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A B S T R A C T   

The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is 
selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal 
component of this memory system since it serves as the interface between the neocortex and the hippocampus. 
EC is heavily affected by the proteinopathies of Alzheimer’s disease (AD). These appear in a stereotypical 
spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal 
deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased 
levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II 
(EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding 
reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, 
and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial 
dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE +
EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a 
hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt 
to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and 
argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal 
stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD 
etiology and provide new ideas for drug development.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive and fatal neurodegenera-
tive disease of the central nervous system (CNS). It is the most common 
cause of dementia and currently affects over 45 million people world-
wide (ADI, 2019). Clinically, AD is characterized by an insidious onset 
with progressive deterioration of cognitive abilities, typically beginning 
with declarative memory impairment which worsens as impairments in 
judgement and reasoning also become apparent (Canter et al., 2016; 

Kerr et al., 2017). The classical neuropathological hallmarks of AD are 
extracellular amyloid-beta (Aβ) plaques, mainly consisting of Aβ ag-
gregates, and intracellular neurofibrillary tangles (NFT) containing the 
aberrantly hyper-phosphorylated microtubule associated protein Tau 
(p-Tau). These hallmarks are preceded or accompanied by several other 
pathologies, including but not limited to increased levels of intracellular 
Aβ1− 42 peptides (iAβ1− 42), mitochondrial dysfunction, neuro-
inflammation, synaptic dysfunction and degeneration, as well as 
neuronal loss (reviews in (Canter et al., 2016; Kerr et al., 2017; McKhann 
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et al., 2011)). Despite half a century of extensive research on AD, there is 
still no treatment to slow or halt the disease. This unfortunate reality is 
at least in part due to an incomplete understanding of the molecular 
mechanisms at play in the structures initially affected by the disease, 
such as the entorhinal cortex (EC). Here, we aim to highlight the major 
advancements in our knowledge of AD development and progression 
with a focus on neurons in EC and mitochondrial dysfunction. We sug-
gest that a resurgence in research on EC in the AD field is necessary to 
fully unveil the etiology of AD, and we anchor our suggestion on the 
facts that EC is essential for declarative memory and also constitutes one 
of, if not the first cortical region affected by AD pathology. We 
emphasize the need for further research on pathways connecting iAβ, 
NFTs, reelin, apolipoprotein 4 (ApoE4), and defective mitophagy, and 
suggest new approaches for the development of novel therapeutic stra-
tegies for AD. 

2. Anatomy of the medial temporal lobe and the entorhinal 
cortex 

Current knowledge supports the view that EC LII contains the first 
cortical neurons to develop pathological changes related to AD (Braak 
and Braak, 1991; Kaufman et al., 2018). In this section, we consider 
anatomical and molecular features of these EC LII-neurons and suggest 
reasons for their vulnerability. We begin by pointing out the location of 
EC and the associated structures that make up the medial temporal lobe 
(Fig. 1), before considering its pivotal contribution to declarative 
memory. 

2.1. The medial temporal lobe 

The medial temporal lobe (MTL) is a brain region with anatomically 
related structures that are essential for conscious memory of facts and 
events, termed declarative memory. The MTL, as recognized in primates, 
occupies the ventral and medial surface of the temporal lobe (Nieu-
wenhuys et al., 2008; Squire et al., 2004). Several structurally and 
functionally distinct areas considered essential components of the 
declarative memory system reside in MTL: from medial to lateral these 
include the hippocampus (the dentate gyrus and cornu ammonis (CA) 
1–3), the subiculum, the pre- and parasubiculum, EC, the perirhinal 
cortex, and, posterior to the latter, the parahippocampal cortex (Franko 
et al., 2014), which in rodents is known as the postrhinal cortex (Cap-
paert et al., 2015). We provide detailed depictions of these anatomical 
structures and nomenclatures in Fig. 1(A–C). Knowledge about the 
functions of MTL memory structures relies heavily on knowledge gained 
from observational studies on cases with anatomically restricted lesions 
(Crick and Koch, 2003). Importantly, the study of anatomical 
circuit-level features has gained traction over the past two decades (van 
Strien et al., 2009), and is now at a point enabling detailed answers to 
questions concerning the function and malfunction of different MTL 
memory structures and their sub-domains, especially in EC (Nilssen 
et al., 2019). 

EC provides the hippocampus with information derived from mul-
tiple parts of the cerebral cortex, collectively referred to as the associ-
ation cortex, while also returning hippocampal-processed information 
back out to the association cortex (McKhann et al., 2011). The term 
“association cortex” signifies an essential difference from primary sen-
sory cortex in that the latter is where sensory impressions first register at 
the cortical level, while association cortex receives information from 
primary cortex, or other parts of association cortex, and further process 
this into increasingly more complex representations (Yeo et al., 2011). 
The hippocampus sits atop the cortical hierarchy, and, largely by way of 
EC, information from all major regions of the neocortex converges in the 
hippocampus. This fits well with the notion that information processing 
in the hippocampus is crucial for several aspects of declarative memory 
(reviewed in (Eichenbaum and Cohen, 2014)) and, by virtue of 
providing the input, it comes as no surprise that the integrity of EC is 

also important for many of those aspects of declarative memory (Van 
Hoesen et al., 1991; Velayudhan et al., 2013b). Unlike a simple hub, 
however, EC does more than simply route information. Below we briefly 
consider some of the unique functional contributions of EC. 

Within the past 20 years, EC went from being somewhat of a black 
box area mediating cortical-hippocampal connectivity, into a structure 
displaying remarkable functional properties. This is owed to a dedicated 
effort to understand its anatomy that subsequently helped realize ex-
periments devoted to function. In brief, the finding that neurons in the 
dorsal hippocampus of rats show spatial modulation, most notably 
observed in so-called ‘place cells’, led scientists to search upstream into 
EC aiming to find neurons potentially providing the signals required for 
the observed spatial modulation in the hippocampus. Though this search 
initially met with little success, subsequent attempts informed by 
anatomical knowledge showed the existence of spatially modulated 
neurons in a dorsomedial part of EC. This part, generally referred to as 
the medial entorhinal cortex (MEC; see section 2.3 for further details) 
contains so called grid cells (Hafting et al., 2005) which, through their 
spatially modulated firing, tessellate any given 2D environment in 
hexagonal fields. It was subsequently revealed that MEC harbors several 
functional cell types that together enable navigation (reviewed in 
(Moser et al., 2017)). The MEC’s counterpart, generally referred to as 
the lateral entorhinal cortex (abbreviated LEC in rodents), was recently 
found to contain neurons capable of tracking relative time (Tsao et al., 
2018), while other neuron types in LEC encode the present and past 
position of objects (Tsao et al., 2013), or code for specific objects (Suzuki 
et al., 1997). Efforts to uncover anatomical details continue to guide 
highly successful research into the functional properties of entorhinal 
neurons. 

MTL and even more in particular EC degeneration occurs early in the 
pre-clinical stages of AD, and is seen most dramatically in LII-neurons 
(Kordower et al., 2001; Velayudhan et al., 2013a), typically followed 
by degeneration involving parts of the hippocampal formation (Scheff 
et al., 2006). Increasingly we have noticed studies on AD that do not take 
into account the anatomical specificity of the disease, which is likely to 
lead to missed opportunities for the field. We therefore believe it 
worthwhile to rehash some central aspects of the 
entorhinal-hippocampal anatomical layout and connectivity. First, 
however, it is important to realize that most of our understanding about 
this connectivity derives from work on species other than humans, the 
majority being on rodents (Cappaert et al., 2015; Witter, 2012), though 
much information has also been acquired through studies on cats (Van 
Groen et al., 1986; Witter and Groenewegen, 1984, 1986) and 
non-human primates (Insausti and Amaral, 2008; Witter et al., 1989). Of 
note, recent studies using high-resolution functional and structural 
magnetic resonance imaging (MRI) have so far substantiated the exis-
tence of the same pathways when studied in the human brain (Maass 
et al., 2015; Navarro Schroder et al., 2015; Zeineh et al., 2017). 

