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ABSTRACT: We present a new method for computing chemical
potential differences of macroscopic systems by sampling fluctuations in
small systems. The small system method, presented by Schnell et al.
[Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is used to create
small embedded systems from molecular dynamics simulations, in which
fluctuations of the number of particles are sampled. The sampled
fluctuations represent the Boltzmann distributed probability of the
number of particles. The overlapping region of two such distributions,
sampled from two different systems, is used to compute their chemical
potential difference. Since the thermodynamics of small systems is
known to deviate from the classical thermodynamic description, the
particle distributions will deviate from the macroscopic behavior as well.
We show how this can be utilized to calculate the size dependence of
chemical potential differences and eventually extract the chemical potential difference in the thermodynamic limit. The macroscopic
chemical potential difference is determined with a relative error of 3% in systems containing particles that interact through the
truncated and shifted Lennard-Jones potential. In addition to computing chemical potential differences in the macroscopic limit
directly from molecular dynamics simulation, the new method provides insights into the size dependency that is introduced to
intensive properties in small systems.

■ INTRODUCTION

Properties available from molecular simulations (MD) can be
sorted in two categories: mechanical properties and thermal
properties.1 The difference between these comes from how
they are connected to the partition function. Mechanical
properties are related to the derivative of the partition function,
while the thermal properties are functions of the partition
function itself.1 Examples of mechanical properties are
therefore the internal energy, pressure, and heat capacity,
while examples of thermal properties are Gibbs energy,
Helmholtz energy, and chemical potential.
The mechanical properties can be expressed as averages of

functions of phase space coordinates and can therefore be
calculated directly from the simulation trajectory.2 The thermal
properties cannot be expressed as such averages. This is
because they are related to the complete volume of phase space
accessible to the system, which can normally not be sampled in
MD.3 In order to calculate thermal properties, one must resort
to other alternatives than simply analyzing the simulation
trajectory. For the Gibbs energy or Helmholtz energy, there are
options such as thermodynamic integration4−8 or umbrella
sampling,9−11 while a common method for computation of
chemical potential is Widom’s particle insertion method.2,12,13

Another route to compute chemical potentials is found in the
overlapping distribution methods (ODMs).

The term ODM can be used to describe any method that
can extract thermodynamic properties from the overlap
between probability distributions of two different systems.2

The distributions represent the Boltzmann distribution of the
fluctuating properties of the system, which are ensemble-
dependent. In the canonical ensemble, where the number of
particles, volume, and temperature are constant, the energy will
fluctuate. In the isobaric−isothermal ensemble, where the
number of particles, pressure, and temperature are fixed, there
will be fluctuations in volume and energy. Grand canonical
systems, with constant chemical potential, volume, and
temperature will have fluctuations in energy and in the
number of particles. Naturally, the properties available from
the distributions will depend on the ensemble used in the
simulation.
For canonical systems, the Helmholtz energy difference is

accessible from the overlapping region of two energy
distributions. One version of the ODM that utilizes this is
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the acceptance ratio method presented by Bennett,14 who
presented strategies for estimating the difference in Helmholtz
energy between two canonical systems. Shirts et al.15 later
showed that it was possible to derive the same expressions
from maximum likelihood arguments. Frenkel and Smit2 also
illustrated how the method can be used to calculate excess
chemical potentials. This is achieved by considering two
canonical systems where the first contains N particles, and the
second contains N − 1 particles and one ideal gas particle. The
Helmholtz energy difference between these systems corre-
sponds to the change in Helmholtz energy in the first system
when one of its N particles is transformed to an ideal gas
particle. Hence, applying the ODM to the energy distributions
in these two systems returns the excess chemical potential of
the first system.
Even though the most frequent use of the method is

calculations of properties in the canonical ensemble,16,17 it is
not restricted to this. Bennett14 showed that it is possible to
develop analogous expressions for other ensembles. Recently,
Shirts18 introduced yet another convenient aspect of the
overlapping distributions by using them to determine whether
the desired thermodynamic ensemble is properly sampled in
the simulations. This ensemble consistency test can be applied
to molecular dynamics as well as Monte Carlo (MC)
simulations,19,20 and it can be used to evaluate simulations
performed in the canonical ensemble, isobaric−isothermal
ensemble, grand canonical ensemble, or the microcanonical
ensemble.
Whether the objective is to use the distributions to calculate

thermal properties or to test for ensemble consistency, the
starting point is the same: the statistical mechanical connection
that exists for every ensemble between its corresponding
energy state function and the partition function.
In this work, we will show how the ODM can be used to

extract the chemical potential difference of two small grand
canonical systems, directly from two MD simulations at
different densities. These small systems are generated by
placing subsystems at random locations inside the total
simulation boxes. The total simulation box can be canonical,
microcanonical, or isobaric−isothermal and works as a grand
canonical reservoir for the small embedded systems. Hence,
fluctuations in the number of particles that arise in the
subsystems will not depend on the ensemble of the MD
simulation box. These fluctuations represent the Boltzmann
distributions of the number of particles in small grand
canonical systems. The chemical potential difference between
two embedded systems is then available from the overlapping
region of two such distributions.
It is also possible to utilize the chemical potential differences

in the subsystems to obtain the chemical potential difference
for the total simulation boxes, that is, in the macroscopic limit.
When investigating these distributions, one must keep in mind
that they are calculated in small nonperiodic systems, which
means that their thermodynamic properties will deviate from
the classical macroscopic behavior. We will therefore use the
thermodynamics for small systems developed by Hill.21,22

Combined with the proper scaling laws, we are able to obtain
the chemical potential difference in the thermodynamic limit.
The idea of using finite-size scaling analysis to obtain

thermodynamic properties was explored already in the eighties
by Binder’s block analysis method.23 In his work, Binder
investigated how the probability distributions of the Ising
lattice model depend on system size, which in turn was utilized

to calculate the magnetic susceptibility in the thermodynamic
limit.23,24 Binder also extracted values of root-mean-square
magnetization and internal energy and explored the possibility
of identifying the critical temperature and the critical
exponents. This application was later investigated for the
two-dimensional Lennard-Jones (LJ) system for both one- and
two-phase systems.25−27

The method used to create the subsystems in this work is
known as the small system method (SSM), developed by
Schnell et al.,28 and it differs from Binder’s block analysis
method in the way the subsystems are created. Binder’s blocks
are created as cubic sections in a grid superimposed on the
simulation box, while the SSM creates subsystems by placing
them at random locations inside the simulation box. One
consequence of this difference is that the shape of the
subsystems is not restricted to being cubic.29

Binder focused largely on critical phenomena and the
method’s ability to extract properties in the critical point.
Lately, finite-size analysis of subsystems has received more
intention in the application to one-phase systems, further from
the critical point. It has been used to calculate enthalpies and
the thermodynamic factor,28 partial molar properties,30 and the
isothermal compressibility.29 For multicomponent systems, the
calculation of Kirkwood−Buff integrals31 has received much
attention due to the connection these integrals have to a
number of thermodynamic properties.32−38 One of the
properties available through the Kirkwood−Buff integrals is
the differential chemical potential, which upon numerical
integration can provide insights on how chemical potential
change with the density of the system.34,35 For one-component
systems, this can be achieved by investigating the isothermal
compressibility.37,38 The method we propose in this work does
not rely on numerical integration since the chemical potential
difference is directly available from the two simulations.
To the best of our knowledge, this is the first time an ODM

has been used to extract the properties for small systems. We
therefore investigate how well it performs for small grand
canonical systems with a MC approach before applying it to
the systems generated by the SSM.
For macroscopic systems, the chemical potential is known as

an intensive property, meaning that it does not depend on the
system size. The newly presented method gives insights on
how the chemical potential deviates from this intensive
behavior when the system becomes small enough. For
calculation of chemical potential differences in macroscopic
systems, the method will be particularly useful at high
densities, where moves that include insertion and deletion of
particles become very inefficient.1,2,39−41 Chemical potentials
calculated in finite periodic systems are also known to be rather
strongly dependent on size.13,42,43 This problem is avoided in
the method presented here since the macroscopic chemical
potential differences are not calculated directly but instead
extrapolated to the thermodynamic limit by the use of scaling
laws.

