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Abstract
We define a kinetic and a potential energy such that the principle of station-
ary action from Lagrangian mechanics yields a Camassa–Holm system (2CH)
as the governing equations. After discretizing these energies, we use the same
variational principle to derive a semi-discrete system of equations as an approx-
imation of the 2CH system. The discretization is only available in Lagrangian
coordinates and requires the inversion of a discrete Sturm–Liouville operator
with time-varying coefficients. We show the existence of fundamental solutions
for this operator at initial time with appropriate decay. By propagating the fun-
damental solutions in time, we define an equivalent semi-discrete system for
which we prove that there exists unique global solutions. Finally, we show how
the solutions of the semi-discrete system can be used to construct a sequence
of functions converging to the conservative solution of the 2CH system.

Keywords: Camassa–Holm equation, two-component Camassa–Holm system,
calculus of variations, Lagrangian coordinates, energy-preserving discretiza-
tions, discrete Green’s functions, discrete Sturm–Liouville operators,

Mathematics Subject Classification numbers: 35Q51, 35A15, 37K58 (Primary),
39A60, 65M80 (Secondary).

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1361-6544/21/042220+55$33.00 © 2021 IOP Publishing Ltd & London Mathematical Society Printed in the UK 2220

https://doi.org/10.1088/1361-6544/abc101
mailto:sondre.galtung@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/abc101&domain=pdf&date_stamp=2021-2-17
https://creativecommons.org/licenses/by/3.0/


Nonlinearity 34 (2021) 2220 S T Galtung and X Raynaud

1. Introduction

The Camassa–Holm (CH) equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0, (1.1)

is first known to have appeared in [25], although written in an alternative form, as a special
case in a hierarchy of completely integrable partial differential equations. The equation gained
prominence after it was derived in [8] as a limiting case in the shallow water regime of the
Green–Naghdi equations from hydrodynamics, see also [18]. Since then, the CH equation has
been widely studied due to its rich mathematical structure: it is for instance bi-Hamiltonian,
admits a Lax pair and is completely integrable. The solutions may develop singularities in finite
time even for smooth initial data, see, e.g., [12, 13].

The so-called Camassa–Holm system (2CH)

ut − utxx + 3uux − 2uxuxx − uuxxx + ρρx = 0 (1.2a)

ρt + (ρu)x = 0 (1.2b)

was first introduced in [41].
This is not the only two-component generalization which has been proposed for the CH

equation. For instance, in [9, 23] the authors showed how similar systems are related to
the AKNS hierarchy. However, we will here only consider (1.2), which similarly to (1.1)
can be derived as a model for water waves. Indeed, the system was derived in [20] from
the Euler equations in the case of constant vorticity, while different derivation based on the
Green–Naghdi equations can be found in [14]. The 2CH system shares many properties with
the CH equation: the equation is bi-hamiltonian [41], admits a Lax pair and is integrable [14].
Results on the well-posedness, blow-up and global existence of solutions to (1.2) are provided
in [21, 22, 33, 34].

Both the CH equation and the 2CH system are geodesic equations, see [15–17, 21]. The
CH equation is a geodesic on the group of diffeomorphisms for the right-invariant norm

Ekin =
1
2
‖u‖2

H1 =
1
2

∫
R

(u2 + u2
x)dx. (1.3)

To clarify this statement, we introduce the notation y : R+ × R→ R for a path in the group
of diffeomorphisms, meaning that y(t, ξ) denotes the path of a particle initially at ξ, and the
Eulerian velocity is given by u(t, x) = yt(t, y−1(x)). The geodesic equation is then obtained as
an extremal solution for the action functional

A(y) =
∫ t1

t0

Ekin(t)dt =
1
2

∫ t1

t0

∫
R

(
y2

t yξ +
y2

tξ

yξ

)
dξ dt.

The momentum map, as defined in [2], is given by the Helmholtz transform m(u) = u − uxx

in Eulerian coordinates. Then we may write the energy as Ekin = 1
2

∫
R

m(u)u dx. For the
2CH system in [21], the diffeomorphism group is replaced with a semi-direct product which
accounts for the variable ρ. Then the 2CH system is a geodesic for the right-invariant norm
1
2‖u‖2

H1 +
1
2‖ρ‖2

L2 . However, we will not follow this approach here, but rather use the fact that
(1.2) can be derived as the governing equation for a different variational problem, where the
action functional includes a potential energy term and the variation is performed on the group
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of diffeomorphisms only. This point of view enables us to derive a discretization which mimics
the variational derivation of the continuous case. In this approach, we consider the variable ρ
as a density entering the action functional through a potential term

Epot =
1
2

∫
R

(ρ− ρ∞)2 dx, (1.4)

where ρ∞ � 0 is the asymptotic value of ρ. The mass conservation equation ρt + (ρu)x = 0
is not a result of the variational derivation, but is instead a given constraint of the problem.
Equation (1.4) can be interpreted as an elastic energy: it increases whenever the system deviates
from the rest configuration given by ρ ≡ ρ∞. In the beginning of section 2, we present the
derivation of the 2CH as the critical point for the variation of Ekin − Epot. This approach follows
the classical framework, see [1], and the potential term Epot depending on the density is added
in the same way as in [40], see also [27, 39, 44] for applications to more complex fluids. In
Lagrangian variables, the mass conservation equation simplifies to the expression

∂

∂t
(ρ(t, y)yξ) = 0. (1.5)

To derive a discrete approximation of the 2CH system, we propose to follow the same steps
of the variational derivation in the continuous case. First, we discretize the path functions
y(t, ξ) by piecewise linear functions, yi(t) = y(t, ξi) for ξi = iΔξ, i ∈ Z and Δξ > 0. Then, we
approximate the Lagrangian using these discretized variables. Finally, we obtain the governing
equation for the discretized system from the principle of stationary action, as in the continuous
case. In our opinion, the advantage of using this variational approach as basis for our discretiza-
tion is that we need only take variations with respect to a single discrete variable, rather than
two. This reduction is achieved by the use of the identity (1.5). Note that the group structure
of the diffeomorphisms is not carried over to the discrete setting, as the composition rule is not
defined at the discrete level. In practice, this means that that our discretized equation will not
have a purely Eulerian form and should be solved in Lagrangian variables. We retain two sym-
metries though, the time and space translation invariance. As a result, we have conservation of
discrete counterparts of the integrals

∫
R

(u2 + u2
x) dx and

∫
R

u dx, see section 2.
We rewrite the 2CH system (1.2) in Lagrangian variables following [31]. We first apply the

inverse of the Helmholtz operator Id − ∂xx to obtain

ut + uux = −Px, P − Pxx = u2 +
1
2

u2
x +

1
2
ρ2. (1.6)

We rewrite the second equation above as a system of first-order equations,[
−∂x 1

1 −∂x

]
◦
[

P
Q

]
=

[
0
f

]
, (1.7)

for Q = Px and f = u2 + 1
2 u2

x +
1
2ρ

2. In Lagrangian variables we have P̄(ξ) = P(y(ξ)), and the
system (1.7) becomes[

−∂ξ yξ
yξ −∂ξ

]
◦
[

P̄
Q̄

]
=

[
0
f̄

]
, (1.8)

for f̄ = f ◦ y. In (1.8), the operator denoted by yξ corresponds to pointwise multiplication
by yξ. The matrix operator corresponds to the momentum map in Lagrangian coordinates and
must be inverted to solve the system. In contrast to its Eulerian counterpart in (1.7), the operator
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evolves in time. This significantly complicates the analysis, especially in the discrete case. In
section 4, we introduce the operators G and K which define the fundamental solutions of the
momentum operator,

[
−∂ξ yξ
yξ −∂ξ

]
◦
[
K G
G K

]
=

[
δ 0
0 δ

]
. (1.9)

Note that the operator becomes singular when yξ vanishes. In the discrete case, the momentum
operator and its fundamental solution are given by

[
−D− D+y
D+y −D+

]
◦
[
γ k
g κ

]
=

[
δ 0
0 δ

]
, (1.10)

where D± denotes forward and backward difference operators, see section 2. This is a form
of Jacobi difference equation, cf [43]. To establish solutions of (1.10), we shall invoke results
from [24, 42] which generalize the Poincaré–Perron theory on difference equations. Section 3
is completely devoted to this analysis.

The CH equation and 2CH system can blow up in finite time, even for smooth initial data.
The blow-up scenario for CH has been described in [11, 12, 19] and consists of a singular-
ity where limt→tc ux(t, xc) = −∞ for some critical time tc and location xc. However, since the
H1-norm of the solution is preserved, the solution remains continuous. In fact, the solution
can be prolongated in two consistent ways: conservative solutions will recover the total energy
after the singularity, while dissipative solutions remove the energy that has been trapped in
the singularity, see [5, 6, 30–32, 36, 38]. If ρ > 0 initially, no blow-up occurs and the 2CH
system preserves the regularity of the initial data, see [31]. We can interpret this property
as a regularization effect of the elastic energy: the particles cannot accumulate at a given
location because of a repulsive elastic force. The peakon–antipeakon collision is a good illus-
tration of the dynamics of the blow-up. We present this scenario in figures 1 and 2. In the
peakon–antipeakon solution, which corresponds to ρ0 ≡ 0, we observe the breakdown of the
solution and the concentration of the energy distribution into a singular measure. At colli-
sion time, u2 + u2

x = 0 and the energy reduces to a pure singular Dirac measure, which natu-
rally cannot be plotted. For the same u0, but ρ0 ≡ 1, the potential energy prevents the peaks
from colliding, which is clear from the plot of the characteristics in figure 1. The potential
energy grows as the characteristics converge and results in an apparent force which diverts
them.

The global conservative solutions of the 2CH system are based on the following conserva-
tion law for the energy,

(
1
2

(u2 + u2
x + (ρ− ρ∞)2)

)
t

+

(
u

1
2

(u2 + u2
x + (ρ− ρ∞)2)

)
x

= −(uR)x,

(1.11)

where R = P − 1
2 u2 − 1

2ρ
2
∞ for P in (1.6). This equation enables us to compute the evolution

of the cumulative energy defined from the energy distribution as

H(t, ξ) =
1
2

∫ y(t,ξ)

−∞
(u2 + u2

x + (ρ− ρ∞)2)dx
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Figure 1. Plot of the characteristics for peakon-antipeakon initial data u0 with ρ0 equal to
0 and 1. We observe the regularizing effect of ρ0 > 0 which prevents the characteristics
from colliding.

in Lagrangian coordinates, for which we obtain dH
dt = −(uR) ◦ y. This evolution equation is

essential to keep track of the energy when the solution breaks down. To handle the blow-
up of the solution, we need also to have a framework which allows the flow map ξ 	→ y(t, ξ)
to become singular, that is where yξ can vanish and the momentum operator in Lagrangian
coordinates become ill-posed. In [31], explicit expressions for P and Q are given. Here, we
adopt a different approach where we propagate the fundamental solutions K and G from (1.9)
in time. Introducing U = u ◦ y, the equivalent system for (1.2) is given by

yt = U, Ut = −Q, Ht = −UR, (1.12a)

with the evolution equations for K and G given by

∂

∂t
G = [U ,K],

∂

∂t
K = [U ,G]. (1.12b)

Here [U ,K] denotes the commutator of U and K, see section 4. In the case where ρ∞ = 0, R
and Q in (1.12a) are given by

[
R
Q

]
=

[
K G
G K

]
◦
[1

2
U2

H

]
ξ

. (1.12c)

The derivation of (1.12) can be carried over to the discrete system, and this is done in section 4.
The short-time existence for the solution of the semi-discrete system relies on Lipschitz esti-

mates. At this stage, one of the main ingredients in the proofs is the Young-type estimate for
discrete operators presented in proposition 5.1. For the global existence, we have to adapt the
argument of the continuous case and complement it with a priori estimates of the fundamental
solutions (g, k, γ,κ). These estimates follow from monotonicity properties of these operators,
see lemma 4.1. Section 5 is devoted to establishing existence and uniqueness for global solu-
tions of the discrete 2CH system. In section 6, we explain how the solution of the semi-discrete
system can be used to construct a sequence of functions that converge to the solution of the
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Figure 2. Solutions for peakon–antipeakon initial data. For ρ0 ≡ 0 we plot u in (a) and
u2 + u2

x in (b). We observe the blow-up of ux at tc ≈ 1.5 and the concentration of energy.
For the same initial u0, but ρ0 ≡ 1, we plot the corresponding solution in (c)–(e) and
observe that ux does not blow up. In (e) we plot the distribution of the potential energy
given by (ρ(t, x) − ρ∞)2, and observe how it grows when the peaks get closer to each
other.
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2CH system (1.2). Finally, in section 7 we present how to construct appropriate initial data for
the semi-discrete system in order to achieve the convergence in section 6.

2. Derivation of the semi-discrete CH system using a variational approach

As a motivation for our discretization, we will here outline how the system (1.2) can be derived
from a variational problem involving a potential term, as indicated in the previous section. In
a standard way, see, e.g., [1], the Lagrangian L is defined as the difference of a kinetic and
potential energy

L = Ekin − Epot, (2.1)

where the energies are given by (1.3) and (1.4). The governing equation is then derived
by the least action principle, also called principle of stationary action, on the group of
diffeomorphisms.

A first step in this direction is to introduce the particle path, denoted by y(t, ξ). Then, we
rewrite Ekin and Epot in Lagrangian variables. For the kinetic energy, we obtain

Ekin(t) =
1
2

∫
R

(
y2

t yξ +
y2

tξ

yξ

)
(t, ξ) dξ. (2.2)

From the principle of mass conservation for a control volume, the density satisfies

ρ(t, y(t, ξ))yξ(t, ξ) = ρ(0, y(0, ξ))yξ(0, ξ). (2.3)

The definition of ρ given by (2.3) is equivalent to the conservation law (1.2b). We can check
this statement directly:

∂

∂t
(ρ(t, y)yξ) = (ρt(t, y) + ρx(t, y)u(t, y) + ρ(t, y)ux(t, y))yξ = 0.

We introduce the Lagrangian density r defined as r(t, ξ) = ρ(t, y(t, ξ))yξ(t, ξ), and by requiring
it to be preserved in time, we impose the definition of the density ρ in the system. The identity
(2.3) allows us to reduce the number of variables in our Lagrangian. Indeed, we rewrite the
potential energy (1.4) in terms of the particle path y only and obtain

Epot(t) =
1
2

∫
R

(
ρ0(y(0, ξ))

yξ(0, ξ)
yξ(t, ξ)

− ρ∞

)2

yξ(t, ξ) dξ. (2.4)

Combining (2.1) with (2.2) and (2.4) one can derive

δL(y, yt)
δyt

= yξyt −
(

ytξ

yξ

)
ξ

,
δL(y, yt)

δy
= −ytytξ +

1
2

(
y2

tξ

y2
ξ

− ρ2
0

y2
ξ

)
ξ

, (2.5)

which must satisfy the Euler–Lagrange equation

∂

∂t
δL(y, yt)

δyt
=

δL(y, yt)
δy

. (2.6)

Now, from the relations (ρ ◦ y)yξ = (ρ0 ◦ y0)(y0)ξ, yt = u ◦ y, ytξ = (ux ◦ y)yξ , and ytt = (ut +
uux) ◦ y which implies yttξ = ((ut + uux)x ◦ y)yξ, we can write
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∂

∂t
δL(y, yt)

δyt
= (ytyξ)t −

(
ytξ

yξ

)
tξ

= yttyξ + ytytξ −
(

yttξ

yξ
−

y2
tξ

y2
ξ

)
ξ

= ((ut + 2uux) ◦ y)yξ − (((ut + uux)x − u2
x) ◦ y)ξ

= ((ut − utxx + 2uux − uxuxx − uuxxx) ◦ y)yξ

and

δL(y, yt)
δy

= ((−uux + uxuxx) ◦ y)yξ −
1
2

(
(ρ ◦ y)2

)
ξ

= ((−uux + uxuxx) ◦ y)yξ − (ρρx ◦ y)yξ.

Inserting the above identities in the Euler–Lagrange equation (2.6) we get

((ut − utxx + 3uux − 2uxuxx − uuxxx + ρρx) ◦ y)yξ = 0

which is exactly (1.2a) when yξ �= 0.
For the remainder of this section we give details of how we discretize the variational deriva-

tion outlined above. Let us start by discretizing the kinetic and potential energies given by (2.2)
and (2.4), respectively. First we divide the line into a uniform grid by defining ξ j = jΔξ for
some discretization step Δξ > 0 and j ∈ Z. We approximate y(t, ξ j) with y j(t) for j ∈ Z, and
the spatial derivatives yξ(t, ξ j) with the finite difference D+y j. The finite difference operators
D+ and D− are defined as

D±y j := ± y j±1 − y j

Δξ
, (2.7)

and they satisfy the discrete product rule

D±(v jw j) = (D±v j)w j±1 + v j(D±w j). (2.8)

When we later encounter operators in the form of grid functions with two indices, such as
gi, j for i, j ∈ Z, we will indicate partial differences by including the index in the difference
operator, for instance D j+gi, j = (gi, j+1 − gi, j)/Δξ. We use the standard notation �p and �∞ for
the Banach spaces with norms

‖a‖�p :=

⎛
⎝Δξ

∑
j∈Z

|a j|p
⎞
⎠

1
p

and ‖a‖�∞ := sup
j∈Z

|a j|, (2.9)

with 1 � p < ∞.
Turning back to the energy functionals, we discretize the kinetic energy (2.2) using finite

differences and set

Ekin
Δξ :=

1
2
Δξ
∑
j∈Z

(
(ẏ j)

2(D+y j) +
(D+ẏ j)2

D+y j

)
. (2.10)

The Lagrangian velocity is as usual defined as Ui = ẏi and, using this notation, (2.10) becomes

Ekin
Δξ =

1
2
Δξ
∑
j∈Z

(
U2

j D+y j +
(D+U j)2

D+y j

)
.
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The discrete counterpart of (2.4) is similarly defined as

Epot
Δξ :=

1
2
Δξ
∑
j∈Z

(
D+y0, j

D+y j
ρ0, j − ρ∞

)2

(D+y j), (2.11)

where y0, j = y0(ξ j) and ρ0, j := ρ0(y0, j). Now we define the Lagrangian as the difference
between the kinetic and potential energy,

Ldis = Ekin
Δξ − Epot

Δξ.

