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Abstract—The support of vital societal functions requires a
reliable communication network, especially in the presence of
crises and disastrous events. Disasters caused by natural factors
including earthquakes, fires, floods or hurricanes can disable
network elements such as links and nodes and cause widespread
disruption in end users connectivity to network services. Effects
of disasters can vary over space and time due to disaster
escalation and propagation. Network recovery from disasters
requires understanding of both the spatial properties of the
hazard at hand, and their temporal evolution. While the former
has already been addressed in the literature, existing models and
measures are unable to capture the temporal aspects of disaster
recovery.

This paper proposes a framework for spatial and temporal
evaluation of network disaster recovery. It allows for modelling
random spatial patterns of disasters in a geographical grid. The
temporal aspects captured in our framework include changes
due to the progression of a potentially shape-changing disaster
across the affected area, as well as to the recovery actions of
adaptive network reconfiguration and topology reconstruction
undertaken by the network operator. The framework applica-
bility is demonstrated on a content delivery network use case
example, where we capture the evolving network performance in
terms of the average shortest path length between the peers and
the content replicas hosted by servers. By providing insights into
the spatial and temporal effects of both disaster escalation and
remediation measures, our proposed framework lays down the
groundwork for flexible disaster modelling and recovery sequence
optimization.

Index Terms—Survivability, disaster recovery, network re-
silience, content delivery network.

I. INTRODUCTION

For normal functioning, our society is steadily more depen-
dent on a reliable, high-performance communication network
supporting access to vital services. Uninterrupted connectivity
to network services and content is particularly important in
times of crises and disastrous events such as sabotage, natural
disasters, massive hardware failure, common and propagating
software failures and cyber-attacks. These can have massive
consequences on the network infrastructure, i.e. nodes, links
and servers. To counteract such events and recover the network
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in a quick and efficient way, a deep understanding of the
impact of both the disasters and the various remediation
actions is necessary. To capture the effects of a disastrous
event, we need a method for instantaneous assessment of the
non-functional properties of the service, such as performance
(e.g. peer to server request delays), and dependability (e.g.
fractions of peers connected to a server), but also how these
properties change over time until the system is fully recovered.

After an initial disastrous event occurs, its consequences
might evolve over time due to:

1) Propagation and escalation, e.g., a disaster affecting an-
other/larger part of the (embedded) system or a high
intensity disaster triggering a new follow-up disaster, and

2) System reconfiguration, repair, and service restoration.

Therefore, to fully assess the consequences of the event
both their spatial and temporal aspects should be considered.
The spatial dimension refers to the extent of the event’s
consequences (e.g., how many nodes and links in the networks
are destroyed and need to be repaired) and their evolution
over the affected area. The temporal dimension concerns the
consequences’ duration (e.g., how long it takes to repair all
links that are cut) and their evolution over time.

In the survivability quantification framework proposed
in [1], the idea is to construct a meta model which captures
the different phases after the initial impact. A recovery phase
is a (discrete) change in the system state (system configuration
and service delivery), caused by potential event escalation or
propagation, in addition to recovery actions (e.g., connection
rerouting, relocation of servers, link or node repair).

In this paper, we develop a model for jointly capturing the
spatial and temporal dimensions of a disaster and remediation
actions. Our framework can model a variety of disaster types
with spatial and temporal variations. We demonstrate the
applicability of the framework in a content delivery network
affected by a disaster. The use case example aims at showing
the importance of considering both the spatial and temporal
dimension of a disastrous event and remediation steps to get
additional insights compared to only considering the immedi-
ate impact.



Examples of consequences considered in our survivability
quantification framework include:

1) Instantaneous initial impact (spatial)
2) Accumulated impact on the service over time (spatial and

temporal)
3) Worst case situation, peak consequence (spatial)
4) Recovery time (time it takes to restore a critical service

or certain percentage of a service of interest, or until it
is fully recovered)

We define metrics that quantify the consequences described
above. This will add insights to the survivability of a system
affected by different undesired events which develop from
their initial impact. Furthermore, the insights will enable a
quantifiable comparison between various strategies to handle
such disastrous events.

