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Abstract

This thesis concerns several aspects of twisted convolution algebras, with a partic-
ular focus on problems arising in Gabor analysis. A significant portion of the thesis
is dedicated to the study of Hilbert C∗-modules known as Heisenberg modules and
how they relate to Gabor frame theory. This relation showcases the link between
finite Hilbert C∗-module frames and Gabor frames. Further, the thesis concerns
certain properties of twisted convolution algebras of locally compact groups, in
particular spectral invariance and C∗-uniqueness, and we find use for both these
properties in Gabor analysis. The problem of C∗-uniqueness is also considered
for the case of twisted convolution algebras of second-countable locally compact
Hausdorff étale groupoids.

Sammendrag

Denne avhandlingen omfatter flere aspekter ved tvistede konvolusjonsalgebraer,
med spesielt fokus på problemer som oppstår i Gaboranalyse. En stor del av avhand-
lingen er dedikert til studiet av Hilbert C∗-moduler kjent som Heisenbergmoduler
og hvordan disse relateres til teorien om Gaborrammer. Denne relasjonen viser
sammenhengen mellom endelige Hilbert C∗-modulrammer og Gaborrammer. Vi-
dere omfatter avhandlingen enkelte egenskaper ved tvistede konvolusjonsalgebraer,
spesielt spektralinvarians ogC∗-entydighet, og vi finner anvendelser for begge disse
konseptene i Gaboranalyse. Spørsmålet om C∗-entydighet blir også bektraktet for
tvistede konvolusjonsalgebraer relatert til annentellbare lokalkompakte Hausdorff
étalegruppoider.
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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD) in Mathematical Sciences at the Norwegian University
of Science and Technology (NTNU). The research presented here was conducted
at the Department of Mathematical Sciences at NTNU, under the supervision of
Professor Franz Luef and Associate Professor Eduard Ortega.

The thesis consists of a collection of four research papers and an introductory
part that provides background and motivation for the work. The introductory part
concludes with a summary of each individual paper, which relates them together
and puts them into context. There is a single bibliography at the end of thesis which
serves both the introductory part and the research papers.
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Introduction





Chapter 1

From locally compact groups and
groupoids to twisted convolution
algebras

All four papers constituting the thesis in some way or another concern twisted
convolution algebras related to locally compact groups or groupoids. Hence this
chapter of the introduction presents the constructions and themes concerning this
used in the thesis at large. Although any group is a groupoid, we will only consider
étale groupoids for the purposes of this thesis. As such, it is easier to present the
relevant constructions first in the case of locally compact groups, then afterwards
in the case of étale groupoids. This chapter does not aim to fix notation used in
the four papers of the thesis as this varied slightly due to stylistic preferences of
different coauthors.

1.1 Locally compact groups, representations, and associ-
ated convolution algebras

1.1.1 Fundamentals on locally compact groups

For a reference for the material of this section and Section 1.1.2, we refer the reader
to [33]. Throughout the entirety of the thesis, we will understand a locally compact
group G to be a group which is also a locally compact topological space such that
both multiplication and inversion are homeomorphisms of the space. It will always
be implied that the topology is Hausdorff. When the underlying group G is abelian,
G is known as a locally compact abelian group, or LCA group for short.

Any locally compact group may be equipped with a non-zero left-invariant
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Chapter 1. From locally compact groups and groupoids to twisted convolution
algebras

outer Radon measure with respect to its Borel σ-algebra generated by the open
sets, and it is unique up to multiplication by a positive scalar. Any such measure
is known as a Haar measure on the group. As a special example we mention that
whenever the locally compact group is discrete, the Haar measure is (a positive
scalar multiple of) the counting measure.

Note that we require our Haar measures to be left-invariant, that is, for any Haar
measure µ on the locally compact group G, any y ∈ G and any measurable subset
M ⊆ G, we have µ(yM) = µ(M). Now let x ∈ G and define µx(M) = µ(M x). The
translation by x is done from the right, and we do not assume µ to be right-invariant.
However, one can verify that µx defines a left-invariant Haar measure on G, and by
uniqueness of Haar measure on G, there is a number m(x) such that µx = m(x)µ.
This gives rise to the modular function m for the group G. Groups for which m ≡ 1
are known as unimodular groups. As examples of unimodular groups we mention
compact groups and LCA groups.

A Haar measure on a locally compact group G also gives rise to an integral,
so we may consider Lp-spaces over G for various values of p. Denote the Haar
measure on G by dx. For any measurable function f on G and any p ∈ [1,∞), we
then define

‖ f ‖Lp (G) =

( ∫
G

| f (x)|p dx
)1/p

.

Using this, the definition of Lp(G) for p ∈ [1,∞) is

Lp(G) = {measurable functions f on G such that ‖ f ‖Lp (G) < ∞}.

The compactly supported continuous functions on G, denoted by Cc(G), are dense
in Lp(G) for all p ∈ [1,∞). Moreover, we may for any measurable function f on
G define

‖ f ‖L∞(G) = ess sup
x∈G

| f (x)|,

and set

L∞(G) = {measurable functions f on G such that ‖ f ‖L∞(G) < ∞}.

Note that Cc(G) is in general not dense in L∞(G).
In the sequel we will repeatedly make use of projective unitary representations

of groups. LetG be a locally compact group. A projective unitary representation of
G is a continuous map π : G → U(H), where U(H) denotes the unitary operators
on a Hilbert space H and is given the strong topology, for which there exists a
continuous map c : G × G→ T such that

π(x)π(y) = c(x, y)π(xy)

4



1.1. Locally compact groups, representations, and associated convolution
algebras

for all x, y ∈ G. To emphasize the role of c in the projective unitary representation
we may also call π a c-projective unitary representation of G. By associativity we
deduce

c(x1, x2)c(x1x2, x3) = c(x1, x2x3)c(x2, x3)

for all x1, x2, x3 ∈ G, and by requiring π(e) = IdH we also find that

c(x, e) = c(e, x) = 1

for all x ∈ G. Any continuous map c satisfying these conditions is known as a
continuous 2-cocycle for G. For any locally compact group G and any continuous
2-cocycle c for G there is a canonical c-projective unitary representation of G: The
c-twisted left regular representation Lc : G→ U(L2(G)) is defined by

Lc
y f (x) = c(y, y−1x) f (y−1x) (1.1.1)

for x, y ∈ G and f ∈ L2(G). The assignment y 7→ Lc
y is then a c-projective unitary

representation of G, and it plays a major role in the representation theory for locally
compact groups.

Closely related to c-projective unitary representations of a locally compact
group G is the Mackey obstruction group, or just Mackey group, associated to the
locally compact group G and continuous 2-cocycle c. We will denote this locally
compact group by Gc. As a topological space it is just the product G × T, its
Haar measure is the product measure of the Haar measure on G with the Lebesgue
measure on T, but the product is given by

(x1, τ1)(x2, τ2) = (x1x2, τ1τ2c(x1, x2)).

One of the primary reasons for looking at Gc is that the theory of c-projective
unitary representations of a locally compact group G can be related to unitary
representations of the “c-twisted” group Gc. In other words, instead of having our
representations be “twisted” by a cocycle, we “twist” the entire group and look at
the usual unitary representations of the resulting group.

Example 1.1.1. To illustrate the role of the Mackey group in representation theory
we present a locally compact group closely related to the polarized Heisenberg
group and how it relates to time-frequency analysis, a very central theme in this
thesis. We consider the locally compact group R with its natural group structure,
topology, and Lebesgue measure, and look at a projective representation of R2

given by

π : R2 → U(L2(R))

(x, ω) 7→ MωTx .

5



Chapter 1. From locally compact groups and groupoids to twisted convolution
algebras

Here Tx : L2(R) → L2(R) is the translation operator and Mω : L2(R) → L2(R) is
the modulation operator, and they are given by

Tx f (t) = f (t − x), Mω f (t) = e2πiωt f (t),

for f ∈ L2(R). Both operators are clearly unitary. The operators Tx and Mω do not
in general commute. Indeed, we have

TxMω = e−2πixωMωTx .

Given ξ1 = (x1, ω1), ξ2 = (x2, ω2) ∈ R
2 theHeisenberg 2-cocycle can be defined by

c(ξ1, ξ2) = e2πix2ω1 .

The assignment π : (x, ω) 7→ MωTx is thus a c-projective unitary representation of
the locally compact group R2.

The associated Mackey group R2
c is the topological space R2 × T, where T

denotes the circle group, with the product topology and product measure, and
multiplication given by

(x1, ω1, τ1)(x2, ω2, τ2) = (x1 + x2, ω1 + ω2, τ1τ2e−2πix2ω1).

This group is sometimes referred to as the (reduced) polarized Heisenberg group.
The c-projective unitary representation π of R2 can be extended to a unitary repre-
sentation π : R2

c → U(L2(G)) by setting π(x, ω, τ) f (t) = τ · (MωTx f (t)).

1.1.2 Locally compact abelian groups

Three out of the four papers of the thesis concern Gabor analysis on locally compact
abelian (LCA) groups. As such, we expand on some constructions and results
specific to these groups.

Let G be an LCA group. By a character for G we mean a continuous group
homomorphism τ : G → T. We denote the set of all characters by Ĝ. With
pointwise multiplication as binary operation and complex conjugation as inversion,
Ĝ becomes a group in itself. Equipping Ĝ with the compact-open topology, it
indeed becomes a locally compact group, and as it is clearly abelian, Ĝ is an LCA
group as well, known as the dual group of G.

For any function f ∈ L1(G) it is then possible to define its Fourier transform,
denoted f̂ , by

f̂ (χ) =
∫
G

f (x)χ(x) dx

for χ ∈ Ĝ. As in the case for R, whenever f ∈ L1(G), f̂ is a continuous function
on Ĝ vanishing at infinity.

6



1.1. Locally compact groups, representations, and associated convolution
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Having fixed a Haar measure on the LCA group G, there is a uniquely deter-
mined Haar measure on Ĝ such that the Plancherel theorem holds, that is, such that
the Fourier transform extends to implement a unitary equivalence between L2(G)
and L2(Ĝ). In particular, under this extension we have ‖ f ‖L2(G) = ‖ f̂ ‖

L2(Ĝ) for all
f ∈ L2(G). This is known as the Plancherel identity, and the unique measure on Ĝ
such that the Plancherel identity holds is known as the Plancherel measure on Ĝ.

As Ĝ is itself an LCA group whenever G is an LCA group, we could consider
the set of unitary characters on Ĝ and construct the dual group of Ĝ, denoted ̂̂G. ̂̂G
turns out to be canonically isomorphic to G again as LCA groups through the map
d : G→ ̂̂G, x 7→ dx , where dx(χ) = χ(x) for all χ ∈ Ĝ. The identification G �

̂̂G
through this map is known as Pontryagin duality.

Lastly, we want to present Weil’s formula for LCA groups. Technically, Weil’s
formula holds for more general locally compact groups under certain assumptions
on the modular functions of the groups involved, but we shall not have need for it
outside LCA groups. Let G be an LCA group and let H be a closed subgroup of
G. Then there is a unique choice of Haar measure on the quotient group G/H such
that for all f ∈ L1(G) we have∫

G

f (x) dx =
∫
G/H

∫
H

f (yh) dh dy. (1.1.2)

The measure on G/H such that Weil’s formula holds is known as the quotient
measure on G/H.

1.1.3 Twisted convolution algebras from locally compact groups

As a reference on the twisted convolution algebras treated in this sectionwemention
[35].

The spaces L1(G) andCc(G) defined earlier for a locally compact group G with
a fixed Haar measure can be made into ∗-algebras. In fact, specifying a continuous
2-cocycle for the group G, we may associate to it the c-twisted convolution algebras
L1(G, c) and Cc(G, c). We do this for the latter, but note that the formulas are
identical for L1(G, c).

Fix a locally compact group G and a continuous 2-cocycle c for G. We make
the ∗-algebra Cc(G, c) in the following way. As a set, Cc(G, c) = Cc(G). Then, for
f , g ∈ Cc(G, c), we define the c-twisted convolution of f and g by

f ∗c g(x) =
∫
G

f (y)g(y−1x)c(y, y−1x) dy

for all x ∈ G, and we define the c-twisted involution in Cc(G, c) by

f ∗c (x) = m(x−1)c(x−1, x) f (x−1)

7



Chapter 1. From locally compact groups and groupoids to twisted convolution
algebras

for f ∈ Cc(G) and x ∈ G, and where m is the modular function of the group G. We
will sometimes suppress the c in the notation for both the twisted convolution and
the twisted involution. If we complete Cc(G, c) in the L1(G)-norm, we obtain the
c-twisted convolution algebra L1(G, c). With the L1(G)-norm L1(G, c) becomes a
Banach ∗-algebra.

For a c-projective unitary representation π : G → U(H) we may induce a ∗-
representation of L1(G, c) by way of integrated representations. The integrated
representation will also be denoted by π. For f ∈ L1(G, c) we define

π( f )ξ =
∫
G

f (x)π(x)ξ dx

for ξ ∈ H. We interpret the integral weakly inH. By this expression, π( f ) defines
a bounded linear operator on H, that is, π( f ) ∈ B(H). The assignment f 7→ π( f )
defines a ∗-representation of L1(G, c).

Note that even if π : G→ U(H) is faithful, its integrated representationmay not
be a faithful representation of the Banach ∗-algebra L1(G, c). Indeed, consider the
unitary representation η : Z/2Z → U(C) given by η(0) = IdC, η(1) = − IdC. This
unitary representation is faithful by inspection, but the integrated representation of
`1(Z/2Z) is clearly not faithful. For any locally compact groupG and any 2-cocycle
c for G there is however always one faithful c-projective unitary representation of
G such that its integrated representation is a faithful representation of L1(G, c).
The representation in question is the integrated representation of the c-twisted left
regular representation, see (1.1.1).

Any faithful ∗-representation π : L1(G, c) → B(H) realizes L1(G, c) as bounded
operators on a Hilbert spaceH. By taking the norm closure of π(L1(G, c)) in B(H)
we obtain a C∗-algebra, which we denote by C∗π(G, c). There are two canonical
C∗-completions of L1(G, c). The first is known as the c-twisted reducedC∗-algebra
of G, and is the completion of L1(G, c) with respect to the norm coming from the
integrated representation of Lc, the c-twisted left regular representation of G. We
denote this completion by C∗r (G, c). The other canonical completion is the full
c-twisted C∗-algebra of G. It is the completion of L1(G, c)with respect to the norm

‖ f ‖max = sup{‖π( f )‖B(Hπ ) | π : L1(G, c) → B(Hπ) is a ∗-representation}.

We denote this completion by C∗(G, c). If C∗r (G, c) � C∗(G, c), we say that the
group G is amenable. The standard way to introduce amenability for groups is
by ways of existence of a left-invariant mean on the group in question. However,
we shall only need the equivalent condition that the full and reduced (twisted)
C∗-algebras coincide up to isomorphism.

As noted above, any faithful ∗-representation of L1(G, c) gives rise to a C∗-
completion of L1(G, c), which we opted to denote by C∗π(G, c). Even if the group

8



1.2. Étale groupoids, representations, and associated convolution algebras

is amenable, there could be C∗-completions of L1(G, c) that are not isomorphic
to C∗(G, c), see e.g. [22, 92]. If the Banach ∗-algebra L1(G, c) has a unique C∗-
completion up to isomorphism, we say that L1(G, c) is C∗-unique. This leads us to
one of the questions considered in this thesis.

Problem. When is L1(G, c) C∗-unique?

Part of Paper C consists of finding sufficient conditions for L1(G, c) to be C∗-
unique. It turns out that imposing C∗-uniqueness conditions on L1(Gc) is very
useful. In particular, if L1(Gc) is C∗-unique, so is L1(G, c). C∗-uniqueness of
L1(Gc) is a question of C∗-uniqueness of a convolution algebra (no 2-cocycle
twist), and this has been studied before, see e.g. [21, 22].

Realizing L1(G, c) as bounded operators on a Hilbert spaceH through a faithful
∗-representation π : L1(G, c) → B(H), we may also ask if the spectrum of elements
of L1(G, c) is preserved.

Problem. For a faithful ∗-representation π : L1(G, c) → B(H), when is L1(G, c)
spectrally invariant in B(H)? In other words, when is it true that σL1(G,c)( f ) =
σB(H)(π( f ))? (Here σA(a) denotes the spectrum of a in the algebra A).

This problem occupies a large part of Paper C, where we find sufficient condi-
tions for spectral invariance of L1(G, c) in terms of C∗-uniqueness and symmetry
of L1(Gc).

1.2 Étale groupoids, representations, and associated con-
volution algebras

At the end of the last section we presented one of the problems considered in
Paper C, namely finding conditions guaranteeing the C∗-uniqueness of L1(G, c).
In Paper D we consider the question of C∗-uniqueness for L1(G, c), where G is a
second-countable locally compact Hausdorff étale groupoid and c is a 2-cocycle
for G. Hence the following section is dedicated to introducing relevant notions and
results from the theory of (étale) groupoids. A nice reference for the material in
this section is [104].

Although we will exclusively only have need for étale groupoids, we begin by
defining the notion of a groupoid in its full generality.

Definition 1.2.1. Agroupoid is a setG togetherwith a distinguished setG(2) ⊆ G×G
equipped with a binary operation G(2) → G, denoted (γ, µ) 7→ γµ, and a unary
operation G → G, denoted γ 7→ γ−1, such that the following axioms are satisfied:

1) If (γ, µ), (µ, ν) ∈ G(2), then (γµ, ν), (γ, µν) ∈ G(2) and (γµ)ν = γ(µν).

9
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2) (γ−1)−1 = γ for all γ ∈ G.

3) For every γ ∈ G, (γ, γ−1) ∈ G(2), and whenever (γ, µ) ∈ G(2) we have
γµµ−1 = γ and γ−1γµ = µ.

The first axiom tells us that the binary operation is associative. We will refer to
the binary operation as multiplication. From the third axiom we deduce that γγ−1

acts as a right identity for all elements µ such that (µ, γ) ∈ G(2). Likewise, γ−1γ

acts as a left identity on all elements µ such that (γ, µ) ∈ G(2). Based on this, we
refer to the set

G(0) = {γ−1γ | γ ∈ G} = {γγ−1 | γ ∈ G}

as the unit space of G. The elements of G(0) are often referred to as units. The
second axiom above can now be interpreted as every element ofG having an inverse.
It is not difficult to see that any group is a groupoid with unit space equal to the
one-point space consisting of the group identity. Indeed, a groupoid is a group if
and only if its unit space is equal to the one-point space.

We may now define two maps r, s : G → G(0) by

r(γ) = γγ−1 and s(γ) = γ−1γ

for γ ∈ G. The maps are sometimes known as the range map and the source map,
respectively. Now (γ, µ) ∈ G(2) if and only if r(µ) = s(γ).

For x ∈ G(0) we will write Gx = {γ ∈ G | s(γ) = x}, Gx = {γ ∈ G | r(γ) = x},
and Gy

x = Gy ∩ Gx . The isotropy subgroupoid of G is then

Iso(G) =
⋃

x∈G(0)
Gx
x .

Iso(G) is a subset of G closed under inversion and multiplication, that is, it is a
subgroupoid of G.

Definition 1.2.2. Let G be a groupoid. We say G is a Hausdorff topological
groupoid if it is equipped with a locally compact topology such that G(0) is Haus-
dorff in its relative topology, the inversion is continuous, and the multiplication is
continuous with respect to the relative topology on G(2) as a subset of G × G.

Remark 1.2.3. We continue to specify that the groupoid G is Hausdorff as the
study of locally compact but non-Hausdorff groupoids is an active research field.

It follows from the definition that the source map s and the range map r are
continuous. Moreover, it is well known that G(0) is closed in G if and only if G
itself is Hausdorff.

10



1.2. Étale groupoids, representations, and associated convolution algebras

Definition 1.2.4. Let G be a topological groupoid. We say G is an étale groupoid
if the range map r : G → G(0) is a local homeomorphism.

Since inversion γ 7→ γ−1 on G is continuous and its own inverse, r : G → G(0)
is a local homeomorphism if and only if s : G → G(0) is a local homeomorphism.

Let now G be an étale groupoid. It is then well-known that G(0) is open in G.
In particular, if G is also Hausdorff, G(0) is both closed and open in G.

Definition 1.2.5. Let G be an étale groupoid. We say a subset B ⊆ G is a bisection
if there is an open setU containing B for which r and s are injective when restricted
to U.

Whenever G is a second-countable locally compact Hausdorff étale groupoid,
the case which we will be concerned with in Paper D, the topology of G has a
very useful base. Indeed, G has a countable base of open bisections. Moreover,
whenever G is Hausdorff and étale, both Gx and Gx are discrete in the relative
topology for all x ∈ G(0). In particular, Gx

x is discrete in its relative topology for all
x ∈ G(0).

We are going to consider convolution algebras of second-countable locally
compact Hausdorff étale groupoids and their various C∗-completions. As such,
we will also need to consider ∗-representations for these convolution algebras.
However, unlike what we did in the case of locally compact groups, we will not
consider projective unitary representations of groupoids directly. This is done in
order not to discuss unnecessary technicalities never explicitly needed in Paper D.

A normalized continuous 2-cocycle for a topological groupoid is a continuous
map σ : G(2) → T satisfying

σ(r(γ), γ) = 1 = σ(γ, s(γ))

for all γ ∈ G, and
σ(α, β)σ(αβ, γ) = σ(β, γ)σ(α, βγ)

whenever (α, β), (β, γ) ∈ G(2). We will refer to normalized continuous 2-cocycles
as just 2-cocycles in this section.

In order to construct the convolution algebras of interest, let G be a second-
countable locally compact Hausdorff étale groupoid and let σ be a 2-cocycle for G.
Recall that both Gx and Gx are discrete for all x ∈ G(0). Analogously to the case of
locally compact groups, we then equip Cc(G) with σ-twisted convolution

( f ∗σ g)(γ) =
∑

µ∈Gs(γ)

f (γµ−1)g(µ)σ(γµ−1, µ), f , g ∈ Cc(G), γ ∈ G,

and σ-twisted involution

f ∗σ (γ) = σ(γ−1, γ) f (γ−1), f ∈ Cc(G), γ ∈ G .

11



Chapter 1. From locally compact groups and groupoids to twisted convolution
algebras

We denote Cc(G) equipped with this convolution and involution by Cc(G, σ).
For a locally compact group G we may view L1(G) as the completion of Cc(G)

under the L1-norm. The analogous notion for groupoids is that of the I-norm,
which for étale groupoids is given by

‖ f ‖I = sup
x∈G(0)

max
{ ∑
γ∈Gx

| f (γ)|,
∑
γ∈Gx

| f (γ)|
}

for f ∈ Cc(G). Inspecting the expression we see that the I-norm can be regarded
as a “fiberwise L1-norm”. We denote the corresponding completion of Cc(G) by
`1(G). The reason for the choice of `1 instead of L1 is to reflect the discreteness
of the fibers, even if the groupoid G as a whole is not equipped with the discrete
topology. The expressions for the c-twisted convolution and c-twisted involution
still makes sense on `1(G), and we denote the resulting ∗-algebra by `1(G, σ).
Indeed, this becomes a Banach ∗-algebra when equipped with the I-norm. It is
even a reduced Banach ∗-algebra as there is a canonical faithful ∗-representation,
namely the σ-twisted left regular representation. To construct this, let x ∈ G(0) and
consider the ∗-representation Lσ,x : Cc(G, σ) → B(`2(Gx)) given by

Lσ,x( f )δγ =
∑

µ∈Gr (γ)

σ(µ, µ−1γ) f (µ)δµγ, for f ∈ Cc(G, σ) and γ ∈ Gx .

Here δγ is the function taking the value 1 in γ and 0 elsewhere. We then obtain a
faithful I-norm bounded ∗-representation of Cc(G, c) given by⊕

x∈G(0)
Lσ,x : Cc(G, σ) →

⊕
x∈G(0)

B(`2(Gx)) ⊆ B(
⊕
x∈G(0)

`2(Gx)), (1.2.1)

and we denote the completion of Cc(G, σ) in the induced C∗-norm by C∗r (G, σ).
This is the σ-twisted reduced C∗-algebra of G. As the ∗-representation is I-
norm bounded, C∗r (G, σ) is also the completion of `1(G, σ) with respect to the
same induced norm. For any reduced Banach ∗-algebra we may also consider the
maximal C∗-completion, or the C∗-envelope. For `1(G, σ) this is the completion
in the norm

‖ f ‖max = sup{‖π( f )‖ | π is a ∗-representation of `1(G, σ)},

for f ∈ `1(G, σ). We denote the resulting C∗-algebra by C∗(G, σ). When
C∗r (G, σ) � C∗(G, σ)we say that G has the weak containment property with respect
to σ. In the case of locally compact groups, we said that a locally compact group
G is amenable if the (twisted) full and (twisted) reduced group C∗-algebras are
isomorphic. However, there is a notion of amenability of groupoids, and it is not

12



1.2. Étale groupoids, representations, and associated convolution algebras

equivalent to the coincidence of the (twisted) full and reduced groupoidC∗-algebras
[108].

As for any reduced Banach ∗-algebra we may now consider various faithful
∗-representations and look at their corresponding C∗-completions. For a second-
countable Hausdorff étale groupoid G with 2-cocycle σ we may then ask the
analogous question we had asked for locally compact groups and their 2-cocycles.

Problem. When does `1(G, σ) have a unique C∗-norm?

This is the primary focus of Paper D. It will turn out that we can find suf-
ficient conditions for C∗-uniqueness of `1(G, σ) by looking at the question of
C∗-uniqueness of `1(Iso(G)◦, σ), where Iso(G)◦ is the interior of the isotropy sub-
groupoid of G, and σ is restricted to this subgroupoid. Moreover, we find sufficient
conditions for C∗-uniqueness of `1(Iso(G)◦, σ) by looking at C∗-uniqueness for
`1(Iso(G)◦x, σx), for x ∈ G(0). Here Iso(G)◦x = (Iso(G)◦)x ∩ (Iso(G)◦)x , and σx is
the restriction of σ onto the fiber x. But `1(Iso(G)◦x, σx) is the twisted convolution
algebra of a discrete group. Thus sufficient conditions for C∗-uniqueness of a
twisted groupoid convolution algebra `1(G, σ) can be deduced by C∗-uniqueness
of twisted group convolution algebras studied in Paper C.

13



Chapter 2

Frames and convolution algebras

The first three papers of the thesis directly concern the theory of frames and Gabor
frames, and so this part of the introduction will be dedicated to explaining these
concepts and how they relate to the twisted convolution algebras of the previous
chapter, as well as the construction of, and relevance of, Heisenberg modules. As
in the previous chapter, this chapter does not aim to fix notation used in the four
papers of the thesis.

2.1 Frames in Hilbert C∗-modules

This section serves only to introduce the concept of frames for HilbertC∗-modules.
No central questions considered in the thesiswill be presented here, but the section is
important in order to present core questions of the thesis in the subsequent sections.
We refer the reader to [47], where Hilbert C∗-module frames were defined.

Throughout this section let A denote a C∗-algebra, and let E denote a left
Hilbert C∗-module. We will denote the A-valued inner product on E by •〈 ·, ·〉.
Moreover, we will consider A as a left Hilbert C∗-module over itself. For two left
Hilbert C∗-modules E and F, we denote the Banach space of A-adjointable maps
from E to F by L(E, F), and as is customary we write L(E) := L(E, E). Lastly
before defining a frame we introduce a Hilbert C∗-module important to several
operators related to frames in the sequel. For any (at most) countable index set J
we denote by `2(J, A) the set of sequences (aj)j∈J ⊆ A for which the sum

∑
j∈J aja∗j

converges in A-norm. The set `2(J, A) becomes a left Hilbert A-module with left
module action

a · (aj)j∈J = (a · aj)j∈J for a ∈ A and (aj)j∈J ∈ `
2(J, A),

14



2.1. Frames in Hilbert C∗-modules

and
•〈(aj)j∈J, (bj)j∈J〉 =

∑
j∈J

ajb∗j for (aj)j∈J, (bj)j∈J ∈ `
2(J, A).

We will never consider frames over two different index sets simultaneously, so we
may for ease of notation sometimes leave the index set implied.

Definition 2.1.1. Let A be a C∗-algebra and let E be a left Hilbert A-module.
Moreover, fix a (at most) countable index set J. We say that a sequence (xj)j ⊆ E
is a (module) frame for E if there are positive real numbers C,D > 0 such that

C •〈 x, x〉 ≤
∑
j∈J

•〈 x, xj〉 •〈 xj, x〉 ≤ D •〈 x, x〉 (2.1.1)

for all x ∈ E , and where the middle sum converges in norm. The constants C and
D are known as the lower frame bound and upper frame bound, respectively. If we
may choose C = D we say (xj)j is a tight frame for E , and if C = D = 1 we say
(xj)j is a Parseval frame E . Moreover, if the upper inequality holds, we say that
(xj)j is a Bessel sequence. In particular, every frame is a Bessel sequence.

We include some examples to illustrate the notion of frames.

Example 2.1.2. Let H be a separable Hilbert space. Then H is a Hilbert C∗-
module over the C∗-algebra C. Any orthonormal basis {h1, h2, . . .} for H is then
clearly a frame for H. Moreover, we can then set C = D = 1, so this becomes a
Parseval frame for H.

However, uniformly norm-bounded bases are not the only examples of frames.
Indeed, the notion of a frame may be regarded as a relaxation of the concept of a
basis, while preserving some key desirable properties. One of these key properties
is that of a reconstruction formula, which we will explore below. For instance,
if we consider the same orthonormal basis {h1, h2, . . .} as in Example 2.1.2, then
{h1, h1, h2, h3, . . .} is not a basis for H due to linear dependence, but it is a frame
for H with C = 1 and D = 2.

Example 2.1.3. Suppose A is a unital C∗-algebra, and regard A as a left Hilbert
A-module over itself. Then {1A} is a Parseval frame for A.

We proceed to introduce some operators related to frames. As above, let E be a
left Hilbert A-module, let J be a (at most) countable index set, and suppose (xj)j∈J
is a Bessel sequence. The analysis operator Φ(x j ) j is defined as

Φ(x j ) j : E → `2(J, A)

y 7→ (•〈 y, xj〉)j∈J

15



Chapter 2. Frames and convolution algebras

for y ∈ E . We have Φ(x j ) j ∈ L(E, `2(J, A)). Its adjoint Ψ(x j ) j := Φ∗
(x j ) j

is known
as the synthesis operator and is given by

Ψ(x j ) j : `2(J, A) → E

(aj)j 7→
∑
j∈J

aj xj,

for (aj)j ∈ `
2(J, A). Combining the two operators we obtain the frame operator

Θ(x j ) j := Ψ(x j ) j ◦ Φ(x j ) j , and it is explicitly given by

Θ(x j ) j : E → E

y 7→
∑
j∈J

•〈 y, xj〉xj,

for y ∈ E . As the frame operator Θ(x j ) j is the composition of an adjointable
operator and its adjoint, it is an adjointable positive operator. If (xj)j∈J , in addition
to being a Bessel sequence, is also a frame for E as a Hilbert A-module, then by
(2.1.1) we see that Θ(x j ) j is invertible. We then have

y = Θ(x j ) jΘ
−1
(x j ) j

y =
∑
j∈J

•〈 y,Θ
−1
(x j ) j

xj〉xj, (2.1.2)

for all y ∈ E . In other words, we may reconstruct any y ∈ E in terms of an A-linear
combination of the elements (xj)j∈J . This is one of the major features of frames;
they allow for reconstruction formulas. Note that the coefficients •〈 y,Θ−1

(x j ) j
xj〉 are

in general not unique. The sequence (Θ−1
(x j ) j

xj)j∈J ⊆ E is known as the canonical
dual frame of (xj)j∈J . We also have

y = Θ−1
(x j ) j
Θ(x j ) j y =

∑
j∈J

•〈 y,Θ(x j ) j xj〉Θ−1
(x j ) j

xj, (2.1.3)

for y ∈ E .
For the papers of the thesis we can make certain simplifications. Unless we are

working with frames for Hilbert C-modules, that is, Hilbert spaces, we will always
work with finitely generated projective HilbertC∗-modules, and thus all frames will
have a finite number of elements. Any sequence (xj)nj=1 trivially satisfies the upper
inequality of (2.1.1) by the Cauchy-Schwarz inequality, and so is automatically a
Bessel sequence. Even when we consider the C∗-algebra C and frames for Hilbert
spaces, they will have a very specific form. The only types of frames for Hilbert
spaces considered in this thesis are that of Gabor frames, which we introduce in the
next section. Note however that when considering frames for Hilbert C-modules in
the papers of the thesis we sometimes consider uncountable index sets in the form
of so-called continuous frames. This will become clearer in the next section.
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2.2. Time-frequency analysis and Gabor frames

2.2 Time-frequency analysis and Gabor frames

Much of the thesis concerns the interplay between operator algebras and time-
frequency analysis, specifically Gabor frames. We therefore dedicate this section
to explaining what Gabor frames are. However, we have to wait until we in-
troduce Heisenberg modules in the next section to properly outline most of the
remaining core questions considered in the papers of the thesis. Introductions to
time-frequency analysis are found in [53] for the case of lattices in R2d, and in [52]
for the case of locally compact abelian groups.

We have already considered the two main operators of time-frequency analysis,
the time-shift operator and the frequency-shift operator (or modulation operator) in
Example 1.1.1, albeit in the specific case of R2. We shall however need to consider
more general phase spaces than just R2 � R × R̂.

Let G be a second-countable LCA group with a fixed Haar measure, and let Ĝ
be its dual group. We equip Ĝ with the corresponding Plancherel measure. The
phase space of G is the product space G × Ĝ with product topology and product
measure. Moreover, let ∆ be a closed cocompact subgroup of G × Ĝ. We fix a
Haar measure on ∆, and will always equip the quotient group (G × Ĝ)/∆ with the
quotient measure, i.e. the unique measure such that (1.1.2) holds. Denoting the
Haar measure on (G × Ĝ)/∆ by µ, we can associate to (G × Ĝ)/∆ the size of ∆,
which we denote by s(∆) = µ((G × Ĝ)/∆). This is finite as ∆ is cocompact.

Having fixed conventions for Haar measures, we may begin to introduce time-
frequency analysis on (second-countable) LCA groups. Given x ∈ G and ω ∈ Ĝ,
define the translation operator Tx and the modulation operator Mω on L2(G) by

Tx f (t) = f (x−1t), Mω f (t) = ω(t) f (t),

for f ∈ L2(G) and t ∈ G. They are both clearly unitary operators on L2(G).
The assignment π : (x, ω) 7→ MωTx becomes a projective representation of

G×Ĝ as unitary operators on L2(G). The projectivity is governed by theHeisenberg
2-cocycle c, defined by

c(χ1, χ2) = ω2(x1), (2.2.1)

for χ1 = (x1, ω1), χ2 = (x2, ω2) ∈ G × Ĝ. So, to be more precise

π : G × Ĝ→ U(L2(G))

(x, ω) 7→ MωTx,
(2.2.2)

is a c-projective unitary representation.
Associated to a closed subgroup ∆ ⊆ G × Ĝ is the adjoint subgroup ∆◦. We

define it as

∆
◦ := {χ ∈ G × Ĝ | π(χ)π(λ) = π(λ)π(χ) for all λ ∈ ∆}. (2.2.3)
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Chapter 2. Frames and convolution algebras

It is well known that the adjoint subgroup ∆◦ is isomorphic to the annihilator ∆⊥
through a measure-preserving topological isomorphism. From this we may deduce
that when ∆ is cocompact, ∆◦ is discrete, a fact which is used time and time again
in the thesis.

So far we have introduced quite a few of the fundamental concepts relevant
to the time-frequency analysis used in this thesis. However, we have not really
discussed functions. We will not simply be content with looking at functions in
L2(G). Instead, we want to look at functions with good decay in both time and
frequency in some technical sense. To make sense of this, we consider the short-
time Fourier transform. More specifically, fix g ∈ L2(G). The short-time Fourier
transform with respect to g is the operator Vg : L2(G) → L2(G × Ĝ) defined by

Vg f (χ) = 〈 f , π(χ)g〉L2(G). (2.2.4)

While an interesting and well-studied operator in its own right, we use the short-
time Fourier transform to define the following important function space known as
the Feichtinger algebra. We denote the Feichtinger algebra on G by S0(G), and it
is given by

S0(G) := {g ∈ L2(G) | Vgg ∈ L1(G × Ĝ)}. (2.2.5)

A modern survey on the Feichtinger algebra is found in [64]. It is well known that
elements of S0(G) are continuous, indeed, they are absolutely continuous. For any
g ∈ S0(G) \ {0} we can define a norm on S0(G) by

‖ f ‖S0(G) = ‖Vg f ‖
L1(G×Ĝ)

for f ∈ S0(G). All elements of S0(G) \ {0} induce equivalent norms on S0(G), and
S0(G) becomes a Banach space equipped with any one of these equivalent norms.
In particular, if G is discrete, S0(G) � `1(G). Moreover, S0(G) is in general dense
in both L1(G) and L2(G). The Feichtinger algebra plays a major role in the first
three papers of the thesis. For the time being, however, we use it to make precise
the phrase “good decay in time and frequency”. Indeed, our notion of f ∈ L2(G)
having good decay in time and frequency will simply be that f ∈ S0(G). We see
from the defining relation (2.2.5) that 〈 f , π(χ) f 〉L2(G) decays in an L1-sense as χ
varies over G × Ĝ, that is, over both time and frequency.

The Feichtinger algebra is also of importance as the fundamental identity of
Gabor analysis (or FIGA for short) holds for functions in S0(G). To bemore precise,
let ∆ ⊆ G × Ĝ be a closed cocompact subgroup and let ∆◦ be the corresponding
adjoint subgroup. Then we have∫

∆

〈 f , π(z)g〉L2(G)π(z)h dz = s(∆)−1
∑
z◦∈∆◦

〈h, π(z◦)g〉L2(G)π(z
◦) f (2.2.6)

18



2.2. Time-frequency analysis and Gabor frames

for f , g, h ∈ S0(G), where the integral and sum are interpreted weakly in an L2-
sense. This identity comes into play in a major way in Section 2.3.

We return to the theme of Section 2.1 in that we need to introduce a certain type
of frame important to the first three papers of the thesis, namelyGabor frames. Let
Λ be a lattice (i.e. a discrete and cocompact subgroup) in G× Ĝ, and let g ∈ L2(G).
We may then consider a Gabor system G(g;Λ) defined by

G(g;Λ) = (π(λ)g)λ∈Λ.

We see that Λ plays the role of the index set J in Section 2.1. We say that G(g;Λ)
is a Gabor frame for L2(G) if it is a frame for L2(G). The function g is sometimes
called a window or an atom. Translating (2.1.1) to our current setting, we see that
G(g;Λ) is a Gabor frame exactly when there are positive real numbers C,D > 0
such that

C‖ f ‖2
L2(G)

≤
∑
λ∈Λ

|〈 f , π(λ)g〉L2(G) |
2 ≤ D‖ f ‖2

L2(G)
,

for all f ∈ L2(G). As for module frames we may consider the associated frame
operator. We denote the frame operator associated to G(g;Λ) by Sg,Λ. If g ∈ S0(G),
then it is well known that Sg,Λg ∈ S0(G) as well. Moreover, if G(g;Λ) is a Gabor
frame, then Sg,Λ is invertible, and it is even true that if g ∈ S0(G), then the canonical
dual atom S−1

g,Λg ∈ S0(G)whenΛ is a lattice. This was shown for specific lattices in
R2d in [58], and it was claimed to hold for lattices in phase spaces of arbitrary LCA
groups in the same paper. This claim has been accepted as true in the mathematical
community. Their proofs make heavy use of techniques specific to Gabor analysis.