Now we compute the Fréchet derivatives of Ldis with respect to y and ẏ. This derivative is given
in �2, the space of square summable sequence using the duality pairing defined by the scalar
product,

〈v,w〉�2 :=Δξ
∑
j∈Z

v jw j, v,w ∈ �2.

Formally, we have

δEkin
Δξ = Δξ

∑
j∈Z

(
U j(δU) j(D+y j) +

D+U j

D+y j
D+(δU) j

)

+
1
2
Δξ
∑
j∈Z

(
(U j)2D+(δy) j −

(
D+U j

D+y j

)2

D+(δy) j

)

= Δξ
∑
j∈Z

(
U j(D+y j) − D−

(
D+U j

D+y j

))
(δU) j

−Δξ
∑
j∈Z

1
2

D−

(
(U j)2 −

(
D+U j

D+y j

)2
)

(δy) j,

where in the final identity we have used the summation by parts formula

Δξ

n∑
j=m

(D+a j)b j +Δξ

n∑
j=m

a j(D−b j) = an+1bn − ambm−1. (2.12)

This leads to the Fréchet derivatives(
δEkin

Δξ

δy

)
j

= −1
2

D−

(
(U j)2 −

(
D+U j

D+y j

)2
)

and (
δEkin

Δξ

δU

)
j

= U j(D+y j) − D−

(
D+U j

D+y j

)
=

(
δLdis

δU

)
j

, (2.13)

where the rightmost equality in (2.13) is a consequence of Epot
Δξ being independent of U. For

the potential term we find
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δEpot
Δξ =

Δξ

2

∑
j∈Z

(
−2

(
D+y0, j

D+y j
ρ0, j − ρ∞

)
D+y0, j

D+y j
ρ0, jD+(δy) j

+

(
D+y0, j

D+y j
ρ0, j − ρ∞

)2

D+(δy) j

)

= Δξ
∑
j∈Z

1
2

D−

((
D+y0, j

D+y j
ρ0, j

)2

− ρ2
∞

)
δy j,

which gives the Fréchet derivative(
δEpot

Δξ

δy

)
j

=
1
2

D−

((
D+y0, j

D+y j
ρ0, j

)2

− ρ2
∞

)
.

The Euler–Lagrange equation is then

δLdis

δy
− d

dt
δLdis

δU
= 0, (2.14)

see, e.g., [1]. From (2.14) we then have

d
dt

(
δLdis

δU

)
j

=
d
dt

(
U j(D+y j) − D−

(
D+U j

D+y j

))

= U̇ j(D+y j) − D−

(
D+U̇ j

D+y j

)
+ U j(D+U j) + D−

((
D+U j

D+y j

)2
)

,

which leads to the following system of governing equations

ẏ j = U j (2.15a)

and

(D+y j)U̇ j − D−

(
D+U̇ j

D+y j

)
= −U j(D+U j)

− 1
2

D−

(
(U j)2 +

(
D+U j

D+y j

)2

+

(
D+y0, j

D+y j
ρ0, j

)2
)

, (2.15b)

for j ∈ Z. Note that we have omitted ρ2
∞ on the right-hand side in (2.15) as D− maps constants

to zero.
We can use the Legendre transform to define the Hamiltonian

Hdis =

〈
δLdis

δU
, U

〉
�2
− Ldis. (2.16)

Writing out the above Hamiltonian explicitly we have

Hdis =
1
2
Δξ
∑
j∈Z

(
(U j)

2 +

(
D+U j

D+y j

)2

+

(
D+y0, j

D+y j
ρ0, j − ρ∞

)2
)

(D+y j). (2.17)
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We observe that the Lagrangian Ldis does not depend explicitly on time. Then it is a classical
result of mechanics, which follows from Noether’s theorem, that Hdis is time-invariant,

dHdis

dt
= 0.

The Lagrangian Ldis is also invariant with respect to translation so that an other time invariant
can be obtained. We denote by ψ : �2 × R→ �2 the transformation given by the uniform trans-
lation (ψ(y, ε)) j = y j + ε. For simplicity, we write yε(t) = ψ(y(t), ε). From the definition of ψ,
we have

ẏε(t) = ẏ(t) and D+yε(t) = D+y(t).

Hence, the Lagrangian Ldis is invariant with respect to the transformation ψ. Then

Noether’s theorem gives us that the quantity
〈

δLdis
δU , δyε

δε

〉
�2

is preserved by the flow. In our

case,
(

δyε

δε

)
j
= 1 and

(
δLdis
δU

)
j
= U j(D+y j) − D−

(
D+U j
D+y j

)
, see (2.13). Thus, we obtain that

the quantity

I = Δξ
∑
j∈Z

(
U j(D+y j) − D−

(
D+U j

D+y j

))
= Δξ

∑
j∈Z

U j(D+y j), (2.18)

is preserved. Note that I corresponds to a discretization of∫
R

(u − uxx) dx =

∫
R

u dx

in Eulerian coordinates, which is preserved by the 2CH system.
Let us return to (2.15), and in particular to the left-hand side which contains U̇ j, but

not in an explicit form. For a given sequence a = {a j} j∈Z ∈ �∞ and an arbitrary sequence
w = {w j} j∈Z ∈ �2, we define the operator A[a] : �2 → �2 by

(A[a]w) j := a jw j − D−

(
D+w j

a j

)
, j ∈ Z. (2.19)

When a = D+y, (2.19) corresponds to the momentum operator m in Lagrangian coordinates,
and takes the form of a discrete Sturm–Liouville operator. This operator is symmetric and
positive definite for sequences a such that a j > 0, as we can see from

Δξ
∑
j∈Z

v j(A[a]w) j = Δξ
∑
j∈Z

(
a jw jv j +

1
a j

(D+w j)(D+v j)

)
,

where we once more have used (2.12). When A[D+y] is positive definite, it is invertible and
we may formally write (2.15) as a system of first order ordinary differential equations,

ẏ j = U j,

U̇ j = −A[D+y]−1

(
U j(D+U j) +

1
2

D−

(
(U j)

2 +

(
D+U j

D+y j

)2

+

(
D+y0, j

D+y j
ρ0, j

)2
))

. (2.20)
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When solving the above system, we obtain approximations of the fluid velocity and density in
Lagrangian variables, U j(t) ≈ u(t, y(t, ξ j)) and ρ0, j/(D+y j(t)) ≈ ρ(t, y(t, ξ j)).

We conclude this section with some comments on the Hamiltonian form of the equations.
Hamiltonian equations in generalized position and momentum variables follow from the
Lagrangian approach in classical mechanics, see, e.g., [1]. The generalized momentum is
defined as p = δLdis

δU (y, U). When we express the Hamiltonian Hdis given in (2.17) in term of y
and p, the Hamiltonian equations are then given as usual by

ẏ =
δHdis

δp
, ṗ = −δHdis

δy
. (2.21)

From (2.18), we get that the momentum is pj = (A[D+y]U) j. Hence, U j = (A[D+y]−1 p) j, and
the Hamiltonian (2.17) is

Hdis =
1
2
Δξ
∑
j∈Z

pj(A[D+y]−1 p) j + Epot
Δξ.

If we introduce the fundamental solution gi, j of the operator A[D+y], see section 3, the
Hamiltonian can be rewritten as

Hdis =
1
2
Δξ
∑
j∈Z

pjΔξ
∑
i∈Z

gi, jpi =
1
2

∑
i, j∈Z

(Δξpi)(Δξpj)gi, j + Epot
Δξ.

In the case ρ = 0 (that is Epot
Δξ = 0), we recognized the similarity of this expression with

Hmp =
1
2

N∑
i, j=1

pi pje
−|yi−y j|

given in [8]. The Hamiltonian Hmp defines the multipeakon solutions, which can be seen as
another form of discretization for the CH equation, see [37] for the global conservative case.
Then, the two discretization appear as the results of two different choices of discretization for
the inverse momentum operator: gi, j in the case of this paper and ĝi, j = e−|yi−y j| in [8]. We
note that a numerical study of discretizations of the periodic CH equation considering both
multipeakons and the variational method presented in this paper can be found in [26].

3. Construction of the fundamental solutions of the discrete momentum
operator

In this section we construct a Green’s function, or fundamental solution, for the operator
defined in (2.19). Note that when a = D+y coincides with the constant sequence 1 = {1} j∈Z
we have from (2.19) that A[1] = Id − D−D+, which corresponds to the operator used in the
difference schemes studied in [10, 35]. As the coefficients are constant, the authors are able to
find an explicit Green’s function g which can be written as

g j =
1√

4 +Δξ2

(
1 +

Δξ2

2
+

Δξ

2

√
4 +Δξ2

)−| j|
(3.1)

and fulfills (Id − D−D+)g = δ0. Here δ0 = {δ0, j} j∈Z for the Kronecker delta δi, j, equal to one
when the indices coincide and zero otherwise. In our case, the coefficients appearing in the
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definition of A[D+y] are varying with the grid index j, which significantly complicates the
construction of the Green’s function.

Let us consider the operator A[a] from (2.19) and the equation (A[a]g) j = f j. We want to
prove that there exists a solution which decreases exponentially as j →±∞. To this end, we
want to find a Green’s function for the operator A[a], and the first step is to realize that the
homogeneous operator equation (A[a]g) j = 0 can be written as

D+g j

a j
= Δξa jg j +

D+g j−1

a j−1
.

This can again be restated as a Jacobi difference equation, see [43, equation (1.19)],

− 1
a j

g j+1 +

(
1
a j

+
1

a j−1
+ a j(Δξ)2

)
g j −

1
a j−1

g j−1 = 0,

or equivalently in matrix form

[
g j

g j+1

]
=

[
0 1

− a j

a j−1
1 +

a j

a j−1
+ (a jΔξ)2

] [
g j−1

g j

]
=: Ã j

[
g j−1

g j

]
. (3.2)

Observe that Ã j is not symmetric and always contains positive, negative and zero entries under
the assumption a j > 0. Moreover, Ã j is ill-defined when aj−1 = 0, which corresponds to the
occurrence of a singularity in the system. We want to allow for this in our discretization in
order to obtain solutions globally in time. If we go back to the first restatement of the operator
equation and introduce the variable

γ j :=
D+g j

a j
=

g j+1 − g j

a jΔξ
, (3.3)

we get the following characterization of the homogeneous problem[
−D+ a j

a j −D−

] [
g j

γ j

]
=

[
0
0

]
, (3.4)

or equivalently[
g j+1

γ j

]
=

[
1 + (a jΔξ)2 a jΔξ

a jΔξ 1

] [
g j

γ j−1

]
=: A j

[
g j

γ j−1

]
. (3.5)

Here A j is a symmetric matrix with positive entries whenever a j > 0, and it reduces to the iden-
tity matrix when aj = 0. We will use (3.5) rather than (3.2) to construct our Green’s function,
and it will also significantly simplify the analysis of the asymptotic behavior of the solutions.

Lemma 3.1 (Properties of matrix Aj). Consider Aj from (3.5) and assume aj = 1 +

D+bj � 0 where D+b ∈ �2. Then det Aj = 1 and there exist Mb > mb > 0 depending on
‖D+b‖�2 and Δξ such that the eigenvalues λ±

j of Aj satisfy

mb � λ−
j < 1 < λ+

j � Mb (3.6)

uniformly with respect to j when aj > 0. Moreover there is the obvious identity λ±
j = 1 when

aj = 0. Asymptotically we have limj→±∞ Aj = A, where A is given by Aj after setting aj = 1,
and the eigenvalues λ± of A satisfy

m � λ− < 1 < λ+ � M (3.7)
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for M > m > 0 depending only on Δξ. Moreover, as the eigenvalues are strictly positive it
follows that the spectral radius of Aj, spr(A j) := max{|λ+

j |, |λ−
j |} satisfies ‖A j‖ = spr(A j) =

λ+
j , ‖A‖ = spr(A) = λ+, and both matrices can be diagonalized: A j = R jΛ jR�

j , A = RΛR�.

Proof of Lemma 3.1. To see that det A j = 1 one can compute it directly, or see it from the
eigenvalues

λ±
j := 1 +

(a jΔξ)2

2
± a jΔξ

2

√
4 + (a jΔξ)2

=
1
4

(√
4 + (a jΔξ)2 ± a jΔξ

)2

,

(3.8)

which shows that A j is invertible irrespective of the value of a j. As A j is real and symmetric,
it can be diagonalized with orthonormal eigenvectors r±j as follows

A j = R jΛ jR
�
j , Λ j =

[
λ−

j 0
0 λ+

j

]
, R j =

⎡
⎢⎢⎢⎢⎣

1√
1 + λ+

j

1√
1 + λ−

j

− 1√
1 + λ−

j

1√
1 + λ+

j

⎤
⎥⎥⎥⎥⎦ . (3.9)

Since D+b ∈ �2, for any j ∈ Z we have the bound

√
Δξ |D+b j| =

(
Δξ|D+b j|2

)1/2
� ‖D+b‖�2

which leads to

0 � a jΔξ � Δξ +
√
Δξ‖D+b‖�2 =: Kb,

meaning aj is bounded from above and below. Then it follows that

0 <

⎛
⎝
√

4 + K2
b − Kb

2

⎞
⎠

2

� λ−
j � 1 � λ+

j �

⎛
⎝
√

4 + K2
b + Kb

2

⎞
⎠

2

< (1 + Kb)2,

corresponding to (3.6). Furthermore, since D+bj ∈ �2, we have lim j→±∞ a jΔξ = Δξ. We
denote by A, Λ, R, and λ± the matrices and eigenvalues given by A j, Λ j, R j, and λ±

j after
replacing aj by 1. From the preceding limit, (3.8) and (3.9) we obtain

lim
j→±∞

(A j,Λ j, R j) = (A,Λ, R). (3.10)

Bounds for λ± are obtained similarly to the bounds for λ±
j . As A j, A are symmetric and hence

normal, their norms coincide with the spectral radius spr(·) which here coincides with the
largest eigenvalue. �

Note that (3.5) corresponds to a transition from (gj, γ j−1) to (gj+1, γ j), so that Aj can be con-
sidered as a transfer matrix between these two states. Thus, solving the homogeneous operator
equation (A[a]g) j = 0 bears clear resemblance to propagating a discrete dynamical system, and
this is also the idea employed in the analysis of Jacobi difference equations in [43, equation
(1.28)]. However, in making the change of variable to obtain (3.5) we lose the symmetry of the
difference equation, and so the results in [43] are no longer directly applicable. On the other
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hand, our system can be regarded as a more general Poincaré difference system, and our idea
is then to apply the results [24, theorem 1.1] and [42, theorem 1] to the matrix product

Φk, j :=

⎧⎪⎪⎨
⎪⎪⎩

Ak−1 . . .A j, k > j,

I, k = j,

(Ak)−1 . . . (A j−1)−1, k < j

, (3.11)

which is the transition matrix from (g j, γ j−1) to (gk, γk−1). Note that in the lemma below, the
norms can be taken to be the standard Euclidean norm, but one could use any vector norm.

Lemma 3.2 (Existence of exponentially decaying solutions). Consider the matrix
equation

vn = (Φn,0)v0, vn =

[
gn

γn−1

]
, (3.12)

coming from (3.5) with Φn,0 as defined in (3.11). Then there exist initial vectors v0 = v±0 such
that the corresponding solutions v±n satisfy

lim
n→∓∞

n
√
‖v±n ‖ = λ−. (3.13)

That is, there exist solutions vn with exponential decay in either direction, owing to the
Lyapunov exponent λ− < 1. Moreover, the initial vectors are unique up to a constant factor.

Proof of Lemma 3.2. We begin with the case of increasing n, and we want to apply
[24, theorem 1.2] which states that for sequences of positive matrices {An} satisfying
limn→+∞ An = A for some positive matrix A we have

lim
n→+∞

AnAn−1 . . .A1A0

‖AnAn−1 . . .A1A0‖
= vw� (3.14)

for some vectors v and w with positive entries such that Av = spr(A)v. As mentioned in [3,
remark 4], there is in general no easy way of determining the vector w explicitly.

We recall that our An has positive entries, unless an = 0 in which case we have An = I.
Because of (3.10), there can only be finitely many n � 0 for which An reduces to the identity.
If we instead consider the sequence of positive matrices consisting of our {An} where we
have omitted the finitely many identity matrices, they clearly still satisfy (3.10) and so (3.14)
holds with spr(A) = λ+ and v = r+ from (3.8) and (3.9). However, as the matrices we omitted
were identities, it is clear that the limit in (3.14) for both sequences coincide. Hence, [24,
theorem 1.1] holds for our nonnegative sequence as well.

