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ABSTRACT
Weight regain remains the main challenge in obesity management,
and its etiology remains elusive. The aim of the present review was to
revise the available evidence regarding the “Compensatory Theory,”
which is an explanatory model of relapse in obesity treatment, and
to propose alternative mechanisms that can contribute to weight
regain. It has been proposed, and generally accepted as true, that
when a person loses weight the body fights back, with physiological
adaptations on both sides of the energy balance equation that try to
bring body weight back to its original state: this is the Compensatory
Theory. This theory proposes that the increased orexigenic drive
to eat and the reduced energy expenditure that follow weight loss
are the main drivers of relapse. However, evidence showing a link
between these physiological adaptations to weight loss and weight
regain is lacking. Here, we propose that the physiological adaptations
to weight loss, both at the level of the homeostatic appetite control
system and energy expenditure, are in fact a normalization to a
lower body weight and not drivers of weight regain. In light of
this we explore other potential mechanisms, both physiological and
behavioral, that can contribute to the high incidence of relapse in
obesity management. More research is needed to clearly ascertain
whether the changes in energy expenditure and homeostatic appetite
markers seen in reduced-obese individuals are a compensatory
mechanism that drives relapse or a normalization towards a lower
body weight, and to explore alternative hypotheses that explain
relapse in obesity management. Am J Clin Nutr 2020;112:1170–
1179.
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Introduction
Obesity affects more than 650 million people worldwide,

equating to approximately 13% of the world’s population (1). It
is a major risk factor for the ever-increasing incidence of several
comorbid conditions, including type 2 diabetes, hypertension,
coronary heart disease, and certain forms of cancer (2, 3). Obesity

is, therefore, considered the 21st century public health threat
(4, 5). Lifestyle interventions, including an energy-restricted diet,
exercise, and behavioral therapy, are seen as the cornerstone
in obesity treatment (6) and can lead to clinically relevant
weight loss (WL; 5–10% of initial weight) (7) in the short term
(8, 9). However, long-term results are disappointing (10), with the
majority of individuals who initially achieve WL experiencing
significant weight regain, and some relapsing to their original
weight (11, 12). According to data from the National Health
and Nutrition Examination Survey (NHANES, 1999–2006),
only 1 in 6 individuals with overweight or obesity report ever
having maintained a WL of at least 10% for 1 year after
a lifestyle intervention (12). Therefore, relapse represents the
biggest challenge in obesity management; as such, obesity should
be considered a chronic, progressive, and relapsing condition
(13).

It is well established that WL is accompanied by several
physiological adaptations on both sides of the energy balance
(EB) equation (14, 15), with an upregulated drive to eat (16,
17), despite a significantly reduced total energy expenditure
(TEE) (18). These changes have been collectively known as
“compensatory mechanisms” to WL, and proposed as the main
drivers of relapse in obesity management (14, 15, 19).
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The present narrative review explores the evidence regarding
the potential role of the above-mentioned compensatory mecha-
nisms as drivers of weight regain. In the absence of compelling
and consistent data to support such a link, alternative explanatory
pathways are proposed, along with existing theoretical and em-
pirical support for these potential pathways. A systematic review
on the impact of WL (achieved through lifestyle) on energy
expenditure (at or below predicted values) and homeostatic
appetite markers is outside of the scope of the present narrative
review. However, we did perform a systematic search aimed
at identifying all the studies looking at a potential association
between energy expenditure (at or below predicted levels) or
homeostatic appetite markers in obese-reduced individuals and
weight regain. So, our aim was to identify studies that measured
changes in energy expenditure and/or homeostatic appetite
markers after WL induced by diet, exercise, behavioral therapy,
or a combination (not bariatric surgery and/or pharmacotherapy),
with measurements in the reduced-obese state performed outside
ketosis (given that ketosis is well known to prevent the increase
in hunger feelings and ghrelin secretion otherwise seen with
WL) (20–22) and in a steady state (after a period of weight
stabilization after WL). The following terms were used in our
search: “energy expenditure” OR “total energy expenditure” OR
“resting metabolic rate” OR “resting energy expenditure” OR
“non-resting energy expenditure” OR “metabolic adaptation”
OR “adaptive thermogenesis” OR “appetite” OR “hunger”
OR “desire to eat” OR “prospective food consumption” OR
“fullness” OR “ghrelin” OR “peptide-YY” OR “glucagon-like
peptide 1” OR “cholecystokinin” AND “weight regain” OR
“weight loss maintenance.”