We could also consider continuous Gabor frames. For this, let ∆ ⊆ G × Ĝ be
a closed cocompact subgroup and let g ∈ L2(G). We say G(g;∆) = (π(z)g)z∈∆
is a continuous Gabor frame for L2(G) if it is weakly measurable and there exist
positive real constants C,D > 0 such that

C‖ f ‖2
L2(G)

≤

∫
∆

|〈 f , π(z)g〉L2(G) |
2 dz ≤ D‖ f ‖2

L2(G)
,

for all f ∈ L2(G). If the upper inequality is satisfied we say G(g;∆) is a Bessel
system. Further, if G(g;∆) is a continuous Gabor frame, then the corresponding
Gabor frame operator

Sg,∆ f =
∫
∆

〈 f , π(z)g〉L2(G)π(z)g dz, (2.2.7)

with the integral interpretedweakly in L2(G), is invertible. Themotivating problem
for Paper C was the following.
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Chapter 2. Frames and convolution algebras

Problem. Suppose G(g;∆) is a Gabor frame for L2(G), potentially continuous, and
suppose g ∈ S0(G). Is it then true that S−1

g,∆g ∈ S0(G), too? And can this be proved
without heavy use of Gabor analytic techniques?

The phrase “heavy use of Gabor analytic techniques” is not precise, but should
be understood in a sense that we wish to use operator algebraic techniques to prove
as much as possible so that it is potentially possible to extend the proofs to other
representations of more general locally compact groups. The answer to the problem
is affirmative, and turns out to be related to spectral invariance and C∗-uniqueness
of the twisted convolution algebra `1(∆◦, c), where c is the Heisenberg 2-cocycle.

To round off this section we present two cornerstone results of Gabor analysis
that become relevant in Paper B in the thesis. First we present the Wexler-Raz
biorthogonality relations. Let ∆ ⊆ G × Ĝ be a closed cocompact subgroup and
let g ∈ L2(G) be such that G(g;∆) is a Gabor frame for L2(G). Suppose there is
h ∈ L2(G) such that

f =
∫
G

〈 f , π(z)g〉π(z)h dz,

for all f ∈ L2(G), where we interpret the integral weakly in L2(G). Then G(h;∆)
is also a Gabor frame for L2(G), and is known as a dual frame of G(g;∆). This is
symmetric in the sense that G(g;∆) is also a dual frame of G(h;∆).
Proposition 2.2.1 (Wexler-Raz biorthogonality relations). Let ∆ ⊆ G × Ĝ be a
closed and cocompact subgroup, and suppose g, h ∈ L2(G). Then the following
are equivalent:

i) G(g;∆) and G(h;∆) are dual frames for L2(G).

ii) 〈g, π(z◦)h〉L2(G) = s(∆)δ0,z◦ for all z◦ ∈ ∆◦, and where s(∆) is the size of ∆
and δ0,z◦ is the Kronecker delta.

To present the duality principle we need to consider Gabor systems not only
over ∆, but also over ∆◦. If G(g;∆◦) is a Gabor system, we denote the analysis
operator by Cg,∆◦ . The duality principle then says the following.

Proposition 2.2.2 (Duality principle). Let ∆ ⊆ G × Ĝ be a closed cocompact
subgroup and let g ∈ L2(G). Then the following are equivalent:

i) G(g;∆) is a Gabor frame for L2(G).

ii) The compositionCg,∆◦◦C∗g,∆◦ : `
2(∆◦) → `2(∆◦) is an isomorphism ofHilbert

spaces.

We show in Paper B in the thesis that the biorthogonality relations, duality
principle, and several other important results of Gabor analysis can be deduced
from an operator algebraic approach by studying Heisenberg modules, which we
introduce in the next section.
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2.3. Heisenberg modules

2.3 Heisenberg modules

At last we may set the stage for most of the operator algebraic reformulations of
Gabor analysis needed in the sequel. This is also the section where we get to
combine some of the concepts from earlier sections and formulate most of the key
problems considered in the papers of the thesis. To do this properly we need to
introduce Heisenberg modules. They were extensively studied in [97] in the case of
the Schwarz-Bruhat space, and the study was extended to the case of the Feichtinger
algebra in [82]. As such, these make for nice references for the following material.

First, fix a second-countable LCA group G and a closed cocompact subgroup
∆ of the phase space G × Ĝ. As in Section 2.2 we choose the corresponding
Plancherel measure on Ĝ and the quotient measure on (G × Ĝ)/∆ such that Weil’s
formula holds.

Let c denote the Heisenberg 2-cocycle on G×Ĝ, and let π : G×Ĝ→ U(L2(G))
be the c-projective unitary representation given by time-frequency shifts, see (2.2.1)
and (2.2.2). Denote by c and π also the restrictions to ∆ ⊆ G × Ĝ. Equipping
S0(∆) with c-twisted convolution and c-twisted involution as we did for L1(G, c),
we obtain a twisted convolution algebra S0(∆, c) which is dense in L1(G, c). We
equip it with any of the equivalent norms coming from g ∈ S0(∆) \ {0}, making
it a Banach ∗-algebra. Then we may turn S0(G) into a left S0(∆, c)-inner product
module in the following way. Let a ∈ S0(∆, c) and f ∈ S0(G). Then the left module
action of S0(∆, c) on S0(G) is given by

(a · f )(x) =
∫
∆

a(z)π(z) f (x) dz, (2.3.1)

for x ∈ G, and this action is continuous. Moreover, if f , g ∈ S0(G), we obtain an
S0(∆, c)-valued inner product •〈 ·, ·〉 : S0(G) × S0(G) → S0(∆, c) by

•〈 f , g〉(z) = 〈 f , π(z)g〉L2(G) (2.3.2)

for z ∈ ∆. While this in itself might be useful to look at, the true machinery
being utilized in the thesis comes from the fact that there is a corresponding right
inner product module structure that interacts nicely with the left one. Just as we
constructed S0(∆, c) we may also construct S0(∆

◦, c), where ∆◦ is given by (2.2.3).
Note the conjugation c of the Heisenberg 2-cocycle. As ∆ is closed and cocompact,
∆◦ is discrete, hence S0(∆

◦, c) � `1(∆◦, c). Let b ∈ `1(∆◦, c) and f ∈ S0(G). We
then obtain a right module action of `1(∆◦, c) on S0(G) by

( f · b)(x) = s(∆)−1
∑
z◦∈∆◦

b(z◦)π(z◦)∗ f (x) (2.3.3)
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for x ∈ G, and this action is continuous. Also, if f , g ∈ S0(G) we obtain an
`1(∆◦, c)-valued inner product 〈·, · 〉• : S0(G) × S0(G) → `1(∆◦, c) by

〈 f , g 〉•(z◦) = 〈π(z◦)g, f 〉, (2.3.4)

for z◦ ∈ ∆◦. Hence S0(G) is both a left and a right inner product module. The
left and right structures are also compatible in the sense that S0(G) becomes an
S0(∆, c)-`1(∆◦, c)-pre-equivalence module. We postpone the technicalities of this
concept to the papers of the thesis. For the purposes of this introduction it suffices
to know that one of the consequences of being an S0(∆, c)-`1(∆◦, c)-pre-equivalence
module is that

•〈 f , g〉 · h = f · 〈g, h 〉• (2.3.5)

for f , g, h ∈ S0(G). Hence we get a glimpse into what is meant by the structures
being compatible, namely that there is an intimate relation between the left inner
product and left action with the right inner product and right action. Indeed, if we
write out (2.3.5) in terms of the above defined module actions and inner products
we see that it is nothing more than the FIGA for S0(G), see (2.2.6).

Now recall from Section 1.1 that we may complete L1(∆, c) to a C∗-algebra
through faithful ∗-representations. As S0(∆, c) is dense in L1(∆, c), they have the
same enveloping C∗-algebra. It turns out that the integrated representation of π
yields a faithful ∗-representation π : S0(∆, c) → B(L2(G)). It is well known that the
resulting C∗-completion is isomorphic to the enveloping C∗-algebra of L1(G, c),
denoted C∗(∆, c). The same can be done for `1(∆◦, c) to obtain C∗(∆◦, c). Then
S0(G) may be completed in the norm

‖ f ‖ := ‖ •〈 f , f 〉‖1/2
C∗(∆,c)

, f ∈ S0(G). (2.3.6)

We denote the completion by E∆(G). This becomes a left Hilbert C∗(∆, c)-module.
However, as S0(G) is an S0(∆, c)-`1(∆◦, c)-pre-equivalence module, the norm de-
fined by (2.3.6) would be the same if we defined it in terms of the C∗(∆◦, c)-valued
inner product, and it turns out E∆(G) is also a right Hilbert C∗(∆◦, c)-module.
Indeed, E∆(G) is an instance of a C∗(∆, c)-C∗(∆◦, c)-equivalence bimodule. Once
again we postpone the technicalities of this concept to the papers of the thesis, but
note that (2.3.5) can be extended to

•〈 f , g〉 · h = f · 〈g, h 〉•, (2.3.7)

for all f , g, h ∈ E∆(G). Moreover, note that S0(G) ⊆ E∆(G), and that the inclusion
is strict for most examples of interest.

When ∆ is closed and cocompact in G × Ĝ, ∆◦ is discrete. Hence there is a
faithful finite trace tr∆◦ on C∗(∆◦, c) given by the extension of

tr∆◦(b) = b(0) (2.3.8)
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for b ∈ `1(∆◦, c), and where 0 is the identity of ∆◦. Using this we may induce a
C-valued inner product on E∆(G) by setting

〈 f , g〉E∆(G) = 〈 f , g 〉•(0). (2.3.9)

Writing this out using (2.3.4) we obtain

〈 f , g〉E∆(G) = 〈 f , g 〉•(0) = 〈π(0)g, f 〉L2(G) = 〈g, f 〉L2(G),

so the induced inner product on E∆(G) is just the inner product on L2(G). Not only
can this be used to realize E∆(G) ⊆ L2(G), but it also lays the groundwork for the
main question of the first paper of the thesis. To expand on this, let f , g ∈ S0(G).
Using (2.3.1), (2.3.2) and (2.3.7) we then obtain

f 〈g, g 〉• =
∫
∆

〈 f , π(z)g〉L2(G)π(z)g dz = Sg,∆ f , (2.3.10)

where Sg,∆ is the Gabor frame operator corresponding to the Gabor system G(g;∆),
see (2.2.7). As the trace tr∆◦ we use to induce an inner product on E∆(G) is
continuous, and the induced inner product is the inner product on L2(G), we can
extend by continuity so that (2.3.10) is true for all f ∈ L2(G). Note that we
specified g ∈ S0(G), and we know that elements of S0(G) are Bessel vectors, i.e.
for g ∈ S0(G), G(g;∆) is a Bessel system. However, for general closed cocompact
∆ ⊆ G × Ĝ it is known that not every L2-function is going to be a Bessel vector,
see e.g. [53, Proposition 6.2.6]. The following natural question arises.

Problem. Suppose ∆ is a closed cocompact subgroup of G× Ĝ, and let g ∈ E∆(G).
Is g a Bessel vector? Equivalently, is Sg,∆ : L2(G) → L2(G) a bounded linear
operator?

This is the main problem of Paper A in the thesis. The question has an
affirmative answer, so elements of the Heisenberg module E∆(G) are always going
to be Bessel vectors.

Knowing that elements of the Heisenberg module E∆(G) can be realized as
functions in L2(G), and are even Bessel vectors, we may ask if (2.3.7) can actually
be written out in terms of (2.2.6) in any meaningful way.

Problem. Let ∆ ⊆ G× Ĝ be a closed cocompact subgroup. Do elements of E∆(G)
satisfy the FIGA? In other words, is it true that∫

∆

〈 f , π(z)g〉L2(G)π(z)h dz = s(∆)−1
∑
z◦∈∆◦

〈h, π(z◦)g〉L2(G)π(z
◦) f (2.3.11)

for f , g, h ∈ E∆(G)?
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We attempt to answer this question in Paper A. The answer is positive if we
make an extra restriction. Due to the technical setup in Paper A we find need for ∆
to be a lattice. In that case (2.3.11) is true for f , g, h ∈ E∆(G).

The identity (2.3.10) can also be rewritten

Θg f = Sg,∆ f

for all f , g ∈ S0(G). Luef observed in [82] that if g ∈ S0(R
d) and Λ ⊆ Rd × R̂d

is a lattice, then G(g;Λ) is a Gabor frame for L2(Rd) if and only if {g} is a
module frame for EΛ(Rd). Indeed, this was proved for so-called multi-window
Gabor frames, meaning it was shown for the Gabor system G(g1, . . . , gk ;Λ) :=
G(g1;Λ) ∪ · · · ∪ G(gk ;Λ) with g1, . . . , gk ∈ S0(G). The following natural question
arises.

Problem. Let ∆ ⊆ G × Ĝ be a closed cocompact subgroup and let g1, . . . , gk ∈

E∆(G). Is it then true that (gi)ki=1 is a module frame for E∆(G) if and only if
G(g1, . . . , gk ;∆) is a (multi-window) Gabor frame for L2(G)?

This problem also has an affirmative answer. Indeed, the difficult part of the
problem is showing that the frame operator is bounded when the elements are in
E∆(G) rather than in S0(G). But we already know this as we know elements of
E∆(G) are Bessel vectors. As a consequencewe get that finite module frames for the
Heisenberg module E∆(G) are exactly multi-window Gabor frames for L2(G) with
windows in the Heisenberg module. This is a powerful link between two concepts
of frames that a priori describe reconstruction properties on Hilbert C∗-modules
over very different C∗-algebras.

Lastly, we describe some of the key problems considered in PaperB in the thesis.
Let Zm denote the group Z/(mZ). We still consider a closed cocompact subgroup
∆ ⊆ G × Ĝ, but we will also regard ∆ as sitting inside G × Zn × Zd × Ĝ × Ẑn × Ẑd
for some n, d ∈ N. In the sequel we will write fi, j instead of f (·, i, j) for f ∈
L2(G × Zn × Zd). Fixing n, d ∈ N we introduce in Paper B a new type of frames
for L2(G × Zn × Zd) called matrix Gabor frames, or, if we want to specify the
dependence on n and d, (n, d)-matrix Gabor frames. The bookkeeping can get a bit
involved, but in short, a function g ∈ L2(G × Zn × Zd) generates an (n, d)-matrix
Gabor frame with respect to ∆ if the collection of time-frequency shifts

G(g;∆) := {π(z)gi, j | z ∈ ∆}i∈Zn, j∈Zd (2.3.12)

is a frame for L2(G × Zn × Zd). Here π : ∆ → U(L2(G)) is the usual projective
unitary representation by time-frequency shifts. It is shown in Paper B that these
generalize multi-window super Gabor frames known from earlier literature, see
e.g. [12, 13, 59, 61, 66]. We note that super Gabor frames are frames of the form
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(2.3.12) where we use n = 1 to make Zn into the trivial group. There are definitely
more motivated and verbose ways of introducing super Gabor frames, but they will
play a very minor role in this thesis.

The reason for the name matrix Gabor frame is due to them arising naturally
from a module frame perspective when lifting Morita equivalence bimodules to
matrixmodules overmatrix algebras overC∗-algebras. More precisely, we consider
E∆(G) as a C∗(∆, c)-C∗(∆◦, c)-equivalence bimodule as before, and we simply lift
this to regard Mn,d(E∆(G)) as an Mn(C∗(∆, c))-Md(C∗(∆◦, c))-equivalence bimod-
ule. So from an operator algebraic standpoint this is quite the simple construction.
However, using the machinery from Paper A we do as mentioned obtain a new type
of Gabor frame generalizing previously considered notions of Gabor frames.

However, the introduction of matrix Gabor frames is merely a corollary of the
results of Paper A as well as the following problem considered in the first half of
Paper B.

Problem. Is it possible to formulate analogues of cornerstone results of Gabor
analysis such as the Wexler-Raz biorthogonality relations, the duality principle and
others for Morita equivalence bimodules?

We do show that this is indeed possible when the equivalence bimodule is
finitely generated and projective over at least one of the C∗-algebras, and the
reformulations are almost trivial in the Hilbert C∗-module setting. In the case of
Heisenberg modules we know we can pass from module frames to Gabor frames
for the Hilbert space induced by the canonical trace, and this does indeed still
hold true for matrix Gabor frames. As matrix Gabor frames generalize previously
considered types of Gabor frames in the literature it becomes natural to ask the
following questions.

Problem. Domatrix Gabor frames satisfy an analogue of theWexler-Raz biorthog-
onality relations? Is there a duality principle for matrix Gabor frames? Do other
cornerstone results regarding Gabor frames carry over?

The answers to these questions are once again positive in the sense that there is
both an analogue of the Wexler-Raz biorthogonality relations, a duality principle,
as well as the fact that some other known results for Gabor frames carry over.
What is new about the approach in Paper B is that the Gabor frames considered are
introduced purely from an operator algebraic point of view. Indeed, most proofs
in the paper make heavy use of the compatibility between the left and right inner
products (2.3.7). Utilizing (2.3.7) makes the proofs of e.g. an analogue of the
Wexler-Raz biorthogonality relations and a duality principle very short when used
in conjunction with main results from Paper A.

25



Chapter 3

Summary of papers

Paper A: Heisenberg modules as function spaces

The first paper builds on the observation that the Heisenberg module E∆(G) can
be realized as a subspace of L2(G), and in the paper we attempt to describe
the Heisenberg module as a function space. We find that when ∆ is closed and
cocompact in G × Ĝ, Heisenberg modules E∆(G) are function spaces eligible for
time-frequency analysis as we prove that their elements are Bessel vectors for ∆,
i.e. that the frame operators with respect to ∆ are bounded operators. Moreover, if
∆ is a lattice, elements of the Heisenberg module satisfy the fundamental identity
of Gabor analysis.

In this paper we also establish the result that a sequence (gi)ki=1 with gi ∈ E∆(G)
generates amodule frame forE∆(G) if and only if the corresponding (multi-window)
Gabor system G(g1, . . . , gk ;∆) is a Gabor frame for L2(G). This extends previous
results in [82] where this was established in the case of g1, . . . , gk in the Feichtinger
algebra S0(G).

Paper B: Gabor duality theory for Morita equivalent C∗-
algebras

The second paper builds upon Paper A in a very direct way. Indeed, knowing
that elements of the Heisenberg module E∆(G) are Bessel vectors for ∆ when ∆
is closed and cocompact in G × Ĝ allows us to do the constructions of this paper
for general elements of E∆(G) rather than for the dense subspace S0(G). In this
paper we first establish analogues of the Wexler-Raz biorthogonality relations, the
duality principle of Gabor analysis, as well as density theorems of Gabor analysis
for certain Morita equivalence bimodules. Using the machinery from Paper A we
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can transfer the results to corresponding results for L2(G). Moreover, from the
point of view of Morita equivalence bimodules it becomes very natural to consider
frames for matrix modules over matrix algebras over C∗-algebras. Applying the
machinery of PaperA to thesematrixmoduleswe obtain a new type ofGabor frames
called matrix Gabor frames, and they generalize the multi-window super Gabor
frames considered in the literature previously. The Wexler-Raz biorthogonality
relations, the duality principle and the density theorems for Morita equivalence
bimodules carry over almost directly to establish the corresponding results for
matrix Gabor frames, yielding these results with very little use of standard Gabor
analytic techniques.

PaperC: Spectral invariance of ∗-representations of twisted
convolution algebras with applications in Gabor analysis

The paper’smain result concerns spectral invariance of twisted convolution algebras
when realizing them as subalgebras of bounded operators on Hilbert spaces through
faithful ∗-representations. We find that for a locally compact group G with a
continuous 2-cocycle c, we can guarantee spectral invariance of L1(G, c) in B(H)
for any faithful ∗-representation π : L1(G, c) → B(H) if L1(Gc) is symmetric and
C∗-unique. This is a useful result as symmetry and C∗-uniqueness of (untwisted)
convolution algebras, such as L1(Gc), have been studied in the literature before. As
part of proving this result we obtain the result that L1(G, c) is C∗-unique if L1(Gc)

is C∗-unique, which is of independent interest as there are very few results in
the available literature concerning C∗-uniqueness of twisted convolution algebras.
These results allow us to prove a result in Gabor analysis concerning the regularity
of the canonical dual atom and the canonical tight atom related to a Gabor atom in
Feichtinger’s algebra. More precisely, if G is a locally compact abelian group, ∆
is a closed cocompact subgroup of G × Ĝ, and g ∈ S0(G) generates a Gabor frame
G(g;∆) for L2(G), is it true that the canonical dual atom S−1g and the canonical tight
atom S−1/2g are also in S0(G)? Here S denotes the frame operator associated to
G(g;∆). Using the previously proved results of this paper we show that the answer
to this question is affirmative. Moreover, we do so without the use of certain
techniques specific to the setting of Gabor analysis. In doing so, the approach used
may be adaptable to ∗-representations of other (twisted) convolution algebras.

Paper D: C∗-uniqueness results for groupoids

Building on some results of Paper C, we describe a sufficient condition for C∗-
uniqueness for a second-countable locally compact Hausdorff étale groupoid. More

27



Chapter 3. Summary of papers

precisely, we find a condition guaranteeing the C∗-uniqueness of the I-norm com-
pletion of Cc(G, σ), denoted by `1(G, σ), where G is a second-countable locally
compact Hausdorff étale groupoid and σ is a continuous 2-cocycle for G. Using
recently proved results in the theory of étale groupoids we obtain sufficient condi-
tions for this by posing the analogous question for `1(Iso(G)◦, σ), where Iso(G)◦ is
the interior of the isotropy subgroupoid of G. We further find sufficient conditions
for C∗-uniqueness for `1(Iso(G)◦, σ) by instead considering C∗-uniqueness of the
twisted convolution algebras of the individual fibers of Iso(G)◦. All in all we obtain
a result yielding C∗-uniqueness of `1(G, σ) in terms of twisted convolution alge-
bras of certain associated discrete groups. This allows us to describe some classes
of C∗-unique groupoids by applying results from Paper C. Moreover, we find an
example of a non-amenable groupoid which is C∗-unique, as well as deducing C∗-
uniqueness of a group appearing as a wreath product by reformulating the question
in terms of C∗-uniqueness of a groupoid.
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Paper A

Heisenberg modules as function
spaces

Abstract
Let ∆ be a closed, cocompact subgroup of G × Ĝ, where G is a second
countable, locally compact abelian group. Using localization of Hilbert
C∗-modules, we show that the Heisenberg module E∆(G) over the twisted
group C∗-algebra C∗(∆, c) due to Rieffel can be continuously and densely
embedded into the Hilbert space L2(G). This allows us to characterize a
finite set of generators for E∆(G) as exactly the generators of multi-window
(continuous) Gabor frames over ∆, a result which was previously known
only for a dense subspace of E∆(G). We show that E∆(G) as a function space
satisfies two properties that make it eligible for time-frequency analysis: Its
elements satisfy the fundamental identity of Gabor analysis if ∆ is a lattice,
and their associated frame operators corresponding to ∆ are bounded.

A.1 Introduction

Gabor analysis concerns sets of time-frequency shifts of functions. The field has its
roots in a paper by the electrical engineer and physicist Dennis Gabor [48]. In this
paper, the author made the claim that one could obtain basis-like representations of
functions in L2(R) in terms of the set {e2πilxφ(x− k) : k, l ∈ Z}, where φ denotes a
Gaussian. Today, one of the central problems of the field remains understanding the
spanning and basis-like properties of sets of the form {e2πiβlxη(x − αk) : k, l ∈ Z}
for a given η ∈ L2(R) and α, β > 0.

Although Gabor analysis is usually carried out for functions of one or several
real variables, the nature of time-frequency shifts makes it possible to generalize
many aspects of the theory to the setting of a locally compact abelian group G [52].
In this setting, elements of G represent time, while elements of the Pontryagin dual
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Ĝ represent frequency. If η ∈ L2(G), then a time-frequency shift of η is a function
of the form π(x, ω)η(t) = ω(t)η(t − x) for t, x ∈ G and ω ∈ Ĝ. A Gabor system
with generator η will in general be any collection of time-frequency shifts of η. In
this paper, we will allow continuous Gabor systems over any closed subgroup ∆ of
the time-frequency plane G× Ĝ, which will be of the form (π(z)η)z∈∆. We say that
such a system forms a Gabor frame if it is a continuous frame for L2(G), which
means that there exist C,D > 0 such that

C‖ξ‖22 ≤
∫
∆

|〈ξ, π(z)η〉|2 dz ≤ D‖ξ‖22

for every ξ ∈ L2(G). Here, we integrate with respect to a fixed Haar measure on ∆.
More generally, if η1, . . . , ηk ∈ L2(G), one calls (π(z)ηj)z∈∆,1≤ j≤k a multi-window
Gabor frame if there exist C,D > 0 such that

C‖ξ‖22 ≤
k∑
j=1

∫
∆

|〈ξ, π(z)ηj〉|2 dz ≤ D‖ξ‖22

for all ξ ∈ L2(G). If∆ is a discrete subgroup ofG×Ĝ, one recovers the usual notion
of a (discrete) regular Gabor frame. Here, regular means that the discrete subset
∆ of G × Ĝ has the structure of a subgroup. A basic fact of Gabor frame theory
is that (π(z)η)z∈∆ is a Gabor frame if and only if the associated frame operator
Sη : L2(G) → L2(G) is invertible. The operator is given weakly by

Sηξ =
∫
∆

〈ξ, π(z)η〉π(z)η dz

for ξ ∈ L2(G).

In [66, 82, 83], Luef and later Jakobsen and Luef discovered that the duality
theory of regular Gabor frames is closely related to a class of imprimitivity bi-
modules constructed by Rieffel [97]. These imprimitivity bimodules are known as
Heisenberg modules. In general, a Hilbert C∗-module over a C∗-algebra A can be
thought of as a generalized Hilbert space where the field of scalars C is replaced
with A, and where the inner product takes values in A rather than C. Hilbert C∗-
modules were introduced by Kaplansky in [70], and have since become essential in
many parts of operator algebras and noncommutative geometry [29]. An imprim-
itivity A-B-bimodule is both a left Hilbert C∗-module over A and a right Hilbert
C∗-module over B, with compatibility conditions on the left and right structures.
If there exists an imprimitivity A-B-bimodule, then the C∗-algebras A and B are
called Morita equivalent, a notion first described by Rieffel in [95, 96]. Morita
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equivalent C∗-algebras share many important properties, such as representation
theory and ideal structure.

For a closed subgroup ∆ of G × Ĝ, the Heisenberg module E∆(G) can be
constructed as a norm completion of the Feichtinger algebra S0(G) [82]. The
latter is an important space of functions in time-frequency analysis [39]. The
Heisenberg module implements the Morita equivalence between the twisted group
C∗-algebras C∗(∆, c) and C∗(∆◦, c). Here, ∆◦ denotes the adjoint subgroup of ∆,
which consists of all pointsw ∈ G×Ĝ for which π(w) commutes with π(z) for every
z ∈ ∆. Readers familiar with Gabor analysis know that the adjoint subgroup plays
a central role in results such as the fundamental identity of Gabor analysis, and this
result can indeed be inferred directly from the structure of the Heisenberg modules.
An important class of examples come from when G = Rn and ∆ is a lattice in
G×Ĝ � R2n, in which case the twisted groupC∗-algebrasC∗(∆, c) andC∗(∆◦, c) are
both noncommutative 2n-tori. Indeed, these examples were the original motivation
for the construction of Heisenberg modules in [97]. However, the construction has
also been applied in other contexts, such as in the construction of finitely generated
projective modules over noncommutative solenoids [37, 75, 76].

For a general left Hilbert C∗-module E over a C∗-algebra A, one defines rank-
one operators in analogy with the Hilbert space case. Specifically, if η, γ ∈ E , the
rank-one operator Θη,γ : E → E is given by

Θη,γξ = •
〈
ξ, η

〉
γ

for ξ ∈ E . Here, •〈·, ·〉 denotes the A-valued inner product on E . A central
observation in [82] is that for η ∈ S0(G), the rank-one operator Θη,η associated
to the Heisenberg module E∆(G) agrees with the Gabor frame operator Sη on a
dense subspace of E∆(G), namely the Feichtinger algebra S0(G). This observation
has an important consequence: It allows a finite generating set of the Heisenberg
module coming from the dense subspace S0(G) to be characterized exactly as the
generators of a multi-window Gabor frame over ∆ [66, p. 14]. Moreover, such
a finite generating set exists (that is, E∆(G) is finitely generated) if and only if ∆
is cocompact in G × Ĝ [66, Theorem 3.9]. However, since E∆(G) is an abstract
completion of S0(G), its elements can a priori not be interpreted as functions in
any sense. Therefore, it is not straightforward to obtain a similar characterization
for generators of E∆(G) not necessarily in S0(G).

Nonetheless, it was recently remarked in [11] that E∆(G) can be continuously
embedded into L2(G). In the present paper, we elaborate on this embedding, and
show how it arises naturally from the notion of localization of Hilbert C∗-modules
as discussed in [74]. The important extra structure on the Heisenberg module when
localizing is a faithful trace on theC∗-algebraC∗(∆, c). In the case that ∆ is a lattice
in G × Ĝ, we use the canonical tracial state on C∗(∆, c) (see e.g. [19, p. 951]). If
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∆ is only cocompact, we have to work a bit more, see Proposition A.3.1. It was
already observed in [82] that this trace plays an important role when connecting
Heisenberg modules and Gabor frames. However, the consequence that the trace
makes it possible to embed E∆(G) continuously into L2(G) was first observed in
[11].

Furthermore, in the language of localization, the rank-one operator Θη,η for
η ∈ E∆(G) extends uniquely to a bounded linear operator on L2(G), and we
show in this paper that the extension is exactly the Gabor frame operator Sη
(Theorem A.3.15). As a consequence, we generalize the equivalence between
generators of Heisenberg modules and generators of multi-window Gabor frames
to the case when the generators belong to E∆(G) (Theorem A.3.16). We summarize
some of our main results in the following.

Theorem A (cf. Proposition A.3.12, Theorem A.3.15, Theorem A.3.16). Let G be
a second countable, locally compact abelian group, and let∆ be a closed, cocompact
subgroup of G × Ĝ. Denote by B∆(G) the subspace of L2(G) consisting of those
η ∈ L2(G) for which (π(z)η)z∈∆ is a Bessel family for L2(G), that is,∫

∆

|〈ξ, π(z)η〉|2 dz < ∞

for every ξ ∈ L2(G). This is a Banach space with respect to the norm

‖η‖B∆(G) = ‖Sη ‖
1/2 = sup

‖ξ ‖2=1

(∫
∆

|〈ξ, π(z)η〉|2 dz
)1/2

.

The following hold:

1. The Heisenberg module E∆(G) has a concrete description as the completion
of S0(G) in the Banach space B∆(G). The actions are given in Proposi-
tion A.3.12.

2. For η ∈ E∆(G), the Heisenberg module rank-one operator Θη : E∆(G) →
E∆(G) extends to the Gabor frame operator Sη : L2(G) → L2(G).

3. Let η1, . . . , ηk ∈ E∆(G). Then {η1, . . . , ηk} is a generating set for E∆(G) as
a left C∗(∆, c)-module if and only if (π(z)ηj)z∈∆,1≤ j≤k is a multi-window
Gabor frame for L2(G).

Part (iii) of Theorem A gives a complete description of finite generating sets
of the Heisenberg modules due to Rieffel, showing that they are the generators of a
multi-window Gabor frame. Conversely, multi-window Gabor frames over ∆ with
generators in E∆(G) give rise to finite generating sets for E∆(G).
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Note also that part (i) of Theorem A implies that (π(z)η)z∈∆ is a Bessel fam-
ily for L2(G) whenever η ∈ E∆(G). Consequently, the Gabor analysis operator
Cη : L2(G) → L2(∆), synthesis operator Dη : L2(∆) → L2(G), and frame operator
Sη : L2(G) → L2(G) associated to η over ∆ are all bounded linear operators. This
is an attractive property of E∆(G) as a function space in time-frequency analysis, at
least when focusing on the subgroup ∆. We also show that elements of the Heisen-
berg module satisfy the fundamental identity of Gabor analysis over the subgroup
∆ when it is a lattice (Proposition A.3.18).

We also comment on the assumption in TheoremA that∆ is cocompact. This is
necessary for our localization techniques to work, see Proposition A.3.1. However,
as shown in [65, Theorem 5.1], the existence of a multi-window Gabor frame over
∆ implies that the quotient (G × Ĝ)/∆ is compact, i.e. ∆ is a cocompact subgroup
of G × Ĝ. The assumption is therefore mild.

The paper is structured as follows: In Section A.2, we cover the necessary
background material on frames in Hilbert C∗-modules, continuous Gabor frames
and Heisenberg modules. In Section A.3, we introduce the notion of the localiza-
tion of a Hilbert C∗-module with respect to a (possibly unbounded) trace on the
coefficient algebra, and compute the localization of the Heisenberg module. We
then give applications to Gabor analysis.
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A.2 Preliminaries

A.2.1 Frames in Hilbert C∗-modules

In the interest of brevity, we will assume basic knowledge about C∗-algebras,
Hilbert C∗-modules, imprimitivity bimodules and adjointable operators between
such modules. We mention [74, 93] as references. Instead, we dedicate this section
to introduce module frames.

The A-valued inner product of a left Hilbert A-module will in general be
denoted by •〈·, ·〉, while the A-valued inner product of a right Hilbert A-module
will be denoted by 〈·, ·〉•. We often refer to A as the coefficient algebra of E .
If E and F are left Hilbert A-modules, we use LA(E,F) to denote the Banach
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space of adjointable operators E → F , or just L(E,F) when there is no chance of
confusion. As is standard, we write L(E) = LA(E) for the C∗-algebra LA(E, E),
and K(E) = KA(E) for the (generalized) compact operators on E .

For an (at most) countable index set J, we denote by `2(J, A) the left Hilbert
A-module of all sequences (aj)j∈J in A for which the sum

∑
j∈J aja∗j converges in

A-norm, with A-valued inner product

•

〈
(aj)j∈J, (bj)j∈J

〉
=

∑
j∈J

ajb∗j .

There is an analogous way to make `2(J, A) into a right Hilbert A-module, by re-
placing ajb∗j with a∗jbj in the definition. Wewill work with left modules throughout
this section, but obvious modifications can be made for the case of right modules
as well.

We now define module frames in Hilbert A-modules, introduced in [47] in the
case where A is unital. For a treatment of the possibly non-unital case, see [6].

Definition A.2.1. Let A be a C∗-algebra and E be a left Hilbert A-module. Fur-
thermore, let J be some countable index set and let (ηj)j∈J be a sequence in E . We
say (ηj)j∈J is a module frame for E if there exist constants C,D > 0 such that

C•
〈
ξ, ξ

〉
≤

∑
j∈J

•

〈
ξ, ηj

〉
•

〈
ηj, ξ

〉
≤ D•

〈
ξ, ξ

〉
(A.2.1)

for all ξ ∈ E , and the middle sum converges in norm. The constants C and D are
called lower and upper frame bounds, respectively.

Remark A.2.2. If A = C in the above definition then E is a Hilbert space, and we
recover the definition of frames in Hilbert spaces due to Duffin and Schaeffer [34].

RemarkA.2.3. Wewill never treat frames over different index sets simultaneously,
so to ease notation we will sometimes leave the index set implied.

Let (ηj)j∈J be a sequence in E that satisfies the upper frame bound condition
in Definition A.2.1 but not necessarily the lower frame bound condition. Such a
sequence is called a Bessel sequence and every constant D > 0 for which (A.2.1) is
true is called a Bessel bound for (ηj)j∈J . To a Bessel sequence (ηj)j∈J we associate
the module analysis operator Φ = Φ(η j ) j : E → `2(J, A) given by

Φξ = (•
〈
ξ, ηj

〉
)j∈J (A.2.2)

for ξ ∈ E . It is an adjointable A-linear operator, and its adjointΨ = Ψ(η j ) j is known
as the module synthesis operator, and is given by

Ψ((aj)j) =
∑
j∈J

aj · ηj, (A.2.3)
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for (aj)j ∈ `
2(J, A). Now let (γj)j∈J be another Bessel sequence. We then define

the module frame-like operator Θ ∈ LA(E) by Θ = Θ(η j ) j,(γj ) j := Ψ(γj ) jΦ(η j ) j .
That is, for all ξ ∈ E we have

Θξ =
∑
j∈J

•

〈
ξ, ηj

〉
· γj . (A.2.4)

In case (ηj)j = (γj)j we write Θ(η j ) j := Θ(η j ) j,(η j ) j and call it the module frame
operator (associated to (ηj)j). Since Θ(η j ) j = Φ

∗
(η j ) j
Φ(η j ) j , we see that Θ(η j ) j is

always a positive operator.
A special case of the above situation is when we consider a sequence (η)

consisting of a single element η ∈ E , i.e. |J | = 1. It follows by the Cauchy-Schwarz
inequality for Hilbert C∗-modules that such a sequence is automatically a Bessel
sequence. WewriteΦη = Φ(η),Ψη = Ψ(η),Θη,γ = Θ(η),(γ) for another sequence (γ)
where γ ∈ E , andΘη = Θ(η). Note that in this case,Φη ∈ LA(E, A),Ψη ∈ LA(A, E)
and Θη,γ ∈ LA(E, E) are given by

Φηξ = •
〈
ξ, η

〉
Ψηa = a · η

Θη,γξ = •
〈
ξ, η

〉
· γ

for ξ ∈ E , a ∈ A. Also, for a finite Bessel sequence (η1, . . . , ηk), we have
that Φ(η j )

k
j=1
=

∑k
j=1Φη j , and similar equalities for the synthesis and frame-like

operators. The operator Θη,γ is often called a rank-one operator, and we have the
following proposition, which is immediate by [93, Lemma 2.30, Proposition 3.8].

Proposition A.2.4. Let η be an element of a full left Hilbert A-module E . Then

‖η‖E = ‖Θη ‖LA(E).

More generally, if E is an imprimitivity A-B-bimodule, then

‖•
〈
ξ, η

〉
‖A = ‖

〈
η, ξ

〉
•‖B

for every ξ, η ∈ E . Hence, the norm of E as a left Hilbert A-module coincides with
the norm of E as a right Hilbert B-module.

The frame property of a Bessel sequence (ηj)j∈J can be characterized in terms
of the invertibility of the associated frame operator Θ(η j ) j . For a proof, see [6,
Theorem 1.2].

Proposition A.2.5. Let (ηj)j∈J be a Bessel sequence in E . Then the frame operator
Θ(η j ) j associated to (ηj)j is invertible if and only if (ηj)j is a module frame for E .
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The following proposition shows that finite module frames are nothing more
than (algebraic) generating sets, and conversely.