Now, as An � I entrywise it follows that the entries of Φn,0 are nondecreasing for n � 0,
which means that ‖ Φn,0 ‖ is also nondecreasing for such n. Therefore, by (3.14) we have that
any initial vector v0 such that w�v0 �= 0 leads to a solution vn with nondecreasing norm, and
which then by [42, theorem 1] must satisfy

� = lim
n→+∞

n
√
‖vn‖ (3.15)

with � = λ+ > 1, i.e., an asymptotically exponentially increasing solution. Indeed, the non-
decreasing norm rules out the possibility of vn = 0 for n large enough. It follows that (3.15)
holds for � equal to either λ+ or λ−, but if it were λ− < 1, then ‖vn‖ could not be nondecreas-
ing. However, choosing instead a nonzero v0 such that w�v0 = 0, we obtain an asymptotically
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exponentially decreasing solution vn satisfying (3.15) with � = λ− < 1. This follows by once
more excluding the scenario of vn = 0 for large enough n, since v0 is nonzero and each An has
full rank. Then the only remaining possibility is vn satisfying (3.15) with � = λ−. An obvious
choice of v0 given w = [w1,w2]� is then v0 = [w2,−w1]�.

For decreasing n, we will be able to reuse the arguments from above. From (3.11) we find
that Φn,0 is a product of inverses of An for n < 0, and by (3.5) we have[

g j

γ j−1

]
= (A j)

−1

[
g j+1

γ j

]
=

[
1 −a jΔξ

−a jΔξ 1 + (a jΔξ)2

] [
g j+1

γ j

]
.

Since (An)−1 contains entries of opposite sign, it would appear that we may not be able to use
our previous argument. However, a change of variables will do the trick for us. First recall (3.3)
which shows that γ j corresponds to a rescaled forward difference for g j, hence its sign indicates
whether g is increasing or decreasing at index j. For an increasing solution in the direction of
increasing n it is then necessary for gn and γn−1 to share the same sign as n →+∞. On the
other hand, for an increasing solution in the direction of decreasing n, the forward difference
for γn−1 should have the opposite sign of gn as n →−∞. Therefore, a change of variables
allows us to rewrite the previous equations as[

g j

−γ j−1

]
=

[
1 a jΔξ

a jΔξ 1 + (a jΔξ)2

] [
g j+1

−γ j

]
=: B j

[
g j+1

−γ j

]
, (3.16)

and [
gn

−γn−1

]
= Bn . . .B−1

[
g0

−γ−1

]
, n < 0

and for this system we may use the positive matrix technique from before. The eigenvalues
of B j in (3.16) are the same as those of A j, but they switch positions in the corresponding
eigenvectors r̃±j compared to r±j of A j:

r̃±j =

⎡
⎢⎢⎢⎢⎣

1√
1 + λ±

j

± 1√
1 + λ∓

j

⎤
⎥⎥⎥⎥⎦ , r±j =

⎡
⎢⎢⎢⎢⎣

1√
1 + λ∓

j

± 1√
1 + λ±

j

⎤
⎥⎥⎥⎥⎦ .

The same argument as in the case of increasing n then proves the existence of v0 giving
exponentially decreasing solutions as n →−∞.

The uniqueness follows from the uniqueness of limits in (3.14), which for a given eigen-
vector v of A means that w is unique up to a constant factor. But then again, since we are in
R

2, the vector orthogonal to w is unique up to a constant factor. �

Remark 3.3 (Signs of the initial vectors). Here we underline that the form of Φn,0

implies that the entries of v±0 in lemma 3.2 must be nonzero, with opposite signs for v−0 and
same sign for v+0 . Indeed, by (3.12) and (3.13) we have

lim
n→+∞

‖(Φn,0)v−0 ‖ = 0.

Let us then assume v−0 �= 0 with nonnegative entries of the same sign, namely v−0 � 0 (v−0 � 0)
understood entrywise. From the definition (3.11) and An � I, it is clear that (Φn,0)v−0 �
v−0 ((Φn,0)v−0 � v−0 ) for n � 0, and so it is impossible for the norm to tend to zero. Hence, the
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entries of v−0 must be nonzero and of opposite sign. For n →−∞, we can use (3.16) and the
same argument to arrive at the same conclusion for [g0,−γ−1]�, implying that v+0 = [g0, γ−1]�

has nonzero entries of equal sign.

Theorem 3.4 (Existence of a discrete Green’s function). Assume {a j} j∈Z to be a
nonnegative sequence such that aj = 1 + D+bj with D+b ∈ �2. Then, for any given index i,
there exists a unique sequence gi = {gi, j} j∈Z such that

(A[a]gi) j =
δi, j

Δξ
. (3.17)

Proof. Our strategy follows the standard approach for constructing Green’s functions: we
first construct solutions of the homogeneous version of (3.17) with exponential decay, and then
we combine them in order to obtain a delta function at a given point. We start by constructing
g0, j centered at i = 0.

Choosing v±0 from lemma 3.2 we set[
g−

0
γ−
−1

]
:= v−0 ,

[
g+

0
γ+
−1

]
:= v+0 , (3.18)

and define the sequences[
g−

n

γ−
n−1

]
:=Φn,0

[
g−

0
γ−
−1

]
,

[
g+

n

γ+
n−1

]
:=Φn,0

[
g+

0
γ+
−1

]
, n ∈ Z, (3.19)

where by construction g±, γ± have exponential decay for n →∓∞. Then, applying the
operator A[a] to g± we find

(A[a]g±) j = a jg
±
j − D−γ

±
j = 0, j ∈ Z

by construction of g± and γ±. Let us then define

g0, j :=C

{
g−

j g+
0 , j � 0,

g+
j g−

0 , j < 0,
γ0, j :=C

{
γ−

j g+
0 , j � 0,

γ+
j g−

0 , j < 0
(3.20)

for some hitherto unspecified constant C, and observe from the homogeneous equation that
ajg0, j − D−γ0, j = 0 for j �= 0. Moreover, we have D+g0, j = ajγ0, j for all j by construction.
Now we would like to show that the constant C can be chosen to obtain A[a]g0,0 = 1/Δξ.
From (2.12), we get

Δξ

n∑
j=m

g+
j (A[a]g−) j −Δξ

n∑
j=m

(A[a]g+) jg
−
j = Wn(g−, g+) − Wm−1(g−, g+), (3.21)

where we in the spirit of [43, equation (1.21)] have defined a discrete Wronskian

Wn(g−, g+) := g−
n+1γ

+
n − g+

n+1γ
−
n = g−

n γ
+
n − g+

n γ
−
n , (3.22)

and the last equality follows from the identity g±
n+1 = g±

n +Δξanγ
±
n . Since the left-hand side

of (3.21) vanishes by definition of g±, we have Wn(g−, g+) = Wm−1(g−, g+) for any n, m ∈ Z.
That is, the Wronskian Wn(g−, g+) is a constant W(g−, g+) for the constructed sequences g+

and g−.
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Next, we want to show that the Wronskian is nonzero. Considering

W(g−, g+) = W−1(g−, g+) = g−
0 γ

+
−1 − g+

0 γ
−
−1 = g+

0 γ
−
−1 + g−

0 (−γ+
−1)

and the definition (3.18), we use the sign properties stated in remark 3.3 to conclude that the
two terms in the final sum are always nonzero and of the same sign, implying W(g−, g+) �= 0.
Finally, we will determine the constant C by considering the backward difference

D j−γ0,0 = C
γ−

0 g+
0 − γ+

−1g−
0

Δξ
= C

γ−
0 g+

0 − γ−
−1g+

0 + γ−
−1g+

0 − γ+
−1g−

0

Δξ

= Cg+
0 a0g−

0 − C
W−1(g−, g+)

Δξ
= a0g0,0 − C

W(g−, g+)
Δξ

,

which leads to

(A[a]g0)0 = a0g0,0 − D−γ0,0 = C
W(g−, g+)

Δξ
.

Consequently, setting C−1 = W(g−, g+) in (3.20) gives the desired Green’s function.
Note that there is nothing special about the index i = 0 where we centered the Green’s

function. We can simply use the sequences (3.19) from before and define

gi, j =
1

W(g−, g+)

{
g+

j g−
i , j � i,

g−
j g+

i , j < i,
γi, j =

1
W(g−, g+)

{
γ+

j g−
i , j � i,

γ−
j g+

i , j < i
(3.23)

to obtain a Green’s function gi, j centered at an arbitrary i.
The uniqueness of gi, j follows from the vectors v±0 in lemma 3.2 being uniquely defined

up to constant factors. Indeed, when constructing the Green’s function in (3.23) these factors
disappear since we are dividing by the Wronskian W(g−, g+), and so we have no degrees of
freedom left in our construction of gi, j, hence it is unique. �

Note that A[a] is not the only way to discretize the operator

a(ξ)Id − ∂

∂ξ

1
a(ξ)

∂

∂ξ

with first order differences, we may also consider

(B[a]k) j := a jk j − D+

(
D−k j

a j

)
. (3.24)

In fact, we will need the Green’s function for this operator as well to close our upcoming system
of differential equations. Fortunately, the existence of Green’s function for (3.24) follows from
the considerations already made in theorem 3.4.

Corollary 3.5. Under the same assumptions on {a j}j∈Z as in theorem 3.4, for any given
index i there exists a unique sequence ki = {ki, j}j∈Z such that

(B[a]ki) j =
δi, j

Δξ
. (3.25)
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Proof of Corollary 3.5. Manipulating the homogeneous version of (3.25) we find it to be
equivalent to

D−k j+1

a j+1
= Δξa jk j +

D−k j

a j
.

Introducing

κ j =
D−k j

a j
=

k j − k j−1

a jΔξ
, (3.26)

the previous equation can be written as[
κ j+1

k j

]
=

[
1 + (a jΔξ)2 a jΔξ

a jΔξ 1

] [
κ j

k j−1

]
= A j

[
κ j

k j−1

]
,

where we recognize the matrix A j from (3.5). Going backward we find[
κ j

k j−1

]
=

[
1 −a jΔξ

−a jΔξ 1 + (a jΔξ)2

] [
κ j+1

k j

]
,

or equivalently[
−κ j

k j−1

]
=

[
1 a jΔξ

a jΔξ 1 + (a jΔξ)2

] [
−κ j+1

k j

]
= B j

[
−κ j+1

k j

]

with B j from (3.16). Hence, we get the solution for free from (3.4). Indeed, choosing[
κ−

n

k−n−1

]
=

[
g−

n

γ−
n−1

]
,

[
−κ+

n

k+n−1

]
=

[
g+

n

−γ+
n−1

]

we know that these sequences have the correct decay at infinity. Defining

ki, j =
1

W(g−, g+)

{
k−j k+i , j > i,

k+j k−i , j � i,
=

−1
W(g−, g+)

{
γ−

j γ
+
i , j > i,

γ+
j γ

−
i , j � i,

κi, j =
1

W(g−, g+)

{
κ−

j k+i , j > i,

κ+
j k−i , j � i,

=
−1

W(g−, g+)

{
g−

j γ
+
i , j > i,

g+
j γ

−
i , j � i,

(3.27)

it follows from (3.4) that (B[a]ki) j = a jki, j − D j+κi, j = 0 for j �= i. Moreover, by the constancy
of (3.22) we find (B[a]ki)i = 1/Δξ in the same way as for (A[a]gi)i. �

Remark 3.6. Note that we may observe directly from (3.23) and (3.27) that gi, j = gj,i,
ki, j = k j,i, and κi, j = −γ j,i. Moreover, the eigenvalues

λ± =
1
2

(
2 +Δξ2 ±Δξ

√
4 +Δξ2

)
are exactly those found in (3.1) for the operator Id − D−D+. In fact, for aj ≡ 1 the sequences
g and k coincide since D−D+ = D+D−, and their explicit expression (3.1) can be recovered
from the columns of ΛnR−1 in the diagonalization An = RΛnR−1.
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Figure 3. Sketch of gi,n, γi,n, ki,n, and κi,n for Δξ = 0.2, i = 0, 4 and an = a(nΔξ) for
a(ξ) defined in (3.30). Note the jump of size −1 +O(Δξ) at n = i for both γ and κ.

Observe that by (3.3) and (3.26) we can rewrite (3.17) and (3.25) in the compact form[
−D j− a j

a j −D j+

] [
γi, j ki, j

gi, j κi, j

]
=

1
Δξ

[
δi, j 0
0 δi, j

]
. (3.28)

Lemma 3.7 (Sign properties of the discrete Green’s functions). Assume aj � 0
for j ∈ Z, and let g, γ, k, and κ be solutions of (3.28) which decay to zero for | j − i| →+∞.
Then the following sign properties hold,

(a) gi, j > 0 and ki, j > 0 for j ∈ Z,
(b) sgn (γi, j) = sgn (i − j − 1/2) and sgn (κi, j) = sgn (i − j + 1/2).

In particular, this leads to the monotonicity properties

max
j∈Z

gi, j = gi,i, lim
| j−i|→+∞

gi, j ↘ 0, max
j∈Z

ki, j = ki,i, lim
| j−i|→+∞

ki, j ↘ 0, (3.29)

where the arrows denote monotone decrease.

In figure 3 we have included a sketch of gi,n, γi,n, ki,n, and κi,n for Δξ = 0.2, i = 0, 4 and
an = a(nΔξ) given by

a(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, −1 < ξ � 0.5,

0, 0.5 < ξ � 1,

4, 1 < ξ � 1.5

1, otherwise.

(3.30)

We say sketch, as they have been computed on a finite grid n ∈ {−20, . . . , 20} with boundary
conditions γi,−21 = gi,21 = 0 and ki,−21 = κi,21 = 0, and consequently we find that neither of
gi,−20, γ i,20, κi,−20 or ki,20 are exactly zero. However, the exponential decay makes them very
small and the qualitative behavior indicated in lemma 3.7 is still the same. Note how a(ξ) being
zero on the interval (0.5, 1] leads to constant kernel values in that neighborhood, even at the
peaks for the kernels centered at ξ4 = 0.8.

Proof of Lemma 3.7. We prove this only for g and γ as the proof for k and κ is similar. The
proof relies on the reasoning in remark 3.3.
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As a first step we want to show that the properties (a) and (b) hold for gi,i, gi,i+1, γi,i−1, and
γ i,i. To this end, we recall from the proof of theorem 3.4 that since gi, j and γ i, j satisfy (3.28),
they must also satisfy[

gi, j

−γi, j−1

]
= B j · · ·Bi−1

[
gi,i

−γi,i−1

]
, j � i − 1

and [
gi, j

γi, j−1

]
= A j−1 · · ·Ai+1

[
gi,i+1

γi,i

]
, j � i + 2,

with Ak and Bk as defined in (3.5) and (3.16). By our assumptions, the Green’s functions
must tend to zero asymptotically, and we recall from remark 3.3 that a necessary condition for
this is for the vectors [gi,i,−γi,i−1]� and [gi,i+1, γi,i]� to have entries of opposite sign. Hence,
gi,iγi,i−1 > 0 and gi,i+1γ i,i < 0, where we stress the importance of a j � 0 for this argument to
hold. Using only (3.28) we calculate

0 > gi,i+1γi,i − gi,iγi,i−1

= Δξ
(gi,i+1 − gi,i)γi,i + gi,i(γi,i − γi,i−1)

Δξ

= Δξ

[
aiγi,iγi,i + gi,i

[
aigi,i −

1
Δξ

]]

= Δξai

[
(gi,i)2 + (γi,i)2

]
− gi,i.

Since aj � 0, it follows that gi,i � 0. Recalling that gi,i must be nonzero according to the sign
requirements, we necessarily have gi,i > 0, and then γ i,i−1 > 0 follows. Moreover, multiplying
the identity gi,i+1 −Δξaiγ i,i = gi,i by gi,i+1 and using ai � 0, gi,i > 0, and gi,i+1γi,i < 0, we
must have gi,i+1 > 0, which then implies γi,i < 0.

Next we must prove that (a) and (b) hold for the remaining values of j, and this will be
achieved with a contradiction argument. We define the vectors

v+j :=

[
gi, j

γi, j−1

]
, v−j :=

[
gi, j+1

−γi, j

]

such that v+i+1 and v−i−1 both have positive first component and negative second component, and
satisfy

v+j+1 :=A jv
+
j for j � i + 1, v−j−1 :=B jv

−
j for j � i − 1.

If we can prove that they retain the sign property under the above propagation, then we are
done. Let us consider

v+j+1 :=A jv
+
j , j � i + 1.

Assume that v+j does not retain the sign property, then there is some k � i + 1 which is the first
index such that v+k+1 does not have a positive first component and negative second component.
We consider the two possible cases.

The first case is v+k+1 � 0 (v+k+1 � 0) considered entrywise. First of all, v+k+1 cannot be the
zero vector as Ak has full rank, since then v+k would also have to be zero which contradicts k + 1
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being the first problematic index. Otherwise, the entrywise inequality Ak+1 � I leads to v+k+2 =

Ak+1v
+
k+1 � v+k+1 (v+k+2 � v+k+1), and thus limn→+∞ v+n � v+k+1 (limn→+∞ v+n � v+k+1). This is

however impossible, as it contradicts the assumed decay of the Green’s functions.
The remaining case is that the entries interchange sign from v+k to v+k+1. However, then we

would have

v+k = (Ak)−1v+k+1 =

[
1 −akΔξ

−akΔξ 1 + (akΔξ)2

]
v+k+1.

Since ak � 0, v+k would also have negative first component and positive second component,
which contradicts k + 1 being the first problematic index. Hence, v+j always has positive first
component and negative second component for j > i, thus for j � i it follows that gi, j is always
positive, while γ i, j is always negative which shows that gi, j is decreasing in this direction.

A similar argument holds in the other direction when considering v−j and B j. Then −γi, j is
always negative for j < i, which means that gi, j is increasing with j for these indices. Thus, (a)
and (b) hold for {gi, j} j∈Z and {γi, j} j∈Z. �

4. An equivalent semi-discrete system for global solutions in time

We now return to the initial value problem (1.2). We use the Lagrangian formulation intro-
duced in earlier works, see [31], but reformulate the governing equations by propagating the
fundamental solutions of the momentum operator.