Compensatory Responses to Weight Loss

Energy expenditure

WL has been shown to induce a significant reduction in
TEE, driven by a decline in both resting and nonresting energy
expenditure (EE) (18). Some (18, 23–27), but not all (28–31),
studies report that the reduction in TEE and/or its components
(resting and nonresting EE) is in excess of what would be
predicted, given the measured alterations in fat mass (FM)
and fat-free mass (FFM), a mechanism known as adaptive
thermogenesis or metabolic adaptation. Moreover, a few studies
have reported metabolic adaptation to be sustained in the long
term, at up to 6 years of follow-up (23, 26, 27). Even though these
compensatory changes in EE have been proposed to increase
the risk of relapse, there is no evidence showing a link between
the 2. From our knowledge, no single study has shown that the
reduction in EE below the predicted levels that may accompany
WL is a risk factor for weight regain in the long term.

Metabolic adaptation, in response to WL, is one of the most
controversial issues in the obesity field, not only in terms of
its existence, but also its clinical relevance as a potential driver
of weight regain (relapse) (32–36). Some have argued that the
claims around metabolic adaptation are exaggerated (37, 38),
and others have shown that when weight-stable, weight-reduced
individuals are compared with BMI-matched controls (28, 30,
39, 40) or against a prediction equation (31), no evidence of
metabolic adaptation at the level of resting metabolic rate (RMR)
exists. This is in strong contrast to longitudinal studies following

individuals over time in their WL journey, which report metabolic
adaptation (18, 26, 41). There is growing evidence to suggest
that differences among studies may be a result of inconsistencies
related with the status of EB and/or weight stability of the
participants when measurements are taken, with longitudinal
studies being more likely to include EE measurements collected
in conditions of negative EB. In line with this, we have previously
shown that a 17% WL was not associated with metabolic adap-
tation, either at the level of resting or nonresting EE, when mea-
surements were taken after 4 weeks of weight stabilization (42).

Results from the “Biggest Loser” competition in the United
States showed metabolic adaptation to be sustained, and in fact
augmented, at 6 years of follow-up. The authors reported a
metabolic adaptation of 275 ± 207 kcal/day at the level of RMR
after a WL of 58 kg, at the end of the 30-week program, and
499 ± 207 kcal/day at the 6 year follow-up despite a weight regain
of 70% of the initial WL (26). However, metabolic adaptation
at week 30 was not correlated with weight regain (r = −0.1;
P = 0.75) at the 6 year follow-up in a group of 14 individuals
with severe obesity at baseline (BMI = 49.5 ± 10.1 kg/m2).
In contrast, metabolic adaptation at 6 years was associated with
both percentage weight gain (r = 0.59; P = 0.025; n = 14) and
percentage weight change from baseline at the 6-year follow-up
(r = 0.54; P = 0.045; n = 14), such that those with greater WL at
6 years were also those experiencing more metabolic adaptation,
suggesting that metabolic adaptation may be a reflection of the
magnitude of WL. The contestants were clearly in negative EB
at the end of the 30-week program and, even though it was
reported that participants were in EB over the 2 weeks before
RMR assessment at the 6 year follow-up, there was a large day-
to-day within-subject variation (−3 to +3 kg), and the slope of
the line was clearly negative. The fact that some participants lost
weight during the 2 weeks preceding the measurement, and were,
therefore, in negative EB, might have led to a larger than expected
reduction in RMR and distorted the overall results. Camps
and colleagues (27) described similar results, with metabolic
adaptation at the level of RMR after a 10 kg WL sustained at
1 year of follow-up despite a 44% weight regain. Metabolic
adaptation was reported to correlate with the magnitude of WL
both acutely and at the 1-year follow-up. However, no effort was
made for measurements to be taken under EB, and metabolic
adaptation was not reported to correlate with weight regain (27).