■ THEORY
In the following sections, we present the theoretical back-
ground needed for computation of chemical potential
differences from fluctuations in small grand canonical systems.
The treatment of the thermodynamics of small systems is
based on the formalism introduced by Hill.21 We will explain
how it can be used in combination with scaling laws to obtain
properties in the thermodynamic limit. We also explain how
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the SSM can be used to extract fluctuation in small systems
from molecular dynamics simulations. Lastly, we show how the
distributions corresponding to these fluctuations can be used
to calculate chemical potential differences.
Thermodynamics for Small Systems. The main differ-

ence between small systems and macroscopic systems is usually
the surface area-to-volume ratio. Since this ratio is much larger
for small systems, the effects of the surface become significant,
and the thermodynamic properties can no longer be directly
compared to those of macroscopic systems.21 This becomes
clear by studying the system’s extensive properties, which for
small systems will not be proportional to the volume, but
higher-order functions of size and shape. The smallness also
introduces a size dependence in the system’s intensive
properties, which is not present for macroscopic systems. As
a result, macroscopic thermodynamic equations cannot be
used to describe the properties in small systems.21,22

The formalism developed by Hill21 provides modified
versions of the macroscopic thermodynamic equations that
can be applied to small systems. In this derivation, Hill21

considered a collection of small systems that are all
equivalent, distinguishable, and independent. The ensemble
they make up together can therefore be considered macro-
scopic, and its differential energy can be expressed as

U T S p V Nd d d d d
i

n

i i
1

∑ μ= − + +
= (1)

where U is the system’s energy, T is the temperature, S is the
entropy, p is the pressure, V is the system’s volume, μi is the
chemical potential of component i, and Ni is the number of
particles of component i in the system. The property is
called the subdivision potential and is represented by different
functions for different ensembles. In the grand canonical
ensemble, it is given by p p V( )GC = − ̂ . The property p̂ is
known as the integral pressure, which is related to the
differential pressure p through the following equation
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The second term in the above equation is only of significant
magnitude when the system is small, which means that in the
thermodynamic limit, p̂(μ,V,T) = p(μ,V,T).
The two pressures are connected to different types of

mechanical work that arise from volume change of the total
ensemble, but the mechanisms behind these are not equal. The
differential pressure, p, is the one associated with the pressure
of a macroscopic system. The volume change mechanism
connected to p must therefore be equal to that of a
macroscopic system. This volume change is defined as the
change in total volume when changing the volume of all the
small system replicas. This represents the work done on the
surroundings by the volume change and will be the same
whether the systems in the ensemble are small or macroscopic.
The work connected to the integral pressure, p̂, however, is
unique for small systems. In this volume change, the volumes
of the small systems are kept constant, while the volume of the
total system is changed by adding one replica to the ensemble
of small systems. This is done while keeping the entropy and

number of particles in the total collection of small systems
constant, which means that these properties must be
redistributed over all the small systems, including the added
replica.
This explains the significance of the different terms in eq 2,

but in order to understand its origin, we must look to the
connection between the partition function and the energy state
function of the system. For a system in the grand canonical
ensemble, this is equal to the contribution to the internal
energy from the pressure−volume term. In small grand
canonical systems, Hill21 showed that this relation becomes

p V T V k T V T( , , ) ln ( , , )Bμ μ̂ = Ξ (3)

where kB represents the Boltzmann constant and Ξ is the grand
canonical partition function. The small system version of the
familiar equations for the entropy, pressure, and number of
particles in a grand canonical ensemble is
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where the brackets denote average values.
Size- and Shape-Dependent Properties. When investigat-

ing properties of small systems, it is convenient to use another
aspect introduced by Hill.21 He argued that a property’s small
size contribution can be treated as an excess property, meaning
that all dependent properties of a system can be split into a
macroscopic contribution and the contribution from finite-size
effects. A general property, A, can therefore be expressed as

A A Asmall= +∞ (5)

where A∞ is the macroscopic contribution and Asmall is the
finite-size contribution to A. In the thermodynamic limit, Asmall

becomes vanishingly small compared to A∞. Consequently, for
macroscopic systems, the property A can be regarded as
represented by A∞ only, and macroscopic thermodynamics is
applicable. For small systems, Asmall becomes significant, which
makes A depend on the system’s size and shape, and the
macroscopic thermodynamic equations are no longer directly
applicable.
In Hill’s21 treatment of small systems, only the dependent

properties of the system have a finite-size contribution. These
are the properties that are not fixed by the system’s ensemble.
For a grand canonical system, these are given in eq 4 and can
be expressed as

S V T S V T S V T

p V T p V T p V T

N V T N V T N V T

( , , ) ( , , ) ( , , ),

( , , ) ( , , ) ( , , ),

( , , ) ( , , ) ( , , )
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μ μ μ

μ μ μ

μ μ μ

= +

= +

⟨ ⟩ = ⟨ ⟩ + ⟨ ⟩

∞

∞

∞

(6)

A theorem presented by Hadwiger44 provides more insights
into the meaning of the different terms in the above equations.
According to this theorem, any functional of a system that is
translationally invariant, additive, and continuous can be
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written as a sum of four contributions, where one is a constant
and the other three are proportional to V, V2/3, and V1/3,
respectively.45 The property A can therefore be written as

A V Va V a V a a( ) 2/3 s 1/3 e cα β γ= + + +∞ (7)

where α, β, and γ are geometric factors that depend on the
shape of the system. In the first term, a∞ can be understood as
the density of A in the thermodynamic limit A∞ = Va∞, which
means that the remaining terms represent Asmall. Equations
showing the same size and shape dependence have been
derived independently and shown to apply to fluids of hard
disks,46 LJ particles,47 and Weeks−Chandler−Anderson
particles.48

Hadwiger’s theorem can only be used if A is extensive, but it
is possible to define an alternative equation that applies to
intensive properties by dividing eq 7 by the volume

a V
A V

V
a

L
a

L
a

L
a( )

( ) s
2

e
3

cα β γ= = + + +∞
(8)

where we have defined the characteristic length L = V1/3.
Small System Method. For both macroscopic systems

and systems with finite-size effects, knowledge about the
fluctuations in energy and number of particles can give access
to a large number of thermodynamic properties. The
accessibility of these fluctuations depends on the simulation
method. Systems with a fluctuating number of particles can
normally not be created with MD simulations. In order to
simulate grand canonical systems, one can resort to MC
simulations, but these are computationally expensive, especially
for systems at higher particle densities. The SSM developed by
Schnell et al.28 offers an alternative way of creating systems
with a fluctuating number of particles. In this approach, the
grand canonical systems are not simulated directly but instead
created by sampling subvolumes from a larger reservoir. The
reservoir is typically a large simulation box, which can be
simulated using MD or MC. An ensemble average of such a
subsampled system is created by placing control volumes of
equal size at different locations inside the simulation box.
Some thermodynamic properties have a direct connection to

the fluctuations in the number of particles. The origin of these
connections is the identity of the second moments of the
probability distribution of a grand canonical ensemble

k T
V T

N N( )
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T V
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2
2