Proposition A.2.6. Let E be a left Hilbert A-module, and let η1, . . . , ηk ∈ E . Then
(η1, . . . , ηk) is a module frame for E if and only if it is a generating set for E , i.e.
for every ξ ∈ E there exist coefficients a1, . . . , ak ∈ A such that

ξ =

k∑
j=1

aj · ηj .

Proof. Let Θ be the module frame operator corresponding to (ηj)j . If (ηj)j is a
frame forE , then by [6, Theorem1.2] one has the expansion ξ =

∑k
j=1 •

〈
ξ,Θ−1ηj

〉
·ηj

for every ξ ∈ E . This shows that (ηj)j is a generating set for E .
We nowprove the converse. Denote byΦ : E → Ak themapΦξ = (•

〈
ξ, ηj

〉
)k
j=1.

This is an adjointable A-module map, with Φ∗(aj)
k
j=1 =

∑k
j=1 ajηj . By assumption

Φ∗ is a surjection. [74, Theorem 3.2] then gives that the image of Φ is a com-
plementable submodule of Ak . The usual Hilbert space argument then gives that
Φ∗Φ : E → E is invertible, and it follows from Proposition A.2.5 that (η1, . . . , ηk)

is a module frame for E .
�

A.2.2 Gabor analysis on locally compact abelian groups

For the rest of the paper (unless stated otherwise), G will denote a second countable,
locally compact abelian group with group operation written additively and with
identity 0 ∈ G, and ∆ will denote a closed subgroup of the time-frequency plane
G × Ĝ. We fix a Haar measure on G and equip Ĝ with the dual measure [46,
Theorem 4.21]. Furthermore, we pick a Haar measure on ∆, and let (G × Ĝ)/∆
have the unique measure such that Weil’s formula holds [65, equation (2.4)]. We
can then associate to ∆ the quantity s(∆) = µ((G × Ĝ)/∆), known as the size of
∆ [65, p. 235]. Here µ denotes the chosen Haar measure. The size of ∆ is finite
precisely when (G × Ĝ)/∆ is compact, that is, ∆ is cocompact in G × Ĝ.

Given x ∈ G and ω ∈ Ĝ, we define the translation operator Tx and modulation
operator Mω on L2(G) by

(Txξ)(t) = ξ(t − x), (Mωξ)(t) = ω(t)ξ(t)

for ξ ∈ L2(G) and t ∈ G. The translation and modulation operators are unitary
linear operators on L2(G). Moreover, a time-frequency shift is an operator of the
form π(x, ω) = MωTx for x ∈ G and ω ∈ Ĝ.
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The adjoint subgroup of ∆, denoted by ∆◦, is the closed subgroup of G × Ĝ
given by

∆
◦ = {w ∈ G × Ĝ : π(z)π(w) = π(w)π(z) for all z ∈ ∆}.

We use the identification of ∆◦ with ((G × Ĝ)/∆)̂ in [65, p. 234] to pick the dual
measure on∆◦ corresponding to themeasure on (G×Ĝ)/∆ induced from the chosen
measure on ∆. If ∆ is cocompact in G × Ĝ, then ∆◦ is discrete, and the induced
measure on ∆◦ will be the counting measure scaled by the constant s(∆)−1 [66,
equation (13)].

We consider the two following important examples:

Example A.2.7. Suppose ∆ is a lattice in G × Ĝ, namely a discrete, cocompact
subgroup of G × Ĝ. Then ∆◦ is also a lattice in G × Ĝ [97, Lemma 3.1]. In this
situation, we will usually equip ∆ with the counting measure. The size of ∆ is then
the measure of any fundamental domain for ∆ in G × Ĝ [65, Remark 1]. Since ∆
in particular is cocompact, the measure on ∆◦ will not be the counting measure in
general, but rather the counting measure scaled by s(∆)−1.

Example A.2.8. Let ∆ = G× Ĝ. ∆ is then cocompact in G× Ĝ, since (G× Ĝ)/∆ is
trivial. The natural choice of measure on ∆ in this situation is the product measure
coming from the chosen measure on G and the dual measure on Ĝ. The induced
measure on ∆◦ = {0} is then the normalized measure assigning the value 1 to {0}.

A.2.3 Gabor frames.

We will need a continuous version of Gabor frames, and so we cannot treat our
Gabor frames as a special case of Definition A.2.1. However, note the similarities
between the definitions and results given here and in Section A.2.1.

Given η ∈ L2(G), the family G(η;∆) = (π(z)η)z∈∆ is called a Gabor system
over ∆ with generator η. More generally, given η1, . . . , ηk ∈ L2(G), the family
G(η1, . . . , ηk ;∆) = (π(z)ηj)z∈∆,1≤ j≤k is called a multi-window Gabor system over
∆ with generators η1, . . . , ηk .

The multi-window Gabor system G(η1, . . . , ηk ;∆) is called a multi-window
Gabor frame if it is a (continuous) frame [4, 65, 69] for L2(G) in the sense that
both of the following hold:

1. The familyG(η1, . . . , ηk ;∆) isweaklymeasurable, that is, for every ξ ∈ L2(G)
and each 1 ≤ j ≤ k, the map z 7→ 〈ξ, π(z)ηj〉 is measurable.

2. There exist positive constants C,D > 0 such that for all ξ ∈ L2(G) we have
that

C‖ξ‖22 ≤
k∑
j=1

∫
∆

|〈ξ, π(z)ηj〉|2 dz ≤ D‖ξ‖22 . (A.2.5)
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The numbers C and D are called lower and upper frame bounds respectively.
We may also refer to the upper frame bound as a Bessel bound in analogy with
Section A.2. If the family G(η1, . . . , ηk ;∆) is weakly measurable and has an upper
frame bound but not necessarily a lower frame bound, we call it a Bessel family. A
(single-window) Gabor system which is a frame is called a Gabor frame.

The analysis operator associated to a Bessel family (π(z)η)z∈∆ is the bounded
linear operator Cη : L2(G) → L2(∆) given by

Cηξ = (〈ξ, π(z)η〉)z∈∆ (A.2.6)

for ξ ∈ L2(G). Its adjoint Dη : L2(∆) → L2(G) is called the synthesis operator
and is given weakly by

Dη(cz)z∈∆ =
∫
∆

czπ(z)η dz (A.2.7)

for (cz)z∈∆ ∈ L2(∆). The frame-like operator associated to two Bessel families
G(η;∆) and G(γ;∆) is the operator Sη,γ = DγCη which is given weakly by

Sη,γξ =
∫
∆

〈ξ, π(z)η〉π(z)γ dz (A.2.8)

for ξ ∈ L2(G). In particular, the frame operator associated to the Bessel family
G(η;∆) is the operator Sη := Sη,η . This is a positive operator.

IfG(η1, . . . , ηk ;∆) is amulti-windowGaborBessel family, then its analysis, syn-
thesis and frame operators are given respectively by C =

∑k
j=1 Cη j , D =

∑k
j=1 Dη j

and S =
∑k

j=1 Sη j .
Note how the following proposition is analogous to Proposition A.2.5. The

result is well-known in frame theory.

Proposition A.2.9. Let η1, . . . , ηk ∈ L2(G) be such that G(η1, . . . , ηk ;∆) is a Bessel
family for L2(G). Then G(η1, . . . , ηk ;∆) is a multi-window Gabor frame if and only
if the associated frame operator S =

∑k
j=1 Sη j is invertible on L2(G).

The Feichtinger algebra S0(G) is the set of ξ ∈ L2(G) for which∫
G×Ĝ

|〈ξ, π(z)ξ〉| dz < ∞. (A.2.9)

See [64] for a comprehensive introduction to S0(G). For us, the Feichtinger algebra
will play a key role in the construction of Heisenberg modules as in [82], see
Proposition A.2.12. Note that in the original paper [97], the Schwartz-Bruhat
space S(G) was used instead. The Schwartz-Bruhat space has a more technical
definition. Although it will not be important to us, we mention that the Feichtinger
algebra has a natural Banach space structure [39, Theorem 1].
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Proposition A.2.10. The following properties hold for the Feichtinger algebra:

1. If η ∈ S0(G), then G(η;∆) is a Bessel family for L2(G).

2. If G is discrete, then S0(G) = `1(G).

For a proof of these results, see [65, Corollary A.5] and [64, Lemma 4.11].

A.2.4 Twisted group C∗-algebras and Heisenberg modules

For themoment, let∆ be a general second countable, locally compact abelian group.
A (normalized) continuous 2-cocycle on ∆ is a continuous map c : ∆×∆→ T that
satisfies the following two identities:

1. For every z1, z2, z3 ∈ ∆ we have that

c(z1, z2)c(z1 + z2, z3) = c(z1, z2 + z3)c(z2, z3). (A.2.10)

2. If 0 denotes the identity element of ∆, then

c(0, 0) = 1. (A.2.11)

Note that if c is a continuous 2-cocycle, then its pointwise complex conjugate c is
a continuous 2-cocycle as well.

Given a continuous 2-cocycle c on ∆, one can equip the Feichtinger algebra
S0(∆) with a multiplication and involution as follows: For a, b ∈ S0(∆) and z ∈ ∆,
one defines

a ∗ b(z) =
∫
∆

c(w, z − w)a(w)b(z − w) dw (A.2.12)

a∗(z) = c(z,−z)a(−z). (A.2.13)

The C∗-enveloping algebra of S0(∆, c) is called the c-twisted group C∗-algebra
of ∆ and is denoted by C∗(∆, c). Note that this definition is equivalent to the usual
definition of C∗(∆, c) as the C∗-enveloping algebra of L1(∆, c), as S0(∆, c) is dense
in L1(∆, c) and the L1-norm dominates the universal C∗-norm on L1(∆, c).

Let H be a Hilbert space, and denote by U(H) the unitary operators on H. A
map π : ∆→ U(H) is called a c-projective unitary representation of ∆ on H if the
following two properties hold:

1. π is strongly continuous, i.e. for every ξ ∈ H, the map ∆ → H, z 7→ π(z)ξ
is continuous.
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2. For every z,w ∈ ∆, we have that

π(z)π(w) = c(z,w)π(z + w). (A.2.14)

The twisted group C∗-algebra C∗(∆, c) captures the c-projective unitary represen-
tation theory of ∆ in the following sense: For every c-projective unitary representa-
tion π : ∆→ U(H) on a Hilbert space H, there is a nondegenerate ∗-representation
π : C∗(∆, c) → L(H) which for a ∈ L1(∆, c) is given weakly by

π(a) =
∫
∆

a(z)π(z) dz. (A.2.15)

The above representation is called the integrated representation of π. Conversely, if
Π : C∗(∆, c) → L(H) is any nondegenerate ∗-representation of C∗(∆, c) on H, then
there exists a unique c-projective unitary representation π : ∆ → U(H) such that
π = Π. This correspondence can be seen as a consequence of e.g. [88, Proposition
2.7].

Note also that if π is a c-projective unitary representation, then π∗ defined by
π∗(z) = π(z)∗ is c-projective. This follows from taking the adjoint of both sides of
(A.2.14) (it is essential that we are working with abelian groups in this situation).

When ∆ is discrete, we have by Proposition A.2.10 2 that S0(∆, c) � `1(∆, c). If
we equip ∆ with the counting measure, there is a canonical tracial state on C∗(∆, c)
[19, p. 951]. On the dense ∗-subalgebra `1(∆, c), it is given by

tr(a) = a(0) (A.2.16)

for a ∈ `1(∆, c).
We now return to the situation where G is a second countable, locally compact

abelian group, and ∆ is a closed subgroup of G × Ĝ. The map c : ∆×∆→ T given
by

c((x, ω), (y, τ)) = τ(x) (A.2.17)

for (x, ω), (y, τ) ∈ ∆ is a continuous 2-cocycle on ∆ called the Heisenberg 2-
cocycle [97, p. 263]. Moreover, the time-frequency shifts π(x, ω) = MωTx define
a c-projective unitary representation of G × Ĝ on L2(G), and so we have that

π(x, ω)π(y, τ) = τ(x)π(x + y, ωτ).

This representation is often called the Heisenberg representation. Restricting to
the closed subgroup ∆ of G × Ĝ, we obtain a c-projective unitary representation of
∆ on L2(G). We denote the restriction by π∆. This representation then induces a
∗-representation of C∗(∆, c) on L2(G), which we also (by slight abuse of notation)
denote by π∆. We have the following result, see [97, Proposition 2.2].

44



A.3. Results

Proposition A.2.11. The integrated representation π∆ : C∗(∆, c) → L(L2(G)) is
faithful, i.e. π∆(a) = 0 implies a = 0 for all a ∈ C∗(∆, c).

In the following proposition, we give the definition of Heisenberg modules.
For a proof, see the proof of [66, Theorem 3.4] or Rieffel’s arguments from [97]
which are similar.

Proposition A.2.12. Let G be a locally compact abelian group, and let ∆ be a
closed subgroup of G × Ĝ, both with chosen Haar measures. Equip ∆◦ with the
Haar measure determined as in Section A.2.2. TheHeisenberg module E∆(G) is an
imprimitivityC∗(∆, c)-C∗(∆◦, c)-module obtained as a completion of the Feichtinger
algebra S0(G). The actions and inner products are given densely as follows:

1. If a ∈ S0(∆, c), b ∈ S0(∆
◦, c) and ξ ∈ S0(G), then a · ξ, ξ · b ∈ S0(G), with

a · ξ =
∫
∆

a(z)π(z)ξ dz, ξ · b =
∫
∆◦

b(w)π(w)∗ξ dw. (A.2.18)

2. If ξ, η ∈ S0(G), then •
〈
ξ, η

〉
∈ S0(∆, c) and

〈
ξ, η

〉
• ∈ S0(∆

◦, c), with

•

〈
ξ, η

〉
(z) = 〈ξ, π(z)η〉,

〈
ξ, η

〉
•(w) =

〈
π(w)η, ξ

〉
(A.2.19)

for z ∈ ∆ and w ∈ ∆◦.

We can rewrite the left and right actions of Proposition A.2.12 as follows:
Since π : G × Ĝ→ L(L2(G)) is a c-projective unitary representation, it follows
that π∗ is c-projective. We restrict π and π∗ to ∆ and ∆◦ respectively and obtain the
representations π∆ and π∗

∆◦
. Passing to the integrated representations, we obtain

∗-representations of C∗(∆, c) and C∗(∆◦, c) which we also denote by π∆ and π∗
∆◦

respectively. We can then write the left and right module actions given in (A.2.18)
as

a · ξ = π∆(a)ξ, ξ · b = π∗
∆◦
(b)ξ (A.2.20)

for ξ ∈ S0(G), a ∈ S0(∆, c) and b ∈ S0(∆
◦, c).

A.3 Results

A.3.1 Localization of Hilbert C∗-modules.

We will use localization of Hilbert C∗-modules with respect to positive linear
functionals as defined in [74, p. 7]. Localization is a technique reminiscent of the
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GNS construction. It uses a positive linear functional on the coefficient algebra of
a Hilbert C∗-module to embed the module continuously into a Hilbert space. The
authors are not aware of many uses of localization in the literature, but an example
is found in [68]. We will focus exclusively on the case of faithful traces, but we will
need a version for (possibly) unbounded traces, which we develop after reviewing
the case of finite faithful traces.

Let tr : A→ C denote a finite trace on A, i.e. a positive linear functional on A
that satisfies tr(a∗a) = tr(aa∗) for all a ∈ A. Assume also that tr is faithful, that is,
tr(a∗a) = 0 implies a = 0 for all a ∈ A. If E is a left Hilbert A-module, it is easily
verified that

〈ξ, η〉tr = tr(•
〈
ξ, η

〉
) (A.3.1)

for ξ, η ∈ E defines a (C-valued) inner product on E , and we denote the Hilbert
space completion of E in the norm ‖ · ‖HE coming from 〈·, ·〉tr by HE . For ξ ∈ E ,
the chain of inequalities

‖ξ‖2HE
= tr(•

〈
ξ, ξ

〉
) ≤ ‖ tr ‖‖•

〈
ξ, ξ

〉
‖A = ‖ tr ‖‖ξ‖2E

shows that the embedding E ↪→ HE is continuous. Moreover, if tr is a state, that is,
‖ tr ‖ = 1, then the embedding is norm-decreasing. The Hilbert space HE is called
the localization of E with respect to tr.

If E and F are left Hilbert A-modules, we obtain localizations HE and HF
with respect to tr. Let T : E → F be an adjointable linear operator. Then in
particular, T is a bounded linear operator when viewing the Hilbert C∗-modules
as Banach spaces, and we denote its norm by ‖T ‖. For all ξ ∈ E we have that
•

〈
Tξ,Tξ

〉
≤ ‖T ‖2•

〈
ξ, ξ

〉
[93, Corollary 2.22]. Applying tr on both sides, we obtain

‖Tξ‖2HF
≤ ‖T ‖2‖ξ‖2HE

, (A.3.2)

which shows thatT extends to a bounded linear operator of Hilbert spacesT : HE →
HF . If ‖T ‖h denotes the norm of T as a Hilbert space operator, then (A.3.2) also
shows that ‖T ‖h ≤ ‖T ‖. Hence we have a norm-decreasing (hence continuous) in-
clusion of Banach spacesL(E,F) −→ L(HE,HF ). If E = F , then more is true: We
obtain an injective ∗-homomorphism of C∗-algebras [74, p. 58] L(E) −→ L(HE ).
Since injective ∗-homomorphisms of C∗-algebras are necessarily isometries [86,
Theorem 3.1.5], we deduce that L(E) → L(HE ) is an isometry. Hence in this case
we have

‖T ‖h = ‖T ‖ (A.3.3)

for all T ∈ L(E).
We can define the localization of a right Hilbert A-module E at a faithful

trace tr similarly, except in this situation we have to set the inner product to be
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〈ξ, η〉tr = tr(
〈
η, ξ

〉
•) for ξ, η ∈ E to get linearity in the first argument instead of the

second. Just as with left modules, we obtain a Hilbert space HE together with an
injective bounded linear map E ↪→ HE .

In the following, we develop a version of localization with respect to a possibly
unbounded trace that works for our purposes. Denote by A+ the positive elements
of the C∗-algebra A. By a weight on A, we will mean a function φ : A+ → [0,∞]
that satisfies φ(a + b) = φ(a)+ φ(b) for all a, b ∈ A+, φ(λa) = λφ(a) for all a ∈ A+
and λ > 0, and φ(0) = 0. The weight φ is lower semi-continuous if whenever (aα)α
is a net in A+ converging to a, then φ(a) ≤ lim infα φ(aα). A weight φ on A is a
trace if φ(a∗a) = φ(aa∗) for all a ∈ A, and is faithful if φ(a) = 0 implies a = 0 for
every a ∈ A+.

For a weight φ on A, let Aφ+ = {a ∈ A+ : φ(a) < ∞}. The weight φ is
called densely defined if Aφ+ is dense in A+ (in the norm topology). Moreover, let
Aφ = span Aφ+. By [91, Lemma 5.1.2], φ has a unique extension to a positive linear
functional on Aφ, and φ is densely defined if and only if Aφ is dense in A. A weight
φ on A is called finite if Aφ+ = A+. In that case, φ extends uniquely to a positive
linear functional on Aφ = span Aφ+ = span A+ = A, and so we obtain a positive
linear functional on the whole of A. Conversely, any positive linear functional on
A restricts to a finite weight on A+. If A is a unital C∗-algebra, then φ is finite if
and only if 1 ∈ Aφ+ if and only if φ is densely defined.

Now let E be a left Hilbert A-module, and tr a (possibly unbounded) trace on
A. There are two problems with localizing E with respect to A: The first one is
that tr(•

〈
ξ, η

〉
) might not be finite for ξ, η ∈ E , which means that we do not get

a well-defined inner product by setting 〈ξ, η〉 = tr(•
〈
ξ, η

〉
). The other problem is

that we might not get a continuous embedding E → HE even if the inner product
is well-defined. However, the following set-up is sufficient for our purposes, and
solves the aforementioned problems. The essential ingredient in the proof is a
result due to Combes and Zettl [27].

Proposition A.3.1. Let A and B be C∗-algebras, and suppose trB is a faithful finite
trace on B. Then the following hold:

1. If E is an imprimitivity A-B-bimodule, then there exists a unique lower
semi-continuous trace trA such that

trA(•
〈
ξ, ξ

〉
) = trB(

〈
ξ, ξ

〉
•) (A.3.4)

for all ξ ∈ E . Moreover, trA is faithful and densely defined, with span{•
〈
ξ, η

〉
:

ξ, η ∈ E} ⊆ AtrA , and setting

〈ξ, η〉trA = trA(•
〈
ξ, η

〉
) (A.3.5)
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for ξ, η ∈ E defines an inner product on E , with 〈ξ, η〉trA = 〈ξ, η〉trB for all
ξ, η ∈ E . Consequently, the Hilbert space obtained by completing E in the
norm ‖ξ‖ ′ = trA(•

〈
ξ, ξ

〉
)1/2 is just the localization of E with respect to trB.

2. If E andF are imprimitivity A-B-bimodules, then every adjointable A-linear
operator E → F has a unique extension to a bounded linear operator
HE → HF . Furthermore, the map LA(E,F) → L(HE,HF ) given by sending
T to its unique extension is a norm-decreasing linear map of Banach spaces.
Finally, if E = F , the mapLA(E) → L(HE ) is an isometric ∗-homomorphism
of C∗-algebras.

Proof. Suppose E is an imprimitivity A-B-bimodule. By [27, Proposition 2.2],
there is a unique lower semi-continuous trace trA on A such that the relation in
equation (A.3.4) holds for all ξ ∈ E . Since trB is finite, it is densely defined, and
so trA is densely defined by the same proposition. The same goes for faithfulness.
Since trA(•

〈
ξ, ξ

〉
) = trB(

〈
ξ, ξ

〉
•) < ∞, we have that span{•

〈
ξ, ξ

〉
: ξ ∈ E} ⊆

span AtrA
+ = AtrA . By the polarization identity for Hilbert C∗-modules, elements

of the form •

〈
ξ, η

〉
are in span{•

〈
ξ, ξ

〉
: ξ ∈ E}, and so the unique extension of

trA to a positive linear functional on AtrA is defined on all elements of the form
•

〈
ξ, η

〉
with ξ, η ∈ E . Thus, in this situation the inner product proposed in (A.3.5)

is well-defined. Again by the polarization identity, the relation in (A.3.4) implies
that trA(•

〈
ξ, η

〉
) = trB(

〈
η, ξ

〉
•) for all ξ, η ∈ E , and so 〈ξ, η〉trA = 〈ξ, η〉trB .

If T ∈ L(E,F), then we have that •
〈
Tξ,Tξ

〉
≤ ‖T ‖•

〈
ξ, ξ

〉
for every ξ ∈ E .

Taking the trace trA, we obtain that ‖Tξ‖HE ≤ ‖T ‖‖ξ‖HF , just as in the discussion
of localization with respect to finite traces. This shows that T extends to a bounded
linear map HE → HF , and that the inclusion L(E,F) → L(HE,HF ) is norm-
decreasing. In particular, if E = F , it becomes an isometric ∗-homomorphism of
C∗-algebras. �

We will refer to the localization of E with respect to trB in Proposition A.3.1
above also as the localization of E with respect to trA.

Remark A.3.2. If both A and B are unital in Proposition A.3.1, then trA, being
a densely defined trace on a unital C∗-algebra, has to be finite. In that case, we
can localize E as a left A-module with respect to trA in the usual fashion, and then
Proposition A.3.1 tells us that the localization is exactly the same as when done
with respect to trB.

A.3.2 Localization of the twisted group C∗-algebra

The following proposition shows that for a discrete group ∆ with a 2-cocycle c,
the localization of C∗(∆, c) as a left Hilbert module over itself with respect to the
canonical trace can be identified in a natural way with `2(∆).
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Proposition A.3.3. Let ∆ be a discrete group equipped with the counting measure
and a 2-cocycle c. Denote by H the localization of C∗(∆, c) as a left module over
itself with respect to its canonical faithful tracial state. Then H can be identified
with `2(∆) in such a way that the following diagram of inclusions commutes:

`1(∆) C∗(∆, c)

`2(∆) H
�

Moreover, the inclusion map C∗(∆, c) → `2(∆) is norm-decreasing, that is, for all
a ∈ C∗(∆, c) we have that

‖a‖`2(∆) ≤ ‖a‖C∗(∆,c).

Proof. We have that C∗(∆, c) is dense in H in the Hilbert space norm on H, and
that `1(∆) is dense in C∗(∆, c) in the C∗-norm on C∗(∆, c). Since the C∗-norm on
C∗(∆, c) dominates the Hilbert space norm of H, we get that `1(∆) is also dense in
H in the Hilbert space norm. Moreover `1(∆) is also dense in `2(∆) in the `2-norm.

Denote by 〈·, ·〉 the inner product on `2(∆). The C∗(∆, c)-valued inner product
on C∗(∆, c) as a left Hilbert C∗-module over itself is given by •〈a, b〉 = ab∗ for
a, b ∈ C∗(∆, c), and so the inner product with respect to tr is given by 〈a, b〉tr =
tr(ab∗). If a, b ∈ `1(∆, c), then

〈a, b〉tr = tr(ab∗) = (ab∗)(0) =
∑
z∈∆

c(w, 0 − w)a(w)b∗(0 − w)

=
∑
z∈∆

c(w,−w)a(w)c(−w,w)b(w) =
∑
z∈∆

a(w)b(w) = 〈a, b〉.

This shows that 〈·, ·〉tr and 〈·, ·〉 agree on the subspace `1(∆, c) which is dense in
both of the Hilbert spaces as argued. It follows that H can be identified with `2(∆)

in such a way that the inclusions of `1(∆) into `2(∆) and C∗(∆, c) are preserved.
Moreover, since tr is a state, we have that the inclusion C∗(∆, c) ↪→ `2(G) is
norm-decreasing. �

Remark A.3.4. In the sequel the following situation will be relevant: Let ∆ be
a discrete group, and denote by µ the counting measure on ∆. Let k > 0 be a
constant. Then we can consider the C∗-algebra C∗(∆, c) defined with respect to the
measure kµ rather than µ, and so all sums involved in formulas for convolutions
and norms will have a factor of k in front. In this situation there is still a faithful
trace tr on C∗(∆, c) given by tr(a) = a(0) for a ∈ `1(∆, c). However, note that this
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is not a state when k , 1. Indeed, the multiplicative identity of C∗(∆, c) is k−1δ0
rather than δ0, and so

tr(1) = tr(k−1δ0) = k−1δ0(0) = k−1.

If we rescale tr by k, we obtain a state.

A.3.3 Localization of the Heisenberg module

Wewill need a trace on the leftC∗-algebra A = C∗(∆, c) of theHeisenbergmodule in
Proposition A.2.12. When∆ is a lattice inG×Ĝ, we will just consider the canonical
faithful trace trA on C∗(∆, c). Note that by Proposition A.3.1 and Remark A.3.2,
there exists a finite faithful trace on the right C∗-algebra B = C∗(∆◦, c) such that
trA(•

〈
ξ, η

〉
) = trB(

〈
η, ξ

〉
•) for all ξ, η ∈ E∆(G). If ξ, η ∈ S0(G), then

〈ξ, η〉 = 〈ξ, π(0)η〉 = •
〈
ξ, η

〉
(0) = trA(•

〈
ξ, η

〉
) = trB(

〈
η, ξ

〉
•).

But there is a canonical trace tr′B on B such that tr′B(b) = b(0) whenever b ∈
`1(∆◦, c). Since tr′B(

〈
η, ξ

〉
•) =

〈
ξ, η

〉
•(0) = 〈π(0)ξ, η〉 = 〈ξ, η〉, this shows that trB

and tr′B agree on span{
〈
ξ, η

〉
• : ξ, η ∈ S0(G)}. Since the latter is dense in B, we

conclude that trB = tr′B. Note however by Remark A.3.4 that the faithful trace trB
which satisfies (A.3.5) is not a state unless s(∆) = 1.

In the case when ∆ is only cocompact and not necessarily discrete, ∆◦ is
discrete, and we obtain a (possibly unbounded) trace on C∗(∆, c) by the following
proposition. Note that we use the measures as chosen in the beginning of this
section, and that B is equipped with the canonical trace that is not a state in general.

Proposition A.3.5. Let G be a second countable, locally compact abelian group,
and let ∆ be a closed, cocompact subgroup of G × Ĝ. Let A = C∗(∆, c) and B =
C∗(∆◦, c). Denote by trB the canonical faithful trace on B as in Remark A.3.4. Then
the induced trace trA on A via the Heisenberg module E∆(G) as in Proposition A.3.1
is given by

trA(•
〈
ξ, η

〉
) = 〈ξ, η〉

for ξ, η ∈ S0(G). In particular, if ∆ is a lattice in G × Ĝ, then trA is the canonical
faithful tracial state on C∗(∆, c).

Proof. By Proposition A.3.1, the induced trace trA satisfies

trA(•
〈
ξ, η

〉
) = trB(

〈
η, ξ

〉
•)

for all ξ, η ∈ E∆(G). If ξ, η ∈ S0(G), then
〈
η, ξ

〉
• ∈ S0(∆

◦, c) = `1(∆◦, c) by
Proposition A.2.12 and Proposition A.2.10 2, and so

trB(
〈
η, ξ

〉
•) =

〈
η, ξ

〉
•(0) = 〈π(0)ξ, η〉 = 〈ξ, η〉.
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If ∆ is a lattice, then A is the twisted group C∗-algebra of a discrete group, and
in this case we know that the canonical faithful tracial state tr on C∗(∆, c) is given
by tr(a) = a(0) for a ∈ `1(∆, c) = S0(∆, c). In particular, tr(•

〈
ξ, η

〉
) = 〈ξ, η〉. By

fullness of E as a left Hilbert A-module, it follows that tr and trA agree on a dense
subspace of A, hence on all of A. This shows that trA is indeed the faithful canonical
tracial state on A. �

Based on the above proposition, we make the following convention for the rest
of the paper:

Convention A.3.6. We fix a second countable, locally compact abelian group G,
and a closed, cocompact subgroup ∆ of G × Ĝ. We fix Haar measures on G and
∆. If ∆ is a lattice in G × Ĝ, we assume the counting measure on ∆. From these
measures, we obtain measures on Ĝ, G × Ĝ and ∆◦ as in Section A.2.2. Note
that the measure on ∆◦ will be the counting measure scaled by a factor of s(∆)−1.
Let A = C∗(∆, c) and B = C∗(∆◦, c), so that the Heisenberg module E∆(G) is an
imprimitivity A-B-bimodule. We assume the canonical faithful trace trB on B
given by trB(b) = b(0) for b ∈ `1(∆◦, c). We equip A with the possibly unbounded
trace trA induced from trB as in Proposition A.3.5. In particular, if ∆ is a lattice,
then trA is the canonical faithful tracial state on A.

In the following proposition, we compute the localization of the Heisenberg
module associated to a cocompact subgroup ∆ ⊆ G × Ĝ.

Proposition A.3.7. Let G denote a second countable locally compact abelian
group, and let ∆ be a closed, cocompact subgroup of G × Ĝ. Then the localization
H of the Heisenberg module E∆(G) with respect to either of the traces on C∗(∆, c)
and C∗(∆◦, c) can be identified with L2(G) in such a way that the diagram of
inclusions commutes:

S0(G) E∆(G)

L2(G) H
�

Thus, the Heisenberg module can be continuously embedded into L2(G), with

‖η‖2 ≤ s(∆)1/2‖η‖E∆(G) (A.3.6)

for all η ∈ E∆(G). In particular, if (ηn)n is a sequence in E∆(G) that converges
to an element η ∈ E∆(G) in the E∆(G)-norm, then (ηn)n also converges to η in the
L2(G)-norm.
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Proof. Let ξ, η ∈ S0(G). Then •
〈
ξ, η

〉
∈ S0(∆, c) by Proposition A.2.12, and so by

(A.2.19) and Proposition A.3.5 we obtain

〈ξ, η〉trA = trA(•
〈
ξ, η

〉
) = •

〈
ξ, η

〉
(0) = 〈ξ, π(0)η〉 = 〈ξ, η〉.

This shows that 〈·, ·〉tr and 〈·, ·〉 agree on the dense subspace S0(G) of H. Hence, the
localization H can be identified with L2(G) in such a way that the above diagram
commutes. Moreover, since ‖ trB ‖ = trB(1B) = s(∆), see A.3.4, we have

‖η‖22 = 〈η, η〉 = trB(
〈
η, η

〉
•) ≤ ‖ trB ‖‖

〈
η, η

〉
•‖ = s(∆)‖η‖2E .

This implies (A.3.6). �

PropositionA.3.7 embeds theHeisenbergmodule as a dense subspace of L2(G),
and allows us to think of E∆(G) as a function space.

A.3.4 Applications to Gabor analysis

In light of Proposition A.3.7 and Proposition A.3.1, it follows that every adjointable
C∗(∆, c)-module operator E∆(G) → E∆(G) has a unique extension to a bounded
linear map L2(G) → L2(G). The following lemma states that when η, γ ∈ S0(G),
the extension of the adjointable operatorΘη,γ on E∆(G) to a bounded linear operator
on L2(G) is equal to Sη,γ. This will be generalized to functions η, γ ∈ E∆(G) in
Theorem A.3.15. The lemma was observed in [82] in the case of G = Rd, but
without using the language of localization. It was also covered in greater generality
in [66, Theorem 3.14].

Lemma A.3.8. Let η, γ ∈ S0(G). The module frame-like operator Θη,γ : E∆(G) →
E∆(G) then extends to the Gabor frame-like operator Sη,γ : L2(G) → L2(G).

Proof. Suppose η, γ ∈ S0(G). To begin with, let ξ ∈ S0(G). Then by Proposi-
tion A.2.12, •

〈
ξ, η

〉
∈ S0(∆, c), and consequently •

〈
ξ, η

〉
· γ ∈ S0(G). Moreover,

equations (A.2.19) and (A.2.18) give that

Θη,γξ = •
〈
ξ, η

〉
γ =

∫
∆
•

〈
ξ, η

〉
(z)π(z)γ dz =

∫
∆

〈ξ, π(z)η〉π(z)γ dz = Sη,γξ.

Now let ξ ∈ E∆(G), and suppose (ξn)n is a sequence in S0(G) that converges to ξ
in the E∆(G)-norm. Then by continuity, Θη,γξ = limn Θη,γξn in the E∆(G)-norm.
By A.3.7, the sequence (ξn)n also converges to ξ in the L2(G)-norm, and so by
continuity, Sη,γξ = limn Sη,γξn in the L2(G)-norm. From what we already proved
for functions in S0(G), we obtain that Θη,γξ = Sη,γξ (as elements of L2(G)).

But this shows that Sη,γ |E∆(G) = Θη,γ, and since the extension of Sη,γ |E∆(G) to
L2(G) is Sη,γ, we conclude that the extension of Θη,γ to L2(G) is Sη,γ. �

52



A.3. Results

The following lemma was also noted in [66, Lemma 3.6]. We give a different
proof here which uses localization.

Lemma A.3.9. Let η ∈ S0(G). Then the Heisenberg module norm of η can be
expressed in the following ways:

‖η‖E∆(G) = ‖Cη ‖ (A.3.7)

= ‖Sη ‖1/2 (A.3.8)

= sup
‖ξ ‖2=1

(∫
∆

|〈ξ, π(z)η〉|2 dz
)1/2

(A.3.9)

= inf{D1/2 : D is a Bessel bound for G(η;∆) }. (A.3.10)

Proof. By Proposition A.2.4, the Heisenberg module norm of η is given by
‖η‖E∆(G) = ‖Θη ‖

1/2
L(E∆(G))

. Since η ∈ S0(G), we get from Lemma A.3.8 and (A.3.3)
that

‖η‖E∆(G) = ‖Sη ‖
1/2
L(L2(G))

.

Now from the equality Sη = C∗ηCη it follows that ‖Sη ‖1/2 = ‖Cη ‖. This takes care
of (A.3.7) and (A.3.8). The expressions in (A.3.9) and (A.3.10) are well-known
for the operator norm ‖Cη ‖. �

We are now ready to prove the first of our main results:

Theorem A.3.10. Let G be a second countable, locally compact abelian group,
and let ∆ be a closed, cocompact subgroup of G × Ĝ. If η ∈ E∆(G), then G(η;∆) is
a Bessel family for L2(G). That is, there exists a D > 0 such that∫

∆

|〈ξ, π(z)η〉|2 dz ≤ D‖ξ‖22

for all ξ ∈ L2(G). Consequently, the analysis, synthesis and frame-like operators
Cη : L2(G) → L2(∆), Dη : L2(∆) → L2(G), Sη,γ : L2(G) → L2(G) are all well-
defined, bounded linear operators for η, γ ∈ E∆(G).

Proof. Let η ∈ E∆(G), and let (ηn)n be a sequence in S0(G) with

lim
n→∞
‖η − ηn‖E∆(G) = 0.

Since ηn ∈ S0(G) for all n, G(η,∆) is a Bessel family for all n by Proposition A.2.10.
Denote by Dn the optimal Bessel bound of G(ηn;∆) for each n, which by (A.3.10)
in Lemma A.3.9 is equal to ‖ηn‖2E∆(G). Since (ηn)n is convergent in the Heisenberg
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module norm, it follows that (‖ηn‖E∆(G))∞n=1 is bounded, and so (Dn)
∞
n=1 is bounded,

by D say. We then have that∫
∆

|
〈
ξ, π(z)ηn

〉
|2 dz ≤ Dn‖ξ‖

2
2 ≤ D‖ξ‖22

for every ξ ∈ L2(G) and every n ∈ N. Since (ηn)n → η in E∆(G), we have from
Proposition A.3.7 that (ηn)n → η in L2(G) as well. Hence, continuity of the inner
product gives for each z ∈ ∆ and each ξ ∈ L2(G) that

lim
n→∞
|
〈
ξ, π(z)ηn

〉
|2 = |

〈
ξ, π(z)η

〉
|2.

By Fatou’s lemma, we obtain for every ξ ∈ L2(G) that∫
∆

|
〈
ξ, π(z)η

〉
|2dz ≤ lim inf

n→∞

∫
∆

|
〈
ξ, π(z)ηn

〉
|2dz ≤ D‖ξ‖2.

This proves that G(η;∆) is a Bessel family. �

We are now able to extend the description of the Heisenberg module norm
given in Lemma A.3.9 for functions in S0(G) to all of E∆(G).

Proposition A.3.11. Let η ∈ E∆(G). Then the module norm of η can be expressed
in the following ways:

‖η‖E∆(G) = ‖Cη ‖ (A.3.11)

= ‖Sη ‖1/2 (A.3.12)

= sup
‖ξ ‖=1

( ∫
∆

|
〈
ξ, π(z)η

〉
|2dz

)1/2
(A.3.13)

= inf{D1/2 : D is a Bessel bound for G(η;∆)}. (A.3.14)

Proof. Let η ∈ E∆(G). We will show that ‖η‖E∆(G) = ‖Cη ‖. Once this is shown,
the rest of the expressions for ‖η‖E∆(G) follow just as in the proof of Lemma A.3.9.

