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Abstract— This paper proposes a method for online 

estimation of electrical parameters of interior permanent 

magnet synchronous machines (IPMSM) based on the recursive 

prediction error method (RPEM). The parameter-sensitivity 

functions (herein known as the gradient functions, 𝚿T) both in 

dynamic and steady -states are exploited for this purpose. The 

RPEM has been computed using the stochastic gradient 

algorithm (SGA). The scalar Hessian matrix, r[k] appearing in 

the algorithm has been analyzed for both its steady and dynamic 

states. Different combinations of 𝚿T and r[k] -states have been 

simulated and compared with respect to performance when 

used for parameter adaptation. 
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I. INTRODUCTION 

Permanent magnet synchronous machines are used nowadays 
in a multitude of applications in a wide range of power ratings, 
from watts to several megawatts. Machines without magnetic 
saliency are typically used in pumps, fans, wind turbines and 
propulsion in the marine industry. Machines with saliency as 
such as IPMSM are used in the applications where a large field 
weakening range is required, in order to increase the torque in 
the highspeed region by utilizing the reluctance torque of the 
machine. Irrespective of the application, the preference has 
been an electric drive without a position or speed transducer 
to enhanced reliability and/or availability of the motor drive 
system.  

Such sensorless control methods for electric drives have been 
an interest of research for more than three decades. The 
classical approach has been the use of estimators based on the 
mathematical model. Such estimators can be classified as 
either open-loop estimators/simulation models and closed-
loop estimators/observers. This approach, however, fails to 
accurately estimate the rotor position for a longer operational 
time at and around zero rotational speed. As a solution, several 
methods utilizing high frequency signal injection (HFSI) 
[1][2][3] have been introduced. Such HFSI methods capitalize 
on the  machine saliency, magnetic saturation or slot-effects, 
etc. Depending on the frequency of the injected signal, such 
methods can introduce torque harmonics and acoustic noise. 
Thus, HFSI methods are preferred in the lower speed range.  

To limit the range where HFSI is required, it is necessary to 
improve the performance of the model-based  estimators in the 
lower speed range. Accurate parameter estimation  plays a 
vital role in this regard. Online identification of electrical 
parameters of the motor improves the performance of the drive 

and will enable condition monitoring of the machine without 
additional sensors. Stator winding resistance and permanent 
magnet flux linkage (ψm) are temperature-sensitive motor 
parameters that should be adapted on-line. Functions for 
inductances can be adapted in an off-line experiment. 

This paper presents a parameter-estimation method which is 
based on the recursive identification theory explained in [4] 
and applied for an induction machine in [5]. The method 
utilizes the sensitivity of the prediction error against the 
varying parameter. The emphasis has been made on the 
effective use of gradient functions both in dynamic and steady 
state. In [5][6][7], the analyses of the prediction errors are used 
to select a gain matrix. Alternatively, in this paper, a rigorous 
analysis of the 𝚿T will be performed to choose the gain in the 
parameter estimation algorithm. Thus, different algorithms for 
computation of the gain are discussed. The systematic 
approach presented in [4] for selection of model set, 
experimental condition, criterion function, search direction 
and gain-sequence has been explicitly followed. 

II. MOTOR MODEL & ESTIMATION 

A. IPMSM Motor Model 

The complete model of the electrical part of the machine is in 
stator and rotor co-ordinates:  
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In addition, the equation for flux linkages can be used to 
remove the current vector from the model. The other option is 
to select the currents as state variables: 
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Here ϑ is the electrical angle of the mechanical position 
p*ϑmech , where p is the number of pole pairs. The inductance 
matrix can be expressed as: 
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The rotor-oriented inductance matrix becomes: 
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B. Open-loop/Simulation Model 

The open-loop or simulation -models are the models based on 
the equations presented above. Unlike the observers, open-
loop models do not have feedback from measurements to 
correct the model. Thus, these models become more sensitive 
to parameter-errors and measurement noise. 

In a full-order open-loop/simulation model ℳuϑ, either stator 
flux linkages or stator currents can be chosen as state 
variables. When selecting the currents as state variables, the 
rotor- oriented model is preferred: 
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As shown in (5), position and speed must be either measured 

or estimated. This model will be used as an example to show 

how to develop a recursive parameter estimation routine and 

models for the prediction error sensitivity function. In this 

paper the full-order model ℳuϑ and stator currents as state 

variables has been chosen. To focus only the proposed 

parameter-estimation method, it is assumed that the rotor 

position is measured. 

III. PARAMETER SENSITIVITY OF THE CONTROL STRATEGY 

Sensitivity of the max Torque/Amp Control algorithm with 

respect to parameter variations will be investigated for the 

case with measured rotor position. The temperature 

dependent parameters ψm and rs should be adapted on-line. 

The value of rs is mainly influencing the control in the field 

weakening range due to limited available voltage from the 

inverter. The value of ψm , however, is influencing the torque 

control in the complete torque-speed plane. A 10% under-

estimated ψm will give an error in the torque control as shown 

in Figure 1.  