4.1. Reformulation of the continuous problem using operator propagation

The 2CH system can be written as

ut + uux + Px = 0, ρt + (uρ)x = 0

for P implicitly defined by

P − Pxx = u2 +
1
2

u2
x +

1
2
ρ2. (4.1)

Let us introduce ρ̄ := ρ− ρ∞ to ease notation. Note that most expressions simplify when we
consider ρ∞ = 0. We have chosen to cover the case of arbitrary ρ∞, to allow for the initial
condition ρ(0, x) = ε, for any ε > 0. Such initial data lead to solutions without blow-up, see
[29]. In the case of the 2CH system, the conservation law for the energy is given by(

1
2

(u2 + u2
x + ρ̄2)

)
t

+

(
u

1
2

(u2 + u2
x + ρ̄2)

)
x

+ (uR)x = 0, (4.2)

where we have used P from (4.1) to define

R = P − 1
2

u2 − 1
2
ρ2
∞. (4.3)

We can check that the first order system

[
−∂x 1

1 −∂x

]
◦
[

R
Q

]
=

[
uux

1
2

(u2 + u2
x + ρ̄2) + ρ∞ρ̄

]
(4.4)
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is equivalent to (4.1). Hence,

ut + uux + Q = 0, (4.5a)

ρt + (uρ)x = 0 (4.5b)

and (4.4) is yet another form of the 2CH system.
We introduce as before the Lagrangian position y(t, ξ) and velocity U(t, ξ). Moreover,

we define the Lagrangian density r(t, ξ): = ρ(t, y(t, ξ))yξ(t, ξ), and the cumulative energy H
given by

H(t, ξ) =
1
2

∫ y(t,ξ)

−∞
(u2 + u2

x + ρ̄2)(t, x)dx =
1
2

∫ ξ

−∞
((u2 + u2

x + ρ̄2) ◦ y)yξ(t, η)dη, (4.6)

as well as the Lagrangian variables Q̄ = Q ◦ y and R̄ = R ◦ y. From (4.5), we get Ut = −Q̄
and rt = 0, while the conservation of energy (4.2) yields Ht = −UR̄. Finally, we rewrite the
system (4.4) in terms of the Lagrangian variables. To simplify the notation, we replace Q̄ by
Q, and similarly for R̄. The equivalent system in Lagrangian variables is then given by

yt = U, (4.7a)

Ut = −Q, (4.7b)

Ht = −UR, (4.7c)

rt = 0, (4.7d)

with [
−∂ξ yξ
yξ −∂ξ

]
◦
[

R
Q

]
=

[
UUξ

Hξ + ρ∞(r − ρ∞yξ)

]
. (4.8)

In (4.8), we use the same notation for the variable yξ and the operator for pointwise multipli-
cation by yξ . We will use this convention for the rest of the paper. The equivalence between
(4.4) and (4.8) holds only assuming the that yξ � 0 and all the functions are smooth enough to
do the manipulation.

Note that we need to decompose the variables y and r in (4.7) to give them a decay which
enables us to define them in a proper functional setting. We define ζ and r̄ as

y(t, ξ) = ζ(t, ξ) + ξ and r(t, ξ) = r̄(t, ξ) + ρ∞yξ(t, ξ).

The Banach space which contains ζ and H is the subspace of bounded and continuous functions
with derivative in L2,

V := { f ∈ Cb(R) | fξ ∈ L2(R)}, (4.9)

endowed with the norm ‖ f‖V := ‖ f‖L∞ + ‖ fξ‖L2 . Then we let

E :=V × H1 × V × L2 (4.10)

be a Banach space tailored for the tuple X = (ζ, U, H, r̄) with norm

‖X‖E := ‖ζ‖V + ‖U‖H1 + ‖H‖V + ‖r̄‖L2 . (4.11)

The unique solution of (4.7), as studied in [31], is then completely described by this tuple.
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An alternative viewpoint of the equivalent Lagrangian system is the following. Let us define
the operators G and K as the fundamental solutions to the operator in (4.8), meaning that they
satisfy [

−∂ξ yξ
yξ −∂ξ

]
◦
[
K G
G K

]
=

[
δ 0
0 δ

]
. (4.12)

As we mentioned in the introduction, the operators K and G can be computed explicitly, using
the fundamental solution of the Helmholtz operators in Eulerian coordinates. If we define

g(η, ξ) =
1
2

e−|y(ξ)−y(η)| (4.13a)

and

κ(η, ξ) = −1
2

sgn (ξ − η)e−|y(ξ)−y(η)|, (4.13b)

then we can check that the operators defined as G( f )=
∫
R

g(η, ξ) f (η)dη and
K( f )=

∫
R
κ(η, ξ) f (η)dη are solutions to (4.12), again assuming y is monotone increasing in

ξ. This means that we can obtain explicit expressions for R and Q given by

R =

∫
R

κ(η, ξ)U(η)Uξ(η)dη +
∫
R

g(η, ξ)(Hξ(η) + ρ∞(r(η) − ρ∞yξ(η)))dη, (4.14a)

Q =

∫
R

g(η, ξ)U(η)Uξ(η)dη +

∫
R

κ(η, ξ)(Hξ(η) + ρ∞(r(η) − ρ∞yξ(η)))dη. (4.14b)

In [31, 36], the authors prove that the right-hand side of their respective versions of (4.7) is
locally Lipschitz, and consecutive contraction arguments yield the existence of a unique short-
time solution. In the same manner, we would like to prove that there exists a unique short-
time solution for our semi-discrete system, but the explicit forms for g and κ in (4.13) are not
available in the discrete setting. As a remedy, we propagate the kernel operators corresponding
to K and G by incorporating them in the governing equations. Given the evolution of y, that is,
yt = U, we can derive evolution equations for G and K. Let us see how this can be done in the
continuous case before dealing with the discrete case. Formally we have

∂

∂t
G( f ) =

1
2

∫
R

∂

∂t
e−|y(t,ξ)−y(t,η)| f (η)dη

= −1
2

∫
R

sgn(y(t, ξ) − y(t, η))(yt(t, ξ) − yt(t, η))e−|y(t,ξ)−y(t,η)| f (η)dη

= −1
2

∫
R

sgn(y(t, ξ) − y(t, η))(U(t, ξ) − U(t, η))e−|y(t,ξ)−y(t,η)| f (η)dη.

Here we assume again that we know a priori that y remains a monotone function with respect
to ξ. Then, we can rewrite the last equality as

∂

∂t
G( f ) = −1

2

∫
R

sgn(ξ − η)(U(t, ξ) − U(t, η))e−|y(t,ξ)−y(t,η)| f (η)dη. (4.15)

For a function U, we can associate a pointwise multiplication operator which we denote by U .
That is, we may write U( f )(ξ) = U(ξ) f (ξ) for any function f and any point ξ. The integral
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kernel of U would be singular and equal to U(ξ)δ(ξ − η). Using this notation, we can rewrite
(4.15) as

∂

∂t
G( f ) = (U ◦ K)( f ) − (K ◦ U)( f ).

This can equivalently be stated as

∂

∂t
G = [U ,K],

∂

∂t
K = [U ,G], (4.16)

where the evolution equation for K is derived analogously. An equivalent system of equations
for the 2CH system is then given by

yt = U, Ut = −Q, Ht = −UR, rt = 0, (4.17a)

∂

∂t
G = [U ,K],

∂

∂t
K = [U ,G], (4.17b)

with R and Q given as[
R
Q

]
=

[
K G
G K

]
◦
[

UUξ

Hξ + ρ∞(r − ρ∞yξ)

]
(4.18)

For all initial conditions we will consider, the new system (4.17) and (4.18) gives rise to the
same solutions as the one given by (4.7), (4.13) and (4.14). It can be shown that the evolu-
tion equation (4.17) for G and K can be obtained directly from the product identity (4.12) by
differentiating it and using integration by parts.

4.2. Reformulation of the semi-discrete system

Turning back to the formal expression (2.20), we use the the Green’s functions from theorem
3.4 and corollary 3.5 to write out the right-hand side explicitly. Considering (3.28) where we
now have a j = D+y j, we observe that they correspond to the discrete versions of (4.12). Indeed,
we have the following identity[

−D j− (D+y j)
(D+y j) −D j+

]
◦
[
γi, j ki, j

gi, j κi, j

]
=

1
Δξ

[
δi, j 0
0 δi, j

]
(4.19)

which has to be compared with (4.12) in the continuous case. Thus, the second equation in
(2.20) can be rewritten as

U̇ j = −Δξ
∑
i∈Z

gi, j

(
Ui(D+Ui) + D−

(
hi

D+yi
+ ρ∞

r̄i

D+yi

))
, (4.20)

where we have defined

r̄i := ρ0,i − ρ∞(D+yi) (4.21)

and

hi :=
1
2

(Ui)2(D+yi) +
1
2

(D+Ui)2

D+yi
+

1
2

r̄2
i

D+yi
. (4.22)

From the expressions in (4.20) and (4.22), it seems that, if D+yi goes to zero for some index i
and time t, then U̇ j and hi blow up. However, it turns out that these quantities remain bounded,
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which allows us to extend the solution globally in time. To obtain a well-defined system, we
are going to remove the explicit dependence on 1/D+yi by adding h to the set of variables of
the system.

With the discrete kernels g, k, γ, and κ from section 3 we are able to express A[D+y]−1

in (2.20) to obtain (4.20). However, since we do not know their explicit form as functions of
D+y j, we derive a system analogous to (4.17) by introducing g, k, γ, and κ as variables. To
compute the evolution of g, k, γ, and κ, we repeat the procedure from the continuous case. By
differentiating (4.19) and using the fact that ẏi = Ui, we get[

γ̇ k̇
ġ κ̇

]
= −

[
γ k
g κ

]
∗
[

0 D+U
D+U 0

] [
γ k
g κ

]

which in explicit form yields

ġi, j = −κm, j ∗ ((D+Um)γi,m) − gm, j ∗ ((D+Um)gi,m),

γ̇i, j = −km, j ∗ ((D+Um)γi,m) − γm, j ∗ ((D+Um)gi,m),
(4.23)

and

k̇i, j = −km, j ∗ ((D+Um)ki,m) − γm, j ∗ ((D+Um)κi,m),

κ̇i, j = −κm, j ∗ ((D+Um)ki,m) − gm, j ∗ ((D+Um)κi,m).
(4.24)

Here we denote by (g ∗ f )j the action of the operator gi, j as a summation kernel on a sequence
f i, defined as

(g ∗ f ) j = Δξ
∑
i∈Z

gi, j f i.

Moreover, we introduce the following norms for the operators,

‖g‖�p = sup
i

‖gi‖�p = sup
i

⎛
⎝Δξ

∑
j∈Z

|gi, j|p
⎞
⎠

1
p

,

‖g‖�∞ = sup
i

(
sup

j
|gi, j|

)
.

(4.25)

We establish in the next lemma some important properties for the fundamental solutions.

Lemma 4.1 (Preservation of identities). Let T > 0, and assume that, for t ∈ [0, T],
(D+y j(t))t = D+U j(t) for j ∈ Z, and that g, k, γ,κ and D+U are bounded in �2-norm in [0, T].
Then, for t ∈ [0, T] the sequences gi,j(t), ki,j(t), γ i,j(t), κi,j(t) satisfy the following identities:

(a) The Green’s function identities (4.19),
(b) The symmetry identities

g j,i = gi, j and k j,i = ki, j, (4.26)

and the antisymmetry identity

γ j,i = −κi, j. (4.27)

Proof of Lemma 4.1. Recall from remark 3.6 that these identities are satisfied for t = 0 by
construction. The rest of the proof then relies on Grönwall’s inequality.
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(a) We introduce the four operators zl for l = 1, 2, 3, 4 defined as

z1,i, j = (D+yi)gi, j − D j−γi, j −
δi, j

Δξ
, z2,i, j = (D+y j)ki, j − D j+κi, j −

δi, j

Δξ
,

z3,i, j = (D+y j)γi, j − D j+gi, j, z4,i, j = (D+y j)κi, j − D j−ki, j.

Using (D+y j(t))t = D+U j(t) and (4.23) we find that

(z1,i, j)t = (D+y j)tgi, j + (D+y j)ġi, j − D j−γ̇ i, j

= (D+U j)gi, j − (D+y j)Δξ
∑
m∈Z

(D+Um)
(
gi,mgm, j + γi,mκm, j

)

+ D j−Δξ
∑
m∈Z

(D+Um)
(
gi,mγm, j + γi,mkm, j

)

= (D+U j)gi, j −Δξ
∑
m∈Z

(D+Um)gi,m
(
(D+y j)gm, j − D j−γm, j

)

−Δξ
∑
m∈Z

(D+Um)γi,m

(
(D+y j)κm, j − D j−km, j

)

= −Δξ
∑
m∈Z

(D+Um)(gi,mz1,m, j + γi,mz4,m, j).

Similarly, one shows that

(z2,i, j)t = −Δξ
∑
m∈Z

(D+Um)(ki,mz2,m, j + κi,mz3,m, j),

(z3,i, j)t = −Δξ
∑
m∈Z

(D+Um)(gi,mz3,m, j + γi,mz2,m, j)

and

(z4,i, j)t = −Δξ
∑
m∈Z

(D+Um)(ki,mz4,m, j + κi,mz1,m. j).

Integrating the first of these, taking absolute values, applying Hölder’s inequality and
taking supremum over i we obtain

sup
i

|z1,i, j(t)| � sup
i

|z1,i, j(0)|+
∫ t

0

(
‖D+U(s)‖�2

(
‖g(s)‖�2 sup

m
|z1,m, j(s)|

+ ‖γ(s)‖�2 sup
m

|z4,m, j(s)|
))

ds

Treating the three other relations similarly and defining
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Z(t) =
4∑

l=1

‖zl(t)‖�∞ ,

we may add the four inequalities to obtain an inequality of the form

Z(t) � Z(0) +
∫ t

0
C(s)Z(s)ds,

where

C(s) = 2‖D+U‖�2

(
‖g‖�2 + ‖k‖�2 + ‖γ‖�2 + ‖κ‖�2

)
(s)

is bounded by assumption. Since Z(0) = 0, Grönwall’s inequality yields Z(t) = 0 for t ∈
[0, T], which proves the result.

(b) We prove the symmetry of g. From (4.19) we have (D+ym)gi,m − Dm−γi,m = 1
Δξ

δi,m, such
that summation by parts shows

g j,i = Δξ
∑
m∈Z

[
(D+ym)gi,m − Dm−γi,m

]
g j,m

= Δξ
∑
m∈Z

[
(D+ym)gi,mg j,m + γi,mDm+g j,m

]
.

Then, we use the identity Dm+gj,m = (D+ym)γ j,m from (4.19) twice, first for j and then for
i, to obtain

g j,i = Δξ
∑
m∈Z

[
(D+ym)gi,mg j,m + γi,m(D+ym)γ j,m

]

= Δξ
∑
m∈Z

[
(D+ym)gi,mg j,m + (Dm+gi,m)γ j,m

]
.

After summation by parts and using (4.19) once more, we end up with

g j,i = Δξ
∑
m∈Z

gi,m
[
(D+ym)g j,m + Dm−γ j,m

]
= gi, j,

and the symmetry of g is proved. A similar procedure shows the symmetry of ki, j. For the
antisymmetry we also use (4.19) and summation by parts to compute

γ j,i = Δξ
∑
m∈Z

[
(D+ym)ki,m − Dm+κi,m

]
γ j,m

= Δξ
∑
m∈Z

[
ki,mDm+g j,m + κi,mDm−γ j,m

]

= −Δξ
∑
m∈Z

[
(Dm−ki,m)g j,m − κi,mDm−γ j,m

]

= −Δξ
∑
m∈Z

κi,m
[
(D+ym)g j,m − Dm−γ j,m

]
= −κi, j.

�
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Returning to (4.20), the second term in the right-hand side of the governing equations can
be simplified as follows,

−Δξ
∑
i∈Z

gi, jD−

(
hi

D+yi
+ ρ∞

r̄i

D+yi

)
= Δξ

∑
i∈Z

Di+g j,i

D+yi
(hi + ρ∞r̄i)

= Δξ
∑
i∈Z

γ j,i (hi + ρ∞r̄i)

= −Δξ
∑
i∈Z

κi, j (hi + ρ∞r̄i) ,

where we have used (4.19) and (4.27). We define

Q j :=Δξ
∑
i∈Z

gi, jUi(D+Ui) +Δξ
∑
i∈Z

κi, j (hi + ρ∞r̄i) . (4.28)

Then, the evolution of U is given by

U̇ j = −Q j (4.29)

The form of Q in (4.28) motivates the definition

R j :=Δξ
∑
i∈Z

γi, jUi(D+Ui) +Δξ
∑
i∈Z

ki, j (hi + ρ∞r̄i) . (4.30)

Indeed, with these definitions we have[
R
Q

]
=

[
γ k
g κ

]
∗
[

U(D+U)
h + ρ∞r̄

]
,

meaning R and Q satisfies[
−D− (D+y j)

(D+y j) −D+

]
◦
[

R j

Q j

]
=

[
U j(D+U j)
h j + ρ∞r̄ j

]
. (4.31)

We recognize this as the discrete version of (4.8).
The relation U̇ j = −Q j shows that we have a differential equation for U in the variables y,

U, H, r̄, g, and κ. From (4.21) we obtain

˙
r̄ j = ṙ j − ρ∞D+ẏ j = −ρ∞D+U j. (4.32)

Next, we introduce the cumulative energy H j as

H j = Δξ

j−1∑
i=−∞

hi, (4.33)

so that h j = D+H j. To obtain the evolution equation of H, we first multiply (4.22) by D+yi

and differentiate the result with respect to time to obtain

d
dt

(
(D+yi)hi

)
= −UiQi(D+yi)

2 + U2
i (D+yi)(D+Ui)

− (D+Ui)(D+Qi) − ρ∞r̄iD+Ui,
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after using (4.29) and (4.32). Then, we use the relation between Q and R given in (4.31) to
obtain

d
dt

(
(D+yi)hi

)
= (D+Ui)hi − (D+yi)[Ui(D−Ri) + Ri(D+Ui)]

Simplifying further, we obtain

ḣi = −
[
Ui(D−Ri) + Ri(D+Ui)

]
.