2
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2 2i
k
jjjjj

y
{
zzzzz

μ
μ

∂ Ξ
∂

= ⟨ ⟩ − ⟨ ⟩
(9)

These second moments are in turn connected to
thermodynamic quantities such as the thermodynamic factor,
the isothermal compressibility, the partial enthalpy, and the
partial internal energy.49 The fluctuations sampled from the
subsystem can therefore provide access to a variety of
thermodynamic properties. However, it must be kept in
mind that the subsampled system cannot be regarded as a
representation of the bulk due to the nature of its boundaries.
The subsampled system is nonperiodic, which means that it
will be affected by a significant contribution from the surface.
Since the subsystem represents a small system, its statistics will
be different from that of an equivalent system with periodic
boundaries. Its thermodynamic properties and the connections
between them must therefore be treated with the formalism
developed by Hill.21

Since the subsystems are created from control volumes
inside a reservoir, we can create systems for a range of different

sizes, as illustrated in Figure 1. By systematically changing the
size of the subsystem, one can evaluate how its properties

change with system size. Combined with the equations
provided by Hadwiger,44 the different contributions from the
different parts of the system’s geometry can be identified (see
eq 7). The most popular feature of this method has been its
ability to extract the macroscopic contribution, meaning the
value of a∞.28−30,32,48 If the main purpose is to extrapolate the
values calculated for the subsystems to the thermodynamic
limit, the term corresponding to the contribution from the
surface usually provides a sufficient description of the size
dependency. As a first approximation, eq 8 can therefore be
written as

a V a
V

a( ) s= + Ω∞
(10)

where we have used that α/L = Ω/V when Ω is the surface of
the system. This expression is particularly useful because it is a
straight line if a(V) is plotted as a function of the surface area-
to-volume ratio of the system it was calculated in. The
intersection is then equal to the macroscopic contribution.
When using scaling laws to describe size dependence of

thermodynamic properties, it is first important to understand
which properties will change with size and how this is affected
by the type of the system. One important factor to consider for
the subsampled systems in the SSM is that they all have the
same average particle density. Equation 6 shows that small
grand canonical systems will have a finite-size contribution in
the number of particles and therefore also to the particle
density. However, if this contribution is nonzero in the
subsampled systems, it will not appear in their calculated
densities. This is because the sampling approach forces the
average density of each subvolume to be equal to the reservoir
density. In the following, we will explain that if such a size
dependency does exist, it will appear in the values of the
chemical potentials of the subsystems.
It is important to point out that even though all subsampled

systems of different sizes have the same particle density, each
individual subsampled system does not have a constant

Figure 1. Particle fluctuations are calculated in spherical subsystems
inside the total simulation box. The size of the subsystem is gradually
increased in order to calculate how the fluctuations change when the
size of the system changes.
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density. The subsampled systems can exchange particles and
energy with the surroundings, and they maintain a constant
chemical potential due to their connection to the particle
reservoir represented by the simulation box. However, the
chemical potential does not necessarily remain fixed when the
size of the subsystem is changed.
This can be illustrated by considering a general case. We

consider two small grand canonical systems with equal average
particle density, n, and temperature, but different volumes

n n T T V V, ,1 2 1 2 1 2⟨ ⟩ = ⟨ ⟩ = ≠ (11)

Since the systems are grand canonical, their densities can
according to eq 5 be written as a sum of the macroscopic
contribution and a contribution from the small size

n n n n1 1
small

2 2
small+ = +∞ ∞

(12)

From eq 8, we see that nsmall should depend on the system
size. Since the two systems considered here have different sizes,
their small size contribution are likely to differ, giving n1

small ≠
n2
small. According to eq 12, the macroscopic contribution in the
two systems will not be equal either, giving n1

∞ ≠ n2
∞.

The macroscopic particle densities, n∞, do not depend on
size, but they depend on the chemical potential and
temperature. Since the temperature is the same in the two
systems, a difference in n∞ must arise from a difference in
chemical potential. This means that since n1

∞ and n2
∞ are

different, the two differently sized systems considered here
must also have different chemical potentials, that is, μ1 ≠ μ2.
Equation 12 is therefore more correctly expressed as

n T n V T

n T n V T

( , ) ( , , )

( , ) ( , , )
1

small
1 1

2
small

2 2

μ μ

μ μ

+

= +

∞

∞
(13)

This shows that keeping the particle density equal in all the
differently sized subvolumes imposes a difference in their
chemical potentials.
ODMs for Small Systems. We will now show how

combining fluctuations calculated from two independent
systems can be used to extract thermodynamic properties.
The fluctuations in the number of particles represent the

Boltzmann distributed probability of finding a certain number
of particles in the system. In a grand canonical system, this is
given by

P N V T
Q N V T N

V T
( , , )

( , , )exp( )
( , , )

μ
βμ

μ
| =

Ξ (14)

where β = 1/kBT and Q represents the canonical partition
function.
This distribution is unique for a given set of chemical

potential, volume, and temperature. This means that if one of
these is changed, the total distribution will change. This feature
is utilized by a number of different methods, which all can be
placed in the category of ODMs.2,14−18 Common for all of
these is that they extract thermodynamic properties from the
overlapping region of two distributions sampled from two
different states. In this region, the ratio of the two probability
distributions gives access to thermodynamic properties
through the connection between their respective partition
functions and their corresponding energy state function.
Following the procedure of Shirts,18 we derive an expression

for the ratio of two probability distributions of the number of
particles, corresponding to two different grand canonical

systems. Moving forward, it must be kept in mind that the
goal is to derive a method that can be applied to small systems.
This means that we must use equations that take the small
system effects into account. Hill’s21 equations are convenient
because they are valid for small systems and for macroscopic
systems. This formalism does not require a separate set of
equations in the treatment of small systems since all of Hill’s
equations reduce to the corresponding macroscopic identities
when the systems become large enough.
Starting from eq 14, we see that Q is a function of N but not

of μ. This means that it is possible to perform two simulations
at different chemical potentials but otherwise identical
parameters (meaning T and V) and calculate the ratio of
their probability distributions as

P N V T
P N V T

N N
V T
V T

( , , )

( , , )
exp( )

( , , )

( , , )
2

1
2 1

1

2

μ
μ

βμ βμ
μ
μ

|
|

= −
Ξ
Ξ

(15)

where the canonical partition function cancels because it has
no direct dependence on μ. Taking the natural logarithm of
this equation and inserting eq 3 gives

P N V T
P N V T

pV Nln
( , , )

( , , )
2

1

μ
μ

β β μ
|
|

= − Δ ̂ + Δ
(16)

