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Abstract

The high spectral and spatial resolution of hyperspectral imaging makes it a
promising imaging technique for a wide range of biomedical applications. A
recurring challenge is the handling and processing of the large amounts of data
generated by the technique. The work of this thesis has focused on the analysis
of an in vitro wound model dataset and a burn wound model dataset, utilizing
supervised and unsupervised learning techniques and photon and heat trans-
port modeling to extract information from the data. New insights on the char-
acterizable optical property changes of these applications has been obtained,
along with their relation to the tissue composition and underlying mechanisms.
This enables development of targeted automated processing algorithms and
better understanding of the technique.
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Chapter 1

Introduction

Fast, non-invasive decision support systems for clinical diagnostics could be
made feasible by optical methods capable of characterizing human tissue prop-
erties. This includes techniques like optical coherence tomography [1], photoa-
coustic tomography [2], reflectance spectroscopy [3], spatial frequency domain
imaging (SFDI) [4, 5] and hyperspectral imaging [6]. Hyperspectral imaging
was originally developed for remote sensing [7–10], but has over the years
found applications in the food industry [11], waste sorting [12] and medical
applications like wound imaging [6, 13–20], burn wound imaging [21, 22],
skin bruises [23], cancer diagnostics [6, 24, 25] and surgical guidance [6, 26].
Hyperspectral imaging is an imaging technique that provides a “normal” image
of a given object, but with full spectral resolution in every pixel rather than just
the red, green and blue color channels. This has the potential to differentiate
between objects that appear identical to the human eye, and can reveal infor-
mation on the chemical composition of the material. Hyperspectral imaging
generates large amounts of data, and a recurring challenge is the handling of
and exploration of the resulting data sets. Not much is able to beat the human
brain in pattern recognition, but the high dimensionality of the images makes
manual evaluation cumbersome.

The advance of GPU computing has over the last years spurred the success-
ful use of large convolutional neural networks (CNN) in e.g. image processing,
which has taken huge leaps ahead of more traditional techniques [27]. This has
kindled a general interest in machine learning and artificial intelligence across
many fields. The original motivation of the work in this thesis was to investigate
and utilize such techniques for hyperspectral image processing. Techniques un-
der this umbrella have previously been used by other groups [19, 22, 28–33]
and our own [14, 21, 23, 34].
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2 CHAPTER 1. INTRODUCTION

An underlying and general motivation of the work has been to analyze
larger hyperspectral datasets in a more convenient way, to script, automatize
and streamline the process by developing tools and utilizing appropriate ma-
chine learning techniques and associated paradigms. This underlying goal was
partially fulfilled by a move to Python to make use of well-established libraries
and possibilities for data manipulation, and the development of a selection of
Python modules and command line utilities. In addition to use of statistical
techniques, being able to understand the results is important. The statistical
models should be explainable. Previously developed physics-informed photon
transport models have been utilized in new ways in order to explain the re-
sults and couple spectral changes and statistical results to changes in optical
properties. In combination, new models and algorithms for hyperspectral data
analysis have been developed.

The work in this thesis has focused on analyzing existing datasets. Much
data have been acquired by our group over the years, but the main focus has
previously been on data collection, with insufficient time for development and
in-depth testing of new approaches to data analysis. The direct outcome of the
analysis, resulting in the included manuscripts, was not the developed tools,
but rather the new insights gained. The major motivation has been to under-
stand the datasets and the underlying physics, both out of curiosity and in order
to better understand how automated algorithms could be developed. Finally,
the motivation in analyzing existing datasets is to obtain closure, and find out
whether taking the application further is feasible.

The two applications that were included are in vitro wound model imaging
and burn wound imaging. The main contribution for the in vitro wound model
application is a clear characterization of spectral features that can be used to
detect re-epithelialization, and the development of a specialized photon trans-
port model to estimate re-epithelialized tissue properties. For burn wounds,
explanations for observed artifacts have been obtained, and the feasibility of
the technique in characterizing damage more closely investigated.

The rest of the thesis is structured as follows. The hyperspectral imaging
technique is explained in chapter 2. The main applications are outlined in chap-
ter 3. The analysis techniques used, statistical learning and physics-informed
modeling, are described in chapter 4 and 5. The main findings of the included
manuscripts are summarized in chapter 6, and the conclusions and further
work in chapter 7.



Chapter 2

Image acquisition

Analysis of hyperspectral images was the main focus throughout the work, and
included both fluorescence and reflectance data. The techniques and the ratio-
nale for their use in tissue characterization is explained in this chapter.

2.1 Hyperspectral imaging
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Figure 2.1: Simplified illustration of the working principle of a line-scanning
hyperspectral camera measuring reflected light. The camera images one line
at a time. A dispersive element disperses the different wavelengths of the in-
coming light into different directions, and the dispersed light is mapped to a
2D image array. Each pixel j gains a high spectral resolution as a result. A full
image is obtained by scanning, through physical movement of the camera or
the imaged sample.

A line-scanning hyperspectral camera was used to obtain all images con-
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4 CHAPTER 2. IMAGE ACQUISITION

sidered throughout the work. The simplified working principle is illustrated in
figure 2.1. A dispersive element (e.g. grating, prism) disperses the different
wavelengths of the incoming light into different directions. The dispersed light
is captured by an image array sensitive to the desired wavelength range. Dif-
ferent wavelengths are mapped to different rows in the image array, while a
column corresponds to the same spatial position. A slit ensures that the camera
sees only a single line of the full scene at a time. The full scene is imaged by
scanning.

Each image acquired at each line consists of p × M values. The column
vector at column j represents the spectrum from the corresponding spatial po-
sition. The final result is a datacube consisting of N lines × M samples × p
bands/wavelengths.

All included images have been obtained using a HySpex VNIR-1600 hy-
perspectral camera (Norsk Elektro Optikk, Lillestrøm, Norway), providing a
resolution of p = 160 bands over the wavelength region 400-1000 nm, and
M = 1600 pixels across-track. A close-up lens was used for the in vitro wound
model data (pixel size ∼ 25 × 25➭m), and a 30 cm lens for the burn wound
data (pixel size ∼ 60 × 60➭m).

2.2 Imaging methods

Different illumination modalities or geometries probe the imaged tissue in
different ways. The two methods considered in this work are wide-field re-
flectance imaging and wide-field autofluorescence imaging.

2.2.1 Reflectance imaging

Working principle and calibration The tissue is illuminated with a spec-
trally and spatially broad beam of light, and the camera measures the intensity
of the reflected light. An acquired spectrum is a combination of the light source
spectrum and a tissue spectrum. A reflectance standard is typically included in
the scene in order to acquire the light source spectrum. Given a flat scene, the
reflectance is obtained from the acquired intensities by

R=
I − Idark

Istandard − Idark
, (2.1)

where Idark is the dark current of the sensor.
Spectralon reflectance targets (WS-1-SL, Ocean Optics, Duiven, The Nether-

lands) were used in the images considered in the included work. Two linear



2.2. IMAGING METHODS 5

light sources (Model 2900 Tungsten Halogen, Illumination Technologies, New
York, USA) were used for illumination, and polarizers were mounted on the
camera lens and the light sources in order to avoid specular reflection.

Normalization A challenge in hyperspectral imaging is the wider imaging
field. Strictly correct reflectance levels are obtained only when the sensor-
object distance to the reflectance standard is equal to the sensor-object distance
to the imaged object. Changes in height or curvature leads to level changes that
needs to be handled in the processing or interpretation of the data, and makes
the spectral behavior more important than the level. This was dealt with by us-
ing spectral derivatives in the wound model study, which work as a high-pass
filter that eliminates the low/near constant offsets due to illumination varia-
tions. The burn wound data had more extensive illumination variations, and
normalization was used to reduce shadow artifacts to some extent.

Tissue optics The reflected light consists of light reflected directly at the sur-
face due to mismatch in refraction indices (specular reflectance) and light prob-
ing the tissue before being back-scattered out of the tissue (diffuse reflectance).
The diffuse part of the reflectance is interesting for tissue characterization since
the back-scattered light is influenced by the absorption and scattering proper-
ties of the tissue, which are in turn influenced by the tissue properties. The
basic working principle is illustrated in figure 2.2.

Camera

Scattering Absorption

Light source

Back-scattered
light

Figure 2.2: Working principle of reflectance imaging: Light emitted from a light
source is absorbed and scattered by the tissue, and the back-scattered light is
captured by the camera as diffuse reflectance.

Scattering and absorption mechanisms govern the photon transport in tur-
bid media like tissue. Scattering is expressed using the scattering coefficient
µs, which describes the probability per length unit that a photon is scattered
into a different direction [35]. Absorption is correspondingly expressed using
the absorption coefficient µa, describing the probability per length unit that a
photon is absorbed [35].

The physical origin of scattering is inhomogeneities in refraction indices in
structures like cells and collagen fibrils [35, 36]. Scattering from particles much
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smaller than the wavelength is modeled using Rayleigh theory [35], leading
to a wavelength dependence µs ∝ λ−4. Scattering from particles in the or-
der of or larger than the wavelength is modeled using Mie theory [35]. The
Mie scattering can roughly be approximated using an exponential dependence
µs∝ λ−b [37]. In sum, scattering in a tissue layer is described by

µ′s = µ
′
s,Mie,500(λ/500)−bMie +µ′s,Ray,500(λ/500)−4. (2.2)

Examples of values for µ′s,Mie,500, bMie and µ′s,Ray,500 in ex vivo human skin are

1800 m−1, 0.22 and 1700 m−1, respectively [38]. Resulting spectra are plotted
in figure 2.3.

Light is absorbed by constituents like hemoglobin, melanin, water and lipids
[35]. The light induces rotations or vibrations in the molecules which are con-
verted into and dissipated as heat. Oxygenated and deoxygenated hemoglobin
and melanin are always present within living tissue and have significant ab-
sorption within the visible wavelength range. The absorption spectra are plot-
ted in figure 2.3. Other examples of constituents with significant absorption in
the visible wavelength range include methemoglobin, CO-Hb, beta-carotene,
bilrubin and lycopene, but appear only under special circumstances. Water and
fat have significant absorption properties towards longer wavelengths.
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Figure 2.3: Absorption and scattering properties in tissue. The hemoglobin
absorption spectra are obtained from Spott [36], while the melanin wave-
length dependence is obtained from µa,melanin = µa,m,694(λ/694)−3.46 [39],
with µa,m,694 = 300 m−1 (fair to moderatedly dark skin [40]).
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2.2.2 Fluorescence imaging

Working principle Photons can excite electrons into higher energy states,
which on the return to lower states re-emit part of the energy as photons with
lower energy, i.e. longer wavelengths [41, 42]. This effect is called fluorescence
[41, 42].

In fluorescence imaging, a narrow-banded light source at a short wave-
length is used (e.g. ultra-violet), which excites emission in longer wavelength
bands that can be acquired by the camera without influence from the excitation
wavelength. The basic working principle is illustrated in figure 2.4.

CameraLight source

Short wavelength Longer
wavelengths

Fluorophore

λ λ

Figure 2.4: Working principle of fluorescence imaging: Short-wave light excites
fluorescence in the longer wavelengths, which is captured by the camera.

Fluorophores Fluorescent material are called fluorophores [42]. The fluo-
rophores act as light sources embedded in the tissue. The emitted light under-
goes similar transport mechanisms as in the reflectance case [41], but probes
the tissue in a different way that adds to the information obtained from the
reflectance spectra. Tailoring the excitation wavelength targets specific fluo-
rophores [42]. The existence or amount of fluorophores is valuable for investi-
gating tissue metabolism and tissue composition [42]. Some fluorophores exist
only in specific layers of the tissue (e.g. tryptophan in epidermis, collagen in
dermis) [43], meaning that different tissue layers can be targeted by changing
the excitation wavelength.

Excitation wavelength 355 nm was primarily used in the included studies.
Fluorophores at this wavelength include NADH, collagen cross-links, elastin
cross-links, lipo-pigments and flavins [43–45]. Examples of fluorescence emis-
sion spectra are shown in figure 2.5.
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Figure 2.5: Fluorescence emission spectra extracted from data made available
by DaCosta et al. [46]. The figure is reused from paper III.

Normalization Light at the excitation and emission wavelengths are influ-
enced by photon transport mechanisms, and appropriate normalization de-
pends on the application at hand. Raw spectra can be treated directly, or the
spectra can be e.g. sum- or max-normalized.



Chapter 3

Applications

Two main applications of hyperspectral imaging have been investigated in the
included work: Detection of wound healing in an in vitro wound model, and
evaluation of burn wound severity in pigs.

3.1 In vitro wound model

Investigation of wound healing in a controlled lab setting is useful for inves-
tigating the effects of wound or skin treatments. Wound models mimicking
human wound healing are useful for this purpose. Examples include the use
of animals, cell models and ex vivo/in vitro skin models [47]. In case of the
latter, wounds are prepared on smaller segments of human donor skin that are
incubated in a growth medium, providing nutrients to the skin and causing
the wound to heal. An example of a partially re-epithelialized sample is shown
in figure 3.1. The presence and rate of re-epithelialization is used to evaluate
wound healing under different conditions [48–52]. The evaluation normally re-
quires destructive and time-consuming histology analysis, and follow-up over
time requires a high number of identical samples. The wounds can end up with
different sizes due to the wound preparation method [53], or heal unevenly or
be evaluated differently due to the sample processing [54], requiring yet more
samples for statistical validity. Optical techniques like hyperspectral imaging
are a promising alternative that can make it possible to non-destructively fol-
low the healing of a sample over time.

9



10 CHAPTER 3. APPLICATIONS

Intact skin

Re-epithelialized
tissue

Wound

Sample
edge

Figure 3.1: Section of an RGB image of a wound model sample with regions
corresponding to wound, re-epithelialized tissue and intact tissue marked.

Wound healing in a wound model In general, in vivo wound healing con-
sists of several interconnected, overlapping processes [55, 56]. The processes
likely most relevant for optical imaging are re-epithelialization and remodeling
of the extracellular matrix, due to expected changes to the layer composition,
scattering properties and fluorescence. Wound healing also includes clot for-
mation and an inflammatory response [55], but this is not present in the in
vitro wound model due to lack of an intact circulatory system. Roughly, re-
epithelialization is initialized a few hours after injury by keratinocytes migrat-
ing into the wound from the surrounding tissue [55, 56]. This ultimately leads
to reconstruction of an epidermal layer. Remodeling of the extracellular ma-
trix starts with migration of fibroblasts into the wound, and ultimately causes
production of collagen I and III which are used to reconstruct the extracellular
matrix [55–57]. A simplified illustration is shown in figure 3.2.

Keratinocytes

Fibroblasts

Collagen I and III

Epidermal cells Epidermis

Dermis

Figure 3.2: Simplified illustration of re-epithelialization and remodeling of the
extracellular matrix.

The imaged wound model was based on a wound model developed by Jans-
son et al. [58] and Kratz [59]. Here, circular 6 mm diameter samples of hu-
man breast or abdominal tissue are prepared with 3 mm diameter wounds.
Incubating the samples in a cell culture medium consisting of Dulbecco’s Mod-
ified Eagle Medium (DMEM) with 10% fetal calf serum, 50 U/ml streptomycin
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and 50 ug/ml penicillin causes the wounds to re-epithelialize by day 7 [58–
60]. Submersion in the medium causes the neoepidermis to consist of a single
cell layer [59], while exposure to air ensures multiple cell layers resembling a
normal human epidermis [58]. Re-epithelialization is the main reported and
investigated event, although some studies also report on some expression of
collagenase [61] and production of collagen I and III [57].

Data Reflectance data and fluorescence emission data excited at 355 nm were
acquired over the wavelength range 400-1000 nm. The data were acquired by
Ingvild Haneberg and Matija Milanic during Ingvild Haneberg’s master thesis
work in 2014 [62]. The data consisted of images of samples with total size of 8
mm and wounds of size 3 mm and 4 mm. The standard Jansson/Kratz medium
was used, and the samples were exposed to air. The samples were followed up
over 22 days. The analysis of these data is further described in section 6.1.

3.2 In vivo burn model

Burn wounds can generally be divided in first degree, second degree and third
degree burns [63]. First degree burns correspond to superficial damage to the
epidermal layer only, while third degree correspond to damage down to sub-
cutis [63]. The former re-epithelialize and heal on their own due to viability of
the blood vessels in dermis, while the latter need surgical intervention since the
vessels are destroyed or severely impaired [64–66]. Deciding which is which by
inspection is feasible for a trained clinician [64–66]. Second degree burns are
confined to dermis, but anywhere between superficial and deep dermis [63].
It is challenging for a clinician to determine how deep a second degree burn
is during the first 48 hours, which has motivated research into objective opti-
cal methods for early evaluation [64–67]. A challenge is the dynamic response
of the burn close after time of injury, which interferes with evaluations of the
vessel viability [64, 65, 68, 69].

Heat transforms the tissue in various irreversible ways. The collagen struc-
ture is destroyed, blood vessel walls are ruptured, and the blood vessels coag-
ulate [70]. The destruction of different tissue structures is expected to co-vary,
with progression of collagen destruction happening simultaneously with pro-
gression of vascular destruction [64]. Techniques like SFDI can target collagen
structure changes specifically by the technique’s ability to separate scattering
from absorption, which makes it suitable for early evaluation [64–66]. In a pre-
vious study by our group, it was investigated if hyperspectral imaging was sen-
sitive to similar changes, leading to a feasibility study using an animal model
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in 2014 [21, 71, 72]. The collected data were subjected to further analysis in
the included work.

Data The data were collected by Lukasz Paluchowski as a part of his PhD
work in 2015 [21, 71, 72]. Burns were induced on two pigs by metal heated
to 100 °C, using different contact times to create burns of different severity.
Hyperspectral images were acquired every other hour, stopping at 30 hours for
pig 1 and 8 hours for pig 2. Images in the visible to near infrared wavelength
range (VNIR) and short-wave infrared range (SWIR) were collected, but only
the VNIR images were analyzed in this work. The burns had been evaluated
by pathologists using histologies according to the method in Papp et al. [73].
Data analysis is further described in section 6.2.



Chapter 4

Statistical learning techniques

Both unsupervised and supervised analysis techniques were used to analyze
the data, in addition to photon transport modeling techniques. The modeling
techniques are outlined in chapter 5, while the statistical techniques are out-
lined in the current chapter.

A desired end goal of hyperspectral data analysis is often to use hyperspec-
tral data to estimate variations, detect specific changes in tissue properties, or
understand the relation between an underlying variation and the spectral data.
Statistical learning techniques are suitable both for building predictive models,
and for infering patterns in the data.

4.1 Basic concepts

4.1.1 Input and output

Assuming some feature vector x which describes input variables, and a re-
sponse variable y which describes some output, many problems can be formu-
lated as finding a function f (x) that best predicts y from x [74, 75]. In case
of hyperspectral data, x can be the p-dimensional vector x = [x1, x2, . . . , xp]T

which describes the reflectance value at each wavelength band i, or another
suitable representation.

Working on the spectra directly would be the most convenient, but has
some challenges due to the high dimensionality and each dimension being a
digitization of an analog signal [74, 75]. Some techniques allow for direct ap-
plication, while others benefit from e.g. dimensionality reduction techniques.

13
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4.1.2 Regression and classification

The techniques are customarily divided in supervised and unsupervised learn-
ing techniques, and further divided into regression and classification techniques
[74, 75]. Regression techniques are appropriate for problems where y is a con-
tinuous function of x and can take any real value [74, 75], while classification
techniques are appropriate where y is a discrete function of x and can only
take a limited set of discrete values or classes g ∈ g1, g2, . . . , gK [74, 75]. Re-
gression is illustrated in figure 4.1, and classification in figure 4.2. Examples of
the former include prediction of tissue properties like blood content or blood
oxygenation from hyperspectral data, while examples of the latter include de-
tection of whether a wound is re-epithelialized or not, or whether a region is
a second or third degree burn.

y

x x x

Figure 4.1: Regression of y vs x: Biased linear fit (right), more flexible fit (cen-
ter) and too flexible fit with low bias but high variance (right).

x1 x1

x2

x1

Figure 4.2: Classification of red and blue labels in a two-dimensional input
space: Biased linear boundary (left), more flexible decision boundary (center)
and too flexible decision boundary with low bias but high variance (right).

Assuming that the data are distributed according to a known probability
distribution P(X , Y ), it can be shown that the optimal strategy is to find a func-
tion

f (x) = E(Y |X = x) (4.1)

for regression [74], and

Ĝ(x) = argmaxg∈G P(g|X = x) (4.2)
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for classification [74]. These approaches are interrelated in that the posterior
probability P(Y |X ) is considered or modeled [74, 76], except that the discrete
nature of classification leads to a treatment of the probabilities directly rather
than the expectation. Classification problems have been the main focus of this
work. Most classification techniques try to model class probabilities according
to assumptions on the data distribution (e.g. linear discriminant analysis, lo-
gistic regression, Naive Bayes, K nearest neighbours [74]), or try to separate
the input space according to some heuristics or decision surface model (e.g.
support vector machine, random forest, decision trees [74]).

4.1.3 Supervised and unsupervised learning

Supervised techniques rely on having pairs (x i , yi) to model P(Y |X ) [74, 76].
Unsupervised techniques have only (x i) available, and try to extract informa-
tion on the underlying behavior of x [74, 75]. The goal of an unsupervised
technique is not necessarily well-defined, and could for example be to model
P(X ), try to cluster x into naturally occurring classes, decompose x in terms
of a few components, or any other goal not involving corresponding y val-
ues [74–76]. Finding spectrally similar regions in a hyperspectral image is an
unsupervised classification problem.

4.1.4 Model selection and cross-validation

A given supervised regression or classification model can be selected or tuned
to perform arbitrarily well on the training data, in the extreme case fit the
data exactly [74, 75]. Such models neither capture the underlying behavior
nor predict well on unseen data [74, 75]. A separate test set is customarily
used to evaluate the model performance on independent data to infer whether
the model has been able to capture the underlying behavior [74, 75].

Bias and variance Assuming that y follows the distribution Y = f (X ) + ε
with Var(ε) = σ2

ε, the expected squared-error loss at an independent data point
x0 can be decomposed as [74]

Err(x0) = σ
2
ε + [E[ f̂ (x0)]− f (x0)]

2 + Var( f̂ (x0)), (4.3)

= σ2
ε + Bias2( f̂ (x0)) + Var( f̂ (x0)), (4.4)

where the expectation and the variance are taken over repeated sampling of
new training data sets. A model that follows the datapoints exactly has no
bias, but varies with different training sets and has high variance [74, 75]. A
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constrained model is expected to have lower variance, but lowered flexibility
results in higher bias to the underlying behavior [74, 75]. Model selection bal-
ances model bias and model variance to find the lowest combined error [74,
75]. Models with different flexibilities are demonstrated in figure 4.2 and 4.1.

Test and validation sets Keeping a separate collection of datapoints for fi-
nal evaluation of the test error (test set) is a possible way of evaluating the
generalization ability of the model [74]. If data have been used to select, tune
or train a model, they are no longer independent. The training set is therefore
often also further split into a training and validation set, where the validation
set is used to select or tune models, and the test set used for final evaluation
[74].

This approach requires that both training, validation and test data capture
the full data variation, which is difficult if limited amounts of independent data
are available. An alternative approach is cross-validation [74, 75].

Test data
Training datai

i+1

Figure 4.3: Illustration of two subsequent steps i and i + 1 in cross-validation:
The segment corresponding to the test data is systematically changed, and the
model re-trained and re-tested.

Cross-validation Cross-validation randomly splits the dataset into a training
set and test set, and repeats the split several times [74, 75]. This is illustrated
in figure 4.3. The size of each test set is too low for representative estimates,
but averaging over multiple splits improves the test error statistics. This also
directly estimates the bias and variance by repeatedly changing the training
set.

Cross-validation is a suitable replacement for a validation set since it pro-
vides a score that can be used to compare models, but the final model is based
on performance evaluated on all available data, and further test data are nec-
essary if the generalization error is needed.

4.2 Techniques

Used techniques are briefly explained here.
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4.2.1 Regression techniques

Smoothing splines The penalized residual sum of squares (PRSS) of a func-
tion f (x) is given as [74]

PRSS( f ,α) =
p
∑

i=1

{yi − f (x i)}2 +α
∫ ∞

−∞

�

d2

d t2
f (t)

�2

d t. (4.5)

The first term evaluates the closeness of the function f (x i) to yi , while the
second term penalizes curvature in f (x) [74]. The parameter α controls the
smoothness of f (x), where α = 0 allows f (x) to interpolate yi exactly and
α > 0 penalizes high variation in f (x), gradually changing the function to a
straight line with α→∞. The solution for f (x) is the smoothing spline, and
is a natural cubic spline with p knots [74].

The method was used to fit fluorescence spectra in paper IV, as α can objec-
tively be selected through cross-validation and the linearity of the method has
some satisfying consequences for application to multiple spectra. The access to
analytic derivatives makes direct evaluation of peak positions convenient.

4.2.2 Classification techniques

Linear discriminant analysis Linear discriminant analysis (LDA) is an ex-
ample of a technique that tries to model P(G|X ) directly. Assuming fk(x) =
P(X = x |G = k) and P(G = k) = πk [74] and using Bayes’ rule [74],

P(G = k|X = x) =
P(X = x |G = k)P(G = k)

P(X = x)
=

fk(x)πk
∑K

l=1 fl(x)πl

. (4.6)

LDA assumes a Gaussian probability density function with a common covari-
ance matrix Σ among all classes [74],

fk(x) =
1

(2π)p/2|Σ|1/2
exp

�

−
1
2
(x −µk)

T Σ−1 (x −µk)
�

. (4.7)

Finding the maximum posterior probability among all classes is equivalent with
comparing log

�

P(G=k|X=x)
P(G=l|X=k)

�

among all class pairs k, l [74]. Due to the Gaussian
assumption and assumption of a common Σ in fk and the common denomina-
tor in P(G = k|X = x), this essentially reduces to comparing discriminant
functions [74]

δk(x) = x TΣ−1µk −
1
2
µT

kΣ
−1µk + logπk. (4.8)
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This is roughly equivalent with classifying to the closest class centroid [74].
Projecting all datapoints down to the subspace spanned by the centroids yields
the same distances and sufficient information for LDA classification [74].

The method was used to demonstrate linear classification in paper III, and
as the final burn classification model in paper VI. The method can be suitable in
general due to the low variance of the technique, despite high bias from incor-
rect assumptions, and provides a useful, class-aware dimensionality reduction.

Decision trees Decision trees sequentially split the input space in smaller
regions until each region contains a single class, and is visualized as a tree
[74]. The technique notoriously overtrains and has high variance [74, 75].
The main strength is the interpretability of the technique [74, 75].

The technique was used to understand relations among the histologies in
paper VI.

Random forest The random forest classifier consists of a majority vote among
a given number of decision trees [74]. Each decision tree is trained in such a
way that each split in the tree considers a random selection of input features
rather than all features, which decorrelates the trees and improves the variance
reduction obtained by averaging [74, 75, 77].

The method was used to segment background from the tissue of interest
throughout the work, and is the main focus of paper V. It was also used to
segment wound from intact/re-epithelialized tissue in paper I and III. Lack
of tuning necessities, the flexibility and the robustness to a large number of
features makes the technique convenient for hyperspectral imaging.

Support vector machine Support vector machine (SVM) classifies the data-
points by finding an optimal separating hyperplane where a given number of
points are allowed to be on the wrong side of the decision surface [74, 75]. The
problem can be formulated in terms of inner products, which can be replaced
by arbitrary kernel functions that turn the linear decision surface into general,
non-linear decision surfaces [74, 75].

SVM has not been used much throughout the work, but was compared for
burn wound classification in paper VI due to reported good performance for
hyperspectral classification [78–80].

4.2.3 Unsupervised techniques
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x2

x1

Figure 4.4: Illustration of K-means clustering with K = 5 in a two-dimensional
input space.

K-means clustering K-means clustering finds K clusters in the data set, where
cluster membership is decided from the distance to the cluster centers [74, 75].
By definition, each cluster should optimally be spherical in the image space. K-
means is a convenient method wherever this assumption is valid, but generally
breaks down for hyperspectral data. The method can be used to reduce the
data variation down to a smaller number of clusters, however. K-means clus-
tering has the advantage that it can be applied to unseen data by clustering to
the closest centroid. The technique is illustrated in figure 4.4.

The technique was used as a first step in the clustering of the data in paper
I.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

1 2

3

4

5
x2

x1

Figure 4.5: Illustration of agglomerative clustering in a two-dimensional input
space. The tree to the left illustrates the distance structure for the points to the
right, with sample 1 and 2, and 3 and 4 being closest.

Agglomerative analysis Agglomerative analysis is suitable for any kind of
image structure, but is memory intensive and does not readily extrapolate to
new data. Essentially, agglomerative clustering compares two and two obser-
vations or clusters by some distance metric, and merges the closest datapoints
first [74, 75]. This yields a tree which shows the distance structure among all
observations, which can be used to divide the observations into clusters by
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visual inspection [74, 75]. The technique is illustrated in figure 4.5.
The method was used as the second step in the clustering of the data in

paper I, combining the too-large number of K-means clusters to a lower number
of clusters.

Principal component analysis Principal component analysis (PCA) finds new
coordinate axes within the input space along the directions of maximum data
variance [75]. The result is p orthonormal components (loadings) which can be
used to linearly transform the original data and yield new coordinates (scores)
that each describe the position along the variance-maximizing direction [75].
This is illustrated in figure 4.6. All datapoints can be decomposed and ex-
pressed as scores and associated loadings. The first few components often sum-
marize the main variation in the data, and the technique is suitable for com-
pression or dimensionality reduction.

The technique can be used for dimensionality reduction and for investi-
gating high-dimensional data in a lower-dimensional space in the cases where
variance maximization coincides with the information content. The technique
is highly convenient for reducing the redundancy in the hyperspectral imaging
bands [81–83].

PC 1
PC 2

x1

x2

Figure 4.6: Illustration of PCA in a two-dimensional input space. The datapoints
have the largest variation along principal component (PC) 1, and next to largest
along PC 2. The technique would extract these directions and project each
datapoint to the new coordinate directions.

The minimum noise fraction transform (MNF) is a related technique devel-
oped for hyperspectral imaging, which sorts the data in terms of signal-to-noise
ratio rather than variance [84]. The technique is used for noise removal and
dimensionality reduction. This technique was compared to smoothing splines
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in paper IV, but was otherwise not used. It was initially tested for dimensional-
ity reduction in the wound model data, but PCA was found to be more suitable
and extensible across the entire dataset. The technique was not used for noise
removal in any of the presented work, since more degraded spectra got ele-
ments from unrelated spectral components mixed in after application of the
technique.
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Chapter 5

Physics-informed modeling

Physical models can be used to explain the underlying physical rules behind
measurements or statistical results. Photon transport modeling and heat trans-
port modeling were used in this work, the former for understanding the rela-
tion between optical properties and reflectance results in paper I, II, III and VI,
and the latter for understanding heat propagation in the burn wounds in paper
VI.

5.1 Photon transport modeling

Photon transport techniques are used to understand the photon propagation
through tissue. Tissue is a turbid medium where the light rapidly loses coher-
ence due to high absorption and scattering coefficients.

The photon transport through tissue with a time-independent light source
and defined absorption and scattering properties can be described by the ra-
diative transport equation (RTE) [35]

ŝ · ∇L(~r, ŝ) +µt L(~r, ŝ) = µs

∫

4π

L(~r, ŝ′)P(ŝ′ · ŝ)dΩ′ + S(~r, ŝ). (5.1)

L(~r, ŝ) is the radiance, the energy flowing at position ~r in the direction ŝ. The
transport coefficient µt = µa + µ′s describes total loss due to absorption and
scattering. P(ŝ′, ŝ) is the probability of a photon arriving from direction ŝ′ be-
ing scattered into direction ŝ. The equation describes light loss and light gain
at the position ~r into the direction ŝ. The left hand side describes losses due
to divergence of the beam and absorption/scattering. The right hand side de-
scribes contributions from light scattered from other directions, and the light
source S.

23
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Common solution approaches include Monte Carlo and the diffusion ap-
proximation.

5.1.1 Monte Carlo solution

A direct solution to the photon transport problem is to use Monte Carlo sim-
ulations. In this case, individual photon packets are launched into the tissue.
The simulation step size and whether the photon is absorbed or scattered are
determined by sampling from probability distributions. Statistically correct re-
sults are obtained by launching enough photons. Monte Carlo simulations rep-
resent an accurate and flexible approach that allows for different tissue and
light source geometries to be modeled, but is time-consuming. Software pack-
ages include MCML [85] and GPU-MCML [86], the latter an implementation
of MCML that uses GPU parallelization to speed up the simulations.

5.1.2 Diffusion approximation

The main approximation step is to write the radiance as a Legendre polynomial
expansion with two terms: an isotropic term, and a term with a small deviation
from isotropy,

L =
φ

4π
+

3
4π
~j · ŝ, (5.2)

where j is the photon flux (net energy flow) and φ the fluence rate (integrated
radiance, or energy flow regardless of direction). Inserting the expansion into
(5.1), integrating over all solid angles and assuming the source function to be
isotropic yields [35]

∇~j(~r) = −µaφ(~r) + q(~r), (5.3)

with q as the isotropic source function. Inserting (5.2) into (5.1), multiplying
by ŝ and integrating over all solid angles yields Fick’s law [35]

~j(~r) = −D∇φ(~r, t), (5.4)

where the diffusion constant D = 1
3µt r

. This is finally combined with (5.2) and
(5.3) to yield

− D∇2φ +µaφ = q, (5.5)

i.e. the time-independent diffusion equation for photon transport. The term
µaφ describes loss due to absorption, and D∇2φ a diffusion process due to
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changes in the energy density. Assuming isotropic source functions, the photon
source q in a layered medium can be described by [40, 87]

qi(z) = µ
′
s,i exp(−µt r,iz)

i−1
∏

j=1

exp(−µt r, jd j), (5.6)

which describes the unscattered and unabsorbed photons from the light source
throughout each layer i. The µ′s,i

∏

(.) accounts for photons in the beam being
allowed to scatter further downwards, and exp(−µt r,iz) accounts for photons
in the beam lost to absorption and scattering into other directions. The prod-
uct accounts for photons already being lost throughout the previous layers.
Describing the light source in this way rather than directed photons incident
on the surface allows for increased validity of the diffusion solution by mod-
eling the light source as a near-isotropic quantity [36]. The solution for the
fluence rate in layer i is given by [40, 87]

φi(z) =
δiµ
′
s,i

Di(1−µt r,iδ
2
i )

exp[−µt r,i(z − di)]
i−1
∏

j=1

exp[−µt r, j(d j − d j−1)] + . . .

Ai1 exp(−x/δi) + Ai2 exp(x/δi), (5.7)

where δi is the penetration depth δ = 1
3µaµt r

. Relating the irradiance propa-
gating back into the tissue to the irradiance propagating out of the tissue by an
effective reflection coefficient gives the boundary condition [40]

j(z = 0) = Aφ(z = 0). (5.8)

Here, A= 0.17 for a tissue refractive index n= 1.4 [40]. The constants Ai j are
determined by using continuity in j(z) and φ(z) between each layer and the
boundary condition above [40]. The diffuse reflectance Rd is found by [40]

Rd = j(z = 0). (5.9)

The last expression is obtained by considering the irradiance transmitted into
the air. It can also be obtained by integrating (5.5), and observing that j(z =
0) represents the difference between the absorbed energy and the incoming
energy, leaving the back-scattered energy. The analytic solution for a two-layer
model can be found in Svaasand et al. [40]. The one-layer solution is given as

Rd =
µ′s · A ·δ

2

( δ3D + 1)(D+δ · A)
. (5.10)

The included studies mainly use the isotropic source function solutions above.
An alternative source function is the Delta-Eddington source function, which
includes more anisotropy and can give more accurate solutions [88].
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5.1.3 Inverse modeling

The goal of inverse photon transport modeling is to infer tissue properties from
measured light distributions. Well-defined examples include estimation of ab-
sorption and scattering properties based on the light distributions obtained in
SFDI, and spatially resolved reflectance measurements with source-detector
separation.

