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Abstract
Articulatory information has been argued to be useful for sev-
eral speech tasks. However, in most practical scenarios this in-
formation is not readily available. We propose a novel transfer
learning framework to obtain reliable articulatory information
in such cases. We demonstrate its reliability both in terms of
estimating parameters of speech production and its ability to
enhance the accuracy of an end-to-end phone recognizer. Ar-
ticulatory information is estimated from speaker independent
phonemic features, using a small speech corpus, with electro-
magnetic articulography (EMA) measurements. Next, we em-
ploy a teacher-student model to learn estimation of articulatory
features from acoustic features for the targeted phone recog-
nition task. Phone recognition experiments, demonstrate that
the proposed transfer learning approach outperforms the base-
line transfer learning system acquired directly from an acoustic-
to-articulatory (AAI) model. The articulatory features esti-
mated by the proposed method, in conjunction with acoustic
features, improved the phone error rate (PER) by 6.7% and
6% on the TIMIT core test and development sets, respectively,
compared to standalone static acoustic features. Interestingly,
this improvement is slightly higher than what is obtained by
static+dynamic acoustic features, but with a significantly less.
Adding articulatory features on top of static+dynamic acoustic
features yields a small but positive PER improvement.
Index Terms: Articulatory inversion, transfer learning, speech
recognition, deep learning

1. Introduction
Parameters related to the position and movement of the articu-
lators involved in speech production can be of use in numerous
applications. Examples include automatic speech recognition
(ASR) [1, 2], speech synthesis [3, 4], pronunciation training [5]
and description of the speech production mechanism. The artic-
ulatory parameters can be derived by measuring the articulators’
kinematics through different methods, such as magnetic reso-
nance imaging (MRI) [6], X-ray microbeam [7], ultrasound [8]
and electromagnetic articulography (EMA) [9, 10, 11]. Among
these methods EMA is most frequently adopted as it allows us-
ing higher sampling rates and simple pre-processing is sufficient
to extract the articulatory features from the measurements.

However, measuring the articulatory trajectories directly is
not applicable in most real world applications since it requires
instrumentation not available outside laboratories, and imposes
heavy burdens on the subjects. Thus, in order to utilize artic-
ulatory parameters in speech processing applications, we need
to estimate them from more accessible information. The most
obvious information source is the speech acoustic waveform,

and the task to be accomplished is acoustic-to-articulatory in-
version (AAI). AAI is challenging from several aspects. The
first problem is the one-to-many mapping problem because sev-
eral articulator gestures may produce the same acoustic speech
signal. A common approach to address this problem is to em-
ploy trajectory based deep neural networks [12, 13, 14, 15]. The
next problem is insufficient amounts of data for adequate mod-
eling of the acoustic space, leading to inferior performance for
speaker independent (SI) scenarios compared to the speaker de-
pendent (SD) scenarios, or matched speakers compared to mis-
matched speakers in SI scenarios. For the articulatory space,
lack of data is also important, but the articulatory domain ex-
hibits in general less variation compared to the acoustic space,
which makes it less speaker dependent.

In scenarios where the textual content of the spoken utter-
ance is known linguistic information, e.g. the predicted phone
sequence for that utterance, can be used. Indeed, to cope with
scarcity of input data for modeling the acoustic space in the AAI
task, augmenting the acoustic features with linguistic informa-
tion has been shown to improve the performance [16, 13, 15]
for SD scenarios. Systems utilizing the linguistic information
alone have also been reported to work quite well [17, 15] even
when using binary features, e.g. one-hot encoded phonemic
features (PHN, phone identity) or binary articulatory feature
vectors, where multiple features can be active simultaneously
[15]. The performance of linguistic information based articula-
tory inversion (AI) is in line with the reported results in [18],
which confirms that front articulators in the vocal tract are re-
lated to the linguistic content and the back cavity articulators are
more speaker specific. We report in [19] that utilizing linguis-
tic features improves both SD and SI cases significantly. That
performance boost is due to less variation between speakers in
the linguistic space that is built from a limited set of discrete
binary value vectors, in contrast with the acoustic space that is
a continuous valued space. In fact, the speaker variability in the
linguistic space is limited to the phone duration in the uttered
speech sequence.