This leads to

Ḣ j = −Δξ

j−1∑
i=−∞

[
Ui(D−Ri) + Ri(D+Ui)

]
= −U jR j−1, (4.34)

where in the last equality we have used the decay at infinity together with (2.12).
Collecting all the equations and applying the relations (4.26) and (4.27) we obtain the closed

system

ζ̇ j = U j, (4.35a)

U̇ j = −Q j (4.35b)

Ḣ j = −U jR j−1, (4.35c)
˙
r̄ j = −ρ∞D+U j, (4.35d)

ġi, j = −Δξ
∑
m∈Z

(D+Um)
(
gi,mgm, j + γi,mκm, j

)
, (4.35e)

k̇i, j = −Δξ
∑
m∈Z

(D+Um)
(
ki,mkm, j + κi,mγm, j

)
, (4.35f)

γ̇ i, j = −Δξ
∑
m∈Z

(D+Um)
(
γi,mkm, j + gi,mγm, j

)
, (4.35g)

κ̇i, j = −Δξ
∑
m∈Z

(D+Um)
(
κi,mgm, j + ki,mκm, j

)
, (4.35h)

where y j = jΔξ + ζ j, and we recall

R j = Δξ
∑
i∈Z

γi, jUi(D+Ui) +Δξ
∑
i∈Z

ki, j (hi + ρ∞r̄i) ,

Q j = Δξ
∑
i∈Z

gi, jUi(D+Ui) +Δξ
∑
i∈Z

κi, j (hi + ρ∞r̄i) .

5. Existence and uniqueness of the solution to the semi-discrete 2CH system

In this section, we show that the semi-discrete system (4.35) has a unique, globally defined
solution. Let us first introduce the functional setting for the analysis. We define the discrete
analogue of the H1(R)-inner product,

〈a, b〉h1 :=Δξ
∑
j∈Z

[
a jb j + (D+a j)(D+b j)

]
, (5.1)
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which induces a norm in the usual manner. The discrete Sobolev-type inequality

‖a‖�∞ � 1√
2
‖a‖h1 (5.2)

can be proven in a very similar way as its continuous version, see, e.g., [7]. We introduce the
subspace VΔξ of �∞ defined as

VΔξ := {a ∈ �∞ | D+a ∈ �2}, ‖a‖VΔξ
:= ‖a‖�∞ + ‖D+a‖�2 . (5.3)

We define the discrete version of the space used in the continuous setting, namely

EΔξ :=VΔξ × h1 × VΔξ × �2, (5.4)

with norm

‖(ζ, U, H, r̄)‖EΔξ
:= ‖ζ‖VΔξ

+ ‖U‖h1 + ‖H‖VΔξ
+ ‖r̄‖�2 .

Since we have included the operator kernels as solution variables in (4.35), we have to introduce
a space for them as well. To account for that the kernels are well-behaved, we choose their space
to be �∗ := �1 ∩ �∞ with norm ‖ · ‖�∗ = ‖ · ‖�1 + ‖ · ‖�∞ , with �p-norms defined in (4.25). We
note that �∗ ⊂ �2, since we have the inequality

‖g‖�2 � ‖g‖1/2
�∞ ‖g‖1/2

�1 � 1
2

(‖g‖�∞ + ‖g‖�1 ). (5.5)

Thus, we will consider solution tuples of the form

X = (ζ, U, H, r̄, g, k, γ,κ) ∈ EΔξ × (�∗)4 =: Eker
Δξ,

where Eker
Δξ denotes the space EΔξ augmented with the space for the kernel operators �∗. More-

over, for the kernel operator g we have that the transpose g� of g is given by (g�)i, j = g j,i.
Then, the following result, reminiscent of Young’s convolution inequality, will prove useful.

Proposition 5.1 (Young’s inequality for general operators)

‖g ∗ f ‖�r � ‖g‖
q
r
�q‖g�‖1− q

r
�q ‖ f‖�p, (5.6)

for

1 +
1
r
=

1
p
+

1
q

, p, q, r ∈ [1,∞].

Above, we use the convention q/∞ = 0 for q < ∞, and ∞/∞ = 1. Note that the standard
Young’s inequality is usually given for a translation invariant kernel where g takes the form
gi, j = ĝi− j for some sequence ĝ. For an operator of this form, we can check that g� = τ ◦ g ◦ τ ,
where the operator τ inverts the indexing, that is τ ( f )j = f−j. Since the operator τ is an isometry
in all �q-spaces, the expression (5.6) simplifies to

‖g ∗ f ‖�r � ‖g‖�q‖ f ‖�p.

Proof of Young’s inequality. Below we will use the following discrete version of the
generalized Hölder inequality,∥∥∥∥∥

n∏
k=1

ak

∥∥∥∥∥
�q

�
n∏

k=1

‖ak‖�pk for
n∑

k=1

1
pk

=
1
q

, q, pk ∈ [1,∞], (5.7)
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where the jth component of a product of sequences is interpreted as
(∏n

k=1ak

)
j
=
∏n

k=1 (ak) j.
We note that the proof of (5.7) follows that of the continuous case, see, e.g., [7, exercise 4.4].
Let us denote h= g ∗ f . Note that r < ∞ =⇒ p, q < ∞, which shows that some configurations
are impossible and can be excluded. We deal with the three remaining cases:

(a) r < ∞: from the generalized Hölder inequality we obtain

|h j| � Δξ
∑
i∈Z

(
| f i|

p
r |gi, j|

q
r

)
| f i|1−

p
r |gi, j|1−

q
r

�
[
Δξ
∑
i∈Z

(
| f i|

p
r |gi, j|

q
r

)r
] 1

r
[
Δξ
∑
i∈Z

(
| f i|1−

p
r

) rp
r−p

] r−p
rp

×
[
Δξ
∑
i∈Z

(
|gi, j|1−

q
r

) rq
r−q

] r−q
rq

�
[
Δξ
∑
i∈Z

| f i|p|gi, j|q
] 1

r
[
Δξ
∑
i∈Z

| f i|p
] r−p

rp

×

⎡
⎣sup

j∈Z

(
Δξ
∑
i∈Z

|gi, j|q
) 1

q
⎤
⎦

r−q
r

which implies

Δξ
∑
j∈Z

|h j|r � ‖ f ‖r−p
�p

⎡
⎣sup

j∈Z

(
Δξ
∑
i∈Z

|gi, j|q
) 1

q
⎤
⎦

r−q

Δξ
∑
j∈Z

Δξ
∑
i∈Z

| f i|p|gi, j|q

� ‖ f ‖r−p
�p

⎡
⎣sup

j∈Z

(
Δξ
∑
i∈Z

|gi, j|q
) 1

q
⎤
⎦

r−q

Δξ
∑
i∈Z

| f i|pΔξ
∑
j∈Z

|gi, j|q

� ‖ f ‖r
�p

⎡
⎣sup

j∈Z

(
Δξ
∑
i∈Z

|gi, j|q
) 1

q
⎤
⎦

r−q
⎡
⎢⎣sup

i∈Z

⎛
⎝Δξ

∑
j∈Z

|gi, j|q
⎞
⎠

1
q
⎤
⎥⎦

q

,

where we have used Fubini’s theorem in the second inequality. Taking rth roots we obtain
the result.

(b) r = ∞, q < ∞: we find

|h j| � Δξ
∑
i∈Z

|gi, j|| f i| � ‖ f ‖�p

(
Δξ
∑
i∈Z

|gi, j|q
) 1

q

,

and taking supremum over j this corresponds to (5.6) where q/∞ = 0.
(c) r = q = ∞: we find

|h j| � Δξ
∑
i∈Z

|gi, j|| f i| � Δξ
∑
i∈Z

| f i|
(

sup
j∈Z

|gi, j|
)

� sup
i∈Z

(
sup
j∈Z

|gi, j|
)
Δξ
∑
i∈Z

| f i|,
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and taking supremum over j this corresponds to (5.6) where ∞/∞ = 1. �

To prove the short-time existence of (4.35), we consider an auxiliary system which corre-
sponds to (4.35), except that we have decoupled ζ , U and H from their discrete derivatives
D+ζ, D+U and D+H by introducing the sequences α, β and h. The reason for this is that we
cannot take for granted that the kernels satisfy (4.19) for t > 0, and then we cannot use (4.31)
when estimating the right-hand side of (4.35b) in h1-norm. Once the short-time existence of
solutions to the auxiliary system is established, we will prove that the coupling between y, U,
H and their discrete derivatives is indeed preserved if it holds initially. The auxiliary system
reads

ζ̇ j = U j, U̇ j = −Q j, Ḣ j = −U jR j−1, (5.8a)

ṙ j = −ρ∞β j, α̇ j = β j (5.8b)

β̇ j = −R j(1 + α j) + h j + ρ∞r j, (5.8c)

ḣ j =
(
(U j)2 − R j

)
β j − U jQ j(1 + α j), (5.8d)

and

ġi, j = −Δξ
∑
m∈Z

βm

(
gi,mg j,m − γi,mγ j,m

)
, (5.8e)

k̇i, j = −Δξ
∑
m∈Z

βm

(
ki,mk j,m − κi,mκ j,m

)
, (5.8f)

γ̇ i, j = −Δξ
∑
m∈Z

βm

(
γi,mk j,m − gi,mκ j,m

)
, (5.8g)

κ̇i, j = −Δξ
∑
m∈Z

βm

(
κi,mg j,m − ki,mγ j,m

)
, (5.8h)

where we have momentarily redefined R and Q as[
R
Q

]
=

[
γ k
g κ

]
∗
[

Uβ
h + ρ∞r̄

]
.

The evolution equations (5.8c) and (5.8d), and the second equation of (5.8b) have been obtained
formally by applying D+ to (4.35a), (4.35b) and (4.35c), in combination with (4.31). We collect
all the variables in a tuple

Y = (ζ, U, H, r,α, β, h, g, k, γ,κ) ∈ �∞ ×
(
�2 ∩ �∞

)
× �∞ × (�2)4 × (�∗)4 =: Eaux

Δξ

and introduce the corresponding norm

‖Y‖Eaux
Δξ

:= ‖ζ‖�∞ + ‖U‖�2 + ‖U‖�∞ + ‖H‖�∞ + ‖r‖�2 + ‖α‖�2 + ‖β‖�2 + ‖h‖�2

+ ‖g‖�∗ + ‖k‖�∗ + ‖γ‖�∗ + ‖κ‖�∗ .

Note how we require U ∈ �∞ to account for the fact that the decoupling of U and D+U
deprives us of the continuous inclusion h1 ⊂ �∞.

2252



Nonlinearity 34 (2021) 2220 S T Galtung and X Raynaud

Lemma 5.2 (Short-time solution for (5.8)). Let Y0 ∈ Eaux
Δξ be such that 1 + αj � 0 for

all j, and with initial auxiliary variables g0, k0, γ0,κ0 constructed according to theorem 3.4
and corollary 3.5 with aj = 1 + αj. Then, there exists a time T > 0 depending only on ‖Y0‖Eaux

Δξ

such that (5.8) has a unique solution Y ∈ C1([0, T], Eaux
Δξ) with initial data Y0.

Proof of Lemma 5.2. We are going to use the symmetry and anti-symmetry identities
(4.26) and (4.27) in our estimates and we explain now why it can be done. First, we note that
these identities hold initially by the construction of (3.23) and (3.27). Then, from the evolution
equations (5.8e)–(5.8h) one can check that the symmetry identities are preserved by the Picard
fixed-point operator which we will use here to prove the short-time existence of (5.8). Then,
by establishing local Lipschitz regularity of the right-hand side, we can prove the existence of
a short-time solution in the closed subset of Eaux

Δξ where (4.26) and (4.27) hold.
Let us consider two functions in Eaux

Δξ ,

Y = (ζ, U, H, r,α, β, h, g, k, γ,κ) and Ỹ =
(
ζ̃ , Ũ, H̃, r̃, α̃, β̃, h̃, g̃, k̃, γ̃, κ̃

)
.

For the Lipschitz estimates, we first treat the right-hand sides of (5.8e)–(5.8h). We only provide
details for (5.8e) as (5.8f)–(5.8h) can be treated similarly.

We start by considering the �∞-norm using the following splitting,∣∣∣∣∣−Δξ
∑
m∈Z

βm

(
g j,mgi,m − γi,mγ j,m

)
+Δξ

∑
m∈Z

β̃m

(
g̃ j,mg̃i,m − γ̃ i,mγ̃ j,m

)∣∣∣∣∣
�
∣∣∣∣∣Δξ

∑
m∈Z

βmg j,mgi,m −Δξ
∑
m∈Z

β̃mg̃ j,mg̃i,m

∣∣∣∣∣
+

∣∣∣∣∣Δξ
∑
m∈Z

βmγi,mγ j,m −Δξ
∑
m∈Z

β̃mγ̃i,mγ̃ j,m

∣∣∣∣∣
We estimate the first term as follows∣∣∣∣∣Δξ

∑
m∈Z

βmg j,mgi,m −Δξ
∑
m∈Z

β̃mg̃ j,mg̃i,m

∣∣∣∣∣
� ‖g‖�∞‖g‖�2‖β − β̃‖�2 + ‖g‖�∞‖β̃‖�2‖g − g̃‖�2 + ‖β̃‖�2‖g̃‖�2‖g − g̃‖�∞

and the second term has a similar estimate. For the �1-norm, use the same splitting and consider
again only the first term. We make use of the symmetry properties of the kernel operators, as
given in lemma (4.1), to switch between indices and obtain

Δξ
∑
i∈Z

∣∣∣∣∣Δξ
∑
m∈Z

βmg j,mgi,m −Δξ
∑
m∈Z

β̃mg̃ j,mg̃i,m

∣∣∣∣∣
� ‖g‖�1‖g‖�2‖β − β̃‖�2 + ‖g‖�1‖β̃‖�2‖g − g̃‖�2 + ‖β̃‖�2‖g̃‖�2‖g − g̃‖�1 ,

From (5.5) we can then conclude that the right-hand side in (5.8e) is locally Lipschitz-
continuous with respect to the Eaux

Δξ-norm.
Let us consider Lipschitz properties of R and Q. We decompose Q in Q1 + Q2 where
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(Q1) j :=Δξ
∑
i∈Z

gi, jUi(D+Ui), (5.9a)

(Q2) j :=Δξ
∑
i∈Z

κi, j (hi + ρ∞r̄i) . (5.9b)

Similarly, we decompose R in R1 + R2 where

(R1) j :=Δξ
∑
i∈Z

γi, jUi(D+Ui), (5.10a)

(R2) j :=Δξ
∑
i∈Z

ki, j (hi + ρ∞r̄i) . (5.10b)

We have Q2 = κ ∗ f for f = h + ρ∞r so that

‖ f‖�2 = ‖h + ρ∞r‖�2 � ‖h‖�2 + ρ∞‖r‖�2 .

Starting with Q2, we have

‖Q2 − Q̃2‖�2 = ‖κ ∗ f − κ̃ ∗ f̃‖�2 � ‖(κ− κ̃) ∗ f‖�2 + ‖κ̃ ∗ ( f − f̃ )‖�2

For the first term above, applying the Young’s inequality (5.6) with r = p = 2 and q = 1, we
get

‖(κ− κ̃) ∗ f‖�2 � ‖κ− κ̃‖
1
2

�1‖(κ− κ̃)�‖
1
2

�1‖ f‖�2

Using the antisymmetry property (4.27) of κ and κ̃, namely κ� = −γ and κ̃� = −γ̃, we get

‖(κ− κ̃) ∗ f‖�2 � ‖κ− κ̃‖
1
2

�1‖γ − γ̃‖
1
2

�1‖ f‖�2

Hence, we obtain the following estimate in �2-norm,

‖Q2 − Q̃2‖�2 � ‖γ − γ̃‖�1 + ‖κ− κ̃‖�1

2
‖ f‖�2 +

‖γ̃‖�1 + ‖κ̃‖�1

2
‖ f − f̃‖�2 .

For the �∞-norm, we use the same splitting

‖Q2 − Q̃2‖�∞ � ‖(κ− κ̃) ∗ f‖�∞ + ‖κ ∗ ( f − f̃ )‖�∞ .

Applying (5.6) for r = ∞ and p = q = 2, and the symmetry property of κ, we obtain in a
similar way as before that

‖Q2 − Q̃2‖�∞ � ‖γ − γ̃‖�2‖ f‖�2 + ‖γ̃‖�2‖ f − f̃‖�2 .

In a similar fashion as for Q2 we find

‖R2 − R̃2‖�2 � ‖k − k̃‖�1‖ f ‖�2 + ‖k̃‖�1‖ f − f̃‖�2 ,

‖R2 − R̃2‖�∞ � ‖k − k̃‖�2‖ f ‖�2 + ‖k̃‖�2‖ f − f̃‖�2 .

Furthermore, analogous applications of (5.6) and (4.27) produce

‖Q1 − Q̃1‖�2 � ‖g − g̃‖�2‖Uβ‖�1 + ‖g̃‖�2‖Uβ − Ũβ̃‖�1 ,
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‖Q1 − Q̃1‖�∞ � ‖g − g̃‖�∞‖Uβ‖�1 + ‖g̃‖�∞‖Uβ − Ũβ̃‖�1 ,

‖R1 − R̃1‖�2 � ‖γ − γ̃‖�2‖Uβ‖�1 + ‖γ̃‖�2‖Uβ − Ũβ̃‖�1 ,

‖R1 − R̃1‖�∞ � ‖γ − γ̃‖�∞‖Uβ‖�1 + ‖γ̃‖�∞‖Uβ − Ũβ̃‖�1 .