The paper is organised as follows. Section II reviews the
relevant related work from the literature. Section III describes
the survivability quantification framework, including the rep-
resentation of network topology with server assignment, and
instantaneous, propagating and escalating disasters. Section IV
describes disaster recovery strategies including peer-server
(re)connection, replica relocation/instantiation and link repair.
A use case scenario of propagating disaster demonstrating the
applicability of the framework is introduced in Section V,
before the closing remarks in Section VI.

II. RELATED WORK

Resilience and survivability of networked systems have been
extensively studied in the literature. The vast body of literature
relevant to our work can be roughly systematized according to
four main aspects: modelling and definitions of fundamental
concepts, disaster impact modelling, disaster-aware network
design and provisioning, and disaster recovery.

An exhaustive overview of basic concepts and taxonomy
of definitions related to system dependability in the presence
of various faults is presented in [2]. In [3] and [4], the
authors refine the definitions related to network disruption tol-
erance and investigate the practical implication to its modeling
and quantification. The survivability quantification framework
in [1] considered phased time recovery without taking into
account the disaster escalation and propagation. In [5], the
framework from [1] is applied to model (simplistic) disaster
propagation and study the consequences on a wireless network.

In [6], [7], [8], approaches for geographical modelling of
(correlated) failures are proposed. These models can be cate-
gorized into two types: i) deterministic failures which consider
circular regions where the failure probability is one inside, and
zero outside the region, and ii) probabilistic failures where the
failure probability inside the region monotonously decreases
with the distance from the failure epicenter. Such circular
representation of the failure region, and the constant proba-
bility of failure between two consecutive concentric annuluses
constrain the flexibility of a disaster model representation.

Network vulnerability to disasters can be reduced by in-
corporating the knowledge of disaster effects into various
phases of network life cycle, such as disaster-aware network

design and provisioning or post-disaster recovery. Approaches
for strategic placement of network links and nodes aimed at
increasing resilience to man-made infrastructure attacks can be
found in [9]. Approaches for disaster-resilient design of data-
center networks are presented in [10], while the placement of
replicas across distributed cloud networks resilient to targeted
fiber cuts is investigated in [11].

Network resilience in the presence of certain types of
disasters (e.g. hurricanes) may also benefit from the forecasts
and trajectory projections. Alert-based migration of virtual
machines to safer datacenter is performed in [12]. The work
in [13] combines the awareness of both disaster impact and
remediation in terms of content evacuation and incorporates
it into the datacenter placement. Approaches for joint pro-
gressive post-disaster network and datacenter recovery are
investigated in [14]. While the vast majority of aforementioned
works addresses the various aspects of disaster modeling
and post-disaster recovery, they are unable to capture the
evolving spatial and temporal effects of disaster propagation
and remediation actions.

III. MODELLING FRAMEWORK

This section describes the modelling framework used to
capture both the spatial and temporal consequences of a
disastrous event on the network infrastructure. The main
idea is to model the stages from the initial disastrous event
(enforced) until the system is fully recovered. For each stage,
the network topology and peer-server associations will change
due to disaster escalation/propagation, and relocation/repair.
For this we need the following:

• Coordinate system - a two-dimensional xy-coordinate
system, Ω = {(x, y)}.

• Network topology - the network consisting of nodes and
links with connected peers and servers is defined as a
graph G mapped on the coordinate system Ω. The graph
on Ω with the peer-server associations (routing) defines
the state of the system.

• Disaster area - the (immediate and evolved) area, D
impacted by the disastrous event, mapped onto Ω

• State of network topology - the network topology Gx ⊆ G
in state x

• Metrics (rewards) - is a reward rate function of the
network topology, Mx = R(Gk) in state x

• Recovery strategies - (best possible) relocation and/or
repair actions which change the state of G such that per-
formance and dependability of the network are improved.

• Survivability quantification framework - obtains the prob-
abilities px(t) of observing the network in state Gx time
t after the event, and combines this with the rewards
Mx to obtain spatial and temporal consequences of the
disastrous event.

A. Survivability quantification definition

In this paper we use the definitions of survivability from [1]
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Fig. 1: Survivability after first failure [16].

Survivability is the system’s ability to continuously deliver
services in compliance with the given requirements in the
presence of failures and other undesired events.

An undesired event is a disastrous event, such as sabo-
tage, natural disasters, massive hardware failure, common and
propagating software failure or cyber-attacks, having huge
consequences on the critical infrastructure.