2.2. Basic entorhinal architecture: histology 

Six separate layers can be identified in human EC, with parallels the 
situation in other mammals (Fig. 1C). The outermost layer, adjoining the 
pia, is most often referred to as layer I. Here, comparably few neurons 
reside and those present are small. LII, also referred to as the pre-alpha 
layer, takes on a remarkable structural pattern by showing highly 
clustered neurons separated by relatively large gaps. These clusters, 
often called cell-islands, encompass many large neurons including star- 
shaped, fan-shaped and pyramidal-shaped types, plus smaller neurons of 
both bi- and multipolar types. The latter, smaller neurons also reside in 
the gaps between cell islands. Medium-large pyramidal neurons are the 
most prominent type in layer III, while bi- and multipolar neurons are 
also present. Unlike neocortical areas, EC lacks an internal granule layer, 
such that what is recognized as layer IV in EC is essentially a thin 
acellular strip, also called the lamina dissecans (“the cut lamina”), 
because it separates the deep from the superficial layers. Layer V 
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contains pyramidal neurons of medium to large size in its superficial 
half, and smaller pyramidal neurons in its deep half. In layer VI, which 
adjoins the white matter, there is a mix of neuron types, including py-
ramidal and multipolar neurons, and the overall appearance is more 
heterogeneous (Braak, 1980; Insausti et al., 1995). 

Importantly, the organization of EC is not uniformly laminar. Rather, 
the domains located close to the collateral sulcus (Fig. 1A) are well- 
developed, but with increased distance from the collateral sulcus the 
lamination gradually appears less developed. Thus, at the point furthest 
from the collateral sulcus, the individual layers are poorly organized and 
difficult to discriminate (Insausti, 1993). This organizational feature was 
recently shown to largely overlap with that of the chemo-architecture 
(Kobro-Flatmoen and Witter, 2019), which is further discussed in the 
following section. 

2.3. Basic entorhinal architecture: topography 

As previously mentioned, EC consists of two main subdivisions, the 
lateral and medial entorhinal cortices (LEC and MEC, respectively), 
corresponding to the older division of Brodman’s Area 28a and 28b, 
respectively. There are strong arguments for this two-part division. First, 
a long line of research in many species shows that the two parts can be 
easily differentiated cytoarchitectonically. Second, in rodents, their 
respective projections to the hippocampal dentate gyrus terminate in 
different zones (Cappaert et al., 2015; Witter, 2007). In primates, our 
current understanding of these features is less clear cut, since multiple 
subdivisions are more readily observed based on cytoarchitectonics, and 
the projections to the dentate gyrus predominantly show a more diffuse 
terminal distribution (Insausti and Amaral, 2012; Witter et al., 1989). 
More recently, connectivity patterns have been proposed to identify the 
two subdivisions, and these seem to be consistent for rodents and pri-
mates (Maass et al., 2015; Navarro Schroder et al., 2015; Witter and 
Amaral, 2021). 

The fundamental architecture of EC is highly similar across species. 
The above described gradient in laminar differentiation tracks with a 
chemo-architectonic gradient, with multiple neurochemical markers 
increasing or decreasing in expression level depending on the distance 
from the collateral (primates) or rhinal (rodents) sulcus (Kobro--
Flatmoen and Witter, 2019). An example of this is the protein reelin. 
This protein, known to serve as an extracellular matrix protein, mainly 
locates to small interneurons scattered throughout the cerebral cortex. 
However, for reasons that remain poorly understood, in EC reelin is 
present in a large population of LII principal neurons (Figs. 1E and 2 A). 
Moreover, the amount of reelin shows a marked gradient: high-levels are 
present in LII neurons close to the collateral sulcus, whereas neurons 
located increasingly further away from the collateral sulcus contain 
gradually less, until the portion located furthest away contains little to 
no reelin (Kobro-Flatmoen and Witter, 2019). While the functional 
significance of this feature remains unknown, findings suggest that 

high-level reelin neurons might be more prone to accumulate Aβ 
(Kobro-Flatmoen et al., 2016), a point we will return to in section 3. 

2.4. Relevance of entorhinal connectivity: focus on LII neurons 

The past four decades has seen a strong line of evidence supporting 
the notion that EC LII-neurons are the first cortical neurons to degen-
erate in the course of AD (Braak and Braak, 1991; Gomez-Isla et al., 
1996; Hyman et al., 1984; Kordower et al., 2001; Olsen et al., 2017), a 
point we return to in the subsequent section. Meanwhile, studies on EC 
anatomy have reached an impressive, yet still incomplete level of circuit 
detail (Cappaert et al., 2015). Here we refrain from considering all of the 
complex EC circuitry, and instead focus on that of LII. Though we 
recognize that a key role might stem from the concerted activity of 
multiple elements within the EC circuitry, the current text is aimed at 
providing context for the connections of LII neurons and their position in 
the cortical hierarchy, aligned to our current understanding of the early 
stages of AD. 

Multimodal sensory and highly processed olfactory inputs converge 
in EC (reviewed in (Cappaert et al., 2015)). Among these inputs, it has 
been known for quite some time that two major ones originate in the 
parahippocampal (postrhinal in rodents) and perirhinal cortices, struc-
tures strongly involved in enabling aspects of declarative memory. These 
structures are thought to mediate information concerning, respectively, 
the external environment (often conceptualized as a “where-pathway”), 
alongside changes occurring in that environment, including those 
resulting from navigating it (often conceptualized as a “what-pathway”; 
(Ritchey et al., 2015). Recent work on LEC shows that a given LII 
principal neuron receives convergent inputs from both the para-
hippocampal/postrhinal cortex and the perirhinal cortex, as well as from 
a number of other cortical domains (Doan et al., 2019). In fact, a single 
LEC principle neuron integrates input from at least five different, highly 
active cortical areas (Burwell and Amaral, 1998; Doan et al., 2019; 
Insausti et al., 1987; Jones and Witter, 2007; Kondo and Witter, 2014; 
Mathiasen et al., 2015; Vaudano et al., 1991), alongside modulatory 
inputs from subcortical structures (Fig. 1D). A similar situation likely 
holds true for principal cells in LII of MEC (Witter et al., 2017). 

Upon reaching the LII neurons and the network in which they are 
embedded, information undergoes further processing thought to yield 
high-order representations of the environment and its changing nature. 
At this level, EC LII-neurons are positioned to communicate extensively 
with neurons throughout layers I–V (Cappaert et al., 2015). Within LII, 
the most prevalent type of projection neuron is the reelin-expressing 
stellate (MEC; (Canto and Witter, 2012b)) or fan cell (LEC; (Canto and 
Witter, 2012a)), so named for the shape of their large dendritic trees. 
These neurons send their axons to the hippocampus, a fact we will return 
to shortly, but they also give rise to an extensive axonal plexus within 
LII. Despite this, these neurons do not directly communicate with each 
other; rather, they connect only indirectly, via inhibitory interneurons 

Fig. 1. Structures of the medial temporal lobe (MTL) and focus on entorhinal cortex layer II (ECL-II) and the early pathology affecting this layer. 
(A) Cartoon showing the position of the human left MTL along with the approximate extent of EC, observable after resection of the cerebellum and the brainstem. (B) 
MTL cut out of the left hemisphere as indicated in (A). The basic anatomical layout of the declarative memory structures of MTL are illustrated in the coronal plane at 
the level of the hippocampal uncus. (C) Nissl stained coronal section corresponding to the level indicated by the knife cut shows the cytoarchitecture of different MTL 
structures. The section was adapted from figure 24.8 in(Insausti and Amaral, 2012), with permission. Abbreviations: CA1, 2 and 3 = Cornu Ammonis 1, 2 and 3; CS =
Collateral sulcus; DG = Dentate Gyrus; remaining abbreviations are explained in (B). (D) Illustration showing the hippocampus and EC L-II isolated from surrounding 
structures and the fact that neurons close to the collateral sulcus (CS, black dashed line) target the caudal hippocampus, while neurons located increasingly further 
away from CS target increasingly more rostral parts of HF, such that those furthest away from CS have projections confined to the rostralmost/uncal part of HF. The 
increased spatial granularity in more caudal parts of HF is illustrated by a pixelation scale. Note that though for EC only L-II neurons are indicated, their pattern with 
respect to rostral vs caudal connectivity with the hippocampus holds true for all layers of EC. Also note that in the anterolateral EC (“LEC”, corresponding to rodent 
lateral entorhinal cortex), a single principle neuron apparently integrates inputs from several different cortical areas, alongside modulatory inputs from subcortical 
structures. Abbreviations: MEC = medial entorhinal cortex; cLEC = contralateral LEC; Pir = piriform cortex; Per = perirhinal cortex; PHC = Parahippocampal cortex; 
SC = subcortical inputs (E) (left panel) Micrograph from Braak and Braak (1991)(Braak and Braak, 1991) showing how early NFT formation (stage 3) in EC LII is 
most pronounced in the domain located close to CS, which is also the domain where the first NFTs arise (Braak and Braak, 1991). (mid- and right panels) Coloc-
alization (double-immuno) of iAβ1− 42 (pink) and reelin positive (RE+) neurons (blue) in corresponding domain of EC LII of a rat model of AD (scalebars: 500 μm for 
micrographs, 50 μm for insets), adapted from the Ph.D thesis of Asgeir Kobro-Flatmoen, see also (Kobro-Flatmoen et al., 2016)). 
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(Couey et al., 2013; Nilssen et al., 2018). Thus, reelin-expressing stellate 
and fan neurons in LII are likely subject to strong inhibitory control by 
their peers. 