The advancement in deep neural networks for the task of
AI and the positive effect of exploiting PHN features in this
task motivate us to propose a new transfer learning approach
for AI. We extract articulatory knowledge from a speech cor-
pus providing articulatory measurements, e.g., the “Haskins
production rate comparison” (HPRC), and use transfer learn-
ing to convey the knowledge to a scenario where articulatory
measurements are not available, e.g., the TIMIT [20] phone
recognition task. To this end, a teacher model is trained to
perform phone-to-articulatory inversion (PAI) on HPRC. The
trained teacher provides articulatory targets needed to build a
student model that performs acoustic-to-articulatory inversion
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Figure 1: Block diagram of the proposed transfer learning
method from the HPRC to the TIMIT database, and knowl-
edge distillations from phonemic features to acoustic features
through articulatory space. Dashed arrows correspond to no
training.

(AAI) on TIMIT. Finally, we use the articulatory information
that we estimate on TIMIT through AAI, as input features to
perform phone recognition, demonstrating that articulatory fea-
tures boost phone recognition accuracy.

The rest of paper is organized as follows. The proposed
transfer learning method is described in Section 2. Corpora and
evaluation methods are in Sections 3 and 5, respectively. Ex-
periments and results are described in Section 5 followed by
Section 6 to conclude our work.

2. Teacher-student approach to articulatory
information transfer

The proposed approach is motivated by the following observa-
tion: Articulatory information can be useful for various speech
processing tasks, such as ASR. However, such information is
not usually available in corpora for speech recognition. More-
over, it may not be possible to estimate articulatory parameters
from the speech signal (AAI) with a satisfactory level of accu-
racy, and speaker adaptive AAI suitable for typical ASR scenar-
ios is a challenging task. To overcome this, we propose to use
phonemic to articulatory inversion (PAI), which is speaker in-
dependent by design, as a bridge between scenarios where AAI
can be estimated, and speech technology applications where this
is usually not the case.

To put forth our solution, we define the following feature
sets, and models. The acoustic features, x ∈ Rn, the articula-
tory features, y ∈ Rm, and the phone features, p ∈ Bl, where
R is the field of real numbers, and B is the Boolean field. A
teacher neural architecture is built on HPRC data to perform
the mapping fPAI : Bl → Rm, from phonemic to articulatory
features. This mapping is shown in the upper part in Figure 1.
The teacher model not only performs PAI for the HPRC task,
but it also provides the articulatory targets for performing PAI
with TIMIT data. This process is shown in the middle part in
Figure 1, where the PAI architecture is copied to be used with
TIMIT phone features at its input and generates articulatory fea-
ture estimates at its output. Finally, a student neural architecture
is built to perform the mapping fAAI : Rn → Rm on the TIMIT
task. The inputs are acoustic features extracted from the TIMIT
waveforms; the outputs are articulatory targets, provided by the
teacher neural networks. This step is shown in the bottom part
in Figure 1.

With the above feature sets and models, we are ready to use
fAAI in order to recover the articulatory features directly from
the speech signal without using any annotations. Those artic-
ulatory features can be used e.g. as supplemental information
in an ASR task, with the goal of improving the overall system
performance. In sum, we have built a framework to transfer
the knowledge embedded into the articulatory parameters avail-
able in the HPRC task to the TIMIT task by using fPAI and fAAI

systems, avoiding to address the mismatch between different
recording settings and speaker characteristics through a adapta-
tion stage, which is the conventional solution.

The two neural architectures used for articulatory estima-
tion and shown in Figure 1 were trained by minimizing the mean
square error (MSE) between estimated values and the ground
truth. Those two neural architectures accomplish the following
tasks:

Phone-to-articulatory inversion - PAI: This model is trained
to estimate the output articulatory features, y, from the input
PHN features, p. The PAI neural architecture consists of two
bi-directional long short-term memory (BLSTM) layers having
128 cells for each forward and backward directions.