This can also technically be achieved in reflectance imaging by setting up an
objective function e.g. o =

∑

(Rmodeled(λi)−Rmeasured(λi))2 and minimize with
respect to the modeled input parameters. However, the reflectance is scale-
invariant with respect to the optical properties in each layer. The one-layer
reflectance can be written as R(µa,µ′s) = R(µa/µs), and similar relations exist
for multi-layered media. This limits the information that can be extracted from
the spectra without fixating some of the parameters or doing assumptions on
the geometry.

The main inverse model developed in this work is an inverse model that
can estimate re-epithelialized tissue properties, which is described further in
paper II.

5.2 Heat transport modeling

Heat transport modeling was used to model heat propagation in paper VI.
The Pennes bioheat equation [89] is often used to model heat transport in

tissue [90–94],

K
d2T
d x2
−ρc

dT
d t
= (wbloodcblood)(Tcore − T ) +Qmetabolism. (5.11)

The terms respectively describe the change in heat flux, the heat gained by
the medium, the heat lost from the medium due to blood circulation, and heat
produced by metabolism. Additional heat sources are added to the right hand
side. The modeled heat transfer problems during this work involve heat fluxes
so large and damages so rapid and extensive that the two terms on the right
hand side could be ignored, yielding

d2T
d x2
−

1
κ

dT
d t
= 0. (5.12)

The diffusivity κ is given as κ= K
ρc .

Heat transport modeling was used to characterize the expected tempera-
ture development in the burn injuries considered in paper VI. Burns of differ-
ent severity were induced using different contact times. The temperature was
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simulated throughout the contact periods and beyond using the appropriate
boundary conditions, and used to characterize the expected damage through
an Arrhenius integral,

Ω=

∫ t

0

P exp(−∆E/RT )d t. (5.13)

The used initial conditions and boundary conditions and their associated solu-
tions and usecases are given below. The boundary conditions are illustrated in
figure 5.1.

Figure 5.1: The three boundary conditions considered in the heat transport
models: Direct contact with metal (left), heat transfer being impeded by an
effective surface contact resistance (center) and accumulated heating being
propagated throughout the tissue or exchanged with air (right). The figure is
reused from paper VI.

Prescribed constant temperature at the surface The initial condition is

T (x , t = 0) = T0 (5.14)

and the boundary condition

T (x = 0, t) = Texternal. (5.15)

The solution can be derived using the Laplace transform [95] to yield

T (x , t) = (Texternal − T0)erfc
�

x
2
p
κt

�

+ T0. (5.16)

The solution was used to model direct contact between tissue and metal heated
to Texternal = 100 °C, as metal is considered to have a high enough conductivity
that surface contact resistance can be disregarded [93, 96].
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Linear heat transfer at the surface The initial condition is the same as
above, but the boundary condition is

K
dT
d x

�

�

�

x=0
= H(T (x = 0, t)− Texternal). (5.17)

The Laplace transform can again be used to yield [95]

T (x , t) =
�

erfc
�

x
2
p
κt

�

− exp(hx + h2κt)erfc
�

x
2
p
κt
+ h
p
κt
��

(Te−T0)+T0,

(5.18)
where h= H/K . With H →∞, the solution converges to (5.16). The solution
was used to model the temperature evolution when there is a thin interface of
steam between the tissue and the metal causing an effective surface contact
resistance R= 1/H > 0 which impedes heat transfer to the tissue.

Arbitrary start temperature profile, heat exchange with the air at the sur-
face The initial condition is

T (x , t = 0) = T (x) (5.19)

and the boundary condition is the same as (5.17) with H → Hair and Texternal→
Tair. Using a Green’s function formalism yields the solution [95]

T (x , t) =

∫ ∞

0

u(x ′, x , t)T (x ′)d x ′ + κh

∫ t

0

u(x ′ = 0, x , t −τ)T0dτ, (5.20)

with
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. (5.21)

The solution was used to model the temperature development in the tissue
after the metal was lifted.



Chapter 6

Summary and discussion of
included work

6.1 Wound model analysis

The main bulk of the thesis work consists of analysis of reflectance and fluores-
cence hyperspectral images of in vitro wound model samples. The data were
acquired by Ingvild Haneberg and Matija Milanic during Haneberg’s master
thesis work in 2014 [62]. The work here is split in two conference papers (pa-
per IV and V), two journal publications (paper I and II) and one paper draft
(paper III). Paper IV and V are supporting work with preprocessing techniques.
Paper II concerns the validation of an inverse photon transport model, while
the main data analysis is done in paper I and III.

The goal was to detect re-epithelialization and potentially other wound
healing processes within the samples using appropriate processing methods
on the images. The main motivation was that re-epithelialization should per-
turb the optical properties and have a recognizable influence on the reflectance
spectra. Remodeling of the extracellular matrix might have some influence on
the scattering and thus the reflectance, and should have influence on the fluo-
rescence spectra due to changes in the fluorophore distribution. It later became
evident that re-epithelialization caused major changes to the fluorescence in-
tensity.

Hyperspectral imaging is a suitable technique for basic research into the
relation between the wound healing processes and the reflectance and fluores-
cence. The full spectral range is available for relation to and understanding of
the changes in optical properties, and the spatial resolution gives a context for
the spectra. As discussed in paper I and III, it is expected that the work could
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result in simpler multispectral systems.

6.1.1 Initial fluorescence analysis

Originally, the focus was on the fluorescence data since they seemed more in-
teresting. The most prominent feature of these data was an apparent fluores-
cent peak shift from wound to intact tissue. Initially, we thought that the peak
shift could be attributed to changes in collagen composition. However, the peak
shift was not entirely consistent across the samples and measurement times,
and sensor noise combined with wavelength discretization effects made anal-
ysis challenging. Further, it was found that noise removal based on MNF led to
undesired mixing of the spectra.

Spline methods were tested for extracting the peak positions at a subreso-
lution level in a more objective way. The preliminary analysis here resulted in
a conference paper which presented a smoothing splines-based approach with
focus on recovery of noise-free spectra (paper IV). Analysis and visualization
was hindered by the presence of unwanted background regions, the removal
of which is a tedious affair unless automated by e.g. classification methods.
Background masking was investigated in paper V, and used as a preprocessing
method during fluorescence analysis and the later reflectance analysis.

It became apparent that the shifts in fluorescence could not be explained
by changes to the collagen composition alone, and it was suspected that the
data were influenced by the optical properties of the tissue. A complete char-
acterization of the reflectance data was therefore necessary in supporting the
fluorescence analysis.

6.1.2 Reflectance analysis and final fluorescence analysis

The reflectance characterization showed that the fluorescence results could be
related to corresponding changes in the reflectance data rather than intrinsic
changes to the collagen composition. The analysis and focus of the work there-
fore gradually shifted towards analysis of the reflectance data, which resulted
in the publication of paper I.

For the conclusions of paper I, and for investigating the correspondence be-
tween reflectance and fluorescence, it was necessary to understand the origin
of the changes in optical properties from wound to apparent healed and intact
skin. This necessitated the development of a specialized photon transport tech-
nique. This method was interesting to investigate more fully, and gave rise to
a more complete validation and investigation in paper II.
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Finally, the results of the fluorescence analysis, in light of the reflectance
results, were written up in paper III (draft) along with results on automated
wound detection in the reflectance data using both all and a smaller set of
wavelengths.

6.1.3 Included manuscripts

Paper I: Characterization of the reflectance data

A. Bjorgan, B. Pukstad, and L. L. Randeberg, “Hyperspectral characterization of re-
epithelialization in an in vitro wound model,” J. Biophotonics, vol. 13(10):e202000108,
2020

The goal of this paper was to characterize the spectral behavior in the re-
flectance data. The characterization was used to explain the influence of re-
epithelialization on the spectral properties, and understand the feasibility of
using hyperspectral imaging to detect re-epithelialization. An overview over
the development in optical properties could further be used to understand cor-
responding changes in the fluorescence.

This paper showed that cluster analysis could discern wounded skin from
intact skin and apparent re-epithelialized skin, and used decomposition tech-
niques to show the spectral behavior of either tissue type. Re-epithelialized skin
was found to be representable by wound spectral features with a suppression
and sloping that could be attributed to an epidermis placed on top of wound-
like tissue. Further, a temporal development in the optical properties was found
and characterized.

This paper represents basic research into the spectral behavior of the wound
model, and is a prerequisite in doing informed development of classification
techniques.

Contribution I preprocessed and gained overview over the data, selected
analysis methods, did the data analysis and wrote most of the manuscript,
with input from and discussion of the results with Lise Lyngsnes Randeberg
and Brita Pukstad. Pukstad and Randeberg were involved in the design and
planning of the original experiment, and Pukstad prepared the samples. Ran-
deberg and I had discussions on reorganizations of the paper, and we discussed
the structure, the presentation and the conclusions.
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Paper II: Development of an inverse photon transport model for the upper
tissue layer

A. Bjorgan and L. L. Randeberg, “Exploiting scale-invariance: A top layer tar-
geted inverse model for hyperspectral images of wounds,” Biomed. Opt. Express,
vol. 11(9):5070–5091, 2020

Some of the conclusions in paper I depended on the evaluation of wound re-
flectance spectra with an epidermal layer added. This evaluation was required
for understanding the origin of the changes in the reflectance spectra in the dif-
ferent regions of the images. Such evaluation would normally require modeling
of individual constituents and layer compositions in both dermis and epider-
mis, but this was complicated due to the lack of complete knowledge on the
tissue composition and chromophores for the in vitro samples.

Scale-invariance had turned out to be a general obstacle during earlier
stages of the thesis work. Faced with the above modeling problem, this led
to the realization that the scale-invariance limitation could be used to avoid
modeling the wound tissue. By exploiting scale-invariance, the deeper layer
of a two-layer model could be set to any absorption/scattering matching the
reflectance of the wound tissue, and adding an epidermal layer was simply
evaluated by setting epidermal layer properties in the top layer. This was suf-
ficient to understand the spectral properties in paper I, but the technique was
interesting by itself, which led to paper II.

The scale-invariance properties and the validity of adding the epidermal
layer were investigated by Monte Carlo simulations. It was suspected that also
the top layer had a similar scale-invariance, and the uniqueness of the solution
was investigated. It was found that some of the parameters had to be fixed,
but once fixed, the method represented a useful approach in investigating the
property variation of the re-epithelialized tissue layer. We also combined this
approach with decomposition of the wound spectra by PCA to more easily rep-
resent any wound spectrum by a few number of components, and the final
technique ended up as a direct combination of a statistical technique and a
physics-based model.

Contribution I came up with the method, set up simulations to test the method
and wrote most of the manuscript, with input from Lise Lyngsnes Randeberg.
We had discussions on the structure of the manuscript and the presentation
and conclusions of the work, and the method and the results.
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Paper III: Supervised wound reflectance classification and fluorescence
data analysis (manuscript draft)

A. Bjorgan, B. S. Pukstad, and L. L. Randeberg, “Identification of wound healing
in an in vitro wound model,” To be submitted

Paper I originally included investigation of supervised classification evalu-
ated through cross-validation, in order to demonstrate the utility of the found
spectral behavior to separate the tissue types. This quickly fell out of scope,
and was combined with the fluorescence analysis in the current paper, focus-
ing solely on identification of wound healing through the use of fluorescence
and reflectance hyperspectral imaging.

The hypothesis was that fluorescence could be used to detect changes to the
extracellular matrix, and reflectance to detect re-epithelialization, and that the
former was detectable by peak shifts. The changes in optical properties identi-
fied in paper I co-varied with the peak changes in the fluorescence, however.
The inverse model of paper II was used to estimate optical properties in the re-
epithelialized parts of the reflectance images, and these were used to show that
the peak shift could be attributed to the same change in optical properties. The
peak shifts were thus actually a marker of re-epithelialization rather than colla-
gen fluorescence changes. Temporal changes in the fluorescence could further
be attributed to corresponding temporal changes identified in paper I.

The fluorescence provided a good visualization of the re-epithelialization,
however, and confirms the wound extents found by the reflectance analysis.
Further, the fluorescence as a probing tool is interesting since the light sources
are effectively placed beneath epidermis, rather than illuminating epidermis
and then being back-scattered from dermis.

As for the reflectance analysis, it was found that classification could be
performed on a reduced wavelength subset using linear methods like LDA, and
that a multispectral system targeting these wavelengths could be feasible.

We decided to wait with submission of this manuscript until the experiment
could be repeated with histologies, for testing of the classification algorithms
on independent data, and confirmation of the behavior identified in the previ-
ous papers. The manuscript is still included in this thesis for completeness.

Contribution I preprocessed and analyzed the fluorescence data, with initial
suggestions from Lise Lyngsnes Randeberg on which paths to take. I did the re-
flectance analysis, and wrote most of the manuscript, with input from and dis-
cussion of the results with Lise Lyngsnes Randeberg and Brita Pukstad. Pukstad
and Randeberg were involved in the design and planning of the original exper-
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iment, and Pukstad prepared the samples. Randeberg and I had discussions on
reorganizations of the paper, and we discussed the structure, the presentation
and the conclusions.

Paper IV: Smoothing splines for fluorescence spectra

A. Bjorgan and L. L. Randeberg, “Application of smoothing splines for spectroscopic
analysis in hyperspectral images,” Proc. SPIE, vol. 10873, 2019

Subresolution peak extraction was needed for the initial wound fluores-
cence analysis in order to remove possible causes for apparent inconsistency
in the peak shift estimates. The work resulted in this conference paper. It was
presented in a 15 minute talk at SPIE Photonics West 2019.

Any splines method is capable of subresolution peak extraction due to the
existence of and possibility for systematization of analytical first and second
derivatives. The smoothing splines method is especially suitable due to the ob-
jective way it can find a smooth function through noisy data. The paper mainly
tested the method for its ability to recover noise-free fluorescence spectra from
the data, and compared the results to MNF. Methods were given for how to
apply smoothing splines to hyperspectral data and for estimating the tuning
parameter for each individual pixel.

We wanted to save the final presentation of the wound fluorescence data
for a later journal publication (paper III), and the method was instead applied
to autofluorescence data acquired from atherosclerotic plaques. The method
was less optimal here since the fluorescence data had coincident absorption
peaks in the fluorescence peaks, but the performance was comparable enough.

Paper III found that apparent inconsistencies in the peak estimates could be
attributed to corresponding perturbations to the optical properties of the tissue.
Applying smoothing splines to extract peak estimates at a sub-resolution level
was an important step in verifying that there were systematic changes in the
peaks that could not be attributed to noise.

Contribution I identified the method and applied it to the data, and wrote
most of the manuscript, with input from Lise Lyngsnes Randeberg. We had
discussions of the structure and conclusions of the manuscript and the presen-
tation of the work, and the method and the results.

Paper V: Automatic selection of regions of interest

A. Bjorgan and L. L. Randeberg, “A random forest-based method for selection of
regions of interest in hyperspectral images of ex vivo human skin,” Proc. SPIE,
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vol. 10889, 2019
Building a toolset with modules and tools that could help streamline and

automatize data analysis was one of the important parts of the work, and re-
sulted in various Python tools and utilities written in C++. Scripting as much
of the data analysis as possible and avoiding manual work was important for
speeding up the analysis process.

One of these techniques was to more conveniently remove background
from the images and focus on tissue analysis, based on a least-effort proce-
dure. Background removal can be reformulated as a classification problem.
Many classification methods are appropriate, but the random forest classifier
is particularly interesting since it has few modeling assumptions and is reported
to be able to yield good results despite a low number of training data samples,
and does not have to be tuned.

In hindsight, more linear/constrained methods like LDA or SVM could have
yielded good performance due to the high separation between the background
and tissue classes. SVM would require tuning, however, and LDA would fare
worse in case of complicated data formations with multiple implicit clusters.
Random forest represents something which is easily trained on training sam-
ples, and is a least-effort approach to this preprocessing step. The main goal is
to quickly segment a few images with similar properties rather than construct-
ing a general method that would work on any future image.

The results were presented as a poster presentation at SPIE Photonics West
2019. The method was also applied to fish data in collaboration with SINTEF
Ocean, where fish tissue spectra were extracted across a large dataset contain-
ing much background.

Contribution I applied and compared the methods on the data, and wrote
most of the manuscript, with input from Lise Lyngsnes Randeberg. We had
discussions of the structure, presentation and conclusions of the work, and the
methods and the results.

6.2 Burn wound model analysis

Lukasz Paluchowski collected hyperspectral burn wound data as a part of his
PhD work in 2014 [21, 71, 72]. Controlled burn wounds were induced in two
pigs using heated metal, and hyperspectral images were acquired. The ultimate
goal of this experiment was to investigate whether hyperspectral imaging could
be used for early separation of superficial and deep partial thickness burns, i.e.
different gradings of second degree burns. The hypothesis was that the changes
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to collagen and perfusion should have an influence on the reflectance spectra
that could be detected, and give a burn severity discrimination performance
similar to SFDI. This previously led to a collection of papers which used unsu-
pervised classification to find spectrally similar regions across the images [21]
and the development of an inverse photon transport model to estimate scatter-
ing and perfusion properties [71].

The results were challenging to interpret, however, in part due to the high
heterogeneity of the wounds. We wanted to revisit the data, investigate this
more closely by returning to basic principles, and understand the relations in
the data rather than attempt to fulfill the original obligation directly. Basic un-
derstanding of the data could then be used to understand whether the original
goal is feasible. It was desired to make the most of the already collected data
rather than subjecting new pigs to the same burn procedure.

Further, understanding the heterogeneity is an interesting application of
heat transport modeling. Application of heated metal to the tissue represents
a specific boundary condition, and the existence of regions with much lower
damage grading within the burn region indicates that the boundary condition
is changed. Supervised classification could be used to investigate the full spatial
extent of the heterogeneity, which could be related to the burn wound modeling
results.

The work here resulted in a single manuscript described below.

6.2.1 Included manuscripts

Paper VI: Analysis of burn data

A. Bjorgan and L. L. Randeberg, “Combining hyperspectral classification and heat
transport modeling: An investigation of experimental burn wound heterogeneity,”
In submission

Only the images collected at the last timepoint were subjected to analysis
due to the immediate availability of histology damage gradings. Supervised
classification methods were selected based on cross-validation over histology
locations. A major result was that classification of the final burn level and vas-
cular damage had low accuracy, whereas collagen damage classification corre-
sponded to natural clusters in the data. Simpler methods like LDA were suffi-
cient for collagen damage classification.

A forward photon transport model along the lines of the model in paper II
was used to demonstrate likely changes to the optical properties: Progression
of collagen damage could be related to the introduction of a blood-less layer
down to a depth. Perfusion properties were thus the main responsible factor
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rather than the expected collagen scattering changes. This was in line with a
heat transport characterization of the damage types and the literature, where
expected damage thresholds for complete destruction to the blood vessels co-
incides with the collagen destruction.

The final burn level labeled in the histology data was found to be more re-
lated to the deepest histological finding for vascular damage than any other of
the properties. The hyperspectral data was more related to the collagen damage
grading, however. This discrepancy could explain the impaired performance of
direct classification on burn level in both the current and previous studies on
the same data.

Two alternative boundary conditions to explain the burn heterogeneity
were proposed: lowered contact temperature in regions of the metal, and the
addition of an impeding steam interface between the metal and the skin. The
wound induced at each contact time had both severe and less severe damages
present. Arrhenius damage integrals were used to characterize the tempera-
ture development necessary to induce the most severe damages, which were
then used to estimate necessary changes to the boundary conditions to cause
the less severe damages within the same contact time. In light of the extent of
the classification maps, the steam interface explanation was found to be more
likely. A too-large region with a too-low contact temperature would be required
for the lowered contact temperature explanation, which would otherwise be
homogenized by the high conductivity of the metal.

Contribution I preprocessed the hyperspectral data and set up classification
and cross-validation frameworks, and obtained the hyperspectral analysis re-
sults. Lise Lyngsnes Randeberg had the idea for the heat transport model, and
suggested boundary conditions, model setup and ideas for how we could asso-
ciate temperature development with actual damage. I chiseled out the details,
did the simulations, gained overview over the histology data and characterized
the damage. I wrote most of the manuscript, with contributions from Rande-
berg. We had discussions on the structure of the manuscript, the results, the
conclusions, and how the work should be presented.
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Chapter 7

Conclusions and further work

The work in this thesis has been focused around analysis of data collected from
two main applications of hyperspectral imaging. One of the major decisions
during the work was a move to Python, which enabled use of established ma-
chine learning libraries. Use of memory mapping enabled automatic swapping
of hyperspectral data in and out of memory and convenient data access. To-
gether with some command line utilities, this enabled fast high-level analysis
across full datasets.

The in vitro wound model study found that re-epithelialization caused a
suppression and sloping of spectra similar to spectra sampled directly from
the wound, in line with the expected re-epithelialization process. The sloping
could be used as a feature for classification. An inverse photon transport model
was developed specially for characterization of the re-epithelialized layer by
exploiting wound spectra and scale-invariance. Fluorescence spectra excited at
355 nm were found to be influenced mainly by optical property changes rather
than changes in fluorophores like collagen, confirming that re-epithelialization
is the main healing process in this model.

Supervised classification could be applied for collagen damage classifica-
tion in the burn wound data. These damages were primarily related to what
seemed to be perfusion properties higher up in the tissue than the deepest
found histological damage. Heat transport modeling was successfully used to
characterize the damage, and could support the hyperspectral data analysis
and help understand the burn heterogeneity.

The work in this thesis was originally motivated by recent developments
and uses of CNNs, but the main focus has been on traditional machine learn-
ing techniques. Simpler models are easier to train and understand, and these
techniques were found to be sufficient for the tasks at hand. Application to

39



40 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

single pixel spectra further enables attribution to physical processes. CNNs are
still a promising path for future studies. Retraining existing networks for image
classification to other applications using transfer learning is a viable approach
for the available data, which for example could benefit in vitro wound imag-
ing by e.g. training on spatial neighbourhoods at selected wavelengths that
enhance contrast of re-epithelialized tissue, but does not enable classification
of single pixels by traditional techniques.

The main candidate for future work is the in vitro wound model analysis.
The results and the developed techniques are promising, and reduced multi-
spectral systems that can either detect or enhance re-epithelialization could be
feasible. The in vitro wound experiment needs repetition with proper collec-
tion of histologies, however. Some plans were proposed in paper I, which need
follow-up. The developed photon transport model setup is novel, and could
further be made usable for in vivo wounds, but this needs more testing.



Appendix A: Software packages

Some of the software developed throughout the work of this thesis has been
made available on GitHub (❤tt♣✿✴✴❣✐t❤✉❜✳❝♦♠✴❜❥♦r❣❛♥✴♣❤❞❴✉t✐❧s✴).
Minor analysis/plotting scripts have not been included here, but can be made
available on request. For complete lists and descriptions, see the repository. A
general overview is given below.

C++ libraries:

• ❧✐❜s♣r❡❝tr❛❧: Library for representation of single spectra.

• ❧✐❜❤②♣❡rr❡❛❞: Library for reading hyperspectral data into memory, as
memory mapped arrays or to and from stdin/stdout.

Basic C++ command line utilities:

• ❤②♣❡r❴❝❛❧✐❜r❛t❡: Hyperspectral reflectance calibration, by specified
regions or by searching at the start or end of the image for the reflectance
standard.

• ❤②♣❡r❴r❣❜: Generate RGB images.

• ❤②♣❡r❴❝r♦♣♣❡r: Crop hyperspectral images.

• ♠♥❢: Application of the MNF transform.

• ❤②✈✐❡✇: Graphical user interface for scrolling through image bands.

The command line utilities were built with support for piping (e.g. ❤②♣❡r❴❝❛❧✐❜r❛t❡
✐♠❛❣❡✳❤②s♣❡① ⑤ ♠♥❢), and for bulk processing of multiple files (e.g. ❤②♣❡r❴r❣❜
✯✳❤②s♣❡①).

Python modules:
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• ❤②♣❡rr❡❛❞: Hyperspectral input/output functions. Reads into memory
mapped numpy arrays, which enables application of all libraries that sup-
port numpy arrays, e.g. scipy, sklearn, . . .

• ❤❡❛t❴tr❛♥s❢❡r: Implementation of heat transport models.

• ♠♥❢: MNF transform functions.

• ♣❤♦t♦♥❴tr❛♥s♣♦rt: Functions for obtaining absorption and scatter-
ing properties for skin, calculating diffusion model reflectance and some
prior work on inverse models.

• ♣r♦❝s♣❡❝❴✉t✐❧s: Input/output functions for reading OceanOptics Proc-
Spec files.

• ♣②♠❝♠❧: Python wrapper for MCML and GPU-MCML, compatible with
♣❤♦t♦♥❴tr❛♥s♣♦rt structures.

• r❛♥❞♦♠❴❢♦r❡st: Wrapper around sklearn’s RandomForestClassifier for
convenient separation of tissue from background, and a command line
utility for bulk separation.

• r❡❣✐♦♥❴s❡❧❡❝t♦r: Tool for selecting smaller regions from multiple hy-
perspectral files and collecting the region information in a single file.



Acronyms

CNN Convolutional neural network. 1, 39, 40

DMEM Dulbecco’s modified eagle medium. 10

GPU Graphics processing unit. 1, 24

LDA Linear discriminant analysis. 17, 18, 33, 35, 36

MNF Minimum noise fraction. 20, 30, 34, 41, 42

PC Principal component. 20

PCA Principal component analysis. 20, 21, 32

PRSS Penalized residual sum of squares. 17

RGB Red, green, blue. 10, 41

RTE Radiative transport equation. 23

SFDI Spatial frequency domain imaging. 1, 11, 26, 36

SVM Support vector machine. 18, 35

SWIR Short-wave infrared. 12

VNIR Visible to near-infrared. 12
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Abstract

In vitro wound models are useful for

research on wound re-epithelializa-

tion. Hyperspectral imaging repre-

sents a non-destructive alternative to

histology analysis for detection of re-

epithelialization. This study aims to

characterize the main optical behav-

ior of a wound model in order to

enable development of detection

algorithms. K-Means clustering and

agglomerative analysis were used to

group spatial regions based on the spectral behavior, and an inverse photon

transport model was used to explain differences in optical properties. Six sam-

ples of the wound model were prepared from human tissue and followed over

22 days. Re-epithelialization occurred at a mean rate of 0.24 mm2/day after

day 8 to 10. Suppression of wound spectral features was the main feature char-

acterizing re-epithelialized and intact tissue. Modeling the photon transport

through a diffuse layer placed on top of wound tissue properties reproduced

the spectral behavior. The missing top layer represented by wounds is thus

optically detectable using hyperspectral imaging.

KEYWORD S

exploratory data analysis, hyperspectral imaging, image processing, photon transport modeling,

re-epithelialization, tissue optics, wound healing

1 | INTRODUCTION

Standardized in vitro wound models are useful for
controlled investigation of re-epithelialization [1, 2],
as systematic research on in vivo wounds is other-
wise ethically challenging to carry out. Samples are

typically subjected to destructive histology analysis
in order to evaluate re-epithelialization, which makes
it difficult to follow the same sample over time.
Optical techniques like hyperspectral imaging could
provide a non-destructive and non-contact alter-
native.
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A spectral dimension that enables spectroscopy, com-
bined with a high spatial resolution suitable for imaging
of heterogeneous structures makes hyperspectral imaging
relevant for a wide range of biomedical applications
[3]. Examples include wound imaging [3–11], burn
wound imaging [9, 12], skin bruises [13], cancer diagnos-
tics and surgical guidance [3, 14]. The large amounts of
data generated by the technique require methods for
extracting relevant information. These methods should
avoid subjective evaluation and be automatic in order to
alleviate the effort in handling the data. The overall aim
of this study is thus the development of automated analy-
sis methods to enable use of hyperspectral imaging for
in vitro wound applications. Histologies were not avail-
able for the current study, which somewhat limits the
conclusions that may be drawn. The focus of the current
paper is therefore on observations of the optical behavior
in the available hyperspectral dataset.

Wound healing is a complex multistep process, which
involves triggers and biological mechanisms that are fully
outlined in Singer et al. [15] and Arnoux et al.
[16]. Keratinocytes migrate into the wound from the sur-
rounding tissue a few hours after the injury [15, 16]. The
keratinocytes start generating new epidermal cells after
1 to 2 days [15]. The re-epithelialization happens simulta-
neously with a remodeling of the collagen matrix due to
the migration of fibroblasts into the wound [15, 16].

The wound model used in this study is based on an
in vitro model setup developed by Jansson et al. [17] and
Kratz [2]. Their standardized model consists of circular
6 mm diameter samples of human breast tissue or
abdominal tissue that are prepared with 3 mm diameter

wounds using punch biopsy. These consistently re-
epithelialize by day 7 when embedded in Dulbecco's
Modified Eagle Medium (DMEM) containing 10% fetal
calf serum (FCS) with streptomycin (50 U/mL) and peni-
cillin (50 μg/mL) added [2, 17–22]. Both partial thickness
wounds (epidermis + superficial dermis) [17, 18] and full
thickness wounds (1-mm depth) [2, 19] re-epithelialize
by day 7 under these conditions. Samples completely sub-
merged in medium were found to be covered by a single
cell layer of keratinocytes over the 7 days, which then
started to stratify into a thicker epidermis [2]. Jansson
et al. [17] showed that submerged wounds and samples
with the wounds exposed to air had similar time-course
of the re-epithelialization. Exposed wounds had migra-
tion of more than one cell layer and a neoepidermis more
resembling a normal human epidermis by day 7 [17]. Sam-
ples of a submerged model are shown in Figure 1 for
illustrational purposes. Here, the healing wounds are
covered by keratinocytes after 7 days. Variations over this
wound model in similar media have been studied, for
example, 4 mm wounds in 12 mm skin samples (48% clo-
sure by day 4, 66% closure by day 16) [23] and 4 mm
wounds in 6 mm skin samples (52% closure by day
7, above 80% closure by day 12) [24].

Some prior work on optical characterization of in vitro
wound models exist. A similar wound model was charac-
terized using fluorescence imaging by Wang et al. [23, 25]
This study considered intrinsic fluorescence emission at
excitation/emission wavelengths 335/390 nm (collagen)
and 295/340 nm (tryptophan). This was done in order to
investigate re-epithelialization by epidermal extinction of
fluorescent collagen emission from dermis, and

FIGURE 1 Histologies from an unpublished study on a wound model similar to the wound model used in this paper: Day 7 of a re-

epithelialized sample (A, ×20 magnification), day 8 from re-epithelialized samples (B, D, ×10 magnification) and day 8 from non-healing

samples (C, E, ×10 magnification). The samples here were cut using 6 mm punch biopsy, wounds prepared using 3 mm punch biopsy. The

medium consisted of 1 mL DMEM with 10% FCS and penicillin and streptomycin added. Non-healing samples were treated with 10 μM CpG B
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proliferation activity in the newly formed epidermis by
tryptophan emission. The current study does not consider
fluorescence, but reflectance from a normal light source in
the visible range. However, mechanisms influencing the
reflectance would be similar to the mechanisms influenc-
ing the lack of collagen fluorescence emission in the re-
epithelialized regions. Randeberg et al. [26] did initial
characterization of hyperspectral images of a previous iter-
ation of the wound model used in this study. This initial
analysis was limited to considerations using the cosine dis-
tance and sample spectra. The current study seeks to do
more in-depth analysis using other statistical techniques
and extend the analysis by inverse photon transport
modeling. Finally, a 3D wound model constructed using
collagen and keratinocytes was characterized using hyper-
spectral imaging by Wahabzada et al. [27]. This represents
a different type of wound model, and mainly the fibroblast
migration activity rather than re-epithelialization was cor-
related with the hyperspectral data. The current study uses
similar cluster analysis to analyze the data.

A hyperspectral imaging setup typically acquires
reflectance spectra, that is, the amount of light reflected
and back-scattered off the imaged samples at different
wavelengths. The ability of the hyperspectral system to
sense changes in the wounds is dependent on the ability
of these changes to influence the reflectance. The reflec-
tance is determined by the optical properties of the tissue,
which is typically modeled as a multilayer structure with
absorption and scattering coefficients μa(λ) and μs(λ) in
each layer [28–31].

The high spatial and spectral resolution of hyper-
spectral datasets requires special techniques to handle
the large amounts of information. Common processing
techniques for biomedical hyperspectral imaging in the
literature include clustering analysis [5, 12, 27, 32–34],
use of decomposition or dimensionality reduction
methods [9, 32, 33] and supervised classification [10,
35–37]. Unsupervised cluster analysis is a first choice to
group similar reflectance spectra. Such analysis serves to
break apart the dataset and infer properties about wound,
re-epithelialized and intact tissue over time, and discern
the measurable optical differences of these tissues.
Decomposition methods like Principal component analy-
sis (PCA) can be used to investigate the spectral proper-
ties in a low-dimensional space. Supervised classification
techniques are useful for building classification models to
identify samples as wound or intact tissue based on train-
ing samples. Such methods yield classification rules that
can be investigated and compared against the similarity-
based unsupervised analysis results.

In this paper, all these techniques are in combina-
tion used to infer the properties of the different types of
tissue over time. This is valuable as a part of

exploratory data analysis. However, understanding the
clustering or classification is important for understand-
ing their general applicability. Explanations are not
readily offered up by these statistical methods alone.
Photon transport modeling serves as a tool to under-
stand the physics and relate the statistical results and
measurable responses in reflectance back to changes in
scattering and absorption, and finally changes in skin
constitution. The main feature separating wound from
re-epithelialized or intact tissue is missing upper layers.
These layers are therefore of special interest for charac-
terization of re-epithelialization.

For a semi-infinite, one-layered model, it can be
argued that the reflectance can be written as a function
of μa/μs [38]. The same is valid for the semi-infinite layer
of an N-layer model. This means that such a model is
uniquely defined only down to ratios between the absorp-
tion and scattering coefficients of the semi-infinite layer.
It is desired to see whether re-epithelialized tissue can be
explained by some absorbing and scattering layer added
on top of a model representing the optical properties of
wound. This can be done without having to completely
inverse-model the wound, by exploiting the scale-
invariance of the reflectance model.

The combination of statistical methods and photon
transport modeling serves to make hyperspectral imaging
a promising non-destructive technique for characteriza-
tion of in vitro wound models. In Section 2, sample prep-
aration and the image acquisition procedure are outlined.
The PCA method, proposed clustering method and super-
vised classification methods used for exploration of the
dataset, and the inverse modeling method, are given in
Section 3. Results of the clustering and the investigation
using PCA and inverse photon transport modeling are
then given in Section 4.