For the �1-norms above we then apply the Cauchy–Schwarz inequality to obtain

‖Uβ‖�1 � ‖U‖�2‖β‖�2 , ‖Uβ − Ũβ̃‖�1 � ‖U‖�2‖β − β̃‖�2 + ‖Ũ‖�2‖β − β̃‖�2 ,

which contain the relevant norms.
From the preceding estimates on Q1 and Q2 the local Lipschitz property of the right-hand

side of the second equation in (5.8a) in the �2 ∩ �∞-norm is clear. Furthermore, since U ∈ �∞,
the previous �∞-estimates on R and Q also show that the right-hand sides of (5.8c) and (5.8d)
are locally Lipschitz in the �2-norm. For the last equation in (5.8a), we introduce the right-shift
operator (τR) j = Rj−1 and we have

‖U(τR) − Ũ(τR̃)‖�∞ � ‖U − Ũ‖�∞‖τR‖�∞ + ‖Ũ‖�∞‖τ(R − R̃)‖�∞

� ‖U − Ũ‖�∞‖R‖�∞ + ‖Ũ‖�∞‖R − R̃‖�∞ ,

The remaining right-hand sides of (5.8a) and (5.8b) are linear in the solution variables, and
thus Lipschitz in their respective norms. Hence, for (5.8) written as Ẏ = F̂(Y) we have

‖F̂(Y) − F̂(Ỹ)‖Eaux
Δξ

� C(‖Y‖Eaux
Δξ

, ‖Ỹ‖Eaux
Δξ

)‖Y − Ỹ‖Eaux
Δξ

,

which is what we set out to prove. �
The final step in obtaining short-time existence for (4.35) from the auxiliary system, is to

show that if the initial data for (5.8) satisfy[
−D j− (1 + α j)

(1 + α j) −D j+

]
◦
[
γi, j ki, j

gi, j κi, j

]
=

1
Δξ

[
δi, j 0
0 δi, j

]
(5.11a)

α = D+ζ, β = D+U, and h = D+H, (5.11b)

then these identities are preserved in time by the solution. The result for (5.11a) has been
proved in lemma 4.1, as it only depends on the identity (D+y)t = D+U, which is replaced here
by α̇ = β. Using (5.11a), we infer from (4.31) that[

−D− (1 + α j)
(1 + α j) −D+

]
◦
[

R j

Q j

]
=

[
U jβ j

h j + ρ∞r̄ j

]
. (5.12)

From the definition of (5.8) we get

d
dt

(α j − D+ζ j) = β j − D+U j, (5.13a)

while the expression for D+Q j from (5.12) yields

d
dt

(β j − D+U j) = 0, (5.13b)

and from the expression for D−Rj we obtain
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d
dt

(h j − D+H j) = −R j(β j − D+U j). (5.13c)

Hence, the equation (5.13) give us that (5.11b) holds for all time if it holds initially. Then we
have proved the following theorem.

Theorem 5.3 (Short-time solution for (4.35)). Given X0 ∈ Eker
Δξ such that 1 + D+ζ j � 0

and g0, k0, γ0, and κ0 are constructed according to theorem 3.4 and corollary 3.5 with aj =
1 + D+ζ j. Then, there exists a time T depending only on ‖X0‖Eker

Δξ
such that (4.35) has a unique

solution X ∈ C1([0, T], Eker
Δξ) with initial datum X0.

The next step is to prove that there exists a subset, denoted by B, of Eker
Δξ which is preserved

by the evolution equation. For this subset, the solution exists globally in time. The subset B is
defined as follows.

Definition 5.4. The set B is composed of all (ζ, U, H, r̄, g, k, γ,κ) ∈ Eker
Δξ such that

(a) g, k, γ,κ satisfy the properties listed in lemma 4.1 for a = D+y,
(b) (D+y, D+U, D+H, r̄) ∈ (�∞)4,
(c) 2(D+y j)(D+H j) = (U j)2(D+y j)2 + (D+U j)2 + r̄2

j for all j,
(d) D+y j � 0, D+H j � 0, D+y j + D+H j > 0 for all j.

Lemma 5.5 (Properties preserved by the flow). Given initial datum X0 ∈ B, let
X(t) ∈ C1([0, T], Eker

Δξ) be the corresponding short-time solution given by theorem 5.3. Then
X(t) ∈ B for all t ∈ [0, T].

Proof of Lemma 5.5. Property (a) follows from lemma 4.1, since the solution variables
in X(t) satisfy D+ẏ j = D+U j and D+U ∈ �2, where we as usual have D+y j = 1 + D+ζ j. The
proof of property (b) essentially follows [31, lemma 3.3], and so we omit it. The proof of (c)
is similar to the proof of [31, lemma 3.5], while the proof of (d) is analogous to that of [36,
lemma 2.7], and they are also omitted here. �

For the rest of the paper we will only consider X ∈ B ∩ Eker
Δξ , as solutions in this set contains

all the relevant solutions to the original 2CH system (1.2). Lemma 5.5, and in particular the
preservation of the identity

2(D+y j)h j = U2
j (D+y j)

2 + (D+U j)
2 + r̄2

j (5.14)

allows us to prove useful estimates for the solutions in B. We have

Δξ
∑
j∈Z

|U j| |D+U j| � H∞(t), (5.15)

where H∞(t) = limn→+∞ Hn is the total energy of the discrete system. This quantity cor-
responds to Hdis in (2.16). Indeed, the Hamiltonian (2.17) is conserved for t ∈ [0, T], that
is H∞(t) = H∞(0) < ∞ for t ∈ [0, T]. We denote the preserved total energy H∞(t) by H∞.
Turning back to the inequality (5.15), it can be proved as follows,
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Δξ
∑
j∈Z

|U j| |D+U j| � Δξ
∑
j∈Z

|U j|
√

(D+y j)[2h j − U2
j (D+y j)]

� 1
2
Δξ
∑
j∈Z

U2
j (D+y j) +

1
2
Δξ
∑
j∈Z

[2h j − U2
j (D+y j)]

= H∞,

where in the first inequality we have used (5.14), and in the second inequality we have used
D+y j � 0 together with the Cauchy–Schwarz inequality. An immediate consequence of (5.15)
is that ‖U‖�∞ can be uniformly bounded by a constant depending only on H∞. To show this,
we add and subtract in (2.8) to find the identity

D±(Ui)2 = 2Ui(D±Ui) ±Δξ(D±Ui)2.

Taking advantage of the decay of U at infinity, we may then write

(U j)2 = −2Δξ

∞∑
i= j

Ui(D+Ui) − (Δξ)2
∞∑

i= j

(D+Ui)2 � 2Δξ
∑
i∈Z

|Ui| |D+Ui| � 2H∞,

from which the bound

sup
0�t�T

‖U(t)‖�∞ �
√

2H∞ (5.16)

follows. From (5.16) and (4.35a), we then obtain the estimate

‖ζ(t)‖�∞ � ‖ζ(0)‖�∞ +
√

2H∞t. (5.17)

Another useful estimate coming from (5.14) is

|̄r j| �
√

2(D+y j)h j. (5.18)

Now that lemma 5.5 has established D+y j(t) � 0 in the short-time solution for t ∈ [0, T], we
can apply lemma 3.7 with a j = D+y j. Indeed, the sequences g, γ, k, and κ solve (4.19) and
belong to �∗ for t ∈ [0, T], and so they correspond to the unique decaying solution. These
properties contained in lemmas 3.7 and 4.1 are essential to establish the a priori estimates
contained in the next lemma.

Lemma 5.6 (A priori relations and inequalities for the kernels). As a consequence
of establishing the preservation of the summation kernels and their sign properties over time,
we have the identities

Δξ
∑
j∈Z

(D+y j)|γi, j| = Δξ
∑
j∈Z

|D j+gi, j| = 2‖g‖�∞ , (5.19a)

Δξ
∑
j∈Z

(D+y j)|κi, j| = Δξ
∑
i∈Z

|D j−ki, j| = 2‖k‖�∞ , (5.19b)

as well as

Δξ
∑
j∈Z

(D+y j)gi, j = Δξ
∑
j∈Z

(A[D+y]gi) j = 1, (5.20a)
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Δξ
∑
i∈Z

(D+y j)ki, j = Δξ
∑
j∈Z

(B[D+y]ki) j = 1, (5.20b)

and the bounds

‖g‖�∞ , ‖k‖�∞ , ‖γ‖�∞ , ‖κ‖�∞ � 1, (5.21)

‖g‖�1 � 1 + 2‖ζ‖�∞ , ‖k‖�1 � 1 + 2‖ζ‖�∞ ,

‖γ‖�1 � 2
[
1 + ‖ζ‖�∞

]
, ‖κ‖�1 � 2

[
1 + ‖ζ‖�∞

]
.

(5.22)

Proof of Lemma 5.6. To prove (5.19a) we use D+y j � 0 and (4.19) for the leftmost equal-
ities, while for the rightmost equalities we use the monotonicity properties of (3.29) to write

Δξ
∑
j∈Z

|D j+gi, j| = Δξ

i−1∑
j=−∞

D j+gi, j −Δξ

∞∑
j=i

D j+gi, j = 2gi,i = 2‖g‖�∞ .

We obtain (5.19a) in the same way. To obtain (5.20), we use the definitions of the operators
A in (2.19) and B in (3.24), and apply telescopic cancellation to the differences D j+γ i, j and
D j−κi, j in the identities (4.19). In the same manner, telescopic cancellation applied to (4.19)
yields

γi, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Δξ

j∑
m=−∞

(D+ym)gi,m, j � i − 1,

−Δξ

∞∑
m= j+1

(D+ym)gi,m, j � i,

Using the fact that D+y j � 0 and gi, j � 0, the triangle inequality and (5.20) yield (5.21) for γ.
We proceed similarly for κ. For g, observe that, using (4.19), we can rewrite them as

gi, j =
∑
m∈Z

gi,mδ j,m = Δξ
∑
m∈Z

gi,m
[
(D+ym)g j,m − Dm−γ j,m

]

= Δξ
∑
m∈Z

(D+ym)
[
gi,mg j,m + γi,mγ j,m

]
. (5.23)

Using the decay at infinity we can then write

(gi,i)2 =

+∞∑

m=i

[
(gi,m+1)2 − (gi,m)2

]
= Δξ

+∞∑

m=i

[
gi,m+1 + gi,m

]
Dm+gi,m

= Δξ

+∞∑

m=i

[
gi,m+1+gi,m

]
(D+ym)|γi,m| � 2Δξ

+∞∑

m=i

gi,m(D+ym)|γi,m|

� Δξ
+∞∑

m=i

(D+ym)
[
(gi,m)2+(γi,m)2

]
� Δξ

∑

m∈Z
(D+ym)

[
(gi,m)2+(γi,m)2

]

= gi,i,
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where we have used (3.29) for the first inequality, and (5.23) for the final identity. The bound
gi,i � 1 follows, and we use 0 � gi, j � gi,i from (3.29) to conclude. A similar procedure can
be applied to prove that ki, j � 1. Furthermore, we have

Δξ
∑
j∈Z

gi, j = Δξ
∑
j∈Z

[
D+y j − D+ζ j

]
gi, j

= 1 +Δξ
∑
j∈Z

ζ j+1(D j+gi, j), from (5.20),

= 1 +Δξ
∑
j∈Z

ζ j+1(D+y j)γi, j, from (4.19),

� 1 + ‖ζ‖�∞Δξ
∑
j∈Z

(D+y j)|γi, j|,

and the result on the �1 bound of g follows from (5.19) and (5.21). A similar procedure proves
the bound on ‖k‖�1 . For the bound on ‖γ‖�1 we find

Δξ
∑
j∈Z

|γi, j| = Δξ
∑
j∈Z

[
D+y j − D+ζ j

]
|γi, j|

= 2gi,i −Δξ

i−1∑
j=−∞

(D+ζ j)γi, j +Δξ

+∞∑
j=i

(D+ζ j)γi, j

= 2‖g‖�∞ − 2ζiγi,i−1 +Δξ
i−1∑

j=−∞
ζ j(D j−γi, j) −Δξ

+∞∑
j=i

ζ j(D j−γi, j)

= 2‖g‖�∞ + (1 − 2γi,i−1)ζi +Δξ
∑
j∈Z

sgn

(
i − j − 1

2

)
ζi(D+y j)gi, j

� 2‖g‖�∞ + ‖ζ‖�∞

⎡
⎣|1 − 2γi,i−1|+Δξ

∑
j∈Z

(D+y j)gi, j

⎤
⎦ ,

where in the second equality we use lemma 3.7, the third equality uses summation by
parts (2.12), and the fourth is due to the kernel definition property (4.19). Then the result
follows from (5.20), (5.21), and 0 � γ i,i−1 � 1. A similar procedure proves the bound
on ‖κ‖�1 . �

A direct consequence of (5.21) is that the �∞-norms of the kernels remain bounded by 1 for
all time. Moreover, combining (5.22) with (5.17) we find that the �1-norms remain bounded
for any finite t, namely

‖g(t)‖�1 , ‖k(t)‖�1 � 1 + 2
[
‖ζ(0)‖�∞ +

√
2H∞t

]
,

‖γ(t)‖�1 , ‖κ(t)‖�1 � 2
[
1 + ‖ζ(0)‖�∞ +

√
2H∞t

]
.

(5.24)

Furthermore, lemma 5.6 allows us to find a bound similar to (5.16) for ‖R‖�∞ and ‖Q‖�∞ .
Indeed, for Q we find
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‖Q‖�∞ � ‖g ∗ (U(D+U))‖�∞ + ‖κ ∗ (h + ρ∞r̄)‖�∞

� ‖g‖�∞‖U(D+U)‖�1 + ‖κ‖�∞‖h‖�1 + ρ∞‖κ ∗ |̄r| ‖�∞ . (5.25)

Using (5.18) and the Cauchy–Schwarz inequality, we have

ρ∞‖κ ∗ |̄r| ‖�∞ � 1
2
ρ2
∞‖ |κ| ∗ (D + y)‖�∞ +

1
2
‖ |κ| ∗ (2h)‖�∞

which by (5.19) and (5.21) simplifies to

ρ∞‖κ ∗ |̄r| ‖�∞ � 1
2
ρ2
∞(2‖k‖�∞) + ‖κ‖�∞‖h‖�1 � ρ2

∞ + H∞.

Using (5.15), we get ‖UD+U‖�1 � H∞. Hence, from (5.25), we get

‖Q‖�∞ � 3H∞ + ρ2
∞.

An analogous estimate for R can be obtained so that we can conclude with the bounds

sup
0�t�T

‖R(t)‖�∞ � 3H∞ +
1
2
ρ2
∞, sup

0�t�T
‖Q(t)‖�∞ � 3H∞ + ρ2

∞. (5.26)

Now we are set to prove global existence for solutions of (4.35).

Theorem 5.7 (Global existence). Given initial datum X0 in the set B from definition 5.4,
the system (4.35) admits a unique global solution X ∈ C1([0,∞), EΔξ), such that X ∈ B for all
times. In particular, for t > 0, the norm ‖X(t)‖EΔξ

is bounded by C‖X(0)‖EΔξ
for a constant

C depending only on t, the total energy H∞, the asymptotic density ρ∞, and ‖ζ(0)‖�∞ .

Proof. The solution has a finite time of existence T only if

‖X‖EΔξ
= ‖ζ‖VΔξ

+ ‖U‖h1 + ‖H‖VΔξ
+ ‖r̄‖�2

blows up as t approaches T. Otherwise the solution can be prolonged by a small time interval
by theorem 5.3. Let X be the short-time solution given by (5.3) for initial datum X0. We will
prove that sup0�t�T ‖X‖EΔξ

< ∞.

From the definition of the h1-norm and (5.2) we find that the right-hand side of (4.35a) is
bounded in the VΔξ-norm by 2+

√
2

2 ‖U‖h1 , while the right-hand side of (4.35d) is bounded in
�2-norm by ρ∞‖U‖h1 . Next, we estimate the right-hand side of (4.35b),

‖Q‖h1 � ‖Q‖�2 + ‖D+Q‖�2 � ‖Q‖�2 + ‖R(1 + D+ζ) − h − ρ∞r̄‖�2

� ‖Q‖�2 + ‖R‖�2 + ‖R‖�∞‖D+ζ‖�2 + ‖h + ρ∞r̄‖�2 ,

where we have used the definition of the h1-norm, (4.31) and the decomposition D+y j = 1 +
D+ζ j. Then, recalling the definitions (5.9a) and (5.9b) and applying the Young inequality (5.6)
to the final expression above we see that it is bounded by

‖g‖�1‖U(D+U)‖�2 + ‖γ‖
1
2
�1‖κ‖

1
2
�1‖h + ρ∞r̄‖�2 + ‖γ‖

1
2
�1‖κ‖

1
2
�1‖U(D+U)‖�2

+ ‖R‖�∞‖D+ζ‖�2 + ‖k‖�1‖h + ρ∞r̄‖�2 + ‖h + ρ∞r̄‖�2

�
[
‖g‖�1 + ‖γ‖

1
2

�1‖κ‖
1
2

�1

]
‖U‖�∞‖D+U‖�2 + ‖R‖�∞‖D+ζ‖�2
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+

[
‖k‖�1 + ‖γ‖

1
2

�1‖κ‖
1
2

�1

] [
‖h‖�2 + ρ∞‖r̄‖�2

]
.