Acoustic-to-articulatory inversion - AAI: The AAI neural
structure is a combination of five stacked 1-D convolutional
layers of kernel size [1,3,5,7,9], followed by two BLSTM lay-
ers with 128 cells in each direction. The convolutional layers
extract features from the input acoustic features, x, and the
BLSTM layers model temporal dynamics in the system and es-
timate the articulatory features, y.

3. Corpora
3.1. HPRC

The “Haskins Production Rate Comparison”(HPRC) [11], is a
multi-speaker EMA corpus with data from four female and four
male native American English speakers. Sampling rates for the
speech signal and the EMA recordings are 44.1kHz and 100Hz,
respectively. Eight sensors were used to measure the articula-
tors’ trajectories. Those eight sensors are placed at the tongue
rear (TR), tongue blade (TB), tongue tip (TT), upper and lower
lip (UL and LL), mouth left (ML), jaw or lower incisors (JAW)
and jaw left (JAWL). The sensors movements are measured in
the midsagittal plane in X, Y and Z direction, which denote
movements of articulators from posterior to anterior, right to
left and inferior to superior, respectively. In the HPRC corpus,
sensors do not record significant movements in Y direction; we
therefore generate information related to the articulatory move-
ments by employing the geometrical transformations defined in
[21] on the X and Z directions. Nine tract variables (TVs) are
obtained, namely: Lip Aperture (LA), Lip Protrusion (LP), Jaw
Angle (JA), in addition to Constriction Degree and Location for
Tongue Rear (TRCD, TRCL), Tongue Blade (TBCD, TBCL)
and Tongue Tip (TTCD, TTCL). The sampling rate of the ar-
ticulatory features was maintained. The HPRC speech signals
were resampled to 16kHz to match the TIMIT sampling rate.

3.2. TIMIT

The TIMIT database [22] consists of 6300 sentences spoken by
630 speakers from 8 major dialect regions of the United States.
There is a predefined portion for training consisting of all the
SX and SI sentences from 462 speakers with a total of 3696
sentences. The sentences from the remaining 168 speakers are
meant for development and testing purposes. We will follow
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Figure 2: Averaged PCC and standard deviation for different
tract variables of the HPRC test set.
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Figure 3: TV trajectories from fPAI, fAAI-base, and fAAI-stud for
utterance “She slipped and sprained her ankle on the steep
slope.”

[23] and use the core test set spoken by 24 speakers for testing
and the development set spoken by 50 speakers for validation.
The core test set consists of 192 utterances and the development
set consists of 400 utterances.

4. Evaluation methods
We used two evaluation methods to assess the proposed tech-
nique. The first method computes the Pearson’s correlation co-
efficient explicitly on the target articulatory parameters. The
second method is implicit and aims at demonstrating the ef-
fectiveness of our approach by inspecting the effects of using
estimated articulatory features on the TIMIT phone recognition
task.
4.1. Pearson’s correlation coefficient

To measure the performance of the articulatory inversion meth-
ods, the Pearson’s correlation coefficient (PCC) [24] is adopted.
The PCC measures the similarity between estimated and ground
truth trajectories and is defined as:

PCC =

∑
i(y(i)− ȳ)(ŷ(i)− ¯̂y)√∑

i

(
y(i)− ȳ

)2∑
i

(
ŷ(i)− ¯̂y

)2 , (1)

where y(i) and ŷ(i) are the ground truth and estimated param-
eters value of the ith frame respectively and ȳ and ˆ̄y are mean
values of y(i) and ŷ(i).

4.2. End-to-end phone recognizer

There is no actual ground truth articulatory measurements for
TIMIT; therefore, we verify the performance of the proposed

approach through the phone error rate (PER) of a phone rec-
ognizer built on TIMIT data. In particular, the ESPnet recog-
nizer [25] is used in this work. This phone recognizer is based
on (i) an end-to-end encoder-decoder with hybrid connectionist
temporal classification (CTC), and (ii) an attention mechanism
[26]. The encoder part contains four layers of BLSTM with
320 cells, one layer of LSTM for the decoder with 300 cells,
location-aware attention mechanism with 10 convolution filters
of length 100, and the same weight, 0.5 for the CTC and atten-
tion losses. The interested reader is referred to [26] for more
details.