The reelin-expressing neurons in EC LII originate the main projection 
to the dentate gyrus and fields CA3/CA2 (Kitamura et al., 2014; Varga 
et al., 2010). A second organizational feature of these projections rele-
vant to the present discussion is that they have a graded topographical 
organization. Work on monkeys, corresponding to that in rodents, shows 
that projections originating from neurons close to the collateral sulcus 
terminate in the posterior portion of the hippocampus. Projections 
originating increasingly further away from the collateral sulcus target 
portions increasingly anterior in the hippocampus (Witter and Amaral, 
1991; Witter et al., 1989). Functional MRI studies in humans indicate 
that this graded topographical organization relates to the observation 
that the most posterior hippocampal portion functionally deals with 
fine-grained spatial representations, while anterior parts deal with 
coarse grained spatial representations (Evensmoen et al., 2015, 2013). 
We illustrate this EC LII-hippocampal connectional feature, along with 
the spatial granularity observed in the hippocampus in Fig. 1D. 

3. AD proteinopathies and the early involvement of EC 

Continued failures in anti-AD drug development demonstrate the 
need for a better understanding of the etiology of AD, including poten-
tially specific molecular changes occurring in anatomically distinct re-
gions (Canter et al., 2016; Hou et al., 2019; Kerr et al., 2017). 
Histochemistry-based neuron number estimations indicate very early 
neuron loss in EC LII (Arendt et al., 2015; Giannakopoulos et al., 1996; 
Gomez-Isla et al., 1996; Hof et al., 2003; Hyman et al., 1984; Kordower 
et al., 2001), and this is reflected in loss of EC LII terminals in the hip-
pocampus (Scheff et al., 2006), and is corroborated by reports on in vivo 
volume reduction of EC (Dickerson et al., 2001; Holbrook et al., 2020; 
Juottonen et al., 1998; Killiany et al., 2002; Kulason et al., 2019; Olsen 
et al., 2017; Tward et al., 2017; Velayudhan et al., 2013b). Congruently, 
knock-in of mutated human APP in mice, resulting in Aβ-pathology, 
disrupts MEC grid cell remapping and thus shows how an impaired 
circuit mechanism may lead to early navigation impairment in AD (Jun 

et al., 2020). In the subsequent sections we attempt to account for 
possible pathological molecular mechanism underlying early changes in 
the disease process of AD, maintaining a focus EC LII neurons. 

3.1. AD proteinopathies and their consequences 

A major hypothesis regarding the cause of neurodegeneration in AD 
is the misfolding and aggregation of toxic proteins (proteinopathies). In 
AD, the best-known misfolded proteins give rise to extracellular Aβ- 
plaques, and intracellular NFTs (Ballatore et al., 2007; Canter et al., 
2016; Fang et al., 2019b; Goedert, 2015; Kerr et al., 2017; Selkoe and 
Hardy, 2016). Aβ-plaques are principally made up of a mixture of 
abnormally fibrillated and poorly soluble Aβ-peptides, and NFTs stem 
from aberrantly hyperphosphorylated microtubule associated protein 
(MAP) Tau (p-Tau). Though the physiological function of Aβ peptides is 
still poorly understood, their origin is well known. They originate 
through sequential cleavage of a larger precursor protein known as the 
amyloid precursor protein (APP). Depending on the enzymatic com-
plexes, the subcellular milieu and even the substrate itself, the cleavage 
can yield a mixture of Aβ-peptides ranging from 37 to 43 amino acids 
(reviewed in (Steiner et al., 2018)). Of these, the Aβ1− 42 variant is not 
only the first to be deposited into plaques but also the most toxic 
(Iwatsubo et al., 1995, 1994). 

In the case of humans, alternative mRNA splicing of the microtubule 
associated protein tau-gene (MAPT-gene) results in six common Tau iso-
forms that range from 352 to 441 amino acids. These six isoforms differ 
with respect to whether they have three vs. four instances of a repeat 
sequence in the C-terminal half, and whether or not they have one or 
both of two possible inserts close to the N-terminus. The repeat se-
quences along with flanking portions make up the microtubule-binding 
domains. Notably, these are also the domains forming the core of Tau 
filaments (Goedert et al., 1989) and (reviewed in (Goedert, 2015)). For 
Tau, unlike what is the case for Aβ peptides, several physiological 
functions have been demonstrated. Tau binds to and serve as a protec-
tive layer shielding the surface of microtubules from severing enzymes. 
Furthermore, the Tau-microtubule interactions regulate the capacity of 
other MAPs as well as of molecular motors to interact with microtubules 

Fig. 2. Proposed mechanism of the occurrence of the earliest AD pathology in entorhinal cortex (EC) L-II. (A) Immunofluorescently labeled reelin-positive neuronal 
population in L-II of rat EC. (B-C) Schematic representation of the signal transduction cascade generated by reelin under normal physiological conditions (B) vs AD 
(C). (B) Under normal conditions, including in young individuals, reelin is highly expressed. Reelin binds to lipoprotein receptors, such as ApoER2 and VLDLR, 
inducing activation of Disabled 1 (Dab1), an adapter protein. Activated Dab1 induces activation of Src family kinases (SFKs) that potentiate tyrosine phosphorylation 
of Dab1, which in turn activates Phosphoinositide 3-kinase (PI3K) and subsequently protein kinase B (PKB). PKB activation inhibits the activity of GSK3β, thereby 
reducing p-Tau and promoting microtubule stability. PKB also activates mTOR-dependent processes which promote the outgrowth of dendrites and balances 
mitochondrial biogenesis and autophagy. Changes of mTOR activity affect the activities of ULK1, AMPK, sirtuins (SIRTs), FOXOs, and NAD+. In addition, ApoER2- 
reelin complex is coupled to NMDAR signaling through PSD95. Reelin-activated SFK phosphorylates NMDAR and potentiates NMDAR-Ca2+ influx. Influx of Ca2+

activates the transcriptional regulator, CREB, through which expression of genes important for synaptic plasticity and neurite growth are potentiated. CREB-regulated 
genes encode proteins important for learning and memory. Astrocyte- and neuron-derived ApoEs bind to ApoER2 and are constitutively internalized. Upon reelin 
signaling, ApoER2 also undergoes endocytosis. In the cases of ApoE2 and ApoE3, ApoER2 is efficiently recycled to the cell membrane; this is impaired in the case of 
ApoE4. In healthy young individuals, mitophagy effectively clears damaged mitochondria, ensuring a healthy mitochondrial pool in the high-energy demanding axon 
terminals; this enables normal neuronal function and neuronal plasticity. Mitophagy also eliminates intracellular iAβ1-42 and pathological Tau proteins. (C) Ageing is 
the primary driver of AD with multiple molecular mechanisms involved, including age-dependent reduction of reelin and impaired mitophagy (also autophagy). In 
prodromal AD, reduced reelin in the EC L-II neurons impairs the control of the ApoER2/VLDLR-Dab-1-PI3K-PKB-GSK3β axis, leading to pTau. Furthermore, iAβ1-42 is 
increased in the EC L-II neurons, possibly due to increased production (via ApoE4-dependent trapping, detailed below), and reduced clearance by impaired 
mitophagy/autophagy. iAβ1-42 may bind reelin and thereby reduce levels of signaling competent reelin, in turn impairing PKB mediated inhibition of GSK3β and thus 
increasing p-Tau. ApoE4 may accentuate this as it tends to get trapped in endosomes along with its lipoprotein receptors, likely mainly ApoER2. This in turn further 
reduces reelin-signaling, boosting the cascade leading to p-Tau. In concert, ApoE4, trapped in endosomes, increases transcription of APP and thus production of iAβ1- 