In the 1995 landmark paper by Leibel and colleagues (18),
metabolic adaptation, both at the levels of resting and nonresting
EE, was reported after both 10% and 20% WL. These findings
are also most likely a result of negative EB. Even though
participants were reported to be weight stable for 2 weeks before
the measurements were taken, WL was induced by an 800 kcal
dietary formula. Despite the absence of detailed information
regarding the macronutrient composition of the diet, an 800
kcal/day diet using formula is most likely a ketogenic diet.
Refeeding after a ketogenic diet leads to glycogen repletion and,
with it, increased water content, and an average 2 kg increase in
body weight should, therefore, be expected in conditions of EB
(43, 44). The lack of the excess ∼2 kg suggests that participants
were likely in negative EB, despite being weight stable, which
might explain why metabolic adaptation was found.

Additional support for the importance of EB in determining
metabolic adaptation comes from a recent analysis performed
by our research group. We measured RMR after 4 weeks of
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controlled feeding and weight stabilization in 171 European
American (EA) and African American (AA; race was self-
reported) women with overweight at baseline (BMI = 28.3 ± 1.3
kg/m2), after WL, and at 1- and 2-year follow-ups. Minor
metabolic adaptation (approximately 50 kcal/day difference
between measured and predicted RMR) was found after a 12 kg
WL, but was not sustained at 1- or 2-year follow-ups (with 50
and 90% weight regain, respectively). This minor gap between
measured and predicted RMR is, again, most likely a result of
the participants being in negative EB, despite being weight stable,
due to repletion of glycogen and water (as an 800 kcal/day diet
was used to induce WL). Moreover, metabolic adaptation after
WL was positively correlated with FM loss in all women, both
EA and AA; was positively correlated with WL in AA; and was
negatively correlated with weight regain at both 1 and 2 years in
AA [r = 0.258 (P = 0.031; n = 70) and r = 0.278 (P = 0.067;
n = 44), respectively] (45). This was confirmed in another
study by our group in adult Caucasians with obesity at baseline
(34.6 ± 3.4 kg/m2) who followed ketogenic 1000 kcal/day diets
for 8 weeks, followed by a 4-week weight stabilization phase and
a 1-year follow-up program, with RMR being measured at all
time points (baseline, week 9, week 13, and 1 year). A metabolic
adaptation (at the level of RMR) of approximately 110 kcal/day
(below predicted levels) was seen immediately after a 14 kg
(13%) WL, which then was reduced to less than half (49 kcal/day)
after 4 weeks of weight stabilization (week 13) and disappeared
at the 1-year follow-up (29% weight regain). Moreover, in those
with weight gain between week 9 and week 13, no metabolic
adaptation was seen at week 13. Metabolic adaptation after WL
was also not correlated with weight regain at the 1-year follow-up
(r = 0.034; P = 0.824; n = 45) (46). These 2 studies clearly show
that metabolic adaptation at the level of RMR is minimal when
measurements are taken under conditions of weight stability, and
most likely not present under conditions of EB, and does not
predict weight regain long term.

The reduction in non-resting EE below the predicted values
described by some studies (18, 23) has been proposed to be
a result of increased exercise efficiency (47). However, this
has been highly debated, and several studies have failed to
find increased exercise efficiency with WL (29, 48–50), even
when the magnitude of WL is very large (17%) (42). Moreover,
no metabolic adaptation was found in nonresting EE (29,
48–50) following a 10–12 kg WL in premenopausal women
with overweight when measurements were done in conditions
of weight stability. Improved locomotion economy/efficiency
may actually reduce the risk of weight regain. Several studies
have shown that increases in exercise economy induced by
exercise training are associated with increased ease of locomotion
(51–54), which in turn is associated with increased participation
in free living physical activity and reduced weight regain (55–59),
not the opposite.

The evidence linking a reduction in EE, both resting and
nonresting, seen with WL with subsequent weight regain is
scarce and conflicting. On one hand, Wang et al. (60) reported
that the reduction in measured RMR that accompanies WL was
not predictive of weight regain at 12 months of follow-up in
women who underwent an initial 20-week hypocaloric diet with
or without exercise. Pasman et al. (61), on the other hand, reported
that the amount of weight regained at 14 months of follow-up
in premenopausal women with obesity was larger in those who