This expression is in the form of a straight line, α0 + α1N, if
the logarithm of the ratio of the probability distributions is
plotted as a function of the number of particles. The values of
Δμ = μ2 − μ1 and Δp̂ = p̂2 − p̂1 are then readily available since
the slope of this line is α1 = βΔμ, while the intersection with
the y-axis represents α0 = −βΔp̂V.
The calculation of the distributions is straightforward since

the only required information is the number of particles in the
systems throughout the simulations. The probabilities can also
easily be visualized by binning the particle numbers in
histograms. One can even calculate the ratio of the probability
distributions directly from the histograms in order to visually
inspect that it forms a straight line. Another alternative which
is more robust is to use the maximum likelihood approach.15

Using this method, the slope can be found from the maximum
likelihood expressions for the ratio of the probability
distributions. For the grand canonical ensemble, the maximum
likelihood expression becomes
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=
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where f(x) is the Fermi function f(x) = [1 − exp(−x)]−1. The
expression only has one maximum, which means that it will
always converge, and it can be solved by any standard
technique for multidimensional optimization.18

The equations presented above can be used to calculate the
difference in pressure and chemical potential for two grand
canonical systems with different chemical potentials but
identical volume and temperature. The subsystems generated
by the SSM are examples of such systems. It is possible to
investigate the size dependence of Δμ and Δp̂by sampling
subsystems over the same size range in two reservoirs at
different chemical potentials. In addition, eq 10 can be used to
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identify the values in the macroscopic limit as Δp̂∞ = Δp∞ and
Δμ∞.

■ SIMULATION DETAILS
All systems considered in this work consist of LJ particles that
interact via the truncated and shifted potential, with the cutoff
radius at 2.5. Unless otherwise specified, all values are
presented in reduced units. The critical point of the truncated
and shifted LJ system is at T = 1.086, p = 0.101, and ρ =
0.319.50 In all simulations, a temperature of T = 1.5 is used.
Four types of systems are investigated:

1. Small grand canonical system with nonperiodic, hard
walls. This is simulated using an in-house MC code.

2. Small grand canonical systems with nonperiodic walls,
interacting with the particles according to the LJ
potential. This is simulated using and in-house MC
code.

3. Grand canonical systems with periodic boundary
conditions (PBCs). This is simulated using and in-
house MC code.

4. Small subsampled systems generated from a large
reservoir simulated using the MD code LAMMPS.51

The first three system types are used to investigate how well
the ODM performs for small systems, compared to systems
with periodic boundaries. For these simulations, we use an in-
house MC code, with input chemical potentials μ = 0.33, μ =
0.73, and μ = 1.2. For systems of type 3, periodic boundaries
are used to remove finite-size effects in order to obtain the
system’s bulk properties. For the small systems, type 1 and type
2, the boundaries are treated in a way that introduces a
significant contribution from finite-size effects. This is achieved
by two different approaches. Systems of type 1 have hard walls,
which means that there is no explicit interaction between the
particles and the wall, but MC moves that attempt to move a
particle outside the simulation box are rejected. Systems of
type 2 have a LJ potential with a cutoff distance equal to 1 on
the boundaries. This means that any particle within a distance
rc
wall = 1 from one of the boundaries interacts with the wall
according to the LJ potential. All grand canonical MC systems

are cubic, and five different sizes are considered for the small
systems, L = 5, L = 6, L = 7, L = 8, and L = 9, while the
periodic system has a size of L = 9.
The fourth system type is used in the combination of the

SSM and ODM to calculate how the chemical potential
difference changes with the system size. The SSM reservoirs
are created from molecular dynamics simulations in the NVT
ensemble using the open source code LAMMPS.51 The
system’s configuration is stored from the trajectory every 50
time steps from a simulation with a total of one million time
steps. For each configuration, 100 randomly positioned points
are used to position the center of the small subsystems, giving a
total of 2 × 106 samples for each small system volume.
The subvolumes investigated are either spherical or cubic

and centered at randomly chosen points, pc = (xc, yc, zc). All
particles with position pp = (xp, yp, zp) satisfying (xp − xc)

2 +
(yp − yc)

2 + (zp − zc)
2 ≤ R2 are placed inside the sphere of

radius R. For the cubic system, the conditions of the particles’
position become (xp − xc) ≤ L/2, (yp − yc) ≤ L/2, and (zp −
zc) ≤ L/2. All particles satisfying these three conditions are
placed inside the cubic small system of box length L. We
investigate 200 differently sized small systems with sizes
increasing linearly with the reciprocal radius or reciprocal box
length.
One of the conditions for the SSM to work properly is that

the investigated state is sufficiently far from the critical point.
This is because fluctuations become very long ranging close to
the critical point and can therefore not be used to calculate
properties accurately.52 The simulations are therefore carried
out at a temperature of T = 1.5.
A second condition for the SSM to give reliable results is

that the differently sized subvolumes display a definitive linear
region as a function of inverse system size. This means that the
simulation box used as the reservoir must be large enough to
sample systems in this region. We therefore use cubic
simulation boxes containing 27,000 particles at three different
number densities, ρ = 0.70, ρ = 0.72, and ρ = 0.74. For these
three densities, the macroscopic chemical potential is
calculated with the Widom12 particle insertion method using

Figure 2. Chemical potential difference calculated from the ODM relative to the input value for different system sizes. Ω/V corresponds to the
surface area-to-volume ratio. The input value of Δμ is represented by the dashed line, while the symbols show the results from the ODM. The
circles represent systems with LJ potential on the boundaries, while the triangles represent systems enclosed by a hard wall. The squares represent
PBCs, which gives the value in the macroscopic limit. (a,b) corresponds to the input Δμ = 0.397, while (c,d) corresponds to Δμ = 0.841. All error
bars denote two standard deviations.
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an in-house MC code and cross-checked with the TREND
equation of state (EOS) provided by Thol et al.50

■ RESULTS

The purpose of the first section of the results is to investigate
the performance of the ODM in small systems compared to
how well it performs in a periodic system. Two small grand
canonical systems with the same size and temperature but
different chemical potentials will have different size effects. We
shall investigate whether this will influence the results from the
ODM. This section also elaborates on how the density should
be calculated in small systems.
The second section contains a description on how the SSM

is combined with the ODM to compute the size dependence of
chemical potential differences. This includes a guide on how to
choose the sizes of the subsampled systems in order to achieve
an accurate extrapolation to the thermodynamic limit.
ODM for Grand Canonical MC Systems. In order to

evaluate how well the combination of the SSM and ODM

works, we must first evaluate how well the ODM works for
small and large systems. This is performed by using the ODM
to calculate the chemical potential difference in different types
of grand canonical MC systems. The difference between the
system types is determined by the way its boundaries are
treated. The values of Δμ are calculated by using the maximum
likelihood version of the ODM, meaning that eq 17 is applied
to the particle numbers calculated from two simulations of
grand canonical MC systems. Since μ is one of the input values
of a grand canonical MC simulation, the true value of Δμ
corresponds to the difference between these two input values.
From the three absolute values of μ, two values of Δμ are

calculated: between the two states with the lowest values of μ
and between the lowest and the highest values of μ. The
standard deviations are computed from 500 bootstrap samples
of the total data set. Figure 2 shows the results from applying
the ODM to the system with PBC and to the two types of
small systems. Figure 2a,b corresponds to Δμ = 0.397, while
Figure 2c,d corresponds to Δμ = 0.841. The results are shown

Figure 3. (a) shows how the density in a system enclosed by a hard wall changes with the surface-to-volume ratio when the chemical potential and
temperature is kept constant. The triangles represent the hard wall systems, while the squares represent PBCs, which gives the value in the
macroscopic limit. (b) shows distributions in density for the largest system, L = 9, while (c) shows the one for the smallest system, L = 5.