To quantify the surviability we use the definition given by
ANSI T1A1 [15], and the modelling approach from [1], [16].

Survivability quantification. The measure of interest M
has the value m0 just before a failure occurs. The
survivability behavior can be depicted by the following
attributes: ma is the value of M just after the failure
occurs; mu is the maximum difference between the value
of M and ma after the failure; mr is the restored value
of M after some time tr; and tR is the relaxation time
for the system to restore the value of M .

Note that without loss of generality we assume that the larger
M the poorer the system is.

These attributes are illustrated in Figure 1. The measure
of interest M will in this paper be performance metrics such
as the number of connected peers to a server or path length
and delay from peers to server (infinite if not connected). The
changes in system performance, M(t), from immediately after
the occurrence of a disaster (at t = 0) and throughout the
stages of the recovery can be analyzed using this approach.

B. Coordinate system

A two-dimensional coordinate system for the considered
geographical areas X × Y is defined as,

Ω = {(x, y)} (x = 1, · · · , X, y = 1, · · · , Y )

To enable shortest path routing on Ω the coordinates (x, y)
are linked to its neighbor nodes, which are assigned non-
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Fig. 2: Example of a network with V = 15 nodes (blue and
yellow), E = 23 links (gray), and s = 3 servers (yellow), with
two disaster areas (red and light red) mapped onto a 30× 30
coordinate system.

zero weights for all coordinates one step away (including the
diagonals), i.e.,

wi,j =

{
> 0 : i = (x, y) and j = (x± 1, y ± 1)
0 : otherwise

The granularity of the coordinate system can be adjusted such
that each coordinate refers only to at most one node or one link
segment as introduced below. See Figure 2 for an illustration
of the layout of the coordinate system. By assigning different
weights on wi,j > 0 we may model natural obstacles (lakes,
rocks, buildings, etc.) to be avoided (by setting a higher
cost) when planning the cable ditches (e.g., by shortest path
routing). The coordinate system might be extended by a third
dimension to model a 3D topology of the geographical area.

C. Topology model

A network consists of nodes V and links E, with connected
peers U = V (all nodes are peers) and servers S ⊆ V
(Ns is the number of servers), and is represented as a graph,
G = {V,E, S} mapped onto the coordinate system Ω. The NV

nodes are represented by their coordinates, V = {(xi, yi)},
i = 1, · · · , NV , and the set of NE links E is represented by
the coordinates of the path of link segments that constitute the
link.

The network topology example in Figure 2 illustrates the
mapping of the nodes and links in graph G onto a Ω30×30
coordinate system. Nodes are described as light blue and
light green (servers) circles (n = 15), while links are
represented with blue lines. As an example, link 1 which
is connecting the nodes V3 (coordinates {(27, 6)}) and V6
(coordinates {(20, 12)}) is described by the following set
of coordinates of the endpoints of the link line segments:
E1 = {(27, 6), (26, 7), (25, 8), · · · , (20, 12)}.



D. Disaster model
A disaster area D is mapped onto the same coordinate

system Ω, i.e., the area is represented by its (x, y)-coordinates.
The disaster area might change over time, can have different
shapes and sizes, and its impact on G depends on the nature
of the considered disastrous event. The event impact intensity
is modelled as a probability pG,D of node or link failures of
G in the area D.

A disaster area that manifests itself at time t and changes
the graph to Gx is denoted Dx,t. Modelling of dynamics
(propagation, decay, and escalation) of the disastrous events,
requires both temporal and spatial dimensions. We distinguish
between three categories of disastrous events:

1) Single-hit disasters - These disasters have a central
area where the disaster is most powerful. Areas around this
central region could also be affected but with considerably
less intensity. One example of a single-hit disaster is an
earthquake being the strongest in the epicenter area. Such
an event has an immediate impact in a specific area, with
different intensity around the central epicenter. To model this,
the disaster area is discretized in K sub-areas Dk,0 with
different failure probability

2) Propagating disasters - Propagating disasters is a cate-
gory embodying dynamic disasters such as hurricanes, torna-
does or fires which move across several regions with certain
propagation speed. This is modelled as multiple disaster areas
with different epicenter and size, which will change over time,
as well as the failure probability for each area

3) Escalating disasters - Disasters with secondary effects
are correlated disasters happening either simultaneously or one
after another in a cause-and-consequence co-relation (e.g. the
powerful eathquake that happened in Japan in 2011 triggered
a follow up tsunami wave [17]). This is modelled in the same
way as the propagating disasters, with disaster areas having
same or different epicenter and changing size and failure
probability.

