎤ ⎦ 0 I 4x4 0.01 10 0.01 

Reheating temperature 

⎡ ⎣ 

0 

0 

0 . 01 

⎤ ⎦ 0 I 4x4 0.01 10 0.01 

Capture ratio 

[
0 . 1 

0 . 1 

]
0 I 3x3 0.1 50000 0.001 

Reboiler temperature 

[
0 . 01 

0 . 01 

]
0 I 3x3 0.1 100 10 

weights aimed at compensating the different orders of magnitude 

between controlled and manipulated variables and at prioritising 

the tracking of the process variables, albeit their tuning was out- 

side of the scope of this work. 

A step change in the power demand drives the transient op- 

eration of the power plant, which adapts the gas turbine load to 

adjust the net power output. Similarly, the change in exhaust gas 

conditions disturbs the operation of the capture plant. Fig. 3 shows 

key process variables in the NGCC-PCC system during dynamic op- 

eration and demonstrates the effectiveness of the proposed MPC 

strategy to achieve optimal offset-free control. 

Process variables from the NGCC reach their set-point faster be- 

cause of the shorter dominant dynamics of the power plant com- 

pared to the capture system. Net power generation is the fastest 

variable to meet its target owing to the fast dynamics of the gas 

turbine, which controls the overall power output of the NGCC and 

compensates the slow dynamics of the steam cycle. Consequently, 

power demand and supply are balanced within the dominant dy- 

namics of the NGCC. Temperature control in the superheating and 

reheating sections of the HRSG requires more time. Heat capaci- 

tance in the HRSG slows down the transient performance of the 

steam cycle compared to the change in gas turbine load. The at- 

temperator valves need to compensate and anticipate these varia- 

tions in the operating conditions for a longer period of time. Nev- 

ertheless, the proposed MPC strategy limited the offset and drove 

both temperatures to their set-point. 

Dynamics in the PCC plant are notably slower than in any type 

of thermal power plant ( Rúa et al., 2020a ). However, Fig. 3 illus- 

trates how the MPC strategy controlled the capture ratio almost 

simultaneously to the temperature in the steam cycle of the NGCC. 

This behaviour originates from the use of optimisation-based con- 

trol strategies. MPC considers the dynamic operation of the cap- 

ture plant and computes optimal control actions that achieved bet- 

ter and faster offset free in key process variables. Fig. 3 also il- 
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Fig. 3. Dynamic behaviour of process variables from the NGCC-PCC system with the proposed MPC strategy during a power demand reduction of 70 MW. 

lustrates how traditional PID controllers require more time and 

lead to larger offsets than MPC, albeit offset-free control is also 

achieved because of their integral action ( Montañés et al., 2017c ). 

In contrast, the reboiler temperature needed more time to reach 

its set-point. Control actions in the mass flow rate of lean solvent 

to stabilise the capture ratio modify the operation of the desor- 

ber, which also affects the lean loading of the solvent at the outlet 

of this column and the temperature in the reboiler. These process 

changes are characterised by slow dynamics because of the inter- 

action between the absorber and stripper columns, large volumes 

of solvent and delays from piping and heat exchangers ( Rúa et al., 

2020b ). Therefore, the MPC needs to adapt the steam extraction 

from the NGCC to anticipate the interaction between both ab- 

sorption and desorption sections and compensate these operation 

changes. This leads to the saturation of the steam extraction valve 

in the first 20 min of transient performance of the CO 2 capture 

plant, which results from the combined effect of changing loading 

in the solvent, the MPC strategy trying to anticipate the dynamic 

behaviour of the reboiler temperature and the slow dynamics of 

the desorption section of the PCC plant. The steam cycle and cap- 

ture stabilise completely during this time and reduce hence the 

variations in steam availability and fluctuation in the rich loading 

of the solvent. These steadier conditions ease the control of the re- 

boiler temperature and allow a more stable and prolonged move- 

ments of the steam extraction valve after this stabilisation period. 

Despite the saturation of the steam extraction valve, the pro- 

posed MPC strategy obtained smaller offsets than 0.15 ◦C and 

achieved offset free in an hour, which is better performance than 

using PID controllers ( Montañés et al., 2017c ). This reduced offset 

achieved by the MPC strategy during drastic changes of load is spe- 

cially important in the reboiler temperature, as it could allow in- 

creasing its set-point, and hence the stripping efficiency, without 

reaching temperatures that lead to solvent degradation during the 

regeneration process. 

Tuning of the MPC was not the main objective of this study. 

Improved performance might be achieved with adequate weight 

values in the objective function, λQ and λR , disturbance matrices 

and vectors ( Pannocchia, 2003 ), B d and C d , and noise models for 

10 
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the Kalman estimator, Q p and R m 

. However, the different orders of 

magnitude among controlled and manipulated variables suppose a 

challenge to balance the values of these different tuning parame- 

ters. 

5. Conclusions 

Flexible thermal power plants integrated with post-combustion 

capture systems will play a fundamental role balancing the in- 

termittent power generation from renewable energy sources with 

low-carbon electricity. The deployment of this technology requires, 

however, the demonstration that this type of power systems can 

provide fast changes of power output whilst capturing most of the 

produced CO 2 . Optimisation-based control strategies can enhance 

the dynamic operation of these integrated systems and contribute 

to more efficient and stable power systems. Among the different 

available technologies to produce flexible, low-carbon power, natu- 

ral gas combined cycles offer the fastest and most efficient perfor- 

mance. 

This work presents a linear model predictive control strat- 

egy applied to a modern NGCC integrated with a PCC plant. 