2 | MODEL PREPARATION AND
DATA ACQUISITION

Reflectance data were acquired using a push-broom
Hyspex VNIR-1600 hyperspectral camera (Norsk Elektro
Optikk, Lillestrom, Norway). The images were acquired
over the wavelength range 400 to 1000 nm, with a spec-
tral resolution of 3.7 nm. The pixel size on the sample
surface was approximately 24 × 24 μm. The camera sys-
tem acquires one line of the image at a time with an
acquisition time of 7.5 ms per line. A full image was
acquired by moving the samples under the camera on a
translation stage. Raw images containing three wells
and a reflectance standard consisted of 6300 image
lines, resulting in a total acquisition time of approxi-
mately 47 seconds. A tissue sample with diameter 8 mm
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would have an individual acquisition time of
2.5 seconds.

The reflectance data were acquired with illumina-
tion from two linear light sources (Model 2900 Tung-
sten Halogen, Illumination Technologies, New York).
Polarizers (VLR-100 NIR, 450-1100 nm, Meadowlark
Optics, Frederick, Colorado) were mounted on the cam-
era lens and the light sources in order to avoid specular
reflection. A Spectralon reflectance target (WS-1-SL,
Ocean Optics, Duiven, Netherlands) was included
within each image.

The samples were prepared from human abdominal
skin collected from a single donor during plastic surgery.
The project was approved by the regional ethical commit-
tee (REK-Midt-Norge), and informed consent was
obtained from the donor.

Six samples of the wound model and two tissue sam-
ples without wounds were prepared, all with total sample
diameter of 8 mm. Wounds were cut into the tissue using
3 mm punch biopsy on three of the samples, and 4 mm
punch biopsy on the other three samples. Wounded tis-
sue was lifted using suction for the former three samples,
and a cannula for the latter three samples, and cut using
scissors. Final samples were cut out from the donor tissue
using 8 mm punch biopsy. Due to heterogeneity resulting
from the sample preparation, the 3 mm wounds are not
circular and do not strictly have 3 mm diameter. For sim-
plicity, these are still referred to as 3 mm wounds.

The samples were placed in separate wells, on metallic
grids in order to avoid submersion of the samples. The
wells were filled with Dulbecco's Modified Eagle Medium

(Gibco), with fetal calf serum (10%), penicillin (50 μg/mL),
streptomycin (50 U/mL) and glutamine added. The
medium was changed after each imaging session. For more
details on the wound preparation, see Haneberg [39].

The samples were followed up over a period of
22 days. Images were acquired at day 1, 2 and then
every other day, yielding a total of 12 measurements for
every sample. RGB images over all samples are shown
in Figure 2, along with labels used in this paper. RGB
images are shown at the start, mid and end of the mea-
surement period in order to give an overview over the
available data. The samples were sorted in two trays
(tray I and III) and inherited the same labeling as the
trays for convenience. The samples with label III_* cor-
respond to 4 mm biopsy wounds, while samples with
label I_* correspond to 3 mm biopsy wounds. One each
of the samples without wounds were sorted along with
the 4 mm and 3 mm wounds, respectively. The intact
samples were included in order to evaluate shrinking.
These are not considered throughout the rest of this
paper.

The raw spectra were converted to reflectance, and the
images were subset to regions with size 600 × 600 pixels
centered on each sample. The tissue samples were seg-
mented from the background using a random forest classi-
fier, which has been tested for this purpose in a previous
study [40]. The classifier was trained on manually labeled
regions from sample I_5 at days 1, 16 and 22. Manually
selected regions containing both wound and intact tissue
were labeled as 'tissue', and non-tissue regions as
'background'.

FIGURE 2 RGB images of all samples at day 1, 12 and 22, constructed using the 615, 564 and 459 nm wavelength bands of the

hyperspectral images. Models with label III_* consist of one intact sample (III_1) and the samples prepared with 4 mm wounds, while

samples with label I_* consist of one intact sample (I_6) and the samples prepared with 3 mm wounds
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3 | PROCESSING METHODS

3.1 | Principal component analysis

PCA decomposes a dataset of size N observations × p fea-
tures in terms of p orthonormal components (loadings),
which transform each mean-subtracted observation into
new variance-maximizing coordinates (scores) by a linear
combination between the components and the original
features [41].

This method is used for dimensionality reduction
before clustering and for inference of important spectral
features in the wound model. In total, three main PCA
models will be constructed throughout this paper:

• As a pre-processing method in order to reduce the
dataset before clustering, one PCA model for each trained
clustering model.

• For investigation of spectral features of the samples
and corroboration of the clustering results. This model
was trained on wound and intact tissue at days 1, 2,
6, 12 and 22 across all samples.

• For summarizing the temporal-spatial developments
within the wounds. This model was trained on wound
spectra only, across all measurement times and samples.

3.2 | Unsupervised clustering analysis

K-means clustering was used to cluster the pre-processed
data using a high number of clusters (K = 25). The single
linkage distance was found between each possible pair of
clusters, that is, the distance between the two closest points
of each pair. The distances between cluster i and all possi-
ble clusters j were organized in a 25 × 25 distance matrix
and subjected to agglomerative analysis, in order to com-
bine the 25 clusters down to two spectrally distinct clusters.

A clustering model was trained for each single sample
across all measurement time points, as illustrated in
Figure 3. The use of K-Means as the core method enables
classification of unseen data. Each trained clustering
model could therefore be used to classify all other sam-
ples according to its cluster definitions. This was done in
order to reduce computational requirements, investigate
the stability of the approach by varying the subjected
dataset, and finally increase the robustness by combining
the assigned clusters through a majority vote.

The images were found to have level variations in the
obtained spectra due to changes in illumination. The
clustering was found to yield clusters corresponding to
different illumination conditions rather than spectral
changes unless the level changes were properly
suppressed. Spectral derivatives have earlier been used in
spectroscopy [42] and hyperspectral imaging [43–47] as a

preprocessing technique to better target interesting spec-
tral features rather than level or illumination variations.
The first order spectral derivative of a reflectance spec-
trum y(λ) is given as y0 λð Þ= dy λð Þ

dλ . For simplicity, the deriv-
atives throughout the paper are taken with respect to the
band index rather than the wavelength λ.

Smooth numerical estimates of the derivatives can be
obtained by Savitzky-Golay filtering [48]. The filter essen-
tially fits polynomial functions to the data in a sliding-
window fashion, which can be efficiently implemented as
a convolution operation. Third degree polynomials and a
window length of 21 were used in the filter. These param-
eters were by visual inspection found to yield smooth
enough spectra (low variance) without smoothing over
important spectral features (low bias). The derivative fil-
ter was followed by a PCA transform in order to reduce
the dimensionality of the data, before clustering finally
was applied.

3.3 | Supervised classification

A random forest classifier [49, 50] is used as a standard
classification method, as it is simple and sufficiently
robust without needing special pre-processing treat-
ments, parameter tuning or many assumptions on the
data [49–53]. The classification method can in addition
compute feature importances, and show which wave-
lengths are used the most during classification, which is
valuable for further exploration of the data.

The classification model was trained on examples of
wound and intact skin from a single wound model sam-
ple across all measurement times, and its wound bound-
aries were compared against the boundaries obtained
from the clustering analysis. The method was trained and

FIGURE 3 Clustering setup: the clustering method is trained

on all measurements of a sample and applied to the rest of the

samples, producing a variation in the final clustered regions
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compared on the reflectance spectra and the first and sec-
ond derivatives of the spectra.

3.4 | Inverse photon transport modeling

It is desired to investigate whether the optical proper-
ties of apparently re-epithelialized tissue can be
explained by the optical properties of wound with some
extra layer on top that represents epithelium. This is
done in order to strengthen the findings of the statisti-
cal analysis.

The scale-invariance of the one-layer model enables
the wound to be represented by any μa and μs which obey
the given ratio that reproduces the wound reflectance.
Inserting these properties into the semi-infinite layer of a
two-layer model lets the boundary conditions of the
upper layer be the same as they would be against some
arbitrary multilayer model representing wound. This
then enables investigation of an upper layer without hav-
ing knowledge of the constituent layers of the wound
tissue.

In practice, the following algorithm is used:

1 Pick a wound reflectance spectrum.
2 Use a semi-infinite, one-layer model to estimate μa/μs.
3 Assume some μs, reuse μa, μs in a two-layer model to

reproduce the correct boundary conditions between
the first and second layers of the two-layer model.

4 Find the properties of the first layer by minimization

of
P R−Rmeas

Rmeas

� �2
.

The properties of the first layer will not be unique.
The approach is mainly used to show that some diffuse
layer with the correct ratios can be added on top of the
wound tissue properties to yield the reflectance from re-
epithelialized tissue. The basic geometry of the approach
is shown in Figure 4.

4 | RESULTS AND DISCUSSION

The clustering model is first presented and established in
Section 4.1 by use of RGB images, principal component
analysis and supervised analysis. The apparent clustering
rules are investigated in Section 4.2 using an inverse pho-
ton transport model to characterize optical properties. The
temporal development in optical properties of the samples
is characterized in Section 4.3. The main results are finally
summarized and discussed in Sections 4.4 and 4.5.

4.1 | Establishing a spectral clustering
model

4.1.1 | Comparison of clustering results
and RGB images

In lieu of histologies and until a spectral behavior has
been established, visual indicators of re-epithelialization
must first be established. Close-ups of the RGB images
for days 2 and 22 for sample III_5 are shown in Figure 5,
with the original wound boundary indicated with arrows
in both figures. The general behavior was visually similar
for the other samples.

For day 2, the outline of the wound is indicated by a
transition from a brown to a pink area. The same outline
can be observed in day 22, but now as a darker brown line
which divides two similarly brown areas. This brown area
gradually transitions to a pink area. Clear pink areas are
assumed to correspond to non-healed wound tissue, brown
areas within the darker outline are assumed to be tissue
which has undergone re-epithelialization, while skin out-
side the darker outline is intact tissue. This establishes:
(1) the sample has likely partially re-epithelialized, with a
new apparent wound boundary well within the original
wound boundary, and (2) some basic markers for verify-
ing, for example, a clustering model by visual inspection.
It can be seen here that the old wound boundary at day
22 has similar extent as the original wound boundary,
indicating that there has been no or minimal wound
contraction.

Boundaries obtained from each clustering model as
applied to sample III_5 are shown in Figure 6. Most of
the clustering models agree on a given boundary across
the various samples. The disagreement is somewhat
larger at day 1. Mean distance between the majority vote
boundary and the boundaries of the respective clusters is
3.94 pixels at day 1 (standard deviation (SD) 9.97 pixels),
and 1.62 pixels at day 2 to 22 (SD 2.46 pixels) across all
wound model samples. Corresponding statistics for the
shown sample (III_5) are 2.34 pixels (SD 3.51 pixels) for
day 1 and 1.22 pixels (SD 1.52 pixels) for day 2 to 22.

FIGURE 4 Inverse modeling procedure. A one-layered model

is first fitted to the wound reflectance. Due to scale-invariance

considerations, the effect of adding an epidermis on top of the

wound tissue is evaluated by reusing these optical parameters in a

two-layer model
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Increases in both mean and SD at day 1 demonstrate a
higher uncertainty in the boundary. There are indications
of somewhat lower boundary deviations at day 8 to
14 (mean 1.36 pixels, SD 1.93 pixels) which increase back
to day 2 to 6 levels towards day 22. This is visually consis-
tent with the behavior illustrated for sample III_5 in
Figure 6, where a single cluster model boundary encom-
passes a larger area than the rest of the boundaries at day
22 but stays consistent with the rest of the boundaries at
day 6 and 12.

Across all samples, all models generally agree on a
cluster boundary well within the marks indicating the
original wound boundary, except for the first day, and
most of the boundaries encompass regions that can be
established by visual inspection to be the wound. The
regions within boundaries represented by this cluster are
therefore likely to correspond to non-reepithelialized
wound tissue.

For the shown sample (III_5), the region
encompassed by the boundary is smaller than the
expected size of the wound at day 1. The region size
increases towards day 8. This it at odds with the expected
wound development. Inspection of the left-out regions
reveals brown spots present only in the intact skin
regions, and a separate clustering run on day 1 gave only

minor differences to the cluster boundary. The left-out
regions are probably thus an artifact from the wound
preparation, where there has been removal of dermal tis-
sue with some epidermal tissue remaining.

The majority vote cluster size as a function of day is
shown in Figure 7 for all samples. All samples have an
increase in the apparent wound region from day 1 to day

FIGURE 5 Positions of the original wound

boundary as determined by RGB images

constructed from the hyperspectral images at

the 615, 564 and 459 nm wavelength bands, at

day 2 and 22 for sample III_5. The new wound

boundary at day 22 is somewhere along the

unclear, fuzzy region to the left of the original

boundary. The image values were raised to the

power of 0.4 in order to brighten the darker

details

FIGURE 6 The six cluster boundaries for sample III_5 across day 1, 2, 6, 12 and 22. All boundaries are plotted in black in order to

enhance contrast, and the variation in the borders is mainly shown through the thickness of the combined boundaries

FIGURE 7 Majority vote cluster size as a function of day.

Linear fits from day 10 and on are marked with dotted lines, and

slopes/re-epithelialization rates are written in the figure legend
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2. One sample (III_5) has a clear increase in wound size
over the first 8 days, while two (I_3 and I_4) decrease in
size from day 2 and on. The remaining samples (I_5,
III_4 and III_2) have a stabilization or slight decrease in
wound size until day 6 (I_5) or 8 (III_4 and III_2). Mean
surface coverage among all samples, with respect to the
maximum size of each combined wound cluster region, is
22% (SD 6%) at day 14, and 36% (SD 6%) at day 22. Mean
surface coverage rate is 0.24 mm2/day (SD 0.06).

4.1.2 | Spectral behavior over the cluster
boundary at day 22

In Figure 8, reflectance spectra are plotted across the
cluster boundary. The trends were found to be the same
for all samples, and only sample III_2 is shown for brev-
ity. The main trend which can be observed here is that
the spectra are skewed as the pixels transition from
wound into intact skin. The reflectance spectra at 600 nm
and up have slopes that descend within the wound, while
re-epithelialized and intact tissue spectra ascend. Simi-
larly, the reflectance below 500 nm is higher for the
wound and lowered for re-epithelialized and intact skin.
The cluster boundary seems to set a threshold for when
such suppression leads to a pixel being clustered with
intact skin rather than wound tissue.

Mean increase at day 22 in the spectral derivative at
650 nm from within each wound cluster to a 25 pixel
wide ring outside the wound cluster was found to be
0.0016 (SD 0.0002) across the various samples, and 0.0014
for the shown sample (III_2). Mean over spectral deriva-
tives at the same wavelength inside all wound clusters at
day 22 was 0.0001 (SD 0.0008), and 0.0018 (SD 0.0008) in
the 25 pixel wide ring outside.

4.1.3 | Comparison of clustering results
and PCA

PCA was run in order to generalize the correspondence
between clustered regions and the spectral features noted
above.

The loading plots are shown in Figure 9, while scores
of sample III_5 at days 1, 2, 6, 12 and 22 are shown in
Figure 10. All samples showed similar temporal develop-
ment. Scores for all samples at day 22 are shown in
Figure 11. The derivative PCA model showed the best sep-
aration between the spatial features of its two components,
and for brevity, scores from only this model are shown.
The reflectance scores of component 1 showed a mixture
of the behavior of component 1 and 2 of the derivatives,
while the reflectance scores of component 2 mainly cor-
responded to component 2 of the derivative model.

The second component of the reflectance PCA model
has an overall steep, negative sloping across the entire
spectral range, some of which is correspondingly
reflected in the second component of the derivative PCA
model above 600 nm. Scores of the second component
represent these spectral features. Derivative component
1 has a large amplitude from around 540 to 600 nm, with
a zero-crossing at around 560 nm corresponding to the
minimum at the reflectance loadings at the same wave-
length. This component therefore summarizes mainly the
behavior responsible for this minimum.

According to the spatial features of component 1, the
clustering boundary does not match what could seem to
be the real wound boundary at day 1 and 2 for the shown
sample in Figure 10 (sample III_5). However, component
2 shows a tight fit around within-wound textures and
characteristic values that are not present outside the clus-
ter boundary. The cluster boundary would therefore seem

FIGURE 8 Positions across the wound boundary at day 22 (left), and corresponding reflectance spectra (right). A single wound model

sample (III_2) is shown. The color used to mark a coordinate to the left is also used for the corresponding reflectance spectrum to the right.

Dotted lines are within the boundary of the wound cluster. The artifact described in Figure 9 has been removed by linear interpolation

(marked with brighter line color). The general spectral trends over the wound boundary (suppression, increased sloping) was found to be

similar for the other samples
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to have separated two distinct spectral behaviors, where
the inner region is represented by the right combination
of component 1 and component 2. This was visually con-
sistent for the other samples as demonstrated at day 22 in
Figure 11.

Thus, the clustering represents a collection of the spec-
tra that have steep, negative slopes, combined with a sig-
nificant presence of an absorption maximum at 560 nm,
in line with the spectra plotted over the boundary in the

previous section. Single-pixel spectra (not shown) confirm
the trend indicated by the PCA model.

The use of PCA as a data exploratory technique is
usually subject to whether its maximization of the vari-
ance can reveal useful information. This seems to be the
case for this dataset, though changes to illumination con-
ditions or changes to the dataset selection could change
the resulting PCA loadings and their order. The PCA
decomposition will not represent a perfect decomposition

FIGURE 9 PCA loading plots for reflectance (left) and derivatives (right). The peaks between 700 and 750 nm in the reflectance

loading plot are artifacts due to mismatch of the order sorting filter in the hyperspectral camera

FIGURE 10 Sample III_5 scores from the PCA model trained on derivative spectra, along with boundaries (yellow) obtained from

clustering analysis. First and second PCA component scores are shown in the first and second rows, respectively. The development was

similar for the other samples. Day 22 scores are shown for the rest of the samples in Figure 11

FIGURE 11 Day 22 scores for all samples from the PCA model trained on derivative spectra, along with boundaries (yellow) obtained

from clustering analysis. First and second PCA component scores are shown in the first and second rows, respectively
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of the data. There will be discrepancies due to the optical
features not being linearly separable. However, the gen-
eral spectral behavior can be inferred.

4.1.4 | Comparison between clustering
results and a supervised classification
model

A random forest classifier was trained on the derivative
spectra from manually labeled pixels well within and out-
side the wounds, as per a visual inspection of the RGB
images. The wound boundary results are shown for sam-
ple III_5 in Figure 12. The mean accuracy of the classifi-
cation results with respect to the clustering boundary was
98% (SD 1%) for sample III_5, and 97% (SD 2%) for all
samples. The boundaries obtained here are similar to the
boundaries obtained from the clustering. Thus, the
unsupervised clustering results are reproduced when
training a supervised model on examples of wound and
intact skin, partially confirming the soundness of the
unsupervised approach for these data.

The applied classification method, random forest, has
the possibility to reveal what features are used for deci-
sion making by investigating the feature importances.
These are shown in Figure 13. For raw reflectance, the
behavior between 400 and 500 nm is used the most, while
derivatives result in utilization of the slopes at 520 and
650 nm. For second derivatives, the turning points of the
reflectance at 500, 560 and 600 nm are used.

4.2 | Investigation of the re-
epithelialization influence by inverse
modeling

An intact epidermis has absorption and scattering spectra
that can be described by exponentially decaying models.
The properties of such an epidermal layer were fitted to a
region representing re-epithelialized tissue after using a

wound spectrum as a basis, in order to check whether it
could fully explain the transition from wound to appar-
ently re-epithelialized regions. The result is shown in
Figure 14 for sample III_5 at day 22.

The simulated spectrum shows a remarkably good fit
against the measured spectrum between 400 and 700 nm.
Some discrepancies are evident above 700 nm, indicating
that some minor changes to the scattering in dermis
would be needed for a perfect fit across the entire spectral
range. Due to coupling between the epidermal parame-
ters, the fitted properties are not unique. Regardless, they
demonstrate that the region between wound and intact
tissue has a reflectance spectrum which can be explained
by the addition of some diffuse layer on top of a dermal
layer with properties obtained from the wound tissue.

This then shows that this region likely has re-epit-
helialized, and that there are no other chromophores
involved in dermis other than those already seen in the
wound. The apparent absorption minimum towards
400 nm for re-epithelialized tissue, for example, is only
due to epidermal suppression. The dermal composition of
chromophores seems to be the same. The absorption
peak at 561 nm is just as strongly present in the wound
spectrum as in the re-epithelialized spectrum, but
suppressed by the added epidermis. Gradually altering

FIGURE 12 Wound boundary obtained from a random forest classifier trained on derivative spectra (black), compared against the

majority vote clustering results (red) for sample III_5. Boundary correspondence was similar for the rest of the samples

FIGURE 13 Feature importances as obtained from the

random forest classifier trained on reflectance, derivative and

second derivative spectra, respectively, compared against rescaled

reflectance spectra from wound and intact tissue
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the thickness of the layer or the absorption and scattering
magnitudes would thus transition the spectrum rep-
resenting wound into something more or less indistin-
guishable from intact skin. The increased positive sloping
and suppression of spectral features observed earlier is
then fully explained by the addition of this diffuse layer.

The strong, unsuppressed presence of the minimum
at 561 nm thus serves as a wound marker favored by the
random forest as applied to second derivative spectra.
Slopes between 600 and 700 nm likely are more robust,
however, due to the changes the tissues undergo during
the first days below 600 nm, as will be shown during the
next sections. This is reflected in the PCA components
shown in Section 4.1.3. Component 1 corresponds to the
unsuppressed minimum at 561 nm, but the sloping
between 600 and 700 nm partially represented by compo-
nent 2 decides the tightening of the cluster boundary.
The latter is likely more sensitive to the epidermal pres-
ence than just the suppression of the minimum at

561 nm. A thin epidermis would suppress the minimum
some, but has a larger influence on the slope between
600 and 700 nm. Likely due to illumination differences
leading to level changes in reflectance, reflectance classi-
fication favors the level at 400 to 500 nm which is signifi-
cantly suppressed by epidermis due to the high
absorption and scattering here.

4.3 | Characterization of the temporal
development in optical properties

4.3.1 | Mean wound spectra across all
times

In Figure 15, mean reflectance spectra from the wounds
are plotted. These have different overall heights, but the
same spectral characteristics at a given day are clearly
evident across samples.

FIGURE 14 Inverse modeling of re-epithelialized tissue using a wound spectrum as the basis for the dermal properties (left) and an

RGB image showing the corresponding spatial positions (right). Sample III_5 at day 22 is shown

FIGURE 15 Mean spectra from within all wounds during the first and last days. There is a systematic change in the spectra at the

400 to 500 nm wavelength region at day 1 to 4, which then stays the same until day 22. The artifact described in Figure 9 has been removed

by linear interpolation (marked with brighter line color). Spectra from 3 mm (I_*) and 4 mm (III_*) wounds have been split in separate rows

for increased clarity
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The spectral shapes change systematically from day to
day. On day 1, all spectra slope upwards from 400 to
500 nm. This slope changes gradually until day 4, where
it stabilizes to a flat, slightly curved appearance. All sam-
ples seem to have the same absorption peak at 561 nm
after the stabilization. Most of the samples have the same
absorption peak at the first day, while others show a flat-
ter spectrum at 500 to 600 nm.

Comparing against a reflectance spectrum obtained
from the medium, see Figure 16, it can be seen that the
absorption peak at 561 nm corresponds well with the
main absorption peak in the medium spectrum. The
medium spectrum also has slopes in the reflectance which
seem to correspond with the slopes of the wound reflec-
tance, except that they are wavelength-shifted with respect
to each other. However, since these are slopes and not
actual absorption peaks, they could easily be shifted by
changes in absorption and scattering spectra. The wounds
would seem to obtain the same spectral characteristics as
the medium over time. The medium feeds the skin tissue,
enabling re-epithelialization, which means that the
medium necessarily infuses the tissue. It stands to reason
that the skin should obtain similar spectral features as the
medium. This is likely difficult to verify, however. Intact
skin undergoes similar changes as wound, but not as
strongly pronounced. An early theory was that the
changes could be due to changes in cytochromes, but no
specific evidence has been found for this.

4.3.2 | Wound decomposition by PCA
across all times

The wound spectra were decomposed using PCA in order
to infer spatial variations that are averaged away by taking

the mean. Taking PCA of the wound reflectance was
found to mainly show spatial variations within the wound,
while taking PCA of higher order derivatives yielded com-
ponents apparently corresponding to the noted develop-
ments above. Only PCA of the second derivatives is
shown. Loading vectors are shown in Figure 17, while
scores of the two first components are shown in Figure 18.

The first loading vector has a large amplitude at
561 nm, corresponding to the high and positive curvature
of the reflectance here. The first component therefore
describes the influence of the minimum here. The mean
second derivative spectrum already had contributions from
the minimum, and negative PCA scores thus express sup-
pression of this, while scores close to zero and above
express presence. The corresponding component 1 scores
in Figure 18 show an inhomogeneous distribution across
the first day (two-peaked distribution with peaks at
−0.0050 and −0.0023, mean PCA score −0.0034, SD
0.0014), which changes to a largely homogeneous distribu-
tion over the entire wound at day 2 (single-peaked distri-
bution with peak at 0.0016, mean PCA score 0.0011, SD
0.0011). This partially explains the behavior seen in the
mean spectra in Figure 15, where some samples (sample
III_2, I_3, I_4 and I_5, mean PCA score −0.0030, SD
0.0013) apparently had more contributions from the mini-
mum at 561 nm than others (sample III_4 and III_5, mean
PCA score −0.0043, SD 0.0010) at the first day. This contri-
bution homogenizes and becomes stronger from day 1 to
day 2 (mean PCA score and SD 0.0011, 0.0011 for sample
III_2, I_2, I_3, I_4 and I_5, 0.0010, 0.0009 for III_4 and
III_5) in Figure 15.

Some of the wound spectra have demonstrated a “flat-
ness” around 540 to 580 nm at day 1, illustrated in
Figure 16. This behavior, and the further decrease in
absorption close to 400 nm, likely correspond to compo-
nent 2 of the PCA model. The positions of the maxima
and minima and corresponding curvature in the day
1 wound reflectance spectrum in Figure 16 indicate this.

FIGURE 16 Comparison between wound spectra at day

1 and 22 for sample III_5 and corresponding reflectance spectra

obtained from the medium. Important features of the medium

reflectance spectrum are marked by vertical lines

FIGURE 17 Loading vectors for the PCA model trained on

the second derivative of all wound samples
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PCA component 2 has a drop from day 2 (mean PCA
score 0.0009, SD 0.0007) to day 4 (mean PCA score
0.0000, SD 0.0006). There are indications in the score
images for component 2 in Figure 18 that the scores are
further reduced for some samples until day 8.

Thus, there is a temporal development of the optical
properties which continues until day 8 for some of the
samples. With respect to this, day 1 is a spectral outlier.

4.4 | Summary and discussion of the
main clustering results

A clustering of the data helps in separating important
spectrally distinct regions from each other and simplifies
further analysis. Inspection of spectra from selected
regions and a PCA decomposition demonstrates that the
clustering is consistent in separating two main spectral
behaviors from each other. The results were compared
against wound boundaries obtained from supervised
analysis and visual inspection of RGB images, which
demonstrate that the two clusters correspond to wound
and regions with some epidermis intact. Inverse photon
transport modeling further confirms the found spectral
trends.

A combination of K-Means and agglomerative cluster-
ing was used as the main technique. Cluster membership
in K-Means is determined by closest distance to the clus-
ter centers. The technique is therefore naturally extend-
able to classification of unseen data. This enables
training on different samples and subsequent combina-
tion of the clustering results. However, the same property
means that the clusters optimally should be spherical in
the image space. Investigation in a lower-dimensional
PCA space would reveal that the structures to be clus-
tered are elongated and twist throughout the image
space. K-Means is therefore unlikely to reflect the inher-
ent structure of the data by a number of clusters

corresponding to the actual, few clusters. Agglomerative
clustering is more suitable for such cases, but difficult to
apply to large datasets and does not readily extrapolate to
new data. As the best of two worlds, agglomerative analy-
sis was therefore successfully used as a technique to com-
bine the too-high number of clusters obtained from the
K-Means analysis.

Clustering methods are in general difficult to verify.
They are highly subject to preprocessing treatments,
choice of distance metrics and subjective evaluations
[41]. It is still possible to check the stability of such
approaches by varying the data subjected to clustering
[41]. Separate clustering models were therefore trained
on each wound model sample. Splitting across samples
was found to be the most natural way to split the data.
Training across all measurement times enables the
method to generalize across changes in the reflectance of
the samples during the first 4 to 8 days. Finally, applica-
tion to a single sample avoids merging of characteristics
of several wounds into the same cluster. Merging of
wound clusters instead happens more robustly with the
majority vote. The data variation yielded apparently sta-
ble and consistent clusters across all samples and days.

The K-Means clusters were merged down to two clus-
ters that overall seem to represent wound and re-epit-
helialized/intact tissue. Including a third cluster was
found to be challenging, as it was difficult to retain con-
sistency across all samples and measurement times. This
is to be expected in light of the inverse modeling results.
Different locations of and stages along the wound re-
epithelialization process yield different re-epithelialized
layer thicknesses. The layer gradually transforms the
reflectance from wound to intact tissue reflectance. The
main bulk is therefore best summarized by two clusters
with some implicit threshold in spectral behavior.

Spatial features in the RGB images were used for verifi-
cation of the hyperspectral clustering results. This means
that the RGB bands technically are sufficient to identify

FIGURE 18 Scores of component 1 (left) and component 2 (right) from the PCA model trained on second derivative of the wound

spectra, centered on and zoomed in on the wounds. All wound model samples (rows) across all measurement time points (columns) are

shown in order to illustrate the temporal change

BJORGAN ET AL. 13 of 17



similar degrees of re-epithelialization as in the hyper-
spectral results. The study on fluorescence emission by
Wang et al. [23] also seems to indicate, judging from the
figures, that there is a similar correspondence between the
RGB images of their study, and the re-epithelialization
indicated by their collagen fluorescence emission. The
hyperspectral system used in the current study acquires
images within the visible range. Band redundancy is
expected, which is the reason why techniques like PCA
are successful in compressing the information down to a
few component bands. The RGB bands sample informa-
tion at spaced intervals throughout most of the imaged
wavelength range. Redundancy will cause features in the
various bands to be present to a stronger or lesser degree
in the RGB bands. Further, the identified photon transport
mechanisms affecting the re-epithelialized tissue reflec-
tance will have impact on the RGB bands. The contrast
offered by the RGB images alone is weak, however, and
re-epithelialized tissue is identifiable mainly when coupled
with the hyperspectral analysis results. The spectral
dimension is needed when investigating whether visually
similar tissue parts should be included or not. There is also
a possibility for detection of subtler changes, though the
implicit threshold in the cluster analysis mainly cor-
responded with the visually observable features.

The end goal, a tool for identifying healing in in vitro
wound models, does not necessarily require the full spec-
tral dimension offered by hyperspectral imaging. There
are indications that a multispectral system with fewer
bands is feasible. These might not necessarily be the RGB
bands, but other bands that offer better contrast between
wound and re-epithelialized tissue. Initial studies using
hyperspectral imaging are necessary for understanding
the mechanisms affecting such bands, and for esta-
blishing a baseline for comparing such reduced systems.
Further, classification models can be built based on sin-
gle pixel spectra. This significantly eases the analysis for
larger bulks of data. Classification based on RGB or other
bands would require incorporation of spatial information
and less intuitive approaches like convolutional neural
networks. Hyperspectral imaging is then suitable as an
initial research tool to be replaced by less expensive and
tailored multispectral systems in the long run.

4.5 | Summary and discussion of the
physical interpretation of the results

A challenge with any hyperspectral dataset is the high
amounts of data, and automatized and objective methods
are required to extract the relevant information. This data
exploratory study has gained an overview of the optical
properties of the investigated in vitro wound model and

showed possible ways detection algorithms could be built
for automatic classification of unhealed wound tissue.
The missing top layer of unhealed wounds is an impor-
tant component of this.

Apparent re-epithelialized tissue regions have optical
behavior that through inverse photon transport modeling
has been shown to be consistent with the addition of a dif-
fuse layer on top of the optical properties represented by
wound tissue regions. The influence from the epidermal
layer can be characterized by a skewing of reflectance
slopes and suppression of the spectral features of the
wound. Derivative spectra can thus provide illumination-
insensitive and possibly donor-invariant features for classi-
fication. Re-epithelialization seems to be the main opti-
cally detectable feature, and other changes like migration
of fibroblasts or remodeling of the collagen matrix are
more subtle, undetectable or absent. Most studies on this
type of wound model have focused mainly on re-epitheli-
alization, and complete remodeling might not be expected
outside some expression of collagenase [22].

The modeling approach is promising. The properties
of re-epithelialized tissue can be probed without having
to consider full photon transport modeling of the dermal
tissue layers, by utilizing scale-invariance properties.
Properties like thickness could be inferred, but this has to
be investigated and verified further. However, knowing
that some diffuse layer with finite thickness can explain
the spectral differences of different tissue regions is suffi-
cient for the conclusions in this paper.

The change in reflectance over time indicates a
change in the optical properties of the tissues. The
change has been established to be related to the spectra
attaining the same spectral properties as the medium.
This leads to a confusion in the analysis. Spectra rep-
resenting wound for the later days are not necessarily
similar to spectra representing wound for the first day,
and the behavior results in some noise and discrepancy
in the day 1 clustering. Despite this, the still-present slop-
ing behavior due to epidermis has made the clustering
rather consistent.

It has been established that the samples converge
towards the same spectral behavior as the medium. What
they start out with is not as clear. Possible explanations
are absorption due to cytochromes, which in the absence
of blood would have a pronounced effect on the reflec-
tance, or absorption due to a residual blood content
which is gradually replaced with medium.

The analysis shows that the wound is re-epithelialized
from the edge and towards the center of the wound. Mul-
tiple cell layers are expected to migrate in this fashion
and quickly develop into a mature epidermis when the
samples are exposed to air [17], as opposed to the initial
single layer of keratinocytes expected from submerged
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samples [2, 17]. Glinos et al. [54] (8 mm samples, 3 mm
wound, DMEM, 10% FCS, air exposure) used optical
coherence tomography to study re-epithelialization in a
similar wound model, with a spatial resolution
corresponding to the current hyperspectral study. More
mature epithelium is shown to migrate over the wound
with a small tip of non-cornified epidermis extending on
the wound side of the epithelium. Wang et al. [23]
(12 mm samples, 4 mm wound, DMEM, 10% FCS, air
exposure) shows a correspondence between reduction of
dermal collagen fluorescence at 390 nm and wound clo-
sure. Extinction here would require the newly formed
epithelium to have similar absorption and scattering
mechanisms as the intact epidermis. Thus, it is likely that
the detected epithelium in the current study represents a
more mature epidermis with multiple cell layers. Imma-
ture epidermis might be expected at the very edge of this.
For example, Figure 5 indicates a more white-ish line
extending on the wound side of the newly formed epithe-
lium. This would be consistent in size with the findings
of Glinos et al. [54], but has to be investigated further.

The found time development of the re-
epithelialization is inconsistent with the expected devel-
opment of the model. Epithelium is detected at the very
edges of the wounds after day 8 to 10 for the 4 mm
wounds, and day 3 to 8 for the 3 mm wounds. Mean sur-
face coverage at day 22 is 36%. The 3 mm wounds should
be fully covered (100% surface coverage) by epithelium
already at day 7 [17]. The prepared wounds are heteroge-
neous in size, and two of the intended 3 mm sized
wounds are closer to 4 mm in size. Available data on
4 mm wounds in the same type of medium indicates
somewhat delayed wound coverage (48% closure by day
4 and 66% closure by day 16 [23], or around 50% closure
by day 7 and around 80% closure by day 12 [24]), but still
earlier and more complete epidermal coverage than what
is observed in the current study.