experienced the greatest decrease in measured RMR and physical
activity EE (measured with an activity monitor) in response to
a 2-month low-energy diet. We have recently shown that the
reductions in RMR and exercise-induced EE that are observed
with a 17% WL (followed by 4 weeks of weight stabilization)
were not predictive of weight regain at a 1-year follow-up (62).
Moreover, as previously discussed, even the studies showing
metabolic adaptation fail to report an association between this
phenomenon and weight regain (26, 27). A recently published
study by Thom and colleagues (63) showed again no association
between metabolic adaptation 6 months after diet-induced WL
(14 kg, 14%) and weight regain between 6 and 24 months
(r = 0.19; P = 0.51; n = 15), in a population with obesity at
baseline (BMI = 39.4 ± 4.3 kg/m2). In summary, the evidence
available at present (and discussed above) suggests that 1) the
reduction in measured EE, both at rest and during exercise, does
occur with WL; 2) metabolic adaptation, defined as a measured
EE below predicted values, is most likely an illusion, only present
when measurements are done under negative EB; 3) metabolic
adaptation at the level of RMR reflects the magnitude of WL,
both in the short and long term; and 4) metabolic adaptation
has not been shown to predict weight regain. Failure to establish
EB after WL can lead to misleading impressions that weight-
reduced individuals suffer from metabolic adaptation, and this
likely explains the large discordance among studies.

Appetite

WL has consistently been shown to lead to an increased
drive to eat, with an upregulation in the secretion of the hunger
hormone ghrelin and subjective feelings of hunger, desire to eat,
and prospective food consumption (16, 17, 21, 64–67). These
increases have been shown to be sustained in the long term
(16, 64), even after partial weight regain (16). Moreover, WL
has also been shown to lead to a reduction in the postprandial
secretion of satiety peptides, such as active glucagon-like peptide
1 (GLP-1), total peptide YY (PYY), and cholecystokinin (CCK)
(16, 68). However, the weight regain–promoting actions of these
“compensatory” changes in appetite remain largely speculative,
as evidence demonstrating a causal relationship between changes
in either subjective feelings of appetite or plasma concentrations
of appetite-related hormones concomitant with WL and the risk
of weight regain is lacking.

In the landmark paper of Sumithran and colleagues (16), the
authors concluded that strategies to counteract the sustained
increase in ghrelin secretion and hunger feelings and the
reduction in the postprandial release of total PYY and CCK seen
with WL (14 kg and 14%, respectively) were needed to prevent
weight regain in a population of individuals with overweight or
obesity at baseline (BMI = 34.4 ± 2 kg/m2). However, in their
Supplementary Material, they reported no association between
the changes in the plasma concentrations of appetite-regulating
hormones or in the subjective feelings of appetite observed with
WL and weight regain at a 1-year follow-up (no correlation
coefficients or significance level provided in the Supplementary
Appendix) (16). Adding to this, Strohacker and colleagues (69)
found no evidence in their 2014 review that the increase in ghrelin
secretion observed with WL was associated with weight regain.
We have also recently published evidence that the increased
hunger feelings in fasting (r = -0.099; P = 0.564; n = 36) and
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basal and postprandial ghrelin secretion [r = -0.328 (P = 0.058)
and r = -0.333 (P = 0.055), respectively; n = 36] seen with
diet-induced WL (20 kg, 17%) are not associated with weight
regain at 1 year of follow-up in a group of individuals with
obesity at baseline (BMI = 36.6 ± 4.3 kg/m2) (70). A recently
published study by Thom and colleagues (63) showed again
no association between the increase in basal plasma ghrelin
concentration at 6 months after diet-induced WL (14 kg, 14%)
and weight regain between 6 and 24 months of follow-up (no
correlation coefficient or significance level provided) in a group
of individuals with obesity (BMI = 39.4 ± 4.3 kg/m2). In fact,
we have previously reported a trend [r = -0.328 (P = 0.058) and
r = -0.333 (P = 0.055), respectively; n = 36] for a larger increase
in basal and postprandial ghrelin secretion with diet-induced WL
to be associated with less weight regain at 1 year of follow-up
(70). Crujeiras and colleagues (71) reported a similar pattern,
with a decrease in ghrelin secretion after an 8-week hypocaloric
diet (4.5 kg, 5% WL) being associated with an increased risk
for weight regain [odds ratio = 3.109 (P = 0.008) and r =
−0.18 (P = 0.061), respectively] in individuals with overweight
or obesity at baseline (BMI = 30.7 ± 2.4 kg/m2). Another study
recently published by Hansen and colleagues (72) in individuals
with overweight or obesity at baseline (BMI = 27.7 ± 2.1 kg/m2)
who had lost an average 9.6 kg (10.8%) also showed that a high
level of appetite (assessed by visual analogue scales) after WL
was not associated with WL maintenance at 3 months of follow-
up (β = −0.02; P > 0.22; n = 181). However, the authors found
that suppression of self-reported appetite (assessed with visual
analogue scales) during the weight maintenance phase, by the
consumption of food products high in fiber and/or protein, was
associated with improved WL maintenance, making appetite-
reducing food products an interesting strategy for the prevention
of weight regain (72). Additionally, the marked reduction in leptin
concentration that occurs with WL has also been reported not to
be associated with weight regain in the long term in free-living
humans (69).