42, and thereby completes a vicious cycle, whose end product for the affected neurons are NFTs. Furthermore, reduced PKB-activity also inhibits mTOR activity, 
impacting on mitochondrial homoeostasis and autophagy. Moreover, ApoE4 sequesters ApoER2 in intracellular compartments and reduces the NMDAR phos-
phorylation in response to reelin in the postsynaptic neuron, leading to impaired neural plasticity. In line with the age onset of AD, age-dependent mitophagy 
impairment causes accumulation of damaged mitochondria, which further exacerbates AD pathology, including shortage of energy supply, inflammation, oligo-
merization of iAβ1-42 and pathological Tau proteins, finally leading to impaired LTP and neuronal plasticity, and neuronal loss. Individuals carrying ApoE4 may have 
exacerbated mitophagy impairment since ApoE4 inhibits TFEB-dependent regulation of autophagy- and lysosome-related genes. Dashed lines and faint phosphor-
ylation symbols indicate blunted signaling capacity. Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; AMPK, 5’ AMP-activated protein kinase; ApoE, apoli-
poprotein E; ApoER2, ApoE receptor 2; Ca2+, calcium ion; CREB, cAMP response element-binding protein; Dab1, disabled 1; EC, entorhinal cortex; FOXOs, Forkhead 
box O (FOXO) transcription factors; GSK3β, glycogen synthase kinase 3β; LTP, Long-term potentiation; NMDAR, N-methyl-D-aspartate receptor; PKB, protein kinase 
B; SIRTs, the NAD+-dependent deacetylates sirtuins; SFKs, SRC family tyrosine kinases; ULK1, unc-51 like autophagy activating kinase 1; VLDLR, very-low-density 
lipoprotein receptor; low-density lipoprotein receptor-related protein 1 (LRP1). Dashed arrows indicate impaired induction/activation. 
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(Monroy et al., 2018; Siahaan et al., 2019; Tan et al., 2019). Since these 
are crucial functions to the integrity of neurons, they help explain why 
malfunctioning Tau, including p-Tau, can lead to impaired subcellular 
cargo mobility, microtubule breakdown, neuronal stress and neuro-
degeneration. A long held notion is that Tau stabilize microtubules 
(Mandelkow and Mandelkow, 2012), however, recent results contradict 
this and rather indicate that Tau functions by enabling a domain on each 
microtubule to remain labile (Qiang et al., 2018). 

It is important to realize that while Aβ plaques and NFTs form the 
disease-defining pathologies as seen upon post mortem examination, 
these are late-stage pathologies in the course of AD (Dubois et al., 2014; 
Duyckaerts et al., 2009), although increasingly sophisticated positron 
emission tomography (PET) analyses now enable detection of amyloid 
aggregates in living subjects before clinical symptoms are present. 
Experimental and clinical evidence suggests that an imbalance between 
the production and clearance of Aβ peptides, with that of the Aβ1− 42 
form being the most critical, is an early, and possibly disease-initiating 
factor (Muller et al., 2019). A concern often raised against the impor-
tance of Aβ, is the fact that Aβ plaques show only a low-to-moderate 
correlation with cognitive decline (reviewed in (Nelson et al., 2012)). 
It has been reported that several individuals with substantial Aβ-plaque 
burdens in their brains appear cognitively unimpaired as measured by 
standardized clinical tests (Price et al., 2009). However, non-fibrillated 
assemblies of Aβ that are soluble in non-denaturing solutions (soluble 
Aβ), which by definition are not in the form of plaques, show a strong 
correlation with cognitive decline (Koss et al., 2016; Lue et al., 1999; 
McLean et al., 1999; Naslund et al., 2000; Steinerman et al., 2008). This 
may be taken to indicate that the visually conspicuous Aβ-plaques are 
only a part of the Aβ pathology and that substantial toxic assemblies of 
Aβ-peptides exist outside of plaques (Benilova et al., 2012). 

The classical disease-defining pathological lesions of AD arise in a 
predictable spatiotemporal pattern across the brain. Highly sensitive 
immunohistochemical analyses show that Aβ-plaques initially arise in 
neocortical areas, including the temporal cortex, in the form of occa-
sional small focal groups of diffuse plaques. These initial plaques thus 
define a neocortical stage. Next, Aβ-plaques appear in allocortical and 
periallocortical structures of MTL. In this stage, hippocampal field CA1 
(allocortex) is consistently affected, while EC (periallocortex) is affected 
in a large majority of cases. Additionally, there is often involvement of 
other parts of the hippocampal region. Aside from MTL, plaques are 
often observed in the cingulate gyrus, the insular cortex and the 
amygdala. Due to the consistent involvement of CA1, this second stage 
constitutes the allocortical stage. Following these initial two stages, pla-
ques arise in subcortical nuclei and the brainstem (stages 3 and 4) and 
eventually even the cerebellum (stage 5). During the latter stages of 
disease development, a continuous increase in plaque-load occurs in 
allo-, periallo- and neocortical regions (Thal et al., 2002, 2000). Recent 
work based on uptake of the radiopharmaceutical compound florbeta-
pir, as measured using PET-imaging, suggests that the neocortical areas 
most consistently involved during the initial parenchymal aggregation 
of Aβ include the posterior cingulate and orbitofrontal cortices, along 
with or immediately followed by the precuneus (Palmqvist et al., 2017). 

Regarding Tau, current evidence shows that it’s pathological forms 
arise in neurons in LII of the domain of EC located close to the collateral 
sulcus, sometimes referred to as the transentorhinal region (Kaufman 
et al., 2018); this is also the initial cortical area to develop full-blown 
NFTs (Braak and Braak, 1991) Fig. 1E). Pre-tangle pathology may pre-
sent in the locus coeruleus before that of EC (Braak et al., 2011), but 
recent work suggests that the capacity for pathological Tau-seeding 
likely begins in EC rather than in the locus coeruleus (Kaufman et al., 
2018). Tau pathology next appears downstream to EC in the distal part 
of hippocampal field CA1 and in a portion of the subiculum that may 
constitute the proximal subiculum (see figure 9 stage II in (Braak and 
Braak, 1991)). Eventually, much of the neocortex becomes affected. A 
recent study based on a large cohort of older adults provides strong 
support for the notion that these histochemical findings reflect an actual 

spatiotemporal spread of pathological Tau. Functional magnetic reso-
nance imaging (fMRI) was used to measure functional connectivity, and 
this was contrasted with PET-imaging measuring uptake of the radio-
pharmaceutical compound 18F-flortaucipir, binding to pathological 
Tau. The authors found that regions with a stronger functional con-
nectivity to the Tau-vulnerable domain of EC located close to the 
collateral sulcus were also the regions that contained most pathological 
Tau (Adams et al., 2019). This study thus seems to offer a glimpse into 
events occurring in the human brain at a stage leading up to AD. 
However, how might this seeding of pathology occur? 

In vitro studies point to p-Tau oligomers being taken up by cells via 
clathrin-mediated endocytosis, micropinocytosis and direct membrane 
fusion, enabling transfer of p-Tau from cell to cell (Calafate et al., 2016; 
Evans et al., 2018; Katsinelos et al., 2018). More recent evidence in-
dicates that Tau can also spread transsynaptically without being mis-
folded, although it has been suggested that spreading might be enhanced 
by misfolded p-Tau (Hallinan et al., 2019; Sanders et al., 2014). Neurons 
in EC are permissible to misfolding of Tau, a non-universal characteristic 
since it was shown to be absent in the striatum (Wegmann et al., 2019). 
A large body of work thus supports the hypothesis that p-Tau and NFTs 
arises in LII in the portion of EC located close to the collateral sulcus and 
subsequently spreads along anatomical connections, gradually bringing 
about neurodegeneration and failure of the affected networks. Where 
then, does Aβ come in? 

Mutations in the MAPT gene that result in changes in the level of p- 
Tau do not lead to AD but can lead to frontotemporal dementia 
(reviewed in (Goedert et al., 2012)). The fact that several APP mutations 
cause AD, all by increasing total Aβ or Aβ1− 42/Aβ1− 40, while one known 
APP mutation that lowers production of Aβ protects against AD, provides 
strong evidence that Aβ is central to the disease. However, the onset of 
AD is likely not only about Aβ. Bolstered by novel techniques and lab-
oratory models, the joint importance of Aβ and p-Tau in causing 
neuronal damage has been extensively investigated in recent years, with 
intriguing results. For example, Aβ oligomer-induced synaptotoxicty is 
dependent on CAMKK2-AMPK-mediated Tau phosphorylation (Mair-
et-Coello et al., 2013), while p-Tau reduction inhibits Aβ-mediated de-
fects in axonal transport of mitochondria (Vossel et al., 2010). Thus, it 
appears that p-Tau and Aβ are both important for setting off AD, and the 
molecular mechanisms governing their interactions need to be 
determined. 