The development in optical properties indicates that
medium is diffused throughout the tissue. Delay in access
to nutrients due to the need for diffusion of nutrients
through the bottom layer could have delayed the re-epithe-
lialization. However, submerged wounds and wounds
exposed to air are expected to have similar time develop-
ment [17]. Full exposure to air over the entire tissue surface
[23, 55] or increased tissue sample size [23, 54, 55] does not
seem to cause similar delays in other studies. The large
number of consistent studies on 3 mmwounds in 6 mm tis-
sue samples [2, 17–22] shows that there is little variation in
re-epithelialization rate due to donor variability or donor
tissue location. The tissue samples rested on a metallic grid,
but it is unlikely that this should have any effect.

Histologies were not available for this particular
dataset. Wound tissue is transformed into tissue

reminiscent of intact tissue, and photon transport model-
ing shows that the spectral behavior is consistent with an
epidermal layer placed on top of wound tissue. However,
histological verification is necessary for final confirma-
tion of these results. The fact that the time kinetics of the
investigated samples seem far slower than expected
makes comparison to existing studies challenging.

The experiment has to be repeated, preferably with
histologies sampled at multiple time points during the
course of the experiment. This calls for a high number of
samples. Representativeness can be challenging due to
heterogeneity from the wound preparation method.
Eikebrokk et al. [1] developed a method for creating
more reproduceable wounds. These were superficial
wounds with the basal layer intact, which re-epithelialize
and stratify into a mature epidermis more quickly. In
addition to being more reproduceable, this could also be
useful for investigating the optical influence of the vari-
ous stages of layer stratification. This can be corroborated
back to the results of the current study. These wounds
behave somewhat differently, however, and wounds
more similar to the the wounds in the current study
should be included for verifying the mechanisms of the
epidermal migration. For simplification, only a single
wound size should be included.

A major difficulty identified in this study is the gen-
eral change in optical properties over the period where
re-epithelialization normally would be expected. Separat-
ing these from the re-epithelialization processes could be
important when the experiment is repeated, especially if
the normal time course of re-epithelialization is observed.
Incubating some of the models in 2% FCS rather than
10% FCS leads to viable tissue with no re-epithelialization
[2]. Such modifications could be used to evaluate optical
changes without interference from re-epithelialization.

5 | CONCLUSION AND
FURTHER WORK

Optical techniques like hyperspectral imaging could pro-
vide an objective, non-destructive and non-contact alter-
native to histology analysis for evaluating re-
epithelization in in vitro wound models. Appropriate
analysis methods are required for extracting information
about the wound coverage.

The different tissue types in the samples have been
separated and investigated using clustering analysis. This
analysis, along with corroborating techniques like super-
vised classification and PCA, significantly helped identi-
fying and generalizing important spectral features. Intact
tissue and apparently healing regions are characterized
by a suppression of and increased sloping in spectral
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features that are present in the wound reflectance spec-
tra. The use of a specially developed photon transport
model has shown that this behavior can be explained by
a diffuse layer of finite thickness placed on top of optical
properties representing wounds, which is consistent with
the expected re-epithelialization process.

The full characterization of the spatial and temporal
behavior enables further development of classification
and photon transport techniques that can be used to
detect and characterize wound re-epithelialization pro-
cesses. There is further a possibility that a multispectral
system with fewer bands can be feasible for detection of
re-epithelialization, which will be investigated in future
work. Histologies were not available for this study, how-
ever, and the experiment has to be repeated for final con-
firmation of the found behavior.
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Abstract: Detection of re-epithelialization in wound healing is important, but challenging.
Hyperspectral imaging can be used for non-destructive characterization, but efficient techniques
are needed to extract and interpret the information. An inverse photon transport model suitable
for characterization of re-epithelialization is validated and explored in this study. It exploits
scale-invariance to enable fitting of the epidermal skin layer only. Monte Carlo simulations
indicate that the fitted layer transmittance and reflectance spectra are unique, and that there exists
an infinite number of coupled parameter solutions. The method is used to explain the optical
behavior of and detect re-epithelialization in an in vitro wound model.
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1. Introduction

In vitro wound models are useful for investigation of wound healing in a controlled laboratory
setting [1–5]. However, it is challenging to monitor the actual healing in such models without
destructive histology analysis. Hyperspectral imaging is a technique providing a non-destructive,
objective method for characterizing such tissues optically.

Hyperspectral imaging has a spectral and spatial resolution that has been shown to be useful
for biomedical applications like wound imaging [6–14], burn wound imaging [12,15], cancer
diagnostics [6,16,17] and surgical guidance [6,18]. Statistical processing techniques are often
used to handle the large amounts of data [8,12,13,15,19–25]. The rich spectral content further
enables use of inverse photon transport modeling [26–32]. Such modeling techniques can be
used to interpret the data and relate spectral changes to changes in skin properties like blood
content and blood oxygenation through constrained fitting of optical properties. This indirect
way of estimating optical properties is considered to be ill-defined [6,33] since different media
can have similar reflectance spectra [33,34]. Further, absorption and scattering properties are
fitted to a single reflectance measurement [35]. A priori knowledge of the expected shapes of the
absorption and scattering restrains the problem somewhat [35], but there is still a basic ambiguity
resulting from a scale-invariance of the reflectance with respect to the absorption and scattering
spectra [33,34]. Other possibilities to restrain such models can be a valuable road of study in
order to obtain unique and robust estimates.

The tissue model used in this study was based on an in vitro wound model setup developed
by Jansson et al. [36] and Kratz [37]. Here, samples with wounds are prepared from ex vivo
human tissue and placed in a growth medium, which causes the wounds to re-epithelialize.
Characterization of the re-epithelialized layer is of special interest, e.g. the presence, maturity
and thickness of the layer. Photon transport modeling techniques could be used to extract this
information from the reflectance spectra.

Photon transport modeling of in vitro wounds can be challenging. The spectral characteristics
of the dermal part of the wound models are less defined than in normally circulated tissue due to
the lack of blood absorption, and the spectra are significantly influenced by the spectral properties
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of the growth medium [38]. However, in wounds, both regions with and without the upper tissue
layer are present. The spatial resolution of hyperspectral imaging makes multiple reflectance
spectra of each tissue type available as every pixel contains data with high spectral resolution.
This could potentially be used to restrain the model and target the epidermal layer specifically.

The main idea of the inverse modeling technique to be presented in this paper is that the basic
scale-invariant limitations of the reflectance modeling can be exploited to enable consideration
of the upper layers without having to completely model the lower layers. The availability of
reflectance spectra from both wound and re-epithelialized tissue then enables quantification of
skin properties in re-epithelialized layers, without the need to consider the dermal layers.

The basic method requires knowledge of an appropriate wound spectrum. The high number
of available wound spectra in a hyperspectral image makes selection of one unique spectrum
somewhat prohibitive. However, the same availability of multiple spectra with a high spectral
resolution makes it possible to use dimensionality reduction methods to remove redundant
information and represent the spectral information in a low-dimensional space [38]. Principal
component analysis (PCA) is such a method, which can decompose a dataset in terms of
orthonormal components (loadings) that can linearly transform each observation into new
variance-maximizing coordinates (scores) [39]. This technique has been used as a pre-processing
technique [40–42] and for investigation of spectra in a low-dimensional space [6,19,38]. The
method is used in the current paper to reduce a discrete wound spectrum choice to a continuous
choice of PCA scores that can be back-transformed to a wound-like spectrum using the inverse
transform. This enables the wound spectrum selection to be an efficiently evaluated part of
the model optimization. The main goal of this study is to validate a proof of concept of the
presented basic inverse modeling technique including the suggested PCA extension, and explore
the limitations and possibilities of this approach.

A simulation study is carried out using Monte Carlo simulations in MCML [43], which
represents a gold standard for photon transport simulations. The simulation study is used to
investigate and verify the assumptions that enable use of the inverse modeling method. The
uniqueness and accuracy of the fitted skin parameters are explored. With the findings of the
simulation study on uniqueness and parameter accuracy in place, the method is finally applied
to experimental data. Hyperspectral images of an in vitro wound model sample are used as an
example for the application of the technique.

The inverse modeling method and its basic assumptions are given in section 2.1, along with
the PCA-based modification appropriate for wound imaging. The simulation study used to verify
these assumptions and investigate the accuracy and uniqueness of the inverse modeled parameters
is outlined in section 2.2. Information on the hyperspectral wound dataset used to demonstrate
an application of the method is given in section 2.3. Finally, results and discussion are given in
section 3.

The method represents a partial modeling approach which combines data-driven results with
photon transport modeling. Model fitting is mainly constrained to the upper layer, alleviating
some of the inherent undetermined nature of the inverse photon transport modeling approach. The
example given here is wound healing, but the method is generic, and can be used to investigate
any top layer given that reflectance spectra are available with and without modifications to or
removal of the top layers. Examples include characterization of burn wounds and estimation of
epidermal skin thickness in pre-term newborns.

2. Materials and methods

2.1. Inverse modeling setup

2.1.1. Fundamental assumptions

Two main assumptions form the basis of the method:
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1. The reflectance of a one-layer model can be written as a function of µa/µ′s (scale-invariance).

2. A multi-layer model and a one-layer representation yield identical reflectance values when
a top layer is added.

The method considers cases where reflectance spectra are available from two regions, with and
without a top layer. Given the first assumption, the reflectance from the region without the top
layer is represented using a one-layer model by estimating its corresponding µa/µ′s ratio without
having to consider their actual forms. From the second assumption, using these properties in the
deeper layer of a two-layer model can be used to represent the reflectance from the region with the
top layer. The skin properties of the top layer can then be fitted without considering the deeper
layers if the optical properties of the top layer are known. Insertion of one-layer properties from
the region without the top layer into the two-layer model ensures that the boundary conditions
towards the top layer are correct. The basic model steps are shown in Fig. 1.

Fig. 1. Basic inverse model geometry. A one-layer model is fitted to the reflectance R0(λ)
from a region with the top layer missing. Due to scale-invariance, any absorption coefficient
µa and scattering coefficient µs obeying the required ratio are viable solutions. A top layer
can then be fitted to the model by reusing the optical properties in the deeper layer of a
two-layer model.

2.1.2. Photon transport model

A diffusion model with an isotropic source function [44] is used as photon transport model. The
main advantage of this model is its simple, analytic expression for the reflectance, enabling fast
evaluation during optimization. In addition, it can yield µa/µ′s directly from the reflectance
without iteration.

Theory Photon transport in biological tissue can be modeled by the radiative transfer equation
(RTE) [45]. Assuming an almost isotropic light distribution and isotropic source functions, the
time-independent RTE in a one-dimensional geometry is simplified to [44,45]

µaφ(z) − D
d2

dz2 φ(z) = q(z), (1)

where the diffusion constant is D = 1
3(µ′

s+µa) and φ is the fluence rate. A multi-layer medium is
assumed, with di describing the depth of layer interface i. With the source function in a layer i
given as [44]

qi(z) = µ′s,i exp(−µtr,iz)
i−1∏
j=1

exp(−µtr,jdj), (2)
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the solution for the fluence rate in the layer i is given as [44]

φi(z) =
δiµ

′
s,i

Di(1 − µtr,iδ
2
i )

exp[−µtr,i(z − di)]
i−1∏
j=1

exp[−µtr,j(dj − dj−1)] (3)

+ Ai1 exp(−x/δi) + Ai2 exp(x/δi). (4)

The boundary condition at the air-tissue interface is taken as j(z = 0) = Aφ(z = 0). The property
j is the photon flux. The boundary condition essentially relates the irradiance propagating back
into the tissue to the irradiance propagating out of the tissue by an effective reflection coefficient
[44]. A refraction index of n = 1.4 yields A = 0.17 [44]. It is required that limz→∞ φ(z) = 0. All
constants Aij can then be determined by using continuity in j(z) and φ(z) between each layer and
the boundary conditions above [44]. The diffuse reflectance Rd is found by [44]

Rd = j(z = 0). (5)

The last expression is obtained by considering the irradiance transmitted into the air. Analytic
solution for a two-layer model can be found in Svaasand et al. [44]. The one-layer solution is
trivial to obtain.

Offset correction A correction constant is applied to the diffusion model reflectance. Compar-
ing the diffusion model with the same boundary conditions and optical properties as a Monte
Carlo simulation shows that the output reflectance from the diffusion model has an offset [46,47].
The assumption of an almost isotropic light distribution in the diffusion model leads to a less
forward-directed photon flux close to the surface, as compared to other source functions such as
the Delta-Eddington source function [47], and this yields a higher output reflectance contributing
to the observed offset. The isotropic source function is chosen for simplicity and convenience,
and it is considered as out of scope of this proof of principle to minimize this well known and
systematic offset. It is however acknowledged that it introduces systematic errors in the estimated
parameters.

The diffusion model and two-layer Monte Carlo spectra from model A and model C1 to be
described in section 2.2.1 were compared with equal input parameters. An offset correction of
0.036 was found to minimize the average root mean squared error (RMSE) among all spectra.
The offset correction is demonstrated in Fig. 2. On average, the RMSE between the model C1
Monte Carlo spectra in section 2.2.1 and corresponding diffusion model spectra were 0.037
(standard deviation 0.003) and 0.005 (standard deviation 0.001) before and after offset correction,
respectively.

2.1.3. Inverse modeling method for skin

The main application of the method considers human skin with and without epidermis present,
such as in wounds. Construction of a two-layer model from a basis reflectance was outlined in
section 2.1.1. The properties of epidermis are then fitted to the reflectance from the region with
the top layer. Python was used for development of the technique.

Melanin is assumed to be the main absorber in epidermis in the visible range [45,48,49].
Minor absorbers include carotene, lipids, cell nuclei and filamentous proteins [50], and are
often modeled using a bulk background absorption [31,44,51,52]. A small amount of blood is
sometimes included in the epidermis to account for the non-planar geometry of the papillary
dermis [44,51,52]. For simplicity, neither of these are included in the current model. The
epidermis is assumed to consist of a single layer with melanin as the absorber as shown in Eq. (6)
and a scattering corresponding to Eq. (8), along with a defined layer thickness.
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Fig. 2. Demonstration of empirical offset correction of the diffusion model reflectance.
Model C1 in section 2.2.1 was used for the demonstrated examples, with the lowest possible
parameter choices used for the upper reflectance spectrum, and the highest possible parameter
choices for the lower reflectance spectrum. The RMSE between Monte Carlo and diffusion
model spectrum was reduced from 0.036 to 0.006 for the upper spectrum, and from 0.043 to
0.007 for the lower spectrum. The Monte Carlo simulations were run with 1000 000 photons
per wavelength.

The objective function to be minimized was chosen to be the RMSE between measured
reflectance and simulated reflectance, relative to the simulated reflectance. The function
minimize from the Python package scipy.optimize was used to minimize the objective
function, using L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
box constraints) as the optimization method. The parameters were bounded, and they were
rescaled to values between 0 and 1 in order to make them comparable. The fitted epidermal skin
parameters are listed in Table 1.

Table 1. Parameters to be fitted during optimization, along with their lower and upper bounds and
the scaling factor applied before they are input into the optimization method.

Property Lower bound Upper bound Scaling Unit

Layer thickness, d1 0 500 500 µm

Melanin absorption, µa,m,694 0 2000 1000 m−1

Scattering, µ′s,Ray,500 0 5000 5000 m−1

Scattering, µ′s,Mie,500 1 5000 5000 m−1

Scattering, bMie 0 4 4 -

2.1.4. Modifications to the technique for application to wounds

A modification of the inverse model was used for hyperspectral images of wounds, as the
appropriate basis spectrum for a given re-epithelialized tissue sample is not known a priori. It
was desired to let selection of the wound spectrum be something which could be fitted during
optimization rather than iterating through the possible choices.

A PCA transform with three components is applied to spectra from the wound region.
This reduces all possible wound spectra down to a combination of three score parameters
and corresponding PCA loading vectors. Three additional parameters were input during the
optimization. These were used as PCA scores and inverse transformed to construct an artificial
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wound basis spectrum onto which an epidermis was placed. This allowed the inverse model to
represent a wound spectrum that could be fitted during optimization.

The PCA scores were then fitted along with the rest of the parameters. The fitted scores were
bounded within the min/max range of the scores as transformed from the original wound spectra.
Reconstructed wound basis spectra were constrained to non-negative values, effectively changing
the optimization method to SLSQP (Sequential least squares programming).

2.2. Simulation study

2.2.1. Simulation setup

GPU-MCML [53,54] was used to simulate reflectance spectra from a skin-like geometry. NVIDIA
GeForce GTX 670 was used for GPU parallelization. Wavelengths from λ = 400 to 850 nm were
modeled with 3 nm discretization. 1 000 000 photons were used in each simulation. The total
run time for a full spectrum was between 12 and 22 seconds. All simulations were run with
pencil beams incident on the skin model, and the tissue was assumed to have a refraction index
of 1.4. The homogeneity of the model makes the total integrated reflectance equivalent with the
reflectance from the same model illuminated with an infinitely broad beam. A layer thickness of
1 meter was used in order to emulate a semi-infinite layer.

Absorption properties The absorption in the top layer was modeled using an absorption model
for melanin [55]

µa,e = µa,m,694(λ/694)−3.46, (6)
where µa,m,694 is a parameter associated with the mean melanin content of the layer. Moderately
dark skin corresponds to an absorption in the range 500-900 m−1, while fair skin corresponds
to an absorption in the range 200-300 m−1 [44]. Assumed low and high values for melanin
absorption and epidermal thickness are listed in Table 2. For the dermal layers, the absorption is
modeled as

µa,d = µoxy(λ)coxy + µdeoxy(λ)cdeoxy, (7)
where µ{oxy, deoxy}(λ) are the absorption spectra for oxygenated and deoxygenated blood, respec-
tively. Assumed low and high values are listed in Table 2. These cover blood volume fractions
from 2% to 10%, and oxygenations from approx. 20% to 80%. The inverse model avoids
consideration of this layer, and the main goal is to model a layer with absorption and scattering
magnitudes representing human skin.

Table 2. Low and high values for parameters varied in the Monte Carlo simulations.

Layer Property Low value High value Unit

Upper Layer thickness, d1 50 500 µm

Upper Melanin absorption, µa,m,694 150 700 m−1

Upper/Deeper Scattering, µ′s,Ray,500 1500 3000 m−1

Upper/Deeper Scattering, µ′s,Mie,500 1500 3000 m−1

Deeper Oxy. blood fr., Coxy 0.01 0.05 -

Deeper Deoxy. blood fr., Cdeoxy 0.01 0.05 -

Scattering properties For scattering, the following model is used:

µ′s = µ
′
s,Mie,500(λ/500)−bMie + µ′s,Ray,500(λ/500)−4. (8)

The parameters µ′s,Mie,500 and bMie describe Mie scattering. Examples of values for ex vivo
human skin are 1800 m−1 and 0.22, respectively [56]. The parameter µ′s,Ray,500 describes Rayleigh
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scattering. Example of an ex vivo value is 1700 m−1 [56]. Low and high values are listed in
Table 2, and are assumed to represent the expected magnitudes in human skin. The parameter
bMie is kept constant at 0.22 [56] across all simulations. This parameter is expected to vary
[57], however, changes in the coefficients were thought to represent a similar change in the
wavelength-dependency that could test recovery of bMie. Further, the reflectance was found to be
less sensitive to changes in scattering in the epidermal layer, and full parameter recovery of bMie
was not expected. For simplicity, the parameter was not varied in the simulations.

Model geometries Geometries used in this paper are shown in Fig. 3: One-layer geometry,
multi-layer geometry and two-layer geometry. The following simulations were run:

• Model A (one-layer model): All combinations of deeper layer parameters in Table 2 were
used, yielding in total 16 varieties.

• Model B (multi-layer model): Deeper layer parameters in Table 2 were randomly picked
in each of the layers in a three-layer model. Layer thicknesses were set to 150 µm. The
simulation was run with and without an additional top layer with thickness 100 µm, melanin
content 300 m−1 and the low scattering parameters in Table 2.

• Model C1 (systematic two-layer model): Lowest deeper layer parameters in Table 2 were
used for the deeper layer. The thickness of the top layer was varied between 100, 150, 200,
250 and 300 µm, the melanin content between 150, 300 and 700 m−1, and all combinations
of the scattering values listed in Table 2 were used. This yielded in total 60 varieties, or 12
spectra per layer thickness step.

• Model C2 (random two-layer model): The properties of the deeper layer were randomly
selected among the deeper layer parameters listed in Table 2. Parameters corresponding
to the lowest scattering values were selected for the top layer, while melanin in (6) and
thickness were randomly selected from a uniform probability distribution bounded by the
lower and upper values in Table 2. 50 model varieties were sampled.

Fig. 3. Model geometries used in the Monte Carlo simulations.

2.2.2. Verification of modeling assumptions

Two main assumptions for the technique to be applicable were given in section 2.1.1.
The model A simulations (one-layer models) above yield, over the various wavelengths, a

large range of possible combinations of µa (65 to 6714 m−1) and µ′s (1517 to 5237 m−1). The
assumption that the reflectance can be written as a function of µa/µ′s is checked by plotting the
output reflectance values as a function of µa/µ′s across all simulations.
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The model B simulations (multi-layer models) yield the reflectance from a complex multi-layer
model with and without a top layer. An empirical Monte Carlo model was constructed for looking
up µa/µ′s given a reflectance value through the use of a Savitzky-Golay fit and an interpolating
natural cubic spline. This model was used to find the µa/µ′s ratio for a one-layer model from the
complex multi-layer reflectance. A µ′s was assumed (µ′s = 1000m−1), and a µa was calculated
from the ratio. The assumption that a multi-layer model with an extra top layer is indistinguishable
from a fitted one-layer model with the same top layer is then checked by comparing the latter
model with an extra top layer to the original model with the same top layer.

2.2.3. Uniqueness of the inverse model solution

Diffusion model simulations were run in order to investigate whether multiple optical parameters
could yield the same R, and find the shape of the relation among the optical properties, if any.
A reflectance (R = 0.6) was picked, and a µa/µ′s ratio (1/200) was set in the deeper layer of a
two-layer model. Top layer thicknesses ranging from 10 to 500 µm and scattering coefficients
ranging from 10 to 100 000 m−1 were put into the top layer. The absorption coefficient necessary
to yield the assumed reflectance were derived for each parameter combination.

The uniqueness of the obtained skin parameter solution was then investigated. The inverse
model was run repeatedly on the same simulated spectrum from model C1 with randomly
generated start parameters in order to see whether it was possible to reach the same global
solution.

2.2.4. Accuracy of the inverse modeled parameters

In addition to investigation of the uniqueness of the solution, it is desired to determine the
accuracy of the inverse modeled parameters as compared to the input parameters in the Monte
Carlo model. Three variations of the inverse model were run on the model C1 simulations:

1. Fit a single parameter, with all parameters except for one fixed. This estimates a baseline
accuracy of the inverse model for each parameter.

2. Fit all parameters simultaneously.

3. Fit only thickness and melanin content, with scattering parameters fixed.

Model C2 picks epidermal and dermal parameters randomly across a continuous range, and
is suitable for evaluating the parameter resolving performance, evaluating at multiple basis
spectra and evaluating the case where the basis spectrum is not known. The same epidermal
scattering parameters are used, representing a case where the epidermal scattering is known to be
homogeneous. Here, three new cases of the inverse model were run:

1. Set the scattering parameter to the true parameter, estimate melanin content and thickness.
Evaluates the inverse model error when the scattering is known.

2. Set the scattering parameter to the results from multi-parameter optimization on the
first spectrum, estimate only melanin content and thickness for the rest. This outlines
the estimated parameter behavior when the scattering is unknown but known to be
homogeneous.

3. Set the scattering parameter to the true parameter and use the PCA inverse model in
section 2.1.4 to fit the rest of the parameters. Here, all spectra without epidermis were
used to fit a PCA transform, and the PCA transform is used to find a best basis spectrum
for the spectrum at hand during optimization.

These tests should then elucidate the accuracy of the inverse model under various conditions,
from which conclusions may be drawn about its application to real measurement data.
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2.3. Experimental tests

Hyperspectral acquisition Reflectance data were acquired using a push-broom Hyspex VNIR-
1600 hyperspectral camera (Norsk Elektro Optikk, Lillestrom, Norway). The images were
acquired over the wavelength range 400-1000 nm, with a spectral resolution of 3.7 nm and an
integration time of 7.5 ms per line of data. The camera has been radiometrically and spectrally
calibrated using light sources with known characteristics. The radiometric calibration was used
to apply correction factors to the images.

The reflectance data were acquired with illumination from two linear light sources (Model
2900 Tungsten Halogen, Illumination Technologies, New York). Polarizers (VLR-100 NIR,
450-1100 nm, Meadowlark Optics, Frederick, Colorado) were mounted on the camera lens and
the light sources in order to avoid specular reflection. A Spectralon reflectance target (WS-1-SL,
Ocean Optics, Duiven, Netherlands) was included within each image and used to convert the raw
data to reflectance spectra.

Wound model Samples of the in vitro wound model were prepared from human abdominal
skin. The project was approved by the regional ethical committee (REK-Midt-Norge), and
informed consent was obtained from the donor. The sample used for demonstration in this study
was prepared with a 4 mm wound using punch biopsy, and the full tissue sample was cut using 8
mm punch biopsy. The sample was incubated for 22 days in Dulbecco’s Modified Eagle Medium
(Gibco, USA), with fetal calf serum (10%), penicillin (50 ug/ml), streptomycin (50 U/ml) and
glutamine added. Hyperspectral images were acquired at day 1, 2 and then every other day, and
the medium was changed every imaging session. The wound was exposed to air by resting the
sample on a metallic grid, in order to ensure development and migration of multiple cell layers
[36].

Re-epithelialization visible by visual inspection of the RGB images occurred during the last
ten days. The sample was therefore investigated at day 12, 18 and 22.

A larger image subset over the wound boundary was selected at approximately the same region
across these three days. PCA transforms were fitted to a subset of wound spectra at each day that
by visual inspection and comparison of the spectra had no obvious re-epithelialization present.
Each wound subset consisted of 7400 spectra, and 3 PCA components were used (explaining
87.9% of the variance, on average 0.012 RMSE between raw and reconstructed reflectance
spectrum when running forward and inverse transforms). The modified PCA-based inverse model
in section 2.1.4 was then run on each pixel in the larger subsets in order to yield skin parameters
for the top layer.

3. Results and discussion

Simulations are presented in section 3.1. The modeling assumptions that form the basis of the
inverse modeling technique are investigated using Monte Carlo simulations in section 3.1.1.
The uniqueness and accuracy of inverse modeled parameters as compared to Monte Carlo
simulations are given in 3.1.2 and 3.1.3. The simulation results are then summarized and
discussed in section 3.1.4. The technique is used to estimate re-epithelialized layer thickness
from hyperspectral images of wounds in section 3.1.5, and the performance of the technique is
discussed in light of the findings from the simulation study.

3.1. Simulation study

3.1.1. Verification of modeling assumptions

Two assumptions were given in section 2.1.1. These were that the reflectance of a one-layer
model can be written as a function of µa/µ′s, and that a multi-layer geometry with a top layer has
a reflectance indistinguishable from a one-layer representation with the same top layer.
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The validity of the first assumption is confirmed in Fig. 4. The figure shows reflectance
spectra acquired across a wide range of one-layer models, and a corresponding plot over the
same reflectance values as a function of µa/µ′s. The latter clearly demonstrates that there is
a one-to-one correspondence between the µa/µ′s ratio and the reflectance. Other studies also
confirm this fact [34].

Fig. 4. Simulated Monte Carlo reflectance spectra as a function of wavelength (left), and
as a function of µa/µ′s (right). The reflectance is uniquely defined only down to the ratio
µa/µ′s. The simulations were run with 1000 000 photons per wavelength.

The second assumption was that a one-layer representation of a multi-layer model yields
identical reflectance to the multi-layer model when a top layer is added to either. This is
demonstrated in Fig. 5. Here, the reflectance from one-layer models constructed from each
layer of the multi-layer model are used to verify that none of the upper layers completely shield
the deeper layers. Further, the reflectance from the multilayer model with an epidermis on
top is compared to a one-layer representation with the same epidermis on top. As they are
indistinguishable, the second assumption is verified. The various optical properties at the different
wavelengths represent a wide range of layer combinations that all demonstrate the validity of
the second assumption. This is also mostly given by the fact that placing a layer on top of some
existing model will not modify the existing parts of the model. Here, the RMSE between the two
example spectra was 0.0010. Further testing the same assumption on 20 randomly generated
multi-layer skin models yielded an RMSE of 0.0015.

The consequence of the two assumptions is that a top layer can be investigated without having
to fully model the deeper layers, if measurements with and without the top layer are available.

3.1.2. Uniqueness of the inverse modeled solution

The combined results above means that the properties of the deeper layer are scale-invariant.
This is a consequence of the output reflectance having no units [34]. A top layer is independent
from the deeper layers, and a similar scale-invariant relation must exist between µa, µ′s and d1
in order to produce a unit-less reflectance at the output. The epidermal skin parameters will
therefore likely be coupled.

Parameter couplings between d and µa for several µ′s that yield the exact same reflectance are
shown in Fig. 6. This demonstrates that there exists an infinite number of parameter sets that
all yield the exact same reflectance, and sketches out the hyperplane on which the valid optical
parameters reside.

To check potential skin parameter coupling, the model was fitted at random start parameters
in Fig. 7. A clear relation between the estimated d1 and the melanin content is evident. Fixing



Research Article Vol. 11, No. 9 / 1 September 2020 / Biomedical Optics Express 5080

Fig. 5. Demonstration using Monte Carlo simulations that a multi-layer model and its
one-layer fit have identical reflectance spectra when adding additional top layers: Comparison
of the reflectance spectrum from a multi-layered model and the reflectance spectra from a
one-layer model constructed from each layer (top), and the reflectance from the multi-layered
model with an epidermis on top compared to a single-layer approximation with the same
epidermis on top (bottom). The consequence is that a one-layer model is appropriate for
representing a wound spectrum when evaluating the effect of adding an epidermis to the
wound spectrum. The simulations were run with 1000 000 photons per wavelength.

Fig. 6. Demonstration of the coupling between d, µa and µ′s in the top layer in the two-layer
diffusion model, for a single reflectance value. All these parameter combinations produce
the same output reflectance (R = 0.6).
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the scattering to the true parameters yields the same solution regardless of the start parameters.
The relation is less clear between the estimated d1 and the scattering parameters, but there are
indications of a noisy quadratic relation similar to the melanin content relation. The scattering
parameters were not found to influence the reflectance as much as the other parameters within
the varied range, which can explain the noisiness of the relation. The lack of influence can be
observed in Fig. 6, by the relations here being significantly changed only for larger scattering
coefficients.

Fig. 7. Results from fitted inverse model at random start parameters, demonstrating the
coupling of the fitted parameters. All parameter combinations produce the same reflectance
spectra. Top left: Estimated layer thickness versus estimated melanin concentration. Top
right: Estimated layer thickness versus scattering parameters. Bottom: Estimated layer
thickness versus fit RMSE. Fitted parameters at random start parameters for thickness and
melanin, with the scattering parameters fixed to the true scattering parameters, are marked
as "Fixed scattering" in the plots.

The RMSE shows that each of these solutions are identical with respect to the simulated
reflectance. Fitting all unknown parameters at the same time is therefore not expected to yield a
unique solution.

The found parameter non-uniqueness can be argued from the scale-invariance between µa, µ′s
and d1. The absorption coefficient µa is here modeled as a varying parameter multiplied by a
fixed wavelength-dependency. Since the wavelength-dependency is fixed, it can be argued that the
scale-invariance is translated into the parameter, and that this has a scale-invariant relation with
d1 and µ′s. The scattering model can be re-written to µs = A

[
f (λ/500)−bMie + (1 − f )(λ/500)−4] ,

where A = µ′s,Mie,500 + µ
′
s,Ray,500 and f =

µ′
s,Mie,500

A . Since f is a dimensionless number and the
wavelength-dependencies are fixed, the scale-invariant relation can be translated into A and to
the scattering parameters µ′s,Mie,500 and µ′s,Ray,500. A coupling between the skin parameters is
therefore expected.

All of these solutions are valid with respect to the stated problem, as all yield the same fitted
reflectance. It can be observed that they all apparently characterize a unique diffuse layer despite
the large variation in skin parameters. Each of the valid parameter sets in Fig. 7 were used to
model a single-layer model with finite thickness, and Monte Carlo simulations were used to
obtain reflectance and transmittance spectra. The spectra are plotted in Fig. 8. These are more
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or less identical. Deviations can be attributed to albedo-dependent inaccuracies in identical
diffusion model simulations that would lead to variations in a Monte Carlo simulation.

Fig. 8. Monte Carlo simulations of reflectance and transmittance through epidermises fitted
at random start parameters, 50 spectra in total. Multiple spectra overlap in the plot. The
simulations were run with 1000 000 photons per wavelength.

3.1.3. Accuracy of inverse modeled parameters

Systematic variation in input parameters (model C1) The error deviation results across the
different parameters are shown in Fig. 9 for three cases: Fit of the particular parameter only, fit of
all parameters simultaneously, and fit of melanin content and layer thickness only. Averages over
the corresponding reflectance errors between fitted and original spectra are shown in Fig. 10.

The case where all parameters are fitted simultaneously is first considered. Each fitted
parameter deviates over a large range (highest relative error, low/high input parameter: thickness
69%/35%, melanin content 61%/40%, Mie scattering 116%/38%, Rayleigh scattering 93%/45%).
This is to be expected due to the non-uniqueness of the solution. The variation in simulated
reflectance likely trigger various local minima along the scale-invariance.

Fitting a single parameter is more interesting. The deviation range for thickness and melanin
content is more limited for this case, due to the uniqueness of the solution (highest relative error,
low/high input parameter: thickness 17%/14%, melanin content 14%/15%). The deviation of the
scattering still matches the order of magnitude of the input, however (Mie scattering 122%/46%,
Rayleigh scattering 61%/29%). Changing the epidermal scattering parameters do not change the
reflectance as much as the absorption and layer thickness. The scattering can therefore not be
reliably estimated, even if it is the only fitted parameter. The mismatch between the diffusion
model and the Monte Carlo spectra at the true parameter leads to a bias in all parameters. Varying
the particular parameter only does not bridge the mismatch entirely, as seen in Fig. 10 by the
higher reflectance errors as compared to the cases where multiple parameters are fitted.

The parameter bMie was not varied in the simulations. Recovered values (input 0.22) ranged
from 0 to 3 in full parameter fit, and from 0 to 2 when it was the only parameter fitted.

Last, fixing scattering and fitting the rest of the parameters is considered. Fitting the thickness
and melanin at the same time apparently yields a less biased estimate than when considering
them apart. Further, the error is at most 80 m−1 for larger melanin contents (highest relative error,
low/high input: 12%/12%), while the thickness can be estimated down to an error below 14 µm
(11%/5%).

Random selection of input parameters (model C2) Parameter estimation results over random
skin models are shown in Fig. 11. Using the true scattering yields a reasonable estimate of
thickness and melanin content. The RMSEs are 17 µm (relative RMSE: 7%) and 57 m−1 (8%)
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Fig. 9. Inverse model deviations from the original modeled parameters, at lowest and
highest input value for each parameter: Layer thickness (top left), melanin content (top right)
and scattering (bottom). The range from minimum to maximum deviation illustrates the
expected error, while the offset of the mean deviation from the zero-line expresses bias. The
different cases are, respectively, a fit of the parameter at hand with all other parameters fixed
to the original parameters, a fit of all parameters simultaneously and a fit of layer thickness
and melanin content simultaneously with scattering fixed.