Figure 4. (a) shows how the density in a system enclosed by a wall with a LJ potential changes with the surface-to-volume ratio when the chemical
potential and temperature are kept constant. The circles represent the LJ wall systems, while the squares represent PBCs, which gives the value in
the macroscopic limit. (b) shows distributions in density for the largest system, L = 9, while (c) shows the one for the smallest system, L = 5.
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as a function of the surface area-to-volume ratio, which is
proportional to the inverse system size. This means that the
largest systems are found to the left in the figures. The results
from the periodic systems represent the macroscopic values
and are therefore placed at Ω/V = 0. The PBC values are only
shown in Figure 2a,c since Δμ in both the hard wall system
and the LJ wall system approaches the same value in the
macroscopic limit.
The values of Δμ calculated from the ODM show no size

dependence for any of the systems considered, and the relative
error is below 2% for all systems.
A common criterion for evaluating the accuracy of a method

is that its mean value should be within two standard deviations
of the true value. Nearly all of the mean values are less than
two standard deviations from the true input value; the only
exception is the smallest LJ wall system for Δμ = 0.841 (Figure
2d). Since this evaluation is very much dependent on the
magnitude of the standard deviations, we investigate the origin
of their varying magnitudes.
In the following, we shall see that the magnitude of the

standard deviations can mainly be attributed to the choice of
the two states investigated. Shirts18 pointed out that if the
states are far apart, the overlapping region will be small and
there will be too few sampled data points, while if the states are
too close, the same distribution is essentially sampled from
both systems.
The distance between two sampled distributions is

determined by the system’s particle densities, which can be
size-dependent. The consequence is that this distance for small
systems is likely to differ from that of the macroscopic systems.
The actual width of the distributions is also likely to change
with both size and density. At high densities (ρ ≈ 0.7), small
systems usually have larger relative fluctuations than their
corresponding macroscopic system.28,32,48

Figures 3 and 4 show that both these effects are present for
both types of small systems considered here. Figures 3a and 4a
show that the density is size-dependent and that the size
dependence varies with the value of μ since higher values of μ
give steeper slopes. The result is that the distance between the
distributions increases when the systems become smaller. The
width of the distributions also changes with the system size.
Figures 3b and 4b show the density distributions for the largest
systems considered, with a size of L = 9. Figures 3c and 4c
show the density distributions for the smallest systems
considered, with a size of L = 5. Both types of small systems
show wider distributions for smaller systems.
The fact that both the mean value of the densities and the

width of the distributions change with size can explain the
variation in magnitude of the standard deviations seen in
Figure 2. The largest hard wall system shown in Figure 2c is
taken as an example. The distributions corresponding to this
system are shown in Figure 3b, where the curves correspond-
ing to the highest and lowest values of μ have almost no
overlap. This means that there is very little data to calculate Δμ
from, which gives this value of Δμ the largest standard
deviation in Figure 2c. When the system becomes smaller, as
shown in Figure 3c, the distance between the peaks becomes
larger, but at the same time, the distributions become wider.
This increases the overlap, which reduces the magnitude of the
standard deviations.
We conclude that different factors contribute to the

magnitude of the standard deviations in different ways and
sometimes cancel. Fortunately, the same factors have no

significant effect on the mean values since they all have a
relative error below 2%. For the systems considered here, the
values of Δμ calculated from the ODM are equally reliable for
systems with finite-size effects and for systems with periodic
boundaries.

Calculation of the Density in Small Systems with a Wall
Potential. When calculating properties that include the
system’s volume, it is common to use the full volume of the
simulation box. For a system with periodic boundaries, this is
unproblematic. However, if the system is small and has a wall
potential, this choice might introduce errors. The reason for
this is that the simulation volume is not always equal to the
volume available to the center of masses of the particles. This
effect has been discussed in a paper by Reiss and Reguera,53

where they investigate how neglecting the difference between
these volumes can lead to errors in pressures calculated by the
virial.
They present results from a simple system consisting of hard

spheres with radius ξ inside a spherical simulation volume. The
particles interact with the wall such that the center of mass of
each particle will never be closer to the wall than a distance
equal to the particles’ radius ξ. As a result, the movement of
the particles is restricted to a smaller volume than the total
simulation volume. Since the virial refers to the volume
available to the center of masses of the particles, it results in
incorrectly computed pressures when the total simulation
volume is used.
The same principles apply when the density of a system is

calculated. To get a proper representation of the density
experienced by the particles, the volume available to their
center of masses should be used. For the hard wall system
considered in this work, no correction is needed since the
particles do not actually interact with the wall. The particles are
allowed to move around in the total simulation volume, but
every MC move that attempts to move the center of mass of a
particle outside the simulation box is rejected.
For the systems with the LJ wall, however, such a correction

must be incorporated. For the case considered by Reiss and
Reguera,53 finding the volume available to the particles’ center
of mass is a trivial task. The radius of the spherical simulation
box is simply reduced by ξ. The equivalent distance in the
system considered here is the collision radius σwall‑particle

between the LJ particles and the LJ wall. This distance is not
as rigid as the radius of a hard sphere, but it still gives an
indicator of the density experienced by the particles. The
densities presented in Figure 4a are therefore calculated by
using the corrected box length Lcorr = L − 2σwall‑particle. They are
still plotted as a function of the size of the total simulation box
volume, meaning that Ω/V is calculated from the noncorrected
L. Since the effect a system’s wall potential has on its properties
is not the main topic of this work, the density calculations will
not be discussed further.

Combining the ODM and SSM. When choosing which
system sizes to investigate with the SSM, the most important
criterion is that the fluctuations in the subvolumes must
represent grand canonical fluctuations. For certain subvolume
sizes, this criterion has previously been confirmed by
comparing the fluctuations sampled in a closed simulation
box to ones computed in subvolumes in true grand canonical
reservoirs.47,48 In this region, the properties must display a
clear linear behavior as a function of inverse system size. This
means that the total simulation box must be large enough to
act as a grand canonical reservoir for the relevant system sizes.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01367
J. Chem. Inf. Model. 2021, 61, 840−855

847

pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01367?ref=pdf


Knowing exactly when the reservoir is large enough is not
always a trivial task since this can vary for different types of
systems. After calculating the properties, it can also be
challenging to identify the linear region. Before evaluating
the results of the SSM combined with the ODM, we will
therefore present a few tools that can be used to identify the
linear region for properties calculated from fluctuations in
systems sampled using the SSM. All reported relative errors in
the following sections are calculated with respect to the Thol et
al.50 EOS, unless otherwise specified.
How to Identify the Linear Region. Properties in the SSM

are calculated from the fluctuations in the number of particles
and sometimes also fluctuations in energy.30 In this work, we
will only consider properties calculated from fluctuations in the
number of particles.
When the particle fluctuations are affected by size, the

properties calculated from these fluctuations share that size
dependence. This means that if it is possible to identify the
system sizes that display a linear region for the particle
fluctuations, other properties are expected to behave linearly
within the same region. The fluctuation in the number of
particles is represented by the property

N N
V V

2 2
sν ν ν= ⟨ ⟩ − ⟨ ⟩ = + Ω∞

(18)