In Figure 2, an example of two disaster areas is given. They
have different epicenter and size and might represent all three
categories above, depending on whether they both occur at
t = 0 or at different time instances. The area is plotted together
with the network topology onto the same coordinate system
to detect the elements of G affected by Dk,t.

Our approach can capture any shape of the disaster area
(uniquely defined by its geographical boundary), which allows
us to define multiple and time dependent areas. We can either
set an epicenter and expected radius and randomly generate
the disaster area, or manually set the coordinates of the
boundary of the areas. By changing the granularity of the
coordinate system, the disaster area shape can be described
more precisely.

Every disaster area has a failure probability assigned to
it. This is the probability pG,D of a failure of a network
element in G within the area Dx,t. We apply a variant
of Probabilistic Region Failure Model, introduced in [18],
which was originally defined on sets of concentric circles
with different radius. The failure probability is monotonically
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(a) Original (b) Disaster hits (t=0), n1=7 

(c)  Disaster moves North-West, n2=14 (d) Disaster moves East, n3=17
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Fig. 3: Disaster is propagating over a geographical area in
three stages. In the upper right corner there is a reference to
the corresponding state in model in Figure 5

decreasing with the distance from the center, and outside of
the circles the failure probability drops to zero. To indicate
different impact intensity (here: failure probability), (discrete)
heatmaps could be applied. In the example in Figure 2, dark
red reflects a high intensity impact, while the areas within the
light red curve have lower intensity. The failure probability
might take the distance to epicenter and the total area size into
account. It can be either set as a fixed value, time-dependent
probability of an area or epicenter distance-dependent within
an area.

E. Recovery phases

In order to recover from a disastrous event, the topology
(links and nodes) must be repaired. This involves both hard-
ware repair and replacement, software restart, reboot, reload,
reconfiguration and bug fixes.

In the scope of this paper, and in the example in Section V,
the recovery includes rerouting of connections between peers
and servers, server relocation and link/node repair. In the re-
covery period, multiple rerouting, relocation and repair actions
will be taken, and the sequence of these actions will impact the
(accumulated) performance and dependability of the system
and services during recovery. In order to recommend which
sequence of actions to take, we need means to assess the
different alternatives.

In Section IV, algorithms are proposed for relocation and
determination of the best sequence of node and link repairs.
These algorithms are applied in the example in Section V.

F. Performance metrics

The metrics defined in this paper refer to the reward function
applied to the (current) state x of the network topology, Mx =



R(Gx). The metrics reflect the non-functional properties of
the service, i.e., the performance and dependability, and can
roughly be classified in two categories.

1) Structural metrics - reflect the properties of the structure
of the graph with respect to, for example, the relative
number of peers that are connected to a server (con-
nectivity), availability, or the number of hops in the
shortest paths between each peer and the server(s). This
is relevant to capture the impact of the physical network
infrastructure (e.g. the optical layer).

2) Dynamic metrics - reflect the load dependent properties
such as peer-server delay, packet losses, throughput,
service reliability and availability. This is relevant to
capture the influence of the packet-switched layer of the
communication network.

In the example in Section V, we define M(t) to be the
average path length between all peers and their allocated server
(according to the shortest path).

G. Survivability quantification metrics

As described in Figure 1, by considering the values of M(t)
over time we can obtain time dependent metrics, which will
provide additional insight in how the system G evolves over
time after the triggering event.

In the survivability quantification framework we discretize
the phases in the recovery. A phase is either a stage in
the disaster escalation, decay, or propagation, or a recovery
action such as rerouting, relocation of servers, hardware repair,
software restart or reload. The full state of the network is given
by the topology graph G. A state index, or state vector, x is
applied to distinguish the different network topologies, Gx.
For every state x we can obtain a metric Mx = R(Gx). In
this paper we assume that Mx is a steady state metrics, which
means that network topology is (quasi-)stationary.