5. Experiments & Results
We evaluate two different types of AI systems, namely PAI-
and AAI-based systems. The PAI and AAI systems trained on
HPRC material are referred to as fPAI and fAAI-base, respectively,
and validated using the PCC measure. In order to assess the fPAI

accuracy for TIMIT data, the estimated TVs are visualized and
discussed with regards to the speech production mechanism.
The student model, which is referred to as fAAI-stud, trained on
the TIMIT acoustic data, is assessed from the inversion perfor-
mance point of view, with the average PCC measure computed
using the fPAI as ground truth. An example of estimated TVs
for fAAI-stud and fAAI-base are visualized. In addition, a compar-
ative ASR performance test is carried out for the TIMIT cor-
pus in terms of PER, to compare efficiency of the fAAI-base and
fAAI-stud systems and their complementary information for ASR
task. Implementations of AI systems are performed using Keras
[27] with TensorFlow backend [28].

5.1. Articulatory, phonemic, & acoustic representations

The TVs are calculated for the HPRC data at a rate of 100Hz. In
order to have the same 100Hz rate for the acoustic and phone-
mic feature, a 25ms sliding analysis window and 10ms frame
shift are used for acoustic feature extraction. The spoken ut-
terances in HPRC corpus were labeled with the Penn phonetics
lab forced aligner [29]. There are 61 phone categories which
are folded onto 39 categories [30] to match the conventional 39
phones used in TIMIT [20]. Each phone is represented as a one-
hot 39-dimensional vector (PHN) [17]. For TIMIT, we use PHN
features for estimating the TVs with the teacher network. For
AAI accomplished through the student network, we use the fea-
ture vectors consisting of 13 Mel frequency cepstral coefficients
(MFCCs). Finally, 23-dimensional Mel filter bank log energies
(FBE) are employed along with 3 estimated pitch and voicing
features as 26-dimensional static acoustic features in the ESPnet
phone recognizer. We also consider first and second derivatives
of the FBEs in the phone recognition task.

5.2. Phone-to-articulatory inversion on HPRC

The fPAI input is a 39-dimensional phonemic feature vector,
including silence. It should be noted that starting and end-
ing silences have been removed with an energy based thresh-
old speech activity detection (SAD) procedure. Moreover, the
9-dimensional TV features are utterance-based z-score normal-
ized and scaled to be in range (−0.5,+0.5). Training data from
the all eight speakers is used to build the fPAI system; whereas
validation data is employed with the goal of preventing over-
fitting. In Fig. 2, we observe that the fPAI is able to predict the
articulators in the front vocal cavity akin to the fAAI-base system.
This is inline with what reported in [18, 31], namely that the
front articulators capture the linguistic content. The back cav-
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Table 1: PER for acoustic features and their combinations with
the estimated TVs from fAAI-stud and fPAI. D denotes feature di-
mensionality.

feature type D Dev PER Test PER

x 26 25.6% 27.9%
x, yAAI-base 35 20.9% 23.3%
x, yAAI-stud 35 19.6% 21.2%
x, ∆x, ∆2x 78 19.8% 21.4%
x, ∆x, ∆2x, yAAI-base 87 19.8% 22.8%
x, ∆x, ∆2x, yAAI-stud 87 19.1% 20.8%

Table 2: Lower bound of PER for the estimated TVs from fPAI

combined with the FBEs.

feature type D Dev PER Test PER

yPAI 9 12.3% 13.3%
x, yPAI 35 8.8% 9.5%
x,∆x,∆2x, yPAI 87 8.2% 9.1%

ity articulators relate closely to speaker specific properties as
it is mentioned in [31], and this is reflected by the less precise
prediction capability of the PAI system than the AAI system.

5.3. Acoustic-to-articulatory inversion on HPRC

The performance of fAAI-base system in terms of PCC is shown
in Fig. 2. As discussed before, PCC values are comparable for
fPAI and fAAI-base systems for front vocal cavity. For the back
cavity, the fAAI-base system performs better. We can attribute the
better performance of the AAI in comparison with the PAI, to
the matched speaker independent training style.