This scaling law only describes small size contributions
proportional to the surface area. This means that size effects
originating from other parts of the system’s geometry, such as
curvature, edges, and corners, are not described. System sizes
that have a significant contribution from one of these small size
effects should therefore not be included in the extrapolation.
In the other end of the size scale, the fluctuations in the

largest subvolumes will be affected by the limited size of the
reservoir. A density change in a small subsystem cannot
happen without a corresponding density change in the
reservoir.29 This means that as long as the reservoir is closed,
it will not act as a proper grand canonical reservoir for the
largest subvolumes.46−48

In order to identify the linear region, two questions must be
answered: (1) What is the smallest volume that is not affected
by other finite-size effects than surface area? (2) What is the

largest volume that is not affected by the finite size of the
reservoir? All volumes in between these limits should be used
for extrapolation in combination with scaling laws such as eq
10.
Now, we will show how these questions can be answered for

the particle fluctuations calculated in subsystems embedded in
simulation boxes at the three different densities considered
here ρ = 0.70, ρ = 0.72, and ρ = 0.74. Figure 5 shows the
property ν, given by eq 18, as a function of the surface-to-
volume ratio.
In order to answer the first of the two questions introduced

above, one must look for signs that other finite-size effects than
those proportional to the surface area are present.
In Figure 5, the smallest volumes are found at the right side

at the highest values of Ω/V. In this region, we observe that the
fluctuations display a wavy behavior, which indicates the
influence by higher-order terms,48 as shown in eq 8. Exactly
where the wavy region begins depends on the density of the
system. This is because higher densities normally cause larger
size effects due to a larger number of the particles closer to the
surface.46

When the aim is to combine the fluctuations in the ODM, a
common limit for the linear region should be chosen for the
three densities, and it should be based on the behavior of the
system with the highest density since this is most influenced by
the higher-order terms. The wavy region for the highest
density disappears around Ω/V = 1.0 for both spherical and
cubic subvolumes, which means that subvolumes with a size
corresponding to values of Ω/V > 1.0 should not be included
in the extrapolation.
The other end of the linear region, representing the largest

subvolumes, can sometimes be more challenging to determine
visually. This is because the impact of the closed reservoir is
gradually introduced as the systems become larger. Figure 5
shows that the values of the fluctuations all approach zero in
this limit because the reservoir is not able to create large
enough fluctuations. Visual inspection alone does not give a
clear answer to which value of Ω/V the fluctuations start to
approach zero. However, it seems to appear at smaller volumes
for the system with the lowest density since the fluctuations are

Figure 5. How the value of ν given by eq 18 changes with the surface-to-volume ratio of the subsystem it was calculated in. For the three different
curves, the density is constant, equal to that of the reservoir. (a) shows the fluctuations calculated in spherical subvolumes, while (b) shows the
fluctuations calculated in cubic subvolumes.
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larger here, which might be more challenging for the closed
simulation box to satisfy.
Since this limit behaves differently for different types of

systems and is less apparent than the wavy region, it is helpful
to take advantage of some extra tools to identify it. Some
general guidelines for identifying this limit have previously
been proposed by Cortes-Huerto et al.35 and Rovere et al.27

These limits are based on the size of the subvolumes relative to
the volume of the simulation box, V0, and correspond to (V/
V0)

1/3 = 0.3 and (V/V0)
1/3 = 0.25, respectively. The most

conservative subvolume sizes identified by these suggested
limits are based on the system with the highest density (ρ =
0.74) since this is the one with the smallest simulation box. For
spherical subvolumes, the above limits translate to Ω/V ≈ 0.49
and Ω/V ≈ 0.58, and for cubic subvolumes, they correspond to
Ω/V ≈ 0.60 and Ω/V ≈ 0.72.
We note that these generalized guidelines do not properly

represent the situation investigated here since they allow for
larger subvolumes when the simulation box is larger. As
explained above, Figure 5 shows that the fluctuations in the
largest simulation box are the ones most affected by its finite
size. In addition, the suggested limits are based on the behavior
of fluctuations in cubic subvolumes. Since it has previously
been shown that the location of the linear region is dependent
on the shape of the subvolumes,29,48 it is possible that the
predicted limit for a spherical subsystem might not reflect the
true location of the linear region. In the following, we therefore
investigate two additional tools that can be used directly for
the systems under investigation.
One simple option is to fit a straight line to the data points

and evaluate at which point the residual, meaning the
difference between the fitted line and the actual data points,
starts to deviate. The coefficient of determination, also known
as R2, provides an indicator of how well a model describes the
data points.54 If there is complete overlap between the model
and the data points, the value of R2 is equal to 1, while if R2 is
closer to 0, the data points are uncorrelated and cannot be
described by the model.
Figure 6 shows how the coefficient of determination changes

as a function of data points included in the linear fit. The
values of R2 are shown as functions of the surface area-to-

volume ratio, which means that the number of data points
included in the linear fit increases to the left in the figure. The
first values of R2 (furthest to the right in Figure 6) are
calculated based on a linear fit of the data points between Ω/V
= 1.0 and Ω/V = 0.8 in Figure 5. The remaining data points are
then included in the fitting one by one, and R2 is recalculated
based on the new linear fit.
We observe that when more data points are included in the

fitting, the values of R2 initially approach 1. However, at one
point, the R2-values start to deviate. This means that we have
reached the regime where the simulation box no longer
functions as a proper grand canonical reservoir. For systems
with the lowest density, this deviating behavior is observed to
start for smaller subvolumes, where it is more challenging for
reservoirs to satisfy the fluctuations in their subvolumes. We
therefore choose the limit based on the curve for the lowest
density, which starts to deviate from 1 around Ω/V = 0.57 for
the spherical subvolumes and for Ω/V = 0.72 for cubic
subvolumes.
A more advanced alternative is to compare the results found

by linear fitting to values extracted by an equation that
explicitly includes the effect of the finite size of the simulation
box. The possibility of including effect in scaling equations has
been explored to a large extent in the literature.35,37,46,48,55,56

One such equation was proposed by Strøm et al.29 and is given
by
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(19)

This equation is derived by assuming that ν = 0 for V/V0 =
1, which only is valid for subvolumes of the same shape as the
reservoir. We apply eq 19 to the fluctuations calculated in the
cubic subvolumes with size 0.4 < Ω/V < 1.0. The largest
subvolumes (Ω/V < 0.4) are not included in the fitting of eq
19 since this resulted decreased accuracy in the values of ν∞.
We believe that this can be explained by two factors. The first
is that the fluctuations in larger systems usually converge more
slowly than their smaller counterparts.25,26 The second is that
fluctuations in subvolumes of a size comparable to the total

Figure 6. Coefficient of determination, R2, calculated from a fitted straight line to the data points shown in Figure 5. The values are shown as a
function of the surface-to-volume ratio, which means that the value with most included data points is found to the left. The first value of R2 is
calculated based on a linear fit of the data points between Ω/V = 1.0 and Ω/V = 0.8 and then gradually updated as more data points are included in
the linear fit. (a) shows the case for spherical subvolumes, while (b) represents cubic subvolumes.
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simulation box can become influenced by its periodic
boundaries.47