Let (ηn)∞n=1 be a sequence in S0(G) such that

lim
n→∞
‖η − ηn‖E∆(G) = 0.

Then (ηn)n is a Cauchy sequence in the Heisenberg module norm, and so for every
ε > 0 there exists N ∈ N such that for all m, n ≥ N we have that

‖ηm − ηn‖E∆(G) < ε.
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Since ηn ∈ S0(G) for all n ∈ N and S0(G) is a subspace of L2(G), we have that
ηm − ηn ∈ S0(G) for all m, n ∈ N, and so by Lemma A.3.9, we can write

‖ηm − ηn‖E∆(G) = ‖Cηm−ηn ‖ = ‖Cηm − Cηn ‖.

But then by the above, we obtain that the sequence of operators (Cηn )∞n=1 is Cauchy
inL(L2(G), L2(∆)), and so by completeness, there existsT ∈ L(L2(G), L2(∆)) such
that

lim
n→∞
‖T − Cηn ‖ = 0.

Now fix ξ ∈ L2(G). Then we have that

lim
n→∞
‖Tξ − Cηnξ‖2 = 0.

It is well-known that this implies the existence of a subsequence (Cηnk ξ)
∞
k=1 that

converges pointwise almost everywhere to Tξ (see for instance [100, Theorem
3.12]). However, since (ηn)n converges to η in the L2(G)-norm by A.3.7, we have
that

lim
n→∞

Cηnξ(z) = lim
n→∞
〈ξ, π(z)ηn〉 = 〈ξ, π(z)η〉 = Cηξ(z)

for every z ∈ ∆. Hence (Cηnξ)n converges pointwise to Cηξ, and it follows that
(Cηnk ξ)k converges pointwise to Cηξ as well. This shows that Cηξ = Tξ almost
everywhere, and so they represent the same element in L2(∆). Since ξ was arbitrary,
it follows that Cη = T , and so we have that

lim
n→∞
‖Cη − Cηn ‖ = 0.

This implies that

‖η‖E∆(G) = lim
n→∞
‖ηn‖E∆(G) = lim

n→∞
‖Cηn ‖ = ‖Cη ‖.

�

Let B∆(G) denote the set of η ∈ L2(G) such that G(η;∆) is a Bessel family for
L2(G). Then B∆(G) is a Banach space when equipped with the norm

‖η‖B∆(G) = ‖Cη ‖ = inf{D1/2 : D is a Bessel bound for G(η;∆) }. (A.3.15)

By Proposition A.2.12, the Heisenberg module E∆(G) is the completion of S0(G)
with respect to the Heisenberg module norm. But by using our embedding of E∆(G)
into L2(G) in Proposition A.3.7 and the expression of the Heisenberg module norm
provided in Proposition A.3.11, we obtain a concrete description of E∆(G) as a
subspace of L2(G). In the following proposition, we use the notation from (A.2.20).
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Proposition A.3.12. Let G be a second countable, locally compact abelian group,
and let ∆ be a closed, cocompact subgroup of G × Ĝ. Then the Heisenberg
module E∆(G) is the completion of S0(G) in B∆(G). The bimodule structure can be
described as follows: Let a ∈ C∗(∆, c), b ∈ C∗(∆◦, c) and ξ ∈ E∆(G). Then

a · ξ = π∆(a)ξ (A.3.16)
ξ · b = π∗

∆◦
(b)ξ (A.3.17)

Proof. By Proposition A.2.12, we know that E∆(G) is the completion of S0(G)
with respect to the Heisenberg module norm. By Proposition A.3.7, we know that
E∆(G) is continuously embedded into L2(G) in a way that respects the embedding of
S0(G) into L2(G). By Proposition A.3.11, we have a description of the Heisenberg
module norm as ‖η‖E∆(G) = ‖η‖B∆(G). It follows that E∆(G) is the completion of
S0(G) with respect to the norm of B∆(G).

To see that (A.3.16) holds, let a ∈ C∗(∆, c) and ξ ∈ E∆(G). Let (an)n be a
sequence in S0(∆, c) such that limn→∞ an = a in C∗(∆, c). Let (ξn)n be a sequence
in S0(G) such that limn→∞ ξn = ξ in E∆(G). Then by continuity of the left action
of C∗(∆, c) on E∆(G), we have that

a · ξ =
(
lim
n

an

)
·

(
lim
n
ξn

)
= lim

n

(
an · ξn

)
= lim

n
π(an)ξn

in E∆(G). The last equality follows from the description of a · ξ for a ∈ S0(∆, c)
and ξ ∈ S0(G) as π(a)ξ (see Proposition A.2.12). Since ξn → ξ in the Heisenberg
module norm, we have that ξn → ξ in the L2(G)-norm. Also, since π(an) → π(a)
in the operator norm, we have that π(an)ξn → π(a)ξ in the L2(G)-norm. Hence,
interchanging the E∆(G)-limit in the equation above with an L2(G)-limit, we obtain
that a · ξ = π∆(a)ξ.

The argument for (A.3.17) is similar, as for b ∈ S0(∆
◦, c) and ξ ∈ S0(G), the

definition of ξ ·b in Proposition A.2.12 is equal to π∗
∆◦
(b)ξ. A similar approximation

argument to the one above shows that ξ · b = π∗
∆◦
(b)ξ also holds for b ∈ C∗(∆◦, c)

and ξ ∈ E∆(G). �

Example A.3.13. If one sets ∆ = G × Ĝ, the Heisenberg module E∆(G) is all
of L2(G). To see this, note that ∆◦ = {0}. Thus, we have the identification
C∗(∆◦, c) � C, where a sequence a ∈ C∗(∆◦, c) = C∆◦ is identified with its
value a(0) at 0. In this situation, the Heisenberg module E∆(G) is a C∗(∆, c)-C-
imprimitivity bimodule. But then E∆(G) is a right Hilbert C∗-module over C, so it
must be a Hilbert space (with linearity in the second argument of the inner product).
The right action is given by

ξ · b =
∑
w∈∆◦

b(w)π(w)∗ξ = b(0)ξ,
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which under the identification C∗(∆◦, c) � C becomes ξ · λ = ξλ for ξ ∈ L2(G)
and λ ∈ C, i.e. ordinary scalar multiplication. Furthermore, the inner product at
the value 0 is given by

〈
ξ, η

〉
•(0) = 〈π(0)η, ξ〉 = 〈η, ξ〉, i.e. the right inner product

is just the conjugate of the ordinary L2(G)-inner product.
It follows immediately from Proposition A.2.4 that the Heisenberg module

norm in this case is just the L2(G)-norm, and so E∆(G) = B∆(G) = L2(G). The
statement B∆(G) = L2(G)when∆ is the whole time-frequency plane is well known.
Indeed, in this case the analysis operator Cη is the short-time Fourier transform.
This is a bounded operator L2(G) → L2(G× Ĝ) for all η ∈ L2(G), and is invertible
for any η , 0, see [52, Theorem 6.2.1].

Example A.3.14. Suppose G is a discrete group, and that ∆ is a cocompact sub-
group of G × Ĝ (which must then be a lattice). Then S0(G) = `1(G) (Proposi-
tion A.2.10, 2), and so the Heisenberg module satisfies `1(G) ⊆ E∆(G) ⊆ `2(G).
In particular, if G is finite, then E∆(G) = `1(G) = `2(G) = CG � C |G |.

The following theorem extends Lemma A.3.8 and is one of our main results.

Theorem A.3.15. Let G be a second countable, locally compact abelian group,
and let ∆ be a closed, cocompact subgroup of G × Ĝ. Let η, γ ∈ E∆(G). Then the
module frame-like operator Θη,γ : E∆(G) → E∆(G) extends via localization to the
Gabor frame-like operator Sη,γ : L2(G) → L2(G).

Proof. Let (ηn)∞n=1 and (γn)
∞
n=1 be sequences in S0(G) that converge towards η and

γ respectively in the Heisenberg module norm. Let ξ ∈ E∆(G). Then (Θηn,γnξ)n
converges towards Θη,γξ in the Heisenberg module norm. By Lemma A.3.8, we
have that Θηn,γnξ = Sηn,γnξ for each n, and since convergence in the Heisenberg
module norm implies convergence in the L2(G)-norm, we have that

lim
n→∞
‖Sηn,γnξn − Θη,γξ‖2 = 0. (A.3.18)

By Proposition A.3.11 and the identity Cη−ηn = Cη − Cηn , the sequences of oper-
ators (Cηn )n and (C∗γn )n converge in the operator norm to Cη and C∗γ respectively,
and so (Sηn,γn )n converges in the operator norm towards Sη,γ. It follows that the
sequence (Sηn,γnξ)n converges to Sη,γξ in the L2-norm. But then by (A.3.18), we
have that Θη,γξ = Sη,γξ. This shows that the restriction of Sη,γ to E∆(G) is equal
to Θη,γ, and so the unique extension of Θη,γ to a bounded linear operator on L2(G)
must be Sη,γ. �

We now arrive at another one of our main results. The following result was
previously only known for generators in S0(G) [65, 82]. It states that finite module
frames for E∆(G) are exactly the generators of multi-window Gabor frames for

57



Paper A. Heisenberg modules as function spaces

L2(G), where the generators are allowed to come from E∆(G). This gives a complete
description of generators of Heisenberg modules in terms of multi-window Gabor
frames.

Theorem A.3.16. Let G be a second countable, locally compact abelian group, let
∆ be a closed, cocompact subgroup of G × Ĝ, and let η1, . . . , ηk be elements of the
Heisenberg module E∆(G). Then the following are equivalent:

1. The set {η1, . . . , ηk} generates E∆(G) as a left C∗(∆, c)-module. That is, for
all ξ ∈ E∆(G) there exist a1, . . . , ak ∈ C∗(∆, c) such that

ξ =

k∑
j=1

aj · ηj .

2. The system

G(η1, . . . , ηk ;∆) = {π(z)ηj : z ∈ ∆, 1 ≤ j ≤ k}

is a multi-window Gabor frame for L2(G).

Proof. By Proposition A.2.6, the set {η1, . . . , ηk} is a generating set for E∆(G) if
and only if the sequence (η1, . . . , ηk) is a module frame for E∆(G). By Proposi-
tion A.2.5, this happens if and only if Θ = Θ(η j )

k
j=1
=

∑k
j=1Θη j is invertible as an

element of LC∗(∆,c)(E∆(G)). By Theorem A.3.15 and linearity of the localization
map LC∗(∆,c)(E∆(G)) ↪→ L(L2(G)), this operator extends via localization to the
Gabor multi-window frame operator S = S(η j )

k
j=1
=

∑k
j=1 Sη j on L2(G). Since the

localizationmapL(E∆(G)) ↪→ L(L2(G)) is an inclusion of unitalC∗-subalgebras, it
follows by inverse closedness [86, Theorem 2.1.11] thatΘ is invertible inL(E∆(G))
if and only if S is invertible in L(L2(G)). But by Proposition A.2.9, the latter
happens if and only if G(η1, . . . , ηk ;∆) is a frame for L2(G). �

A.3.5 The fundamental identity of Gabor analysis

So far we have considered a closed subgroup ∆ of G× Ĝ, and from this we built the
Heisenberg module E∆(G), which is a C∗(∆, c)-C∗(∆◦, c)-imprimitivity bimodule.
We focused specifically on the case when ∆ is cocompact, since this implies ∆◦
is discrete and hence C∗(∆◦, c) is unital. By [65, p. 5], ∆◦ is identical to the
annihilator ∆⊥ (also defined in the same article) up to a measure-preserving change
of coordinates, and it is also the case that (∆⊥)⊥ = ∆ by [33, Proposition 3.6.1].
Hence (∆◦)◦ = ∆. Imposing the restriction that ∆◦ also be cocompact, which
implies that both ∆ and ∆◦ are lattices, we could build E∆◦(G) and ask how it relates
to E∆(G). The following proposition shows that the relationship is just about as
good as we could hope for.
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PropositionA.3.17. Let∆ be a lattice inG×Ĝ. Then E∆(G) = E∆◦(G) as subspaces
of L2(G), and ‖η‖E∆◦ (G) = s(∆)−1/2‖η‖E∆(G) for all η ∈ E∆(G).

Proof. Note first that since ∆ is a lattice, so is ∆◦. In particular, ∆◦ is a cocom-
pact subgroup, so all the results in this section for ∆ apply just as well for ∆◦.
Hence, by Proposition A.2.12 and Proposition A.3.12, one obtains the Heisenberg
module E∆◦(G) as a completion of S0(G) in B∆◦(G), which is a C∗(∆◦, c)-C∗(∆, c)-
imprimitivity bimodule. Note that in the construction of E∆◦(G) we put on ∆◦
the counting measure, and on ∆ the counting measure scaled with s(∆◦)−1 as per
Convention A.3.6. Denote the left inner product on E∆◦(G) by •〈·, ·〉′ and the right
inner product by 〈·, ·〉•′.

Let η ∈ S0(G). Denote by π∗∆◦ theC∗-algebra representation as in the discussion
following Proposition A.2.12. Denote by π∆◦ the representation π∆ in the same
discussion, but with ∆ replaced with ∆◦. In other words, π∗

∆◦
is a representation of

C∗(∆◦, c) on L2(G), while π∆◦ is a representation of C∗(∆◦, c) on L2(G). Keeping
in mind the right measures, we have that

π∗
∆◦
(
〈
η, η

〉
•) = s(∆)−1

∑
w∈∆◦

〈π(w)η, η〉π(w)∗

π∆◦(•
〈
η, η

〉′
) =

∑
w∈∆◦

〈η, π(w)η〉π(w).

From the above we see that

(π∗
∆◦
(
〈
η, η

〉
•))
∗ = s(∆)−1π∆◦(•

〈
η, η

〉′
). (A.3.19)

Using the faithfulness of the integrated representations (Proposition A.2.11), we
obtain for all η ∈ S0(G) that

‖η‖2E∆◦ (G) = ‖•
〈
η, η

〉′
‖C∗(∆◦,c)

= ‖π∆◦(•
〈
η, η

〉′
)‖ by faithfulness of π∆◦

= ‖π∆◦(•
〈
η, η

〉′
)∗‖

= ‖s(∆)−1π∗
∆◦
(
〈
η, η

〉
•)‖ by (A.3.19)

= s(∆)−1‖
〈
η, η

〉
•‖C∗(∆◦,c) by faithfulness of π∗

∆◦

= s(∆)−1‖•
〈
η, η

〉
‖C∗(∆,c) by Proposition A.2.4

= s(∆)−1‖η‖2E∆(G).

By the above, we have that a sequence (ηn)n in S0(G) is Cauchy in the E∆(G)-norm
if and only if it is Cauchy in the E∆◦(G)-norm. Thus, the sequence has a limit in
E∆(G)-norm if and only if it has a limit in E∆◦(G)-norm. Since both of these norms
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dominate the L2(G)-norm, it follows if (ηn)n is Cauchy in either of the norms,
the limit in either of the norms give the same element in L2(G). It follows that
E∆◦(G) = E∆(G), with ‖η‖E∆◦ (G) = s(∆)1/2‖η‖E∆(G) for all η ∈ E∆(G). �

Finally, we show that the fundamental identity of Gabor analysis (or FIGA) [43,
Theorem 4.5] holds when all involved functions are in E∆(G) when ∆ is a lattice.
In the following we let S∆η,γ be the operator of (A.2.8), and let S∆

◦

η,γ denote the
operator of (A.2.8) but with ∆◦ instead of ∆. It is already known that FIGA holds
for functions in S0(G) even when ∆ is just a closed subgroup of the time-frequency
plane G×Ĝ [65, Corollary 6.3]. However, in the proof of Proposition A.3.18 below
we shall need to apply Theorem A.3.15 to frame operators with respect to ∆ and
with respect to ∆◦. This then requires that both ∆ and ∆◦ are cocompact, hence
they are both lattices. With these restrictions, FIGA is the statement∑

z∈∆

〈
η, π(z)γ

〉 〈
π(z)ξ, ψ

〉
=

1
s(∆)

∑
z◦∈∆◦

〈
ξ, π(z◦)γ

〉 〈
π(z◦)η, ψ

〉
(A.3.20)

for η, γ, ξ, ψ ∈ S0(G). In short form it is just the statement

S∆γ,ξη = s(∆)−1S∆
◦

γ,ηξ (A.3.21)

for η, γ, ξ ∈ S0(G). With the restriction that ∆ is a lattice in G × Ĝ, the following
proposition extends the range for the FIGA (for the particular lattice ∆) to functions
in E∆(G).
Proposition A.3.18. Let G be a second countable, locally compact abelian group,
and let ∆ be a lattice in G × Ĝ. Then (A.3.21) holds for η, γ, ξ ∈ E∆(G).
Proof. Let (ηn)n, (γn)n and (ξn)n be sequences in S0(G) that converge to η, γ and
ξ, respectively, in the E∆(G)-norm. By A.3.17, the same is true in E∆◦(G)-norm.
Then, since the fundamental identity of Gabor analysis applies for functions in
S0(G) by [65, Corollary 6.3], we have

S∆γn,ξnηn = s(∆)−1S∆
◦

γn,ηn
ξn

for all n ∈ N. By Theorem A.3.15 we have

lim
n→∞
‖S∆γ,ξη − S∆γn,ξnηn‖E∆(G) = 0

lim
n→∞
‖S∆

◦

γ,ηξ − S∆
◦

γn,ηn
ξn‖E∆◦ (G) = 0.

Since convergence in the Heisenberg module norm implies convergence in the
L2(G)-norm, we conclude that the following equality holds in L2(G), were the
limits are taken in L2(G):

S∆γ,ξη = lim
n→∞

S∆γn,ξnηn = lim
n→∞

s(∆)−1S∆
◦

γn,ηn
ξn = s(∆)−1S∆

◦

γ,ηξ.

�
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Remark A.3.19. As already mentioned, the FIGA holds for functions in S0(G)
even when ∆ is only a closed subgroup for G × Ĝ. The techniques in this paper
are based on localization of A-B-imprimitivity bimodules, which requires that we
have a finite trace on at least one of the algebras A and B. Therefore the assumption
that ∆ is a lattice in G × Ĝ is necessary for our approach to the FIGA. There might
be another technique that allows for an extension of the FIGA to E∆(G) for ∆ only
a closed subgroup of G × Ĝ that the authors are not aware of. We remark again
that for the existence of Gabor frames over a closed subgroup ∆ of G × Ĝ, it is
necessary that ∆ is cocompact in G × Ĝ, which is the setting for most of the results
in the paper.
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Paper B

Gabor duality theory for Morita
equivalent C∗-algebras

Abstract
The duality principle for Gabor frames is one of the pillars of Gabor analysis.
We establish a far-reaching generalization to Morita equivalence bimodules
with some extra properties. For certain twisted group C∗-algebras the re-
formulation of the duality principle to the setting of Morita equivalence
bimodules reduces to the well-known Gabor duality principle by localizing
with respect to a trace. We may lift all results at the module level to matrix
algebras and matrix modules, and in doing so, it is natural to introduce (n, d)-
matrix Gabor frames, which generalize multi-window super Gabor frames.
We are also able to establish density theorems for module frames on equiv-
alence bimodules, and these localize to density theorems for (n, d)-matrix
Gabor frames.

B.1 Introduction

Hilbert C∗-modules are well-studied objects in the theory of operator algebras and
Rieffel made the crucial observation that they provide the correct framework for the
extension of Morita equivalence of rings to C∗-algebras. In his seminal work [96]
he noted that his equivalence bimodules between two C∗-algebras are bimodules
where the left and right Hilbert C∗-module structures are compatible in a technical
sense. We are interested in the features of these equivalence bimodules from the
perspective of frame theory. In [47] the notion of standard module frame was
introduced for countably generated Hilbert C∗-modules. Already in [97] Rieffel
observed that finitely generated equivalence bimodules could be described in terms
of finite standard module frames. He used this in his study of Heisenberg modules
– a class of projective Hilbert C∗-modules over twisted group C∗-algebras. In [82]
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it was observed that these module frames are closely related to Gabor frames used
in time-frequency analysis. Moreover, in [66] the properties of standard module
frames for Heisenbergmodules were studied from the perspective of the established
duality theory of these Gabor frames.

The following central result of Gabor frames is due to the seminal work [31,
67, 99].

Theorem (Duality Theorem for Gabor systems). For α, β > 0 and g ∈ L2(R)

the Gabor system {e2πiβl( · )g( · − αk)}k,l∈Z is a frame for L2(R) if and only if the
Gabor system {e2πil( · )/αg( · − k/β)}k,l∈Z is a Riesz sequence for the closed span
of {e2πil( · )/αg( · − k/β)}k,l∈Z in L2(R).

The possible extension of the duality principle from Gabor systems to other
types of systems has been investigated in [1, 14, 15, 38] and [59] as well as in the
form of the theory of R-duality [23, 26, 106, 107].

Motivated by the link between the duality theory of Gabor frames and the
Morita equivalence of noncommutative tori [66, 82] we explore duality theory of
module frames for equivalence bimodules between Morita equivalent C∗-algebras
and show that this is a true generalization of the duality theory for Gabor frames.

Unlike the treatment of this topic in [66], here we do not rely on any results from
time-frequency analysis. Indeed, we will consider a quite general situation, namely
two Morita equivalent C∗-algebras A and B with Morita equivalence bimodule E ,
where E is finitely generated and projective as an A-module and B is equipped
with a faithful finite trace. We show that module frames for E as an A-module in
this situation admit a duality theorem and by localization with respect to a trace we
are able to connect these module frame statements to results on frames in Hilbert
spaces. Moreover, we show that some cornerstone results of Gabor analysis can be
formulated as C∗-algebraic statements on Morita equivalence bimodules. Also, we
establish density results for the existence of module frames, which seemingly have
not been explored before.

The application of our duality results to Gabor systems on general locally
compact abelian (LCA) groups with time-frequency shifts from closed cocompact
subgroups of phase space yields exactly the known key results in duality theory
of Gabor systems. Our general approach to duality principles has led us to the
introduction of (n, d)-matrix Gabor frames that is a joint generalization of multi-
window superframes and Riesz bases and we prove that their Gabor dual systems
are (d, n)-matrix Riesz sequences.

Let us summarize the content of this paper. In Section B.2 we collect some
facts about Hilbert C∗-modules which will be of use later, most importantly about
localization of Hilbert C∗-modules. We then proceed in Section B.3 setting up for
reformulating central results of Gabor analysis to the setting of Morita equivalence
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bimodules with some extra conditions. In this section we also obtain density
theorems for existence of module frames. Lastly, in Section B.4 we localize with
respect to a trace to recover the setting of Gabor analysis. Due to the setup of
the previous section, we obtain easy proofs for some foundational results of Gabor
analysis for a very general type of Gabor frame.

B.2 Preliminaries

We assume basic knowledge about Banach ∗-algebras, C∗-algebras, Banach mod-
ules, and Hilbert C∗-modules. In this section we collect definitions and basic facts
of concepts crucial for this paper.

Suppose φ is a positive linear functional on a C∗-algebra B, and that E is a
right Hilbert B-module. We define an inner product

〈·, ·〉φ : E × E → C, ( f , g) 7→ φ(〈g, f 〉B),

where 〈·, ·〉B is the B-valued inner product. We may have to factor out the subspace
Nφ := { f ∈ E | 〈 f , f 〉B = 0} and complete E/Nφ with respect to 〈·, ·〉φ. This yields
a Hilbert space which we will denote by HE , and is known as the localization of E
in φ. There is a natural map ρφ : E → HE which induces a map ρφ : EndB(E) →
B(HE ). We will focus entirely on the case in which φ is a faithful positive linear
functional, that is, when b ∈ B+ with φ(b) = 0 implies b = 0. In that case Nφ = {0}
and we have the following useful result from [74, p. 57-58].

Proposition B.2.1. Let B be a C∗-algebra equipped with a faithful positive linear
functional φ : B → C, and let E be a Hilbert B-module. Then the map ρφ :
EndB(E) → B(HE ) is an injective ∗-homomorphism.

The Hilbert C∗-modules of interest will be A-B-equivalence bimodules for C∗-
algebras A and B. We will denote the A-valued inner product by •〈 ·, ·〉, and the
B-valued inner product by 〈·, · 〉•.

Definition B.2.2. Let A and B be C∗-algebras. A Morita equivalence bimodule
between A and B, or an A-B-equivalence bimodule, is a Hilbert C∗-module E
satisfying the following conditions.

1. •〈 E, E〉 = A and 〈E, E 〉• = B, where •〈 E, E〉 = spanC{•〈 f , g〉 | f , g ∈ E}
and likewise for 〈E, E 〉•.

2. For all f , g ∈ E , a ∈ A and b ∈ B,

〈a f , g 〉• = 〈 f , a∗g 〉• and •〈 f b, g〉 = •〈 f , gb∗〉.
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3. For all f , g, h ∈ E ,
•〈 f , g〉h = f 〈g, h 〉• .

Now let A ⊂ A and B ⊂ B be dense Banach ∗-subalgebras such that the
enveloping C∗-algebra of A is A and the enveloping C∗-algebra of B is B. Sup-
pose further there is a dense A-B-inner product submodule E ⊂ E such that the
conditions above hold with A,B, E instead of A, B, E . In that case we say E is an
A-B-pre-equivalence bimodule.

It is a well-known result that if E is an A-B-equivalence bimodule, then B �

KA(E) through the identification Θ f ,g 7→ 〈 f , g 〉•. Here Θ f ,g is the compact
module operator Θ f ,g : h 7→ •〈 h, f 〉g. In particular, ‖ •〈 f , f 〉‖ = ‖〈 f , f 〉• ‖ for
all f ∈ E . We shall only have need for the case when E is a finitely generated
Hilbert A-module. For future use we record the following result.

Proposition B.2.3. Let E be an A-B-equivalence bimodule. Then E is a finitely
generated projective A-module if and only if B is unital.

The result is typically proved by finding sets {g1, ..., gn} and {h1, ..., hn} of
elements of E for which

f =
n∑

I=1
•〈 f , gi〉hi =

n∑
i=1

f 〈gi, hi 〉•

for all f ∈ E , as done in [98, Proposition 2.1] and later [97, Proposition 1.2].
Note that the systems {g1, ..., gn} and {h1, ..., hn} are not necessarily A-linearly
independent, but they still provide a reconstruction formula.

The following result concerns frame bounds for module frames consisting
of a single element, though we do not formally introduce module frames until
Definition B.3.6. It will turn out that it is enough to consider module frames
consisting of only one element, see Remark B.3.8. The results will come into play
when we relate module frames and Gabor frames in Section B.4.

Lemma B.2.4. Let A be any C∗-algebra, and let E be a left Hilbert A-module. Let
T ∈ EndA(E) be such that there exist C,D > 0 such that

C •〈 f , f 〉 ≤ •〈T f , f 〉 ≤ D •〈 f , f 〉, (B.2.1)

for all f ∈ E . Then the smallest possible value of D is ‖T ‖, and the largest possible
value for C is ‖T−1‖−1.

Proof. Since T is positive we have ‖T ‖ = sup‖ f ‖=1{‖ •〈T f , f 〉‖}. It follows
that the smallest value for D is ‖T ‖. Furthermore, it is easy to see by (B.2.1)
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that •〈T−1 f , f 〉 ≤ C−1
•〈 f , f 〉. Hence by the same argument applied to T−1 the

smallest value of C−1 is ‖T−1‖, from which it follows that the largest value of C is
‖T−1‖−1.

�

Since we aim to mimic the situation of Gabor analysis, the positive linear
functional that we localize our Morita equivalence bimodule with respect to will
have a particular form. In particular it will be a faithful trace. For unital Morita
equivalent C∗-algebras A and B Rieffel showed in [98] that there is a bijection
between non-normalized finite traces on A and non-normalized finite traces on B
under which to a trace trB on B there is an associated trace trA on A satisfying

trA(•〈 f , g〉) = trB(〈g, f 〉•) (B.2.2)

for all f , g ∈ E . Here E is the Morita equivalence bimodule. We will in the
sequel almost always consider A or B unital, and so instead we will suppose the
existence of a finite faithful trace on one C∗-algebra (the unital one) and induce
a possibly unbounded trace on the other C∗-algebra. The following was proved
in [9, Proposition 3.1] and ensures that this procedure works. Note that if both
C∗-algebras are unital then the induced trace is also a finite trace as in [98], the
result can be deduced from [98, Proposition 2.2].

Proposition B.2.5. Let E be an A-B-equivalence bimodule, and suppose trB is a
faithful finite trace on B. Then the following hold:

i) There is a unique lower semi-continuous trace on A, denoted trA, for which

trA(•
〈

f , g
〉
) = trB(

〈
g, f

〉
•) (B.2.3)

for all f , g ∈ E . Moreover, trA is faithful, and densely defined since it is
finite on span{•

〈
f , g

〉
: f , g ∈ E}. Setting

〈 f , g〉trA = trA(•
〈

f , g
〉
), 〈 f , g〉trB = trB(〈g, f 〉•),

for f , g ∈ E defines C-valued inner products on E , with 〈 f , g〉trA = 〈 f , g〉trB
for all f , g ∈ E . Consequently, the Hilbert space obtained by completing E
in the norm ‖ f ‖ ′ = trA(•

〈
f , f

〉
)1/2 is just the localization of E with respect

to trB.

ii) If E and F are equivalence A-B-bimodules, then every adjointable A-linear
operator E → F has a unique extension to a bounded linear operator
HE → HF . Furthermore, the map EndA(E, F) → End(HE,HF ) given by
sending T to its unique extension is a norm-decreasing linear map of Banach
spaces. Finally, if E = F, the map EndA(E) → B(HE ) is an isometric
∗-homomorphism of C∗-algebras.
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B.3 Duality for equivalence bimodules

B.3.1 The equivalence bimodule picture

In Gabor analysis one considers not just Gabor frames, but multi-window super
Gabor frames. Indeed, we will in Section B.4 introduce matrix Gabor frames,
which will turn out to generalize multi-window super Gabor frames. To aid in
our approach to these types of frames, we shall want to lift an A-B-equivalence
bimodule E to an equivalence module between matrix algebras over A and B. We
will soon make this precise. For k ∈ N let Zk denote the group Z/(kZ). To
simplify formulas in the sequel, we will zero-index matrices, i.e. the top left corner
will correspond to (0,0). For n, d ∈ N we then consider the space of n× d-matrices
with entries from E , denoted Mn,d(E). Mn,d(E) naturally becomes an Mn(A)-
Md(B)-equivalence bimodule with actions and inner products defined below. Here
Mn(A) is the usual C∗-algebra consisting of n× n-matrices over A, and likewise for
Md(B). We will still let the A-valued inner product on E be denoted by •〈 −,−〉,
and the B-valued inner product on E be denoted 〈−,− 〉•. Define an Mn(A)-valued
inner product on Mn,d(E) by

•[ −,−] : Mn,d(E) × Mn,d(E) → Mn(A)

( f , g) 7→
∑
k∈Zd

©«
•〈 f0,k, g0,k〉 •〈 f0,k, g1,k〉 . . . •〈 f0,k, gn−1,k〉

•〈 f1,k, g0,k〉 •〈 f1,k, g1,k〉 . . . •〈 f1,k, gn−1,k〉
...

...
. . .

...

•〈 fn−1,k, g0,k〉 •〈 fn−1,k, g1,k〉 . . . •〈 fn−1,k, gn−1,k〉

ª®®®®®¬
.

The action of Mn(A) on Mn,d(E) is defined in the natural way, that is

(a f )i, j =
∑
k∈Zn

ai,k fk, j,

for a ∈ Mn(A) and f ∈ Mn,d(E). Likewise we define an Md(B)-valued inner
product on Mn,d(E) in the following way

[−,− ]• : Mn,d(E) × Mn,d(E) → Md(B)

( f , g) 7→
∑
k∈Zn

©«
〈 fk,0, gk,0 〉• 〈 fk,0, gk,1 〉• . . . 〈 fk,0, gk,d−1 〉•
〈 fk,1, gk,0 〉• 〈 fk,1, gk,1 〉• . . . 〈 fk,1, gk,d−1 〉•

...
...

. . .
...

〈 fk,d−1, gk,0 〉• 〈 fk,d−1, gk,1 〉• . . . 〈 fk,d−1, gk,d−1 〉•

ª®®®®®¬
.

The right action of Md(B) on Mn,d(E) is defined by

( f b)i, j =
∑
k∈Zd

fi,kbk, j
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for f ∈ Mn,d(E) and b ∈ Md(B).
With this setup, Mn,d(E) becomes an Mn(A)-Md(B)-equivalence bimodule. It

is not hard to verify the three conditions of Definition B.2.2. Indeed, the setup
above is just the one induced by the usual Morita equivalence of C with Mk(C),
k ∈ N. In particular, we have for f , g, h ∈ Mn,d(E) that

•[ f , g]h = f [g, h ]•,

and also

Mn(A) = KMd (B)(Mn,d(E)),

Md(B) = KMn(A)(Mn,d(E)).

Moreover, since the new inner products are defined using the inner products •〈 −,−〉
and 〈−,− 〉•, we see that in case we have Banach ∗-subalgebras A ⊂ A and B ⊂ B,
as well as an A-B-subbimodule E ⊂ E as above, we get

•[Mn,d(E), Mn,d(E)] ⊂ Mn(A), [Mn,d(E), Mn,d(E) ]• ⊂ Md(B), (B.3.1)

as well as

Mn(A)Mn,d(E) ⊂ Mn,d(E), Mn,d(E)Md(B) ⊂ Md(E). (B.3.2)

Remark B.3.1. While it is far from surprising that Mn,d(E) becomes an Mn(A)-
Md(B)-equivalence bimodule, the resulting actions and inner products above will
in Section B.4 make natural the construction of a new type of Gabor frame which
generalizes the n-multi-window d-super Gabor frames considered in [66], see
Definition B.4.7 and Proposition B.4.29.

Definition B.3.2. Let E be an A-B-equivalence bimodule and let n, d ∈ N. For
g ∈ Mn,d(E) we define the analysis operator by

Φg : Mn,d(E) → Mn(A)

f 7→ •[ f , g],

and the synthesis operator:

Ψg : Mn(A) → Mn,d(E)

a 7→ a · g.

An elementary computation shows that Φ∗g = Ψg. We will not make n, and
later d, explicit in the notation for the analysis and synthesis operators. It will be
implicit from the atom g being in Mn,d(E).
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Remark B.3.3. As Mn,d(E) is an Mn(A)-Md(B)-bimodule, we could just as well
have defined the analysis operator and the synthesis operator with respect to the
Md(B)-valued inner product. Indeed we will need this later, but it will then be
indicated by writing ΦB

g . Unless otherwise indicated the analysis operator and
synthesis operator will be with respect to the left inner product module structure.

Definition B.3.4. Let E be an A-B-equivalence bimodule and let n, d ∈ N. For
g, h ∈ Mn,d(E) we define the frame-like operator Θg,h to be

Θg,h : E → E

f 7→ •[ f , g] · h.

In other words, Θg,h = ΨhΦg = Φ
∗
h
Φg. The frame operator of g is the operator

Θg := Θg,g = Φ
∗
gΦg : E → E

f 7→ •〈 f , g〉g.

Remark B.3.5. The frame operator Θg is a positive operator since Θg = (Φg)
∗Φg.

Definition B.3.6. Let E be an A-B-equivalence bimodule and let n, d ∈ N. We
say g ∈ Mn,d(E) generates a (single) Mn(A)-module frame for Mn,d(E) if Θg is
an invertible operator Mn,d(E) → Mn,d(E). Equivalently, there exist constants
C,D > 0 such that

C •[ f , f ] ≤ •[ f , g] •[ g, f ] ≤ D •[ f , f ],

holds for all f ∈ Mn,d(E).

Remark B.3.7. When g generates a module frame for E ,Θg is a positive invertible
operator on E .

Remark B.3.8. If we are willing to change the integer n in the above setup we
can show that it is really always sufficient to consider a single generator. Indeed,
suppose we have g1, . . . , gk ∈ Mn,d(E), k ∈ N, such that

∑k
i=1Θgi is invertible

Mn,d(E) → Mn,d(E). This is equivalent to existence of constants C,D > 0 such
that

C •[ f , f ] ≤
k∑
i=1
•[ f , gi] •[ gi, f ] ≤ D •[ f , f ]

for all f ∈ Mn,d(E). In other words, (gi)ki=1 is what is typically known as an
Mn(A)-module frame for Mn,d(E). This is then equivalent to existence constants
C ′,D′ > 0 such that

C ′ •[ f ′, f ′] ≤ •[ f ′, g] •[ g, f ′] ≤ D′ •[ f ′, f ′]

for all f ′ ∈ Mkn,d(E) and where g = (g1, . . . , gk)
T ∈ Mkn,d(E). In the last equation

the inner products are Mkn(A)-valued.
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We will now begin to formulate the Morita equivalence bimodule versions of
central results of Gabor analysis, and we will show in Section B.4 that the results
localize to the well-known Gabor analysis results, but for the very general type of
Gabor frame introduced in Definition B.4.7.

The following result, while quite obvious in this context, will localize to one
of the cornerstones of Gabor analysis, namely the Wexler-Raz biorthogonality
relations, see Proposition B.4.30.

Proposition B.3.9 (Wexler-Raz for equivalence bimodules). Let E be an A-B-
equivalence bimodule and let n, d ∈ N. Let g, h ∈ Mn,d(E). Then f = Θg,h f =
Θh,g f for all f ∈ Mn,d(E) if and only if Md(B) is unital and 〈g, h 〉• = 〈h, g 〉• =
1Md (B).

Proof. In the standard isomorphism KMn(A)(Mn,d(E)) � Md(B) we send Θg,h to
the element [g, h ]• ∈ Md(B), from which the result follows immediately. �

We also record the following result for use in Section B.4.

Proposition B.3.10. Let E be an A-B-equivalence bimodule and let n, d ∈ N. Let
g, h ∈ Mn,d(E) be so that •[ f , h]g = f for all f ∈ Mn,d(E). Then

f = h[g, f ]• for all f ∈ h · Md(B).

Proof. By assumption Mn,d(E) is finitely generated and projective as an Mn(A)-
module, hence Md(B) � KMn(A)(Mn,d(E)) = EndMn(A)(Mn,d(E)) and Md(B) is
unital. We may rewrite the equality to f = f [h, g ]• for all f ∈ Mn,d(E), which
implies [h, g ]• = 1Md (B) as Md(B) acts faithfully on Mn,d(E). But then

[g, h ]• = [h, g ]•∗ = 1∗Md (B)
= 1Md (B)

as well. Then if we let f ∈ h · Md(B) we may write f = hb for some b ∈ Md(B),
and we get

h[g, f ]• = h[g, hb ]• = h[g, h ]• b = h1Md (B)b = hb = f .

We extend the reconstruction formula to h · Md(B) by continuity. �

We shall have use for the following definition, which can be formulated on
more general modules than equivalence bimodules, but we shall not need the more
general setting.