The previously described findings weaken the hypothesis
that the changes in appetite seen with WL are part of a
compensatory response that drives relapse. Two reasons might
explain the unexpected inverse association between changes in
ghrelin secretion with WL and weight regain. Crujeiras and
colleagues (71) have suggested that maybe these findings are
consistent with a disruption in the sensitivity to ghrelin at the level
of the central nervous system. However, our data (62) suggest
that this inverse association might reflect the fact that ghrelin
is an inverse adiposity signal (73), and as a larger initial WL
is usually associated with a better WL maintenance, a larger
increase in ghrelin secretion in response to WL tends to be
also associated with a lower weight regain (or lower BMI) at
1 year.

Several studies have looked at the impact of diet-induced
WL on the postprandial release of satiety peptides, and the
results are similarly divergent (16, 17, 64, 74), likely due to
methodological differences related to the method of hormonal
analyses and the specific fractions measured. For example, some
report an increase in total GLP-1 (17, 74) and PYY3–36 (17)
secretion in the postprandial state with WL, while others reported
a decrease in total PYY and no changes in active GLP-1 (17,
64). Total PYY is a measure of secretion, whereas only PYY3–36

resulting from dipeptidyl peptidase 4 metabolism inhibits food

intake (75). Similarly, total GLP-1 is the adequate measure of L-
cell secretion, whereas active GLP-1 only provides information
about the “endocrine” part of the GLP-1 action, but not about the
afferent signals (which total GLP-1 reflects) (76, 77). In line with
these findings, and contrary to the generalized belief, no single
study has reported that WL leads to a reduction in the feelings
of postprandial fullness. Most report no change (16, 21, 65–67,
78), and in the largest study (n = 71) in this field, we were able to
show that both acute and sustained WL as high as 17% of baseline
weight was associated with increased postprandial feelings of
fullness, suggesting that lack of power may have prevented this
finding from being detected in previous studies.

Collectively, all of these findings contradict the Compensatory
Theory (26–29), which suggests that the body fights against WL
by upregulating ghrelin secretion and hunger feelings, leading to
overeating and a relapse in obesity management (weight regain).
We have recently shown that the increased hunger feelings and
ghrelin secretion seen after WL in weight-reduced individuals
are no different than what is seen in a control group matched
for FM and FFM who had never lost weight (79). Postprandial
total GLP-1 secretion has also been reported to increase towards
the levels seen in lean controls (74), and postprandial fullness,
generally reported to be blunted in obese compared with normal-
weight individuals (80), increases with WL (64). Therefore, it
seems that the increased drive to eat observed after WL is in fact
a “normalization” towards the expected levels at a lower body
weight and FM.

In fact, some individuals with obesity report that their own
eating patterns bear no relation to feelings of hunger or fullness,
suggesting an altered or weakened recognition and response to
these internal sensations (81). Even though the available evidence
regarding the potential association between BMI and the release
of appetite-related hormones remains conflicting (82–84), the
majority of the studies show a blunted release of satiety peptides
after a meal in individuals with obesity, compared with nonobese
controls (68, 80, 85–88), as well as impaired attenuation of
ghrelin secretion (the expected postprandial drop in ghrelin
secretion is absent or reduced) in individuals with obesity when
compared with nonobese controls (68, 88). This would then lead
to a lower satiation, manifested as a higher volume intake to reach
fullness (85), and lower satiety, manifested as a higher energy
intake at ad libitum test meals (85), as well as lower postprandial
fullness feelings in response to a standardized test meal (80). This
impaired satiation and satiety response in individuals with obesity
would then result in increased energy intake, reinforcing their
obesity.