3.2. iAβ1− 42 accumulation in EC LII-neurons may affect reelin-signaling 
to impact Tau 

In a transgenic rat model for AD, expressing human APP with two 
well-known mutations, we recently showed that in EC one of the two 
major neuronal populations of LII, namely the RE + population, is the 
first EC population to accumulate iAβ1− 42. Moreover, preliminary data 
from human AD-subjects indicate that this might hold true for the actual 
disease as well (Kobro-Flatmoen et al., 2016). Intriguingly, both the 
amount of reelin and the amount of iAβ1− 42 are highest in the portion of 
EC located towards the collateral sulcus, thus mirroring the pattern of 
the initial formation of NFTs (Fig. 1E). At least in the case of reelin this 
feature is present across mammals, including humans (reviewed in 
(Kobro-Flatmoen and Witter, 2019)). 

Soluble assemblies of Aβ show a strong correlation with cognitive 
decline (Koss et al., 2016; Lue et al., 1999; McLean et al., 1999; Naslund 
et al., 2000; Steinerman et al., 2008). Although the main toxic species 
among these assemblies remains elusive, current evidence suggests that 
assemblies in the oligomeric-protofibrillar range are central to the dis-
ease (Benilova et al., 2012), most notably those made from iAβ1− 42 
owing to their neural toxicity, even in the nanomolar range (Cizas et al., 
2010; Cleary et al., 2005; Walsh et al., 2002). Importantly, in humans, 
rodent models and primary neurons, APP cleavage yielding Aβ-peptides 
is known to occur inside neurons in endosomal multivesicular bodies 
(Takahashi et al., 2004, 2002), though minor amounts are likely present 
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in the Golgi apparatus and in mitochondria (reviewed in (Gouras et al., 
2010; Kerr et al., 2017)). Also, studies of human subjects show that 
neurons accumulate iAβ1− 42 before plaque pathology is present (Cataldo 
et al., 2004; Gouras et al., 2000; Ohyagi et al., 2005; Pensalfini et al., 
2014) while the oligomerization of Aβ likely begins intracellularly 
(Oddo et al., 2006; Takahashi et al., 2004; Walsh et al., 2000). How 
might those vulnerable EC LII-neurons fit with this evidence? 

The presence of reelin in EC LII projection neurons is an atypical feature 
in that reelin mainly associate with scattered interneurons throughout 
the cortex (Kobro-Flatmoen and Witter, 2019), and reelin has been 
proposed to be associated with high levels of synaptic plasticity (Beffert 
et al., 2005). It is further known that reelin signaling via the apolipo-
protein E receptor 2 (ApoER2) and the very low-density lip-
oprotein-receptor (VLDLR) leads to inhibition of glycogen synthase 
kinase 3β (GSK3β), the main Tau kinase (Beffert et al., 2002; Hiesberger 
et al., 1999) (Fig. 2B). The effect of reelin signaling upon Tau is also 
evident in vivo, as reelin-deficient mice exhibit increased levels of p-Tau 
(Hiesberger et al., 1999; Ohkubo et al., 2003). A related line of work in 
vitro, shows that in the presence of Aβ1− 42, reelin fails to assume its 
signaling competent form, which leads to increased Tau phosphoryla-
tion (Cuchillo-Ibanez et al., 2013). Moreover, in samples taken from 
human AD brains, reelin co-immunoprecipitates with Aβ (Cuchillo-Iba-
nez et al., 2016). In line with this, we have reported evidence for an 
intracellular co-localization of reelin and iAβ1− 42 in RE + EC LII neurons 
(Kobro-Flatmoen et al., 2016). In addition to reelin-binding to ApoER2 
and VLDLR, another LDLR gene family member, namely low-density 
lipoprotein receptor-related protein 1 (LRP1), is a recently discovered 
regulator of endocytosis implicated in the spread of Tau (Rauch et al., 
2020). Thus, these LDLR gene family members provide for an intriguing 
association between Aβ1− 42, reelin and Tau. Based on these findings we 
hypothesize that a pathological build-up of iAβ1− 42 in EC LII-neurons 
impairs the reelin signaling-cascade and that this, likely via reduced 
binding of reelin to ApoER2, can lead to selective hyperphosphorylation 
of Tau in these neurons (Fig. 2C). We further suggest that this is likely a 
slowly progressing event, in part kept in check by compensatory 
mechanisms until some threshold of pathological, seeding-competent 
Tau is reached. This eventually sets into motion a cascading induction 
of pathological Tau into downstream connected areas. 

An obvious challenge to this hypothesis comes from the fact that 
even though our work on the AD rat model provides evidence that early 
accumulation of iAβ1− 42 in EC begins in RE + LII-neurons, these model 
neurons do not develop NFTs nor do they show any obvious signs of 
neurodegeneration. This is vastly different from that seen in human EC 
LII in AD-subjects. One possible reason for this discrepancy might be that 
the development of pathological Tau under physiological conditions, 
taking place within the confines of a cell with a working lysosomal- 
endosomal system, requires an incubation time of several years or 
even more than a decade. That is far beyond what is offered by a rodent 
model where animals can typically be analyzed at ages up to two years. 
Interestingly, a recent study on rhesus monkeys reported that compared 
with young adults, aged individuals (27–38 years old) with memory 
impairments have a reduction of RE + LII neurons in the anteriolateral 
region (the LEC homologue), which is not the case for aged monkeys 
with an intact memory (Long et al., 2020). This is in line with our notion 
that a reduction of functional reelin may be among the earliest patho-
logical events in AD (Fig. 2C, upper part). 

3.3. The Apolipoprotein E4 risk-factor is linked to reelin signaling 

The reports on reelin signaling being mediated by ApoER2- and 
VLDLR receptors, mentioned in the previous section, is of interest since 
Apolipoprotein E (ApoE), which is known to carry cholesterol and other 
lipids to their appropriate targets in the brain, is strongly linked to AD 
(Xian et al., 2018). ApoE exists in slightly different isoforms as deter-
mined by the ApoE gene, which comes in any combination of three types 
on its two alleles, namely ε2, ε3 or ε4. The majority of people have ε3 

biallelic, and this is therefore considered the baseline. The strongest 
genetic risk factor known for AD is carrying the ε4 allele of the APOE 
gene (Schiepers et al., 2012). This risk factor is dose-dependent with 
subjects carrying ε4 on one allele having a 2− 3-fold increased risk, 
whereas those with ε4 on both alleles have an increased risk amounting 
to 7− 10-fold. On the other hand, carrying the ε2 version is associated 
with a decreased risk for AD (Rasmussen et al., 2018). 

Protein translated from an ε4-containing gene (ApoE4) results in 
several dose-dependent functional alterations with respect to in-
teractions with and effects on other proteins. For example, while any 
version of ApoE will promote oligomerization of Aβ, ApoE4 dramatically 
increases this tendency, even more so when it is biallelic. The cause of 
this may be a direct interaction between ApoE and Aβ monomers which 
facilitates linking of the latter, in which ApoE4 somehow serves as the 
best scaffold (Hashimoto et al., 2012). Recent work further revealed how 
the different ApoE isoforms bind their receptor(s) in the same 
dose-dependent manner and trigger a signaling cascade driving tran-
scription of APP to yield Aβ; note that it remains to be determined which 
of the ApoE receptors is responsible for this effect (Huang et al., 2017). 