The next thing we need is a model where we can describe
the discrete phases. Each phase corresponds to a network
state Gx (x = 1, · · · , Nx). Figure 4 shows an example of a
survivability model, where the three disaster stages in Figure 3
are modelled. A state in this model is x = {i, j, k}, where
i is the disaster stage (i = 1, 2, 3), j is the number of
server relocations, and k is the number of remaining links
to be repaired. The expected time between disasters is time
E[Td] = 1/µd, and expected time to relocate (one, or all
servers) is E[Tr] = 1/µr. The n1, n2, n3 is the number of
failed links after each of the disaster stages. The models
includes potential relocations of servers between the stages.
A relocation will occur before the next disaster stage with
probability pr = µr/(µd + µr) (since we consider a Markov
model with all time distributions being exponential). The link
repairs are not shown in the figure (indicated by dotted lines
to the right), see Section V and Figure 5 for the full model.
In Fig. 4 you find a couple of examples of the state reward
function, Mi,j,k, e.g., the metric value of the system before
the disaster with no failures, m0 = M0,0,0, and the value
immediately after the disaster, ma = M1,0,n1

. Observe that
Mx only relies on the current state x of the network topology
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Fig. 4: Survivability model example

Gx, which is a pure structural metric. To obtain temporal
metrics we need the transient probabilities from the model,
px(t) = pi,j,k(t). Observe that the system is in state 1 at time
t = 0 (immediately after the triggering event), p1(0) = 1,
and state 0 is an absorbing state (where the system is fully
recovered, G0 = G).

A time dependent metric can be obtained by:

M(t) =

Nx∑
x=0

px(t)Mx (1)

The definitions ”Survivability quantification” in Section III-A
and illustrated in Figure 1, gave a few metrics that are useful
to quantify both spatial and temporal properties of the system.
Using M(t) we may define the metrics for the consequences
discussed in the introduction;

1) mu = M(0) - Instantaneous initial impact (spatial)
2) ma = maxt(M(t) − m0) - Maximum instantaneous

impact (spatial)
3) tr = {t|M(t) ≤ mr} - Time until recovered to a critical

level mr (temporal)
4) tR = {t|M(t) ≤ mR = m0} - Time until disaster impact

has vanished and system is fully recovered (spatial and
temporal);

5) M(t)−m0 - Instantaneous loss (spatial (and temporal))
6) L(t) =

∫ t

0
(M(u) − m0)du - Accumulated loss at t

(spatial and temporal);
If the assumptions related to the (quasi-)stationarity of a

recovery stage and Markov properties do not hold, similar
modelling approach can still be taken. The difference is that in
such cases simulation should be used instead of here applied
analytical approach.

H. Scalability

The scalablity of the modelling framework is determined by
both the number of nodes and links of the topology (spatial
dimension) and the number of disaster stages and recovery
phases (time dimension).

The size of the topology (the number of nodes and links)
will affect the complexity of computing the betweenness and
closeness centrality of network elements. The complexity is
not affected by the size, or granularity, of the underlying grid



that represents the coordinate system. This is, however, used
to obtain the shortest path between the nodes (and translates
to the link weights applied in the determine centrality). Hence,
the calculation of the shortest path (of link segments) is
affected by the granularity of the coordinate system. However,
if we are studying an existing network then the link paths are
already given so shortest path calculations are not necessary.

The Markov model (representing the time dimension) will
grow as a function of the number of disaster stages and
recovery phases since each state in the model represents a
certain operational state in the network, which changes only
between disaster stages and recovery phases. The size of the
Markov model is therefore not directly dependent on the
size of the network and the underlying coordinate system.
However, the number of recovery phases depends on the
number of network elements that are affected by the disaster
(and the more network elements in the topology, the more
elements can be affected). Furthermore, it depends on the
level of details and number of stages in the description of the
disaster, which might be partly dependent on the granularity
in the coordinate system.

IV. RECOVERY STRATEGIES

An operator can undertake various actions for short-term
compensation of the degradation caused by a disaster, or for
long-term recovery. These actions can vary in their complexity,
duration and effect, and should be tailored to the particular
situation and objectives. To illustrate the capabilities of our
modelling framework, we analyze three simple remediation
strategies: connection rerouting, server relocation and link
repair.