The relative errors of ν∞ extracted from eq 19 are below 1%
for all densities investigated. This means that the values of ν∞

obtained from this fit can be compared with the values
extracted from the linear fitting and thereby work as a quality
check for the limits identified by analyzing R2. The ν∞-value
obtained from eq 19 differs by 4% from the value obtained
from linear fitting to spherical volumes in the range 0.57 < Ω/
V < 1.0 and by 6% from linear fit to cubic subvolumes in the
range 0.72 < Ω/V < 1.0. It is also possible to systematically
vary the limits until we reach the minimum difference between
the values extracted from the two types of curve fitting. By
changing the lower limit of Ω/V to 0.60 for spherical
subvolumes and to 0.78 for cubic subvolumes, this difference
is reduced by 1%-point. Changing the limits beyond these
values does not decrease the difference further.
We note that an equation similar to eq 19, which also takes

the finite size of the simulation box into account, has been
developed by Cortes-Huerto et al.35 and that this equation
should work for the same purpose as described above.
Figure 7 shows eq 19 fitted to all fluctuations computed in

cubic subvolumes 0.4 < Ω/V < 1.0 and the line resulting from

linear fitting between Ω/V = 0.78 and Ω/V = 1.0. The two
lines show good overlap in the region between the dashed
lines, which indicate the region used for the linear fit.
In conclusion, a simple analysis of R2 based on the linear fit

is able provide good estimates for the location of the linear
region. These estimates can be further improved by utilizing an
equation that explicitly includes the effect of the finite size of
the simulation box, but the effect of this additional step was
marginal for the systems investigated here. The final limits
identified by this method correspond to slightly smaller
subvolumes than those of the previously suggested general
limits.27,35 In the following analysis of chemical potential, we
therefore analyze the regions 0.60 < Ω/V < 1.0 for spherical
subvolumes and between 0.78 < Ω/V < 1.0 for cubic
subvolumes.

Calculating Chemical Potential Differences from the SSM.
Now, we will show how the distributions in the subsystems are
used to calculate their chemical potential differences. Figure 5
shows the fluctuations that represent the distributions, which
we apply the ODM to. Also here we use the maximum
likelihood approach, which means that we apply eq 17 to the
particle distributions in two subvolumes of equal size, sampled
from two reservoirs at different densities. From the three
densities available, Δμ is computed for the two systems with
the lowest densities and for the systems with the lowest and
the highest densities. Standard deviations for each value of Δμ
are calculated from 20 bootstrap samples. For some of the
largest subvolumes, the distributions become too far apart for
the ODM analysis to converge. The 20 largest subvolumes are
therefore not included in the following analysis. In the linear
region for the cubic subvolumes, 0.78 < Ω/V < 1.0, the values
calculated in both spherical and cubic subvolumes overlap. The
figures presented in this section therefore only contain results
from spherical subvolumes, while the corresponding figures for
the cubic subvolumes are found in the Supporting Information.
Relative errors for the values in the thermodynamic limit are
presented for both cubic and spherical subvolumes.
Figure 8 shows that the values of Δμ increase with the

subvolume size and that they clearly approach the correct value

in the thermodynamic limit (Ω/V → 0). Accurate estimates of
values in the thermodynamic limit are calculated from the EOS
by Thol et al.50 The ones calculated using the Widom particle
insertion method show only a 0.6% deviation from these and
are therefore not included in the figure. In the following, the
reported relative errors are therefore calculated with respect to
the values obtained from the EOS by Thol et al.50

Before proceeding to investigate the accuracy of the results,
one important question must be answered. How is it possible
that the chemical potential inside a subvolume differs from the
chemical potential in the particle reservoir to which it is
connected?

Figure 7. How the value of ν given by eq 18 changes with the surface-
to-volume ratio of the cubic subsystem it was calculated in. For the
three different curves, the density is constant, equal to that of the
reservoir. The full gray line shows the result of linear fitting to the data
points between the dashed lines, while the full black curve shows the
result of fitting eq 19 to the data points between 0.4 < Ω/V < 1.0.

Figure 8. Chemical potential difference as a function of the surface-
to-volume ratio. The values of Δμ were calculated by using
fluctuations generated from spherical subvolumes in two separate
reservoirs with different densities, combined in the maximum
likelihood approach of the ODM. Error bars representing two
standard deviations are included, but they are smaller than the
markers.
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The answer to this is that the reservoir and the subsystems
have different types of boundaries. The reservoir has periodic
boundaries, which make it behave as a macroscopic system.
The subsystems, however, do not have periodic boundaries,
which introduces a surface effect to their properties. We have
already shown that grand canonical systems can have a size-
dependent density, and we have explained that if this is the
case for the subsystems sampled with the SSM, the size
dependence will not appear in the densities. The sampling
procedure forces all subsystems to have the same average
density, which means that the size dependence instead
modifies the values of the chemical potentials. Hence, the
chemical potential inside subsystems will be size-dependent
and different from the chemical potential of the reservoir.
The dashed lines in Figure 8 show the limits of the linear

region, which means that between these lines, we find values of
ν that scale linearly with the surface area-to-volume ratio. For
the volumes that are too large for this region (Ω/V < 0.60), Δμ
displays a more rapid change. While the values of ν in Figure 5
decreased at this point, the values of Δμ in Figure 8 instead
increased more rapidly when approaching larger subsystems.
This can be attributed to the fact that the fluctuations become
too small at this point since too small fluctuations correspond
to too narrow distributions, which results in higher values of
Δμ.18
The full black lines in Figure 8 show the straight lines fitted

to the data points between the dashed lines. According to eq
10, the intersection of this line corresponds to the value in the
thermodynamic limit. The relative errors of Δμ∞ are calculated
with respect to the EOS by Thol et al.50 and correspond to 8
and 10% (10 and 12% for the cubic subvolumes). The relative
error is larger than what we can expect when using the ODM
separately since it was shown to give relative errors below 2%
for different types of small systems.
It is possible to improve the accuracy of the extrapolated

value by plotting the data differently. When using the SSM, it
has been shown that the quality of the extrapolated value
depends mostly on the quality of the linear fit.48 Some
properties have earlier been shown to have a more clear linear
region if they are plotted as their inverse. This was the case for
the partial enthalpies30 and for the thermodynamic factor.32

Common for both of these properties is that they are partial
derivatives with respect to the number of particles. Since the
chemical potential also is a partial derivative with respect to
number of particles, it is interesting to see how its inverse
behaves.
This idea can be further substantiated by investigating the

connection between the partial derivative of chemical potential
with respect to density and the particle fluctuations. The
relation comes from combining eqs’s 3, 4, and 9 and is given by
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It can here be argued that even though the values of ν∞ and
νs depend on density, the scaling of ν as a function of Ω/V

remains linear. This suggests that 1/Δμ also will scale linearly
as a function of Ω/V.
Figure 9 shows the values of 1/Δμ as a function of the

surface-to-volume ratio. This curve shows a more clear linear

behavior than the ones in Figure 8. By using the same system
sizes in the curve fitting, the relative errors of the extrapolated
values of Δμ are reduced to 2 and 3% (3 and 4% for cubic
subvolumes). This is closer to the accuracy we can expect from
the ODM, and it is similar to previously reported accuracies for
other properties calculated by the SSM.29

Histogram versus the Maximum Likelihood Approach of
the ODM. In early applications of the ODM, histograms were
used to calculate the distributions and their overlaps.2,14,16,17