IV. PARAMETER ESTIMATION BY USE OF THE ℳUΘ MODEL  

When developing an estimation algorithm, one needs to 

choose a Model Set and a criterion function. The model set 

chosen is the ℳuϑ model. This is a second order system and 

the eigenvalues of this model are speed dependent. The 

system matrix A of the linearized system can be expressed as: 
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The eigenvalues become:  
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Fig 1: Torque error due to 10% under-estimated ψm 

 

Fig 2: Eigenvalues, 
1, 2
  of the full-order model 

The eigenvalues are plotted as function of speed in Figure 2 
and shows that the model is stable for all values of n. The 
imaginary part of the eigenvalues increases with the speed.  

A quadratic criterion with a prediction error based on stator 
currents are chosen. The continuous version of the estimation 
algorithm then becomes: 
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The values of the prediction errors for 10% under-estimated 

ψm is shown in Figure 3. It is evident that the d-axis 

component of the prediction error is more sensitive to 

incorrect ψm and should be used for estimation of this 

parameter. This can be shown by inspection of the steady-

state prediction errors: 

( )

( )

2

2 2

2 2

ˆ
ˆ     

ˆ ˆ ˆ

ˆ
ˆ

ˆ ˆ ˆ

q

d m m

s q d

s
q m m

s q d

n x

r n x x

n r

r n x x

  

  


= −  −

+  


= −  −

+  

                     (9) 

C. Gradient Ψ of the prediction errors 

When selecting the search direction in the parameter space, 

the negative gradients of the prediction errors with respect to 

the parameters is a very important matrix. While the 

measured rotor position is used in the transformation, the 

measured currents are not dependent on the model parameters 

such that the gradient function becomes: 

Speed 

increases 

Speed 

increases 

At zero-speed 
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The differential equations for this gradient function are given 

by the equation below. The order of the model set ℳuϑ is n=2. 

Please observe that the dynamic model for Ψ is of order nxd, 

where d is the dimension of the parameter vector θ. This 

means that the order of this model increases with n for each 

parameter that is estimated. The dynamic model of Ψ can be 

expressed as:  
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When only ψm is estimated, the dynamic model becomes on 

component form: 
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This model has the same eigenvalues as the model ℳuϑ and 

is thus stable. The dynamics of the gradients are given by d- 

and q-axis time constants Td , Tq and speed n. The speed n is 

also the input or excitation for this dynamic system. The 

steady state solution of these equations are: 
2
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The gradient of the d-axis prediction error becomes -1/xd in 

most of the speed range and is independent of torque. The q-

axis component becomes quite small due to rs -dependency. 

Both functions are equal 0 at zero speed. These functions are 

plotted in the torque-speed plane in Figure 4. From these plots 

it can be concluded that the d-component of the prediction 

error should be used for estimation of ψm.  When 

implementing the model in a digital controller, the method of 

discretization has to be considered as well. Usually the 

Forward Euler Method is sufficient. It is then important to 

investigate the stability of the discrete model for both ℳuϑ 

and ΨT . 

D. Search direction and gain-sequence 

The parameter estimation algorithm on discrete form based 

on this Forward Euler Method becomes: 
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(a) 

 
(b) 

Fig 3: Sensitivity plot of prediction errors (a) d-axis prediction error (b)q-

axis prediction error 

 

 
(a) 

 
(b) 

Fig 4: Gradients of prediction errors for (a)  d-axis gradient (b) q-axis 

gradient 
 

where Dℳ is in the stable region of the model Dℳ ⸦ Ds. This 
means that all model parameters and the sampling time Tsamp 
must be chosen such that the discrete model is stable. 

General stochastic gradient algorithm can be expressed as: 
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Here r[k] is the scalar version of the Hessian matrix used in 

stochastic gradient algorithm and the trace of a matrix is the 

sum of the diagonal elements. The gain sequence γ could be 

time dependent, but a constant value γ0 is chosen. This 

memory coefficient γ0 of the algorithm should be chosen such 

that the parameter is “almost constant” within the time period 

T0 = Tsamp/ γ0  [4].  The initial value of r[k] must be different 

from zero to prevent division by zero. It is possible to choose 

different γ[k] in the filter for r[k] and the gain L .  
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Four versions of this algorithm will be investigated: 

• Dynamic solution of ΨT and dynamic r[k] 

• Dynamic solution of ΨT and steady state r[k] 

• Steady state solution of both ΨT and r[k] 

• Steady state solution of ΨT and dynamic r[k] 

 

For dynamic solution of both ΨT and r[k] the algorithm 

becomes: 
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The value of r[k] is always positive and limited to a minimum 

value of rmin . The initial value r[0] has to be chosen as well. 

Here r[0] is chosen to be rmin=0.01. 