1) Connection rerouting: The routes between each node
v and the closest server replica s ∈ S are updated upon a
disaster. The affected network topology Gx and the set of
nodes hosting replicas are taken as input, while a set of routes
ρ is returned as the algorithm’s output. For each node v (all
are peering nodes) in the network, the algorithm calculates
the shortest path to each node s hosting a server replica using
Dijkstra’s algorithm, which considers the sum of the weights
of all segments of a link as that link’s weight. The closest over
all servers, i.e., the one connected with a minimum-weight
path, is assigned to v.

2) Server relocation: Algorithm 1 describes the process of
instantiating new servers in the network affected by a disaster.
The inputs to the algorithm are the network topology Gx

partitioned by link cuts Ē into a set of connected components
C, the set of nodes currently hosting a server S and the
maximum number of servers Smax upon instantiation. The
goal of the algorithm is to instantiate the available servers in
the network in a way which maximizes the number of nodes
that can connect to a server and minimizes the average distance
to replica (i.e., the average weight of paths ρ connecting
peering nodes to servers). The set of connected components
is first checked to only consider those that do not contain
any servers (lines 1-4), and sorted in the descending order of
the component size in order to prioritize placing servers in

larger components (line 5). As long as there remain unplaced
replicas and connected components (lines 6-16), a server is
added to the largest component (line 7). To decide which node
in the component will host the server, the algorithm computes
the lengths of the shortest paths connecting all other nodes
in Ci and the current candidate (lines 9-13). The node with
the highest closeness centrality (i.e., the lowest distance to
all other nodes) is then selected to host the new server. In
case there are more available servers Smax than connected
components |C|, the algorithm can be extended to add servers
to the components that already host replicas.

Algorithm 1: Server relocation
Data: Gx = (V,E \ Ē), S, set of connected

components C in the partitioned graph, number
of servers to place Smax.

Result: The updated set S′ of nodes hosting a replica
1 for each Ci ∈ C do
2 for each v ∈ Ci do
3 if v ∈ S then
4 C ← C \ Ci;
5 Sort set C in descending order according to the size of

the components;
6 while Smax > 0 and |C| > 0 do
7 Ci ← C[0];
8 vhost = 0; disthost =∞;
9 for each v ∈ Ci do

10 distv = 0;
11 for each u ∈ Ci, u 6= v do
12 ρ = Dijkstra(u, v);
13 distv +=weight(ρ);
14 if distv < disthost then
15 vhost = v; disthost = distv;
16 S ← S ∪ vhost;C ← C \ Ci;Smax − −;

3) The sequence to repair links: We also need a procedure
for determining a sequence of repairing links disrupted by a
disaster. The algorithm considers the original network topol-
ogy G along with the set of cut links and disconnected nodes,
as well as the values of the performance metrics in the affected
topology (here: average distances between peering points and
the closest server α). The output of the algorithm is the repair
sequence F of links deemed most beneficial. To decide on the
repair sequence F , the benefit of adding each link in terms
of network connectivity and average distance to the closest
server is determined. The set is sorted in descending order of
link centrality in an effort to evaluate the more central links
first, and link checking continues until all links are repaired
(alternative objective can be until all nodes are connected to
a replica - or this can be an intermediate point for us to mark
on the performance graph).

V. EXAMPLE WITH A PROPAGATING DISASTER AREA

Consider a network topology G = (V,E, S), with |V | = 15
nodes, |E| = 23 links, |S| = 3 redundant servers, as shown in
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Fig. 5: The Markov model of the recovery stages for the scenario example

Figure 3(a). The weights wi,j in this examples are 10 within
the “blue box” in the figure and 1 outside. We will demonstrate
the modelling framework using a moving disaster area case
scenario. This will capture both a single-hit multi-area disaster,
and an escalating and propagating disaster. A propagating
disaster (hurricanes/tornadoes/fire/flooding) is continuous, but
for modelling purposes discretization has to be done to be
able to represent the disaster propagation in a continuous time,
discrete state space model (CTMC).