Definition B.3.11. Let E be an A-B-equivalence bimodule and let n, d ∈ N. If
g ∈ Mn,d(E) is such that Θg is invertible on Mn,d(E), then h = (Θg)

−1g is called
the canonical dual atom of g.
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Remark B.3.12. Note that if g is such that Θg : Mn,d(E) → Mn,d(E) is invertible,
then Mn(A) · g = Mn,d(E). To see this, let f ∈ Mn,d(E). Then

f = Θg(Θg)
−1 f = •[Θ−1

g f , g]g ∈ Mn(A) · g.

There is a correspondence between projections inMorita equivalentC∗-algebras,
see for example [97, Proposition 1.2]. We formulate the following variant.

Proposition B.3.13. Let E be an A-B-equivalence bimodule between a C∗-algebra
A and a unital C∗-algebra B, and let n, d ∈ N. If g, h ∈ Mn,d(E) are such that
[g, h ]• = 1Md (B), then •[ g, h] is an idempotent in Mn(A). If h = Θ−1

g g, then •[ g, h]
yields a projection in Mn(A).

Proof. From [g, h ]• = 1Md (B) = 1∗
Md (B)

= [h, g ]•, we get

•[ g, h] •[ g, h] = •[ •[ g, h]g, h] = •[ g[h, g ]•, h] = •[ g · 1Md (B), h] = •[ g, h],

so •[ g, h] is an idempotent in Mn(A). If h = (Θg)
−1g, we also have

•[ g, h] = •[ g,Θ−1
g g] = •[Θ

−1
g g, g] = •[ h, g] = •[ g, h]∗,

so •[ g, h] is a projection in Mn(A). �

The duality principle is a cornerstone of the field of Gabor analysis, see for
example [31, 67, 99]. One of the main intentions of this investigation is a refor-
mulation of this duality principle in our module framework. Indeed, the duality
principle in the Hilbert C∗-module picture turns out to be quite an elementary
statement. To this end we introduce the following operator. As before, let E be
an A-B-equivalence bimodule and let n, d ∈ N. For an element g ∈ Mn,d(E) we
define the Md(B)-coefficient operator by

Φ
B
g : Mn,d(E) → Md(B)

f 7→ [g, f ]• .

Note that this operator is Md(B)-adjointable with adjoint

(ΦB
g )
∗b 7→ g · b.

We are now in the position to state and prove the module version of the duality
principle which will localize to the duality principle of Gabor analysis in Theo-
rem B.4.31.

Proposition B.3.14 (Module Duality Principle). Let E be an A-B-equivalence
bimodule, let n, d ∈ N, and let g ∈ Mn,d(E). The following are equivalent.
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1. Θg : Mn,d(E) → Mn,d(E) is invertible.

2. ΦB
g (Φ

B
g )
∗ : Md(B) → Md(B) is an isomorphism.

Proof. We show that both statements are equivalent to [g, g ]• being invertible in
Md(B). SupposeΘg is invertible. Then Mn,d(E) is finitely generated and projective
as an Mn(A)-module, so Md(B) � KMn(A)(Mn,d(E)) is unital. As

Θg f = f [g, g ]•,

statement (1) is equivalent to [g, g ]• being invertible in Md(B). On the other hand,

Φ
B
g (Φ

B
g )
∗b = ΦB

g (g · b) = [g, g · b ]• = [g, g ]• b.

Since ΦB
g (Φ

B
g )
∗ ∈ EndMd (B)(Md(B)) and Md(B) is an ideal in EndMd (B)(Md(B)),

statement (2) implies that Md(B) is unital and the statement is equivalent to [g, g ]•
being invertible in Md(B). �

In Gabor analysis one is often concerned with the regularity of the atoms
generating a Gabor frame, as these often have desirable properties. Let A, B, and
E be as in the setup in (B.3.1) and (B.3.2). In case g is so that Θg is invertible
on all of Mn,d(E) with g ∈ Mn,d(E), and B ⊂ B is a spectrally invariant Banach
∗-subalgebra with the same unit as B, the canonical dual atom has the following
important property.

Proposition B.3.15. Let E be an A-B-equivalence bimodule, with an A-B-pre-
equivalence bimodule E ⊂ E , and let n, d ∈ N. Suppose B ⊂ B is spectrally
invariant with the same unit. If g ∈ Mn,d(E) is such that Θg : Mn,d(E) → Mn,d(E)
is invertible, then the canonical dual (Θg)

−1g ∈ Mn,d(E) as well.

Proof. For f ∈ Mn,d(E) we have

Θg f = •[ f , g]g = f [g, g ]• .

We deduce that [g, g ]• is invertible in Md(B) and (Θg)
−1g = g[g, g ]•

−1. But as
g ∈ Mn,d(E) we have [g, g ]• ∈ Md(B). By spectral invariance of B in B it follows
that [g, g ]•−1 ∈ Md(B), see [103, Theorem 2.1]. Then, since Mn,d(E) · Md(B) ⊂
Mn,d(E), it follows that

(Θg)
−1g = g[g, g ]•

−1 ∈ Mn,d(E),

which is the desired assertion. �
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There are well-known theorems in Gabor analysis known as density theorems.
Postponing the precise formulations and technicalities, they give restrictions on
existence of certain spanning sets, e.g. Gabor frames, in terms of the volume of co-
compact subgroups of phase space, see Proposition B.4.33 and Proposition B.4.34.
We proceed to establish analogous statements for module frames on certain equiv-
alence bimodules.

More precisely, let E be an A-B-equivalence bimodule, and let B be unital with
faithful finite trace trB. We induce a trace trA on A by ways of Proposition B.2.5.
Now let n, d ∈ N, and consider Mn,d(E) as an Mn(A)-Md(B) equivalence bimodule.
Then there are traces on Mn(A) and Md(B) satisfying

trMn(A)(•[ f , g]) = trMd (B)([g, f ]•)

for all f , g ∈ Mn,d(E). They can be written as

trMn(A)(•[ f , g]) =
1
n

∑
i∈Zn

trA(•[ f , g]i,i), trMd (B)([ f , g ]•) =
1
n

∑
i∈Zd

trB([ f , g ]•i,i).

(B.3.3)

The trace on Md(B) extends to a finite trace on the whole algebra, but the same
might not be true for the densely defined trace on Mn(A). It is however true if A,
and hence also Mn(A), is unital. It is easy to show that the lifting process on the
traces preserves both finiteness and faithfulness. We may then present our density
theorems for equivalence bimodules. These appear to be new in the literature, and
we will in Section B.4 use them to deduce density theorems statements for matrix
Gabor frames, which will also be introduced in the same section.

Theorem B.3.16. Let E be an A-B-equivalence bimodule where both A and B are
unital and equipped with faithful finite traces trA and trB related by (B.2.3), and let
n, d ∈ N. If g ∈ Mn,d(E) is such that Θg : Mn,d(E) → Mn,d(E) is invertible, then

d trB(1B) ≤ n trA(1A). (B.3.4)

Proof. The assumption that Θg is invertible implies [g, g ]• is invertible. Then

u = Θ−1
g g = g[g, g ]•

−1

is the canonical dual frame for Mn,d(E). We have [g, u ]• = [u, g ]• = 1Md (B), and
by Proposition B.3.13 •[ g, u] is a projection in Mn(A). Observing that •[ g, u] ≤
1Mn(A) in Mn(A) and using (B.3.3), we get

d trB(1B) = n ·
1
n

d∑
i=1

trB(1B) = n trMd (B)(1Md (B)) = n trMd (B)([u, g ]•)

= n trMn(A)(•[ g, u]) ≤ n trMn(A)(1Mn(A)) = n ·
1
n

n∑
i=1

trA(1A) = n trA(1A).
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Theorem B.3.17. Let E be an A-B-equivalence bimodule where both A and B
are unital and equipped with faithful finite traces trA and trB related by Equa-
tion (B.2.3), and let n, d ∈ N. If g ∈ Mn,d(E) is such thatΦgΦ

∗
g : Mn(A) → Mn(A)

is an isomorphism, then
d trB(1B) ≥ n trA(1A). (B.3.5)

Proof. The assumptions imply •[ g, g]−1 ∈ Mn(A), so it follows that

1Mn(A) = •[ g, g]
−1
•[ g, g] = •[ •[ g, g]

−1g, g],

and [•[ g, g]−1g, g ]• is a projection in Md(B) by Proposition B.3.13. Since B
is unital, then by observing that [•[ g, g]−1g, g ]• ≤ 1Md (B) in Md(B) and using
(B.3.3), we get

n trA(1A) = n ·
1
n

n∑
i=1

trA(1A) = n trMn(A)(1Mn(A)) = n trMn(A)(•[ •[ g, g]
−1g, g])

= n trMd (B)([g, •[ g, g]
−1g ]•) ≤ n trMd (B)(1Md (B))

= n ·
1
n

d∑
i=1

trB(1B) = d trB(1B).

�

B.3.2 Passing to the localization

In [82] the existence of multi-window Gabor frames for L2(Rd) with windows in
Feichtinger’s algebra was proved through considerations on a related Hilbert C∗-
module. Furthermore, in [83] projections in noncommutative tori were constructed
fromGabor frames with sufficiently regular windows. Thus being able to pass from
an equivalence bimodule E to a localization HE and back is quite important, and
we dedicate this section to results on this procedure. We will interpret this in terms
of Gabor analysis in Section B.4, and we will explain how L2(G), for G a second
countable LCA group, relates to HE for specific modules E which arise in the study
of twisted group C∗-algebras.

In the following let E be an A-B-equivalence bimodule. We will make the
presence of traces precise in the individual results. To ease notation we will not
formulate the below results in the setting of Mn,d(E) being an Mn(A)-Md(B)-
equivalence bimodule, n, d ∈ N, as such a reformulation is easy but notationally
tedious.
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Proposition B.3.18. Let E be an A-B-equivalence bimodule, where B is unital and
equipped with a faithful finite trace trB. We induce a trace trA on A by (B.2.3)
and denote by HE the localization of E in trA, and by (−,−)E the inner product on
the localization of E in trA, i.e. ( f1, f2)E = trA(•〈 f1, f2〉) for all f1, f2 ∈ E . Now
suppose g ∈ E . Then there exists an h ∈ E such that we have •〈 f , g〉h = f for all
f ∈ E if and only if there exist constants C,D > 0 such that

C( f , f )E ≤ ( f 〈g, g 〉•, f )E ≤ D( f , f )E (B.3.6)

for all f ∈ HE . In other words, g generates a module frame for E as an A-module
if and only if the inequalities in (B.3.6) are satisfied for some C,D > 0.

Remark B.3.19. We should note that in the setting of Proposition B.3.18 it is
possible to say that

〈
g, g

〉
• is invertible in B if and only if there is h such that〈

g, h
〉
• = 1B. Indeed, one may obtain this by [47, Theorem 5.9] in the case A is

unital, and by [9, Proposition 2.6] in the case that A is not unital. One could use
this to deduce Proposition B.3.18. However, our proof gives frame bounds which
are of independent interest, see Proposition B.4.36. Since we want to focus on the
link between module frames and Hilbert space frames, we therefore offer a more
direct argument.

Proof. Suppose first that there is an h ∈ E such that •〈 f , g〉h = f for all f ∈ E .
By Morita equivalence this implies

f = •〈 f , g〉h = f 〈g, h 〉•

for all f ∈ E . As before, this implies 1B = 〈g, h 〉• = 〈h, g 〉•. Since trB is a
positive linear functional we obtain

( f , f )E = trA(•〈 f , f 〉)

= trA(•〈 f 〈g, h 〉•〈h, g 〉•, f 〉)

= trA(•〈 f 〈g, h〈h, g 〉• 〉•, f )

= trA(•〈 f 〈g, •〈 h, h〉g 〉•, f 〉)

= trB(〈 f , f 〈g, •〈 h, h〉g 〉• 〉•)

≤ trB(〈 f , f 〈g, g 〉• ‖ •〈 h, h〉‖ 〉•)

= ‖ •〈 h, h〉‖ trB(〈 f , f 〈g, g 〉• 〉•)

= ‖ •〈 h, h〉‖ trA(•〈 f 〈g, g 〉•, f 〉)

= ‖ •〈 h, h〉‖( f 〈g, g 〉•, f )E,

for all f ∈ E , where we have used

〈g, •〈 h, h〉g 〉• ≤ ‖ •〈 h, h〉‖〈g, g 〉•,
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see e.g. [93, Corollary 2.22]. We then get the lower frame bound with C =
‖ •〈 h, h〉‖−1, that is

1
‖ •〈 h, h〉‖

( f , f )E ≤ ( f 〈g, g 〉•, f )E

for all f ∈ E . By Proposition B.2.1 all intermediate steps involve operators that
extend to bounded operators on HE , so we may extend by continuity. We get the
upper frame bound by use of [93, Corollary 2.22] in the following manner

( f 〈g, g 〉•, f )E = trA(•〈 f 〈g, g 〉•, f 〉)

= trA(•〈 f 〈g, g 〉•1/2, f 〈g, g 〉•1/2〉)

≤ ‖〈g, g 〉•
1/2 ‖2 trA(•〈 f , f 〉)

= ‖〈g, g 〉• ‖ trA(•〈 f , f 〉)

= ‖ •〈 g, g〉‖( f , f )E,

for all f ∈ E . Once again all intermediate steps involve operators that extend to
bounded operators on HE by Proposition B.2.1, so we may extend the result to all
of HE . Thus we have shown that

1
‖ •〈 h, h〉‖

( f , f )E ≤ ( f 〈g, g 〉•, f )E ≤ ‖ •〈 g, g〉‖( f , f )E

for all f ∈ HE .
Conversely, suppose there are C,D > 0 such that

C( f , f )E ≤ ( f 〈g, g 〉•, f )E ≤ D( f , f )E

for all f ∈ HE . We wish to show that this implies there exist h ∈ E such that
•〈 f , g〉h = f for all f ∈ E . The assumption implies that f 7→ f 〈g, g 〉• is a
positive, invertible operator on HE . As C∗-algebras are inverse closed it follows
that 〈g, g 〉• is invertible in B. Thus f 7→ f 〈g, g 〉• is a positive, invertible operator
on E as well. Hence the operator

Θg : E → E

f 7→ •〈 f , g〉g = f 〈g, g 〉•

is invertible with inverse
Θ
−1
g f = f 〈g, g 〉•−1 .

Define h := Θ−1
g g, and let f ∈ E be arbitrary. Then we have

•〈 f , g〉h = •〈 f , g〉Θ−1
g g = Θ−1

g (•〈 f , g〉g) = Θ−1
g Θg f = f ,

from which the result follows. �
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We are interested in module frames and module Riesz sequences, and their
relationship to frames and Riesz sequences in Gabor analysis for LCA groups. To
get results on Riesz sequences in Section B.4 we need a module version of Riesz
sequences which, when localized, yields the Riesz sequences we know from Gabor
analysis. To make the transition to Gabor frames in Section B.4 easier, we will in
the following result let A be unital with a faithful trace trA, and we will localize
A as a Hilbert A-module in the trace trA, i.e. we let (a1, a2)A := trA(a1a∗2). The
completion of A in this inner product will be denoted HA, and the action of A on
HA is the continuous extension of the multiplication action of A on itself.

Proposition B.3.20. Let E be an A-B-equivalence bimodule where A is unital
and equipped with a faithful finite trace trA. We localize E as in the setting of
Proposition B.3.18 and localize A as described above. Now suppose g ∈ E . Then
ΦgΦ

∗
g : A→ A is an isomorphism if and only if there exist C,D > 0 such that for

all a ∈ A it holds that

C(a, a)A ≤ (ag, ag)E ≤ D(a, a)A. (B.3.7)

Proof. First suppose ΦgΦ
∗
g : A→ A is an isomorphism. Then, as •〈 g, g〉 ≥ 0 in

A we have
•〈 ag, ag〉 = a •〈 g, g〉a∗ ≤ ‖ •〈 g, g〉‖aa∗,

and we may deduce

(ag, ag)A = trA(•〈 ag, ag〉) ≤ ‖ •〈 g, g〉‖ trA(aa∗) = ‖ •〈 g, g〉‖(a, a)A.

Hence in (B.3.7) we may set D = ‖ •〈 g, g〉‖. Since ΦgΦ
∗
g : A → A is an

isomorphism and ΦgΦ
∗
ga = a •〈 g, g〉, it follows that there is •〈 g, g〉−1 ∈ A. Then

(a, a)A = trA(aa∗)

= trA(a •〈 g, g〉1/2 •〈 g, g〉−1
•〈 g, g〉

1/2a∗)

≤ ‖ •〈 g, g〉
−1‖ trA(a •〈 g, g〉a∗)

= ‖ •〈 g, g〉
−1‖ trA(•〈 ag, ag〉)

= ‖ •〈 g, g〉
−1‖(ag, ag)E,

which implies that we may set C = ‖ •〈 g, g〉−1‖−1 in (B.3.7). All intermediate
steps extend to HA by Proposition B.2.1.

Suppose now that (B.3.7) is satisfied. The lower inequality in (B.3.7) tells us
that for all a ∈ A,

(a(•〈 g, g〉 − C), a)A = trA(a(•〈 g, g〉 − C)a∗)

= trA(a •〈 g, g〉a∗) − C trA(aa∗)

= trA(•〈 ag, ag〉) − C trA(aa∗)

= (ag, ag)E − C(a, a)A ≥ 0.
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Note that we need the upper inequality of (B.3.7) to extend all intermediate steps
to HA via Proposition B.2.1. It follows that •〈 g, g〉 is a positive invertible operator
on HA ⊃ A. As C∗-algebras are inverse closed it follows that •〈 g, g〉 is invertible
in A. Then, since

ΦgΦ
∗
ga = a •〈 g, g〉,

it follows that ΦgΦ
∗
g : A→ A is an isomorphism. �

Remark B.3.21. Note that in the proofs of the two preceding results the upper
bounds in (B.3.6) and (B.3.7) were both satisfied with D = ‖ •〈 g, g〉‖. We will see
in Section B.4 that in the Gabor analysis setting, this means that all atoms coming
from the Hilbert C∗-module are Bessel vectors for the localized frame system.

For use in Section B.4, we introduce the following notion.

Definition B.3.22. Let E be an A-B-equivalence bimodule, let n, d ∈ N, and let
g ∈ Mn,d(E). If ΦgΦ

∗
g : Mn(A) → Mn(A) is an isomorphism, we say g generates

a module Riesz sequence for Mn,d(E) with respect to Mn(A).

B.4 The link to Gabor analysis

In this section we show how the above results reproduce some of the core results
of Gabor analysis for LCA groups. We will find that some of the cornerstones of
Gabor analysis on LCA groups are trivial consequences of the above framework.

To present the results we will need to explain how time-frequency analysis on
LCA groups relates to Morita equivalence of twisted group C∗-algebras. In the
interest of brevity, we refer the reader to [66] for a more in-depth treatment of time
frequency analysis and its relation to twisted group C∗-algebras, and to [64] for a
survey on the Feichtinger algebra. We can also not omit to mention [97], which is
a major inspiration for a lot of work done in the intersection of Gabor analysis and
operator algebras.

Throughout this section, we fix a second-countable LCA group G and let Ĝ be
its dual group. We fix a Haar measure µG onG and normalize the Haar measure µ

Ĝ

on Ĝ such that the Plancherel theorem holds. ByΛwe denote a closed subgroup of
the time-frequency plane G× Ĝ. The induced topologies and group multiplications
on Λ and (G × Ĝ)/Λ turn them into LCA groups as well, and we may equip them
with their respective Haar measures. Having fixed the Haar measures on G, Ĝ, and
Λ, we will assume (G × Ĝ)/Λ is equipped with the unique Haar measure such that
Weil’s formula holds, see e.g. [33, Theorem 1.5.3]. In this setting we can define
the size of Λ by

s(Λ) :=
∫
(G×Ĝ)/Λ

1dµ
(G×Ĝ)/Λ

. (B.4.1)
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Note that s(Λ) is finite if and only if Λ is cocompact in G × Ĝ.
For any ξ = (x, ω) ∈ G × Ĝ we may then define the time-frequency shift

operator

π(ξ) : L2(G) → L2(G)

π(ξ) f (t) = ω(t) f (t − x)

for t ∈ G and f ∈ L2(G). We also define the 2-cocycle

c : (G × Ĝ) × (G × Ĝ) → T

(ξ1, ξ2) 7→ ω2(x1)

for ξ1 = (x1, ω1), ξ2 = (x2, ω2) ∈ G × Ĝ. Note then that

π(ξ1)π(ξ2) = c(ξ1, ξ2) π(ξ1 + ξ2).

For the reader’s convenience we also note that

π(ξ)∗ = c(ξ, ξ)π(−ξ)

for all ξ ∈ G × Ĝ.
For the given closed subgroup Λ ⊆ G × Ĝ we define its adjoint subgroup Λ◦

by
Λ
◦ := {ξ ∈ G × Ĝ | π(ξ) π(λ) = π(λ) π(ξ) for all λ ∈ Λ }.

Note that (Λ◦)◦ = Λ and Λ̂◦ � (G × Ĝ)/Λ, see for example [65]. Moreover, Λ is
cocompact if and only if Λ◦ is discrete. With these identifications we put on Λ◦
the Haar measure such that the Plancherel theorem holds with respect to Λ◦ and
(G × Ĝ)/Λ.

We want to reframe time-frequency analysis in terms of Morita equivalence
bimodules for certain twisted group C∗-algebras. To do this we use the Feichtinger
algebra. In order to introduce this, we first define the short time Fourier transform
with respect to a function g ∈ L2(G) as the operator

Vg : L2(G) → L2(G × Ĝ), Vg f (ξ) = 〈 f , π(ξ)g〉,

for ξ ∈ G × Ĝ. The Feichtinger algebra S0(G) can be defined by

S0(G) =
{

f ∈ L2(G) | Vf f ∈ L1(G × Ĝ)
}
.

A norm on S0(G) is given by

‖ f ‖S0(G) = ‖Vg f ‖
L1(G×Ĝ) for some g ∈ S0(G) \ {0}.
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It is a nontrivial fact that all elements of S0(G) \ {0} determine equivalent norms
on S0(G). In case G is discrete one has S0(G) = `1(G) with equivalent norms.
Furthermore, S0(G) consists of continuous functions and is dense in both L1(G)
and L2(G).

With the above norm, S0(Λ) becomes a Banach ∗-algebra when equipped with
the twisted convolution and involution given by

F1\F2(λ) :=
∫
Λ

F1(λ
′)F2(λ − λ

′)c(λ′, λ − λ′) dλ′,

F∗1 (λ) := c(λ, λ)F1(−λ),

for F1, F2 ∈ S0(Λ) and λ ∈ Λ. We denote the resulting Banach ∗-algebra by
S0(Λ, c).

It was shown in [66] that when Λ is a closed subgroup of G × Ĝ the map
λ 7→ π(λ) is a faithful c-projective unitary representation of Λ, and the integrated
representation becomes a nondegenerate ∗-representation of S0(Λ, c) as bounded
operators on L2(G). In other words, given a ∈ S0(Λ, c), we have the representation
given by

π(a) f =
∫
Λ

a(λ)π(λ) f dλ,

for f ∈ L2(G), and where we interpret the integral weakly. It is well-known
that this ∗-representation is faithful. Indeed it was shown in [97] for the case of
the Schwartz-Bruhat space, and the arguments easily carry over to the Feichtinger
algebra. By completing S0(Λ, c) in theC∗-algebra norm coming from the integrated
representation we obtain a C∗-algebra which we denote by C∗(Λ, c). It is well-
known that this coincides with the enveloping C∗-algebra of S0(Λ, c). We do the
same for S0(Λ

◦, c), and denote its universal enveloping C∗-algebra by C∗(Λ◦, c).
Now S0(G) becomes a pre-equivalence S0(Λ, c)-S0(Λ

◦, c)-equivalence bimod-
ule as in Definition B.2.2 when equipped with the actions

a · f =
∫
Λ

a(λ)π(λ) f dλ, f · b =
∫
Λ◦

b(λ◦)π(λ◦)∗ f dλ◦ (B.4.2)

for a ∈ S0(Λ, c), b ∈ S0(Λ
◦, c), and f , g ∈ S0(G), and with algebra-valued inner

products given by

•〈 f , g〉(λ) =
〈

f , π(λ)g
〉
, 〈 f , g 〉•(λ◦) =

〈
g, π(λ◦)∗ f

〉
(B.4.3)

for f , g ∈ S0(G), λ ∈ Λ, λ◦ ∈ Λ◦. The inner products on the right hand sides of the
equality signs are those of L2(G). That these are well-defined was noted in Section
3 of [66]. As is typical we pass to the C∗-completions. The resulting completion
of S0(G) will be denoted EΛ(G). As done in the Schwartz-Bruhat case in [97], we
note that EΛ(G) is a C∗(Λ, c)-C∗(Λ◦, c)-equivalence bimodule.
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Remark B.4.1. The fact that we get the same twisted group C∗-algebras by using
S0(Λ, c) as we get when using the more traditional approach with L1(Λ, c) was
noted in [9].

An important consequence ofworkingwith S0 instead of L1 is that we havewell-
defined traces on dense Banach ∗-subalgebras of C∗(Λ, c) and C∗(Λ◦, c). Indeed,
since S0-functions are continuous, there are well-defined canonical faithful traces
on S0(Λ, c) and S0(Λ

◦, c) given by evaluation in 0. We will denote the trace on
S0(Λ, c) by trΛ and the trace on S0(Λ

◦, c) by trΛ◦ in the sequel.

Remark B.4.2. Although the traces trΛ and trΛ◦ do not in general extend to the C∗-
algebrasC∗(Λ, c) andC∗(Λ◦, c), we can guarantee they extend in one case. Namely,
trΛ extends to all of C∗(Λ, c) if C∗(Λ, c) is unital, which is equivalent to Λ being
discrete. The same is of course true for C∗(Λ◦, c) and trΛ◦ , with the discreteness
condition on Λ◦. This is due to the fact that the trace given by evaluation in the
identity extends to twisted groupC∗-algebras when the underlying group is discrete
[19, p. 951].

The following result is straightforward to prove and explains why we in the
sequel will focus mostly on the case where Λ is closed and cocompact.

Proposition B.4.3. Let Λ ⊂ G × Ĝ be a closed subgroup. Then EΛ(G) is a finitely
generated projective C∗(Λ, c)-module if and only if Λ ⊂ G × Ĝ is a cocompact
subgroup.

As a very last preparation before starting to connect our results of Section B.3
to Gabor analysis we note the following important result. It was shown in [58] in
the case of lattices in R2d and in the same paper it was claimed to hold for more
general lattices in phase spaces of arbitrary LCA groups. It was shown for arbitrary
discrete subgroups of phase spaces of LCA groups in [8].

Proposition B.4.4. For a discrete subgroup Λ in G × Ĝ the involutive Banach
algebra S0(Λ, c) is spectrally invariant in C∗(Λ, c).

To get results on Gabor frames for L2(G) with windows in E from the above
setup, we will need to localize certain subsets of the C∗-algebras C∗(Λ, c) and
C∗(Λ◦, c), as well as the Morita equivalence bimodule EΛ(G), just as explained in
Section B.2. For simplicity, let Λ be cocompact in G × Ĝ from now on, unless
otherwise specified. ThenΛ◦ is discrete and trΛ◦ is defined on all of C∗(Λ◦, c). The
localization of C∗(Λ◦, c) in trΛ◦ is induced by the inner product (−,−)Λ◦ given by

(b1, b2)Λ◦ := trΛ◦(b∗1b2).
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Since S0(Λ
◦, c) is dense in C∗(Λ◦, c) and trΛ◦ is continuous with respect to the C∗-

norm, it follows that their localizations in trΛ◦ are the same. For b1, b2 ∈ S0(Λ
◦, c)

we then have

(b1, b2)Λ◦ = trΛ◦(b∗1b2)

= trΛ◦(
∑
λ◦∈Λ◦

b1(λ◦)π(λ
◦)∗

∑
ξ ∈Λ◦

b2(ξ)π(ξ))

= trΛ◦(
∑
λ◦∈Λ◦

∑
ξ ∈Λ◦

b1(λ◦)b2(ξ)c(λ◦, λ◦)π(−λ◦)π(ξ))

= trΛ◦(
∑
λ◦∈Λ◦

∑
ξ ∈Λ◦

b1(λ◦)b2(ξ)c(λ◦, λ◦)c(−λ◦, ξ)π(−λ◦ + ξ))

= trΛ◦(
∑
λ◦∈Λ◦

∑
ξ ∈Λ◦

b1(λ◦ + ξ)b2(ξ)c(λ◦ + ξ, λ◦ + ξ)c(−λ◦ − ξ, ξ)π(−λ◦))

=
∑
ξ ∈Λ◦

b1(ξ)b2(ξ)c(ξ, ξ)c(−ξ, ξ)

=
∑
ξ ∈Λ◦

b1(ξ)b2(ξ)

= 〈b1, b2〉`2(Λ◦).

As S0(Λ
◦, c) = `1(Λ◦, c) is dense in `2(Λ◦), we may identify the localization

HC∗(Λ◦,c) of C∗(Λ◦, c) with `2(Λ◦). By [9, Proposition 3.7] we also obtain that the
localization of EΛ(G) in trΛ◦ is L2(G). Note that this is the same as the localization
of E in trΛ by construction, and that there is an action of C∗(Λ, c) on L2(G) by
extending the action of C∗(Λ, c) on EΛ(G).

It is slightly more tricky to localize subsets of C∗(Λ, c). Indeed, it is not in
general possible as the trace might not be defined everywhere. However, even
if C∗(Λ, c) is not unital we may localize the algebraic ideal •〈 EΛ(G), EΛ(G)〉 ⊂
C∗(Λ, c) in the trace trΛ. Indeed, by [9, Theorem 3.10], elements of EΛ(G) are
such that whenever g ∈ EΛ(G) and f ∈ L2(G), then {〈 f , π(λ)g〉}λ∈Λ ∈ L2(Λ).
This is the property of being a Bessel vector, which we will discuss in more detail
below. Hence for any f , g ∈ EΛ(G), we may identify •〈 f , g〉 ∈ C∗(Λ, c) with
(〈 f , π(λ)g〉)λ∈Λ in L2(Λ) by doing the analogous procedure with trΛ as for trΛ◦
above.

We may do the same for the matrix algebras and matrix modules considered in
Section B.3. Note that •[Mn,d(EΛ(G)), Mn,d(EΛ(G))] = Mn,d(•〈 EΛ(G), EΛ(G)〉)
in the setup of Section B.3. Adapting the setting of twisted group C∗-algebras and
Heisenberg modules above to the matrix algebra setting of Section B.3 we see that
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we obtain the following identifications

HMd (C∗(Λ◦,c)) = `
2(Λ◦ × Zd × Zd)

HMn(• 〈EΛ(G),EΛ(G)〉) = L2(Λ × Zn × Zn)

HMn,d (EΛ(G)) = L2(G × Zn × Zd).

(B.4.4)

Remark B.4.5. Should Λ◦ be cocompact and therefore Λ discrete, we do the
obvious changes. Also if both Λ and Λ◦ are discrete, that is, they are both lattices,
then we may localize all of Mn(C∗(Λ, c)) and all of Md(C∗(Λ◦, c)).

Remark B.4.6. Note that when we do the above lifting process to obtain the
identifications of (B.4.4), we may still identify Λ as being in G × Ĝ. That is, even
though after the lifting process Λ is technically inside G × Zn × Zd × Ĝ × Ẑn × Ẑd,
Λ will be identified as embedded along the units of Zn, Zd and their duals in this
product space. This will be a standing assumption throughout the rest of the paper.

We are finally ready to present the material and constructions which constitute
the main results and novelty of this paper in terms of time-frequency analysis. As
a first step towards this, we will consider a novel type of Gabor frames. To ease
notation we will for f ∈ L2(G × Zn × Zd) write fi, j instead of f (·, i, j), and the
same for elements of L2(Λ × Zn × Zn) and L2(Λ◦ × Zd × Zd).

Definition B.4.7. Let Λ be a closed subgroup of G × Ĝ. For g ∈ L2(G × Zn × Zd)
we define the coefficient operator Cg by

Cg : L2(G × Zn × Zd) → L2(Λ × Zn × Zn)

Cg( f ) = {
∑
m∈Zd

〈 fk,m, π(λ)gl,m〉}λ∈Λ,k,l∈Zn

and the synthesis operator Dg by

Dg : L2(Λ × Zn × Zn) → L2(G × Zn × Zd)

Dga = {
∑
m∈Zn

∫
Λ

ak,m(λ)π(λ)gm,l dλ}k∈Zn,l∈Zd .

Furthermore, we define the frame-like operator Sg,h = DhCg, and for brevity we
write Sg for DgCg. We say Sg is the frame operator associated to g.

We say g generates an (n, d)-matrix Gabor frame for L2(G) with respect to Λ
if Sg : L2(G × Zn × Zd) → L2(G × Zn × Zd) is an isomorphism. Equivalently, the
collection of time-frequency shifts

G(g;Λ) := {π(λ)gi, j | λ ∈ Λ}i∈Zn, j∈Zd
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is a frame for L2(G ×Zn ×Zd). We then say that G(g;Λ) is an (n, d)-matrix Gabor
frame for L2(G). Equivalently, there exists h ∈ L2(G × Zn × Zd) such that for all
f ∈ L2(G × Zn × Zd) we have

fr,s =
∑
k∈Zd

∑
l∈Zn

∫
Λ

〈 fr,k, π(λ)gl,k〉π(λ)hl,sdλ, (B.4.5)

for all r ∈ Zn and s ∈ Zd. When g and h satisfy (B.4.5) we say G(g;Λ) and G(h;Λ)
are a dual pair of (n, d)-matrix Gabor frames. If Λ is implicit, we may also say h
is a dual (n, d)-matrix Gabor atom for g, or just a dual atom of g.

Remark B.4.8. The equivalence of the definitions of (n, d)-matrix Gabor frames
given in Definition B.4.7 follows by [25, Lemma 6.3.2] and Proposition B.4.12
below.

Remark B.4.9. When G(g;Λ) is an (n, d)-matrix Gabor frame for L2(G), there is
always a dual (n, d)-matrix Gabor atom for g, namely h = S−1

g g. This is known as
the canonical dual of g.

RemarkB.4.10. One can verify thatCg = D∗g. Thus Sg is always a positive operator
between Hilbert spaces, just as for the module frame operator in Section B.3.

For general g ∈ L2(G×Zn×Zd) the operatorCg will not be bounded. Functions
g such that Cg is bounded are of interest on their own.

Definition B.4.11. If g ∈ L2(G × Zn × Zd) is so that Cg : L2(G × Zn × Zd) →
L2(Λ × Zn × Zn) is a bounded operator we say g is an (n, d)-matrix Gabor Bessel
vector for L2(G) with respect to Λ, or that G(g;Λ) is an (n, d)-matrix Gabor Bessel
system for L2(G). Equivalently, there is D > 0 such that for all f ∈ L2(G×Zn×Zd)
we have

〈 f , f 〉 ≤ D〈Cg f ,Cg f 〉, (B.4.6)

which may also be written as∑
i∈Zn

∑
j∈Zd

∫
G

| fi, j(ξ)|2dξ ≤ D
∑

k,l∈Zn

∫
Λ

|
∑
m∈Zd

〈 fk,m, π(λ)gl,m〉|2dλ.

The smallest D > 0 such that the condition of (B.4.6) holds is called the optimal
Bessel bound of G(g;Λ).

TheGabor frames ofDefinitionB.4.7 seemingly generalize the n-multi-window
d-super Gabor frames of [66]. Indeed, we obtain n-multi-window d-super Gabor
frames if we only require reconstruction of f ∈ L2(G × Zd) and we identify
L2(G×Zd) ⊂ L2(G×Zn ×Zd) by embedding along a single element of Zn. Hence
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(B.4.5) generalizes both multi-window Gabor frames and super Gabor frames as
well, setting d = 1 or n = 1, respectively. However, we will in Proposition B.4.29
show that any n-multi-window d-super Gabor frame for L2(G) with respect to Λ
is an (n, d)-matrix Gabor frame for L2(G) with respect to Λ. In spite of this we
continue to call them by separate names, since, as mentioned above, they are used
for reconstruction in different Hilbert spaces.

The following proposition was noted in the (n, 1)-matrix case in [9, Theorem
3.10], and its proof in the (n, d)-matrix Gabor case goes through the same except
with more bookkeeping.

Proposition B.4.12. Let Λ ⊂ G × Ĝ be closed and cocompact. For every g ∈

Mn,d(EΛ(G)), Cg : L2(G × Zn × Zd) → L2(Λ × Zn × Zn) is a bounded operator.
In other words, every g ∈ Mn,d(EΛ(G)) is a Bessel vector.

For ease of notation, the localization map in Mn(C∗(Λ, c)) will be denoted by
ρΛ, though note that we might not be able to localize all of Mn(C∗(Λ, c)). With the
above definitions, the following calculation is justified for f , g ∈ Mn,d(EΛ(G)) ⊂
L2(G × Zn × Zd) by Proposition B.4.12

ρΛΦg( f ) = ρΛ(•[ f , g])

= ρΛ({
∑
m∈Zd

∫
Λ

〈 fk,m, π(λ)gl,m〉π(λ)}k,l∈Zn )

= {
∑
m∈Zd

〈 fk,m, π(λ)gl,m〉}λ∈Λ,k,l∈Zn = CgρMn,d (EΛ(G))( f ).

Hence we obtain the following result.

Lemma B.4.13. Let Λ ⊂ G × Ĝ be closed and cocompact. For every g ∈

Mn,d(EΛ(G)), the module coefficient operator Φg localizes to give the coefficient
operator Cg. Equivalently, the diagram

Mn,d(EΛ(G)) Mn(C∗(Λ, c))

L2(G × Zn × Zd) L2(Λ × Zn × Zn)

Φg

ρMn,d (EΛ(G)) ρΛ

Cg

commutes for all g ∈ Mn,d(EΛ(G)).

Likewise one may obtain C∗gρΛ = ρMn,d (EΛ(G))Φ
∗
g : Mn(•〈 EΛ(G), EΛ(G)〉) →

L2(G × Zn × Zd) for all g ∈ Mn,d(EΛ(G)). Note that the domain might be larger,
but we cannot guarantee this unless C∗(Λ, c) is unital, that is, when Λ is discrete.
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Lemma B.4.14. Let Λ ⊂ G × Ĝ be closed and cocompact. For every g ∈

Mn,d(EΛ(G)), the module synthesis operator Φ∗g localizes to the Gabor synthe-
sis operator C∗g. Equivalently, the diagram

Mn(•〈 EΛ(G), EΛ(G)〉) Mn,d(EΛ(G))

L2(Λ × Zn × Zn) L2(G × Zn × Zd)

Φ∗g

ρΛ ρMn,d (EΛ(G))

C∗g

commutes for every g ∈ Mn,d(EΛ(G)).

Combining Lemma B.4.13 and Lemma B.4.14 we then obtain

Proposition B.4.15. Let Λ ⊂ G × Ĝ be closed and cocompact. For all g, h ∈
Mn,d(EΛ(G)), Sg,hρMn,d (EΛ(G)) = ρMn,d (EΛ(G))Θg,h, meaning the module frame-
like operator Θg,h localizes to the frame-like operator Sg,h. Equivalently, the
diagram

Mn,d(EΛ(G)) Mn,d(EΛ(G))

L2(G × Zn × Zd) L2(G × Zn × Zd)

Θg,h

ρMn,d (EΛ(G))
ρMn,d (EΛ(G))

Sg,h

commutes for all g, h ∈ Mn,d(EΛ(G)).