Fig. 10. Average absolute error as a function of wavelength between fitted and original
MCML reflectance spectra for the various cases in Fig. 9.
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for the thickness and melanin contents, respectively. This is in line with the deviations found for
thickness (below 14 µm) and melanin contents (below 80 m−1) when fitting these simultaneously
on the systematic variation earlier.

Fig. 11. Modeled parameters versus estimated parameters across Monte Carlo simulations
with random input parameters, fixed scattering. Two cases are shown: Scattering parameters
fixed to the true scattering (blue), and scattering parameters fixed to the parameters estimated
from a single reflectance spectrum (green). The former leads to reasonable estimates of
thickness and melanin content, while the latter leads to estimates that are only correlated
with the true parameters.

Exact knowledge of the correct scattering is challenging. It is expected that it must be
guessed in the application at hand. A case where the scattering is estimated from a single
reflectance spectrum and fixed for the rest of the spectra is shown in the same figure above. Both
melanin content and thickness estimates become biased, but they remain correlated with the true
parameters and retain variations that are similar to the case where the true scattering is used.
Although the scattering is not known and the thickness estimates are incorrect, this can then still
be used to detect relative thickness changes.

The method is to be applied to hyperspectral images of wounds, where the basis spectrum is
not known a priori. The modification of the technique, as outlined in section 2.1.4, was used
to fit basis spectra along with the rest of the epidermal skin parameters. The resulting RMSEs
were 16 µm (relative RMSE: 6%) and 50 m−1 (13%) for the thickness and melanin parameters,
respectively, similar to RMSEs in the case where the basis spectra are known exactly.

3.1.4. Summary and general discussion of the simulation results

The inverse modeling method presented in this paper could be a valuable tool for characterizing
hyperspectral images of re-epithelialized tissues in wounds.

The main inverse modeling assumptions have been verified. The reflectance of a one-layer
model can be written as a function of µa/µ′s. This means that any combination of µa and µ′s
yields the same reflectance as long as they obey the given ratio. Further, an arbitrary multi-layer
model can be represented by a one-layer model. Adding a top layer to either of these models
yields indistinguishable reflectance spectra. Thus, the top layer can be fitted and investigated
without considering the deeper layers.

It has been shown that no unique solutions exist for the top layer. The solutions are coupled,
however, and yield unique R(λ) and T(λ) through the upper layer that are common for all
parameter sets. The fitted, diffuse layer is therefore unique, though the lack of a known thickness
means that the optical properties are undeterminable. The wavelength dependency in R and T
can be valuable for drawing conclusions about the nature of the layer.
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The solutions for some of the skin parameters were found to be robust to changes in the
start parameters during fitting when at least one parameter was fixated. This indicates that
unique solutions may be possible to find in such cases. The reflectance was not found to be
very sensitive to changes in the scattering parameter within the expected range. The scattering
parameter is therefore a first choice for fixation. Fair estimates of the absorption parameter and
layer thickness can be found when given the correct scattering, and the main expected levels
can be discriminated. The method has been shown to yield reasonable relative estimates when
the scattering is homogeneous, but unknown. The parameter value will then vary around a
mean level within a small deviation, and be correlated with the true value. Such estimates are
useful for determining whether a given location has a top layer thickness greater or less than the
thickness of some other location. In practice, the scattering parameters can be fixed to e.g. the
low parameter values outlined in section 2.2.1. Another possibility is to let all parameters be fitted
simultaneously for a single spectrum in order to estimate a best fit for the wavelength-dependency,
and then fixate the scattering parameters to these parameters for the rest of the spectra.

The method is thus useful for in vitro wounds in two ways. First by demonstrating whether the
optical properties of various tissue regions can be explained by wound optical properties with an
epidermal layer on top. Second by evaluating relative layer thicknesses at different positions, and
further use these to explain spatial variations by layer thickness differences.

Melanin and thickness parameter fits have been found to have relative errors from 5 to 12%.
Inverse methods in other studies that estimate epidermal thickness and melanin content are
reported to have errors in the range of 9% for epidermal thickness and 8-15% for melanin content
[58], or 6-8%, 16-20% for epidermal thickness and below 0.5% for melanin content [31], subject
to modeling details. Relative errors of the current model are thus in the same range as methods
reported in the literature.

A weakness of the method is that the basis spectrum representing the deeper layers must
be known. While known exactly for the simulations, wounds have inhomogeneities that result
in no clear basis candidate. Taking a mean spectrum over the wound was not found to yield
correct wavelength-dependencies. Iterating over all possible wound spectra and selecting the
best candidate was found to yield better wavelength-dependencies and lower RMSEs, but this
is problematic for a larger number of pixels. Using a PCA transform to represent the possible
wound spectra was found to be a viable alternative that could be fitted during optimization.
This alternative has been shown to yield similar parameter RMSEs to the case where the basis
spectrum is known exactly. This thus represents a suitable modification to the technique for
hyperspectral images of wounds.

The layer uniqueness results show that a more direct approach technically could be taken in
obtaining the reflectance and transmittance of the diffuse top layer, using a similar approach as
the adding-doubling technique [59]. Such a technique would obtain reflectance and transmittance
directly. A separate characterization using a one-layer model with finite thickness would be
necessary for parameter estimation. The method in the current study obtains the parameters
directly as a part of the procedure. Obtaining reflectance and transmittance would have to be done
as a second step. Which method would be better to use would then depend on the application
and the desired end result of the technique. A variant of adding-doubling would more clearly
show that no unique parameters exist. It would not assume anything on the form of the optical
properties of the top layer during fitting, which could be valuable as a more independent result.
On the other hand, the form assumptions are necessary for enabling application of the PCA
modification of the technique.

For this study, an inverse diffusion model with an offset correction obtained from Monte Carlo
simulations was used. Its performance would thus be similar to an inverse Monte Carlo model
with some minor inaccuracies. This allows the technique to be evaluated in terms of the basic
idea rather than being overshadowed by systematic errors, while making the model suitable for
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hyperspectral applications. Similar corrections include a background absorption included by
Svaasand et al. [44] and blood volume fraction scaling done by Randeberg et al. [46]. The
offset correction is not expected to work outside the parameter range for which it was fitted,
and is thus not appropriate for any unknown spectrum. More elaborate correction schemes or
better model approximations are required. The model could be replaced by an empirical Monte
Carlo model, or a diffusion approximation more appropriate for the absorption/scattering ratios
in human tissue. Examples include the δ-Eddington/δ-P1 approximation [47,60]. The latter
will not eliminate the offset between the model and the Monte Carlo spectra entirely [47]. In
addition, it should be noted that correction factors developed for simulated reflectance spectra in
an integrating sphere geometry will not directly apply to reflectance spectra from hyperspectral
images. Model replacement is out of scope for the current study, where the main aim is to present
and demonstrate a proof of concept. Refining the core model will be a part of future studies.

The simulations have thus verified the applicability of the technique, identified limitations
and indicated what it can be used for. The technique can then be applied to experimental data.
Thickness estimation of re-epithelialized areas in hyperspectral images of wounds is used as an
example application.

3.1.5. Experimental results

In the following, hyperspectral images of an in vitro wound model sample were used to demonstrate
the inverse modeling technique. The PCA-based modification in section 2.1.4 was used to
represent the wound spectra using PCA during fitting. Layer thickness results over a hyperspectral
image subset at days 12, 18 and 22 during the wound healing process are shown in Fig. 12. Model
fits for selected spectra from day 18 are shown in Fig. 13.

The first main conclusion to be drawn from these results is that the spectral properties of the
edge of the wound are explained by a gradually increasing re-epithelialization. This is modeled
as a diffuse, epidermal-like layer placed on top of reflectance representing wound tissue. The
layer has been shown in the simulation study to be unique. The fitted model then works as
an explanatory model. The model shows that these regions have re-epithelialized, and that
the optical properties here are no more than the optical properties of the wound with a typical
epidermis on top. The main strength of the technique is that this can be shown without having to
consider the optical properties of the dermal layers. This is a major advantage of the method as
the optical properties of in vitro wound models are largely unknown. Minor changes that are
challenging to identify in the RGB images can be found by the technique, as demonstrated by a
thin epidermis apparently being present at the wound edge of day 12 in Fig. 12.

Depth profiles along lines placed at the approximately same position across days are shown in
Fig. 14. The estimated layer thicknesses here provide a relative estimate of the re-epithelialization
thickness, given that the scattering properties are homogeneous, as shown by the simulation study.
In vitro wounds which are exposed to air and incubated in the medium used in this study are
expected to have migration of multiple epidermal cell layers which quickly stratify into more
mature epithelium [36]. This migration occurs from the edge of the wound and towards the
center of the wound, with a tip of non-cornified epidermis extending on the wound side of a
more mature neo-epidermis [61]. Such behavior is consistent with the migration and increases
in thickness represented by the depth profiles. An epidermal thickness of magnitude 50 um is
expected [3], however, indicating that higher absorption or scattering magnitudes than the ones
currently used in the model are in order. Histologies were not available for the wound model
samples in this study, and repetition of the experiment is necessary for proper attribution of the
reflectance changes to corresponding changes in epidermal layer composition. However, the
epidermal layer presence indicated by the inverse model results is in agreement with statistical
characterization of these data [38].
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Fig. 12. Results from application of the inverse model to hyperspectral images of an in
vitro wound model sample. Three measurements are shown: day 12 (top row), day 18
(center row) and day 22 (bottom row). For each measurement, three images are shown:
the RGB image with a dotted square indicating the image subset considered in the inverse
model, the RGB values of the reflectance from the one-layer dermis reconstruction within
the subset, and the estimated thickness of the epidermis within the subset. RGB images
were constructed from the hyperspectral images at 615, 564 and 459 nm wavelength bands,
and were gamma-corrected for increased contrast. The white-pink region corresponds to
wound, while the brown region is intact tissue. Coordinates of the spectra plotted in Fig. 13
are marked in the day 18 image.

Fig. 13. Model fits at selected spectra from day 18. The labeled positions refer to the
positions used in Fig. 14, and are marked in Fig. 12. The peaks between 690 and 750 nm are
artifacts due to mismatch of the order sorting filter in the hyperspectral camera, and were
not fitted by the model. Fitted parameters were the melanin content, layer thickness and
scattering parameters in epidermis, and the three PCA coefficients for the wound basis in
dermis.
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Fig. 14. Estimated depth profile along lines placed at approximately the same region at
days 12, 18 and 22. The strongest colored plotted line is along the chosen line in the image,
while weaker lines of the same color are profiles offset 1 and 2 pixels from the main line.

Variations in absorption properties are not expected to be decouplable from thickness variations
for real measurements. The fitted inverse model is able to match the reality in the simulations,
which gives a clear minimum of the RMSE during optimization. More complex geometries or
changes to the assumed optical properties broadens the minimum for real measurements, due
to existence of multiple slightly sub-optimal solutions to the problem. Here, a melanin content
range from 150 m−1 to above 700 m−1 and corresponding layer thicknesses yielded identical
solutions. A clear minimum could only be found for high scattering levels, but in this case, this
led to compensation by unrealistically high melanin contents.

The only absorber included in epidermis was melanin. Inclusion of a background absorption is
expected to perturb the fitted parameter results, and could reduce the required melanin absorption
and make the minimum mentioned above more clear. This was not investigated further, however,
and tuning of such modeling details should wait until confirmation of the epidermal composition
by histology. This will therefore be investigated in future work.

The simulation study indicates that at least one parameter should be fixed. All parameters were
fitted simultaneously here, however, and no parameters were fixed, since the optimization seemed
to produce stable estimates of both absorption and scattering properties. Only minor instabilities
are evident in the day 12 profile in Fig. 14. This then shows that fitting a multi-parameter model
to some reflectance might apparently give stable, unique results - but only by accident. Care
must be taken, since the end result is dependent on the start parameters. Fixing at least one of the
parameters is necessary for trustworthy results, as shown by the simulation study. Yet, as the
parameters were stable in current case, these are the same results that would be obtained if e.g.
the scattering parameters were fixed. Estimated parameters are then expected to correlate with
the true parameters, as shown by the simulation study.

An infinitely wide beam illuminating a spatially invariant slab is effectively assumed in the
simulations. The width of the beam is sufficiently broad with respect to the extent of the wound
model sample, but the illuminated geometry is not homogeneous. Edge effects will be present in
sharp transitions of tissue types, and lead to escaped photons from one type of tissue into the
other. This will lead to an under- or over-estimation of thickness or absorption properties in
some parts [32], but this is unlikely to have a significant effect within the slowly varying parts of
the tissue. More investigation could be made in future studies into adjusting the model to the
measurement geometry.

PCA was used to find a low-dimensional representation of the wound spectra that could be
fitted during optimization. The PCA inverse transform with the selected number of components
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was found to be able to appropriately reproduce a given spectrum, and fitting the PCA scores
during optimization gave reasonable results in the epidermal parameters. The simulation results
indicate no significant decrease in estimation accuracy for the simulations. However, correctness
for measurements should be investigated further in future studies, as the method might need
tuning in e.g. number of components, or a different decomposition method than PCA might be
more appropriate. The method is promising, however, and combines a data-driven, statistical
approach to information extraction with physics-based photon transport modeling.

The method was tailored towards wounds, as the basis spectrum is available and can be used
to fit spectra with a top layer. With adaption it might be possible to use the technique to estimate
relative variations in the epidermal skin thickness of pre-term newborns and characterize burn
wounds. Further, the technique is suitable for characterizing strongly absorptive inclusions in
scattering media.

A spectrum from a single pixel was on average fitted in 0.66 seconds on a single CPU core,
and 0.14 seconds when naively parallelizing the fitting of different pixels across 8 CPU cores
(Intel Core i7-3840 QM, 2.80 GHz, 8 cores). The small subset of 50 x 40 pixels considered here
would take 4 minutes and 40 seconds to fit using naive multiprocessing. The method currently
runs a full, separate optimization of every pixel, which might not be needed. Future work will
include adaption of GPU parallelization to reduce the running times. The current method, albeit
slow, represents a proof of concept against which optimized solutions may be compared for
correctness, and represents a first step towards a more scalable algorithm.

4. Conclusion

A technique for estimating the skin parameters of the re-epithelialized layer in wounds has been
developed. The method has been found to characterize a unique diffuse layer defined by a unique
reflectance and transmittance spectrum. There exists an infinite number of valid skin parameters
that might characterize this layer. Fixing e.g. scattering parameters, however, can yield good
relative estimates of layer thickness. The method has been used to characterize a larger area
over the boundary of an in vitro wound model sample, showing the usefulness of the approach
in characterizing the re-epithelialized layer. Here, a PCA modification to find the optimal
wound basis spectrum has also been demonstrated, and represents a successful combination of
data-driven techniques with physical photon transport modeling.
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Abstract
It is a major clinical challenge to assess whether a wound or ulcer is healing. In vitro

wound models provide controllable means for investigating wound healing in a labora-
tory setting. The healing process can then be assessed systematically by e.g. histology.
However, histology is a destructive technique and optical techniques such as hyperspec-
tral imaging might be a better choice as it enables non-invasive characterization of the
same sample over time. The aim of this study is to identify key markers in hyperspec-
tral reflectance- and fluorescence images, and then use these markers for auto-detection
of wound healing. Factors like collagen formation and re-epithelialization are hypoth-
esized to affect the spectral data. A reflectance clustering model is used as a baseline
to analyze the wound development. This model is further expanded using supervised
classification techniques. Peak shift analysis and basic modeling techniques are used to
interpret the fluorescence before comparison to reflectance data. It is shown that fluo-
rescence peak properties can be used to visualize the wound boundary. The extracted
fluorescence properties are shown to be related to re-epithelialization rather than col-
lagen formation. Re-epithelialization can also be detected from reflectance derivatives,
which is shown to provide high cross-validation scores using a linear classifier needing
only a few wavelengths. It is thus found that fluorescence imaging provides uncompli-
cated visualization of re-epithelialization, while reflectance imaging yields features well
suitable for training of robust, but still simple wound classification techniques.

1 Introduction
In vitro wound models are useful for investigation of wound healing. The main goal of this
study is to find histology-free, objective and automatic means for identifying and evaluating
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wound healing in such models.
Previously, hyperspectral reflectance images of wound models followed over 22 days were

characterized [2]. The reflectance spectra from wounds differed from re-epithelialized and
intact skin in a consistent way. The changes in optical properties were attributable to an
increasing thickness of the epidermal layer [2, 4]. It is therefore hypothesized that automatic
classification of unhealed wound tissue is possible using hyperspectral imaging. A classifica-
tion map can in turn be used to calculate the wound size over time and identify whether a
wound model is healing.

Two main simultaneous processes are present during wound healing: Re-epithelialization,
and collagen formation. The former is detectable using hyperspectral reflectance imaging
[2]. Hyperspectral fluorescence imaging is a promising technique for detection of the latter.
The aim of this study is to identify key features in the fluorescence and reflectance data, use
these to characterize wound healing, and finally develop robust and automatic techniques for
such characterization. Wang et al. [20] has earlier used fluorescence spectroscopy to charac-
terize collagen and tryptophan in similar wound models at excitation/emission wavelengths
335/390 nm and 295/340 nm, respectively, to evaluate wound closure and image keratinocyte
proliferation.

Details on the wound model preparation and measurement setup is given in an earlier
study [2]. In short, 8 wound models were prepared: 2 without wounds, 3 with 3 mm sized
wounds, 3 with 4 mm sized wounds. These wound models were measured every other day
over a period of 22 days using a HySpex VNIR-1600 hyperspectral camera (Norsk Elektro
Optikk, Lillestrom, Norway). The samples were illuminated in reflectance mode by two linear
light sources (Model 2900 Tungsten Halogen, Illumination Technologies, New York) and then
in fluorescence mode by excitation by a 355 nm light source. The excitation wavelength was
chosen in order to excite collagen signatures within the wavelength range of the imaging
system.

2 Background

2.1 Wound healing

Wound healing is a complex multi-step process, which involves triggers and biological mech-
anisms that are fully outlined in Singer et al. [16] and Arnoux et al. [1]. For brevity, only
parts relevant for optical characterization are given here. Epidermal cells [16] (keratinocytes
[1]) start migrating into the wound from the surrounding tissue a few hours after the injury,
which after 1-2 days starts generating new epidermal cells from the edge and into the center
of the wound [16]. Fibroblasts migrate into the wound after four days, and start to deposit
a collagen matrix in the wound area, causing a remodeling of the extracellular matrix [16].
Collagen type III is produced, to later be replaced by collagen type I [1].
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Figure 1: Fluorescence emission spectra extracted from data made available by DaCosta et
al. [5].

2.2 Fluorescence emission at excitation wavelength 355 nm

Fluorophores present in human tissue that show significant fluorescence at an excitation
wavelength of 355 nm are NADH, collagen, elastin, lipo-pigments and various types of flavins
[10, 7, 19]. The recorded fluorescence is a combination of the emission spectra from these
fluorophores.

DaCosta et al. [5] has made available full excitation-emission matrices for some endo-
geneous fluorophores. Emission maxima at excitation wavelength 360 nm can be found for
collagen I (405 nm), IV (425 nm) and VII (430 nm), elastin (430 nm), FAD (525 nm),
flavin (525 nm) and NADH (465 nm). Some of these were shifted 5-10 nm when consid-
ering excitation at 350 nm, indicating that 355 nm excitation should have similar emission
spectra. Extracted spectra are shown in figure 1. Collagen and elastin maxima found in
the 400-440 nm wavelength region is consistent with peaks found after excitation at nearby
wavelength [19, 7, 8]. NADH emission maximum at 460 nm is also consistent with the litera-
ture [10, 14, 19, 21, 15]. Collagen as measured from whole tissue is claimed to have emission
peaks around 460 nm (excitation 370 nm) [7] or 436 nm (excitation 370 nm) [17], which
would be consistent with combinations of the emission spectra from the collagen and elastin
components as seen above. Lipo-pigments (not plotted) has an excitation maximum close
to 350-355 nm, and a corresponding emission spectrum with maximum at 550 nm [19].

Several types of collagen have been identified in human tissue, where only fluorescence
from types I, IV and VII are shown above. Mainly collagen types I and III are involved in
wound healing [1, 6]. The emission spectra of collagen I and III were measured by Laifer et
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al. [9] at excitation 325 nm. These were shown to have similar wavelength-dependencies,
with a peak maximum close to 400 nm. Fluorescence spectroscopy of collagen formation
in rat wounds also shows a peak in collagen fluorescence around 405 nm when excited at
325 nm [11, 12, 13]. Swatland [18] measured collagen types I and III excited at 370 nm.
Here, types I and III have the same spectral dependency, and type I matches the spectral
dependency in figure 1. Therefore, collagen type I and III are expected to have more or less
the same fluorescence emission spectra at excitation wavelength 355 nm.

3 Materials and methods

3.1 Fluorescence analysis techniques

The main hypothesis of the experiment was that formation of collagen could be detected
using fluorescent hyperspectral imaging, and that this could be used as a marker for wound
healing. Fluorescence of both type I and III start at some peak below 415 nm, having
exponential-like decay until above 500 nm. A spectral shift towards shorter wavelengths is
expected once collagen formation starts contributing to the fluorescence spectrum. The hy-
pothesis was further that the collagen formation therefore could be characterized by the peak
shift. Influence from the optical properties of the tissue is expected, and this is taken into
consideration by photon transport simulations and inspection of corresponding reflectance
spectra.

3.1.1 Peak shift analysis

Smoothing splines has been identified as a possible technique for peak position extraction
in fluorescence images [3]. The method is suitable for interpolation between the discrete
wavelengths imaged by the hyperspectral system. This is here used for sub-resolution peak
wavelength extraction, in order to be able to better evaluate whether a given emission spec-
trum has a peak wavelength closer to one or the other imaged wavelengths. This method
was used to estimate the peak position at all pixels within the hyperspectral image.

Essentially, smoothing splines fit natural cubic splines to a given spectrum, and restricts
the coefficients according to a roughness penalty. The roughness factor is chosen by cross-
validation, and in practice acts like a denoising method. The simple, polynomial-like behavior
of the fluorescence spectra makes the method suitable for these data.

3.1.2 Photon transport modeling

Photon transport simulations are used to investigate the influence of the re-epithelialized
layer on fluorescence originating in dermis.

Gillies et al. [7] showed that epidermis had no significant contribution to the fluorescence
at excitation wavelengths above 310 nm. Fluorescence from healed and intact tissue should
therefore originate in dermis.
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Figure 2: Simulation setup for evaluating the effect of re-epithelialization on fluorescence
obtained from wound tissue.

Fluorescence originating from a wound-like dermis layer, including all influence by optical
properties of this layer, is described by the fluorescence emission spectrum from the wound.
Fluorescence through an epidermis is simply emulated by simulating the transmission Tepi

of an epidermal layer, and obtaining the transmitted fluorescence as

Fhealed = FwoundTepi. (1)

Fluorescence propagating from a dermal layer through an epidermis on top would also have
contributions from light being back-scattered from the epidermis into the dermis again. This
is rectified by considering the light reflected off the epidermal addition, and then reflected
back from the dermal layer by

Fhealed = Fwound(Tepi +RepiRwoundTepi + (RepiRwound)
2Tepi + . . . ) (2)

= FwoundTepi

∑

i=0

Ri
epiR

i
wound = FwoundTepi

1

1−RepiRwound
. (3)

The simulated spectra in this study were rectified by this factor. The factor will be close to
1, however. Angle distributions are not considered for simplicity. The simulation setup is
illustrated in figure 2.

Reflectance spectra taken from spatial positions corresponding to wound and healed
tissue can be used to estimate the properties of the re-epithelialized layer [4, 2]. Monte
Carlo simulations can be run in order to find the transmittance T and reflectance R used
above.
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3.2 Reflectance analysis techniques

The behavior of the reflectance spectra has been established in a previous study [2]. The
main objective of the current paper is to compare the fluorescence results to the reflectance
results, and further develop more robust wound classification techniques.

3.2.1 Clustering analysis

In a previous study, a K-Means based model was used for clustering the full bulk of hyper-
spectral data into two spectrally different clusters. The clusters were shown to be consistent
with tissues with and without epidermis.

In short, a K-Means model with a large number of clusters was trained on all days of a
given model series. These clusters were combined down to two clusters using agglomerative
analysis. Finally, clusters found from a given wound model were used to classify the other
wound models, and a final cluster was assigned by a majority vote.

The result is the separation of wound and intact or re-epithelialized skin across this
dataset, with upper and lower boundaries on wound sizes given by the variation across the
clustering models. This basic segmentation of the dataset is used to investigate healing in
these wound models, and compared with the other techniques outlined in this paper.

3.2.2 Supervised classification

The development of a robust wound classification technique based on supervised classification
is important for objective evaluation of healing rates. Supervised rather than unsupervised
techniques are more convenient for extension to new data or new wound models. Further,
such methods can yield interpretable classification rules. Two main classification techniques
are used in this paper: Random forest as a general non-linear technique, and linear discrim-
inant analysis (LDA) as a general linear technique.

Previously [2], reflectance slopes were indicated to be an important feature characterizing
the missing presence of epidermis in in vitro wounds. A Savitzky-Golay filter with a window
length of 21 was used to obtain derivatives. Random forest classifiers were trained and
tested on reflectance and derivative spectra in order to compare classification performance.
An LDA classifier was further applied to selected wavelengths of the derivative spectra in
order to investigate the linearity of the classification problem.

Training data Two sets of training data are used in this study. Unsupervised clustering
results were used as training labels for the first set. For the second set, smaller regions well
within and well outside the wound boundary were selected across all models and days.

The latter training data set was used to evaluate the classification techniques indepen-
dently from the results of the clustering, while the former training data set was used to create
a harder classification problem by including re-epithelialized tissue in the training data.
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Figure 3: Basic cross-validation setup. The given classification model is trained on the first
three days of the selected wound model series, and then the next three days, and tested on
the last three measurements of all wound models not included in the training set. Final test
scores are averaged over multiple series combinations.

Cross-validation Evaluation of model performance is challenging due to all wound models
being acquired from the same donor and treated in the same way. The data is also essentially
a time series. A special cross-validation scheme was therefore used.

The cross-validation scheme is illustrated in figure 3. A number of wound models from
three days are used as training data. The classification models are tested on three other
days and different models not included in the training set. The selected days used during
training are day 1, 2 and 4, and day 6, 8 and 10. For testing, days 18, 20 and 22 are used.

Two variants of the basic scheme is used: Training on one wound model series and testing
on the rest (1 vs 5), training on three wound model series and testing on the rest (3 vs 3).
Finally, each scheme is run in reverse: The last 3 + 3 days are used for training, and the
first three days are used for testing.

The basic configuration evaluates the model performance across a time gap, while re-
stricting the number of wound model series the classification model is allowed to see. This
is suitable for evaluating relative scores among the classification models.

4 Results and discussion
The key features of the fluorescence and reflectance images are identified and associated with
physical processes in section 4.1. Reflectance and fluorescence data are then used to evaluate
wound healing in section 4.2. Last, robust techniques for detecting wound healing are tested
in section 4.3.

7



4.1 Influence of wound healing on fluorescence and reflectance spec-
tra

The behavior of the reflectance has already been investigated in a previous study [2], and is
briefly summarized here. Next, the fluorescence is investigated.

4.1.1 Summary of established reflectance behavior in the wound models

The reflectance data were characterized in a previous study [2]. The reflectance from healed
and intact tissue were found to be suppressed and scewed as compared to reflectance from
wound. This was found to be attributable to the addition of a diffuse, epidermis-like layer
placed on top of tissues representing the optical properties of wound [2]. The modulation
of the spectra over the wound boundary could be explained by a change in the thickness of
the layer [4]. This is behavior consistent with the re-epithelialization process [2]. Further, a
temporal development attributed to the medium was found in the reflectance spectra over the
first 4-8 days [2], with the largest change from day 1 to 2. This development is summarized
in figure 4 for one of the wound models.
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Figure 4: Temporal development in the reflectance spectra of a single wound model, charaac-
terized by linear fits at selected spectral regions.

4.1.2 Investigation of the fluorescence behavior

Regions corresponding to wound and intact tissue were selected from days 1, 10 and 22.
Mean fluorescence spectra are plotted on figure 5. The fluorescence peaks in the wound at
around 480 nm for the first day, which is shifted to 485 for the last day. Intact skin peaks
at around 490 nm, which is shifted to around 495 nm for the last day. Thus, there is a peak
shift from wound to intact tissue, and a peak shift over time. Peak behavior for healed tissue
is similar to peak behavior for intact tissue.
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Figure 5: Normalized mean fluorescence spectra from wound and intact skin regions.

Peak shift from wound to healed tissue The reflectance spectra from healed and
wound tissue were used to find the transmittance and reflectance spectra characterizing the
re-epithelialized layer. These were then used to evaluate the effect of adding an epidermis-like
layer on top of wound fluorescence. These fluorescence spectra are compared to measured
fluorescence from the re-epithelialized region in figure 6. Losses at the excitation wavelength
were not accounted for, and the spectra were therefore peak-normalized.
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Figure 6: Demonstration of peak shift of fluorescence emission observed through an
epidermis-like layer.

This result clearly shows that adding an epidermis-like layer shifts the peak wavelength
of the fluorescence. The observed peak wavelength shift can therefore be attributed to the
re-epithelialization. A decrease in peak value is also present (not shown), which is similarly
explained by the same processes.

Temporal development in peak shift The temporal development of the peak shift is
plotted in figure 7. Comparing the temporal peak shift to the temporal development of the
reflectance shows that both processes converge after the same number of days.
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Figure 7: Temporal development in fluorescent peak shifts in the same regions displayed in
figure 4.

The transition in reflectance to day 2 suggests a decrease in absorption at 415-470 nm
and an increase in absorption at 517-560 nm. A decrease in the absorption here would
correspondingly lead to an increase in the fluorescence, and thus explain the shift towards
shorter wavelengths. After day 2, there is a decrease in the slope at 517-560 nm, which could
explain the shift towards longer wavelengths. However, the behavior here is more challenging
to fully explain without simulations. It is in any case clear that this behavior is not due to
collagen formation. Both intact tissue and wound experience similar shifts towards longer
wavelengths, and increased collagen activity is expected only within the wounded areas.

4.1.3 Concluding remarks

There is an apparent decrease in absorption at 415-470 nm over the first 8 days, which
happens simultaneously with the expected increase in collagen fluorescence. Proper identifi-
cation of collagen fluorescence therefore evades the peak shift analysis outlined in this paper.
Its subtle influence, if present, would require full separation of the influence from optical
properties, characterization by other means or changes to the experimental setup. This is
therefore not a robust feature in these data.

However, another wound marker has been identified - the peak properties across the
wound boundary. This does not provide more information than the reflectance, but offers
up a simpler feature that could be directly related to the re-epithelialization. It also probes
the re-epithelialized tissue in a different way by having the light sources effectively located
within the tissue.
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Figure 8: Wound sizes across all wound models as extracted from the reflectance clustering
model.

4.2 Evaluation of wound healing using reflectance and fluorescence
data

Reflectance and fluorescence data are used to evaluate healing in the presented wound models.
The previously established clustering model is used to summarize the reflectance data, while
the fluorescence peak features are used from the fluorescence data.

Derived wound sizes from the reflectance data, along with lower and upper bounds, are
shown in figure 8. In general, the development in wound size would seem to be reasonable
from day 8 and on, with a close to linear relationship between day and wound size. The
increase in size from day 1 to day 2 across all wound models has been identified to be due
to day 1 being a spectral outlier, and epidermal remnants [2]. Stabilization of wound size is
in order for the first days [2]. All tray III models have a 8 day delay in wound healing, while
model I_5 has a 5 day delay. The other tray I models apparently start healing already from
day 2.

Wound boundaries derived from the cluster models and fluorescence peak position and
value are shown for selected wound models in figure 9 and 10. The separation between tissue
with and without epidermis is clearly characterized by the peak shift. The lowest peak
wavelength is in agreement with the cluster boundary at all days for the tray III model and
most of the days for the tray I model. The boundary increases in diffusiveness, consistent
with the gradual increase in epidermal thickness here. Further, early healing in the shown
tray I model would seem to be in order according to the peak features.

The tray III and I models were prepared with 4 mm and 3 mm size wounds, respectively.
The imaged extent of the tray I model wounds with early healing is the same as the 4 mm
wounds. Only the tray I model with healing delay, I_5, has a wound extent consistent with
the 3 mm size. The former models have inhomogeneous shapes, while the latter is circular.
One possible explanation for the early healing is tearing in the surrounding skin outside
of the actual dermal cut when the wound was prepared. Such tearing would typically be
shallow, and heal quickly. This is somewhat indicated by the higher peak shifts and lower
peak values in these regions.

Histologies are not available for this dataset. The previous study included an example of
histologies for a similar wound model [2], which indicated complete coverage by keratinocytes
during the first 7 days for 4 mm wounds. The 4 mm wounds start healing detectable by
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Figure 9: Temporal development in wound cluster size (top), compared to fluorescent peak
shift (center) and peak value (bottom) for model III_2 (4mm wound).

hyperspectral imaging from day 8 and on. It is possible that only a mature enough re-
epithelialized layer is detectable by hyperspectral imaging [2]. Such tissues would follow
coverage by the keratinocyte layer, and the keratinocyte layer is thus indirectly detectable.
As for the fluorescence, there is a reduction in the peak value and a shift of the peak position
from the edge of the wound and in over these days that could be consistent with keratinocyte
coverage.

The combination of reflectance and fluorescence images are thus valuable for evaluating
wound healing. Taking these basic methods further is then the next step.

4.3 Identifying a robust technique for detection of wound healing

Both reflectance and fluorescence has been shown to be suitable for evaluating re-epithelialization.
Excitation at 355 nm is invasive, however, and the fluorescence spectra are noisy and mostly
feature-less. The latter makes the development of classification techniques challenging, and
the reflectance data are more suitable for this.

4.3.1 Comparison of classification techniques

Cross-validation scores are shown in figure 11. Various cross-validation schemes are used in
order to characterize the classification problem, and indicate what kind of technique would
be necessary in order to solve the problem more generally.
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Figure 10: Temporal development in wound cluster size (top), compared to fluorescent peak
shift (center) and peak value (bottom) for model I_4 (3 mm wound).

Non-linear classification The 1 vs 5 cross-validation scheme on the random forest clas-
sifier is first considered, where a single wound model series is included in the training set.
Taking the derivatives enables the random forest classifier to obtain a high mean cross-
validation score (0.991) across all other models despite using only a single wound model
series during training. Conversely, raw reflectances yield a lower mean cross-validation score
(0.952) for the same classifier.

The 3 vs 3 cross-validation scheme increases the training dataset by including three wound
model series during training. This increases the cross-validation scores for raw reflectance
(0.952 to 0.994) and derivatives (0.991 to 0.997). Thus, the random forest classifier trained
on raw reflectance needs more training data points in order to achieve a cross-validation
accuracy higher than 0.99, while applying the classifier to first derivative spectra yields a
cross-validation accuracy higher than 0.99 for either cases.

The behavior between cross-validation schemes suggests nonlinear behavior in the re-
flectance that requires enough data to properly approximate the decision surfaces, and that
the derivatives yield features that have more common behavior across all wounds.