In this example, as illustrated in Figure 3, we consider a
disaster that at t = 0 hits the area D0 (Figure 3(b)), and
then in the second (discretized) stage moves North-West and
at t1 covers Dt1 (Figure 3(c)), before it finally moves East
and at t2 covers Dt2 (Figure 3(d)). In this way we describe
a disaster both in spatial and temporal dimensions, which is
necessary to capture such a propagating disaster. The expected
time between the disaster stages is E[Td] = 1/µd, assumed to
follow a negative exponential distribution in this example. This
assumption can be relaxed by using phase type distributions
through semi-Markov models [19]. Alternatively, simulations
with general distributions can be applied.

The probability of failure of network components within the
disaster-affected areas is for simplicity set to pG = 1, which
means that in this example all components within the disaster
area will fail. As described in Section III, this probably can
be set to less than 1 to model a lower intensity of the disaster,
e.g., for areas further away from the epicenter, or a disaster
that gets weaker over time.

When the disaster is propagating, we assume that servers
that have failed will be relocated to another node. The reloca-
tion might, or might not take place between the changes from
one disaster stage to the next. In our example, the time to
relocate (one, or all servers) is Tr ∼ n.e.d.(µr), which means

that the probability of a relocation before the next disaster
stage is µr/(µr + µd). The relocation algorithm is described
in Algorithm 1 in Section IV.

We assume that the expected link repair E[Tl] (Tl ∼
n.e.d.(µl)), is much larger than time between disaster stages,
and much larger than the relocation time. This implies that no
link repair is completed before the disaster propagation has
stopped (this can also be due to personnel safety). Between
every link repair (one repair at the time), a server relocation
is conducted provided that a better solution exists. The order
of link repairs is defined by use of link betweenness centrality
as described in Section IV.

Figure 5 contains the Markov model for the survivability
quantification. The left part of the model (marked by “disaster
propagation”) is the model that was introduced in Figure 4,
with n1 = 7, n2 = 14, n3 = 17. This part describes the dis-
aster propagation (Figure 3 shows the disaster stages without
relocation), which captures disaster stages interchanged with
(potential) relocation across the changing topology. The right
part of the model (marked by dotted green and “link repair”),
is an extension of Figure 4 capturing the link repair, and again
interchanged with relocation, now after each link repair.

From the model in Figure 5 the metrics that were introduced
in Section III-F can be obtained. To obtain the numerical
values, we use the following parameters:
• Expected time between disaster stages; E[Td] = 1/µd =

60 [min],
• Expected time to relocate; E[Tr] = 1/µr = 3 [min], and
• Expected link repair time; E[Tl] = 1/µl = 1000 [min].

Figure 6 shows a plot of the M(t) (Eq. (1)) over time t. The
metric M used is the average path length (sum of weights on
the line segments in the underlying coordinate system) of each
peer-server connection (disconnected peers with infinite path
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Fig. 6: The reward R(t) over the disaster propagation stages
and the recovery phases, in this example the reward is the
average length/cost of each peer-server connections.

length, are assigned a high value of 100) in the current network
topology Gx at state x. The upper figure zooms in on the first
period 0 ≤ t ≤ 500 after the disaster hits where the M(t)
is increasing (after a slight decrease when t < 5 (approx)),
due to the propagation of the disaster with increasing impact
(covering a larger area). The lower figure shows the whole
period until the network is fully recovered.

In the two figures the instantaneous metric is included,
ma = 21.9 (spatial), as well as the maximum mu = 62.9
(spatial), which occurs after tu = 290 [min] (temporal), and
finally the time until the system is fully recovered (mR = m0)
at time tR = 22796 (temporal).

Figure 7 shows the transient probabilities, p3,3,17(t), which
is the state where the disaster has the largest extent (blue line),
the pr5(t) =

∑
{i,j,k}∈U pi,j,k(t) which is the probability that

5 [out of 17] or less links have been repaired (green), and the
p0,0,0(t) where the system is fully recovered (orange). The set
U contains all states in the green area “Disaster propagation”
in Figure 5 and the five first link repairs (out of 17).

For illustration of the usefulness of plots like the ones in
Figure 7, consider the following (just three examples out of
many possibilities):

1) At 17000 [min] (expected time for all link repairs) the
system is fully recovered with a probability of only 0.53.

2) At 2000 [min] (expected time for 2 link repairs) the sys-
tem is still in the most critical state with probability 0.13.