Differences in sample sizes, BMIs between groups, macronu-
trient compositions, and energy loads of the test meals and
hormonal fractions measured can potentially account for the
majority of the inconsistencies seen among studies. While ghrelin
secretion and hunger feelings in the fasting state increase, feelings
of fullness after a meal also increase with WL (64) and might
reflect a normalization towards what is expected at a healthy
normal body weight and, overall, a more accurate appetite control
system in the reduced-obese state.

Compensation Versus Normalization
The Compensatory Theory proposes that reduced-obese and

nonobese BMI-matched controls are physiologically different in
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FIGURE 1 Compensation Theory versus Normalization Theory, as explanatory models for the changes in energy expenditure and appetite markers
concurrent with weight loss and their role as drivers of weight regain. Abbreviations: EB, energy balance; EE, energy expenditure; NREE: non-resting energy
expenditure; REE, resting energy expenditure.

regard to EE and homeostatic appetite markers. However, and
as previously discussed, metabolic adaptation is likely due to
individuals being in negative EB, and there is no evidence that
the physiological adaptations at the level of EE or homeostatic
appetite markers drive weight regain. Therefore, we propose a
new theory (the Normalization Theory), by which the reduced-
obese state is characterized by no metabolic adaptation (in
EB conditions) and improved appetite control (with increased
orexigenic signals, but also improved satiety). As such, this new
theory proposes that reduced-obese and nonobese BMI-matched
controls are identical when it comes to homeostatic appetite
markers and EE physiology, and that the reduction in EE and
increase in hunger seen in reduced-obese individuals reflect a
normalization towards a lower body weight (see Figure 1).

FFM is an important determinant of both EE (89, 90) and
appetite regulation (91). As such, obese-reduced individuals
should be compared with FFM-matched controls. In our study
showing a normalization in appetite in obese-reduced individuals
after a sustained 17% weight loss, controls were matched for

FFM (79). Moreover, in the cross-sectional studies comparing
RMR between obese-reduced individuals and BMI-matched
controls, all had adjusted for FFM in their statistical analysis
(28, 30, 39, 40), and in 1 study the controls were matched for
FFM (29). This strengthens our conclusion that the reduced TEE
and the increased drive to eat seen with WL seem to represent
a normalization towards lower body weight, FM, and FFM.
More importantly, a larger reduction in TEE, and in some cases
metabolic adaptation, and a larger increase in hunger are not
associated with more weight regain long term. In fact, a larger
metabolic adaptation (26, 45) and an increase (71), or larger
increase, in ghrelin secretion (62) with WL have been shown to be
associated with better long-term WL maintenance, likely because
they are a reflection of the magnitude of WL, both short term and
long term.

It needs to be acknowledged that the available studies on the
potential association between changes in EE and homeostatic
appetite markers that occur with WL and weight regain have not
adjusted for baseline body weight and total WL. Future studies
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need to adjust for this and other potential confounders in their
statistical models.

Other Physiological Mechanisms
In light of the conflicting findings offering limited support to

the compensatory hypothesis of weight regain, other physiologi-
cal mechanisms warrant further examination for their potential
role in relapse in weight management. For example, WL is
followed by marked changes in sympathetic activity, which could
potentially play a role in long-term weight regain. Even though
low sympathetic activity to some regions—namely, skeletal
muscle and adipose tissue—may be a risk factor for weight gain
and obesity development, the contribution of the sympathetic
nervous system seems to be rather small (92). Moreover, to our
knowledge no study has directly assessed whether the alterations
in sympathetic activity that parallel WL modulate weight regain
long term in free-living individuals. The potential roles of insulin
sensitivity, gut microbiota, and brain functions in modulating
relapse are summarized below.

Insulin sensitivity

It has been proposed that increased insulin sensitivity may
exacerbate the risk of weight gain in the present obesogenic
environment (93). However, in the 2014 review from Strohacker
and colleagues (69), it was shown that changes in insulin
sensitivity with WL do not predict weight regain in free-living
humans. Only 1 out of the 6 studies included in the review
reported that increased insulin sensitivity after WL increased the
risk of weight regain at both 12 and 18 months of follow-up (94).
Thus, the evidence for the increase in insulin sensitivity with WL
promoting weight regain is weak.