This method achieves offset-free control by augmenting the linear 

model with a disturbance model that removes any deviation from 

the set-point. Furthermore, the proposed MPC strategy is formu- 

lated in delta-input form, since this form is easier to implement 

and more computationally efficient due to the reduced amount of 

optimisation variables. Linear, data-based models were developed 

and implemented in the MPC strategy because of the excessive 

computational cost of the high-fidelity dynamic models. System 

identification allowed the development of several data-based, local 

ARX models that were combined in a local model network capable 

of predicting nonlinear behaviour with a set of linear models. This 

approach permitted the formulation of the dynamic optimisation 

program in the MPC strategy as a convex quadratic programming 

(QP) problem that leads to global optimal solutions. 

A case study where a NGCC integrated with a PCC plant needs 

to balance a step change in power demand demonstrated the effec- 

tiveness of the proposed MPC strategy. The key process variables 

controlled by the MPC presented offset-free in shorter periods of 

time than those observed with traditional PID controllers. More- 

over, the deviations from the set-point during transient operation 

were smaller. This dynamic behaviour with reduced offsets allows 

the approximation of nominal values of these parameters to their 

limits, which could potentially lead to improved performance, e.g. 

reboiler temperature closer to the degradation limit of the solvent. 

Linear MPC also presents fast convergence time because of its con- 

vexity and favourable numerical properties. Thus, better dynamic 

operation could be achieved by reducing the sampling time and 

increasing the predicting horizon. Adequate selection of weights in 

the objective function, disturbance matrices and vectors, and noise 

models in the estimator could also lead to improvements in the 

dynamic performance of the NGCC-PCC system. This topic was not 

analysed in this study, but it is considered as an interesting direc- 

tion for future research. 
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Appendix A 

Table A.4 summarises the coefficients of the local ARX models 

identified in Section 2.2 . The combination of these parameters with 

a Gaussian validity function leads to the overall parameters that 

compose the local model network at each sampling time. 

Table A.4 

Coefficients of the simplified local ARX models composing the local model networks. 

Controlled variable γ Local model Centre 
Parameters 

a b 

Net power generation - - - 90 5.25 

1 100 -1.21, 0.21 -23.06, 23.15 

2 95 -1.50, 0.50 -21.34, 21.46 

Supeheated steam temperature Gas turbine load 3 90 -1.29, 0.29 -24.03, 24.00 

4 85 -1.32, 0.32 -22.74, 22.90 

5 80 -1.34, 0.34 -22.22, 22.34 

1 100 -1.06, 0.06 -14.58, 15.02 

2 95 -1.20, 0.20 -15.96, 16.09 

Reheated steam temperature Gas turbine load 3 90 -1.17, 0.17 -15.10, 15.53 

4 85 -1.19, 0.19 -14.40, 15.08 

5 80 -1.21, 0.21 -14.37, 15.04 

1 436.5 -0.931 7.925e-5 

2 429 -0.938 7.543e-5 

Capture ratio Mass flow exhaust gas 3 412 -0.949 6.093e-5 

4 395 -0.978 2.156e-5 

5 379 -0.972 3.073e-5 

1 436.5 -0.992 0.166 

2 429 -0.981 0.225 

Reboiler steam temperature Mass flow exhaust gas 3 412 -0.997 0.219 

4 395 -0.993 0.089 

5 379 -0.996 0.110 
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Fig. B.4. Validation results of the simplified models described in Section 2.2 . These results only include a small set of the validation data to ease the visibility, whereas the 

R 2 values on Table 1 considered the entire set. 

Appendix B 

Fig. B.4 illustrates a small set of the validation results compar- 

ing the predicting capability of the LMN of simplified ARX models 

and the output of the dynamic high-fidelity model. 

Appendix C 

Consider the control input action defined in Eq. (9) and substi- 

tute it in the simplified polynomial model in Eq. (4) : 

y k = a + b (δu k + u k −1 ) (C.1) 

If the same sequences of outputs and control inputs over a time 

horizon N as in Section 3.1 are considered, this polynomial model 

can be expressed: 

y = a I + b � δu + b I u −1 (C.2) 

where I is the identity matrix and � was defined in Section 3.1 . 

Inserting this vector equation and the delta-input definition on the 

inequality constraints of the standard MPC formulation: 

g pow 

δu ≤ f pow 

(C.3) 

where 

g pow 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−b�
b�
−�
�
−I 
I 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

f pow 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−(y low − aI − bIu k −1 ) 
y up − aI − bIu k −1 

−(u 

low − u k −1 ) 
u 

up − u k −1 

GT ramp 

GT ramp 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

and GT ramp limits the maximum ramping rate of the gas turbine. 

This work considers a 15%/min ramp rate, as indicated by most gas 

turbine manufacturers. 

Similarly, the objective function becomes: 

J pow 

= 

1 

2 

(‖ Q(y − y ref ) ‖ + ‖ Rδu ‖ 

)
= 

1 

2 

(‖ Q(aI + b�δu + bIu −1 − y ref ) ‖ + ‖ Rδu ‖ 

)
= 

1 

2 

[ 
δu 

T (b T �T Q�b + R ) δu 

+ 2(aI + bIu −1 − y ref ) 
T Q�bδu 

+ (aI + bIu −1 − y ref ) 
T Q(aI + bIu −1 − y ref ) 

] 
(C.4) 

These inequality constraints and objective function, Eqs. (C.3) and 

(C.4) respectively, define the MPC delta-input formulation in 

Eq. (14) for the polynomial model in Eq. (4) . Thus, it may be eas- 

ily combined with state-space models in the MIMO formulations 

described in Section 3.2.2 . 
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