Linear classification To test this, two wavelengths (542 and 582 nm) from the derivatives
were used to train a simple linear classifier, LDA. These wavelengths can be related back to
wavelength regions that in the characterization study was shown to be clearly affected by the
re-epithelialization in an almost linear way, and which have the highest reflectance slopes.
The highest cross-validation scores (0.995 and 0.998) are obtained using this technique.
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Figure 11: Comparison of mean cross-validation scores for different classification schemes:
Random forest, random forest trained on derivatives and LDA trained on the derivatives at
selected wavelengths (542 and 582 nm). The used classification schemes (1 vs 5, 3 vs 3) refers
to the number of wound models used in training versus the number of wound models used
during testing. The reversed variant swaps the days used for training and testing. Standard
deviations of the scores are marked with a black line.

Further, the standard deviations are lower.
Each of these two wavelengths consists in reality of multiple wavelengths (21) due to

the window length in the Savitzky-Golay filter used in obtaining the derivatives. LDA
performance was evaluated as a function of window length in order to get an impression of the
necessary number of wavelengths. The cluster results from earlier were used as training labels
in order to make the problem harder. The results in figure 12 shows that the optimal choice
of filter length is somewhere between 13 and 19 (cross-validation score 0.99). Decreasing
the number of wavelengths in the filter to 5 (10 wavelengths in total) reduces the cross-
validation score to around 0.97. Using the difference spectra (2 wavelengths per derivative,
4 wavelengths in total), yields a cross-validation accuracy of 0.965.
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Figure 12: LDA performance as a function of the window length in the Savitzky-Golay filter
used to obtain derivatives.
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Reverse cross-validation splits It has been shown that the reflectance spectra of the
first days are different from reflectance spectra obtained from the later days [2]. Running the
cross-validation schemes in reverse, by training the classifiers on the last days and testing
them on the first, shows a degraded performance especially for the derivative based classifiers,
while raw reflectance still yields smilar classification performance. Good classification accu-
racy over the temporal developments thus needs more non-linear classifiers and knowledge
of the absolute reflectance levels. The first days can be considered to be spectral outliers,
however.

Concluding remarks The results serve to demonstrate the homogeneous behavior of the
slope throughout most of the measurements after stabilization of optical properties, and
confirms the importance of the epidermal presence in classifying wound tissue. This is thus
a result founded in both the physics and the statistics of the problem. Derivatives can
provide features that lead to classifiers with high cross-validation scores. Further, the linear
classifier shows that in vitro wound imaging can be achieved using few wavelengths.

4.3.2 Discussion of the classification results

The methods were tested on wound and intact tissue. These regions have high separation,
and therefore yield higher classification accuracies. The cluster results were used for eval-
uation of the Savitzky-Golay filter length, which includes re-epithelialized tissue and thus
represents a harder classification problem. The reduction in classification performance is
only minor, however.

It is important to be aware the use of clustering results as training labels can lead to
classification rules that reproduce the clustering results rather than the rules separating
wound from other tissue types. A manual and independent labeling which includes re-
epithelialized tissue is challenging due to the uncertainty of the boundaries. The chosen
way of obtaining training data, well within the wounds and well within intact tissue parts,
therefore serves as a good middle-ground despite the high separation.

The choice of training data means that re-epithelialized tissue is implicitly detected by
being similar enough to intact tissue. This is similar to the outcome of the clustering tech-
nique. This approach can be justified: The transition in reflectance from wound to intact
tissue is modulated by the thickness of the epidermal layer, and turns spectra more similar
to wound into spectra more similar to intact tissue. Separating re-epithelialized tissue from
other types of tissue would otherwise be challenging.

This means that the wound class can include re-epithelialized tissues that do not have
a large enough epidermal thickness to be spectrally similar to intact tissue. The developed
technique is still suitable for detecting wound healing, and for comparing wound models,
since it would be consistent in its tissue definitions and what degree of re-epithelialization
is necessary for being counted as a part of healed tissue. Thus, once the healing process has
reached its necessary stage, healing will be detected.

The reflectance classification approach takes a hard decision between wound and healed
tissue. The spectral transition over the re-epithelialized parts of the tissue is gradual. Flu-
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orescence has been shown to represent a simple visualizer of this. It thus complements a
reflectance classification. Fluorescence classification would likely be more challenging and
require spatial information, while reflectance classification has been shown to be possible
based on spectral information alone.

The cluster model from the previous study [2] was shown to be suitable for evaluating
wound healing in section 4.2. The systematic testing of more easily trainable and objective
classification techniques in the current section has shown suitable classification performance,
and thus represents a robust and extensible alternative.

5 Conclusion and further work
Reflectance and fluorescence data as been acquired from wound models. The hypothesis was
that re-epithelialization could be detected using reflectance imaging, and collagen formation
by fluorescence imaging. However, also fluorescence was found to mainly be influenced by re-
epithelialization in this case. Both techniques were found to be well suitable for evaluation
of wound healing in these models. Wound classification was further found to be possible
using few wavelengths by exploiting the derivatives of the reflectance.
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Application of smoothing splines for spectroscopic analysis in
hyperspectral images

Asgeir Bjorgan and Lise L. Randeberg

Department of Electronic Systems, NTNU Norwegian University of Science and Technology,
Trondheim, Norway

ABSTRACT

The spectral and spatial resolution of hyperspectral imaging is useful for investigation of tissue autofluorescence.
The low-light, noisy conditions in fluorescence imaging usually necessitates noise removal for extraction of precise
spectral signatures and peak shifts. However, noise removal techniques like low-pass filtering or the Maximum
Noise Fraction transform might discard information or distort spectral features. In this study, smoothing splines
is proposed as an alternative technique to avoid spectral distortion in analysis of hyperspectral fluorescence
images in the wavelength range 400-1000 nm. Continuous tuning parameters and use of natural cubic splines
makes the method advantageous for unbiased peak extraction. The method was tested on ex vivo images of
atherosclerosis lesions and simulations. The method was used to estimate autofluorescence peak shifts, and
found to perform well in comparison with MNF.

Keywords: fluorescence imaging, subresolution peak extraction, tissue optics, noise removal, maximum noise
fraction transform

1. INTRODUCTION

Hyperspectral imaging is a valuable tool for investigation of tissue autofluorescence. It has the spectral resolution
required to resolve multiple fluorophores, and can yield spatial maps over the locations of spectral signatures
of interest. Applications of hyperspectral fluorescence imaging include imaging of atherosclerotic plaques,1

food quality control2,3 and various medical applications like characterization of cancer cells.4 In the current
study, smoothing splines is explored as a tool for removing noise and characterizing autofluorescence peaks in
hyperspectral fluorescence images.

Imaging spectrometers require sufficient illumination. However, the only light available in imaged fluorescence
scenes is the low-intensity autofluorescence light generated in the samples. Increasing the integration time of
the camera or the power of the excitation light source is normally not feasible, as long exposure to strong
radiation would bleach the fluorophores. Hyperspectral fluorescence imaging therefore leads to images with a
low signal-to-noise ratio (SNR), where noise removal can be necessary as a pre-processing technique.

Automated characterization is important for processing larger datasets acquired as time series and across
samples. An ultimate goal is to unmix the data with respect to the various fluorophores. This is challenging
in tissue due to strong scattering and absorption at both excitation and emission wavelengths. Full unmixing
requires full characterization of e.g. reflectance images acquired under a visible light source to estimate scattering
and absorption properties, and the appropriate pairing of optical properties and apparent emission spectra.
Manual decision making might be necessary.

Emission peak characterization in terms of peak position, peak height and peak width is an alternative tech-
nique for obtaining an overview over the data. This can be used as a part of the fluorophore characterization
process, and for the initial visualization of the data. Comparability is an important requirement, where fluo-
rophores across measurements should have the same peak behavior, and not be subject to e.g. pre-processing
techniques that treat the data differently.

Further author information: (Send correspondence to A.B.)
A.B.: E-mail: asgeir.bjorgan@ntnu.no

Optical Biopsy XVII: Toward Real-Time Spectroscopic Imaging and Diagnosis, edited by
Robert R. Alfano, Stavros G. Demos, Angela B. Seddon, Proc. of SPIE Vol. 10873,
108730O · © 2019 SPIE · CCC code: 1605-7422/19/$18 · doi: 10.1117/12.2506618

Proc. of SPIE Vol. 10873  108730O-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Extracting peak positions at sub-resolution level could be useful for obtaining more accurate representations of
peak shift distributions over larger regions. These are otherwise limited to counts over the two closest wavelengths
due to the wavelength discretization. Sub-resolution peak shifts lead to subtle changes in the noise dynamics,
which could be exploited by a suitable interpolating technique to estimate peak shifts. Thus, there are two goals
in this study: To remove noise from the spectra in a comparable and objective way, and to estimate sub-resolution
peak shifts, where the two problems are strongly inter-related.

MNF (Minimum noise fraction)5 is a noise reduction technique often used for hyperspectral images, as it
retains spatial and spectral resolution while yielding smooth spectra. MNF decomposes the image in terms of
typically 8-10 less noisy, mixed components, with their own maxima and minima. Each pixel in the denoised
hyperspectral image will be a linear combination of these. It is not guaranteed that the MNF decomposition
is sensitive to small shifts in fluorescence emission peak position due to the way the images are decomposed.
The MNF technique is subject to the available image statistics. Choosing the number of components has to be
done based on visual inspection. MNF is not an interpolating technique, and the number of component cannot
be objectively chosen by cross-validation or similar techniques, unless techniques further down the processing
pipeline have properties that can be evaluated by cross-validation. In general, the subjectivity leads to images
that are not necessarily comparable.

Smoothing splines6,7 is proposed as an alternative technique for satisfying both denoising and peak detection
aspects in fluorescence images. The method uses natural cubic splines to interpolate the data. Wavelength
bands can be left out during fitting, to be evaluated by the fitted model at a later time. This makes the concept
of independent test data well-defined. Subresolution peak positions are efficiently found using the analytical
derivative. The spline coeffients are restricted according to a roughness penalty, in effect making the method a
denoising method with the appropriate smoothing parameter. Smoothing splines is a linear method, and can
thus be efficiently estimated on multiple spectra at the same time. Linearity also means that the leave-one-
out cross-validation error is trivial to calculate without refitting the method. All spectra in the hyperspectral
datacube can therefore efficiently be represented using spline coefficients, with crossvalidated tuning parameters
that objectively can yield smoothed spectra that are comparable.

Smoothing splines, or variations of the technique, have been used in both hyperspectral imaging and in
fluorescence spectroscopy. Marion et al.8 uses smoothing splines as a basis for a method to recover reflectance
values within major gas absorption bands in remotely sensed images. Berman9 uses thin-plate smoothing splines
to smooth the MNF transformation bands of remote sensing data. Lee et al.10 compares various smoothing
methods on autofluorescence data, including LOESS, COBS and robust smoothing splines, which uses a scale
function on the mean squared error part of equation (1). Various methods are given for approximating the
cross-validation error.8–10

The theory for the smoothing splines technique and considerations for application to hyperspectral images
is outlined in section 2. The technique is then applied to images of atherosclerosis images and simulations, and
compared to MNF.

2. SMOOTHING SPLINES

Given a data set with inputs x = [x1, x2, . . . , xK ]T and outputs y = [y1, y2, . . . , yK ]T , the smoothing splines
method estimates the function f(x) which minimizes the penalized residual sum of squares (PRSS)6

PRSS(f, α) =
K∑

i=1

{yi − f(xi)}2 + α

∫ ∞

−∞

{
d2

dt2
f(t)

}2

dt. (1)

The first term deals with the closeness of the function f(x) to the outputs yi, and the second term penalizes
the curvature of the function.6 Setting α = 0 interpolates the outputs exactly (maximum curvature), while
α = ∞ yields a straight line (no curvature allowed). In practice, α controls the smoothness of the resulting
function, and regularizes between under- and overfitting. An alternative, more convenient formulation is to

express the PRSS as7 p
∑N

i=1{yi − f(xi)}2 + (1− p)
∫∞
−∞

{
d2

dt2 f(t)
}2

dt, with α = (1− p)/p. Here, p = 0 yields a

straight line and p = 1 fits all datapoints exactly.
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The parameter α is a tuning parameter which has to be estimated using independent validation data or
through cross-validation. Minimization of PRSS(f, α) would always set α = 0, effectively overfitting the model
on the data.

It can be shown that the solution f̂(x) is a natural cubic spline with K knots,6 meaning that the function
between the first and second datapoint and the function between datapoint K − 1 and datapoint K are linear
functions. The other line segments are cubic polynomials with continuous first and second derivatives. The
linear segments reduce erratic behavior at the edges of the dataset.6 The solution can be written as

f̂(x) =
K∑

j=1

Nj(x)θ̂j , (2)

where Nj(x) are the basis functions for the natural cubic splines. The coefficients θ̂j are given as6

θ̂ = [θ̂1, . . . , θ̂K ]T = (NTN+ αΩN )−1NT

︸ ︷︷ ︸
def
=Hα

y = Hαy. (3)

The matrices N and ΩN consist of the elements {N}ij = Nj(xi) and {ΩN}jk =
∫

d2

dt2Nj(t)
d2

dt2Nk(t)dt, respec-
tively.6 These are dependent only on xi.

Evaluating f̂(x) at the inputs of the training set xi yields

f̂ = [f̂(x1), f̂(x2), . . . , f̂(xK)]T (4)

=
K∑

j=1

[Nj(x1), . . . , Nj(xK)]T θ̂j = Nθ̂ (5)

= N(NTN+ αΩN )−1NT

︸ ︷︷ ︸
def
=Sα

y = Sαy. (6)

Here, the matrix Sα depends only on the training inputs xi and α, and the fit f̂ is therefore linear in y. The
coefficients θ̂ are also similarly linear in y. Linearity has two main advantages which makes the method ideal
for large datasets like hyperspectral images.

First, for a single α, it is computationally efficient to apply the method to multiple spectra. Given a hyper-
spectral image in matrix form, B = [y1, . . . ,yN ]T (N spectra × K wavelengths), the corresponding xi are the
same across all spectra. The matrices N and Ω can therefore be calculated once for a specific α, and spline
coefficients or function evaluations are obtained by a matrix multiplication:

Bα = SαB (7)

θ̂α = HαB. (8)

An efficient BLAS (Basic Linear Algebra Subprograms)11 implementation then ensures computational efficiency.

Second, linearity enables the calculation of the leave-one-out cross-validation error without refitting. Leave-
one-out cross-validation estimates the test error of a given method by training on K − 1 datapoints and testing
on the remaining datapoint, and averaging over all combinations. This requires the model to be fitted K times
for each parameter choice. For models that are linear in y, as expressed in (6), the leave-one-out cross-validation
error can be calculated directly from Sα:

6

ErrCV(f̂α) =
1

K

K∑

i=1

(
yi − f̂α(xi)

1− Sα(i, i)

)2

, (9)

where Sα(i, i) are the diagonal elements of the matrix Sα. Thus, the smoothing splines for a given parameter
choice α has to be fitted only once, and the full cross-validation error for this parameter choice is available
using the above formula without refitting. For a given spectrum y, the parameter α can objectively be found by
minimizing (9). This yields the lowest cross-validation error, and provides an optimal choice between closeness
and smoothness in the resulting spline.
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2.1 Estimating optimal tuning parameters for all pixels

Choosing any α between 0 and ∞ yields a gradual transition from high-variance, noisy fits to smoother fits - and
an optimal parameter in-between representing a denoised spectrum. This coincides with the parameter chosen
through cross-validation.

The tuning parameter α is directly dependent on the signal to noise ratio in a given spectrum. An image
might have the same noise variance in all pixels and bands, but the signal level varies. A constrained fit with
high α would be required for low signal levels, where the noise dominates, while a less constrained fit and lower
α is appropriate for high signal levels, where the relative noise contribution is low. An image containing various
kinds of signals and signal amplitudes requires a different α for every single pixel.

Consider a typical bracketing routine for minimizing ErrCV,α for a given spectrum, assuming a well-behaved
error curve with a single, global minimum. All spectra would require estimation of the cross-validation error at
a common set of lower and upper α. Multiple spectra would likely end up within the same parameter ranges,
and go through a sequence of bracketing at the same αi. All spectra share the same xi, and a single Sα can be
calculated for a specific αi. A divide-and-conquer approach may therefore be used.

Figure 1. Split based on cross-validation error during divide-and-conquer strategy for estimating optimal α.

Assume lower and upper brackets αl and αu for the α providing the minimum cross-validation error for a
range of pixels B:

1. Calculate αc = 0.5(αu + αl), αlc = 0.5(αl + αc) and αuc = 0.5(αu + αc).

2. Estimate Sα for αlc and αuc.

3. Calculate the cross-validation error for all pixels for αuc and αlc using Sα.

4. Divide the pixel set in two subsets: Assign pixels to [αl, αc] for the pixels which has the lowest cross-
validation error for αlc, and assign to [αc, αu] for the pixels which has the lowest cross-validation error for
αuc.

5. Repeat the process from 1. on each of the pixel sets until convergence (|αl − αu| < αc · t).

One iteration of the algorithm is illustrated in Fig. 1.

Thus, each pixel can have its optimal α estimated independently of each other to an arbitrary numerical
precision, with full reuse of the same computations across pixels. This approach assumes that the cross-validation
curve has a single minimum. This has been seen to be valid for most of the spectra encountered in this study,
though there are cases where this is not valid.

Coefficients can either be kept during the cross-validation routine, or they can be obtained by reapplying the
method on smoothed data using a smoothing parameter α close to 0, as illustrated in Fig. 2. The latter approach
can also be applied on spectra denoised using e.g. MNF to obtain spline coefficients for peak characterization.
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Figure 2. Flowchart for possible application of the method: Apply smoothing splines separately on each pixel and then
apply a common smoothing spline matrix with low α to estimate spline coefficients for further analysis.

3. THE MINIMUM NOISE FRACTION TRANSFORM

The MNF transform T of an image B with band means B̄ can be expressed using a linear transformation matrix
A as5

T = A(B− B̄), (10)

where the subraction of the band means B̄ are taken row-wise. The constituent vectors a of the transformation
matrix A = [a1, . . . ,aK ]T are found by solving the eigenvalue problem5

ΣNa = λΣa, (11)

where ΣN and Σ are the noise and image covariance matrices, respectively.

The bands in T are sorted in terms of decreasing SNR by sorting the eigenvalues.5 Most of the signal is
compressed in the first bands, slowly degrading into pure noise with increasing band index. Discarding the last
K − r bands can be used as a compression technique, and processing algorithms can be made to work on the r
transformed bands instead of the full image. Using the first r components of A−1 on these r components would
yield noise-reduced spectra within the original image space. If only the denoising properties of the technique are
desired, this process can be expressed as

B∗ = B̄+A−1RA(B− B̄) = B̄+D(B− B̄), (12)

where R is the identity matrix with the last K − r diagonal entries set to zero. All steps in the method can be
implemented as matrix operations, which can make use of efficient linear algebra implementations.12

4. EXPERIMENTAL SETUP

The smoothing splines method was tested for its peak extraction capabilities on a fluorescence dataset. The noise
removal capabilities were compared against MNF on the same dataset. Here, the ground truth is not known.
Simulations were therefore also generated in order to evaluate the methods on denoising of spectra where the
underlying models are known. For the simulated dataset, quantification was done using the mean squared error
between the original, noise-free spectra and the denoised spectra.

4.1 Measurements

The fluorescence example dataset consists of measurements over atherosclerotic lesions from human aortic sam-
ples, previously published in Larsen et al.13 and Randeberg et al.14 The data were acquired using a push-broom
Hyspex VNIR-1600 camera (Norsk Elektro Optikk, Lillestrom, Norway). The images were acquired in the wave-
length range 400-1000 nm, with a spectral resolution of 3.7 nm. The samples were illuminated using a frequency
tripled Nd:YAG-laser (Quanta Ray Lab-series L-190, Spectra Physics, Mountain View, California), providing
UV-excitation at 355 nm. For more details on the experimental setup, see Larsen et al.13
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4.2 Simulations

To emulate fluorescence spectra similar to the spectra encountered in the measurements, data were generated
using the function

R(x) = exp(mx exp(−x/s+ 1)/s), (13)

with x ranging from 0 to 100 in discrete steps. Three baseline spectra were chosen using parameters s = [10, 20, 60]
and m = [4.0, 3.8, 3.6], shown in Fig. 3.
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Figure 3. Three basic spectra used in the simulations.

An image with 3 rows and 500 columns was created. Each of the basic baseline spectra were assigned to
a row. Each row was divided into 100 patches with 5 pixels in each patch, where parameters m and s were
randomly generated from a Gaussian distribution with means corresponding to the baseline parameters and
standard deviation 1, and used to yield variations of the baseline spectra. Constant variance (σ = 1) Gaussian
noise was added to the spectra. The goal was to create an image with a large enough number of pixels to be
able to estimate reliable image statistics, but let no specific spectrum be homogeneously overrepresented.

5. RESULTS AND DISCUSSION

The smoothing splines method is explored as a technique for noise removal and subresolution peak character-
ization in hyperspectral images, and compared against MNF. The method is first applied to autofluorescence
measurements, and then to simulations of spectra with additive noise.

5.1 Peak position characterization in fluorescence data
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Figure 4. Peak positions (left), peak values (center) and smoothing parameters p = 1
α+1

as estimated using the cross-
validation approach (right).
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Figure 5. Comparison of the blue band before and after application of smoothing splines.
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Figure 6. Raw spectra compared against smoothing splines and MNF denoised spectra.

Peak positions, peak values and the corresponding smoothing parameters for the measurements are shown in
Fig. 4.

Band images before and after application of the technique for one of the noisier bands in the blue region
are shown in Fig. 5. Spatial noise is reduced in these bands after application of the technique, due to the
constraining effect of the splines. See for example the region marked in red, where graininess in the raw image
is replaced by a smoother texture with more detail.

Raw fluorescence spectra were selected from three pixels for further comparison (positions (x, y) = (279, 232),
(272, 336), (598, 398) for spectrum 1, 2 and 3, respectively), and are compared against the smoothing splines fit
in Fig. 6. The splines yield smooth spectra that well follow the trends in the spectrum.
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and parameters above and below this parameter.
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Figure 8. The rounded smoothing splines maximum estimate (left), compared to the maximum position as estimated
using max on each raw spectrum (right).

Corresponding cross-validation error curves are shown in Fig. 7, along with examples of spectra smoothed
at parameters outside the minimum. A parameter above the cross-validated parameter yields a spectrum which
follows the noise. A parameter below the cross-validated parameter yields a smooth spectrum, but has bias. The
smoothing parameter at the lowest cross-validation error yields a compromise between the two.

The peak position as estimated from the raw spectra by simply finding the index position for the max
value throughout the noisy spectrum was compared against the rounded smoothing splines estimate in Fig. 8.
Rounding the peak position as obtained from the smoothing splines method yields an index value similar to the
simple max, but chooses a wavelength index closer to the sub-resolution estimate. This represents an estimate
with less spatial noise. Working in the subresolution regime would especially be useful for characterization of
gradual changes over time when the wavelength discretization is large. The use of cross-validation to estimate
smoothness makes the results comparable across pixels and images.

5.2 Comparison between smoothing splines and MNF

The smoothing splines method was compared to MNF on the autofluorescence data and the simulations described
in section 4.2.

5.2.1 Application of MNF to fluorescence data
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Figure 9. Components of the inverse MNF matrix.
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Figure 10. Inverse MNF spectra for different number of com-
ponents in inverse, and statistics obtained from a larger sub-
set of the image.

The first components in the inverse transform and the corresponding first bands in the forward transformed
image are shown in Fig. 9 and 11, respectively. The inverse, denoised spectra will be a linear combination of
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Figure 11. The first bands of the MNF transform.

the components in the inverse transform, with the pixel values in the transformed bands as the coefficients. It
is seen that the components gradually contain more and more noise. Seven bands were taken to construct the
inverse transform considered further on.

Example spectra are compared against corresponding splines in Fig. 6. This shows some deviations be-
tween the smoothing splines spectrum and the MNF spectrum: for spectrum 1, the denoised spectra do not
overlap around 500 nm, and for spectrum 3, the MNF spectrum has oscillations not present in the smoothing
splines spectrum. The true spectra are not known here, and the differences were therefore not evaluated for the
measurements. Differences for simpler simulations are evaluated in section 5.2.3.

MNF has a tuning parameter similar to the smoothing parameter, the number of components to use in
the inverse transform. Selecting a low number of components leads to bias in the inverse spectrum, which is
demonstrated by the denoised spectra using 1 and 2 bands in the inverse in Fig. 10. Including all components in
the inverse reproduces the original spectrum exactly. An intermediate value produces a smooth approximation,
subject to the image statistics and the spectrum at hand.

Tuning number of components using cross-validation is not well-defined, as MNF would have to be fitted with
one of the bands missing from the data. MNF does not interpolate missing bands, and calculating the prediction
error on the left-out band is not well-defined. The number of components is therefore usually selected through
visual inspection of the plot over the SNR as a function of the number of components, or by visual inspection
of the noisiness of the transformed MNF bands or inverse spectra. In addition to subjectivity, this means that
the parameter is chosen based on the bulk properties of the image. Individual spectra could require less or more
components due to spatial variations in the SNR, but adjusment on pixel level is not possible due to the method
not being interpolating.

MNF is expected to yield a less optimal estimate if the shape of the spectrum at hand is less represented in the
statistics matrices. Essentially, pure components would be used to represent less represented spectra. Different
components would be mixed where there is no mixture of such fluorescence components. Such mixture behaviour
would be more prominent with less components, while more components leads to more noise, essentially being a
bias-variance consideration.

5.2.2 Comparison of denoising matrices

400 600 800 1000
Wavelength (nm)

0.05

0.00

0.05

0.10

M
at

rix
 c

oe
ffi

cie
nt

484 nm
538 nm
593 nm

400 600 800 1000
Wavelength (nm)

0.00

0.02

0.04

0.06 484 nm
538 nm
593 nm

Figure 12. Components of the denoising matrices for MNF (left) and smoothing splines (right, p = 0.001) that yields
denoised spectral values at three discrete bands.
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Evaluating the smoothing splines at the training points xi can be expressed as a matrix multiplication Sαy,
while denoising using MNF is also similarly expressed as a matrix multiplication D(y − B̄). A value at the
band i is therefore calculated by linearly combining values of the raw spectrum using coefficients present along
a row i of the denoising matrix. Linear combination coefficients yielding a specific band value are plotted in Fig.
12, and shows that the coefficients are similar for smoothing splines and MNF. There exists a relation between
smoothing splines and ridge regression,6 and ridge regression and PCA,6 and MNF can be expressed as a PCA
transform of the noise whitened image.15 The similarity of the denoising matrices could indicate some relation
between smoothing splines and MNF, but would have to be further investigated.

5.2.3 Application of MNF and smoothing splines to simulations

0 20 40 60 80 100
Wavelength band index

0
10
20
30
40
50
60
70

Si
m

ul
at

ed
 in

te
ns

ity

MNF

0 20 40 60 80 100
Wavelength band index

Smoothing splines
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Figure 14. Mean squared error between smoothing splines and MNF for the three spectral types present in the simulated
dataset.

MNF was run on the simulations with 6 components in inverse, with the seventh component consisting of
pure noise. Examples of denoised spectra are shown in Fig. 13. The mean squared error between the original
spectra before noise was added and the denoised spectra is shown in Fig. 13. The examples show alien spectral
components in the MNF denoising of spectrum 3. This demonstrates component mixing, where components from
from spectrum 1 are used to denoise spectrum 3. The spectra also show some bias. The bias is summed up as a
higher bulk mean squared error as compared to the smoothing splines technique. The smoothing splines technique
has lower mean squared error, and the examples show that the smoothing splines method well approximates the
high-SNR parts of the original spectra. However, the smoothing splines estimate has high variance and follows
the noise too closely for the low-SNR parts. The choice of α is low in order to accomodate the high-SNR parts,
but results in a fit with too many degrees of freedom in the low-SNR parts. This is behavior that was also seen
for the measured fluorescence spectra, especially evident in Fig. 10.

5.2.4 General discussion

Smoothing splines interpolates the trends of the noisy spectra, using an objective measure with a clear minimum
to determine the amount of smoothness for each pixel. This makes the results comparable regardless of image
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and noise statistic estimates, which is especially useful for characterization across images. The smoothing splines
tuning parameter is continuous, allowing individual tuning down to an arbitrary numerical precision.

MNF is tuned by visual inspection of either components or SNR plots, and the results are not necessarily
comparable across different images or even pixels. The MNF tuning parameter is discrete, restraining somewhat
the possbility for tuning.

MNF takes image statistics from the image at large into account when smoothing the spectra, whereas
smoothing splines considers only one spectrum at a time. This can have both advantages and disadvantages. It
was seen in the simulations that using the full image to denoise single spectra can lead to component mixing, which
can have negative ramifications for further processing. Different images would have different image statistics,
and different components would be used to build the denoised spectra. Using components from the full image
makes full use of the available information, however, and restrains the spectra in low-SNR parts properly, as
seen in the simulations. The smoothing splines estimates of α mainly satisfies the high-SNR parts of the spectra,
while the low-SNR parts will have an α which is not restrictive enough.

Thus, MNF and splines represent two extremes: MNF uses information from the image at large, but makes
no individual tailoring, while smoothing splines considers each spectrum individually, but makes no use of prior
information. Improvements could be made by centering and standardizing the image bands or applying weights
to the method using the image covariance matrix. In addition, there exists modifications to the technique which
have α dependent on x,16–19 which would be appropriate here.

MNF would also be more adaptable for various types of noise distributions and image spectra, while the
smoothing spline is more restrictive and sensitive to spectral behavior. Attempts to apply the method on
reflectance data from human skin yielded unphysical results due to the high variation in noise variance as a
function of wavelength, and absorption features being confused as undesired noise variance. The method was
more suitable for fluorescence data, due to the simple polynomial-like behavior of these spectra. Centering and
standardization of the image bands could improve applicability to reflectance data. It is expected that the
method will be less suitable when the fluorescence spectra are strongly influenced by absorption features.

Inverse spectra obtained using the MNF transform can discard or mix important spectral features. Still,
MNF is often the most suitable alternative, and for some data this might be a good enough approximation. The
variant of MNF considered here is also the most extreme variant, in that a hard cut-off is used for the transformed
bands. A more gradual variant could be to apply gradually more aggressive noise removal on the transformed
bands before back-transformation, but objective evaluation of such improvements could be challenging. MNF is
also valuable in dimensionality reduction.

Regardless of denoising method, the smoothing splines method is well suitable for investigating the spectra
at subresolution positions and be used to estimate fluorescence emission peak positions or other properties that
are easily extracted from spline coefficients. The results here also suggests that it is appropriate as a denoising
method for fluorescence spectra.

6. CONCLUSION

The smoothing splines method has been adapted for use in hyperspectral images, with individual smoothing
parameters that are appropriate for every single pixel in the image. The method has been applied to images
of atherosclerosis plaques, and found to yield smooth spectra. The spline coefficients were used to find sub-
resolution peak positions of the emission spectra. Comparison of MNF and smoothing splines on simulations
showed the smoothing splines estimate to yield spectra with lower bias. While the appropriateness of MNF is
subject to the availability of image statistics, smoothing splines represents a robust method with an objective
choice between smoothness and closeness of the spectra, and which apparently has advantages over MNF for the
type of data represented by autofluorescence images.
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APPENDIX A. MANIPULATING SMOOTHING SPLINES SOFTWARE PACKAGES
TO OBTAIN THE SMOOTHING MATRIX

The techniques presented in this paper assume the availability of Sα, the smoothing matrix. This is usually not
made available in a given software implementation. Smoothing splines is implemented in MATLAB (version 9.2.0,
The MathWorks Inc., Natick, Massachusetts, USA) through the function csaps, and a Python implementation
can be found in the Python package pywafo.20 Both implement smoothing splines according to the definitions
given in de Boor,7 which use p instead of α as the smoothing parameter.

A.1 Estimation using the identity matrix

This method requires no software modification, and obtains Sα by manipulating the input. Given a spectrum
I1 = [1, 0, . . . , 0]T , the resulting fitted smoothing spline is

f̂α = SαI1 = [S11, S12, . . . ]
T . (14)

Iteratively putting in columns of the identity matrix I reproduces Sα.

A.2 Estimation using intermediate results

This method requires software modification. As both MATLAB and pywafo implementations are based on de
Boor,7 a couple of intermediate results can be exploited to estimate Sα directly. Below, this is outlined using de
Boor’s notation, usually translated into similar variable names in the code. de Boor’s method also considers the
covariance matrix of y, D, but this is neglected below for simplicity.

The smoothing splines are here formulated in terms of their piece-wise polynomial form (ppform). One of
the intermediate results is the vector a, defined to be

fp(xi) = ai, (15)

i.e. the elements of fp(x) = Sαy. It is in the packages found from

a = y − 6(1− p)Qu. (16)

The vector u is found by solving
(6(1− p)QTQ+ pR)︸ ︷︷ ︸

def
=Bp

u = QTy (17)

Both a and u are used to estimate the other parameters defining the ppform of the smoothing spline, which can
then be used for interpolation. The matrices Q and R are calculated from differences between data points xi.

Inserting (17) into (16) then yields

a = (I− 6(1− p)QB−1
p QT )

︸ ︷︷ ︸
Sα

y. (18)

Thus, Sα is estimated from Q and Bp, which are all available in a given smoothing splines implementation.
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A random forest-based method for selection of regions of
interest in hyperspectral images of ex vivo human skin

Asgeir Bjorgan and Lise L. Randeberg

Department of Electronic Systems, NTNU Norwegian University of Science and Technology,
Trondheim, Norway

ABSTRACT

Hyperspectral imaging is a useful tool for characterization of human tissue. However, the vast amount of data
created makes it challenging and tedious to manually select spatial regions of interest for further processing. In
this study, a random forest-based method was evaluated on basis of its ability to segment human skin regions
from the background. The method was compared to the performance of two alternative methods, spectral angle
mapper (SAM) and a K-means clustering-based method. The methods were tested on hyperspectral images of
ex vivo and in vivo human skin in the wavelength range 400-1000 nm. The random forest approach was found
to be robust and perform well regardless of image type. The method is simple to train, and requires minimal
parameter tuning for good skin segmentation results.

Keywords: image segmentation, machine learning, tissue imaging, binary classification, spectral angle mapper,
K-means clustering

1. INTRODUCTION

Hyperspectral imaging combines high spatial and spectral resolution in one modality, giving images with high
spectral resolution in every pixel. This makes it a useful tool for characterization of human tissue.1–5 Charac-
terization can involve investigation of larger datasets that are acquired from many individual samples, or from
the same sample over time. The large amount of data makes it challenging to identify systematic variations
across images without additional analytical tools. Background clutter and non-relevant spectral signatures can
influence the results of statistical algorithms. Segmentation is in general needed for proper visualization of the
results. Visual selection of regions of interest is subjective, and automatic selection is therefore one important
cornerstone of any processing chain.

Examples of hyperspectral data include reflectance images,3,5 transmittance images6,7 and autofluorescence
images.8–10 Each of these imaging techniques yield different types of spectral data, and a method for selection
of regions of interest should be generic and robust for all kinds of images. Hyperspectral images have large
dimensionality, with a large number of spectral bands that are highly correlated. Due to the correlation, using
the spectral bands as features in classification algorithms can be challenging, typically requiring dimensionality
reduction or feature engineering. It is desired to avoid individual tailoring and ad-hoc adjustments, and the
required parameter tuning should be minimal.