However, in weight-reduced women with a family history
of overweight/obesity, those who had the combination of high
insulin sensitivity and high acute insulin response regained more
body fat after 1 year than those with low insulin sensitivity
and low acute insulin response to glucose (AIRg) (95, 96).
This was particularly true among women who consumed a diet
with a relatively high glycemic load. However, this observation
may speak more to the inherent physiologic characteristics of
a subset of women with obesity than to compensation for WL.
In this case, the relatively high insulin sensitivity and AIRg
were not considered compensatory responses to WL. Thus, it is
important to distinguish between the inherent characteristics of
some individuals prone to obesity that may promote both initial
weight gain and weight regain following WL and the acquired
characteristics that occur solely in response to negative EB.

Gut microbiota

The gut microbiota has emerged as an important factor
underlying changes in the metabolic processes of the host.
Recent works have indicated that the gut microbiota may mediate
some of the inter-individual differences seen in long-term
WL maintenance after bariatric surgery, particularly Roux-en-Y
gastric bypass (97–99). It has also been found that microbiota
differences at baseline (pre-WL) might allow for discrimination
between those successful and unsuccessful in maintaining WL in

the long term after a lifestyle intervention (100). The potential
impact of the gut microbiota on body weight regulation is likely
mediated, at least partially, by its capability to regulate different
aspects of appetite and eating-related behavior (101).

Damms-Machado et al. (102) showed that an identical WL
induced by sleeve gastrectomy and a low-calorie diet over a
6-month period had opposite effects on the gut microbiota.
Sleeve gastrectomy was associated with an increase in the Bac-
teroidetes/Firmicutes ratio and a decrease in butyrate-producing
bacterial species, while diet-induced WL was associated with the
opposite. An increase of bacterial taxa that are important butyrate
producers, such as Faecalibacterium and Butyricicoccus, has also
been reported in another study after diet-induced WL (100). This
suggests that diet-induced WL may lead to adaptations at the level
of gut microbiota toward more energy-efficient species, favoring
a positive EB. However, the studies were relatively small and the
macronutrient composition of the diet with a small fiber content
(total meal replacements were used) may have biased the results.
Even though larger and better-controlled studies are needed to
elucidate the exact role of gut microbiota in modulating long-term
WL maintenance after lifestyle interventions, the preliminary
findings described above are promising.

Brain function

Using functional magnetic resonance imaging, Cornier and
collaborators (103) showed that in the eucaloric state, food
images (as compared to nonfood images) elicited significantly
greater activation of the insula and inferior visual cortice in
thin individuals, as compared to reduced-obese individuals.
More importantly, 2 days of overfeeding resulted in significant
attenuation of the response (at the level of the insula, visual
cortex, and hypothalamus) to visual foods cues in thin (but not
reduced-obese) individuals (103). This suggests that there are
important differences in the response to visual food-related cues
between thin and reduced-obese individuals that place the latter
group at an increased risk of weight regain.

Overall, in the review by Cornier et al. (103), it was concluded
that weight-reduced individuals present with significant changes
in the neuronal response to food-related cues, which is associated
with a dysregulation of EB. Again, even though this milieu would
favor weight regain, no study has reported a link between the 2,
and more research is clearly needed in this field.

As previously discussed, at present, the exact physiological
mechanisms driving weight regain remain unknown. Neverthe-
less, relapses in obesity treatment can be minimized if patients
are supported in the long term (104, 105).

Motivation and Behavioral Aspects
In addition to several intriguing physiological processes that

may impact weight regain, there are potential behavioral and
psychological factors relevant to long-term WL maintenance as
well. For instance, self monitoring of dietary intake, physical
activity, and body weight is a fundamental behavioral strategy
to obesity interventions, and it is well documented that more
consistent adherence to self monitoring is associated with greater
initial WL (106) and better maintenance of lost weight (107,
108). However, self-monitoring adherence declines over time
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(106, 109, 110), and these declines in adherence are associated
with weight regain (108, 110, 111). In fact, in 1 study, those
participants who reported continued high levels of dietary self
monitoring during extended care actually continued to lose
weight, while the other participants demonstrated the more
common pattern of weight regain following initial treatment
(111).