ApoE4 is also known to impair recycling of ApoE receptors along 
with NMDA receptors (NMDAR) and AMPA receptors (AMPAR) due to 
vesicular trapping in the endocytic transport machinery (Chen et al., 
2010). As mentioned in the previous paragraph, reelin signals via 
binding either of two ApoE receptors, namely ApoER2 and VLDLR. Upon 
such binding, a signaling cascade is initiated resulting in increased Ca2+

influx through NMDAR plus insertion of additional AMPAR, thereby 
regulating synaptic strength (Qiu et al., 2006b), most likely by enabling 
synaptic potentiation (Chen et al., 2005), with molecular mechanisms 
possibly including Ca2+-induced activation of cAMP response 
element-binding protein (CREB) and others (Bito et al., 1996; Korn-
hauser et al., 2002) (Fig. 2B). In fact, bath application of reelin onto 
hippocampal slices results in rapid induction of long-term potentiation 
(LTP) (Qiu et al., 2006b; Weeber et al., 2002), providing a strong indi-
cation that reelin serves a role in learning and memory (Qiu et al., 
2006a). Importantly, the ApoE4-induced impairment of ApoER2 and 
VLDLR recycling causes reduced reelin-signaling and impaired LTP 
(Xian et al., 2018). From these findings, it is tempting to speculate that 
ApoE4 gets trapped in endosomes along with its receptors which can 
result in changes of multiple cellular pathways. If so, this could impact 
production of Aβ since not only does ApoE4 trigger increased tran-
scription of APP to yield Aβ (Huang et al., 2017), but also, iAβ is known 
to derive from processing of APP in endosomes owing to endosomal 
expression of Aβ-generating γ-secretase, which generates Aβ1− 42 and 
other Aβ peptides (Sannerud et al., 2016; Takahashi et al., 2004, 2002). 
Furthermore, trapped ApoE4 could reduce NMDAR phosphorylation in 
response to reelin in the postsynaptic neuron, leading to impaired neural 
plasticity (Fig. 2C). Collectively, current data suggest that a vicious loop 
is generated in RE + EC LII neurons whereby trapped ApoE4 increases 
production of iAβ1− 42 while also impairing reelin signaling, which in 
turn drives up the signaling cascade leading to p-Tau and NFTs (Fig. 2). 
Note that it is likely the case that ApoE4 can affect Tau pathologies and 
neurodegeneration independently of Aβ pathology (Shi et al., 2017), but 
possible pathways involving reelin in this context is beyond the scope of 
this review. 

3.4. Insights into neuron-specific vulnerability by transcriptomics 

Recently, the single-nucleus RNA-sequencing (snRNA-seq) approach 
has enabled large scale transcriptomics of individual cells from post- 
mortem tissue, furthering our ability to identify factors underlying 
cell-specific vulnerability or resilience. Here we point to four such fac-
tors recently identified and associated with Tau pathology. 

RAR-related Orphan Receptor B (RORB) is a marker recently found 
in a subset of excitatory neurons in the EC L-II taken from caudal do-
mains (Leng et al., 2021). These authors found that Tau neuronal in-
clusions at Braak stages 1–2 were preferentially accumulated in 
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RORB-positive excitatory neurons in EC. A correlation was revealed 
between RORB reduction and changed transcriptional patterns encoding 
proteins associated with synapses and axons, the relevance of which 
awaits further study. Meanwhile, no major changes were found in any of 
the subpopulations of inhibitory neurons, regardless of layer (Leng et al., 
2021). Whether the RORB-positive neurons partly or completely overlap 
with the RE + neurons in lateral domains of EC remains to be 

determined. Similarly, another protein linked to both the regulation of 
Tau accumulation and vulnerability of excitatory neurons is 
BCL2-associated athanogene 3 (BAG3), a facilitator of autophagy. BAG3 
reduction exacerbates pathological Tau accumulation, while over-
expression of BAG3 attenuates it (Fu et al., 2019). Another recently 
detected marker is polypyrimidine tract binding protein 1 (PTB), a splice 
factor which modulates the 3R/4R-Tau balance. PTB is dysregulated in 

Fig. 3. A summary of mitochondrial clearance pathways in neurons. (A) Elimination of damaged mitochondria through classical mitophagy pathway at three 
different locations. Such locations include 1) the soma, where damaged mitochondria, either originally localized in the soma or moved here through retrograde 
transport from the distal axon, to be degraded via mitophagy; 2) in-site mitophagic degradation in the axon since lysosomes can be anterogradely transferred from the 
soma to the distal regions of the axon; and 3) ‘trans-cellular mitophagy’ in exogenous stress conditions in which neurons transfer damaged mitochondria to the 
adjoining astrocytes for mitophagic degradation. (B) The mitochondria-derived vesicle (MDV) pathway. Mildly damaged mitochondrion jettisons damaged cargo (e. 
g., oxidized mitochondrial proteins) to the lysosome for degradation. Syntaxin-17 is recruited to MVDs during budding with the participation of the mitophagy 
proteins PINK1 and Parkin. At the late endosome/lysosome, syntaxin-17 forms a ternary membrane-anchored SNARE complex with SNAP29 and VAMP7 to facilitate 
fusion in a manner dependent on the homotypic fusion and vacuole protein sorting (HOPS) tethering complex. MDV is finally degraded by the acidic lysosome. (C) 
Neurotoxic crisis induces budding of damaged subcellular components via large (4 μm diameter) membrane-bound vesicles (termed ‘exophers’). The exophers are 
digested by the surrounding cells. Note that while this process has been reported in C. elegans neurons it is currently unknown whether it also happens in mammals. 
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AD, and it is suggested to contribute to sub-type specific neuronal 
vulnerability (Roussarie et al., 2020). A factor possibly conferring 
resilience is Methyltransferase Like 7B (METTL7B), which was found to 
be enriched in neurons known to be less vulnerable early in the disease 
process. In brain, METTL7B is virtually exclusive to excitatory neurons, 
and associates with ER and lipid droplets (Franjic et al., 2020). At a 
molecular level, METTL7B interacts with APP and seems to reduce the 
amount of Aβ-peptides, while no effects on Tau pathology was shown 
(Franjic et al., 2020). 

Future work will hopefully bring us closer to a complete tran-
scriptomic map of the neurons that degenerate first in AD, no doubt 
including the RE + EC LII neurons but likely also including select pop-
ulations in the hippocampal formation. This should provide us with a 
better vantage point from which to refine our hypotheses about the 
onset of the disease. 

4. Initial AD-related mitophagy impairment implicated in EC 
circuitry 

Mitochondria are multifaceted subcellular organelles functioning as 
cellular powerhouses generating ATP that is essentail for the activities 
and survivual of neurons and glial cells. Mitochondria are also important 
for metabolic homeostasis, Ca2+ regulation, cellular signalling, neuro-
plasticity, and the arbitration of cell survival and death (reviewed in 
(Lou et al., 2019; Mattson et al., 2008)). If dysfunctional, mitochondria 
will impair neuronal activity (Han et al., 2020a) and can under certain 
conditions trigger neuronal death (Somayajulu et al., 2005). Neurons 
are a uniquely polarized and comparmented cell type, with a cell body, 
branched protoplasmic dentrites, and an axon, which together places a 
great demand on the efficient transport of mitochondria to different 
sub-cellluar regions for ATP produciton (Cheng et al., 2012). In partic-
ular, neurotransmission involves axonal presynaptic elements and den-
dritic postsynaptic elements which demand a high metabolic rate. This is 
only possible given healthy mitochondria (Sun et al., 2013). Under 
normal conditions damaged mitochondria are continuously identified 
and removed by mitochondrial quality control pathways (Fang et al., 
2019b; Lin et al., 2017; Wang et al., 2011). Such pathways help ensure 
that healthy, energy-providing mitochondria prevail in critical domains. 

One of the main processes for mitochondrial quality control is a 
specific type of autophagy, termed mitophagy. As the name implies, 
mitophagy involves recognition and ordered degradation of damaged or 
superfluous mitochondria (Lazarou et al., 2015). Different mitophagic 
pathways exist, suggesting redundancy, and while it is outside the scope 
of the current review to deal with each, we direct the interested reader to 
the following sources (Lou et al., 2019; Wang et al., 2019). In neurons, 
mitophagy is most prevalent in the soma, though it also occurs along the 
axon, including in the metabolically demanding axon terminals 
(Fig. 3A). Mitophagy plays a fundamental role in mitochondrial ho-
meostasis, which is required to maintain efficient synaptic activity, 
regulate presynaptic strength – including the support of axon remodel-
ling, and thus also to preserve the integrity of neuronal networks (Cheng 
et al., 2012; Heo et al., 2019; Sun et al., 2013; Zhou et al., 2016). It is 
therefore likely that even a partial loss of mitophagic capacity in 
structures subserving memory functions will cause functional deficits. 