Then, applying (5.15), (5.16), (5.24) and (5.26) and the definitions of the VΔξ- and h1-norms
we obtain that ‖Q‖h1 is bounded by(

3 + 4[‖ζ(0)‖�∞ +
√

2H∞t]
)

[‖U‖h1 + ‖H‖VΔξ
+ ρ∞‖r̄‖�2 ]

+

(
3H∞ +

1
2
ρ2
∞

)
‖ζ‖VΔξ

.

Finally, the VΔξ-norm of the right-hand side of (4.35c) can be estimated as

‖U(τR)‖VΔξ
= ‖U(τR)‖�∞ + ‖[U2 − R](D+U) − UQ[1 + D+ζ]‖�2

� ‖R‖�∞‖U‖�∞ + [‖U‖2
�∞ + ‖R‖�∞]‖D+U‖�2

+ ‖Q‖�∞‖U‖�2 + ‖Q‖�∞‖U‖�∞‖D+ζ‖�2

�
(

2 +
√

2
2

(3H∞ + ρ2
∞) + 2H∞

)
‖U‖h1

+
√

2H∞

(
3H∞ +

1
2
ρ2
∞

)
‖ζ‖VΔξ

,

where we again use the notation (τR) j = R j−1. In the first identity above we have employed
(4.31), while in the final line we have used the definitions of the VΔξ- and h1-norms together
with (5.2), (5.16) and (5.26).

Gathering all the above estimates of the right-hand sides, writing (4.35) in integral form,
and taking norms we obtain the following inequality for X(t) = (ζ, U, H, r̄)(t),

‖X(t)‖EΔξ
� ‖X(0)‖EΔξ

+ C(H∞, ‖ζ(0)‖�∞ , ρ∞)
∫ t

0
(1 + s)‖X(s)‖EΔξ

ds,

for t ∈ [0, T] and some constant C(H∞, ‖ζ(0)‖�∞ , ρ∞) depending only on H∞, ‖ζ(0)‖�∞ and
ρ∞. Grönwall’s inequality then yields

‖X(t)‖EΔξ
� ‖X(0)‖EΔξ

exp

{
C(H∞, ‖ζ(0)‖�∞ , ρ∞)

[
t +

1
2

t2

]}
, t ∈ [0, T],

which shows that ‖X(T)‖EΔξ
is bounded, and we may according to theorem 5.3 extend our

solution indefinitely.
In retrospect, with the estimates (5.16) and (5.26) in hand, we can apply a Grönwall estimate

to the evolution equations for α, β, h, and r̄ in (5.8). From this we find that the �∞-norms of
D+y, D+U, h, and r̄ at time t ∈ [0, T] are bounded by their �∞-norm at time t = 0 times a
factor exp{C(H∞, ρ∞)t}, where the constant C(H∞, ρ∞) depends only on H∞ and ρ∞. �

As mentioned in the introduction, if ρ > 0 initially for the 2CH system (1.2), then the
smoothness of the initial data is preserved, see [31]. This is because the characteristics do
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not collide in this case, and yξ remains positive for all time. In the discrete case, this property
takes the form of a lower bound on D+y. For any given time T, there exists a constant C > 0
depending on maxt∈[0,T]‖X(t)‖EΔξ

, ρ∞, and T such that

(D+y) j(t) �
ρ2

0, j

C
, (5.27)

for all j and t ∈ [0, T]. This follows from property (c) in definition 5.4. Thus, if ρ0, j > 0, we
will have y j(t) < y j+1(t) for all time.

6. Convergence of the scheme

In this section we interpolate the solutions of the semi-discrete scheme analyzed in section 5,
with initial data constructed in section 7. We shall then show that these interpolated functions
converge to the solution of the 2CH system as written in (4.7) and (4.8). Let us in this section
use YΔξ to denote the tuple of grid functions obtained in theorem 5.7 for t ∈ [0, T],

YΔξ(t) = (ζ, U, H, r̄)(t) ∈ EΔξ. (6.1)

Since these functions also belong to the set B in definition 5.4, we will augment the EΔξ-norm
(5.4) as follows:

‖YΔξ‖B = ‖YΔξ‖EΔξ
+ ‖D+ζ‖�∞ + ‖D+U‖�∞ + ‖D+H‖�∞ + ‖r̄‖�∞ .

In order to ease notation below, we will write ‖YΔξ‖ for sup0�t�T ‖YΔξ(t)‖B. We define the
interpolated functions as follows

VΔ(t, ξ) =
∑
j∈Z

[
V j(t) + (ξ − ξ j)(D+V j(t))

]
χ j(ξ), r̄Δ(t, ξ) =

∑
j∈Z

r̄ j(t)χ j(ξ),

RΔ(t, ξ) =
∑
j∈Z

[
R j(t) + (ξ − ξ j+1)(D−R j(t))

]
χ j(ξ),

(6.2)

where V is a placeholder for ζ, U, H, and Q, while χ j(ξ) denotes the indicator function for the
interval [ξ j, ξ j+1). We also introduce the functions

yΔ(t, ξ) := ξ + ζΔ(t, ξ), rΔ(t, ξ) := r̄Δ(t, ξ) + ρ∞
∂yΔ(t, ξ)

∂ξ
. (6.3)

Observe that the interpolated functions above are piecewise linear and continuous, except for
rΔ, r̄Δ which are piecewise constant. In particular we note the identity

R j + (ξ − ξ j+1)(D−R j) = R j−1 + (ξ − ξ j)(D−R j), ξ ∈ [ξ j, ξ j+1],

which shows RΔ(t, ξ j) = Rj−1. Let us also recall the definition of the space E in (4.10). A
consequence of theorem 5.7 is that tuple of interpolated functions

XΔ(t) := (ζΔ(t, ·), UΔ(t, ·), HΔ(t, ·), r̄Δ(t, ·)) (6.4)

satisfies XΔ(t) ∈ C1([0, T], E) for any fixed T > 0 and Δξ > 0. Let us now consider a given
initial datum X0 = (ζ0, U0, H0, r̄0) ∈ E for the equivalent 2CH system (4.7). We assume there
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exists a sequence of discrete initial data YΔξ,0 ∈ EΔξ such that the interpolation of YΔξ,0,
denoted XΔ,0, converges to X0, i.e.,

lim
Δξ→0

‖XΔ,0 − X0‖E = 0. (6.5)

We will explain how to construct such sequence in the next section. For T > 0 and each
YΔξ,0, let YΔξ be the corresponding solution given by theorem 5.7. Furthermore, we denote by
X ∈ C([0, T], E) the solution to (4.35) with initial data X0, while XΔ ∈ C([0, T], E) is the
function interpolated from YΔξ using (6.2). Then, we have the following convergence result.

Theorem 6.1 (Convergence). The approximation XΔ converges to the solution X to the
2CH system (4.7) in C([0, T], E).

Proof of Theorem 6.1. The strategy of the proof is to show that our interpolated functions
(yΔ, UΔ, HΔ, rΔ) satisfy (4.7) and (4.8), where we allow for a small error of order O(Δξ). For
(4.7a), (4.7b), and (4.7d), we observe that, by construction, we have

∂yΔ
∂t

= UΔ,
∂UΔ

∂t
= −QΔ,

∂rΔ
∂t

= 0

due to (4.31), (4.35a), (4.35b), and (4.35d). Thus, the three linear equations in (4.7) are satisfied
exactly by our interpolants. The next step is to control the evolution of the error for the variable
HΔ. We find

∂HΔ

∂t
= −UΔRΔ +

∑
j∈Z

(ξ − ξ j)(ξ − ξ j+1)(D+U j)(D−R j)χ j.

This identity then implies(
∂HΔ

∂t
+ UΔRΔ

)
ξ

=
∑
j∈Z

(2ξ − ξ j − ξ j+1)(D+U j)(D−R j)χ j,

almost everywhere. Combining the above identities we can estimate the error in the V-norm
as follows,∥∥∥∥∂HΔ

∂t
+ UΔRΔ

∥∥∥∥
V

� Δξ2
∑
j∈Z

|D+U j| |D−R j|+

⎛
⎝Δξ

∑
j∈Z

Δξ2|D+U j|2|D−R j|2
⎞
⎠

1
2

� Δξ‖D+U‖�2‖D−R‖�2 +Δξ‖D+U‖�∞‖D−R‖�2

� Δξ
(
‖D+U‖�2 + ‖D+U‖�∞

)
‖(D+y)Q − U(D+U)‖�2

� Δξ
(
‖D+U‖�2 + ‖D+U‖�∞

) (
‖D+y‖�∞‖Q‖�2 + ‖U‖�∞‖D+U‖�2

)
. (6.6)

Now, for the relations (4.8), we measure the error in L2-norm. From (4.31), we obtain the
relation

∂yΔ
∂ξ

QΔ − ∂RΔ

∂ξ
− UΔ

∂UΔ

∂ξ
=
∑
j∈Z

(ξ − ξ j)
[
(D+y j)(D+Q j) − (D+U j)

2
]
χ j,
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and find ∥∥∥∥∂yΔ
∂ξ

QΔ − ∂RΔ

∂ξ
− UΔ

∂UΔ

∂ξ

∥∥∥∥
L2

� Δξ
(
‖D+y‖�∞‖D+Q‖�2 + ‖D+U‖�∞‖D+U‖�2

)
. (6.7)

Finally, using (4.31) once more, we have

∂yΔ
∂ξ

RΔ − ∂SΔ

∂ξ
− ∂HΔ

∂ξ
− ρ∞r̄Δ =

∑
j∈Z

(ξ − ξ j+1)(D−R j)(D+y j)χ j

which can be estimated as∥∥∥∥∂yΔ
∂ξ

RΔ − ∂SΔ

∂ξ
− ∂HΔ

∂ξ
− ρ∞r̄Δ

∥∥∥∥
L2

� Δξ‖D+y‖�∞‖D−R‖�2 . (6.8)

The estimate (6.6) is exactly as we want it, (4.7c) is satisfied in the appropriate norm up to
some small remainder. However, the estimates (6.7) and (6.8) require some more work, as we
shall see next.

Let us estimate the E-norm of the difference between XΔ(T ) and the exact solution
X(T) := (ζ, U, H, r̄)(T). From the above estimates and (4.7) we find

‖(ζΔ − ζ)(T, ·)‖V � ‖(ζΔ − ζ)(0, ·)‖V +

∫ T

0
‖(UΔ − U)(t, ·)‖V dt

‖(UΔ − U)(T, ·)‖H1 � ‖(UΔ − U)(0, ·)‖H1 +

∫ T

0
‖(QΔ − Q)(t, ·)‖H1 dt

‖(HΔ − H)(T, ·)‖V � ‖(HΔ − H)(0, ·)‖V +

∫ T

0
‖(UΔRΔ − UR)(t, ·)‖V dt

+ΔξCH(‖YΔξ‖)T

‖(r̄Δ − r̄)(T, ·)‖L2 � ‖(r̄Δ − r̄)(0, ·)‖L2 + ρ∞

∫ T

0

∥∥∥∥∂(UΔ − U)(t, ·)
∂ξ

∥∥∥∥
L2

dt,

(6.9)

where we have used that the final expression in (6.6) can be bounded by ΔξCH(‖YΔξ‖) for
some constant CH depending only on ‖YΔξ‖.

From (6.9), it is clear that we need estimates of ‖QΔ − Q‖H1 , ‖RΔ − R‖L∞ , and
‖(RΔ − R)ξ‖L2 in terms of

‖XΔ − X‖E = ‖ζΔ − ζ‖V + ‖UΔ − U‖H1 + ‖HΔ − H‖V + ‖r̄Δ − r̄‖L2 ,

and by definition of the H1-norm and the Sobolev inequality ‖ f ‖L∞ � 1√
2
‖ f ‖H1 , it will be

sufficient to bound ‖QΔ − Q‖H1 and ‖RΔ − R‖H1 . To this end, we note that by the estimates
(6.7) and (6.8), it follows that[

−∂ξ (yΔ)ξ
(yΔ)ξ −∂ξ

]
◦
[

RΔ

QΔ

]
=

[
UΔ(UΔ)ξ

(HΔ)ξ + ρ∞r̄Δ

]
+Δξ

[
vΔ
wΔ

]
(6.10)

for some functions vΔ,wΔ ∈ L2 which are bounded by a constant depending only on the norm
‖YΔξ‖ of (6.1). Recalling (4.14) and the operators defined in (4.12) we know that R(t, ξ) and
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Q(t, ξ) can be written as

R(t, ξ) =
∫
R

κ[t](η, ξ)UUξ(t, η) dη +

∫
R

g[t](η, ξ)[Hξ + ρ∞r̄](t, η) dη

= K
(
UUξ

)
+ G

(
Hξ + ρ∞r̄

)
,

Q(t, ξ) =
∫
R

g[t](η, ξ)UUξ(t, η) dη +

∫
R

κ[t](η, ξ)[Hξ + ρ∞r̄](t, η) dη

= G
(
UUξ

)
+K

(
Hξ + ρ∞r̄

)
with kernels

g[t](η, ξ) :=
1
2

e−|y(t,ξ)−y(t,η)|, κ[t](η, ξ) := − sgn (ξ − η)g[t](η, ξ).

Due to the obvious similarities between (6.10) and (4.18) we would like to generalize the
operator identity (4.12) by replacing y(t, ξ) with any function b(t, ξ) such that b(t, ·) − Id ∈ V
and bξ(t, ξ) � 0, in particular this holds for our yΔ(t, ξ) in (6.3) by virtue of lemma 5.5. This
is can be done, and the unique H1-solution of[

−∂ξ bξ(t, ξ)
bξ(t, ξ) −∂ξ

] [
φ(t, ξ)
ψ(t, ξ)

]
=

[
v(t, ξ)
w(t, ξ)

]

for v(t, ·),w(t, ·) ∈ L2 is then

φ(t, ξ) =
∫
R

1
2

e−|b(t,ξ)−b(t,η)| [w(t, η) − sgn(ξ − η)v(t, η)
]

dη,

ψ(t, ξ) =
∫
R

1
2

e−|b(t,ξ)−b(t,η)| [v(t, η) − sgn(ξ − η)w(t, η)
]

dη.

Consequently, we can generalize G and K from (4.12) to be operators from V × L2 to H1 as
follows,

G[t, ξ](b − Id, f ) :=
∫
R

1
2

e−|b(t,ξ)−b(t,η)| f (η) dη, (6.11)

K[t, ξ](b − Id, f ) := −
∫
R

sgn(ξ − η)
1
2

e−|b(t,ξ)−b(t,η)| f (η) dη. (6.12)

Using these operators, we may write the general solutions φ(t, ξ), ψ(t, ξ) as

φ(t, ξ) = K[t, ξ](b − Id, v) + G[t, ξ](b − Id,w),

ψ(t, ξ) = G[t, ξ](b − Id, v) +K[t, ξ](b − Id,w).

An argument analogous to [31, lemma 3.1] then proves that the operators

R1[t, ·] : (ζ, U, H, r̄) 	→ K[t, ·](ζ, UUξ) + G[t, ·](ζ, Hξ + ρ∞r̄)

and

R2[t, ·] : (ζ, v,w) 	→ K[t, ·](ζ, v) + G[t, ·](ζ,w)
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are locally Lipschitz as operators from E → H1 and V × (L2)2 → H1 respectively, and the same
is true for

Q1[t, ·] : (ζ, U, H, r̄) 	→ G[t, ·](ζ, UUξ) +K[t, ·](ζ, Hξ + ρ∞r̄)

and

Q2[t, ·] : (ζ, v,w) 	→ G[t, ·](ζ, v) +K[t, ·](ζ,w).

Finally turning back to the functions we are interested in, we note that, since our interpolants
RΔ and QΔ are solutions of (6.10), they can be written as

RΔ(t, ξ) = R1[t, ξ] (ζΔ, UΔ, HΔ, r̄Δ) +ΔξR2[t, ξ](ζΔ, vΔ,wΔ),

QΔ(t, ξ) = Q1[t, ξ] (ζΔ, UΔ, HΔ, r̄Δ) +ΔξQ2[t, ξ](ζΔ, vΔ,wΔ).

These should then be compared to R and Q for the exact solution, which now can be written as

R(t, ξ) = R1[t, ξ](ζ, U, H, r̄),

Q(t, ξ) = Q1[t, ξ](ζ, U, H, r̄).

Then, we write

QΔ(t, ξ) − Q(t, ξ) = Q1 (ζΔ, UΔ, HΔ, r̄Δ) −Q1 (ζ, U, H, r̄)

+ΔξQ2[t, ξ](ζΔ, vΔ,wΔ)

and it follows from the Lipschitz property that

‖QΔ(t, ·) − Q(t, ·)‖H1 � CQ,1(‖XΔ(t)‖E, ‖X(t)‖E)‖XΔ(t) − X(t)‖E

+ΔξCQ,2(‖YΔξ‖)

for constants CQ,1, CQ,2, and an analogous estimate holds for ‖RΔ(t, ·) − R(t, ·)‖H1 .
From the above estimates, the obvious inequality ‖ fξ‖L2 � ‖ f ‖H1 , and ‖ f ‖V �

2+
√

2
2 ‖ f ‖H1 coming from ‖ f ‖L∞ � 1√

2
‖ f ‖H1 , we may add the equations in (6.9) to obtain

‖XΔ(T) − X(T)‖E � ‖XΔ(0) − X(0)‖E +ΔξC1(‖YΔξ‖)T

+ C2(‖YΔξ‖, ‖X‖)
∫ T

0
‖XΔ(t) − X(t)‖E dt,

where we have used ‖X‖ := sup0�t�T ‖X(t)‖E and sup0�t�T ‖XΔ‖E� C(‖YΔξ‖) are bounded
by constants depending on T and the E-norm of their initial data. In particular, by theorem 5.7
we know ‖ YΔξ ‖ is bounded by a constant depending only on T, H∞, ‖ζ(0)‖�∞ , and ρ∞.
Grönwall’s inequality then yields the estimate

‖XΔ(T) − X(T)‖E � C3

(
‖YΔξ‖, ‖X‖

) [
‖XΔ(0) − X(0)‖E +ΔξC1(‖YΔξ‖)T

]
.