As ρMn,d (EΛ(G)) : Mn,d(EΛ(G)) → ρMn,d (EΛ(G))(Mn,d(EΛ(G))) is a linear bi-
jection intertwining both the C∗(Λ, c)-actions and the C∗(Λ◦, c)-actions, we see
by Proposition B.4.15 that for g ∈ Mn,d(EΛ(G)), Θg is invertible if and only if
Sg |ρMn,d (EΛ(G))

(Mn,d (EΛ(G))) is invertible. But we also have the following result.

LemmaB.4.16. LetΛ ⊂ G×Ĝ be closed and cocompact, and let g ∈ Mn,d(EΛ(G)).
Then

Sg |ρMn,d (EΛ(G))
(Mn,d (EΛ(G))) : ρMn,d (EΛ(G))(Mn,d(EΛ(G)))

→ ρMn,d (EΛ(G))(Mn,d(EΛ(G)))

is invertible if and only if

Sg : L2(G × Zn × Zd) → L2(G × Zn × Zd)

is invertible.
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Proof. Suppose first

Sg |ρMn,d (EΛ(G))
(Mn,d (EΛ(G))) : ρMn,d (EΛ(G))(Mn,d(EΛ(G)))

→ ρMn,d (EΛ(G))(Mn,d(EΛ(G)))

is invertible. Since any g ∈ Mn,d(EΛ(G)) is a Bessel vector by Proposition B.4.12,
we may extend the operator by continuity to obtain that Sg : L2(G × Zn × Zd) →
L2(G × Zn × Zd) is invertible as well.

Conversely, suppose Sg : L2(G × Zn × Zd) → L2(G × Zn × Zd) is invert-
ible. Since Sg is the continuous extension of Θg, it then follows by Proposi-
tion B.2.1 and inverse closedness ofC∗-algebras thatΘg is invertible, which implies
Sg |ρMn,d (EΛ(G))

(Mn,d (EΛ(G))) is invertible. �

Remark B.4.17. From now on we will identify Mn,d(E) and its image in the
localization, and we will do this without mention.

Combining Proposition B.4.15 and Lemma B.4.16 we obtain the following
important result.

PropositionB.4.18. LetΛ ⊂ G×Ĝ be closed and cocompact. For g ∈ Mn,d(EΛ(G))
we have that Θg is invertible if and only if Sg is invertible. In other words, g gen-
erates a module frame for Mn,d(EΛ(G)) as an Mn(C∗(Λ, c))-module if and only
G(g;Λ) is an (n, d)-matrix Gabor frame for L2(G).

We also have the following important corollary.

Corollary B.4.19. Let Λ ⊂ G × Ĝ be closed and cocompact, and let g, h ∈
Mn,d(EΛ(G)). Then g and h generate dual (n,d)-matrix Gabor frames for L2(G)
with respect to Λ if and only if [g, h ]• extends to the identity operator on L2(G ×
Zn × Zd).

Proof. Suppose first g, h ∈ Mn,d(EΛ(G)) generate dual (n, d)-matrix Gabor frames
for L2(G) with respect to Λ. Then we know that for all f ∈ Mn,d(EΛ(G)) we have

f = •[ f , g]h = f [g, h ]•,

from which we as before deduce that [g, h ]• = 1Md (C∗(Λ◦,c)). This extends by
continuity to the identity operator on all of L2(G × Zn × Zd).

Conversely, if [g, h ]• extends to the identity operator on L2(G×Zn ×Zd), then
[g, h ]• acts as the identity on Mn,d(EΛ(G)). For any f ∈ Mn,d(EΛ(G)) we then
have

f = f [g, h ]• = •[ f , g]h,

hence (B.4.5) holds for all f ∈ Mn,d(EΛ(G)). But this extends to L2(G×Zn×Zd) by
continuity, which implies that g and h generate dual (n, d)-matrixGabor frames. �
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Amongst other results, we wish to establish a duality principle for (n, d)-matrix
Gabor frames. For this we also need to treat (n, d)-matrix Gabor Riesz sequences
and relate them to Definition B.3.22.

Definition B.4.20. Let g ∈ L2(G × Zn × Zd). We say g generates an (n, d)-matrix
Gabor Riesz sequence for L2(G)with respect toΛ, or thatG(g;Λ) is an (n, d)-matrix
Gabor Riesz sequence for L2(G), if

CgC∗g : L2(Λ × Zn × Zn) → L2(Λ × Zn × Zn)

is an isomorphism. Equivalently, there exists h ∈ L2(G ×Zn ×Zd) such that for all
a ∈ L2(Λ × Zn × Zn) we have

ar,s(µ) =
∑
i∈Zd

∑
j∈Zn

〈

∫
Λ

ar, j(λ)π(λ)gj,idλ, π(µ)hs,i〉 (B.4.7)

for all r, s ∈ Zn and all µ ∈ Λ. If (B.4.7) is satisfied we will say h generates a dual
(n, d)-matrix Gabor Riesz sequence of g.

Remark B.4.21. Note that the equivalence of the definitions of (n, d)-matrix Gabor
Riesz sequences in Definition B.4.20 follows by [25, Theorem 3.6.6] and Proposi-
tion B.4.12.

Remark B.4.22. (B.4.7) is equivalent to CgC∗
h
= ChC∗g = IdL2(Λ×Zn×Zn).

Before treating localization of module matrix Riesz sequences and how they
relate to matrix Gabor Riesz sequences, we do a necessary but justified simplifica-
tion. Recall that existence of finitemodulematrix Riesz sequences for Mn,d(EΛ(G))
with respect to Mn(C∗(Λ, c)) requires C∗(Λ, c) to be unital by Proposition B.3.14.
In the following we therefore let Λ be discrete, but not necessarily cocompact.
Hence C∗(Λ, c) is unital with a faithful trace, but C∗(Λ◦, c) might not have that
property. By [65, p. 251] we know that G(g;Λ) is a Bessel system with Bessel
bound D if and only if G(g;Λ◦) is a Bessel system with Bessel bound D. Apply-
ing Proposition B.4.12 we immediately get the following from Lemma B.4.13 and
Lemma B.4.14.

Proposition B.4.23. Let Λ ⊂ G × Ĝ be discrete. For all g, h ∈ Mn,d(EΛ(G)) we
have (ChC∗g) ◦ ρMn(C∗(Λ,c)) = ρΛ ◦ (ΦhΦ

∗
g). Equivalently, the diagram

Mn(C∗(Λ, c)) Mn(C∗(Λ, c))

L2(Λ × Zn × Zn) L2(Λ × Zn × Zn)

ΦhΦ
∗
g

ρΛ ρΛ

ChC
∗
g
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commutes.

As ρΛ : Mn(C∗(Λ, c)) → ρΛ(Mn(C∗(Λ, c)) is a linear bijection respecting
the actions of C∗(Λ, c), we see by Proposition B.4.23 that for g ∈ Mn,d(EΛ(G)),
ΦgΦ

∗
g is an isomorphism if and only if (CgC∗g)|ρΛ(Mn(C∗(Λ,c)) is an isomorphism.

In analogy with Lemma B.4.16 we have the following result.

Lemma B.4.24. Let Λ ⊂ G × Ĝ be discrete. For g ∈ Mn,d(E) we have that

(CgC∗g)|ρΛ(Mn(C∗(Λ,c))) : ρΛ(Mn(C∗(Λ, c))) → ρΛ(Mn(C∗(Λ, c)))

is invertible if and only if

CgC∗g : L2(Λ × Zn × Zn) → L2(Λ × Zn × Zn)

is invertible.

Proof. Suppose (CgC∗g)|ρΛ(Mn(C∗(Λ,c))) : ρΛ(Mn(C∗(Λ, c))) → ρΛ(Mn(C∗(Λ, c)))
is invertible. Since any g ∈ Mn,d(EΛ(G)) is a Bessel vector by Proposition B.4.12,
we may extend the operator by continuity to obtain that CgC∗g : L2(Λ×Zn ×Zn) →

L2(Λ × Zn × Zn) is invertible as well.
Conversely, suppose CgC∗g : L2(Λ×Zn ×Zn) → L2(Λ×Zn ×Zn) is invertible.

Since CgC∗g is the continuous extension of ΦgΦ
∗
g, it then follows by Proposi-

tion B.2.1 and inverse closedness of C∗-algebras that ΦgΦ
∗
g is invertible as well,

which implies (CgC∗g)|ρΛ(Mn(C∗(Λ,c))) : ρΛ(Mn(C∗(Λ, c))) → ρΛ(Mn(C∗(Λ, c))) is
invertible. �

Remark B.4.25. From now on we will identify Mn(•〈 EΛ(G), EΛ(G)〉) (and poten-
tially a larger domain) and its localization. The same goes for Md(C∗(Λ◦, c)).

Now the following is an immediate consequence.

Proposition B.4.26. LetΛ ⊂ G×Ĝ be discrete. For g ∈ Mn,d(EΛ(G))we have that
ΦgΦ

∗
g : Mn(C∗(Λ, c)) → Mn(C∗(Λ, c)) is invertible if and only if CgC∗g : L2(G ×

Zn × Zn) → L2(G × Zn × Zn) is invertible. In other words, g generates a module
Riesz sequence for Mn,d(EΛ(G)) as an Mn(C∗(Λ, c))-module if and only if G(g;Λ)
is an (n, d)-matrix Gabor Riesz sequence for L2(G).

By the proof of Lemma B.4.24 we then have the following statement.

Corollary B.4.27. Let Λ ⊂ G× Ĝ be discrete. Suppose g, h ∈ Mn,d(EΛ(G)). Then
g and h generate dual (n, d)-matrix Gabor Riesz sequences for L2(G) with respect
to Λ if and only if •[ g, h] extends to the identity operator on L2(Λ × Zn × Zn).
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Proof. Suppose first that g and h generate dual (n, d)-matrixGabor Riesz sequences
for L2(G) with respect to Λ. Then for all a ∈ Mn(C∗(Λ, c)) we have

(ar,s) =
{ ∑
i∈Zd

∑
j∈Zn

〈 ∫
Λ

ar, j(λ)π(λ)gj,idλ, π(µ)hs,i
〉}
µ∈Λ,r,s∈Zn

,

which is equivalent to a = a •[ g, h] for all a ∈ Mn(C∗(Λ, c)). But the first
expression extends by continuity to L2(Λ × Zn × Zn), so •[ g, h] extends to the
identity on L2(Λ × Zn × Zn).

Conversely, suppose •[ g, h] extends to the identity on L2(Λ × Zn × Zn). Once
again, for all a ∈ Mn(C∗(Λ, c)) we then have

(ar,s) =
{ ∑
i∈Zd

∑
j∈Zn

〈 ∫
Λ

ar, j(λ)π(λ)gj,idλ, π(µ)hs,i
〉}
µ∈Λ,r,s∈Zn

,

which again extends to L2(G × Zn × Zn). Hence g and h are dual (n, d)-matrix
Gabor Riesz sequences for L2(G) with respect to Λ. �

Note how the above results guarantee that when Λ ⊂ G × Ĝ is closed and
cocompact and g ∈ Mn,d(EΛ(G)) is such that G(g;Λ) is an (n, d)-matrix Gabor
frame for L2(G), the canonical dual frame S−1

g g ∈ Mn,d(EΛ(G)). Indeed,

S−1
g g = Θ−1

g g = g[g, g ]•
−1 ∈ Mn,d(EΛ(G)).

Likewise, for Riesz sequences there is the notion of canonical biorthogonal atom,
see for example [25, p. 160]. Restricting to Λ discrete, it is given by (SΛ◦g )−1g,
where SΛ

◦

g is the frame operator with respect to the right hand side, that is, with
respect to Λ◦. We see that for all f ∈ Mn,d(EΛ(G))

SΛ
◦

g f = (ΦC∗(Λ◦,c)
g )∗Φ

C∗(Λ◦,c)
g f = (ΦC∗(Λ◦,c)

g )∗([g, f ]•) = g[g, f ]• = •[ g, g] f .

Thus it follows that

(SΛ
◦

g )
−1g = (Θ

C∗(Λ◦,c)
g )−1g = •[ g, g]

−1g ∈ Mn,d(E).

Hence for both matrix Gabor frames and matrix Gabor Riesz sequences with
generating atom in Mn,d(EΛ(G)), the canonically associated dual atoms are also
in Mn,d(EΛ(G)). We have the following result which shows that in the cases we
are interested in, if the generating atom is regular, the canonical dual atom has the
same regularity.

Proposition B.4.28. Let g ∈ Mn,d(S0(G)).
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i) If G(g;Λ) is an (n, d)-matrix Gabor frame for L2(G) and Λ is closed and
cocompact in G × Ĝ, then the canonical dual atom is in Mn,d(S0(G)).

ii) If G(g;Λ) is an (n, d)-matrix Gabor Riesz sequence for L2(G) and Λ is
discrete, then the canonical biorthogonal atom is also in Mn,d(S0(G)).

Proof. For the proof of i), note that the assumption thatΛ is cocompact implies that
Λ◦ is discrete, so Md(C∗(Λ◦, c)) is unital. Also Md(C∗(Λ◦, c)) is aC∗-subalgebra of
B(HMn,d (EΛ(G))) by Proposition B.2.1. ThatG(g;Λ) is an (n, d)-matrix Gabor frame
for L2(G) then means that (B.3.6) is satisfied for our current setting. We deduce,
as in the proof of Proposition B.3.18, that [g, g ]• is invertible in Md(B). Since
[g, g ]• ∈ Md(S0(Λ

◦, c)) and Md(S0(Λ
◦, c)) is spectrally invariant in Md(C∗(Λ◦, c))

byPropositionB.4.4 and [103, Theorem2.1] the canonical dual atom is g[g, g ]•−1 ∈

Mn,d(S0(G)).
For the proof of ii), note that the assumption that Λ is discrete implies

Mn(C∗(Λ, c)) is unital. Also, Mn(C∗(Λ, c)) is a C∗-subalgebra of B(HMn(C∗(Λ,c)))

by Proposition B.2.1. That G(g;Λ) determines an (n, d)-matrix Gabor Riesz se-
quence for L2(G) then means that (B.3.7) is satisfied for our current setting. The
middle term of (B.3.7) can be written as (a •[ g, g], a)C∗(Λ,c), so •[ g, g] extends to a
positive, invertible operator on L2(G×Zn×Zn). We deduce as in the proof of Propo-
sition B.3.20 that •[ g, g] is invertible in Mn(C∗(Λ, c)). Since g ∈ Mn,d(S0(G)),
we have •[ g, g] ∈ Mn(S0(Λ, c)), and again Mn(S0(Λ, c)) is spectrally invariant
in Mn(C∗(Λ, c)). It follows that the canonical dual atom h := •[ g, g]−1g is in
Mn,d(S0(G)). �

When applying the module setup of Section B.3 to Gabor analysis, we take as
a pre-equivalence bimodule E = S0(G × Zn × Zd), which is a proper subspace of
L2(G×Zn×Zd) unless G is a finite group. Even the HilbertC∗-module completion
EΛ(G) is properly contained in L2(G×Zn ×Zd) for general Λ. As such, we cannot
hope to treat general atoms in L2(G × Zn × Zd) by applying just this method. But
indeed the module reformulation is made exactly to guarantee some regularity of
the atoms generating frames.

From Definition B.4.7 we see that (n, d)-matrix Gabor frames generalize n-
multi-window d-super Gabor frames considered in [66]. However, we now make
clear how they fit into the module framework. As mentioned earlier, we ob-
tain n-multi-window d-super Gabor frames if we only require reconstruction of
f ∈ L2(G × Zd) and we identify L2(G × Zd) ⊂ L2(G × Zn × Zd) by embed-
ding it along a single element in Zn. The module reformulation of this is that
g, h ∈ Mn,d(EΛ(G)) are dual n-multi-window d-super Gabor frames if for all
f ∈ Mn,d(EΛ(G)) supported only one row we have

f = •[ f , g]h = f [g, h ]• .
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Likewise, it is clear that the (n, d)-matrix Gabor Riesz sequences of Defini-
tion B.4.20 generalize the n-multi-window d-super Gabor Riesz sequences also
considered in [66]. Indeed, we obtain n-multi-window d-super Gabor Riesz se-
quences if we only require reconstruction of a ∈ L2(Λ × Zn) and we identify
L2(Λ×Zn) ⊂ L2(Λ×Zn ×Zn) by embedding it along a single element in the mid-
dle copy of Zn. The module reformulation of this is that g, h ∈ Mn,d(EΛ(G)) are
dual n-multi-window d-super Gabor Riesz sequences if for all a ∈ Mn(C∗(Λ, c))
supported only one row we have

a = •[ ag, h] = a •[ g, h].

We proceed to prove that all n-multi-window d-super Gabor frames for L2(G) with
respect to Λ are (n, d)-matrix Gabor frames for L2(G) with respect to Λ, as well as
the analogous statement for Riesz sequences. The converse statements are true as
well.

Proposition B.4.29. Let g be in Mn,d(EΛ(G)).

i) If G(g;Λ) is an n-multi-window d-super Gabor frame for L2(G) with a dual
window h ∈ Mn,d(EΛ(G)), then G(g;Λ) is an (n, d)-matrix Gabor frame for
L2(G) with dual window h.

ii) If G(g;Λ) is an n-multi-window d-super Gabor Riesz sequence for L2(G)
with a dual Gabor Riesz sequence G(h;Λ) with h ∈ Mn,d(EΛ(G)), then
G(g;Λ) is an (n, d)-matrix Gabor Riesz sequence for L2(G) with dual Gabor
Riesz sequence G(h;Λ).

Proof. IfG(g;Λ) is an n-multi-window d-super Gabor frame for L2(G)with respect
to Λ with a dual window h ∈ Mn,d(EΛ(G)), we can, as noted above, reconstruct
any f ∈ Mn,d(EΛ(G)) supported on a single row, say the k’th row. In other words,
f = f [g, h ]• for all f ∈ Mn,d(EΛ(G)) supported on the k’th row. Writing out this
expression we find that

fk,i =
∑
j∈Zd

fk, j · [g, h ]•i, j,

for all i ∈ Zd. Here [g, h ]•i, j ∈ C∗(Λ◦, c) denotes the entry (i, j) in [g, h ]•. Since
this holds for all f supported on the k’th row we deduce that bi, j = δi, j1C∗(Λ◦,c),
meaning [g, h ]• = 1Md (C∗(Λ◦,c)). The actions extend to L2(G × Zn × Zd) and we
deduce that G(g;Λ) is an (n, d)-matrix Gabor frame for L2(G) with dual window
h.

The proof of (ii) is completely analogous. �

At last we may present core results of time-frequency analysis for (n, d)-matrix
Gabor frames. Due to all the work we have just put in to properly establishing the
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link between module frame theory on Morita equivalence bimodules and Gabor
frame theory, we will see that the statements below more or less follow from the
analogous statements in Section B.3.

Proposition B.4.30 (Wexler-Raz biorthogonality relations). Let Λ ⊂ G × Ĝ be a
closed and cocompact subgroup, and let g, h ∈ Mn,d(EΛ(G)). Then the following
are equivalent:

i) G(g;Λ) and G(h;Λ) are dual (n, d)-matrix Gabor frames for L2(G).

ii) For all i, j ∈ Zd we have
∑

k∈Zn

〈
gk,i, π(λ

◦)hk, j
〉
`2(Λ◦)

= δ0,λ◦δi, j s(Λ).

Proof. As Λ is cocompact we know Λ◦ is discrete, so Md(C∗(Λ◦, c)) is unital.
Knowing this, we can see that both the above statements are equivalent to the
statement [g, h ]• = [h, g ]• = 1Md (C∗(Λ◦,c)). �

In the previous paragraphs we did quite a lot of work to establish a connection
between module Riesz sequences and Riesz sequences in Gabor analysis, a con-
nection we have yet to use for anything significant. However, as a result, we now
obtain the following statement of the duality principle in Gabor analysis and a very
short proof.

Theorem B.4.31 (Duality principle). Let Λ ⊂ G × Ĝ be a closed cocompact
subgroup, and let g ∈ Mn,d(EΛ(G)). Then the following are equivalent.

i) G(g;Λ) is an (n, d)-matrix Gabor frame for L2(G).

ii) G(g;Λ◦) is a (d, n)-matrix Gabor Riesz sequence for L2(G).

Proof. Statement i) can be seen to be equivalent to [g, g ]• being invertible in
Md(C∗(Λ◦, c)) by Proposition B.4.18. But statement ii) is also equivalent to [g, g ]•
being invertible in Md(C∗(Λ◦, c)) by Proposition B.4.26. This finishes the proof.

�

For completeness we also include the following result related to the duality
principle. This is a strengthening of the corresponding result in [66].

Proposition B.4.32. Let Λ ⊂ G × Ĝ be closed and cocompact, and let g, h ∈
Mn,d(EΛ(G)) be such that [g, h ]• extends to the identity operator on L2(G × Zn ×
Zd). Then •[ g, h] extends to an idempotent operator from L2(G × Zn × Zd) onto
span{

⊕
i∈Zn

⊕
j∈Zd

π(λ◦)gi, j}.

Proof. As [g, h ]• extends to the identity operator, we have [g, h ]• = [h, g ]• =
1Md (C∗(Λ◦,c)). That •[ g, h] is an idempotent then follows by Proposition B.3.13.
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By Proposition B.3.10 •[ g, h] is then an idempotent from Mn,d(EΛ(G)) onto
gMd(C∗(Λ◦, c)). But this passes to the localization, and the localization of
gMd(C∗(Λ◦, c)) is

span{
⊕
i∈Zn

⊕
j∈Zd

π(λ◦)gi, j} ⊂ L2(G × Zn × Zd).

�

Given a closed and cocompact subgroup Λ, we may ask if there are restrictions
on n, d ∈ N for there to possibly exist (n, d)-matrix Gabor frames for L2(G) with
respect to Λ. Conversely, if we fix n and d, we may ask if there are restrictions
on the size of the subgroup Λ, see (B.4.1), for there to possibly exist (n, d)-matrix
Gabor frames for L2(G) with respect to Λ. When Λ is a lattice, we have the
following proposition.

Proposition B.4.33. Let Λ ⊂ G × Ĝ be a lattice. If there is g ∈ Mn,d(EΛ(G)) such
that G(g;Λ) is an (n, d)-matrix Gabor frame for L2(G), then

s(Λ) ≤
n
d
,

where s(Λ) is defined as in (B.4.1).

Proof. Since Λ is discrete and cocompact, both C∗(Λ, c) and C∗(Λ◦, c) are uni-
tal. We also know by Proposition B.4.28 that the canonical dual of g is in
Mn,d(EΛ(G)). Hence we are in the setting of Theorem B.3.16. Since module
(n, d)-matrix frames localize to (n, d)-matrix Gabor frames for the localization,
and we have trΛ(1C∗(Λ,c)) = 1, and trΛ◦(1C∗(Λ◦,c)) = s(Λ) (since the identity on
C∗(Λ◦, c) is s(Λ)δ0, where δ0 is the indicator function in the group identity, see for
example [97]), the result is immediate by Theorem B.3.16. �

Likewise, given a lattice Λ, we may ask if there is a relationship between the
size of Λ (B.4.1) and the integers n and d such that there can possibly exist (n, d)-
matrix Gabor Riesz sequences for L2(G) with respect to Λ. This is the content of
the following proposition.

Proposition B.4.34. Let Λ ⊂ G × Ĝ be a lattice. If g ∈ Mn,d(EΛ(G)) is such that
G(g;Λ) is an (n, d)-matrix Gabor Riesz sequence for L2(G), then

s(Λ) ≥
n
d
,

where s(Λ) is defined as in (B.4.1).
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Proof. As before we know by the conditions on Λ that both C∗(Λ, c) and C∗(Λ◦, c)
are unital, and by Proposition B.4.28 the canonical dual of g is in Mn,d(EΛ(G)).
Thus we are in the setting of Theorem B.3.17. Since module (n, d)-matrix Riesz
sequences localize to (n, d)-matrix Gabor Riesz sequences for the localization, and
trΛ(1C∗(Λ,c)) = 1 and trΛ◦(1C∗(Λ◦,c)) = s(Λ) (once again since the identity on B is
s(Λ)δ0), the result is immediate by Theorem B.3.17. �

Remark B.4.35. The two preceding propositions contain statements known as
density theorems in Gabor analysis. This is due to the fact that they give conditions
on the density of a lattice for there to possibly exist Gabor frames and Riesz
sequences.

Lastly in this paper, we prove that whenever Λ is cocompact, there is a close
relationship between the module frame bounds and the Gabor frame bounds in the
localization.

Proposition B.4.36. Let Λ ⊂ G × Ĝ be a closed cocompact subgroup. Then
g ∈ Mn,d(EΛ(G)) generates a module (n, d)-matrix frame for EΛ(G) as a C∗(Λ, c)-
module with lower frame bound C and upper frame bound D if and only if G(g;Λ)
is an (n, d)-matrix Gabor frame for L2(G) with lower frame bound C and upper
frame bound D.

Proof. By Lemma B.2.4 it suffices to prove that the optimal frame bounds are equal
for both the module frame and the Gabor frame. We know that the localization of
a module frame for Mn,d(EΛ(G)) as an Mn(C∗(Λ, c))-module becomes an (n, d)-
matrix Gabor frame for L2(G) with respect to Λ. Since Λ is cocompact, we also
know that if g ∈ Mn,d(E) is such that G(g;Λ) is an (n, d)-matrix Gabor frame for
L2(G), then the canonical dual S−1

g g ∈ Mn,d(EΛ(G)) also. By Proposition B.4.18
we have ρ(Θg) = Sg. From standard Hilbert space frame theory we know that the
optimal upper frame bound for Sg is ‖Sg‖, and the optimal lower frame bound for
Sg is ‖S−1

g ‖
−1, see for example Section 5.1 of [53]. We know by Proposition B.2.1

that ‖Θg‖ = ‖ρ(Θg)‖ = ‖Sg‖ and ‖Θ−1
g ‖ = ‖ρ(Θ

−1
g )‖ = ‖S

−1
g ‖. The result then

follows by Lemma B.2.4. �

Remark B.4.37. A straightforward calculation will show that ‖Θg‖ = ‖ •[ g, g]‖.
Indeed, for an A-B-equivalence bimodule E this follows by the usual isomorphism
B � KA(E).

Corollary B.4.38. Let g ∈ Mn,d(EΛ(G)) and let Λ ⊂ G × Ĝ be a lattice. If DΛ
denotes the optimal Bessel bound for G(g;Λ) and DΛ◦ denotes the optimal Bessel
bound for G(g;Λ◦), then DΛ◦ = s(Λ)−1DΛ.
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Proof. By Proposition B.4.36 and Remark B.4.37 it follows that DΛ = ‖Sg‖ =
‖ •[ g, g]‖. But the analogous argument can be made to work with Λ◦ instead of Λ,
since the important part for the setup with localization as done in this paper is that
Λ or Λ◦ is cocompact. Hence we may obtain DΛ◦ by similar considerations. We
show how to do this. First we make S0(G) into a S0(Λ

◦, c)-S0(Λ, c)-pre-equivalence
bimodule similarly to what we did in (B.4.2) and (B.4.3), and then complete it
to obtain a C∗(Λ◦, c)-C∗(Λ, c)-equivalence bimodule EΛ◦(G). By [9, Proposition
3.17] we have EΛ(G) = EΛ◦(G) as function spaces (hence the same for the matrix
cases). Denote by •[ ·, ·]′ the Md(C∗(Λ◦, c))-valued inner product on Md,n(EΛ◦(G)),
and by ‖ · ‖Λ◦ the resulting norm on EΛ◦(G). Then [9, Proposition 3.17] tells us that
for any f ∈ Md,n(EΛ(G)) we have ‖ •[ f , f ]′‖Λ◦ = s(Λ)−1‖ •[ f , f ]‖. Following
the first line of this proof for DΛ◦ instead, we then obtain DΛ◦ = ‖ •[ g, g]′‖Λ◦ =
s(Λ)−1‖ •[ g, g]‖ = s(Λ)−1DΛ, which is what we wanted to show. �
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Paper C

Spectral invariance of
∗-representations of twisted
convolution algebras with
applications in Gabor analysis

Abstract
We show spectral invariance for faithful ∗-representations for a class of
twisted convolution algebras. More precisely, if G is a locally compact
group with a continuous 2-cocycle c for which the corresponding Mackey
group Gc is C∗-unique and symmetric, then the twisted convolution algebra
L1(G, c) is spectrally invariant in B(H) for any faithful ∗-representation of
L1(G, c) as bounded operators on a Hilbert space H. As an application of
this result we give a proof of the statement that if ∆ is a closed cocompact
subgroup of the phase space of a locally compact abelian group G′, and if
g is some function in the Feichtinger algebra S0(G′) that generates a Gabor
frame for L2(G′) over ∆, then both the canonical dual atom and the canonical
tight atom associated to g are also in S0(G′). We do this without the use of
periodization techniques from Gabor analysis.

C.1 Introduction

The primary focus of this article is the concept of spectral invariance. In short, ifA
is a ∗-subalgebra of a Banach ∗-algebra B, thenA is said to be spectrally invariant
in B if σA(a) = σB(a) for all a ∈ A, where σA(a) denotes the spectrum of the
element a in the algebra A, and likewise for σB(a). In particular, if A and B are
both unital with common unit, and if a ∈ A is invertible in B, spectral invariance
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of A in B tells us that a−1 ∈ A as well. Spectral invariance of Banach ∗-algebras
in C∗-algebras is a concept that has been extensively studied and is of importance
in a number of different mathematical fields. Due to the seminal paper [49] the
study of spectral invariance has been linked to Wiener’s lemma, and variations
of this result. As fields where spectral invariance is of importance we mention
the theory of noncommutative tori [28, 58], Gabor analysis and window design in
the theory of Gabor frames [58], convolution operators on locally compact groups
[17, 44, 45], infinite-dimensional matrices [18, 50, 73, 105], and the theory of
pseudodifferential operators [54, 55, 60, 105]. This list is by no means exhaustive.
For an introduction to these variations on spectral invariance and Wiener’s lemma
we refer the reader to [56]. Moreover, we note that in recent years quite a bit
of work has been done on spectral invariance of various algebras motivated by a
plethora of different problems, see e.g. [20, 57, 84, 85].

The main motivations for this article are the uses of spectral invariance in
noncommutative geometry [29] and in Gabor analysis [58] as spectral invariance of
twisted convolution algebras appear frequently in both. Indeed, Gabor analysis has
in recent years been used as a source of examples for concepts in noncommutative
geometry, see e.g. [82, 83]. The original motivation for this article was to prove
an extension of the main result of [58] in the case of closed cocompact subgroups
of the phase space of a locally compact abelian group without using periodization
techniques from Gabor analysis. We do this in Section C.4. Our focus will not
be on general ∗-subalgebras of Banach ∗-algebras. Instead we will limit ourselves
to a subclass of all twisted convolution algebras of locally compact groups where
the twist is implemented by a continuous 2-cocycle, see Definition C.2.2. For such
a locally compact group G and a continuous 2-cocycle c, the resulting twisted
convolution algebra will be denoted L1(G, c). Given a faithful ∗-representation
π : L1(G, c) → B(H) for some Hilbert space H, we wish to find conditions on G
and π that guarantee that σL1(G,c)( f ) = σB(H)(π( f )) for all f ∈ L1(G, c), i.e. that
L1(G, c) is spectrally invariant in B(H). Key to our approach to this problem is
the use of the Mackey group Gc associated to the locally compact group G and the
continuous 2-cocycle c, and we define this group in Section C.2.1. Note that in
general L1(G, c) and L1(Gc) are not isomorphic as Banach ∗-algebras. It will be of
importance to us that the convolution algebra L1(Gc) is symmetric, which in short
means that the positive elements of the Banach ∗-algebra L1(Gc) have positive
spectra, see Definition C.2.6. We then apply Barnes’ extension [17] of a result of
Hulanicki [63], stated for the reader’s convenience in Proposition C.2.9, to prove
prove the main result of the article.

Due to the use of the result of Hulanicki, the argument for spectral invariance
will depend on a norm condition on self-adjoint elements. This norm condition
may be difficult to check in practice, so we describe a class of groups for which
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the condition is automatically satisfied. This leads us to C∗-unique groups, in-
troduced by Boidol [22]. In short, a locally compact group G is C∗-unique if its
convolution algebra L1(G) has a unique C∗-norm. A Banach ∗-algebra admitting a
faithful ∗-representation is called C∗-unique if it has a unique C∗-completion. Ex-
amples of C∗-unique groups are semidirect products of abelian groups, connected
metabelian groups, as well as groups where every compactly generated subgroup
is of polynomial growth [22, p. 224]. We may now state the article’s main theorem.

Theorem A (Theorem C.3.1). Let G be a locally compact group with a continuous
2-cocycle c.

i) If L1(Gc) is C∗-unique, so is L1(G, c).

ii) If L1(Gc) is symmetric and C∗-unique and π : L1(G, c) → B(H) is a faithful
∗-representation, then f 7→ ‖π( f )‖B(H), f ∈ L1(G, c), is the full C∗-norm
on L1(G, c), and σL1(G,c)( f ) = σB(H)(π( f )) for all f ∈ L1(G, c).

Though there are some known examples ofC∗-unique groups, there are very few
statements in the literature concerning the C∗-uniqueness of twisted convolution
algebras. This is why we go via the convolution algebra of the Mackey group
Gc, and why statement i) is of independent interest. Note also that for all unital
Banach ∗-algebras, being symmetric is equivalent to being spectrally invariant in
the enveloping C∗-algebra, see for example [79, p. 340].

Important to our proof of the main theorem is the observation that convolu-
tion in L1(Gc) can be expressed in terms of convolution in the algebras L1(G, cn),
n ∈ Z, where cn is the 2-cocycle c raised to the nth power, see Proposition C.3.6.
As an immediate consequence, L1(Gc) can be decomposed in terms of the sub-
algebras L1(G, cn) as in Corollary C.3.7, and this allows us to extend a faithful
∗-representation of L1(G, c) to a faithful ∗-representation of L1(Gc) in the proof of
Theorem C.3.1. This is the crucial step in the proof.

Using our main theorem we are able to give a short proof on a problem
concerning regularity of canonical dual atoms and canonical tight atoms in Gabor
analysis. We will do this by restating the problem in operator algebraic terms
and then use Theorem C.3.1. Exploring the interplay between Gabor analysis and
operator algebras has gained much popularity in recent years [9, 10, 36, 66, 72,
82, 83]. The field of Gabor analysis has its origins in the seminal paper of Gabor
[48], where he claimed that it is possible to obtain basis-like representations of
functions in L2(R) in terms of the set {e2πilxφ(x − k) : k, l ∈ Z}, where φ denotes
a Gaussian. A central problem of the field is still to find basis-like expansions of
functions in terms of time-frequency shifts of the form (C.4.1). Although most
research in this field is done on one or several real variables, it is possible, due
to the nature of time-frequency shifts, to study Gabor analysis on phase spaces of
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locally compact abelian groups [52]. Let G be a locally compact abelian group.
Then its phase space is the group G × Ĝ, where Ĝ is its Pontryagin dual. Let π(z)
be a time-frequency shift of the form (C.4.1) for some point z = (x, ω) ∈ G × Ĝ.
Ignoring normalizations on the relevant Haar measures for the time being, one may
then consider a closed cocompact subgroup ∆ ⊆ G × Ĝ and a function g ∈ L2(G)
and ask when a set G(g;∆) := (π(z)g)z∈∆ is a frame for L2(G), i.e. when there exist
constants C,D > 0 for which

C‖ f ‖22 ≤
∫
∆

|
〈

f , π(z)g
〉
|2 dz ≤ D‖ f ‖22

holds for all f ∈ L2(G), where dz is the chosen Haar measure on ∆. The reason for
assuming that∆ is cocompact will be explained in RemarkC.4.1. In time-frequency
analysis it is often also of interest that the Gabor atom g has good time-frequency
decay. One way of expressing good time-frequency decay is to say that g is in
Feichtinger’s algebra S0(G), see (C.4.5).

Equivalent to G(g;∆) being a Gabor frame for L2(G) is the invertibility of the
frame operator S : L2(G) → L2(G) associated to G(g;∆). The form of S most
suitable for our purposes is given in (C.4.6). Two functions of interest are then the
canonical dual atom of g, which is S−1g, and the canonical tight atom associated
to g, which is S−1/2g. They are of importance in Gabor analysis since they allow
for perfect reconstuction formulas for all functions in L2(G) in terms of g, S−1g,
and S−1/2g, as illustrated by (C.4.3) and (C.4.4). If g ∈ S0(G) generates a frame
G(g;∆) for L2(G), a natural question in Gabor analysis is then whether S−1g and
S−1/2g are in S0(G) also. This leads us to our second main result.

Theorem B (Theorem C.4.2). Let ∆ ⊆ G × Ĝ be a closed cocompact subgroup,
and suppose g ∈ S0(G) is such that G(g;∆) is a Gabor frame for L2(G). Then
S−1g, S−1/2g ∈ S0(G) as well.

We note that the above result was proved in the case of separable lattices inR2d,
and claimed to hold more generally for lattices in phase spaces of locally compact
abelian groups, in the celebrated paper [58]. Though it is somewhat technical to
prove Theorem C.3.1, our approach to Theorem C.4.2 presented below makes it
simple to prove the extension of themain result of [58] for general closed cocompact
subgroups rather than just lattices. It may be possible to adapt the proof from [58]
to this setting as well, but we offer a proof which makes no use of periodization
techniques available in the setting of Gabor analysis.

As mentioned, to prove Theorem C.4.2 we will restate the problem in operator
algebraic language. For a Gabor frame G(g;∆) with g ∈ S0(G), the frame operator
S can be rephrased in terms of a faithful (right) ∗-representation of the Banach
∗-algebra `1(∆◦, c), where ∆◦ is the adjoint lattice of ∆ and c is the Heisenberg
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2-cocycle, see (C.4.2) and (C.4.7). As we explain in the proof of Theorem C.4.2,
any locally compact abelian group is C∗-unique and for any continuous 2-cocycle
on it the associatedMackey group Gc is alsoC∗-unique. In addition, L1(Gc)will in
this case be symmetric. Hence we may apply Theorem C.3.1 to obtain our second
main result.

The strength in avoiding the periodization arguments of [58] and proving spec-
tral invariance of a twisted L1-algebra in terms of symmetry andC∗-uniqueness lies
in the fact that the approach might be adaptable to other representations of groups
where one has an analogous space to the Feichtinger algebra and an L1-algebra
acting on it, such as in the case of certain (projective) coorbit spaces [24, 40, 41].

The article is organized as follows. Section C.2 is dedicated to revising some
results on how we obtain twisted convolution algebras and C∗-algebras through
projective unitary representations of locally compact groups, as well as some
results on symmetric convolution algebras and C∗-unique groups. Our first main
result is Theorem C.3.1, and most of Section C.3 is dedicated to the proof of
this theorem, though some results are of independent interest. In Section C.4 we
rephrase a problem in Gabor analysis in terms of a faithful ∗-representation of a
twisted convolution algebra, and apply Theorem C.3.1 to obtain a simple proof of
the main result of this section, Theorem C.4.2.