To what extent is mitophagy tied to AD? The possibility that mito-
chondrial function is pivotal in neurodegenerative diseases is a notion 
going back three decades (Linnane et al., 1989), and brain oxidative 
damage indicating mitochondrial impairment is indeed detectable 
already in individuals with mild cognitive impairment, of which the 
majority will go on to develop AD (Gan et al., 2014; Valla et al., 2006). 
Though recent results obtained in mice and postmortem human brain 
tissues specifically link age-dependent mitophagic/autophagic 
impairement to the development of AD (Bordi et al., 2016; Fang et al., 
2019b; Lee et al., 2010), and also show that mitochondrial damage 
strongly correlate with tau pathology and granulovacuolar degeneration 
(Hou et al., 2020), even more pertinent results came from a recent study 

on a large cohort of AD-subjects (148 cases) which includes EC. This 
latter study tested whether mitochondrial impairment is broadly present 
early on, or whether such impairments aligns with the known early 
vulnerability of EC. Intriguingly, the data revealed mitochondrial 
impairment in EC already from the earliest pathological stage associated 
with AD, namely Braak stage 1 (Armand-Ugon et al., 2017). Subsequent 
to impaired mitochondrial activity in EC, this likely occurs in the hip-
pocampus (Calkins et al., 2011; Fang et al., 2019b; Manczak et al., 
2011), while neocortical areas become involved later in the disease 
process (Jadiya et al., 2019; Wang et al., 2005). Notably, mirroring the 
classical AD-pathology, the cerebellum is last to show signs of mito-
chondrial damage (Thubron et al., 2019). 

Ageing, by far the single strongest risk factor of AD, is in itself 
associated with accumulation of impaired mitochondria. This likely 
occurs across animal phyla, including roundworms (Morsci et al., 2016; 
Palikaras et al., 2015), rodents (Zhao et al., 2020) and humans (Petersen 
et al., 2003). At least part of what is missing to separate normal ageing 
from AD in this context is a better understanding of the molecular 
mechanisms that maintain mitochondrial homeostasis in neurons. 

4.1. Current understanding of mitophagic pathways 

Here we give a brief overview of pathways that eliminate neuronal 
damaged mitochondria, including mitophagy, formation of 
mitochondria-derived vesicles (MDVs), and ‘exophers’. For the inter-
ested reader, a more complete overview can be found in (Kerr et al., 
2017; Lou et al., 2019). 

Different components of the machinery involved with mitophagy 
have been proposed to cause its defect in AD, including impaired initi-
ation of the mitophagic apparatus (Cummins et al., 2018; Fang et al., 
2019b), reduced lysosome function (Lee et al., 2010; Martini-Stoica 
et al., 2018), and impaired transport of damaged mitochondria from 
presynaptic axonal elements to the soma (Han et al., 2020a). Trans-
mitophagy is a more recently discovered mitophagic pathway, first re-
ported in retinal ganglion cells (Davis et al., 2014). This pathway, in 
which the whole mitochondrion is removed, involves formation of 
mitochondria-laden axonal protrusions that undergo 
neuron-to-astrocyte transmission (Fig. 3A, right panel). Such cell-to-cell 
communication and resource exchange may contribute specifically to 
neuroprotection and also recovery following stressed conditions (Hay-
akawa et al., 2016). Another pathway is stimuli-defined and works by 
extruding small internal mitochondrial content to form MDVs tagged for 
lysosomal degradation (Fig. 3B; (Neuspiel et al., 2008). MDVs contain 
either a single membrane or double membrane based on different types 
of mitochondrial damage, and require both PINK1 and Parkin (McLel-
land et al., 2014). In the context of Parkinson’s disease (PD), MDVs are 
known to trigger mitochondrial antigen presentation, linking mito-
chondrial dysfunction and autoimmune mechanisms (Matheoud et al., 
2016), and, intriguingly, components involved in this pathway was 
recently linked to formation of early tau pathology and granulovacuolar 
bodies in the hippocampus (Hou et al., 2020). A third, recently discov-
ered, waste-elimination system involves the formation of so-called 
exophers, large-diameter (up to 4 μm) membrane-bound vesicles that 
engulf mitochondria alongside various protein aggregates before being 
expelled by neurons and digested by the surrounding cells (Fig. 3C; 
Melentijevic et al., 2017). 

In view of the complexity and high energy demand of the mamma-
lian brain, and the resulting necessity for timely and efficient elimina-
tion of damaged mitochondria, it is not surprising that neurons operate 
with multiple mitochondrial maintenance pathways. 

4.2. Impaired mitophagy and its possible relationship with Aβ, tau, and 
reelin 

Impaired mitophagy induces accumulation of damaged mitochon-
dria which can exacerbate and may in part trigger Aβ and Tau 
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pathologies (Fig. 4). The Fang lab and colleagues recently proposed and 
substantiated the hypothesis that defective mitophagy is a driver of AD- 
related pathology and disease progression (Fang et al., 2019a, b; Kerr 
et al., 2017). This proposition in based on observations of damaged 
mitochondria accumulated in postmortem hippocampi of AD patients, 
plus corresponding findings in AD subject-derived cortical-like neurons 
differentiated from induced pluripotent stem cells (iPSCs; (Fang et al., 
2019b). Moreover, these findings are replicable in mouse models of AD, 
where mutations affecting both amyloid and tau processing impair 
mitophagy via inhibiting p-TBK1 and p-ULK1, kinases necessary for the 
initiation of the mitophagic machinery. Mutant tau may also inhibit the 
PINK1-Parkin-dependent mitophagy pathway via inhibiting the associ-
ation of Parkin onto mitochondria (Cummins et al., 2018). Importantly, 
recent evidence demonstrates that reduced or defective mitophagy can 
in itself aggravate Aβ and Tau pathologies, as nicotinamide adenine 
dinucleotide (NAD+)-dependent pharmacological restoration of 
mitophagy ameliorates pathology and prevents memory impairment in 
both roundworms and mouse models of AD (Fang et al., 2019b; Sor-
rentino et al., 2017). The mechanism following increased NAD+ gov-
erning elimination of Aβ and p-Tau remains poorly understood, 
although recent findings allow for some tentative ideas. For example, 
NAD+− enhanced mitophagy increases the microglia-dependent elimi-
nation of extracellular Aβ plaques (Fang et al., 2019b; Lautrup et al., 
2019), while inhibiting NOD-, LRR- and pyrin domain-containing pro-
tein 3 (NLRP3) inflammasome activation (Fang et al., 2019b). The latter 
is likely relevant since activation of the NLRP3 inflammasome increases 
levels of both Aβ and p-Tau (Heneka et al., 2013; Ising et al., 2019) 
summarized in Fig. 2C). 

To our knowledge, no studies have addressed the potential effect(s) 
of reelin upon mitochondrial function. Likely relevant is that the reelin- 
ApoER2/VLDLR signaling pathway plays a necessary role in the growth 
and stability of the cytoskeleton evidenced by its activation of mTOR 
(leading to growth), its effect on actin cytoskeleton rearrangement (Chai 
et al., 2009), and its inhibition of p-Tau (Hiesberger et al., 1999) 
Fig. 2B). Altered microtubules will affect the motility patterns (e.g., 
speed, pause, and direction) of mitochondria and the supply of ATP, and 
this will likely impact on damaged mitochondria headed for mitophagic 
elimination (reviewed in (Sheng and Cai, 2012)). An example of altered 
mitochondrial motility patters is found in how migration of cellular Tau 
from the soma to the distal region of an axon is reversed in degenerating 
neurons (Dixit et al., 2008). In this latter case, somatic misallocation of 
Tau is associated with faulty kinesin-driven anterograde transport, while 
dynein becomes trapped in the soma (Fig. 4A, B). This results in energy 
deprivation due to mitochondrial insufficiency in the presynaptic axon 
terminal (Dixit et al., 2008). Work on roundworms substantiates this, 
showing how mutated Tau (e.g., A152 T) impair both anterograde and 
retrograde axonal transport of synaptic vesicles (Butler et al., 2019). 

Aβ oligomers also impair mitochondrial motility via effects on 
GSK3β, casein kinase, actin polymerization, and by impairing NMDAR 
signaling (Decker et al., 2010; Zamponi et al., 2017). Interestingly, Tau 
reduction by homozygous- or complete KO (Tau+/− or Tau-/-) prevents 
exogenous iAβ1− 42-induced defects in anterograde axonal movement of 
mitochondria in mouse primary hippocampal neurons (Vossel et al., 
2010). A recent single-cell atlas on EC from AD-patients underscores the 
potential importance of this. Specifically, the authors found alterations 
of the transcription factor EB (TFEB), which is a master regulator of 
autophagy, lysosomal function, and phagocytosis, along with alterations 
in cellular pathways involved in autophagy and metabolism (Grubman 
et al., 2019). 