 

For dynamic solution of  ΨT and steady state r[k] one obtains 

the gain L as follows: 

    
 

 
 

2

0

lim

ˆ ˆ
           

ˆ ˆ[ ]

d d

m m

di k di k
L r k

r k d d



 

 
=  =   

 

            (17) 

For steady state solution of both ΨT and r[k] one obtains the 

gain L as follows: 
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It is important to limit the gain L at low speeds to avoid 

amplification of the noise in the current measurements. 

 

For steady state solution of ΨT and dynamic r[k] one obtains 

the gain L as follows: 
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In general, the Gauss-Newton search direction is preferred. 

This method usually gives faster convergence than the 

stochastic gradient algorithm. Due to the relatively slow 

variation of the temperature, the convergence rate versus 

complexity of the algorithm should be evaluated. Different 

implementations of such Gauss-Newton algorithms exist [4]. 

The intention is to reduce the number of inversion of matrices 

to reduce the computation burden. There are also some 

solutions which give better individual gains for the different 

parameters. In this work, however, only one parameter and 

one prediction error are used. Thus, the algorithm becomes 

much simpler and identical to the stochastic gradient 

algorithm.  

V. SIMULATION RESULTS 

An IPMSM drive with a 2-level inverter and quadratic load 

has been simulated in MATLAB Simulink/Simscape toolbox. 

Asymmetrical modulation with 3rd harmonic injection has 

been used. The switching frequency is 3 kHz and the 

sampling frequency of the controller is 6 kHz. The motor data 

are: 

    UN= 690 [V]      IN= 478 [A]    fN= 50 Hz    polepairs =1 

 ˆ ˆˆ ˆ ˆ 0.009 0.4 1 0.66
T T

s d q mr x x  = = 
 

In these simulations, the parameter estimation algorithm is 

started immediately at start-up of the drive. The d- and q-

current references are calculated by help of a 3rd order 

approximation of the of the 4th order equation of id as function 

of the torque: 
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(a) 

 
 (b) 

 
(c) 

Fig 5: Steady-state and dynamic behaviours of (a) gradient functions         

(b) Hessian function (c) Gain-sequence 

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 02,2021 at 12:30:31 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig 6: Convergence of (a) prediction error to zero (b) estimated parameter 

to actual parameter (c) Actual torque to reference torque  

VI. DISCUSSION 

As shown in Figure 5(a), the dynamic gradient function will 
have oscillations due to the complex eigenvalues at higher 
speeds. However, the average value of the dynamic gradient 
function does not differ significantly from the steady-state 
gradient function. In addition, the speed, which is the input to 
the gradient function model, does not change very rapidly due 
to the inertia of the system. This means that the filtering effect 
of the dynamic gradient function is not required in this 
context, thus, the steady state solution of the gradient is good 
enough and it’s relatively less demanding to compute. Use of 
dynamic r[k], however, is a preferred solution while this will 
boost the gain L at start-up by diving on a small number. How 
large this boosting will be, and for how long time it will last, 
is given by the filter time constant in γ0 and the initial value 
r[0].  

As seen in figure 6(c), the fastest parameter convergence is 
achieved with dynamic solution of ΨT and dynamic r[k]. 
However, this method gives large overshoot in the estimate of 
ψm. This is due to the slow increase of r[k] as a result of slower 
rise in the gradient function. For dynamic solution of ΨT and 

steady state r[k] the convergence rate is rather low, while the 
gain L becomes inversely proportional with the dynamic 
gradient function. The gain obtained by steady state solution 
of both ΨT and r[k] is the same gain obtained by inspection of 
the prediction errors. This method gives marginally slower 
convergence rate compared to the  previous method, but has 
the least computational burden. The method with steady state 
solution of ΨT and dynamic r[k] gave the fastest and most well 
damped convergence of the parameter estimate. This is thus 
the preferred solution. 

Oscillations in the predicted current is not so critical, while we 
use this predicted current for parameter estimation and not for 
control. Unlike observers, the open-loop model is more 
sensitive for parameter errors thus, optimal for parameter 
estimation. Observer, on the other hand, is less sensitive and 
thus preferred for control. In addition, with observers, the 
poles can be located to achieve a more well-damped system.  

VII. CONCLUSION 

Permanent magnet flux linkage of IPMSM has been 

estimated with the use of recursive prediction error method 

by using stochastic gradient algorithms. The gradient 

functions and scalar versions of the Hessian matrix have been 

investigated to calculate the gain in the parameter estimation 

algorithm. The investigation resulted in 4 different 

algorithms in combination of steady and dynamic states of 

gradient functions and the scalar Hessian matrix. The 

dynamic gradient function does not provide faster 

convergence than its steady-state counterpart. Considering 

the relative simplicity in computation, it can be concluded 

that steady-state gradient function is a sensible choice. On the 

contrary, the dynamic Hessian results in a larger initial gain 

over its steady-state counterpart. Such initial boost in the gain 

leads to a faster parameter convergence, thus torque 

convergence. Therefore, it can be concluded that for the slow-

changing parameter ψm, RPEM with steady-state gradient 

function and dynamic Hessian matrix gives the most optimal 

performance. 
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