5.4. Teacher-student approach to AAI on TIMIT

In the proposed teacher-student approach to perform transfer
learning and extract articulatory estimates from acoustic infor-
mation, we use the fPAI system previously trained on HPRC as
the teacher. Articulatory parameters are estimated in terms of
TV for TIMIT by feeding TIMIT phonemic transcriptions into
the fPAI system. In Fig. 3, we can observe (inside the solid
ellipses) that for production of the stop sound /p/, the LA is
decreasing and LP is increasing, vowel /æ/ has wider LA or JA
than vowels /eI/ or /oU/, which is inline with dropping of the jaw
in production of vowel /æ/ while the jaw is slightly open in /eI/
or closed in /oU/. Evaluation of the student model (fAAI-stud) is
carried out by the average PCC measure, which is 0.929 for the
core test set of TIMIT. The PCC distribution is shown in Fig. 4
for each TVs. Estimations from fAAI-stud and fAAI-base are visu-
alized in Fig. 3. We can observe that at the end of the utterance
(inside the dashed ellipses), the values of the fAAI-base estimation
do not decrease or increase for lip separation or protrusion, re-
spectively, when the stop sound /p/ is present and it is expected
to have lowest values for the LA compared to the other phones
in this sequence of phones. We can see the fAAI-base estimation
of the LA for /l/ is less than the estimated value for /p/ which is
wrong because for production of /p/ lips are closed and for pro-
duction of /l/ lips are separated. That implies the fAAI-base model
does not provide correct information with respect to speech pro-
duction constraints.

TRCD TRCL TBCD TBCL TTCD TTCL LA LP JA

0.4

0.6

0.8

1.0

Figure 4: Distribution of PCC between estimated TV trajecto-
ries from fAAI-stud and fPAI.

5.5. Exploiting TV estimates in phone recognition

We now explore the role of articulatory information in the task
of phone recognition. The ESPnet recognizer in Section 4.2 is
employed to build all of our phone recognizers. Several exper-
iments are conducted in order to gain insights on the role of
the TV estimates in speech recognition. In the initial experi-
ment, we train the phone recognizer on static acoustic features,
(x), only. In the second experiment, we include dynamic fea-
tures to x and denote it as (x,∆x,∆2x). The phone recognizers
based on acoustic features only serve as baseline systems. The
PER for different input features is reported in Table 1. yAAI-stud

combined with x, significantly improves the recognition accu-
racy, and reduce the PER by 6.7% on the test set. Interestingly,
a slightly better PER, +0.2%, is obtained by replacing the 52-
dimensional dynamic acoustic features (∆x,∆2x) with the 9-
dimensional yAAI-stud. Moreover, we can observe that employing
the yAAI-stud obtains better performance than the yAAI-base. The
combination of yAAI-stud with x,∆x,∆2x reduces the PER by
0.6%.

Finally, we used the TV features yPAI (obtained from the
phonemic transcriptions) alone and combined with x,∆x,∆2x
to calculate the lower bound of PER in this problem. The results
are shown in table. 2.

6. Conclusions
This work proposes a new teacher-student method to transfer ar-
ticulatory knowledge from the HPRC corpus through phonemic
features onto the TIMIT corpus, which is purely acoustic. We
exploit the transferred knowledge to build an acoustic to artic-
ulatory inversion (AAI) system for TIMIT with the goal of im-
proving ASR performance. In this way, we obtained 0.6% im-
provements compared to the baseline system for PER when the
mixed acoustic and estimated articulatory representations are
used. Similarly we obtain better PER combining static acoustic
and articulatory features (35 dim.) compared to dynamic acous-
tic features (78 dim.) proving that articulatory features are a
more efficient representation of the dynamics of speech produc-
tion. We also show that our method performs better than trans-
ferring AAI models trained on the HPRC corpus with acoustic
adaptation. In the future, we will work on transfer learning of
both acoustic and phonetic features to improve the performance
of our AI system and getting closer to the PER lower bound.
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