3) At 8000 [min] (expected time for 8 link repairs) the
probability that 5 or less links have been repaired is 0.20.
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Fig. 7: Plot of the transient probabilities p3,3,17(t) - the
state where the disaster has the largest extent, pr5(t) - the
probability that 5 or less links have been repaired, and p0,0,0(t)
where the system is fully recovered.
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Fig. 8: The probability to be below a threshold θ ∈ [0, 30] for
all stages in the disaster propagation given in Figure 3

The reward function of graph Gx, Mx = R(Gx), in this
example has been the average path lengths of the peer-server
pairs. An alternative is to compare every path length with
a certain threshold defining the maximum “delay” tolerance
(here illustrated as the path “length” where each length can
be regarded as proportional to the expected delay on a link).
The probability of delay below a threshold θ is estimated by
the number of peer-server pairs with path length below the
threshold. Peers disconnected from all servers will have an
infinite path length and hence be above the threshold.

In Figure 8, the probability of propagation delay below a
threshold is given for θ ∈ [0, 30]. The figure gives specific
values for θ1 = 10 and θ2 = 20 for all stages in the
disaster propagation given in Figure 3. When, for instance,
threshold θ1 = 10, then the reward Mx for x = (2, 0, 14) (Gx

in second stage) is 0.20. Changing the threshold value will
change the reward for a state x although the topology of Gx

is unchanged. This demonstrates the versatility of our frame-
work in characterizing the network performance under various
operator requirements. This demonstrates the versatility of our
framework in characterizing the network performance under



various operator requirements. Other alternatives to Mx exists,
choosing the best one depends what is the main objective of
the assessment study, e.g., which criteria should be used to
compare different link repair strategies.

The spatial dimension only provides insight to how many
(an which) components will be affected due to a given disaster.
Adding the time dimension also enables the modelling of
escalating and propagating disasters, and disasters that decay
and loose intensity over time. It further enables to obtain the
accumulated consequence of the disaster which depends on
the recovery time.

Disaster-aware network topology design can
minimise/reduce the consequences in the spatial dimension,
while increasing disaster preparedness (e.g., through proactive
maintenance, system capacity dimensioning, competence
in operation, and autonomous detection and recovery) will
reduce the consequences by reducing the recovery time. To be
able to assess the survivability of a system it is then crucial
to include the temporal dimension as well as the spatial
dimension, which is feasible with the modelling framework
demonstrated in this paper.

VI. CONCLUDING REMARKS

Nowadays networks have become crucial component for
vital societal needs and it is of high importance that they
are reliable. A big threat to network reliability are disastrous
events. Effects of natural disasters can vary over space and
time - disasters can propagate, escalate or trigger a new dis-
aster. Therefore, network recovery needs to take into account
both spatial and temporal evolution of disastrous event.

In this paper, we have introduced a modelling framework
for evaluation of both spatial and temporal dimensions of
disaster dynamics and network multi-phased recovery actions.
The framework allows for modelling of random spatial dis-
asters areas across network topology mapped onto the same
geographical coordinate system. It can capture both single-hit,
propagating and escalating disaster with different intensities.
No information about frequency of disaster occurrences is
required since we model the transient behaviour from the time
instance of the disaster occurrence (disaster is ”injected”).

A use case scenario with a propagating disaster was studied
to show the applicability of the framework and demonstrate the
importance of both spatial and temporal metrics in assessing
the consequences of disaster. This provides useful insights
to formulation of the best network recovery strategy from
an operator’s point of view. The example shows how to use
the modelling framework to assess the spatial properties as
the extent of a disaster area and the consequences on the
network topology, as well as the temporal effects of the various
recovery phases with server relocations and link repairs.

Future work will include studies of a broader set of disaster
types, utilizing the obtained insights to develop optimized
node and link repair as well as server relocation strategies. In
addition, dynamic metrics will be considered, such as traffic
load with link and server utilization, e.g., to study the impact
of traffic overflow to network elements surviving a disaster.

Furthermore, technical failures can still happen in the part of
network topology not affected by the disaster. The combination
of these failures is worth investigating because it can contribute
to technical failure propagation which may lead to escalation
of the consequences of the disaster. It could also be of interest
to consider mapping the disaster and network topology onto a
more realistic 3-dimensional coordinate system.
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