5. Conclusions and outstanding questions 

The substantial body of work involving EC along with recent prog-
ress from studies on AD patients and animal models enable us to propose 
a working model aiming to explain the molecular mechanisms of the 
earliest pathological events in EC LII (Fig. 5). Our model proposes that 

RE + EC LII-neurons have a very high metabolic rate supported by a 
highly active autophagic machinery, in which mitophagy plays a key 
role. Impairments in this machinery may drive neurons into a diseased 
state recognized as AD in the case of humans. We suspect a major 
contributing factor making RE + EC LII-neurons vulnerable to ‘setting off’ 
AD, is the high metabolic demand placed on them, stemming from their 
enormous dendritic trees (Canto and Witter, 2012a), which, for each 
cell, has to integrate information from at least 5 different cortical do-
mains alongside subcortical inputs. This necessitates a particularly high 
degree of mitophagic activity and consequently, we suspect, renders a 
low tolerance for even partial impairment. 

In concert with this our model posits that as mitophagy becomes less 
efficient with age, oligomeric iAβ1− 42 slowly accumulates. As this hap-
pens, reelin interacts with iAβ1− 42 to form reelin-iAβ1− 42 complexes that 
impair efficient reelin-signaling, which in turn drives up the signaling 
cascade leading to p-Tau. This process is accentuated when expressing 
ApoE4 which tends to get trapped in endosomes along with its lipo-
protein receptors. Importantly, as these lipoprotein receptors are also 
reelin-receptors, their trapping further impairs reelin signaling. This 
effect constitutes a second blow to the RE + LII-neurons, as the added 
impairment of reelin-signaling further promotes the cascade, which, via 
GSK3β, leads to p-Tau. The presence of ApoE4 accentuates this by its 
tendency to get trapped in endosomes, which drives up production of 
iAβ1− 42, and thereby completes the vicious cycle, finally resulting in 
NFTs in affected neurons (Fig. 5 upper panel). The damage incurred by 
mitochondria as the abovementioned pathological processes develop, 
possibly leads to mitochondrial hubs of inflammation. Notably, 
damaged mitochondria can activate the NLRP3 inflammasome, adding 
to the stress of the neuron. The fact that pathological Tau can spread in a 
prion-like manner, for example via LRP1, provides a clear explanation as 
to how the downstream hippocampus tends to become affected by NFTs 
following that of EC LII (Fig. 5 upper panel). Although our model is 
admittedly an incomplete one, it provides a testable explanation for why 
anteriolateral EC LII-neurons are frequently the first cortical neurons to 
degenerate in AD. 

We propose testable hypothetic curves of iAβ and p-Tau/NFTs in EC 
L-II, accompanying disease severity. Our hypothesis posits that patho-
logical accumulation of iAβ happens ahead of Tau pathology in EC LII; 
we also postulate that iAβ1− 42 levels increase in EC LII ahead of Aβ1− 42 
accumulation in the CSF, suggesting a probable target of early 
biomarker development for AD. We further include the dramatic loss of 
EC LII neurons, starting during pre-clinical AD, (Fig. 5, lower panel). 

Recent advancements in technology, including omics, genetic edit-
ing, and advanced labeling techniques have enabled the emergence of a 
new era with the potential to fully unveil the molecular events that 
initiate AD. This brings us closer to our common goal of developing an 
effective treatment for AD. However, this potential may only come to 
fruition if the focus of research is directed to where the disease is initi-
ated, bearing in mind that AD is not a homogeneous brain disease. Here 
we have reviewed and argued for several strong lines of evidence 
pointing to EC LII as the likely home to the first cortical neurons to 
develop pathological changes associated with AD. 

Among the outstanding questions in our model is that of the mo-
lecular mechanisms leading to damaged mitochondria in RE + EC LII- 
neurons, for example whether this mainly involves the canonical or 
either of the non-canonical mitochondrial elimination pathways. 
Considering the evidence for early mitochondrial damage in EC, further 
studies targeting mitochondrial homeostasis in the RE + LII-neurons 
may provide strategies for early diagnosis, and lead to concepts about 
early-stage interventions for AD. In view of the importance of the reelin- 
expressing stellate and fan neurons in LII, it will be important to 
determine how Tau, iAβ1− 42, and ageing affect the functional properties 
of these neurons, along with their status concerning mitochondrial 
quality and mitophagy. As important are future studies on the poten-
tially unique molecular mechanisms and pathways underlying Tau, 
iAβ1− 42, ApoE4, and mitophagy interactions in the puzzling population 
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of RE + EC LII-neurons. 
For these purposes, the application of new, high-throughput tech-

niques, including the use of single-nucleus RNA sequencing (Grubman 
et al., 2019) and chromatin immunoprecipitation combined with highly 

parallel sequencing (Marzi et al., 2018), will have to provide 
cell-type-specific and genome-wide information about EC from AD in-
dividuals. This approach promises to address pivotal questions in the 
field. It is thus encouraging to note that the field now has the technical 

Fig. 4. Impaired mitochondrial clearance in AD neurons. (A) In a healthy neuron, mitochondrial homeostasis is maintained through different pathways, such as 
mitophagy, UPSmt, and MDVs. Detailed molecular mechanisms of these pathways are visualized in Fig. 2. Neuronal mitophagy likely happens predominantly in the 
soma, with existence of in-site mitophagic degradation in the axon, including in the axon terminals. Mitochondria are transported from the soma to distal parts of 
neurons or to the sites of high energy demand along microtubule tracks using the motor protein complex kinesin (anterograde direction) or dynein (retrograde 
direction). In healthy neurons, damaged mitochondria in the distal regions of the axon can either be retrogradely transferred to the soma for mitophagic degradation 
or can be on-site degraded via mitophagy by lysosomes anterogradely transferred from the soma. (B) Impaired mitophagy and enhanced pathologies in the AD 
neurons. In AD neurons, increased accumulation of iAβ1-42 and p-Tau leads to abnormal trafficking in both directions. Aβ toxic oligomers and p-Tau are likely 
involved in microtubule destabilization, impairing retrograde transportation of damaged mitochondria from distal regions back to the soma for degradation, and may 
block anterograde transport of kinesin-tagged lysosomes to axons for on-site mitophagic degradation, resulting in impaired local degradation capacity. Impaired 
mitophagy is likely to exacerbate AD pathology by reducing the neurons’ capacity for degradation of toxic proteins, including iAβ1-42 and p-Tau. While evidence 
exists for impaired mitophagy and compromised UPSmt in AD, the status of MDV in AD is not known. 

Fig. 5. Proposed molecular mechanisms of the earliest NFTs exist in the EC L-II region in relation to the time-course of cognitive, clinical, and hypothetically 
pathological changes. 
We propose a time-course for changes of iAβ1− 42, tau pathology (p-Tau, NFTs), and neuronal loss in the EC L-II neurons, in which increased iAβ1− 42 is the earliest 
event. Note that in this model, we propose that increased iAβ1− 42 in EC L-II neurons occur before changes in CSF Aβ1− 42. Upper panel: Genetic AD risk factors, like 
ApoE4 genotype, faciltate the generation of Aβ1− 42, which binds to reelin and impairs reelin-dependent inhibition of p-Tau and, ultimately, NFTs. ApoE4 also impairs 
autophagy/mitophagy via disrupting the autophagic machinary and lysosome functions. In addition to genetic risk factors, aging is the univeral and primary risk 
factor of AD, and includes reduced expression of reelin, a process whose molecular mechanisms remain to be determined. Furthermore, other age-dependent celluar 
changes, such as inflammation, senescence, NAD+ reduction, and defective mitophagy/autophagy, contribute to AD initiation and progression. A vicious cycle, 
among Aβ pathology, Tau pathology, defective mitophagy, and other factors, exacerbates AD progression. Lower panel: it shows correlation between the clinical 
stages of AD (very mild, mild, moderate, severe) and clinical dementia rating (CDR) scores (0.5, 1, 2, 3). 
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ability (Han et al., 2020b) to create a human EC-based comprehensive 
single-cell atlas, which may provide the resource required to achieve a 
solid understanding of the mechanisms that initiate AD. 
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