Random forest classification is a robust technique which is able to obtain high prediction accuracy with little
to no parameter tuning,11,12 and which can be applied directly to data with high dimensionality and a relatively
low number of samples.13,14 This makes it attractive as a general technique which can be adapted for various
types of images. An example of a simple segmentation technique would be the application of some kind of
thresholding to the image bands. A decision tree12 takes this further by considering a chain of thresholding
operations that all are dependent on the results of the previous. Tree-based methods are promising due to
their ability to model highly nonlinear relations, which could be adaptable for selection of regions of interest in
complicated images. The random forest technique improves the test accuracy of decision tree-based methods
by averaging the results from multiple decorrelated trees. The nature of the method makes it appropriate for a
highly correlated predictor space such as hyperspectral data.13,14
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The random forest technique can be used for both regression and classification tasks, and has earlier been used
in hyperspectral imaging for classification in remote sensing13,15 One study was also found on the application of
detecting human skin in hyperspectral images.16

The primary aim of this study was to segment ex vivo human skin from the background, but the technique
was also tested on images acquired from living humans. The technique was compared to SAM (spectral angle
mapper) and a simplified K-means classifier. SAM classifies a spectrum based on the angle between the spectrum
and a signature of interest. K-means classification clusters the data into K clusters based on centroid distances.
The clusters can be used for classification after having training data labels assigned to them.

The techniques considered in this paper are all supervised classification methods, where a model f(x) is built
to predict a class label g from a spectrum x. K-means clustering is an example of an unsupervised learning
technique, where clusters, structures or relationships are learned from the data without having an associated
response g. Associating such clusters with a response g makes the method supervised.

The theory behind the used classification methods is presented in section 2. The datasets used to evaluate
the methods are presented in section 3, and the methods evaluation setup is presented in section 4. The results
of the evaluation on the various datasets are presented in section 5.

2. METHODS

A general overview over the classification problem is first given, before the random forest, SAM and simplified
K-means classifier methods are outlined.

2.1 Classification and target detection

The problem of segmenting human skin from background pixels is a binary classification problem, where every
pixel x is assumed to belong to a class g ∈ {background, skin}. A pixel with K wavelengths can be considered
a vector of predictors x = [x1, · · · , xK ]T in a K-dimensional space. Classification effectively means that the
vectors are labeled according their position in this space.12 A classification method can be seen as a method to
find region boundaries or decision surfaces for appropriate labeling,12 or to model class probabilities and assign
the class with the largest likelihood.12

The problem can also be considered to be similar to the target detection problem in remote sensing. Here, the
task is to detect, enhance or calculate probabilities for a pixel to belong to a target of interest.17 This problem
corresponds to a binary classification problem if a hard decision is made.

The classification error can be defined as12

Error =
1

N

∑

pixels

(ĝ(i) 6= g(i)), (1)

or the prediction accuracy as
Accuracy = 1− Error. (2)

The latter will be used to assess the performance of the algorithms investigated in this study. A prediction
accuracy of 1 means that all pixels were assigned the correct class, while prediction accuracy of 0 means that
none of them were. Prediction accuracy of 0.5 means that the classifier has the same performance as selecting
the classes randomly.

Modified measures that weight background and target classification and misclassification differently exists,
but are not considered in this study.
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Figure 1. Example of decision tree for skin classification.

2.2 Random forest

A decision tree partitions the predictor space into rectangles, and assigns a class to each rectangle according to
training data.12 An example of a decision tree classifier for reflectance spectra is shown in Fig. 1. A class is
assigned to a spectrum according to splits along reflectance values at specific wavelengths. This is effectively a
series of thresholding operations on the band values of the image.

Small changes in the training data can lead to large changes in the structure of the tree due to a different
series of splits being considered.12 Several trees built based on bagged training data can be averaged to decrease
this variance.12 Such trees have identical probability distributions, and the expectation over the bagged estimate
is the same as the expectation over a single tree.12 The expected test error is therefore reduced only through
reduction of the estimator variance, since the bias is constant.12 Predictors that are strongly correlated with the
response would typically always be selected during the first splits of the trees, leading to correlation between the
trees.18 This limits the variance reduction, and the potential test accuracy of the approach.12

The random forest technique11 removes the correlation by always choosing m random predictors out of the
total K predictors every time a new split in the tree is considered.12 This decorrelates the trees, and improves
the variance reduction and final prediction accuracy.12

In this study, 50 trees, also referred to as estimators, were used, unless otherwise specified. The parameter m
was set to the square root of the total number of wavelengths available, following the typical recommendations
for random forest classification.12 The latter can be tuned with respect to test errors or cross-validation errors.
This was not considered in this study in order to evaluate the method using only default parameters. The data
were sum-normalized before application of the algorithm.

The final technique used for actual processing includes post-processing using binary hole filling, median
filtering and selection of the largest contigous region. This is done in order to rectify for small misclassified
regions. Post-processing was not applied to the results presented in this paper in order to properly evaluate
misclassification in the various techniques. The Python method sklearn.ensemble.RandomForestClassifier

was used as the random forest implementation. In practice, a random forest was trained and saved to file, and
then applied to images in bulk in order to obtain masks for further application and processing.

2.3 SAM and simplified K-means clustering classification

The random forest algorithm was compared against two simpler methods, SAM and a K-means based method.

SAM assumes a hyperspectral pixel to be vector in a p-dimensional space. Considering two hyperspectral
spectra x1 and x2 (p× 1), spectral angle can be defined as19

θ = arccos

(
xT
1 · x2

‖x1‖‖x2‖

)
. (3)

Taking θ to be a measure of spectral similarity, all spectra in an image can be compared against a spectrum m
representing e.g. human skin. Thresholding θ yields a binary classification. The angle θ effectively represents a
correlation measure between the two spectra that should be theoretically insensitive to illumination conditions.
In this study, m was found from the training data by averaging over the pixels representing skin, and the
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threshold was chosen by calculating the threshold yielding optimal separation between skin and background in
the training data.

K-means classification is an unsupervised classification technique which assumes that K classes are present in
the data, and finds K centroids within the predictor space.12 Finding K such clusters within the data, assigning
class labels to each of them and predicting class labels on new data according to the distance to the centroids
can be used as a classification technique, and is considered a prototype method.12 Selecting the optimal number
K is not well-defined and has to be done through visual inspection of a within-class variance plot. Using K = 2
is not necessarily correct, since the background and the tissue of interest can consist of multiple clusters. In
this study, a simplified variation of this technique was therefore used in order to get a general impression of
the behavior of a similar method. The skin and background samples were averaged to yield spectra mskin and
mbackground. Class labels were then assigned according to the least Euclidean distance to each class centroid.
This is not strictly the K-means classification technique proper, but vaguely related.

SAM and the simplified K-means classifier used in this paper are related, and differ only by the distance
metric.

3. DATASETS

A number of datasets were used to train and test the methods. All data were acquired using a push-broom Hyspex
VNIR-1600 camera (Norsk Elektro Optikk, Lillestrom, Norway). The images were acquired in the wavelength
range 400-1000 nm, with a spectral resolution of 3.7 nm. The datasets are listed in table 1.

Table 1. List of datasets used in this study. Acquisition setup is described in the text.

Dataset Subject Training image Test image

Arm images Ventral side of the arm of a
healthy, female volunteer (Cau-
casian, 39 years old)

Baseline Image acquired after 5
minutes of pressure cuff
occlusion

Skin model I In vitro skin model with wound Image acquired at day 1 Image acquired at day 22
Skin model II In vitro skin model without

wound
Image acquired at day 1 Image acquired at day 22
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Figure 2. Training images labeled with the pixel subsets used for training: Arm, skin model I and skin model II.

The images were acquired with two linear light sources (Model 2900 Tungsten Halogen, Illumination Tech-
nologies, New York). Polarizers were mounted on the camera lens and the light sources (VLR-100 NIR, 450–1100
nm, Meadowlark Optics, Frederick, Colorado) in order to avoid specular reflection. The images were converted
into reflectance and corrected for uneven illumination across the field of view using a Spectralon reflectance
target (SRT-50-050 Reflectance Target, 12.7×12.7 cm, ACAL Bfi Nordic AB, Uppsala). The arm reflectance
image has earlier been used in Bjorgan et al.20 and Denstedt et al.21 An earlier iteration of the in vitro wound
model experiment has been presented in Randeberg et al.,22 where the wound size was 5 mm. The data used in
the current study had a wound size of 3 mm.23
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4. EXPERIMENTAL EVALUATION SETUP

Various investigations were done into the accuracy and behavior of the methods.

Each method was trained on each of the training images listed in table 1 by training on the regions of interest
shown in Fig. 2 and applying the methods on the corresponding test images. Test accuracies were calculated
by comparing the segmentation results to a manual labeling of each pixel in the image. Training regions were
selected in this way in order to emulate a typical application of the methods in a real data processing situation.
Here, it is not desirable to manually label every pixel in the training image, but rather select e.g. rectangular
bulk regions for each class.

In the next steps, each pixel in the training image of skin model I were manually labeled. A random subset
without replacement of the training points were selected for each investigation, with equal number of data points
in each class. First, the dependence on the size of the training data was found by training on a variable number
of training points. Second, using a fixed number of training points, the random forest technique was tested as a
function of the number of trees/estimators. Finally, to investigate the nature of the data used in this study, a
PCA transform was fitted on the training data and applied on a random number of training and test data points
for exploration of data clustering along the first two principal axes.

For all investigations, each method was trained on a specific training image, and tested on the corresponding
test image acquired over the same object at a later day or after object manipulation, as outlined in table 1.

5. RESULTS AND DISCUSSION

The random forest method represents a tuning-free classification method which could be useful for selection of
regions of interest in hyperspectral images of human tissue. The method is first compared against SAM and a
simplified K-means classifier on the test datasets, and then investigated in detail in terms of its dependence on
the training set and the number of estimators.

5.1 Comparison of the methods across images

Test accuracies for each of the methods are shown in Fig. 3. Corresponding visualizations of the classification
results are shown in Fig. 4. The results show an overall higher test accuracy for the random forest method as
compared to the other two methods in this study.

Arm Skin model I Skin model II
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Figure 3. Test accuracy for models trained on the images shown in Fig. 2.

The accuracy is high for the arm image regardless of the classification method applied. This is due to the
homogeneity of the sample. Similar behavior is seen for skin model II, which also is homogeneous over the region
of interest, but has more complicated background.
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Figure 4. Segmentation results for the models trained on reflectance images: Arm (left), skin model I (center) and skin
model II (right). Original images are shown on top, segmentation overlaid with original images in the following rows.

For the images of skin model I, random forest and the simplified K-means classifiers have test accuracies
above 0.90, while SAM has a test accuracy below 0.85. This image has a more complicated surface than the
image of skin model II due to the presence of a wound, causing the SAM spectrum to be less representative
over the entire sample. The simplified K-means classifier is affected in the same way. SAM and the simplified
K-means classifier are therefore susceptible to selection of training data points, while the random forest method
adapts.

5.2 Application to a measurement series
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Figure 5. Application of random forest and SAM to a full reflectance image series of in vitro skin collected over several
days. The methods were trained with 5000 datapoints from the first image.

The main application of this method is to segment larger series of images based on few training samples.
Random forest and SAM were applied to a full measurement series in Fig. 5. SAM has higher misclassification
of background, which is to be expected as the reflectance spectrum in the background is similar to the sample
of interest. Background misclassification is suppressed for the random forest method. In both cases, application
of proper spatial post-processing techniques would improve the results.

5.3 Dependence on the number of training points

In the initial tests, the methods were found to depend on the training samples. In order to investigate this, the
test accuracy is plotted as a function of the size of the training set in Fig. 6.
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The random forest method shows higher test accuracy with higher number of included points. This is to
be expected for this method since random forest builds trees and generalizes based on training examples. The
simplified K-means classifier and SAM, on the other hand, have no such dependence on training points. These
methods work on mean spectra over the objects of interest. This leads to high test accuracy for simple situations,
like the arm image, but taking the mean over more complex objects or backgrounds has low accuracy and changes
with the samples included.

It would be appropriate to define multiple clusters within objects of interest and background in order to
properly represent the complexity of the problem. For the simplified K-means classifier, this would be the same
as using a conventional K-means classifier with some K defined. Such a method would have an increase in the
test accuracy with the number of training points, but parameters like the number of clusters would have to
be tuned. Random forest is already appropriate for representing such implicit multi-cluster situations without
parameter tuning.
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Figure 6. Test accuracy as a function of training set size for
images of skin model I.
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Figure 7. Test accuracy as a function of number of estima-
tors in the random forest method for skin model I.

5.4 Feature importances and the dependence on the number of estimators

The test accuracy as a function of number of trees in the random forest method is plotted in Fig. 7. These
results show that the trees converge towards a more or less constant test accuracy at around 10 trees.

Feature importances are plotted in Fig. 8, which is a measure for how many times a specific feature is used
for splits in the trees. This implicitly shows which wavelenghts are important for the classification, and a method
re-trained on these wavelengths would yield approximately the same test accuracy. The noisiness of the feature
importances could indicate that the methods are slightly overfitted to the training data.

5.5 Investigation of the data in a lower dimensional space

Investigating the clustering behavior of the data could explain the behavior of the compared methods. A PCA
transform was thus fitted to a centered and standardized reflectance image of skin model I in order to yield a
rotated coordinate system along directions of the highest variance. Scores along the first two principal components
are plotted in Fig. 9 for a random subset of each of the classes.

The classes consist of three clusters in the PCA space, with a gradual boundary in-between. The background
and tissue would here be separable by a linear decision boundary. This explains why the simplified K-means
classifier has a test accuracy comparable to the random forest classifier for the homogeneous reflectance data, as
the clusters can be represented by their combined centroids. However, the elongation of the clusters also means
that K-means clustering is not optimal for this kind of problem.

The data have a more or less homogeneous background and object of interest, and the simplicity of the problem
is reflected with a linear decision boundary in the PCA space. More complex examples could be expected to
have non-linear decision surfaces. The random forest classifier is well suitable for modeling non-linear decision
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Figure 8. Feature importances in the random forest method
for skin model I.
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Figure 9. Data points corresponding to hyperspectral pix-
els along the first two components of a PCA space for re-
flectance images of skin model I.

surfaces, while methods like SAM or the simplified K-means classifier would have to be modified for implicit
multi-class behavior.

Having more background clutter would be an example of a more complex image. This could typically be
removed using pre- or post-processing, but such treatment would require manual tuning for each situation.
Background clutter is not necessarily separable from the object of interest if they partially overlap. The random
forest classifier automatically takes this into account. This avoids the need for manual tuning, and facilitates for
automatic techniques.

5.6 General discussion

SAM and simplified K-means clustering are simple techniques that can be motivated from geometrical consid-
erations of hyperspectral images, and which work well for simple scenes like homogeneous reflectance from a
human arm. A flexible method like the random forest classifier seems to be appropriate for more complex situa-
tions wound images and complex backgrounds. The random forest technique is also appropriate for modeling of
non-linear decision surfaces due to the underlying tree-based model. Having an adaptable technique with overall
high classification accuracy across different types of images without parameter tuning is valuable.

However, the flexibility of the method can also make it less appropriate. The training data needs to be
representative. The method can overtrain and not be able to find accurate decision surfaces. The PCA results
showed that a linear decision boundary is appropriate for the examples shown in this study, meaning that
restrictive methods would yield higher test accuracies. This study is not exhaustive, and linear classification
techniques like LDA, QDA, logistic regression or SVM12 could be appropriate for the examples shown. Gaussian
clusters of data with equal or non-equal covariances would make methods like LDA and QDA optimal.12 However,
as seen in the reduced PCA space, each class is more likely to consist of multiple Gaussians, which makes the
problem more challenging. Methods like LDA have challenges with large numbers of correlated features,12 as is
the case in hyperspectral imaging. Methods like SVM requires parameter tuning and selection of kernel functions.
Other ensemble methods like boosting12 might also be appropriate. Further work should involve testing more
methods on both simpler and more complicated examples. SAM and the simplified K-means classifier are not
necessarily optimal for the classification task at hand, and the random forest technique might have an unfair
advantage.

Many classification techniques require preprocessing techniques like noise removal or dimensionality reduction.
Dimensionality reduction would have to be fitted to the training data only, however, and could be less appropriate
for the test data. Random forest is not dependent on preprocessing techniques, and is robust against the number
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of features. The data were sum-normalized before application in order to make the spectra comparable and
obtain some small improvements to the prediction accuracy, but no other preprocessing was applied.

Initial tests on fluorescence data (not shown here) showed that the random forest classifier had higher test
accuracy than SAM and the simplified K-means classifier. The low photon count and highly correlated spectra
of these data leads to a challenging classification problem, for which the random forest classifier was found to
be well suitable. The classifier converged after 30-40 trees, whereas convergence was shown for 10 trees for
the reflectance data used in this paper. The convergence rate thus depends on the complexity of the imaged
samples. The required number of trees is expected to vary for reflectance data, and would depend on the required
functional behavior of the decision surface and the behavior of the data points within the hyperspectral vector
space.

Training and test images were chosen from the same data set. For both datasets, the test image was acquired
over the same object as in the training data, but at a different time, and with changed spectral responses. It can
be argued that these do not represent truly independent data since they are collected from the same object. They
therefore do not properly measure the generalization ability of the method. However, selecting truly independent
data would not necessarily yield a representative test accuracy, since the spectral responses could be too different
across images. Statistical models generally do not necessarily extrapolate well outside the range of the training
data.

The likely application of the method is to apply it within a specific measurement series over the same or
similar objects, where it is convenient to manually label a small region in order to segment the rest of the images.
Creating a truly generalizable method which can be trained once to be applied on any measurement series is
outside of the scope of this study and the requirements of the method.

6. CONCLUSION

The random forest classifier has been found to be a robust technique for selection of regions of interest, and adapts
well to different types of spectral data. There is no need for parameter tuning or consideration of preprocessing
or modeling of implicit multi-cluster behavior in the data.
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Combining hyperspectral classification and heat transport modeling:
An investigation of experimental burn wound heterogeneity
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Abstract.
Significance: Burns can be painful and disabling, and early evaluation of burn severity is imperative for appropri-
ate treatment. This has resulted in several studies on optical techniques for burn assessment, including hyperspectral
imaging.
Aim: The current study aims to gain better understanding of damage characterization and unexpected damage het-
erogeneity in a previously collected hyperspectral dataset, which used an experimental burn protocol using water bath
heated metal and varying contact times.
Approach: Heat transport modeling was used to understand the temperature development in the tissue and the ex-
pected damage. Supervised classification and a photon transport model were used to investigate detectable damage
and optical property changes.
Results: Collagen damage was indirectly classifiable using the hyperspectral data, but through coincident superficial
perfusion changes. The burn severity was mainly related to deeper vascular damage seen in the histologies. This
deep damage was not classifiable using the applied methods. By investigating changes to the boundary condition in
the heat transport model, trapped steam between metal and skin was found to be a feasible explanation for the burn
heterogeneity.
Conclusions: A better understanding of the burn procedure and the evaluable physical properties in the hyperspectral
data has been obtained.

Keywords: burn wound classification, pig model, heat equation, tissue optics.

*Lise Lyngsnes Randeberg, lise.randeberg@ntnu.no

1 Introduction

If not treated according to the severity of the injury, burns can be both painful and disabling to
the patient. Significant scientific effort has therefore been made to develop reliable, non-contact
diagnostic methods for early and accurate diagnostics. In the process of developing and validating
these technologies, it has been instrumental to develop reproducible methods for creating clinically
relevant and controllable experimental burn wounds. This work addresses the understanding of
burn dynamics by exploring supervised classification of hyperspectral burn data. In addition, it
aims to assess and explain observed heterogeneity in burn severity in the employed wound model
by simulations of optical and thermal propagation in skin.

Optical techniques are highly relevant for burn classification as they can be made non-invasive
and non-contact. The difficulty involved in early evaluation of second degree burn wounds1–3 has
been the main motivator for the development of such techniques. Methods seen include laser
doppler imaging,4 laser speckle imaging,4 spatial frequency domain imaging (SFDI)1–3, 5–8 and
hyperspectral imaging.9–16

A common approach is to estimate blood perfusion parameters from optical measurements and
then relate these to the vessel viability in dermis,4 which determines whether a burn wound can
heal without surgical intervention or not.1, 4 SFDI has been proved to be one of the most promising
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technique in that it can separate tissue absorption from scattering, which is related to perfusion
and collagen structure, respectively.1, 2 The blood perfusion parameters alone have been found to
be unreliable early after injury,1, 2, 17, 18 while collagen destruction has been found to stabilize early
enough to be used to characterize the damage.1, 2

Hyperspectral imaging is expected to be sensitive to the same changes to absorption and scatter-
ing, and can potentially detect both types of damage. In a previous study, controlled burn wounds
were created in two pigs in order to investigate the feasibility of using hyperspectral imaging in
evaluation of burn wound severity.19, 20 Hyperspectral classification of burn severity turned out to
be challenging, and unexpectedly, the results were difficult to interpret due to a high heterogene-
ity within each burn wound. In our opinion it is important to explain the heterogeneity itself in
order to achieve a better understanding of the physics behind the damage mechanisms as such
understanding is expected to ease hyperspectral classification.

The burn injuries in the previous study were created by heating up metal to 100 °C using a
water bath, and using different contact times to induce burns of varying depth and thus severity.
Wound heterogeneity is commonly observed across the literature employing the same experimen-
tal burn induction procedure.21 Gaines et al.21 blames the adherence of vapor bubbles to the brass
block during heating which makes block heating uneven and the final contact temperatures hetero-
geneous. Another possible explanation is that steam from left-over water on the block and water
within the tissue is trapped between the block and the skin, and impedes heat transfer from the
metal to the skin.

The thermal propagation in the tissue is fundamental to the injury mechanisms, and links the
progression of different types of damage to the original damage method. Heat transport models
are not frequently included as a part of studies on optical detection techniques, but understanding
the thermal propagation can lead to better understanding of the relation between different damage
mechanisms and expected optical detectability. The burn wound heterogeneity within a single burn
and contact time represents a distortion with respect to the expected thermal evolution, and a heat
transport model can be applied to find possible explanations. In the previous study, the heterogene-
ity appeared as a major artifact in the dataset, and establishing plausible explanations can help link
observed spatial changes in optical properties to damage mechanisms. Better understanding of the
burn heterogeneity can make it a useful asset of the dataset rather than an artifact.

Hyperspectral image data were previously gathered to explore the feasibility of this technique
for burn classification. The data can be used to develop supervised classification techniques, where
training data from the labeled histology locations are used to extrapolate the damage evaluation to
the other parts of the images where histologies are not present. Such classification maps can be
used to investigate the regional behavior of burn heterogeneity. As unsupervised classification was
seen to be challenging in the previous study on the same data set,19 further work has been invested
in evaluating classification models and which types of damage it is possible to classify. In this
study, the final damage evaluation is concluded based on multiple properties in the histologies, and
it is explored how the relation between these individual properties can be more important than a
classification based on the final burn level. Such investigation can also add to the feasibility of the
technique for burn evaluation in general.

This study has been divided in three parts. The relation among the various burn damage types
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obtained by histology is first investigated and systematized. Next, a heat propagation model is es-
tablished and used to investigate the relation between the expected thermal evolution and resulting
types of damage, and construct possible explanation models for the burn heterogeneity. Finally,
the hyperspectral data is analyzed to establish a supervised classification model. Regional damage
maps are obtained and discussed in terms of the expected thermal evolution. The goals of the
study are two-fold, and the study seeks to understand and establish likely explanations for the burn
heterogeneity and the feasibility of the hyperspectral technique.

2 Materials and methods

2.1 Experimental setup

The experimental method, details on the animal treatment and ethical considerations, and data
acquisition procedure has been described in detail elsewhere.19, 20, 22 The animals were treated
in accordance with the “European Convention for the Protection of Vertebrate Animals used for
Experimental and Other Scientific Purposes, Strasbourg, 18.III 1986” and Norwegian national
regulations, and approval was given by the Norwegian Ethics Committee on animal research.
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Fig 1: RGB images constructed from the 615, 564 and 459 nm wavelength bands over the hy-
perspectral images considered in this study, sorted by contact time. Training data locations and
associated histology labels are marked with dotted boxes.
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In short, a brass rod (4 x 4 x 3 cm) was heated up to 100 °C in a water bath, and used to in-
troduce burn wounds using different contact times. Hyperspectral images were regularly acquired
up until 30 and 8 hours after injury for pig 1 and pig 2, respectively. Biopsies were collected after
euthanasia, and analyzed by independent pathologists according to the method in Papp et al.23 Var-
ious properties like e.g. deepest vascular damage, depth of collagen reorganization were evaluated,
and final burn level was assigned according to the deepest present damage regardless of burn dam-
age type, in anatomical levels according to epidermis (1), superficial, center or lower (2-4) dermis
and subcutis (5). Level 3-4 corresponds to partial thickness wounds (second degree), while level 5
corresponds to full thickness wounds (third degree). RGB images at the last timepoint are shown
in Fig. 1.

The histology properties were investigated and systematized by visual inspection of plots, and
by training decision trees to predict burn level from the other properties. A decision tree is a
supervised classification method which divides the input space into rectangular regions that assign
the final class to the contained training data class.24 This is well suited for categorical input data
and is a reasonable and simple model for a decision process.

2.2 Heat transport theory

2.2.1 Model

The homogeneous heat equation is given as25

d2T

dx2
− 1

κ

dT

dt
= 0, (1)

where the diffusivity κ = K
ρc

, K is the thermal conductivity, ρ the mass density and c the specific
heat capacity of the medium. The Pennes bioheat equation26 is often used to model heat transport
in tissue,27–31 which adds terms to the right hand side of (1) for metabolic heat generation and
cooling by blood circulation. Metabolic heat generation is negligible compared to other heat fluxes
involved from the heat source.29 The blood perfusion will increase over time scales larger than
20 seconds when the tissue is heated,27 but can in most cases be neglected.32 A single-layer,
semi-infinite model was assumed for simplicity. One-dimensional analysis was used under the
assumption that the heat development well within the border of the metal rod is not influenced by
convection against air. Assumed coefficient values were K = 0.40Wm−1K−1, ρ = 1200 kgm−3

and c = 3600 J kg−1K−1, from Johnson et al.30

2.2.2 Boundary conditions

The temperature evolution was modeled in two phases: Heating by metal assumed to hold the
temperature Tmetal for the given contact time, and cool-down/relaxation after removal of the heat
source. Normal damages are assumed to be induced by direct contact with the metal. The burn
heterogeneity is assumed to be a result of either a lowering of the contact temperature, or the addi-
tion of contact surface resistance due to a steam interface. The boundary conditions are illustrated
in Fig. 2.
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Contact surface resistance can be expressed using linear heat transfer at the surface,

f = K
dT

dx

∣∣∣
x=0

= H(T (x = 0, t)− Tmetal). (2)

This expresses that there is some resistance R = 1/H for the surface of the skin to attain the
temperature of the metal. The solution is given in (11).

With R → 0 or H → ∞, the surface would instantaneously reach the metal temperature, and
the boundary condition would be the same as

T (x = 0, t) = Tmetal. (3)

The solution is given in (10).

Fig 2: Boundary conditions considered in the heat transport model: Direct contact with metal
(left), heat transfer being impeded by an effective heat transfer coefficient H < ∞ (center) and
accumulated heating being propagated throughout the tissue or exchanged with air (right).

Heating by direct contact between metal and tissue Sufficiently hot water or hot metal with
high heat conductivity are considered to have sufficiently large H30, 33 that (3) can be used. The
temperature Tmetal is assumed to be 100 °C by default. This contact temperature is modified to
check what other temperatures could explain the heterogeneity.

Heating with steam interface between metal and tissue Assuming thickness d, conductivity
Ksteam = 24.57mWm−1K−1,34 steady state (dT

dt
= 0) in the interface and no additional contact

resistances, the heat flux at the lower end of a steam interface is given by

f =
Ksteam

d
(Tskin − Tmetal). (4)

Due to continuity of the flux, this also represents the boundary condition for the tissue. Comparison
with (2) shows that they are equivalent with H = Ksteam/d. The thickness of the layer is modified
to check the steam interface thickness required to explain the heterogeneity.
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Cool-down by air convection The heat source is removed after the contact period t0. The bound-
ary condition in (2) is appropriate with Hair = 10Wm−2K−130 and Tmetal → Tair = 25 °C. The
tissue has the initial temperature profile T (x) as obtained after t0 seconds of heating. The solution
is given in (12).

2.2.3 Arrhenius integral

A damage integral can be used to assess tissue damage,27, 29, 30, 33 based on an Arrhenius rate reac-
tion. The damage index

Ω(τ) = − ln(Cτ/C0) (5)

expresses the ratio between damaged cells Cτ and undamaged cells C0 after heat exposure.27 The
rate is given as35

dΩ

dt
= P exp(−∆E/RT ), (6)

where P is the pre-exponential frequency factor, ∆E the activation energy, R the molar gas con-
stant and T the absolute temperature.27 The value of Ω at some time t is obtained by integrating
(6) from 0 to t.27 Damage is evaluated by evaluating the integral at the basal layer, or locating
the tissue depth at which Ω = 1.30 Values P = 3.1 × 1098 s−1 and ∆E = 6.28 × 105 Jmol−1

(Henriques values35) are used in this study.
Another useful quantity, the critical temperature

Tc =
∆E

R lnP
, (7)

represents the temperature at which the damage rate dΩ
dt

= 1.36

2.2.4 Damage characterization

The thickness of dermis was assumed to be 2000 µm, from available estimates from the histologies.
Histologies with increasing collagen damages had decreasing dermal thicknesses down to 1000 µm,
but were assumed to be transformed by the heat.

Vascular and collagen damages were given in papillary dermis (first 4% of dermis), upper third,
center third or lower third of dermis. This block division gives a lower and upper boundary for the
depth of injury, respectively representing a depth at which there should be damage and a first depth
where there should be no damage.

The temperature for discrete depths and times were simulated up until the contact time t0 for
all contact times using Tm = 100 °C and (10). The solution for T (x, t = t0) was then used as
the initial temperature distribution T (x) in (12), and further calculated at the same depths over
20 seconds. The Arrhenius integral was calculated over the temperature evolution. Assuming the
most severe damages for each contact time to correspond to metal being applied directly to the
tissue, the Arrhenius coefficients were adjusted to fit the observed damage depths for each injury
and contact time.

Next, the temperature evolution was calculated in a similar way with contact temperatures
from 50 to 100 °C and steam interfaces from 0 to 100 µm, and related to a depth of injury using the
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adjusted Arrhenius coefficients. The steam interface thickness and contact temperature required to
produce the most severe damage for each contact time where then calculated.

2.2.5 Heat transport in metal

Simplified heat propagation within regions of different temperature within the metal was inves-
tigated using a 1D model of finite thickness L. Boundary conditions were Tmetal, lowered initially,
and Tmetal at x = 0 and x = L. The solution is given in (16). Kbrass = 109Wm−1K−1,37 ρbrass =
8500 kgm−338 and cbrass = 380 J kg−1K−139 were assumed.

2.3 Hyperspectral image analysis

2.3.1 Classification methods

The compared classification methods were linear discriminant analysis (LDA), quadratic discrim-
inant analysis (QDA), support vector machine (SVM), random forest and Gaussian Naive Bayes
(GNB). The input x is taken to be a hyperspectral pixel.

SVM and random forest were included due to reported good performance when applied directly
to hyperspectral data,40–44 due to the ability of the former to find appropriate decision surfaces in
high-dimensional spaces, and the latter’s decision tree-based flexibility combined with the random
feature selection appropriate for high-dimensional features. LDA has bias due to lack of valid
assumptions (Gaussian class density, common covariance), but provides planar decision surfaces
with low variance that can lead to good overall performance.24 The information required for LDA
classification spans a lower-dimensional subspace, and the method can be used for class-aware
dimensionality reduction. Gaussian Naive Bayes was included as a simple subsequent technique
after LDA dimensionality reduction in order to relax some of the bias in LDA. QDA is similar
to LDA, except that the classes are assumed to have different rather than identical covariance
matrices.

2.3.2 Training data selection

Regions were manually labeled in the hyperspectral images according to photos over the histology
locations. These regions were taken to be somewhat larger than the actual histology locations
based on visual inspection of the homogeneity in the RGB images, in order to increase the number
of available training data points and include both shadowed and non-shadowed regions. Training
data used for training the classifiers were selected randomly from the original data, ensuring equal
number of training data points per class (10 000) wherever possible.

2.3.3 Classification method evaluation

Each pixel was considered a sample during training of the classification method, but these are not
strictly independent. The cross-validation was therefore done in such a way that each histology lo-
cation, considered to be more independent, was fully contained on one side of the cross-validation
split. Accuracy scores and confusion matrices were used for evaluation.

The classification method was selected based on cross-validation on pig 1 data. The images
here had flat illumination, with little variation due to breathing, and contact times ranging from 1
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to 12 seconds. The selected method was then evaluated by including pig 2 in the cross-validation,
and classification maps were obtained for final evaluation of the damage.

2.3.4 Photon transport modeling

Normal
tissue

Damaged
tissue

Upper Center Lower

Interface depth

Fig 3: Forward photon transport model setup. Optical properties assumed to correspond to dam-
aged and undamaged tissue are set in the upper and lower layer, respectively, and only the thickness
of the upper layer is varied with different damage severity.

A simple two-layer model was used to explain the general behavior of the reflectance. Neglecting
influences from epidermis, the full extent of the model was assumed to correspond to dermis. The
absorption in normal tissue was modeled as

µa = (µoxy(λ)O + µdeoxy(λ)(1−O))B, (8)

where B = 0.01 is the blood volume fraction, O = 0.8 the oxygenation, and µoxy(λ) and µdeoxy(λ)
the absorption spectra for oxygenated and deoxygenated blood, respectively. The scattering was
modeled as

µ′
s = µ′

s,500

(
fMie(λ/500)

−bMie + (1− fMie(λ/500)
−4
)
. (9)

Coefficients µs,500 = 3500m−1, f = 0.51 and bMie = 0.22 were used, based on scattering values
from Bashkatov et al.45 Damaged tissue was, for simplicity, assumed to consist of two layers: A
damaged tissue layer down to the damage depth, and a normal tissue layer, as illustrated in Fig. 3.
Letting only the thickness of the damage layer be the varied property between the different damage
depths, the model was used to investigate what kind of changes to the skin properties would be
necessary in the damage layer to explain the observed reflectance spectra. The reflectance was
modeled using the diffusion model solution in Svaasand et al.46

3 Results and discussion

Histology property relations are first established in Sec. 3.1. The heat transport model is estab-
lished in 3.2 and used to characterize the damages and estimate necessary changes to the boundary
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conditions to explain the burn wound heterogeneity. Hyperspectral classification is investigated
and used to discuss the heterogeneity in Sec. 3.3.

3.1 Histology analysis

The relation between the evaluated histology properties is investigated in order to systematize the
damage. Collagen and vascular damage are especially interesting due to the expected influence on
the optical properties.

Evaluation of deepest vascular damage, collagen reorganization and final assigned burn level
for each histology sample are plotted as a function of contact time in Fig. 4.
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Fig 4: Evaluated damage for all available histology samples. The samples are grouped with respect
to the contact time, labeled on top.

Longer contact times generally result in more severe damage. A high heterogeneity is observed:
Within one contact time, the damage ranges from relatively low severity to relatively high severity,
e.g. damage down to both subcutis and the upper part of dermis at 12 s contact time. The vessel
damages are consistently located deeper than the collagen damages. The final assigned burn level
follows the same functional behavior as the vessel damage.