Combining this estimate with (6.5), we obtain the desired result. �
Since convergence in Lagrangian coordinates implies convergence in the corresponding

Eulerian coordinates, see [28] for details, this shows that interpolated solutions of the discrete
two-component Camassa–Holm system can be used to obtain conservative solutions of the
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2CH system (1.2). In particular, as conservative solutions of (1.1) are unique according to [4],
our discretization of the CH equation corresponds to the unique conservative solution of the
CH equation.

7. Construction of the initial data

In this section we consider initial data for the continuous system given by u0 ∈ H1, ρ̄0 = ρ0 −
ρ∞ ∈ L2, and a measure μ0 which corresponds to the energy distribution, see [31]. To ease
notation we omit the subscript 0 and the dependence on t for the rest of this section, as we are
always considering t = 0. The absolutely continuous part of the measure μ satisfies

μac =
1
2

(u2 + u2
x + ρ̄2)dx,

and may in general contain singular parts. Here we will restrict ourselves to the case where
the singular part is purely atomic, and construct corresponding initial data for the discrete
scheme. The ability to handle singular initial data was one of the motivations for the effort put
into section 3 to allow for D+yi = 0. From [31, Thm. 4.9], we know the functions (y, U, H, r)
defined as

y(ξ) := sup{x : μ((−∞, x)) + x < ξ}, (7.1a)

U(ξ) = u ◦ y(ξ), H(ξ) = ξ − y(ξ) and r̄(ξ) = (ρ̄ ◦ y(ξ))yξ(ξ). (7.1b)

give us the initial data for the equivalent system (4.7) which provides us the global conservative
solutions of (1.2) with initial data (u, μ).

We define the discrete initial data y j = y(ξ j) and U j = U(y j). For the L2-function r̄ we
define

r̄ j =
1
Δξ

∫ ξ j+1

ξ j

r̄(η)dη.

The discrete identity (5.14) is essential to obtain global existence of solution to the semi-
discrete system. The identity reflects the strong connection between the energy variable H j

and the other variables. To fulfill (5.14), we set h j as follows: if D+y j > 0, we define hj � 0
such that it satisfies (5.14), that is

2h j = U2
j D+y j +

(D+U j)2

D+y j
+

r̄2
j

D+y j
(7.2)

and if D+y j = 0 we set h j =
1
2 . Then we define H j = Δξ

∑ j−1
m=−∞ hm to ensure D+H j = h j.

Note that in the norms below we will use U to denote both the continuous-case function U(ξ)
and the discrete function {U j} j∈Z. However, the norm used will indicate which of them we are
considering: �p and VΔξ are used for discrete functions, and Lp and V are used for continuous-
case functions.

Theorem 7.1. We consider the initial data of the two-component Camassa–Holm system
(1.2) given by u0 ∈ H1, ρ0 such that ρ0 − ρ∞ =: ρ̄0 ∈ L2 for some ρ∞ � 0, and a positive
finite Radon measure μ0 whose absolutely continuous part satisfies μ0,ac = (u2

0 + u2
0,x + ρ̄2

0)dx,
while its singular part may be an atomic measure (the singular continuous part is zero). By
definition, the global conservative solution of 2CH is obtained by solving (4.7) for the initial
datum X0 ∈ E constructed from (u0, ρ0,μ0), where X0 is given in (7.1). For this X0, we can
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construct sequences of initial data for the semi-discrete scheme, X0,n = (ζ0,n, U0,n, H0,n, r̄0,n) ∈
EΔξ such that each element of the sequence belongs to the set B defined in definition 5.4 and
the interpolation sequence defined in (6.2) converges to X0 in E.

Proof. Let us start by verifying that these initial data satisfy properties (a)–(d) in
definition 5.4. Clearly, from (7.1a) it follows that D+y j � 0, and so the construction in Section 3
gives fundamental solutions satisfying property (a). Properties (c) and (d) have already been
satisfied through our definition of h j. To verify (b), we need to show that the discrete initial
data are uniformly bounded. Following [31, 36] we have |y(ξ) − ξ| � μ(R), and since the total
energy μ(R) is bounded, we have ‖y − Id‖L∞ � μ(R). Since y j = y(ξ j), this carries directly
over to our setting, |y j − ξ j| � μ(R), meaning ‖ζ‖�∞ � μ(R). Moreover, in the aforementioned
works, the authors prove that ξ 	→ y(ξ) is Lipschitz with Lipschitz constant 1, which yields

|y(ξ j+1) − y(ξ j)| � |ξ j+1 − ξ j| = Δξ =⇒ |D+y j| � 1.

Hence, D+y ∈ �∞. They also prove ξ 	→
∫ y(ξ)
−∞ u2

x(x)dx to be Lipschitz with Lipschitz constant
1. Then, we have the estimate

|U(ξ j+1) − U(ξ j)| =
∣∣∣∣∣
∫ y(ξ j+1)

y(ξ j)
u(x)dx

∣∣∣∣∣ (7.3)

�
√

y(ξ j+1) − y(ξ j)

√∫ y(ξ j+1)

y(ξ j)
u2

x(x)dx, (7.4)

and from the aforementioned Lipschitz properties we obtain |U j+1 − U j| � Δξ, implying
|D+U j| � 1 and D+U ∈ �∞. In addition, since u ∈ L∞ it is clear from U j = u(y j) that
‖U‖�∞ � ‖u‖L∞ . From our definition of r̄ j we have the estimate |̄r j| � supξ |̄r(ξ)| � 1,
where the final inequality comes from [31, equation (4.7)], and thus r̄ ∈ �∞. For h j, when
D+y j > 0, we estimate hj as follows. From (7.3), we have |U j+1 − U j| �

√
Δξ

√
y j+1 − y j, or

equivalently |D+U j| �
√

D+y j. For r̄ j we have

r̄ j =
1
Δξ

∫ ξ j+1

ξ j

ρ̄(y(η))yξ(η)dη

� 1
Δξ

√∫ ξ j+1

ξ j

ρ̄2(y(η))yξ(η)dη
√

y(ξ j+1) − y(ξ j).

Applying once more the continuous-case inequality (ρ̄ ◦ y)yξ � 1, the above estimate yields
r̄ j �

√
D+y j. From the preceding estimates, D+y j � 1, and (7.2) we find

2h j = U2
j D+y j +

(D+U j)2

D+y j
+

r̄2
j

D+y j
� U2

j + 1 + 1 � ‖u‖2
L∞ + 2.

Hence, h ∈ �∞. We have

|ζ(ξ j+1) − ζ(ξ j)|2 =
∣∣∣∣∣
∫ ξ j+1

ξ j

ζξ(ξ)dξ

∣∣∣∣∣
2

� Δξ

∫ ξ j+1

ξ j

|ζξ(ξ)|2dξ,
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or equivalently

Δξ|D+ζ j|2 �
∫ ξ j+1

ξ j

|ζξ(ξ)|2dξ.

Summing over j in the above equation we obtain ‖D+ζ‖2
�2 � ‖ζξ‖2

L2 , and so ζ ∈ VΔξ . A com-

pletely analogous procedure shows ‖D+U‖�2 � ‖Uξ‖L2 . For the L2-norm of U we estimate

Δξ
∑
j∈Z

|U j|2 =
∑
j∈Z

∫ ξ j+1

ξ j

∣∣∣∣∣U(ξ) −
∫ ξ

ξ j

Uξ(s)ds

∣∣∣∣∣
2

� 2
∑
j∈Z

∫ ξ j+1

ξ j

|U(ξ)|2 dξ + 2
∑
j∈Z

∫ ξ j+1

ξ j

(∫ ξ j+1

ξ j

|Uξ(s)| ds

)2

dξ

� 2‖U‖2
L2 + 2

∑
j∈Z

Δξ2
∫ ξ j+1

ξ j

|Uξ(s)|2 ds,

which translates into ‖U‖2
�2 � 2‖U‖2

L2 + 2Δξ2‖Uξ‖L2 , and so U ∈ h1. For r̄ j we use Jensen’s
inequality to estimate

r̄2
j � 1

Δξ

∫ ξ j+1

ξ j

r̄2(η)dη,

and multiplying with Δξ and summing over j we obtain ‖r̄‖2
�2 � ‖r̄‖2

L2 . Then it remains to
check that H(0) ∈ VΔξ , and from (5.14) we estimate

2h j = U2
j D+y j + (D+U j)

2 + r̄2
j − 2h jD+ζ j

� U2
j + (D+U j)

2 + r̄2
j + h j + h j|D+ζ j|2. (7.5)

Now, summing over j we find ‖h‖�1 � ‖U‖2
h1 + ‖r̄‖�2 + ‖h‖�∞‖D+ζ‖2

�2 , where the right-hand
side is bounded by our previous estimates. Since h j > 0, it follows from our definition of
H j that H j < H j+1 and H j < ‖h‖�1 , which yields ‖H‖�∞ = ‖h‖�1 . Finally, we have ‖h‖�2 �
‖h‖�∞‖h‖�1 , so H ∈ VΔξ . Thus, we have proved that X j belongs to B.

Let us now prove that the interpolants for these initial data defined by (6.2) converge to the
continuous initial data in E-norm. We start with ζ in L∞-norm,

‖ζ − ζΔ‖L∞ = sup
ξ

∑
i∈Z

∣∣∣∣ξi+1 − ξ

Δξ

∫ ξ

ξi

ζξ(η)dη − ξ − ξi

Δξ

∫ ξi+1

ξ

ζξ(η)dη

∣∣∣∣χi(ξ)

� sup
i∈Z

∫ ξi+1

ξi

|ζξ(η)| dη � Δξ‖ζξ‖L2
Δξ→0−−−−→0.

Next, we consider the L2-norm of U,
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‖U − UΔ‖2
L2 =

∑
i∈Z

∫ ξi+1

ξi

(
ξi+1 − ξ

Δξ

∫ ξ

ξi

Uξ(η)dη − ξ − ξi

Δξ

∫ ξi+1

ξ

Uξ(η)dη

)2

dξ

�
∑
i∈Z

∫ ξi+1

ξi

(∫ ξi+1

ξi

|Uξ(η)| dη
)2

dξ � Δξ2‖Uξ‖2
L2

Δξ→0−−−−→ 0.

Then, for the L2-norm of Uξ , we have

‖(UΔ)ξ − Uξ‖2
L2 =

∑
i∈Z

∫ ξi+1

ξi

|D+Ui − Uξ(ξ)|2 dξ

=
∑
i∈Z

∫ ξi+1

ξi

(
1
Δξ

∫ ξi+1

ξi

(Uξ(η) − Uξ(ξ))dη

)2

dξ

Jensen
�

∑
i∈Z

∫ ξi+1

ξi

1
Δξ

∫ ξi+1

ξi

(Uξ(η) − Uξ(ξ))2 dη dξ

�
∑
i∈Z

∫ ξi+1

ξi

1
Δξ

∫ Δξ

−Δξ

(Uξ(ξ + z) − Uξ(ξ))2 dz dξ

Tonelli
=

1
Δξ

∫ Δξ

−Δξ

∑
i∈Z

∫ ξi+1

ξi

(Uξ(ξ + z) − Uξ(ξ))2 dξ dz

=
1
Δξ

∫ Δξ

−Δξ

‖Uξ(·+ z) − Uξ(·)‖2
L2 dξ

� 2 max
|z|�Δξ

‖Uξ(·+ z) − Uξ(·)‖2
L2

Δξ→0−−−−→ 0,

where in the final limit we use [7, lemma 4.3]. A completely analogous estimate holds for the
convergence of ζΔ,ξ in L2. Considering r̄Δ we find

‖r̄Δ − r̄‖2
L2 =

∑
i∈Z

∫ ξi+1

ξi

(
1
Δξ

∫ ξi+1

ξi

(r̄(η) − r̄(ξ))dη

)2

dξ

Jensen
�

∑
i∈Z

∫ ξi+1

ξi

1
Δξ

∫ ξi+1

ξi

(r̄(η) − r̄(ξ))2 dη dξ,

and following the proof for Uξ we find that this also converges. It remains to prove HΔ → H
in V. We shall first prove that hΔ converges to h in L1, and we do it as follows. For a given n ∈
{1, 2, . . .}, we consider the partition of R defined by the points ξi,n = i2−n, which corresponds
toΔξ = 2−n. In this way, each partition is a subdivision of a coarser partition. We denote hΔ by
hΔn and similarly for all the other variables. We consider the sets B = {ξ ∈ R s.t. yξ(ξ) = 0},

Bn = {ξ ∈ R : there exists i ∈ Z, s.t. ξ ∈ (ξi,n, ξi+1,n) and y(ξi+1,n) = y(ξi,n)}.

Let us also define Bo as the union Bo = ∪n�0Bn. Since y is increasing, we have Bn ⊂ B. More-
over, as partitions for larger n are obtained by further subdivision, we have Bn ⊂ Bn+1. Let L be
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the set of Lebesgue points for yξ . We know that the set of Lebesgue points have full measure,
that is m(Lc) = 0. We have, for some i,

|yΔn,ξ(ξ) − yξ(ξ)| � 1
Δξ

∫ ξi+1,n

ξi,n

|yξ(ξ) − yξ(η)| dη � 1
Δξ

∫ ξ+Δξ

ξ−Δξ

|yξ(ξ) − yξ(η)| dη,

which tends to zero for any Lebesgue point ξ ∈ L. We consider a measure μ such that the
singular part does not contain any singular continuous part, that is of the form

μs =

∞∑
i=1

aiδxi , (7.6)

for a sequence aj � 0 such that ‖a j‖�1 < ∞. When μs takes this form, the set B can be
written as

B =
∞⋃

i=1

(γi, γi + ai),

for some values γi ∈ R, for which we do not need explicit expressions in this proof. In this
case, we have

m(B ∩ (Bo)c) = 0. (7.7)

Indeed, this is a consequence of m((γi, γi + ai) ∩ (Bo)c) = 0, which can be proved as follows.
We have

(γi, γi + ai) ∩ Bc
n ⊂ (γi, γi +Δξn) ∪ (γi + ai −Δξn, γi + ai),

and therefore m((γi, γi + ai) ∩ Bc
n) � 2Δξn, which yields

m((γi, γi + ai) ∩ (Bo)c) = lim
n→∞

m((γi, γi + ai) ∩ Bc
n) = 0.

Then, by countable additivity of the measure, we conclude that (7.7) holds. This implies
limn→∞ χBn = χB in L1. The value of hn is given by

hΔn(ξ) =
1
2
χBn(ξ) +

(
(UΔn)2yΔn,ξ +

(UΔn,ξ)2

yΔn,ξ

)
(ξ)χBc

n(ξ),

while an analogous expression defines h. We have

lim
n→∞

(
(UΔn)2yΔn,ξ +

(UΔn,ξ)2

yΔn,ξ

)
(ξ) =

(
U2yξ +

U2
ξ

yξ

)
(ξ)

for every ξ ∈ (∪∞
n=1Bn)c ∩ L, that is almost everywhere in Bc because of (7.7). Now, for any

ε > 0, there exists a compact K1 such that

‖h‖L1(Kc
1) � ε.

On the other hand, from (7.5), we get that

hΔn � U2
j yΔn,ξ + (UΔ,ξ)2 + r̄2

Δn
+ C(ζΔn,ξ)2,

for C such that hΔn � C for all n. This means that
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hΔn � fn

for some positive fn. We have already proved that the sequence fn is convergent in L1, and we
denote by f its limit. For any ε > 0, there exists K2 such that

∫
Kc

2
f dx � ε

2 . Then

∫
Kc

2

fn dx � ‖ fn − f ‖L1 +
ε

2
.

so that for n large enough we have

‖hΔn‖L1(Kc
2) � ε.

We take K = K1 ∪ K2 and we have

‖hΔn − h‖L1 = ‖hΔn − h‖L1(K) + ‖hΔn − h‖L1(Kc) � ‖hΔn − h‖L1(K) + 2ε.

Since hn is uniformly bounded in L∞, by the dominated convergence theorem we have
limn→∞ ‖hΔn − h‖L1(K) = 0 for any given compact K. Hence, limn→∞ hΔn = h in L1. Since
HΔ,ξ = hΔn and Hξ = h, the above convergence implies HΔn → H in L∞. Moreover,
the uniform boundedness of hΔn together with the estimate ‖hΔn − h‖L2 � (‖hΔn‖L∞ +
‖h‖�∞)‖hΔn − h‖L1 proves that hΔn → h in L2 as well. �

In the special case where the initial data of (1.2) is smooth, that is, u ∈ H1 and ux , ρ− ρ∞ ∈
L2 ∩ L∞, we can choose y j = ξ j. Then, ζ j = 0 and the initial conditions for (4.35) can be
chosen as U j = U(ξ j) and ρ j = ρ(ξ j). Then we define initial values for the auxiliary variables
through

r̄ j = ρ j − ρ∞, H j = Δξ

j−1∑
m=−∞

[
U2

m + (D+Um)2 + (r̄m)2
]
.

Moreover, since in this case gi, j, ki, j are Green’s functions for A[1] = B[1] = Id − D−D+, they
can be computed explicitly. Indeed, for D+y j = 1 we have

gi, j = ki, j =
(λ+)−| j−i|√

4 +Δξ2
,

with λ+ defined in (3.1). Thus, initially we have the Eulerian Green’s sequences as computed
in [35].
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