Of note, the benefit of dietary self-monitoring adherence
for WL maintenance was mediated by better adherence to
energy intake goals (110). Similarly, the benefit of self weighing
for better weight management was partially mediated by the
improved adherence to energy intake and EE goals (109). These
findings on the mechanisms by which self-monitoring adherence
influences weight outcomes highlight the importance of self
monitoring in impacting other lifestyle behaviors (i.e., eating and
physical activity) that are critical for successful WL maintenance.

In addition to self monitoring, adherence to other behavioral
strategies is relevant for the prevention of weight regain. Not
surprisingly, more frequent dietary lapses (i.e., eating a larger
portion than intended, eating an unplanned meal or snack, eating a
food one was trying to avoid) are associated with attenuated short-
term and extended WL (112). However, several psychological
and environmental factors may be related to these dietary lapses.
In 1 study, for instance, dietary lapses were more likely to occur
at home, on weekends, in the evenings, and when exposed to
certain desirable foods (112). Further, higher levels of negative
emotional states, including sadness, loneliness, boredom, and
irritation, were also associated with subsequent dietary lapses
(112). These findings highlight the relevance of external factors
(e.g., location, schedule, access to certain foods), as well as
internal psychological states that impact dietary lapses, which
may lead to weight regain.

Diminished motivation for long-term engagement in lifestyle
modifications contributes to the challenge of sustained behavioral
adherence and avoidance of behavioral lapses. Decision theory
posits that immediate consequences (rewards and/or costs) are
more powerful than delayed consequences in influencing behav-
ior (113, 114). For example, the immediate reward for consuming
an energy-dense snack (or the immediate cost of depriving
oneself of the snack) outweighs the delayed consequences (e.g.,
weight regain) of this behavioral choice. In the context of WL
maintenance, perceived long-term rewards are further diminished
by individuals’ concerns that weight regain will occur despite the
behavioral effort expended to maintain lost weight (115). Further,
individuals may lose interest in WL efforts due to the monotony
and behavioral demands required to maintain lost weight (116).
In addition, the prevention of weight regain is inherently less
reinforcing than the initial WL, so the balance between perceived
costs and rewards for maintaining weight tends to shift over time
for many individuals (117, 118).

Perceptions that the behavioral demands of WL maintenance
are too costly may be further influenced by individual differ-
ences in disposition. For instance, individuals who exhibited
a “prevention-focused” disposition, characterized by greater
vigilance and motivation to avoid undesired outcomes, did better
with maintaining lost weight than those who did not have this
type of self-regulatory disposition (119). While a comprehensive
summary of other individual characteristics associated with
weight regain is beyond the scope of this review, additional
psychological and behavioral characteristics predicting weight

regain may include higher levels of dietary disinhibition (i.e.,
perceived loss of control while eating), the presence of binge
eating (105, 120), eating in response to negative emotions
and stress, more passive reactions to problems (105), and
elevated depressive symptoms (120). Another variable worthy
of further investigation for its effects on weight regain is
cognitive functioning (118). This includes cognitive domains,
such as executive functioning (e.g., decision-making, inhibitory
control), attention, and memory, as lower levels of these cognitive
variables have been predictive of poorer short- and long-term
weight outcomes in obesity treatment (121–123).

Conclusions
The majority of the evidence discussed in this review seems to

point to the fact that body weight is not defended by physiological
adaptations at the level of the homeostatic appetite control system
or EE that occur with WL. Instead, it seems more plausible
that such physiological changes reflect a normalization towards
a lower body weight. Even though other biological pathways
may be involved in weight recidivism—namely, the hedonic
appetite control system (124) or gut microbiota (100, 102)—it
is also possible that it represents, at least partially, the struggle
of weight-reduced individuals in adhering to a healthy lifestyle
long term. It has been consistently shown that relapse can be
minimized if patients are supported in the long term and obesity
is treated as what it is: a chronic disease (104, 105). However,
we need to recognize that individuals prone to obesity have
intrinsic physiological characteristics that predispose them to
both obesity (weight gain) and weight regain following WL.
These intrinsic characteristics must be addressed, or weight
regain will follow. Despite this, more research is needed to clearly
ascertain whether the changes in EE and homeostatic appetite
markers seen in reduced-obese individuals are a compensatory
mechanism that drives relapse or a normalization towards a lower
body weight. Further research should also explore alternative
mechanistic pathways that can explain weight regain and include
both physiological and behavioral aspects.
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