The damage evaluations are plotted as a function of burn level in Fig. 5. The final assigned
burn level is correlated with the evaluated vessel damage, showing that vessel damage mostly is
the deepest type of injury in these cases. The collagen damage has a weak correlation with the
final burn level.
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Fig 5: Relation between burn level, and collagen damage (left) and vascular damage (right).
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The correlation was investigated further using decision trees. Decision trees were trained to
predict assigned burn level from collagen and vessel damages. Leave-one-out cross-validation was
used to evaluate the model. Decision trees trained on vessel damages yielded a cross-validation
score of 1.00, while decision trees trained on collagen damages yielded a cross-validation score
of 0.70: 0.81 for pig 1 and 0.58 for pig 2. The burn levels can be determined entirely from the
evaluated vessel damage, and from the collagen damages for pig 1 to some point.

3.2 Heat transport modeling

A heat transport model was set up in order to understand the thermal development in the tissue
after application of the heat source.

A temperature profile is built up after t0 seconds of heating, before the accumulated heat prop-
agates further into the tissue or air, as shown in Fig. 6. A given temperature development can
be related to a depth of injury using the Arrhenius integral. The damage was found to be severe
enough during the initial 15 seconds to neglect the effects of blood circulation, which was also
found by Ng et al.32
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Fig 6: Temperature development at the center depth in the upper, center and lower thirds of dermis,
corresponding to depths 333 µm, 1333 µm and 1667 µm, for different contact times. The dotted
lines are simulations with a 10 µm steam interface.

The histology overview in the previous section shows that a contact time has both superficial
and deep damages present. It is likely that this is due to a change in the boundary conditions, which
will be investigated here.

3.2.1 Establishing Arrhenius damage coefficients from the most severe damages

The heat transport model was used to characterize the damages in order to better understand the
damage mechanisms under normal circumstances.

It is assumed that the most severe damages for each contact time had direct contact with metal at
100 °C. Vascular and collagen damages have different depths of injury, and are therefore expected
to have different damage mechanisms. Arrhenius coefficients for different types of injuries are
available,36 but were found to vary much and not necessarily be suitable due to different injury
requirements. Optimally, they should be fitted to the available damage data. A lower and upper
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depth between which Ω should be 1 is available for each contact time, but fitting the cofficients
under these constraints was found to be unstable with multiple possible solutions. Actual contact
time, dermal thickness before heat exposure and whether the direct contact assumption is correct
is not known, and damages should not be fit exactly.

Only the damage threshold was fitted to the data, which has the same effect as modifying A
to yield Ω = 1 at different depths. This represents a simpler injury model where both types of
injury are more directly comparable, and explains only the general damage trend. The requirement
of Ω = 1 is somewhat arbitrary, representing 63% cell destruction. Injury is expected to pass this
point.
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Fig 7: Assumed depth of injuries for the most severe experimental damages as compared to pre-
dicted depth of injury by Arrhenius integrals. Corresponding histology sample names are marked
along the minimized damage curve.

The modeled depth of injury as compared to the experimental depth of injuries is shown in
Fig. 7. The threshold that best explains the collagen damage data is Ω = 87, while the threshold
that best explains the vascular damage data is Ω = 0.02. Equivalent A and critical temperature for
these damages are A = 3.581096, Tcrit = 66.6 °C and A = 1.9710100, Tcrit =54.0 °C for collagen
and vascular damages, respectively.

The collagen damages are generally more superficial. Modeling by Arrhenius damage integrals
shows that a higher temperature or longer duration is required for collagen damage to occur than
vascular damage.

Comparison with literature Thomson and Pearce36 compiled damage coefficients and associ-
ated Tcrit from various studies, with 68-80 °C for collagen damage, 80-84 °C for blood cell damage
and 55-65 °C for general skin damage. Literature on treatment of port wine stains generally as-
sume blood vessel coagulation above 70 °C,47–49 60-70 °C50, 51 or 75 °C.52, 53 Changes to the optical
properties of blood have been reported above 65 °C,54 and destruction above 70 °C.55 Blood vessel
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damage has been reported above 77 °C56 and shrinking above 70-75 °C.57 Collagen is reported to
denaturate above 60-70 °C,51 62-67 °C58 or above 65 °C.59 Some studies have found vessel de-
struction thresholds to coincide with collagen damage thresholds,58 which could be attributed to
collagen being a major component of the vessel wall.57 Thus, the damage threshold for vessel
damage or blood coagulation should be higher than or coincide with the damage thresholds for
collagen damage. Vessel damage depths should be more superficial than or equal to the collagen
damage depths.

The opposite behavior was found in the experimental data, however. This has lead to vascular
damage thresholds far lower than the thresholds found in the literature. It can be speculated that
the deepest vascular damage has different damage requirements, and correspond to some damage,
any damage to the vessels at this depth, and not complete destruction to the vessels throughout the
full depth. The existence of patent vessels at more superficial depths corroborates to this (table
1). The progression of depth for the highest patent vessel coincides somewhat with the collagen
damage depth. This indicates extensive vessel destruction that has the same progression as the
collagen damage and is more consistent with the damage thresholds found in the literature.

The damage thresholds will be discussed in relation with the found spectral results in Sec.
3.3.2, but the vascular damage thresholds are for now used for characterization of the least severe
damages since the damage thresholds should be internally consistent within the same dataset.

3.2.2 Using Arrhenius coefficients to characterize the least severe damages

The heat transport model and associated damage thresholds found above was used to investigate
plausible explanations for the heterogeneity of the burn wounds using different boundary condi-
tions to the problem.

Mappings can be found between a change to the boundary condition of the heat transport
problem and the resulting depth of injury, which can be used to relate the most superficial damages
to a required change in the boundary condition.

Simulating the temperature development for for contact temperatures ranging from 50 to 100
°C and assuming the empirical damage thresholds above yields the mapping in Fig. 8. To e.g.
reduce a collagen damage from predicted center-lower dermis to no damage at contact time 12
seconds, a reduction in contact temperature to below 70 °C would be necessary. Estimated contact
temperatures for all superficial damage samples are shown in Fig. 9. A range is shown for each
injury, where the low and high temperatures corresponds to no damage and damage throughout
the entire block, respectively. Contact temperatures estimated for the collagen damages and the
vascular damages overlap. Required contact temperature vary somewhat between the damages,
however. At worst, a contact temperature below 60 °C is needed to explain the damage for a
contact time of 12 seconds.
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Fig 8: Mapping between contact temperature and predicted depth of injury, collagen damages (left)
and vessel damages (right).
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Fig 9: Estimated contact temperature ranges required to explain the least severe damages for each
contact time.

Similar to the contact temperature characterization, the relation between a steam interface
thickness and the corresponding damage depth is plotted in Fig. 10, and the estimated steam
interface thicknesses are plotted in Fig. 11.
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Fig 10: Mapping between steam interface thickness and the predicted depth of injury, for collagen
damages (left) and vessel damages (right). The functional behavior close to damage depth 0 is
not strictly correct for some of the contact times, in particular 1 and 4 s contact times, due to the
limited resolution in the interface thickness.
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Fig 11: Estimated interface thickness ranges required to explain the least severe damages for each
contact time.

The burn wounds had locations with no damage to the collagen structure. The mapping in
Fig. 10 shows that there is no damage to the collagen structure when the interface thickness is
larger than a threshold. The thickness for these samples was therefore assumed to be any thickness
larger than this threshold. Interfaces estimated from collagen and vessel damages overlap, and are
self-consistent. At worst, an interface with thickness above 130 µm is needed, but generally the
required thickness is somewhere around 30 to 70 µm.
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3.2.3 Heat transport in metal

The explanation model where the contact temperature is lowered requires that the metal has cold
spots where the temperature is lowered compared to the rest of the metal. The heat exchange
dynamics in such a situation was investigated using the 1D model in Sec. 2.2.5 with temperature
70 °C and the ends x = 0 and x = L maintained at temperature 100 °C. Figure 12 shows the time
for the minimum temperature in this model to reach above 90 °C for different regions. The time is
below 1 seconds for a region with thickness 1 cm, and below 7 seconds for 4 cm regions.
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Fig 12: Time until a cold spot of temperature 70 °C within a 100 °C region reaches above 90 °C.

3.3 Hyperspectral characterization

A hyperspectral classification model for detectable damage is established statistically, and then
investigated in terms of changes in optical properties and classification map behavior in order
to understand which changes have been detected and whether the premise can be expected to
generalize. The classification model is used to investigate the spatial extent of the burn wound
heterogeneity and related back to the findings in Sec. 3.2.

3.3.1 Model selection

Preprocessing treatment and classification model is first selected based on cross-validation on pig
1, in order to obtain a basic classification method for further investigation in the later sections.

The method selection was run on collagen classification only. Initial classification of burn level
was found to be challenging, and misclassification of samples with different burn level could be
traced to the samples having the same collagen damage depth. Histologies 1-2a and 1-3b were left
out due to the final collagen damage decision not being clear.

Methods and preprocessing treatments are compared using cross-validation on pig 1 in Fig.
13. LDA was found to have the best performance with respect to the accuracy score, with a minor
improvement when followed by Gaussian Naive Bayes. Similar performance was also found using
LDA followed by SVM-RBF (not shown). LDA+Naive Bayes was chosen for further testing due
to inconvenient parameter tuning requirements in SVM. No more methods were compared here
due to an apparent upper limit in the classification accuracy. The upper limit could be attributed
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Fig 13: Comparison of cross-validation accuracy scores over classification methods and prepro-
cessing treatments for collagen classification of pig 1. SVM-poly and SVM-RBF were tuned, using
C = 20 and d = 7 for SVM-poly, and C = 70 and γ = 0.1 for SVM-RBF.

to disagreement among the pathologists, and mislabeling of individual training data pixels that
would otherwise be difficult to rectify for without relying on a prior classification. The accuracy
is apparently low, but accuracy is a harsh metric in the multi-label case since it does not evaluate
whether a label is close to the correct label, only that the predicted labels do not match exactly.
The score should still be appropriate for relative evaluation of the various techniques.

Normalized spectra were used during model selection, and other preprocessing treatments were
compared in the same figure. First derivatives of calibrated spectra had the highest cross-validation
accuracy. Normalization was still chosen as the main preprocessing method due to expected diffi-
culties with shadow artifacts in the rest of the data, and a concern that calibration treatments rather
than real spectral differences could end up being classified.

3.3.2 Classifiability of the damage properties

Evaluation of the classification model is extended by including pig 2 in the cross-validation setup,
and classification of burn level, vascular damage and collagen damage are compared and related to
likely changes in optical properties.

Classification accuracy for different types of damage Final score after model selection on pig
1 is not representative, and pig 2 is included in order to evaluate the performance further. Under-
standing the difficulties in detecting burn level in the previous study is important for understanding
the feasibility of the technique, and classification of different histology properties is compared.

Confusion matrices for classification of burn level and collagen reorganization are shown in
Fig. 14 when trained on both pigs. Overall accuracy scores for burn level, deepest vascular damage
and collagen damage were 61%, 61% and 82%, respectively. Accuracy scores for burn level and
collagen damage were 77% and 79% for pig 1, and 47% and 85% for pig 2, respectively. It
was seen in Sec. 3.1 that the burn level could be determined entirely from the deepest vascular
damage, and the results for burn level determination are therefore also assumed to be valid for
determination of deepest vascular damage. Classification of burn level has lower classification
accuracy, but less so for pig 1 than for pig 2. It was shown in Sec. 3.1 that the final burn level
was more correlated with the collagen level for pig 1 than for pig 2, which could attribute for this
difference. Collagen damage level thus seems to be the main detectable property by hyperspectral
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imaging, while deepest vascular damage, and hence burn level by the results in 3.1, is difficult to
classify.

The applied method was selected specifically for collagen damage classification, and burn level
classification using the same method has a disadvantage. However, burn level classification was
found to be challenging no matter the classification method or preprocessing treatment.
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Fig 14: Confusion matrices for LDA + GNB trained to predict burn level (left) and collagen reor-
ganization (right) from normalized spectra, obtained from cross-validation including both pigs.

Reflectance spectra Understanding the relation between the classifiable spectral differences and
the underlying physical behavior is important for understanding the limits of the technique and
explaining the results above.
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Fig 15: Apparent reflectance spectra for pig 1, grouped by collagen damage. The raw spectra and
reflectance standard spectra were both normalized before reflectance calibration.

Apparent reflectance spectra are first investigated. These are plotted in Fig. 15. These were
normalized and then calibrated by normalized reflectance standards due to changes in reflectance
standard height. Aside from level changes, the main observed spectral feature is a reduction in the
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dynamic behavior ("crunching") from 500 to 700 nm and a scewing of the spectra with damages
down to upper and center dermis. Damage down to lower and center dermis are apparently sep-
arable through differences below 500 nm, but is more likely to be due to light source calibration
differences since the absolute damage depth is the same in these two cases.

Techniques like LDA likely have high classification accuracy due to each collagen damage
corresponding to a major change in the reflectance that varies around a mean value. The higher
performance of the spectral derivatives of the reflectance in the last section can be attributed the
derivatives providing better features for the observed crunching effect.

Forward modeling The forward model outlined in Sec. 2.3.4 was used to understand the spectral
behavior. Changes to the scattering only in the damage layer did not give the required differences
between the damage depths, and it was necessary to reduce the blood volume of the damage layer.
Modeled spectra are shown in Fig. 16. The scattering of the damage layer was set to 70% of the
normal scattering level per SFDI studies of full thickness burn wounds.1, 2 Adjusting the scatter-
ing parameters had some influence on the level and sloping, but the main attribute seemed to be
the reduction in blood volume. The expected reduction in scattering levels has a relatively small
influence on the reflectance as compared to the blood volume effect.
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Fig 16: Simple two-layer burn model with layer interface placed at upper, lower or center dermis:
The effect of decreasing the blood volume fraction in the damaged layer from 1% to 0.01%. The
scattering in the damage layer was set to 70% of the normal scattering levels.

Progression of damage depth is expected from SFDI studies to lead to an early reduction in
scattering levels due to collagen damage, and later reduction in blood content and oxygenation due
to vascular destruction.1, 2 Hyperspectral and reflectance spectroscopy studies have found similar
reductions in the scattering level16 and oxygenation and blood volume.9–11, 14, 16

The spectral changes associated with collagen damage in the current study mainly seems to be
attributable to blood volume reductions rather than a scattering reduction. The detected changes
are therefore more related to vascular damage and lowering of perfusion rather than the structural
changes expected from collagen damage alone. The blood volume changes have a progression
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in depth similar to the progression in collagen damage depth. This is in line with earlier optical
studies, but a discrepancy with respect to the histologies of the current study, as the deepest vascular
damage had only a weak correlation with the collagen damage.

However, as shown in Sec. 3.2.1, the deepest vascular damage had unexpectedly low tempera-
ture damage thresholds, and might not represent full vascular damage throughout the entire depth.
The collagen damage could coincide with complete destruction to the vasculature, which would
then have damage thresholds more consistent with the literature presented in 3.2.1, and could ex-
plain the coincident reductions in blood volume. This would also be more in line with the studies
reporting coincident vascular and collagen destruction.

That superficial perfusion changes is the main detectable feature further explains the difficulty
in classifying on the deepest vascular damage. Deeper, but not complete vascular damage would
lead to subtle perfusion-related changes which are challenging to separate from the strong, super-
ficial perfusion changes resulting from the more complete vascular destruction higher up in the
tissue.

The expected differences due to collagen damage alone have only a small and subtle effect
on the reflectance. It is unlikely that this can be completely separated from the perfusion effects,
which would be a prerequisite for enabling early detection in a similar way as SFDI.

Summarized, the hyperspectral data can discriminate between collagen damage depth to some
point, but indirectly through a coincident change to the perfusion. Only the last measurement
timepoint can be properly classified.

3.3.3 Classification maps

A classification model for collagen damage has been established. This model is applied to the rest
of the images, and discussed in terms of the burn heterogeneity explanation models.

The collagen damage classification was applied to the last measurement only. Classification
maps are shown in Fig. 17.

Discussion of the classification maps The classification maps are first discussed in order to
evaluate correctness and investigate some of the spatial features.

The presence of a higher severity collagen damage classification and the development in class
size demonstrates a systematic increase in collagen damage with respect to contact time. The
classification maps provide the full spatial extent of the burn heterogeneity, showing regions with
damage of lower severity embedded within high severity damage regions.

The full rectangular damage region is surrounded by a thin border of low severity damage,
which can be attributed to heat escaping from the high severity damage regions into the surrounding
tissue. The thickness corresponds to some heat diffusion length. Longer contact times have a
similar envelope surrounding the low severity damage regions.

Collagen damage at contact time 12 seconds is mostly classified as damage down to center
dermis rather than lower dermis. Only a small region is classified with damage down to lower
dermis. This is likely enforced by minor spectral differences in the training data, since the results
of the previous section showed that the only available lower dermis damage sample is similar to
damages down to center dermis.
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Fig 17: Classification maps for collagen damage classification on both pigs, grouped by contact
time.

The classified low severity damage region at contact times 3 and 4 seconds does not seem
to match the full extent of the low severity damage region indicated by red regions in the RGB
images in Fig. 1. This might be attributed to the low severity damage regions transitioning into
upper dermis at the same time as the high severity damage regions are transitioning from upper to
center dermis, leading to a similar damage classification on both sides of the boundary.

Discussion of burn wound heterogeneity Explanation models for the burn heterogeneity have
been proposed in this study: Lowered contact temperature, and the addition of a contact surface
resistance by a steam interface. The feasibility of the explanation models are subject to the physical
behavior shown by the classification maps.

At contact times 1.5s and 2.0s, regions of width 1.3-2 cm are present, and a region of width
around 1.3 cm at contact time 12 seconds. The latter is especially interesting, as a low severity
damage region is maintained throughout the full exposure of 12 seconds. Given the contact temper-
ature change explanation, average contact temperature needs to be below 70 °C within this region.
The metal heat transport simulations in Sec. 2.2.5 shows that it should not be possible to retain
such regions throughout the full exposure. Another possible explanation is the presence of a cold
spot which increase in temperature over time to create similarly low severity damages. The start
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temperature needs to be yet lower, however. The formation of vapor bubbles during heating that
blocks the heat transfer to the metal has previously been blamed for the heterogeneity.21 However,
the time scales for the heat transport in the metal show that they should be quickly homogenized
during heating and during application to the pig. Cold spots for slightly lower temperatures than
the intended 100 °C can exist due to such an effect, but not for the contact temperatures required
to reproduce the damages.

The steam interface explanation allows for arbitrary steam interfaces to build up over time, and
can be maintained throughout the full exposure. Water was observed to be adhered to the metal.
The temperature of the water is assumed to hold temperatures close to 100 °C, and with the metal
holding the boiling point temperature it can be assumed that the existence of spontaneous steam
should be feasible. It is possible that it can be a combination of the two effects, however. Water was
also investigated for whether it can provide similar contact resistances, but has higher conductivity
requiring thicker interfaces to reproduce the required heat transfer coefficient. There is a limit
to the water interface thickness that could be maintained due to water being squeezed out from
underneath the metal, but water vapor could exhibit some pressure and maintain a distance/steam
thickness between the skin and the metal.

Solutions for reducing the burn heterogeneity exists, including using a PEG-H2O solution to
raise the boiling point when heating up the metal,21 and using dry heating.6 Interestingly, both
approaches would also reduce the possibility for spontaneous steam creation.

Hyperspectral classification and heat transport modeling have thus been used to better under-
stand the burn wound heterogeneity. The least severe damages for each contact time do not develop
much in severity over various contact times, and lacks the systematics present in the burn wounds
representing unchanged boundary conditions. Classification maps are still somewhat challenging
to interpret, but have been reduced to more basic principles and by classifying on properties that
can be reasonably sure to be detectable. The results of this study adds to better understanding of
the underlying mechanisms and the resulting optical property variation.

4 Conclusion

A heat transport model has been established and used to characterize collagen and vascular dam-
age. Collagen damage requires higher temperatures or durations than vascular damage, and are
therefore generally more superficial. A burn heterogeneity is observed, and two possible expla-
nation models have been established using the same heat transport model: a contact temperature
reduction, or surface contact resistance resistance through the creation of a steam interface. Hy-
perspectral classification of the damages show that contact temperature reduction alone is unlikely
since a low temperature region would have to be maintained in high-conducting metal over longer
durations.

The final evaluated burn level was found to be mainly related to deep vascular damage prop-
erties. These were difficult to classify using the hyperspectral technique, and mainly collagen
damage levels could be classified. The collagen damage seems to coincide with a reduction of the
perfusion properties down to the same depths as the collagen damage.
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A better understanding of the burn wound data used in this study has been obtained through
a use of heat transport modeling, photon transport modeling and hyperspectral classification tech-
niques.

Appendix A: Histology

Table 1: Histology table with relevant fields. The abbreviated column headers correspond to "Sam-
ple", "Contact time", "Deepest vascular damage", "Highest patent vessel" and "Collagen damage",
respectively.

Samp. C. time D. vasc. damage High. pat. vess. Coll. damage Level

1-1a 1.0 center upper upper 3
1-1b 1.0 upper upper no 2
1-2a 3.0 upper upper papillary 2
1-2b 3.0 lower upper upper 4
1-2c 3.0 lower upper upper 4
1-2d 3.0 upper upper no 2
1-3a 6.0 subcutis upper/center center 5
1-3b 6.0 center upper upper 3
1-4a 9.0 subcutis upper/center center 5
1-5a 12.0 subcutis lower lower 5
1-5b 12.0 upper upper no 2
2-1a 1.0 upper upper upper 2
2-+1a 1.0 upper upper papillary 2
2-1b 1.0 papillary upper no 1
2-2a 1.5 papillary upper no 1
2-+2a 1.5 center upper upper 2
2-2b 1.5 center upper upper 3
2-+2b 1.5 center upper upper 3
2-3a 2.0 lower upper upper 4
2-3b 2.0 upper upper no 2
2-4a 3.0 center upper upper 3
2-4b 3.0 upper upper no 2
2-5a 4.0 lower upper upper 4
2-5b 4.0 upper upper no 2
2-6a 5.0 subcutis center center 5
2-6b 5.0 center upper upper 3

Appendix B: Heat transport solutions

Tissue models The solution to (1) with (3) is

T (x, t) = (Tmetal − T0)erfc

(
x

2
√
κt

)
+ T0. (10)
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Including a heat transfer coefficient H < ∞ in (2) has the solution25

T (x, t) =

[
erfc

(
x

2
√
κt

)
− exp(hx+ h2κt)erfc

(
x

2
√
κt

+ h
√
κt

)]
(Te − T0) + T0, (11)

where h = H/K. Initial temperature profile T (x) at t = 0 and linear heat transfer at the surface
has the solution25

T (x, t) =

∫ ∞

0

u(x′, x, t)T (x′)dx′ + κh

∫ t

0

u(x′ = 0, x, t− τ)T0dτ, (12)

with

u(x′, x, t) =
1

2
√
πκt

{
exp(−(x− x′))2/4κt) + exp(−(x+ x′)2/4κt)

}
− . . . (13)

h exp(κth2 + h(x+ x′))erfc

{
x+ x′

2
√
κt

+ h
√
κt

}
. (14)

The last solution was evaluated by numerical integration.

Metal model Assuming v(x = 0) = 0, v(x = L) = 1 and v(x, 0) = 0, the solution is25

v(x, L) =
∞∑

0

[
erfc

(
(2n+ 1)l − x

2
√
κt

)
− erfc

(
(2n+ 1)l + x

2
√
κt

)]
. (15)

With T (x, 0) = Tinitial and T (x = 0, t) = T (x = L, t) = Tmaintained,

T (x, t) = (Tmaintained − Tinitial) (v(x, t) + v(L− x, t)) + Tinitial. (16)

Disclosures

The authors have no conflicts of interest to disclose.

Acknowledgments

Thanks to Lukasz Paluchowski for acquisition of the hyperspectral data, to Håvard B. Nordgaard
and Lukasz Paluchowski for planning and performing the animal experiment, and to Håkon Hov
and Sissel M. Berget for evaluation of the biopsy material.

Code, Data, and Materials Availability

Code and data used to produce the results and figures of this paper can be made available from the
corresponding author upon reasonable request.

23



References
1 A. Ponticorvo, D. M. Burmeister, B. Yang, et al., “Quantitative assessment of graded burn

wounds in a porcine model using spatial frequency domain imaging (sfdi) and laser speckle
imaging (lsi),” Biomed. Opt. Express 5(10), 3467–3481 (2014).

2 A. Mazhar, S. Saggese, A. C. Pollins, et al., “Noncontact imaging of burn depth and extent
in a porcine model using spatial frequency domain imaging,” J. Biomed. Opt. 19(8), 086019
(2014).

3 D. M. Burmeister, A. Ponticorvo, B. Yang, et al., “Utility of spatial frequency domain imag-
ing (sfdi) and laser speckle imaging (lsi) to non-invasively diagnose burn depth in a porcine
model,” Burns 41(6), 1242–1252 (2015).

4 M. Kaiser, A. Yafi, M. Cinat, et al., “Noninvasive assessment of burn wound severity using
optical technology: A review of current and future modalities,” Burns 37(3), 377–386 (2011).

5 A. Ponticorvo, D. M. Burmeister, R. Rowland, et al., “Quantitative long-term measurements
of burns in a rat model using spatial frequency domain imaging (sfdi) and laser speckle imag-
ing (lsi),” Lasers Surg. Med. 49(9), 293–304 (2017).

6 A. Ponticorvo, R. Rowland, M. Baldado, et al., “Evaluating clinical observation versus spatial
frequency domain imaging (sfdi), laser speckle imaging (lsi) and thermal imaging for the
assessment of burn depth,” Burns 45(2), 450–460 (2019).

7 R. Rowland, A. Ponticorvo, M. Baldado, et al., “Burn wound classification model using
spatial frequency-domain imaging and machine learning,” J. Biomed. Opt. 24(5), 056007
(2019).

8 A. Ponticorvo, R. Rowland, M. Baldado, et al., “Spatial frequency domain imaging (sfdi) of
clinical burns: A case report,” Burns Open 4(2), 67–71 (2020).

9 K. M. Cross, M. A. Hastings, J. R. Payette, et al., “Near infrared point and imaging spec-
troscopy for burn depth assessment,” International congress series 1281, 137–142 (2005).

10 M. Levasseur, L. Leonardi, J. Payette, et al., “Near infrared hyperspectral imaging: The road
traveled to a clinical burn application,” Proc. SPIE 5969, 59691O (2005).

11 M. S. Chin, O. Babchenko, J. Lujan-Hernandez, et al., “Hyperspectral imaging for burn depth
assessment in an animal model,” Plast Reconstr Surg Glob Open 3(12), e591 (2015).

12 M. A. Calin, S. V. Parasca, R. Savastru, et al., “Characterization of burns using hyperspectral
imaging technique – a preliminary study,” Burns 41(1), 118–124 (2015).

13 M. A. Calin, S. Parasca, and D. Manea, “Comparison of spectral angle mapper and support
vector machine classification methods for mapping skin burn using hyperspectral imaging,”
Proc. SPIE 10677, 106773P (2018).

14 H. Ding and R. C. Chang, “Hyperspectral imaging with burn contour extraction for burn
wound depth assessment,” ASME J. Eng. Sci. Med. Diagn. Ther. 1(4), 041002 (2018).

15 S. V. Parasca, M. A. Calin, D. Manea, et al., “Hyperspectral index-based metric for burn
depth assessment,” Biomed. Opt. Express 9(11), 5778–5791 (2018).

16 P. Wang, Y. Cao, M. Yin, et al., “Full-field burn depth detection based on near-infrared hy-
perspectral imaging and ensemble regression,” Rev. Sci. Instrum. 90(6), 064103 (2019).

24



17 H. Hoeksema, K. Van de Sijpe, T. Tondu, et al., “Accuracy of early burn depth assessment by
laser doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).

18 A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, et al., “Critical review of burn depth
assessment techniques: Part ii. review of laser doppler technology,” J. Burn Care Res. 31(1)
(2010).

19 L. A. Paluchowski, H. B. Nordgaard, A. Bjorgan, et al., “Can spectral-spatial image segmen-
tation be used to discriminate burn wounds?,” J. Biomed Opt. 21(10), 101413 (2016).

20 L. A. Paluchowski, A. Bjorgan, H. B. Nordgaard, et al., “Spectral-spatial classification com-
bined with diffusion theory based inverse modeling of hyperspectral images,” Proc. SPIE
9689 (2016).

21 C. Gaines, D. Poranki, R. A. F. Clark, et al., “Development of a porcine deep partial thickness
burn model,” Burns 39(2), 311–319 (2013).

22 L. A. Paluchowski, Characterization of biological tissue using statistical and physics-based
hyperspectral image processing methods. PhD thesis, NTNU (2018).

23 A. Papp, K. Kiraly, M. Harma, et al., “The progression of burn depth in experimental burns:
a histological and methodological study,” Burns 30(7), 684–690 (2004).

24 T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, Springer, 2nd
edition ed. (2009).

25 H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford science publications,
2nd edition ed. (1959).

26 H. H. Pennes, “Analysis of tissue and arterial blood temperature in the resting human fore-
arm,” J. Appl. Physiol. 1(2), 93–122 (1948).

27 T. Log, “Modeling skin injury from hot spills on clothing,” Int. J. Environ. Res. Public Health
14(11), 1374 (2017).

28 E. Y.-K. Ng and L. T. Chua, “Prediction of skin burn injury. part 1: numerical modelling,”
Proc. Inst. Mech. Eng. H. 216(3), 157–170 (2002).

29 K. R. Diller and L. J. Hayes, “A finite element model of burn injury in blood-perfused skin,”
J. Biomed. Eng. 105(5), 300–307 (1983).

30 N. N. Johnson, J. P. Abraham, Z. I. Helgeson, et al., “An archive of skin-layer thicknesses and
properties and calculations of scald burns with comparisons to experimental observations,” J.
Thermal Sci. Eng. Appl 3(1), 011003 (2011).

31 M. Fu, W. Weng, and H. Yuan, “Numerical simulation of the effects of blood perfusion,
water diffusion, and vaporization on the skin temperature and burn injuries,” Numer. Heat Tr.
A-Appl. 65(12), 1187–1203 (2014).

32 E. Y.-K. Ng and L. T. Chua, “Prediction of skin burn injury. part 2: parametric and sensitivity
analysis,” Proc. Inst. Mech. Eng. H. 216(3), 171–183 (2002).

33 K. Buettner, “Effects of extreme heat and cold on human skin. i. analysis of temperature
changes caused by different kinds of heat application,” J. Appl. Physiol. 3(12), 691–702
(1951).

34 “https://www.engineeringtoolbox.com/water-liquid-gas-thermal-conductivity-temperature-pressure-d_
2012.html, visited 2020-09-25.”

25



35 F. C. Henriques and A. R. Moritz, “Studies of thermal injury v: The predictability and the
significance of thermal induced rate processes leading to irreversible epidermal injury,” Arch.
Pathol. 43(5), 489–502 (1947).

36 S. Thomsen and J. A. Pearce, “Thermal damage and rate processes in biologic tissues,” in
Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert,
Eds., ch. 13, Springer, 2nd edition ed. (2011).

37 “http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/thrcn.html,
visited 2020-09-25.”

38 “https://www.engineeringtoolbox.com/metal-alloys-densities-d_
50.html, visited 2020-09-25.”

39 “http://www2.ucdsb.on.ca/tiss/stretton/database/Specific_
Heat_Capacity_Table.html, visited 2020-09-25.”

40 F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with
support vector machines,” IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004).

41 Y. Tarabalka, M. Fauvel, J. Chanussot, et al., “Svm- and mrf-based method for accurate clas-
sification of hyperspectral images,” IEEE Geosci. Remote. Sens. Lett. 7(4), 736–740 (2010).

42 G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005).

43 M. Belgiu and L. Dragut, “Random forest in remote sensing: A review of applications and
future directions,” ISPRS J. Photogramm. Remote Sens. 114, 24–31 (2016).

44 J. C.-W. Chan, P. Bechers, T. Spanhove, et al., “An evaluation of ensemble classifiers for map-
ping natura 2000 heathland in belgium using spaceborne angular hyperspectral (chris/proba)
imagery,” Int. J. Appl. Earth Obs. 18, 13–22 (2012).

45 A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous,
and muscle tissues: A review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).

46 L. Svaasand, L. Norvang, E. Fiskerstrand, et al., “Tissue parameters determining the visual
appearance of normal skin and port-wine stains,” Laser Med. Sci. 10(1), 55–65 (1995).

47 M. J. C. van Gemert, W. J. A. de Kleijn, and J. P. H. Henning, “Temperature behavior of a
model port-wine stain during argon laser coagulation,” Phys. Med. Biol. 27(9), 1089–1104
(1982).

48 R. R. Anderson and J. A. Parrish, “Microvasculature can be selectively damaged using dye
lasers: A basic theory and experimental evidence in human skin,” Lasers Surg. Med. 1, 261–
276 (1981).

49 J. de Boer, G. W. Lucassen, W. Verkruysse, et al., “Thermolysis of port-wine-stain blood
vessels: Diameter of a damaged blood vessel depends on the laser pulse length,” Lasers Med.
Sci. 11, 177–180 (1996).

50 L. O. Svaasand, E. J. Fiskerstrand, L. T. Norvang, et al., “On the damage to microvessels
during pulsed laser treatment of port-wine stains,” Proc. SPIE 2624 (1996).

51 R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by se-
lective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).

26



52 A. E. Pushkareva and I. Ponomarev, “Comparative numerical analysis and optimization of
blood vessels heated using various lasers,” Laser Phys. 28(9), 096003 (2018).

53 I. V. Ponomarev, S. B. Topchiy, M. A. Kazaryan, et al., “Numerical simulation optimization
of selective heating of blood vessels in "port-wine stains" under laser irradiation in various
modes,” Bull. Lebedev Phys. Inst. 45(7), 17–23 (2018).

54 L. L. Randeberg, A. J. H. Hagen, and L. O. Svaasand, “Optical properties of human blood as
a function of temperature,” Proc SPIE 4609 (2002).

55 J. Fildes, S. Fisher, C. M. Sheaff, et al., “Effects of short heat exposure on human red and
white blood cells,” J. Trauma 45(3), 479–484 (1998).

56 V. L. Martinot, S. R. Mordon, V. A. Mitchell, et al., “Determination of efficient parameters for
argon laser-assisted anastomoses in rats: Macroscopic, thermal and histological evaluation,”
Lasers Surg. Med. 15(2), 168–175 (1994).

57 W. Gorisch and K.-P. Boergen, “Heat-induced contraction of blood vessels,” Laser Surg. Med.
2(1), 1–13 (1982).

58 R. Agah, J. A. Pearce, A. J. Welch, et al., “Rate process model for arterial tissue thermal
damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15(2), 176–184 (1994).

59 L. Bozec and M. Odlyha, “Thermal denaturation studies of collagen by microthermal analysis
and atomic force microscopy,” Biophys. J. 101(1), 228–236 (2011).

Biographies of the authors were not available.

27



ISBN 978-82-326-5461-1 (printed ver.)
ISBN 978-82-326-6491-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:157

Asgeir Bjørgan

Physics-informed and learning-
based approaches to
biomedical hyperspectral data
analysis

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2021:157
Asgeir Bjørgan

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c 
Sy

st
em

s


	Blank Page