C.2 Twisted convolution algebras

C.2.1 Projective unitary representations and twisted convolution al-
gebras

We dedicate this section to explaining how we obtain twisted convolution algebras
from projective unitary representations of locally compact groups.

Definition C.2.1. Let G be a locally compact group and let U(H) denote the group
of unitary operators on the Hilbert space H equipped with the strong topology.
A projective unitary representation of G is a continuous group homomorphism
π : G→ U(H) satisfying

π(e) = IdH, π(x1)π(x2) = c(x1, x2)π(x1x2)

where x1, x2 ∈ G, e is the unit of G, and c : G × G→ T is some continuous map.

The map c : G × G → T associated to the projective group representation
π : G → U(H) in Definition C.2.1 has some important properties. Using associa-
tivity of π we realize that

c(x1, x2)c(x1x2, x3) = c(x1, x2x3)c(x2, x3), x1, x2, x3 ∈ G. (C.2.1)
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Moreover, π(e) = IdH forces

c(x, e) = c(e, x) = 1, x ∈ G. (C.2.2)

DefinitionC.2.2. LetG be a locally compact group. A continuousmap c : G×G→
T satisfying (C.2.1) and (C.2.2) is called a continuous 2-cocycle for G.

Continuous 2-cocycles are part of a cohomology theory for groups, though this
is not something we will have much need for in the sequel. The following result
lists some elementary results for 2-cocycles of groups.

Lemma C.2.3. For a continuous 2-cocycle c for a locally compact group G we
have

i) For any n ∈ Z, the map cn : G × G→ T given by

cn(x1, x2) = (c(x1, x2))
n, x1, x2 ∈ G,

is also a continuous 2-cocycle.

ii) For all x ∈ G we have
c(x, x−1) = c(x−1, x).

iii) For all x, y ∈ G we have

c(y, y−1)c(y−1, x) = c(y, y−1x). (C.2.3)

Proof. Statement i) is obvious. Statement ii) follows by setting x1 = x3 = x and
x2 = x−1 in (C.2.1) and then using (C.2.2). For iii) we may equivalently show that

c(y, y−1)c(yy−1, x) = c(y, y−1x)c(y−1, x)

since c(yy−1, x) = 1. Setting x1 = y, x2 = y−1 and x3 = x in (C.2.1) and then using
(C.2.2) we obtain the result. �

Given a locally compact group G and a continuous 2-cocycle c for G, there
is always a distinguished c-projective unitary representation of G, namely the
c-twisted left regular representation. It is the map Lc : G→ U(L2(G)) given by

Lc
y f (x) = c(y, y−1x) f (y−1x), x, y ∈ G, f ∈ L2(G).

If c = 1 we drop the c from the notation and just write Ly for y ∈ G.
Given a locally compact groupG and a continuous 2-cocycle c, we can construct

an associated groupGc known as theMackey group. It has appeared in the literature
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numerous times before. As a topological space, Gc is just G × T with the product
topology. The binary operation is given by

(x1, τ1)(x2, τ2) = (x1x2, τ1τ2c(x1, x2)). (C.2.4)

The identity is given by (e, 1), and the inverse of an element (x, τ) ∈ Gc is given
by (x, τ)−1 = (x−1, τc(x−1, x)). Gc is a locally compact group, and its left Haar
measure is the product measure. Hence its modular function may be identified with
the modular function of G. We normalize the measure of T to 1.

The usefulness of theMackey group for us is in the fact that c-projective unitary
representations of G induce unitary representations of Gc. Explicitly, given a c-
projective unitary representation of G, say π : G → U(H) for some Hilbert space
H, we obtain a unitary representation πc : Gc → U(H) by setting

πc(x, τ) = τπ(x) (C.2.5)

for (x, τ) ∈ Gc.
We proceed to introduce twisted convolution algebras of these groups and show

how we may complete them to C∗-algebras. For a locally compact group G with
modular function m, we consider the space of measurable and integrable functions
L1(G). For a continuous 2-cocycle c for G we define c-twisted convolution on
L1(G) by

f1\c f2(x) =
∫
G

f1(y) f2(y−1x)c(y, y−1x) dy,

for f1, f2 ∈ L1(G), where dy is the Haar measure on G. Should f2 ∈ Lp(G) and
p ∈ [1,∞] we will use the same notation. We also define the c-twisted involution

f ∗c (x) = m(x−1)c(x, x−1) f (x−1)

for f ∈ L1(G). We denote the resulting ∗-algebra by L1(G, c). It becomes a Banach
∗-algebra when equipped with the usual L1-norm.

Any c-projective unitary representation π : G → U(H) now induces a nonde-
generate ∗-representation π : L1(G, c) → B(H) by setting

π( f )η =
∫
G

f (x)π(x)η dx, f ∈ L1(G, c), η ∈ H,

where we interpret the integral weakly in H. Note that ‖π( f )‖ ≤ ‖ f ‖L1(G).
If the integrated representation π is faithful this gives us a way of completing
L1(G, c) to a C∗-algebra, namely for any f ∈ L1(G) we set ‖ f ‖ := ‖π( f )‖B(H).
The integrated representation of the c-twisted left regular representation will be
denoted by f 7→ Lc

f
. The following result, which will be important for us in the

proof of Theorem C.3.1, is a special case of [77, Satz 6].
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Proposition C.2.4. LetG be an amenable locally compact group with a continuous
2-cocycle c. Then f 7→ ‖Lc

f
‖B(L2(G)) is the maximal C∗-norm on L1(G, c).

Instead of twisting the convolution algebra of the locally compact group G by
a continuous 2-cocycle c, we could first ”twist” the group G by c to obtain the
associated Mackey group Gc, and then consider the associated convolution algebra
L1(Gc) with usual (untwisted) convolution and involution. We will have much
use for this in the sequel. Any c-projective unitary representation of G induces a
unitary representation πc of Gc by (C.2.5), which in turn induces a nondegenerate
∗-representation πc of L1(Gc). Note however that πc is in general not a faithful
∗-representation of L1(Gc) even if πc is a faithful unitary representation of Gc.
Indeed, let f ∈ L1(G) \ {0} and define F ∈ L1(Gc) by F(x, τ) = τ f (x). Then

πc(F)η =
∫
G

∫
T

F(x, τ)πc(x, τ)η dτ dx

=

∫
G

∫
T
τ f (x)τπ(x)η dτ dx =

∫
G

∫
T
τ2 f (x)π(x)η dτ dx = 0,

for all η ∈ H, even though F is not the zero function.

RemarkC.2.5. Note that ifG is nondiscrete wemay always extend a representation
π : L1(G, c) → B(H) to its minimal unitization L1(G, c)∼ by forcing the induced
representation, also denoted π, to satisfy π(1L1(G,c)∼) = IdH. If L1(G, c) is already
unital it will always be implied that π(1L1(G,c)) = IdH.

C.2.2 Symmetric group algebras and C∗-uniqueness

Two concepts that will be of great importance when proving our main result
Theorem C.3.1 are that of symmetric convolution algebras and C∗-uniqueness.

In the sequel, if A is a ∗-algebra and a ∈ A, we let σA(a) denote the spectrum
of a in the algebra A.

Definition C.2.6. A Banach ∗-algebra A is called symmetric if for all a ∈ A we
have σA(a∗a) ⊆ [0,∞). We will say that a locally compact group G is symmetric
if L1(G) is a symmetric Banach ∗-algebra.

Remark C.2.7. By the famous Shirali-Ford theorem a Banach ∗-algebra A is
symmetric if and only if it is hermitian (i.e. a = a∗ ∈ A implies σA(a) ⊆ R).

Note that C∗-algebras are symmetric [86, Theorem 2.2.5]. Moreover, if A is a
nonunital Banach ∗-algebra, A is symmetric if and only if its minimal unitization
Ã is symmetric [94, Theorem (4.7.9)].

Locally compact groupsG yielding symmetric (untwisted) convolution algebras
L1(G) are of importance due to the following result shown in [58, Theorem 2.8]
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(though noted several times earlier). Note that we can omit the condition that G
should be amenable, as it was recently shown that if L1(G) is symmetric, then G is
amenable [101, Corollary 4.8].

Proposition C.2.8. If G is a locally compact group the following statements are
equivalent.

i) L1(G) is symmetric.

ii) σL1(G)( f ) = σB(L2(G))(L f ) for all self-adjoint f ∈ L1(G).

Note that for a locally compact group G and a continuous 2-cocycle c for G,
the Mackey group Gc is amenable if and only if G is amenable [90, Proposition
1.13].

Like in [58], the proofs of some crucial steps will rely on the following result
of Hulanicki, see [63], and the extension by Barnes, see [17]. For a ∈ A, let ρA(a)
denote the spectral radius of a in A.

Proposition C.2.9. LetA be a ∗-subalgebra of a Banach ∗-algebra B, and suppose
there is a faithful ∗-representation π : B → B(H), where H is a Hilbert space. If
B is unital with unit 1B we require π(1B) = IdH. If for all self-adjoint a ∈ A we
have ‖π(a)‖B(H) = ρA(a), then

σB(a′) = σB(H)(π(a′))

for all a′ ∈ A.

Recall that for an element b in a Banach ∗-algebra B, the spectral radius can be
expressed as ρB(b) = limn→∞ ‖bn‖

1/n
B [86, Theorem 1.2.7].

Locally compact groups yielding symmetric convolution algebras have been
studied quite extensively. As examples we mention that all locally compact com-
pactly generated groups of polynomial growth yield symmetric convolution alge-
bras [80], as do all compact extensions of nilpotent groups [81, p. 191]. The latter
fact will come into play in Section C.4. Note also that if a group G is locally com-
pact and compactly generated of polynomial growth, so is its Mackey extension Gc

for any continuous 2-cocycle c.
To deduce spectral invariance of L1(G, c) in Theorem C.3.1 the strategy in

Section C.3 will be to use Proposition C.2.9. In order to do this, we will need a
certain norm equality in order for the conditions of Proposition C.2.9 to be satisfied.
We will restrict to a class of groups for which this is automatic.

DefinitionC.2.10. LetB be aBanach ∗-algebra admitting a faithful ∗-representation.
We say B is C∗-unique if the maximal C∗-norm ‖ · ‖∗ given by

‖b‖∗ = sup{‖π(b)‖B(H) | π : B → B(H) is a ∗-representation of B}
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for b ∈ B, is the unique C∗-norm on B.
We say a locally compact group G is C∗-unique if L1(G) is C∗-unique as a

Banach ∗-algebra.

A C∗-unique group G is amenable, since C∗-uniqueness in particular implies
that the full and reduced group C∗-algebras of G coincide. The converse is not true
[22, 92]. There are some known examples of C∗-unique groups. As examples we
mention semidirect products of abelian groups, connected metabelian groups, as
well as groups where every compactly generated subgroup is of polynomial growth
[22, p. 224]. The latter will also come into play in Section C.4. Moreover, note
that if G is a group where every compactly generated subgroup is of polynomial
growth, so is its Mackey group Gc for any continuous 2-cocycle c.

C.3 Spectral invariance of twisted convolution algebras

All results below will be stated and proved in terms of left representations, i.e.
left projective unitary representations of groups and left ∗-representations of the
twisted convolution algebras we treated in Section C.2. This is only due to left
representations being more common in the literature. We note that with proper
restatements all results in this section also apply to the case of right representations.
Indeed we shall need to consider right representations in Section C.4.

We start by presenting the main theorem of the article. The rest of the section
will mostly be dedicated to its proof. Note that some of the results presented
leading up to the proof of the main theorem were proved in [35] in a more abstract
way. However, due to the specific setting of our results, considering T-valued
2-cocycles directly (as opposed to the more general setting of [35]), we believe the
clarity offered by the explicit calculations using the Fourier transform below makes
the constructions much clearer. Indeed, applying the results of [35] to our setting
would lead us to derive many of the same formulas as we do below.

Theorem C.3.1. Let G be a locally compact group with a continuous 2-cocycle c.

i) If L1(Gc) is C∗-unique, so is L1(G, c).

ii) If L1(Gc) is symmetric and C∗-unique and π : L1(G, c) → B(H) is a faithful
∗-representation, then f 7→ ‖π( f )‖B(H), f ∈ L1(G, c), is the full C∗-norm
on L1(G, c), and σL1(G,c)( f ) = σB(H)(π( f )) for all f ∈ L1(G, c).

Remark C.3.2. Theorem C.3.1 also gives us sufficient conditions for L1(G, c) to
be symmetric. Namely, from statement ii) in Theorem C.3.1 we see that if L1(Gc)

is C∗-unique and symmetric, then L1(G, c) is spectrally invariant in its (unique)
C∗-completion. Therefore it is spectrally invariant in its enveloping C∗-algebra,
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which we know happens if and only if L1(G, c) (and therefore also its minimal
unitization if G is nondiscrete) is symmetric [79, p. 340].

Remark C.3.3. In general Gc is less tractable than the group G, so at first glance
imposing requirements of symmetry and C∗-uniqueness on Gc in Theorem C.3.1
might not seem like an improvement. However, untwisted convolution algebras are
more tractable than twisted ones, and have been studied to a much larger extent in
the literature. In addition, as mentioned in Section C.2, some classes of symmetric
groups and C∗-unique groups are closed under compact extensions, meaning, for
groups G in those classes, we can impose symmetry and C∗-uniqueness on G itself
rather than on Gc.

We begin by embedding Lp(G) as a subspace of Lp(Gc) for 1 ≤ p ≤ ∞. Define
the map j : Lp(G) → Lp(Gc) by

j( f )(x, τ) = τ f (x). (C.3.1)

Lemma C.3.4. Let G be a locally compact group and let c be a continuous 2-
cocycle for G. Then j defined by (C.3.1) is an isometric ∗-homomorphism from
L1(G, c) to L1(Gc), and an isometry from Lp(G) to Lp(Gc) for 1 < p ≤ ∞.
Moreover, if f ∈ L1(G, c) and g ∈ Lp(G), we have

j( f \cg) = j( f ) ∗ j(g) (C.3.2)

for p ∈ [1,∞]. Here ∗ denotes the usual (untwisted) convolution product.

Proof. We begin by verifying that j is an isometry for 1 ≤ p < ∞. Let f ∈ Lp(G).
Then

‖ j( f )‖p
Lp (Gc )

=

∫
Gc

| j( f )(x, τ)|p dτ dx =
∫
G

∫
T
|τ f (x)|p dτ dx

=

∫
G

| f (x)|p dx = ‖ f ‖p
Lp (G)

.

Likewise, for p = ∞ and f ∈ L∞(G) we get

‖ j( f )‖L∞(Gc ) = sup
(x,τ)∈Gc

| j( f )(x, τ)| = sup
(x,τ)∈Gc

|τ f (x)| = sup
x∈G
| f (x)| = ‖ f ‖L∞(G).

We now verify that j is a ∗-homomorphism when p = 1. Let f1, f2 ∈ L1(G, c).
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Then for all (x, τ) ∈ Gc we have

( j( f1) ∗ j( f2))(x, τ) =
∫
Gc

j( f1)(y, ξ) j( f2)((y, ξ)−1(x, τ)) dξ dy

=

∫
G

∫
T

j( f1)(y, ξ) j( f2)(y−1x, ξc(y, y−1)τc(y−1, x)) dξ dy

=

∫
G

∫
T
ξ f1(y)ξτc(y, y−1)c(y−1, x) f2(y−1x) dξ dy

= τ

∫
G

f1(y) f2(y−1x)c(y, y−1)c(y−1, x) dy

= τ

∫
G

f1(y) f2(y−1x)c(y, y−1x) dy

= j( f1\c f2)(x, τ),

where we in the second to last line used (C.2.3). Doing the same calculation with
f2 ∈ Lp(G) shows that (C.3.2) holds.

It then remains to show that j respects the involutions. For f ∈ L1(G, c) and
all (x, τ) ∈ Gc, we have

j( f )∗(x, τ) = m(x−1) j( f )((x, τ)−1) = m(x−1) j( f )(x−1, τc(x, x−1))

= m(x−1)τc(x, x−1) f (x−1) = m(x−1)τc(x−1, x) f (x−1)

= τ f ∗c (x) = j( f ∗c )(x, τ).

Hence j( f )∗ = j( f ∗c ) for all f ∈ L1(G, c). This finishes the proof. �

Since j is an isometry and Lp(G) is complete for all p ∈ [1,∞], we get that
j(Lp(G)) is a closed subspace of Lp(Gc). We may actually obtain a quite explicit
description of this subspace. To do this, we expand functions in Lp(Gc) as Fourier
series with respect to their second argument, that is, in the T-variable. Since the
measure on Gc is the product measure coming from G and T, we have that for
any F ∈ Lp(Gc), 1 ≤ p ≤ ∞, and any x ∈ G, the function τ 7→ F(x, τ) is in
Lp(T) ⊆ L1(T). Therefore the Fourier coefficients

Fk(x) =
∫
T

F(x, τ)τk dτ (C.3.3)

are well defined, and the resulting Fourier series

F(x, τ) =
∑
k∈Z

Fk(x)τk

converges in Lp(T) for 1 < p < ∞. The following lemma then describes the range
of j.
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LemmaC.3.5. LetG be a locally compact group and let c be a continuous 2-cocycle
for G. For 1 ≤ p ≤ ∞ we have j(Lp(G)) = {F ∈ Lp(Gc) | Fk = 0 for k , 1}.

Proof. The inclusion j(Lp(G)) ⊆ {F ∈ Lp(Gc) | Fk = 0 for k , 1} is immediate
by (C.3.1) and (C.3.3). For the converse containment note that if F ∈ {F ∈
Lp(Gc) | Fk = 0 for k , 1}, then for all (x, τ) ∈ Gc we have F(x, τ) = τF1(x).
Since the measure on Gc is the product measure we must have that x 7→ F1(x) is
in Lp(G). Hence F = j(F1), which proves the lemma. �

To simplify notation in the sequel, denote by L1(Gc)n the set

L1(Gc)n := {F ∈ L1(Gc) | Fk = 0 for k , n}.

It is then immediate that L1(Gc)1 = j(L1(G, c)). We also have the following result.

Proposition C.3.6. Let G be a locally compact group with a continuous 2-cocycle
c, let F ∈ L1(Gc) and let H ∈ Lp(Gc) for some 1 ≤ p < ∞. Then

(F ∗ H)(x, τ) =
∑
n∈Z

(Fn\cn Hn)(x)τn, (C.3.4)

for all (x, τ) ∈ Gc, where cn is c to the nth power as in Lemma C.2.3. Moreover,

(Fn)
∗cn = (F∗)n (C.3.5)

for all n ∈ Z.

Proof. Belowwewillmake use of the Fourier expansions F(y, ξ) =
∑

m∈Z Fm(y)ξ
m

and H(y, ξ) =
∑

m∈Z Hm(y)ξ
m, where Fm and Hm are obtained through (C.3.3).

We will assume both F and H have finite expansions of the form (C.3.3). This is
sufficient since trigonometric polynomials are dense in Lp(T), 1 ≤ p < ∞. The
extension to the full statement follows by a standard density argument.

Since {ξm}m∈Z is an orthonormal system in L2(T), we have for all (x, τ) ∈ Gc

(F ∗ H)(x, τ) =
∫
G

∫
T

F(y, ξ)H((y, ξ)−1(x, τ)) dξ dy

=

∫
G

∫
T

F(y, ξ)H(y−1x, ξc(y−1, y)τc(y−1, x)) dξ dy

=

∫
G

∫
T

∑
m∈Z

Fm(y)ξ
m ·

∑
n∈Z

Hn(y
−1x)ξ

n
τn(c(y, y−1x))n dξ dy

=

∫
G

∑
n∈Z

Fn(y)Hn(y
−1x)cn(y, y−1x)τn dy

=
∑
n∈Z

( ∫
G

Fn(y)Hn(y
−1x)cn(y, y−1x) dy

)
τn

=
∑
n∈Z

(Fn\cn Hn)(x)τn
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where, at the third equality, we have used (C.2.3). This establishes (C.3.4).
For any F ∈ L1(Gc) we also have

(F∗)n(x) =
∫
T

F∗(x, τ)τn dτ

=

∫
T

m(x−1)F(x−1, τc(x−1, x))τn dτ

= m(x−1)

∫
T

F(x−1, τc(x−1, x))τn dτ

= m(x−1)

∫
T

F(x−1, τ)τnc(x−1, x)n dτ

= m(x−1)c(x−1, x)n
∫
T

F(x−1, τ)τn dτ

= m(x−1)cn(x−1, x)Fn(x−1)

= (Fn)
∗cn (x),

for all x ∈ G, which establishes (C.3.5). �

The following corollary is then immediate.

Corollary C.3.7. Let G be a locally compact group and let c be a continuous
2-cocycle for G. Then L1(Gc)n � L1(G, cn) as Banach ∗-algebras.

As a final preparation before proving Theorem C.3.1, we need the following
lemma.

Lemma C.3.8. Let G be a locally compact group and let c be a continuous 2-
cocycle for G. For f ∈ L1(G, c) we then have

ρL1(G,c)( f ) = ρL1(Gc )
( j( f )).

If, in addition, f is self-adjoint we get

ρB(L2(G))(L
c
f ) = ρB(L2(Gc ))

(Lj( f )). (C.3.6)

Proof. Since j : L1(G, c) → L1(Gc) is an isometric ∗-homomorphism we have

ρL1(G,c)( f ) = lim
n→∞
‖ f n‖1/n

L1(G,c)
= lim

n→∞
‖ j( f )n‖1/n

L1(Gc )
= ρL1(Gc )

( j( f )),

which proves the first statement.
For the second statement, let f ∈ L1(G, c) be self-adjoint. Since f is self-

adjoint and Lc
f
and Lj( f ) realize f and j( f ) as bounded operators on Hilbert spaces,

i.e. as elements of a C∗-algebra, we have

ρB(L2(G))(L
c
f ) = ‖L

c
f ‖B(L2(G)) and ρB(L2(Gc ))

(Lj( f )) = ‖Lj( f )‖B(L2(Gc ))
,
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see [86, Theorem 2.1.1]. Thus it suffices to show ‖Lc
f
‖B(L2(G)) = ‖Lj( f )‖B(L2(Gc ))

.
To do this, note first that by Lemma C.3.4

Lj( f ) j(g) = j( f ) ∗ j(g) = j( f \cg) = j(Lc
f g)

for any g ∈ L2(G). Moreover, by Proposition C.3.6 we see that Lj( f ) |j(L2(G))⊥ = 0.
Since j : L2(G) → L2(Gc) is an isometry it then follows that ‖Lc

f
‖B(L2(G)) =

‖Lj( f )‖B(L2(Gc ))
, which finishes the proof. �

We are finally ready to prove Theorem C.3.1.

Proof of Theorem C.3.1. We begin by proving i). Let π : L1(G, c) → B(H) be a
faithful ∗-representation. As Gc is assumed to be C∗-unique, Gc is in particular
amenable, so it follows that G is also amenable. Then Proposition C.2.4 gives that
f 7→ ‖Lc

f
‖B(L2(G)), f ∈ L1(G, c), is the maximal C∗-norm on L1(G, c). Hence

it suffices to prove that ‖π( f )‖B(H) = ‖Lc
f
‖B(L2(G)) for all f ∈ L1(G, c). To do

this, we will first extend π to a faithful ∗-representation of L1(Gc). The obvious
attempt at a ∗-representation of L1(Gc), namely the integrated representation of
πc : Gc → U(H) as in (C.2.5), is in general not faithful as noted at the end
of Section C.2.1. The construction of the desired faithful ∗-representation π̃ of
L1(Gc) is therefore more involved.

For all n ∈ Z we know by Corollary C.3.7 that L1(Gc)n � L1(G, cn) as Banach
∗-algebras, and in the sequel we make this identification to ease notation. For any
n ∈ Z \ {1} we define

π(n) := Lcn : L1(G, cn) → B(L2(G)),

and set
π(1) := π : L1(G, c) → B(H).

Then π(n) is a faithful ∗-representation of L1(G, cn) for all n ∈ Z. Moreover, we set

H(n) =
{

L2(G) if n ∈ Z \ {1}
H if n = 1.

Note that⊕k∈ZB(H(k))becomes aC∗-algebra through⊕k∈ZB(H(k)) ⊆ B(⊕k∈ZH(k)),
where ⊕k∈ZH(k) is the Hilbert direct sum. We then consider the map π̃ : L1(Gc) →

⊕k∈ZB(H(k)) which for F ∈ L1(Gc) is given by

F 7→ (Fk)k∈Z 7→
⊕
k∈Z

π(k)(Fk). (C.3.7)
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We must verify that this is a faithful ∗-homomorphism. Continuity will then follow
since any ∗-homomorphism from a Banach ∗-algebra to a C∗-algebra is continuous
[86, Theorem 2.1.7]

For F,H ∈ L1(Gc) it then follows from (C.3.4) that

π̃(F ∗ H) =
⊕
k∈Z

π(k)(Fk\ck Hk) =
⊕
k∈Z

π(k)(Fk) ◦ π
(k)(Hk) = π̃(F)π̃(H).

It also follows from (C.3.5) that

π̃(F∗) =
⊕
k∈Z

π(k)((F∗)k) =
⊕
k∈Z

π(k)((Fk)
∗
ck ) =

⊕
k∈Z

π(k)(Fk)
∗ = π̃(F)∗.

We conclude that π̃ is a continuous ∗-homomorphism.
Now suppose F ∈ L1(Gc) is such that π̃(F) = 0. Then π(k)(Fk) = 0 for all

k ∈ Z, and since π(k) : L1(G, ck) → B(H(k)) are all faithful, we conclude that
Fk = 0 for all k ∈ Z. Since the Fourier transform is injective on L1, this happens
if and only if F = 0 almost everywhere, i.e. if F = 0 in L1(Gc). We deduce that π̃
is a faithful ∗-homomorphism.

Observe that since H(1) = H, the two representations π : L1(G, c) → B(H)
and π̃ ◦ j : L1(G, c) → B(H(1)) can naturally be identified. Using the C∗-identity,
C∗-uniqueness of Gc, and Lemma C.3.8 we then obtain

‖π( f )‖2B(H) = ‖π( f
∗\c f )‖B(H) = ‖π̃( j( f ∗\c f ))‖⊕k∈ZB(H(k))

= ‖Lj( f ∗\c f )‖B(L2(Gc ))
= ‖Lc

f ∗\c f
‖B(L2(G)) = ‖L

c
f ‖

2
B(L2(G))

for all f ∈ L1(G, c), which proves i).
To prove ii), let f ∈ L1(G, c) be self-adjoint. Using Lemma C.3.8, Proposi-

tion C.2.8 and i) of Theorem C.3.1, we have the following chain of equalities

ρL1(G,c)( f ) = ρL1(Gc )
( j( f )) = ρB(L2(Gc ))

(Lj( f ))

= ρB(L2(G))(L
c
f ) = ‖L

c
f ‖B(L2(G)) = ‖π( f )‖B(H).

By Proposition C.2.9 it then follows that σL1(G,c)( f ) = σB(H)(π( f )) for all f ∈
L1(G, c). �

Remark C.3.9. Looking at the proof of Theorem C.3.1 we might hope in light
of results on symmetric (Banach) ∗-algebras in e.g. [20, 44, 45, 57, 84] that it
is possible to obtain similar results for the algebras considered in these papers.
However, considering the crucial role C∗-uniqueness plays in order to get spectral
invariance for all ∗-representations for the ∗-algebra in TheoremC.3.1, it would look
like a key ingredient in proofs of such results should be analogous C∗-uniqueness
results for these algebras, and for the time being these remain elusive.
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C.4 Applications to Gabor analysis

We begin by introducing the central concepts of Gabor analysis, before formulating
the main result of this section. We then rephrase the setting of the problem in terms
spectral invariance of a certain convolution algebra and use Theorem C.3.1 to prove
the result.

Throughout this section G will be a locally compact abelian group and Ĝ will
be its Pontryagin dual. Note that we will write the group operation additively.
Moreover, ∆ will denote a closed cocompact subgroup of the time-frequency plane
G × Ĝ. The reason for restricting to cocompact subgroups will be made clear in
Remark C.4.1. We fix a Haar measure on G and equip Ĝ with the dual measure
such that Plancherel’s formula holds [33, Theorem 3.4.8]. We also fix a Haar
measure on ∆ (which in the sequel will be denoted dz), and give (G × Ĝ)/∆ the
unique measure such that Weil’s formula holds [65, equation (2.4)]. The size of ∆
is the quantity s(∆) := µ((G × Ĝ)/∆), where µ is the chosen Haar measure. As ∆
is cocompact in G × Ĝ, we have s(∆) < ∞.

We proceed to introduce the two unitary operators most relevant for Gabor
analysis. Given x ∈ G and ω ∈ Ĝ, we define the translation operator Tx and
modulation operator Mω on L2(G) by

(Tx f )(t) = f (t − x), (Mω f )(t) = ω(t) f (t)

for f ∈ L2(G) and t ∈ G. Moreover, we define a time-frequency shift by

π(x, ω) := MωTx (C.4.1)

for x ∈ G and ω ∈ Ĝ.
Having introduced both translation andmodulation wemay define the subgroup

of G × Ĝ which will be of greatest importance to us when proving Theorem C.4.2.
This is due to the reformulations of the frame operator in (C.4.6) and (C.4.8) below.
The adjoint subgroup of ∆, denoted ∆◦, is the closed subgroup of G× Ĝ defined by

∆
◦ := {w ∈ G × Ĝ | π(z)π(w) = π(w)π(z) for all z ∈ ∆}. (C.4.2)

Its importance for time-frequency analysis was first realized in [42]. We may
identify ∆◦ with ((G × Ĝ)/∆)̂ as in [65, p. 234] to pick the dual measure on ∆◦
corresponding to the measure on (G × Ĝ)/∆. ∆ is cocompact in G × Ĝ, so ∆◦
is discrete. The induced measure on ∆◦ is the counting measure scaled with the
constant s(∆)−1 [66, equation (13)].

Given g ∈ L2(G), the Gabor system over ∆ with generator g is a family
G(g;∆) := (π(z)g)z∈∆. It is called a Gabor frame if it is a (continuous) frame for
L2(G) [4, 65, 69] in the sense that the following conditions are satisfied:
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i) The family G(g,∆) is weakly measurable, i.e. for every f ∈ L2(G) the map
z 7→

〈
f , π(z)g

〉
is measurable.

ii) There exist positive constants C,D > 0 such that for all f ∈ L2(G) we have
that

C‖ f ‖22 ≤
∫
∆

|
〈

f , π(z)g
〉
|2 dz ≤ D‖ f ‖22 .

Remark C.4.1. Gabor frames G(g;∆) for L2(G) with g ∈ L2(G) can only exist
if ∆ is cocompact [65, Theorem 5.1]. Indeed, this is also the case if we consider
finitely many functions g1, . . . , gk ∈ L2(G) and a Gabor system G(g1, . . . , gk ;∆) as
in Remark C.4.5 below [66, Lemma 4.9]. The same is true if we consider matrix
frames introduced in [10], see [10, Proposition 4.29].

If G(g;∆) is weakly measurable and D < ∞ for this family, we say G(g;∆) is a
Bessel system. Associated to any Bessel systemG(g;∆) is a linear bounded operator
known as the frame operator associated to G(g;∆). It is the operator

S : L2(G) → L2(G)

f 7→
∫
∆

〈
f , π(z)g

〉
π(z)g dz,

where we interpret the integral weakly in L2(G). It is well-known in frame theory
that S commutes with all time-frequency shifts π(z) when z ∈ ∆, and that G(g;∆)
is a Gabor frame for L2(G) if and only if S is invertible on L2(G). Moreover, it is
not hard to see that S is a positive operator.

Now let G(g;∆) be a Gabor frame for L2(G). Using that the frame operator
commutes with time-frequency shifts from ∆, we have

f = S−1S f =
∫
∆

〈
f , π(z)g

〉
π(z)S−1g dz (C.4.3)

for all f ∈ L2(G). The function S−1g is known as the canonical dual atom of g.
Moreover, we have

f = S−1/2SS−1/2 f =
∫
∆

〈
f , π(z)S−1/2g

〉
π(z)S−1/2g dz (C.4.4)

for all f ∈ L2(G). The function S−1/2g is known as the canonical tight atom
associated to g.

As a last preparation before presenting the main result of this section we must
introduce a function space. Let g ∈ L2(G). We define the short-time Fourier
transform with respect to g to be the operator Vg : L2(G) → L2(G × Ĝ) given by

Vg f (z) =
〈

f , π(z)g
〉
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for f ∈ L2(G) and z ∈ G × Ĝ. Using this, we define the Feichtinger algebra S0(G)
by

S0(G) := { f ∈ L2(G) | Vf f ∈ L1(G × Ĝ)}. (C.4.5)

The Feichtinger algebra is known as a nice space of test functions for time-frequency
analysis, and its elements have good decay in both time and frequency. We refer
the reader to [64] for more information on the Feichtinger algebra. At last, we may
state the main theorem of this section.

Theorem C.4.2. Let ∆ ⊆ G × Ĝ be a closed cocompact subgroup, and suppose
g ∈ S0(G) is such that G(g;∆) is a Gabor frame for L2(G). Then S−1g, S−1/2g ∈

S0(G) as well.

In the case when ∆ is a separable lattice in Rd × R̂d, Theorem C.4.2 was proved
in [58], and it was claimed to hold for general lattices in phase spaces of locally
compact abelian groups. It is possible that their techniques can be adapted to the
setting of closed cocompact subgroups. However, it will turn out that the result
is easier to deduce by using Theorem C.3.1, thereby circumventing any need to
use the periodization techniques of [58]. In order to show Theorem C.4.2 we will
reformulate the above setup to incorporate twisted convolution algebras. As a first
step towards this we present the Fundamental Identity of Gabor Analysis. We refer
the reader to [97, Proposition 2.11] for a proof. There the Schwartz-Bruhat space
is used, but the proof can easily be adapted to the case of S0(G). For the case of
modulation spaces, see for example [43] or [53].

Proposition C.4.3. Let f , g, h ∈ S0(G). Then∫
∆

〈
f , π(z)g

〉
π(z)h dz =

1
s(∆)

∑
w∈∆◦

〈
π(w)h, g

〉
π(w)∗ f

where we interpret the integral and the sum weakly in L2(G).

Proposition C.4.3 allows us to rewrite the frame operator S for G(g;∆) as

S f =
∫
∆

〈
f , π(z)g

〉
π(z)g dz =

1
s(∆)

∑
w∈∆◦

〈
π(w)g, g

〉
π(w)∗ f . (C.4.6)

This observation is key in rephrasing the problem. It is the right hand side which is
of importance to us, and it will be most natural to restate the frame operator in terms
of a right ∗-representation of a twisted convolution algebra, see Equation (C.4.8).

We will also need the continuous 2-cocycle on G× Ĝ known as theHeisenberg
2-cocycle [97, p. 263]. It is the map c : (G × Ĝ) × (G × Ĝ) → T given by

c((x, ω), (y, τ)) = τ(x) (C.4.7)

for (x, ω), (y, τ) ∈ G × Ĝ.
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Remark C.4.4. Having introduced the Heisenberg 2-cocycle c we may also de-
scribe ∆◦ without using time-frequency shifts directly by ways of

∆
◦ = {w ∈ G × Ĝ | c(w, z)c(z,w) = 1 for all z ∈ ∆}

Restricting to ∆◦, we construct the twisted convolution algebra `1(∆◦, c) as in
Section C.2. Now the map

π∗ : G × Ĝ→ U(L2(G))

(x, ω) 7→ π(x, ω)∗

defines a right c-projective unitary representation. A right projective unitary rep-
resentation of a group may also be viewed as a (left) projective unitary repre-
sentation of its opposite group. We also get a right c-projective unitary rep-
resentation of ∆◦, which we also denote by π∗. The integrated representation
defines a right ∗-representation π∗ : `1(∆◦, c) → B(L2(G)). This representation
leaves S0(G) invariant, i.e. π∗(`1(∆◦, c))S0(G) ⊆ S0(G) [66, Theorem 3.4]. Given
a = (aw)w∈∆◦ ∈ `1(∆◦, c) and f ∈ L2(G) we have

π∗(a) f =
1

s(∆)

∑
w∈∆◦

awπ(w)∗ f .

Also, this ∗-representation is known to be faithful [97, Proposition 2.2]. Moreover,
for g ∈ S0(G) we have (

〈
π(w)g, g

〉
)w∈∆◦ ∈ `

1(∆◦, c) [66, Theorem 3.4]. Using
(C.4.6) for the Gabor system G(g;∆), g ∈ S0(G), we now see that

S f = π∗((
〈
π(w)g, g

〉
)w∈∆◦) f (C.4.8)

for f ∈ L2(G). We are finally ready to prove Theorem C.4.2. The proof follows
the same general outline as the proof of [58, Theorem 4.2], but without use of
periodization techniques unique to the Gabor analysis setting.

Proof of Theorem C.4.2. If g ∈ S0(G) is such that G(g;∆) is a Gabor frame for
L2(G), then the corresponding frame operator S is invertible. By (C.4.8) we may
write S f = π∗((

〈
π(w)g, g

〉
)w∈∆◦) f for any f ∈ L2(G). Since ∆◦ is abelian, ev-

ery compactly generated subgroup of ∆◦ is of polynomial growth by the structure
theorem for compactly generated locally compact abelian groups [33, Theorem
4.2.2]. Hence every compactly generated subgroup of ∆◦

c
is also of polyno-

mial growth, since it is a compact extension of ∆◦. It follows that ∆◦
c
is C∗-

unique. Moreover, ∆◦
c
is nilpotent of class 1 as ∆◦ is abelian, so it follows that

`1(∆◦
c
) is symmetric. By Theorem C.3.1 we then have that `1(∆◦, c) is spec-

trally invariant in B(L2(G)). Hence there is a = (aw)w∈∆◦ ∈ `1(∆◦, c) such that
a\c(

〈
π(w)g, g

〉
)w∈∆◦ = 1`1(∆◦,c) = (

〈
π(w)g, g

〉
)w∈∆◦\ca and

S−1 f = π∗(a) f
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for all f ∈ L2(G). Since π∗(`1(∆◦, c)) leaves S0(G) invariant, it follows that
S−1g ∈ S0(G).