The maximum likelihood approach by Shirts et al.15 is able to
use the complete set of data of particle numbers instead of
reducing these to histograms, which usually provides more
precise and accurate results.18 However, the maximum
likelihood approach includes an optimization step that is
much more demanding with respect to both computational
time and memory, compared to simply sorting the particle
numbers in histograms. In this section, we will investigate if it
is possible reduce time and computational cost, without loss of
accuracy, by replacing the maximum likelihood approach with
the original histogram version of the ODM.
Another convenient aspect with histograms is that they make

it possible to visually inspect the distributions. Figure 10a
shows the distributions in the largest (Ω/V = 0.60) subsystem
included in the curve fitting, and Figure 10b shows the smallest
(Ω/V = 1.0) subsystem included in the curve fitting. The size
of the x- and y-axis ranges is equal in Figure 10a,b for the total,
as well as the inset figures. This makes it possible to directly
compare the features of the distributions. We observe that the
distributions in the smallest subsystem have poorer statistics
than the distributions in the largest subsystem. For systems
with such a low number of particles, the histograms will deviate
more from a smooth curve, which can introduce inaccuracies
in the properties calculated from the overlap. There is,

Figure 9. Inverse chemical potential difference as a function of the
surface area-to-volume ratio. The values of Δμ were calculated by
using fluctuations generated from spherical subvolumes in two
separate reservoirs with different densities, combined in the maximum
likelihood approach of the ODM. Error bars representing two
standard deviations are included, but they are smaller than the
markers.
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however, a simple solution to this problem. As suggested by
McDonald and Singer,16 a Gaussian curve can first be fitted to
the distributions before calculating the ratio of the overlap.
The fitted Gaussian curves are displayed in Figure 10, together
with the histograms calculated directly from the particle
numbers.
The results of applying the above described method for

calculation of Δμ are shown in Figure 11. By comparing this to

the results obtained from the maximum likelihood version of
the ODM (Figure 9), we can see that the histogram method
introduces larger variations in the values of Δμ. However, the
relative error of the extrapolated value is only increased by 1%-
point. This means that even though the accuracy of a single
data point calculated from histograms generally is lower than
the one obtained from the maximum likelihood approach, it
does not have a large effect on the results from the curve

fitting. As long as the uncertainties introduced by the
histogram approach do not lead to a change in trend of the
data, it will act as randomly distributed noise, which eventually
is canceled out in the curve fitting.
Consequently, if the goal is to obtain the value of Δμ in the

thermodynamic limit, the histogram approach and the
maximum likelihood approach works almost equally well for
the systems considered here. However, if the main interest is
properties for a specific system size, the maximum likelihood
method is more likely to determine this value with higher
accuracy.

Scope and Limitations. Computational methods for
chemical potential differences are a field that is being
continuously explored. One of the most popular methods for
these investigations is the Widom particle insertion method,12

which is often used as a benchmark reference when new
methods are presented.39−41,47 It is well known that the steps
involving insertion or deletion of particles used in the Widom
method become inefficient at higher densities. The same goes
for related grand canonical particle insertion schemes such as
the Gibbs ensemble MC method which often is used to
investigate phase equilibria.47 The branch of methods that
instead compute chemical potential differences from fluctua-
tions sampled from subsystems thus have an advantage at
higher densities.
In addition to the relations used to extract Δμ in this work,

there also exists a connection between the differential chemical
potential and the fluctuations, given by eq 20. Absolute values
of chemical potential have previously been successfully
extracted from this method for both one-component38 and
multicomponent systems.35,37 Both the method based on the
differentials of μ and the one presented here are able to
provide absolute values when used in combination with
another method that allows one to calculate the chemical
potential at a reference state point.
One important difference between the two methods is that

the method based on the differentials of μ involves numerical
integration. It is therefore necessary to sample a large enough
range of different densities in order to provide accurate values
of μ. The method presented here is able to extract values of Δμ
directly from two simulations.

Figure 10. Histograms of particle distributions representing the fluctuations shown in Figure 5. (a) shows the distribution of number of particles in
the largest volume in the linear region, corresponding to Ω/V = 0.60, while (b) shows the ones for the smallest volume in the linear region,
corresponding to Ω/V = 1.0. The dotted lines represent the Gaussian curves fitted to the histogram data.

Figure 11. Inverse chemical potential difference as a function of the
surface-to-volume ratio. The values of Δμ were calculated by using
fluctuations generated from spherical subvolumes in two separate
reservoirs with different densities, combined in the histogram
approach of the ODM. Error bars representing two standard
deviations are included, but they are smaller than the markers.
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Another important difference is that the method based on
the differentials of μ can explicitly include the effect of the
finite size of the simulation box in the scaling laws used to
extract (∂μ/∂ρ)T,V. In contrast, the method presented here is
only able to use these scaling laws to identify the subvolumes
that are not affected by this feature. We have shown that
explicitly including this effect returns a value of ν∞ with a
relative error below 1%. Based on a similar analysis,29 this
could suggest that even larger simulation box sizes are needed
to further decrease the relative error computed by the method
presented in this work.
Further work with the method presented here involves

extension to multicomponent systems and investigation of its
application to molecular fluids.

■ CONCLUSIONS
We have presented a new method for computation of chemical
potential differences, in both small and large systems, from
molecular dynamics simulations. The new method can be seen
as an extension of the SSM, which uses small subsystems
embedded in a larger simulation box to calculate distributions
of the number of particles. This method, which until now has
been used to calculate enthalpies and the thermodynamic
factor,28 partial molar properties,30 Kirkwood−Buff inte-
grals,32,33 and the isothermal compressibility,29 has been
extended to calculate chemical potential differences. This
new feature was obtained by combining the SSM with an
ODM. As the name suggests, the ODM uses the overlap of
distributions from two different simulations to calculate
thermodynamic properties. For systems with a fluctuating
number of particles, one of the available properties is the
chemical potential difference.
Before applying the ODM to the distributions created from

the SSM, it was necessary to investigate how well the ODM
performs for small systems. This was done by applying the
ODM to particle distributions generated by two grand
canonical MC simulations with different input values of μ,
but otherwise identical parameters. Two different types of
small systems were investigated, and a system with periodic
boundaries was used as a reference. The values of Δμ
calculated from the ODM for all of these systems had a relative
error below 2%, which means that the ODM can be regarded
as equally reliable for both the small and large systems
investigated in this work.
The SSM generates small systems of a range of different

sizes, which means that it can give insights on how an intensive
property such as the chemical potential starts depending on the
system size when the system becomes small enough. As a result
of this, the chemical potential difference can be calculated as a
function of the system size. Combined with a scaling law based
on Hadwiger’s44 theorem, the values of Δμ can be extrapolated
from the small systems to the thermodynamic limit. We also
have presented tools that will be helpful in determining which
system sizes should be included in this extrapolation.
Compared to methods based on insertion of particles, the
fluctuation-based methods have an advantage when it comes to
extracting thermodynamic properties at high densities. The
particular method presented here also provides an option that
is independent of numerical integration.
When using the ODM, there are two options for extracting

information from the overlap of the distributions. The
fluctuations in number of particles can either be stored in
histograms before the overlap of these is computed, or a

maximum likelihood approach can be used on the complete
data set. We have shown that these methods work almost
equally well for determining the value of Δμ in the
thermodynamic limit since they both provide values with a
relative error below 4%. The maximum likelihood approach is
able to determine this value with 1%-point higher accuracy.
The small difference is mainly because random noise is
canceled out in the curve fitting. If the main interest is one
value of Δμ for a specific system size, the maximum likelihood
approach will probably provide a more accurate result.
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