Since S, hence also S−1, is a positive operator, we may also take the square root
of the image of a under π∗ in B(L2(G)). By spectral invariance and the fact that
Banach ∗-algebras are closed under holomorphic functional calculus [30, p. 212]
it follows that there is b = (bw)w∈∆◦ ∈ `1(∆◦, c) such that

S−1/2 f = π∗(b) f

for all f ∈ L2(G). Once again, since π∗(`1(∆◦, c)) leaves S0(G) invariant, it follows
that S−1/2g ∈ S0(G). This finishes the proof. �

Remark C.4.5. There are no issues extending this to multi-window Gabor frames,
i.e. the case of g1, . . . , gk ∈ S0(G) such that G(g1, . . . , gk ;∆) := G(g1;∆) ∪ · · · ∪
G(gk ;∆) is a frame for L2(G). Indeed, the only real difference is that we in (C.4.8)
will need to consider π∗((

∑k
i=1

〈
π(w)gi, gi

〉
)w∈∆◦). This is of no real consequence

for the proofs. Hence we may conclude that for a multi-window Gabor frame
G(g1, . . . , gk ;∆) for L2(G) with g1, . . . , gk ∈ S0(G) and associated (multi-window)
frame operator S we get S−1g1, . . . , S−1gk, S−1/2g1, . . . , S−1/2gk ∈ S0(G). Indeed
one can go even further and do this for the matrix Gabor frames introduced in
[10], which generalize multi-window super Gabor frames, using the setup from the
same article. The key observation for doing this is that since `1(∆◦, c) is spectrally
invariant in B(L2(G)) we also have that Mn(`

1(∆◦, c)) is spectrally invariant in
Mn(B(L2(G))) for any n ∈ N [103].
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Abstract
For a second-countable locally compact Hausdorff étale groupoid G with a
continuous 2-cocycle σ we find conditions that guarantee that `1(G, σ) has
a unique C∗-norm.

D.1 Introduction

Given a reduced (Banach) ∗-algebra A, the enveloping C∗-algebra C∗(A) plays
a fundamental role in the representation theory of A. However, any faithful ∗-
representation of A will yield a C∗-completion of A, and one may ask if this
completion is isomorphic to the enveloping C∗-algebra. In the particular case of
a locally compact group G, we may for example consider the ∗-algebras Cc(G)
or L1(G). There are then two canonical C∗-norms, namely the one arising from
the left regular representation and the maximal C∗-norm. It is well-known that
G is an amenable group if and only if these two C∗-norms coincide. However,
even for amenable groups we can not rule out that there are C∗-norms on Cc(G)
and L1(G) that are properly dominated by the norm induced by the left regular
representation. Examples of this are given in [22, p. 230]. This invites the notion
of C∗-uniqueness. A reduced ∗-algebra A is called C∗-unique if C∗(A) is the
unique C∗-completion of A up to isomorphism. This was extensively studied in
[16] for ∗-algebras. Moreover, a more specialized study for convolution algebras
of locally compact groups was conducted in [22], where C∗-uniqueness of L1(G)
was studied by considering properties of the underlying group G. These two
papers spawned investigations on C∗-uniqueness in the following decades, see for
example [8, 32, 62, 78]. In later years, algebraic C∗-uniqueness of discrete groups

127



Paper D. C∗-uniqueness results for groupoids

has garnered some attention [3, 51, 102]. This is the study of C∗-uniqueness of
the group ring C[Γ] for a discrete group Γ and is not equivalent to the study of
C∗-uniqueness of `1(Γ), see Remark D.2.8.

We will in this paper study the C∗-uniqueness of certain Banach ∗-algebras
associated to groupoids. To be more precise, given a second-countable locally
compact Hausdorff étale groupoid G with a normalized continuous 2-cocycle σ,
we will study the C∗-uniqueness of the I-norm completion of Cc(G, σ), which
will be denoted by `1(G, σ), see (D.2.3). Here Cc(G, σ) denotes the space Cc(G)
equipped with σ-twisted convolution and involution, see (D.2.1) and (D.2.2), and
similarly for `1(G, σ). Associated to `1(G, σ) are two canonical C∗-norms, namely
the one coming from the σ-twisted left regular representation, see (D.2.6), and the
full C∗-norm. If these coincide we say G twisted by σ has the weak containment
property. The technicalities will be postponed to Section D.2.3. Letting Iso(G)◦
denote the interior of the isotropy subgroupoid of G, we will first find that for
`1(G, σ) to be C∗-unique, it is sufficient that `1(Iso(G)◦, σ) is C∗-unique. If we
further let Iso(G)◦x denote the fiber of Iso(G)◦ in the point x ∈ G(0), and let σx

denote the restriction of σ to this fiber, we have the following main result.

TheoremD.1.1 (cf. TheoremD.3.1). Let G be a second-countable locally compact
Hausdorff étale groupoid with a continuous 2-cocycle σ. Suppose that G twisted
by σ has the weak containment property. Then `1(G, σ) is C∗-unique if all the
twisted convolution algebras `1(Iso(G)◦x, σx), x ∈ G(0), are C∗-unique.

The theorem allows us to deduce C∗-uniqueness of `1(G, σ) by considering
C∗-uniqueness of the (twisted) convolution algebras of the discrete groups Iso(G)◦x ,
x ∈ G(0). The latter has been studied earlier, the untwisted case in [22] and the
twisted case in [8]. Using this we obtain several examples of groupoids G for
which `1(G, σ) is C∗-unique in Section D.4. Additionally, we are able to deduce
C∗-uniqueness of some wreath products using our groupoid approach, see Example
D.4.4.

We will proceed in the following manner. In Section D.2 we will collect all
results we will need regarding C∗-uniqueness of Banach ∗-algebras, C∗-algebra
bundles, as well as cocycle-twisted convolution algebras associated to second-
countable locally compact Hausdorff étale groupoids. In Section D.3 we first
present our main theorem, Theorem D.3.1. The remainder of the section will be
dedicated to its proof. Lastly, in Section D.4 we present examples of C∗-unique
convolution algebras coming from groupoids, as well as deducing C∗-uniqueness
of some wreath products.
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D.2 Preliminaries

D.2.1 C∗-uniqueness for Banach ∗-algebras

A ∗-representation of a Banach ∗-algebraA is a ∗-homomorphism π : A→ B(H),
where B(H) are the bounded linear operators on a Hilbert space H. We say A is
reduced if AR = {a ∈ A : π(a) = 0 for every ∗ −representation π of A} = {0}.
All Banach ∗-algebras we consider in the sequel will be reduced. The enveloping
C∗-algebra of a reduced Banach ∗-algebraA is the uniqueC∗-algebraC∗(A)which
admits the following universal property: there exists an injective ∗-homomorphism
Φ : A→ C∗(A)with dense range so that for every ∗-representation π : A→ B(H),
there exists a unique ∗-representation π̂ : C∗(A) → B(H) so that π = π̂ ◦ Φ. In
order to ease notation in the sequel we will identifyAwith the Banach ∗-subalgebra
Φ(A) of C∗(A) whenever it is natural to do so. The enveloping C∗-algebra of a
Banach ∗-algebra always exists [89, Section 10.1].

DefinitionD.2.1. LetA be a reducedBanach ∗-algebra. We say thatA isC∗-unique
if the C∗-norm given by

‖a‖ := sup{‖π(a)‖ : π : A→ B(H) is a ∗-representation}

for every a ∈ A, is the unique C∗-norm on A. In other words, A is C∗-unique if
C∗(A) is the unique C∗-completion of A up to isomorphism.

We will make repeated use of the following result on C∗-uniqueness of Banach
∗-algebras, see [89, Proposition 10.5.19].

Proposition D.2.2. Let A be a reduced Banach ∗-algebra with enveloping C∗-
algebra C∗(A). Then A is C∗-unique if and only if for every nonzero two-sided
closed ideal I C C∗(A) we have A ∩ I , {0}.

D.2.2 C∗-algebra bundles

The notion of a C0(X)-algebra will be of importance in the proof of the main
theorem. Hence we briefly revise some basic notions and results onC0(X)-algebras
and C∗-bundles.

Definition D.2.3. Let X be a locally compact Hausdorff space. A C0(X)-algebra
is a C∗-algebra A together with a non-degenerate injection ι : C0(X) → Z(M(A)),
where the latter denotes the center of the multiplier algebra of A.

We shall also need to consider (upper semi-continuous) C∗-bundles.
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Definition D.2.4. Let X be a locally compact Hausdorff space and let {Bx}x∈X

be a family of C∗-algebras. A map f defined on X such that f (x) ∈ Bx for all
x ∈ X , is called a section. An upper semi-continuousC∗-bundleB over X is a triple
(X, {Bx}x∈X, Γ0(B)), where Γ0(B) is a family of sections, such that the following
conditions are satisfied:

1. Γ0(B) is a C∗-algebra under pointwise operations and supremum norm,

2. for each x ∈ X , Bx = { f (x) : f ∈ Γ0(B)},

3. for each f ∈ Γ0(B) and each ε > 0, {x ∈ X : | f (x)| ≥ ε} is compact,

4. Γ0(B) is closed under multiplication by C0(X), that is, for each g ∈ C0(X)
and f ∈ Γ0(B), the section g f defined by g f (x) = g(x) f (x) is in Γ0(B).

The two above concepts can be combined to obtain the main theorem of [87]
which we present shortly for the reader’s convenience. Suppose X is a locally
compact Hausdorff space, and suppose A is a C0(X)-algebra with map ι : C0(X) →
Z(M(A)). For x ∈ X , denote by Jx := C0(X \ {x}) and realize Jx ⊆ C0(X) in the
natural way. Moreover, we define Ix := ι(Jx)A, which is a closed two-sided ideal
of A. We then have the following result which will play a major role in the proof
of Theorem D.3.1.

Proposition D.2.5 ([87, Theorem 2.3]). Let X be a locally compact Hausdorff
space and let A be a C0(X)-algebra. Then there exists a unique upper semi-
continuous C∗-bundle B over X such that

i) the fibers Bx = A/Ix , and

ii) there is an isomorphism φ : A→ Γ0(B) satisfying φ(a)(x) = a + Ix .

D.2.3 Groupoids, cocycle twists and associated algebras

Given a groupoid G we will denote by G(0) its unit space and write r, s : G → G(0)
for the range and source maps, respectively. Wewill also denote by G(2) = {(α, β) ∈
G × G : s(α) = r(β)} the set of composable elements. In this paper, we will only
consider groupoids G equipped with a second-countable locally compact Hausdorff
topology making all the structure maps continuous. A groupoid G is called étale
if the range map, and hence also the source map, is a local homeomorphism. A
subset B of an étale groupoid G is called a bisection if there is an open set U ⊆ G
containing B such that r : U → r(U) and s : U → s(U) are homeomorphisms onto
open subsets of G(0). Second-countable locally compact Hausdorff étale groupoids
have countable bases consisting of open bisections.
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Given x ∈ G(0) we define by Gx := {γ ∈ G : s(γ) = x} and Gx := {γ ∈
G : r(γ) = x}. Observe that if G is étale the sets Gx and Gx are discrete for
every x ∈ G(0). The isotropy group of x is given by Gx

x := Gx ∩ Gx = {γ ∈

G : s(γ) = r(γ) = x}, and the isotropy subgroupoid of G is the subgroupoid
Iso(G) :=

⋃
x∈G(0) Gx

x with the relative topology from G. Let Iso(G)◦ denote the
interior of Iso(G). We then say that G is topologically principal if Iso(G)◦ = G(0).

We will consider groupoid twists where the twist is implemented by a normal-
ized continuous 2-cocycle. To be more precise, let G be a second countable locally
compact étale groupoid. A normalized continuous 2-cocycle is then a continuous
map σ : G(2) → T satisfying

σ(r(γ), γ) = 1 = σ(γ, s(γ))

for all γ ∈ G, and
σ(α, β)σ(αβ, γ) = σ(β, γ)σ(α, βγ)

whenever (α, β), (β, γ) ∈ G(2). The set of normalized continuous 2-cocycles on G
will be denoted Z2(G,T). Note that this is not the most general notion of a twist of
a groupoid (see [104, Chapter 5]).

Let G be a second-countable locally compact Hausdorff étale groupoid. We
will define the σ-twisted convolution algebra Cc(G, σ) as follows: As a set it is just

Cc(G, σ) = { f : G → C : f is continuous with compact support},

but equipped with σ-twisted convolution product

( f ∗σ g)(γ) =
∑

µ∈Gs(γ)

f (γµ−1)g(µ)σ(γµ−1, µ), f , g ∈ Cc(G, σ), γ ∈ G, (D.2.1)

and σ-twisted involution

f ∗σ (γ) = σ(γ−1, γ) f (γ−1), f ∈ Cc(G, σ), γ ∈ G. (D.2.2)

We complete Cc(G, σ) in the ”fiberwise 1-norm”, also known as the I-norm, given
by

‖ f ‖I = sup
x∈G(0)

max{
∑
γ∈Gx

| f (γ)|,
∑
γ∈Gx

| f (γ)|} (D.2.3)

for f ∈ Cc(G, σ). Denote by `1(G, σ) the completion of Cc(G, σ) with respect to
the I-norm. This is a Banach ∗-algebra with the natural extensions of (D.2.1) and
(D.2.2). For later use we record the following lemma.
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Lemma D.2.6. Let G be a second-countable locally compact Hausdorff étale
groupoid. Then for any f ∈ `1(G), the map defined by

G(0) 3 x 7→ max{
∑
γ∈Gx

| f (γ)|,
∑
γ∈Gx

| f (γ)|}, (D.2.4)

is continuous.

Proof. By density it is enough to show this for f ∈ Cc(G). It is well-known that
Cc(G) = span{g ∈ Cc(G) : g is supported on a bisection}. Hence we may assume
f is supported on a bisection U, i.e. supp( f ) ⊆ U. Furthermore, for f we denote
the assignment of (D.2.4) by F. We thus wish to show that F ∈ C(G(0)).

To this end, fix x ∈ G(0). As f (x) = 0 if x < s(U), we assume x ∈ s(U).
Since s(x) = x and s : U → s(U) is a homeomorphism, we therefore have x ∈ U.
Moreover, let (xi)i ⊆ G(0) be such that xi → x. Then eventually xi ∈ s(U) for all i
large enough. For such i we have F(xi) = | f (γi)|, where γi is the unique element
of U with s(γi) = xi. Now, as s : U → s(U) is a homeomorphism and xi → x,
we have γi → γ ∈ U, where γ is the unique element of U such that s(γ) = x.
As f ∈ Cc(G), it follows that f (γi) → f (γ), and hence F(xi) → F(x). Hence
F ∈ C(G(0)), and the result follows. �

We wish to understand when `1(G, σ) is C∗-unique, i.e. when it only permits
one separating C∗-norm. To do this it will be of importance to use Proposition
D.2.2.

The (full) twisted groupoid C∗-algebra C∗(G, σ) is the completion of Cc(G, σ)
in the norm

‖ f ‖ := sup{‖π( f )‖ : π is an I-norm bounded ∗-representation}, (D.2.5)

for f ∈ Cc(G, σ). It was observed in [7, Lemma 3.3.19] that if G is étale, then
every ∗-representation of Cc(G, σ) is bounded by the I-norm. Then, since we are
completing with respect to a supremum over ∗-representations, C∗(G, σ) is just the
C∗-envelope of `1(G, σ).

Now we will construct a faithful representation of `1(G, σ) called the σ-twisted
left regular representation. In particular, we have that `1(G, σ) is reduced. The
completion of the image of `1(G, σ) under the σ-twisted left regular representation
is called the σ-twisted reduced groupoid C∗-algebra of G and will be denoted
C∗r (G, σ). Let x ∈ G(0). Then there is a representation Lσ,x : Cc(G, σ) → B(`2(Gx))

which is given by

Lσ,x( f )δγ =
∑

µ∈Gr (γ)

σ(µ, µ−1γ) f (µ)δµγ, for f ∈ Cc(G, σ) and γ ∈ Gx . (D.2.6)
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We then obtain a faithful I-norm bounded ∗-representation of Cc(G, σ) given by⊕
x∈G(0)

Lσ,x : Cc(G, σ) →
⊕
x∈G(0)

B(`2(Gx)) ⊂ B(
⊕
x∈G(0)

`2(Gx)). (D.2.7)

C∗r (G, σ) is then the completion of the image of Cc(G, σ) under the σ-twisted
left regular representation. As the ∗-representation is I-norm bounded, C∗r (G, σ)
is also the completion of `1(G, σ) in the same norm. Therefore, since C∗(G, σ)
is the C∗-envelope of `1(G, σ), by universality, there exists a natural (surjective)
∗-homomorphism λ : C∗(G, σ) → C∗r (G, σ).

DefinitionD.2.7. LetG be a second-countable locally compact Hausdorff groupoid
and letσ ∈ Z2(G,T). We say thatG twisted byσ has theweak containment property
when the natural map λ : C∗(G, σ) → C∗r (G, σ) is an isomorphism.

If G is an amenable groupoid [5], we have that C∗r (G, σ) = C∗(G, σ) for every
σ ∈ Z2(G,T) [5, Proposition 6.1.8], and hence G twisted by σ has the weak con-
tainment property for every σ ∈ Z2(G,T). In [108] it was proved that amenability
is not equivalent to having the weak containment property. On the other hand, it is
not known to the authors whether the weak containment property is equivalent to
the weak containment property with respect every σ ∈ Z2(G,T).

RemarkD.2.8. While both `1(G, σ) andCc(G, σ) complete to the sameC∗-algebras
C∗(G, σ) andC∗r (G, σ) in the above setup, the question ofC∗-uniqueness of `1(G, σ)
is not equivalent to C∗-uniqueness of the ∗-algebraCc(G, σ). To see this, let G = Z,
the group of integers and consider the trivial twist σ = 1. Then `1(Z, 1) = `1(Z) is
C∗-unique by [21], while Cc(Z) = C[Z] is not C∗-unique by [3, Proposition 2.4].

Denoting the restriction of σ to Iso(G)◦ ⊆ G also by σ, we define the Banach
∗-subalgebra `1(Iso(G)◦, σ) of `1(G, σ). We then have the following result.

Proposition D.2.9 ([7, Proposition 5.3.1]). Let G be a second-countable locally
compact Hausdorff étale groupoid and σ ∈ Z2(G,T). There is a ∗-homomorphism

ι : C∗(Iso(G)◦, σ) → C∗(G, σ)

such that

ι( f )(γ) =

{
f (γ) if γ ∈ Iso(G)◦,
0 otherwise,

for all f ∈ Cc(Iso(G)◦, σ). This homomorphism descends to an injective ∗-
homomorphism

ιr : C∗r (Iso(G)◦, σ) → C∗r (G, σ).
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We observe that the homomorphism ι is an isometry at the `1-level, i.e. that
ι : `1(Iso(G)◦, σ) → `1(G, σ) is an isometric ∗-homomorphism.

We then also have the following result from [7]whichwill be key to our approach
to study C∗-uniqueness of twisted groupoid convolution algebras in Section D.3.

Proposition D.2.10 ([7, Theorem 5.3.13]). Let G be a second-countable locally
compact Hausdorff étale groupoid and let σ ∈ Z2(G,T). Let ιr : C∗r (Iso(G)◦, σ) →
C∗r (G, σ) be the injective ∗-homomorphism of Proposition D.2.9. Suppose A is a
C∗-algebra and that Ψ : C∗r (G, σ) → A is a homomorphism. Then Ψ is injective if
and only if Ψ ◦ ιr : C∗r (Iso(G)◦, σ) → A is an injective homomorphism.

D.3 C∗-uniqueness for cocycle-twisted groupoid convolu-
tion algebras

Webegin this section by presenting ourmain theorem. The remainder of the section
will be dedicated to proving it.

Given a second-countable locally compact Hausdorff étale groupoid G and
σ ∈ Z2(G,T), denote the restriction of σ to the fiber Iso(G)◦x by σx . Note that σx

is continuous as Iso(G)◦x is discrete, i.e. σx ∈ Z2(Iso(G)◦x,T). The following then
constitutes our main theorem.

Theorem D.3.1. Let G be a second-countable locally compact Hausdorff étale
groupoid and σ ∈ Z2(G,T). Suppose that G twisted by σ has the weak contain-
ment property. Then `1(G, σ) is C∗-unique if all the twisted convolution algebras
`1(Iso(G)◦x, σx), x ∈ G(0), are C∗-unique.

As a first step towards proving Theorem D.3.1 we relate C∗-uniqueness of
`1(G, σ) to C∗-uniqueness of `1(Iso(G)◦, σ).

Proposition D.3.2. Suppose G is a second-countable locally compact Hausdorff
étale groupoid with the weak containment property when twisted by σ ∈ Z2(G,T).
If `1(Iso(G)◦, σ) is C∗-unique, then `1(G, σ) is C∗-unique.

Proof. Suppose `1(Iso(G)◦, σ) is C∗-unique. Then in particular C∗(Iso(G)◦, σ) =
C∗r (Iso(G)◦, σ). Let {0} , J C C∗(G, σ) = C∗r (G, σ) be a closed two-sided ideal. By
Proposition D.2.2 it suffices to show that J∩`1(G, σ) , {0}. By Proposition D.2.10
we haveC∗(Iso(G)◦, σ)∩ J , {0} as the ∗-homomorphismC∗(G, σ) → C∗(G, σ)/J
is not injective. Now define I := J ∩C∗(Iso(G)◦, σ). It is straightforward to verify
that I is a two-sided ideal in C∗(Iso(G)◦, σ), and as both J and C∗(Iso(G)◦, σ)
are closed in C∗(G, σ), I is also closed in C∗(Iso(G)◦, σ). By C∗-uniqueness of
`1(Iso(G)◦, σ) it then follows that I ∩ `1(Iso(G)◦, σ) , {0}. From this we get

{0} , I ∩ `1(Iso(G)◦, σ) = J ∩ `1(Iso(G)◦, σ) ⊂ J ∩ `1(G, σ),
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from which we deduce by Proposition D.2.2 that `1(G, σ) is C∗-unique. �

Having related the question ofC∗-uniqueness of `1(G, σ) to a question regarding
C∗-uniqueness of `1(Iso(G)◦, σ), we proceed to further relate this to C∗-uniqueness
of `1(Iso(G)◦x, σx) for x ∈ G(0). To do this we will show that for any ∗-representation
π : `1(Iso(G)◦, σ) → B(H), the resulting C∗-algebra C∗π(Iso(G)◦, σ) is a C0(G(0))-
algebra. This is the content of LemmaD.3.3. However, we first do some preparatory
work.

Observe that there exists a ∗-homomorphism φ : C0(G(0)) → Z(`1(Iso(G)◦, σ)),
the latter meaning the center of `1(Iso(G)◦, σ). Indeed, as G(0) is open in Iso(G)◦,
we may take φ to be the inclusion where we extend functions in C0(G(0)) by zero.
Themap φ is clearly isometric. As φ can be viewed as an inclusion, we omit writing
it from now on to ease notation. Then given g ∈ C0(G(0)) and f ∈ Cc(Iso(G)◦, σ)
we have that

(g ∗σ f )(γ) = g(r(γ)) f (γ)σ(r(γ), γ) = g(r(γ)) f (γ)

= f (γ)g(s(γ))σ(γ, s(γ)) = ( f ∗σ g)(γ) ,

for every γ ∈ Iso(G)◦. The resulting action of C0(G(0)) on `1(Iso(G)◦, σ) can then
be viewed as pointwise multiplication in the fibers of G(0). By continuity we can
extend φ to a continuous ∗-homomorphism fromC0(G(0)) toZ(`1(Iso(G)◦, σ)). Let
π : `1(Iso(G)◦, σ) → B(H) be a faithful ∗-representation and let C∗π(Iso(G)◦, σ)
denote the completion in the operator norm of B(H). Define the map ι := π ◦ φ :
C0(G(0)) → π(Z(`1(Iso(G)◦, σ))). We have that

π(Z(`1(Iso(G)◦, σ))) = Z(π(`1(Iso(G)◦, σ))) ⊆ Z(M(C∗π(Iso(G)◦, σ))) .

The following is then immediate.

Lemma D.3.3. Let G be a second-countable locally compact Hausdorff étale
groupoid and σ ∈ Z2(G,T). Let π be a ∗-representation of `1(Iso(G)◦, σ). Then
C∗π(Iso(G)◦, σ) is a C0(G(0))-algebra.

Nowfix x ∈ G(0) and denote by Jx = C0(G(0)\{x}) the space of continuous func-
tions of G(0) vanishing at both infinity and x. AsC0(G(0)) is central in `1(Iso(G)◦, σ)
and Jx is a closed two-sided ideal ofC0(G(0)), the space Ix := Jx ·`1(Iso(G)◦, σ) is a
closed two-sided ideal in `1(Iso(G)◦, σ). Recall that we denote by σx the restriction
of σ to the fiber Iso(G)◦x . We then have the following result.

Lemma D.3.4. Let G be a second-countable locally compact Hausdorff étale
groupoid and let σ ∈ Z2(G,T). For every x ∈ G(0) the map ψx : `1(Iso(G)◦, σ) →
`1(Iso(G)◦x, σx) given by restriction of functions is a continuous ∗-homomorphism
inducing an isometric ∗-isomorphismbetween `1(Iso(G)◦, σ)/Ix and `1(Iso(G)◦x, σx).
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Proof. For f ∈ Cc(Iso(G)◦, σ) we have

‖ψx( f )‖`1(Iso(G)◦x ) =
∑

γ∈Iso(G)◦x

| f (γ)| ≤ sup
y∈G(0)

∑
µ∈Iso(G)◦y

| f (µ)| = ‖ f ‖I

for all f ∈ Cc(Iso(G)◦, σ). Thus ψx is a I-norm decreasing map, so it extends
to a continuous ∗-homomorphism ψx : `1(Iso(G)◦, σ) → `1(Iso(G)◦x, σx). It is
surjective by Tietze’s extension theorem.

Next we want to show that kerψx = Ix . First observe that given g ∈ C0(G(0))
and h ∈ Cc(G, σ) we have that

ψx(g ∗σ h)(γ) = (ψx(g) ∗σ ψx(h))(γ) =
∑

µ∈Iso(G)◦x

g(µ)h(µ−1γ)σ(µ, µ−1γ)

= g(x)h(xγ)σ(x, γ) = g(x)h(γ) ,

for every γ ∈ Iso(G)◦x .
Now let f ∈ Ix . We may then assume that f is the norm limit of elements fn of

the form fn =
∑n

i=1 gi ∗σ hi, where gi ∈ Jx and hi ∈ Cc(Iso(G)◦, σ) for all i ∈ N.
It suffices to prove that ψx(gi ∗σ hi) = 0 for all i ∈ N. For any γ ∈ Iso(G)◦x we
then have ψx(gi ∗σ hi)(γ) = gi(x)hi(γ) = 0 since gi(x) = 0. Then it follows that
ψx( fn) = 0 for every n ∈ N, and by continuity ψx( f ) = 0. Thus, Ix ⊂ kerψx .

Conversely, suppose f ∈ kerψ. Then f = lim fn for some fn ∈ Cc(G, σ) ∩
kerψx , and hence fn(x) = 0 for every n ∈ N. Let {ρλ}λ∈Λ ⊂ C0(G(0) \ {x}) be
a partition of the unit of G(0) \ {x}. Then given n ∈ N there exists a finite subset
Λn of Λ, such that gn :=

∑
λ∈Λn

ρn ∈ C0(G(0) \ {x}) = Jx and gn(y) = 1 for every
y ∈ r(supp( fn)) = s(supp( fn)), and hence

fn(γ) = gn(r(γ)) fn(γ)σ(r(γ), γ) = (gn ∗σ fn)(γ)

for every γ ∈ G. Therefore we have that

f = lim
n→∞

fn = lim
n→∞
(gn ∗σ fn) ∈ Jx · `1(Iso(G)◦, σ) = Ix,

as we wanted. We would like to see that the isomorphism `1(Iso(G)◦, σ)/Ix �

`1(Iso(G)◦x, σx) is isometric. To do that, it is enough to check that

inf{‖ f + h‖ : h ∈ C0(G(0) \ {x}) · Cc(G, σ)} = ‖ψx( f )‖

for every f ∈ Cc(G, σ). Observe that by continuity of ψx we have ‖ f + h‖ ≥
‖ψx( f )‖ for every h ∈ C0(G(0) \ {x}) · Cc(G, σ). As G is second-countable locally
compact Hausdorff, so is G(0) \ {x}. Hence it is paracompact, and we can guarantee
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that there is a countable partition of unity {ρi}∞i=1 for G(0) \ {x}. For n ∈ N let
Un := G(0) \

⋃n
i=1 supp(ρi). Then we have

‖ f − (
n∑
i=0

ρi) f ‖ ≤ max
y∈Un

‖ψy( f )‖ .

By Lemma D.2.6 the assignment G(0) 3 x 7→ max{
∑
γ∈Gx

| f (γ)|,
∑
γ∈Gx | f (γ)|}

is continuous. It follows that for every ε > 0 there exists n such that |‖ψy( f )‖ −
‖ψx( f )‖ | < ε for every y ∈ Un. As Uk ⊃ Uk−1 for all k, it follows that ‖ f −
(
∑k

i=0 ρi) f ‖ ≤ ‖ψx( f )‖ + ε for all k ≥ n. As ε was arbitrary, this finishes the
proof. �

We may finally prove Theorem D.3.1.

Proof of Theorem D.3.1. By Proposition D.3.2 it suffices to show that the condi-
tion implies that `1(Iso(G)◦, σ) is C∗-unique. As above, denote by Jx = C0(G(0) \
{x}) and by Ix := Jx · `1(Iso(G)◦, σ) the resulting closed two-sided ideal in
`1(Iso(G)◦, σ). Let π : `1(Iso(G)◦, σ) → B(H) be a faithful ∗-representation and
denote by C∗π(Iso(G)◦, σ) the completion of π(`1(Iso(G)◦, σ)). Moreover, let Iπx
denote the closure of π(Ix) in C∗π(Iso(G)◦, σ). By Proposition D.2.5 and Lemma
D.3.3 there is an isomorphism C∗π(Iso(G)◦, σ) � Γ0(Bπ), where the fibers Bπx ,
x ∈ G(0), are given by

Bπx = C∗π(Iso(G)◦, σ)/Iπx .

We will show that there is an injective ∗-homomorphism

Ψx : `1(Iso(G)◦x, σx) → Bπx

for every x ∈ G(0). To do this, fix x ∈ G(0). First, we show that the composition

`1(Iso(G)◦x, σx) � `1(Iso(G)◦, σ)/Ix → C∗π(Iso(G)◦, σ)/Iπx � Bπx

given by first applying the isomorphism of Lemma D.3.4 and then applying the
map f + Ix 7→ f + Iπx for f ∈ `1(Iso(G)◦, σ) is a well-defined continuous ∗-
homomorphism. This is our candidate for the map Ψx . Denote by Iπx also the
image of the ideal Iπx C C∗π(Iso(G)◦, σ) in Γ0(Bπ). It then suffices to show that if
F ∈ Iπx , then F(x) = 0.

To see this, note that we can letC0(G(0)\{x}) act onC∗π(Iso(G)◦, σ) by pointwise
multiplication to obtain a have a continuous ∗-homomorphism

C0(G(0) \ {x}) = Jx → Z(M(C∗π(Iso(G)◦, σ))),
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which leaves Iπx invariant, and as a result Iπx becomes a Banach Jx-module. It is
even non-degenerate as

Jx Iπx = Jx JxC∗π(Iso(G)◦, σ) ⊃ Jx JxC∗π(Iso(G)◦, σ) = JxC∗π(Iso(G)◦, σ) = Iπx ,

since Jx , being aC∗-algebra, has an approximate identity. It then follows by Cohen-
Hewitt factorization that if F ∈ Iπx , then F = f · H, where f ∈ Jx and H ∈ Iπx .
Then F(x) = f (x)H(x) = 0, and the map Ψx is a well-defined ∗-homomorphism.

As `1(Iso(G)◦, σ) is dense in its C∗-completion C∗(Iso(G)◦, σ), it follows that
the image of Ψx is dense.

Lastly, if Ψx( f ) = 0, then Ψx( f ) ∈ Iπx , and so f |Iso(G)◦x = 0 by the above
argument. Thus ψx is injective. Hence we have a continuous dense embedding

Ψx : `1(Iso(G)◦x, σx) ↪→ C∗π(Iso(G)◦, σ)/Jπx .

Now C∗π(Iso(G)◦, σ)/Jπx becomes a C∗-completion of `1(Iso(G)◦x, σx). Since π is
an arbitrary faithful ∗-representation of `1(Iso(G)◦, σ), we deduce that this holds
for all faithful ∗-representations. But as `1(Iso(G)◦x, σx) is assumed C∗-unique, we
may then deduce

C∗π(Iso(G)◦, σ)/Jπx � C∗(Iso(G)◦, σ)/Jfull
x , (D.3.1)

where C∗(Iso(G)◦, σ) and Jfull
x denotes the completions in the maximal C∗-norm.

As x ∈ G(0) was arbitrary, we deduce that this holds for all x ∈ G(0). Now let
Bfull
x = C∗(Iso(G)◦, σ)/Jfull

x . By Proposition D.2.5 and (D.3.1) we then have

C∗π(Iso(G)◦, σ) � Γ0(Bπ) � Γ0(Bfull) � C∗(Iso(G)◦, σ).

From this we deduce that `1(Iso(G)◦, σ), and hence also `1(G, σ), isC∗-unique. �

D.4 Examples

In this section we present some (classes of) examples of C∗-unique groupoids.
Due to the nature of our main result, Theorem D.3.1, our examples will draw upon
previously proved results on C∗-uniqueness of locally compact groups. We begin
with a class of examples in the case of trivial cocycle twists.

Example D.4.1 (The untwisted case). If we consider a second-countable locally
compact Hausdorff étale groupoid G with the trivial 2-cocycle σ = 1, then C∗-
uniqueness of `1(G, 1) = `1(G) can by TheoremD.3.1 be deduced byC∗-uniqueness
of the Banach ∗-algebras `1(Iso(G)◦x, σx) = `

1(Iso(G)◦x) for x ∈ G(0). C∗-uniqueness
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of untwisted convolution algebras has been studied before, and it is known that for
a locally compact group G, the Banach ∗-algebra `1(G) is C∗-unique if G is a
semidirect product of abelian groups, or a group where every compactly generated
subgroup is of polynomial growth [22, p. 224]. Hence if for every x ∈ G(0) the
discrete group Iso(G)◦x is of one of these types, `1(G) will be C∗-unique.

In the case of locally compact groups it is well-known that amenability of the
group is equivalent to the group having the weak containment property. Indeed,
amenability is even equivalent to the weak containment property when twisted for
all continuous 2-cocycles σ of the group. Moreover, it is easy to see that if a group
is C∗-unique, then it is amenable. The converse is however not true [22, p. 230]. In
stark contrast to the case of locally compact groups, the following example shows
that groupoids can be C∗-unique without even being amenable.

Example D.4.2 (Non-amenable C∗-unique groupoid). In [2, Theorem 2.7] the au-
thors constructed a second-countable, locally compact, Hausdorff non-amenable
étale groupoid G such that Iso(G)◦ = G(0) and C∗r (G) = C∗(G). Then since
`1(Iso(G)◦) = C0(G(0)) ⊆ `1(G), we have by Proposition D.2.10 that every nonzero
two-sided ideal I of C∗(G) has nonzero intersection with C0(G(0)), and hence with
`1(G). Therefore by Proposition D.2.2 we have that `1(G) is C∗-unique.

In this particular case we may also deduce C∗-uniqueness of `1(G) in another
way. Namely, as Iso(G)◦ = G(0), we have that Iso(G)◦x is the trivial group for every
x ∈ G(0). Hence `1(Iso(G)◦x) is C∗-unique by Example D.4.1. This argument of
course carries over to any topologically principal groupoid. Indeed, this approach
shows that whenever G is a second-countable, locally compact, Hausdorff topolog-
ically principal étale groupoid, then `1(G, σ) is C∗-unique for any σ ∈ Z2(G,T).

We also have classes of examples that includes more general cocycle twists.

Example D.4.3 (The twisted case). Let G be a second-countable locally com-
pact Hausdorff étale groupoid, and let σ ∈ Z2(G,T). By Theorem D.3.1 C∗-
uniqueness of `1(G, σ) can be deduced by C∗-uniqueness of the Banach ∗-algebras
`1(Iso(G)◦x, σx), for x ∈ G(0), where σx as before denotes the restriction of σ to
Iso(G)◦x . C∗-uniqueness of twisted convolution algebras of locally compact groups
was studied in [8]. In [8, Theorem 3.1] it was found that if G is a locally compact
group and c ∈ Z2(G,T), then L1(G, c) is C∗-unique if L1(Gc) is C∗-unique, where
Gc denotes the Mackey group associated to G and c. As a topological space Gc is
just G × T, but the binary operation is given by

(x, τ) · (y, η) = (xy, τηc(x, y)).

Wemay relate C∗-uniqueness of `1(Iso(G)◦x, σx) to C∗-uniqueness of `1(Iso(G)◦σx
),

where Iso(G)◦σx
denotes the Mackey group associated to Iso(G)◦x and σx , and we
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deduce that `1(G, σ) is C∗-unique if `1(Iso(G)◦σx
) is C∗-unique for every x ∈ G(0).

This happens if, for example, Iso(G)◦σx
is a group of one of the types discussed in

Example D.4.1.

In the following example we are able to deduce C∗-uniqueness of a locally
compact group not of the form discussed in Example D.4.1 by relating the question
to C∗-uniqueness of a groupoid.

Example D.4.4 (The wreath product). Let Γ denote the wreath product H o G :=(⊕
G H

)
oG where H is a finite abelian group and where G is a countable discrete

amenable group. We will show that `1(Γ) is C∗-unique.
To do this, let G = X oϕ G be the transformation groupoid where X =

∏
G Ĥ,

and ϕ is the shift homeomorphism of X by G. G is amenable since G is amenable.
Then we have that

C∗(Γ) � C∗(
⊕
G

H) oϕ G � C(X) oϕ G .

Now recall that by the Fourier transform `1(
⊕

G H) � A(X), where A(X) is
a dense subalgebra of C(X). Indeed, it becomes a Banach ∗-subalgebra of
C(X) when equipped with the induced `1-norm through the Fourier transform,
and then the isomorphism is also an isometry. It also follows that C(X) is
the completion of `1(

⊕
G H) with respect to some C∗-norm. We have that

`1(Γ) � `1(`1
(⊕

G H
)
,G) � `1(A(X),G) (see for example [78, Remark and

Notation 2.4]). Then there exists an isometric embedding ι : `1(A(X),G) ↪→ `1(G)
defined as follows. If F ∈ `1(A(X),G), we define ι(F) to be

ι(F)(x, g) = f̂g(x),

for x ∈ X =
∏

G Ĥ and g ∈ G, where fg is the unique element of `1(
⊕

G H)
with f̂g = F(g). Therefore by the isomorphisms C∗(`1(Γ)) � C∗(`1(A(X),G)) �
C∗(`1(G)) it would be enough to check that any nonzero two-sided ideal I of C∗(G)
has a non-trivial intersection with the image of `1(A(X),G) by the inclusion ι.
Observe that then `1(

⊕
G H) ⊆ `1(Γ) can be identified with ι(A(X)) in C(X) ⊆

C∗(G). The groupoid G is clearly topologically principal, and hence `1(G) is C∗-
unique. Moreover, for every closed two-sided ideal {0} , I E C∗(G) we have that
{0} , J := I ∩ C(X) [71, Theorem 4.1]. But since

⊕
G H is locally finite, then

`1(
⊕

G H), and hence A(X), are C∗-unique by [51]. Thus, J ∩ A(X) , {0}, which
further implies J ∩ `1(A(X),G) , {0}. It follows that `1(Γ) is C∗-unique.
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