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Sailing status recognition to enhance safety awareness and path routing for a
commuter ferry
Baiheng Wu , Guoyuan Li , Tongtong Wang, Hans Petter Hildre and Houxiang Zhang

Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology (NTNU), Ålesund, Norway

ABSTRACT
This paper suggests a framework about how log data are used to develop a classifier to recognise the
sailing status of a commuter ferry, which, in turn, serves as a tool of safety awareness. Several sailing
scenarios are defined under the expertise’s interpretation based on log data. A classifier is developed
by support vector machine algorithm to recognise different scenarios. The classifying precision is
getting improved as the database getting larger. Heat maps are drawn statistically to obtain the
likelihood site of each sailing status. Contour maps are drawn by interpolation according to heat
maps. Based on contour maps, two evaluation items are proposed to reflect the safety level. The
safety level term is used for optimising the control. The established classifier has a recognition
precision over 96 percent. A path following simulation is executed to verify the effectiveness of the
safety level for enhancing sailing safety.
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1. Introduction

In the last decade, the artificial intelligence has been exten-
sively studied by researchers from different academic fields
of interests, and at the same time, it has also attracted prac-
titioners occupied in various industrial fields to put efforts
in, e.g. graphical/semantic recognition, autopilot system for
automobiles. There have been scholars introducing the artifi-
cial intelligence to marine research and applications, but
compared with the prosperity in the mentioned fields, this
bundle of techniques still draws less attention in the maritime
industry. Multiple reasons may account for the current situ-
ation. One of them is the artificial intelligence is not yet well
studied, which means its performance cannot be guaranteed
in real on-board operations, especially in some critical scen-
arios at high risk. In other words, we cannot substitute the
human expertise on-board by an immature technology.
Nevertheless, this reason should not prevent the maritime
industry from exploring advanced technologies since the
pragmatic value will emerge only after substantial and
enough research and tests are proceeded. From another
respect, it has been statistically stated that human errors
have been the dominant factor for causing shipwrecks
(Islam et al. 2017; Wiegmann and Shappell 2017). Even
though the current progress in artificial intelligence is
thought to be ineligible to replace the role of captains, it
can at least assist them to avoid making mistakes so that
the risk of human errors can be reduced at a large extent.
With the rapid development in some minor subjects, includ-
ing sensor fusion, data mining, and machine learning, con-
structing an on-board safety awareness system seems to be
worth a shot (Elkins et al. 2010). In this paper, we develop

a framework how on-board log data can be utilised to
enhance path routing and sailing safety, and to reflect
human expertise as well. We also find a realisable application
for this framework: commuter ferries with fixed route and
certain number of critical operations in a sailing.

Data are necessary to implement artificial intelligence in
any fields, including the maritime industry. As the hardware
facility cost decreased remarkably in recent years, basic sen-
sors are commonly equipped on most vessels (even the civil
ships), which makes log data more accessible to be collected
for research aims (Borkowski 2012; Ren et al. 2021).
Besides the accessibility of the data, another concern for
the data to be credited for further use is the data quality.
Since the wrong data can contaminate the database, and
thereby affect the performance of the artificial intelligence
in a negative way, the data should be collected and selected
meticulously. In this respect, human expertise can give
sufficient supply. Therefore, it is believed that log data
from any successful and safe sailings are with good quality
for further utilisation.

Although it is said that on-board log data are getting more
accessible, it is still at a small quantity compared with its
counterpart in the automotive field. To ensure that enough
data can be obtained to establish an intelligent system, we
notice the application of commuter ferry which usually travels
between two or more designated ports with a fixed sailing
route. Repeated sailings guarantee the quantity of log data.
Moreover, such type of routes usually contains countable criti-
cal operations at certain areas, which makes it possible to
develop an algorithm to recognise different sailing status.
With the accumulation of data and a proper utilisation of
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them, we can learn the safety laws from the successful experi-
ence of human operations.

In this paper, a safety awareness system is designed for the
commuter ferry. The system is developed mainly in two stages:
designing a classifier to automatically sort the log data; con-
structing maps which reflect the sailing safety level based on
the sorted data. The classifier predicts the sailing status online
and the safety awareness can be given in a quantitative way; it
is involved in the control loop to optimise the control input for
verification.

Although relevant study is not prevalent in the research in
maritime fields, such research has been extensively studied in
the automobile field and has been applied in reality. Li et al.
(2017, 2019a, 2019b, 2020) studied the classification and rec-
ognition of driving style and behaviours in different con-
ditions with popular learning algorithm and different
experimental methods. Compared with the pattern recog-
nition, the concept of on-board decision support system is
more acquainted with the maritime industry, and the safety
awareness system developed in this paper can be seen as a
component of such an on-board decision support system.
There are different ways to develop on-board decision sup-
port systems. For example, some scholars build knowledge-
based expert systems to support on-board decision (Perera
et al. 2012; Calabrese et al. 2012); some use classical and/or
novel control theories and tools to improve the manoeuvr-
ability under particular conditions (Pietrzykowski et al.
2010; Nielsen and Jensen 2011); some introduce advanced
algorithms to optimise the path planning and navigation
(Lazarowska 2012; Simsir et al. 2014; Vettor and Soares
2015; Pietrzykowski et al. 2017); and some use data from
automatic identification system (AIS) to support trajectory
reconstruction and path following navigation (Zhang et al.
2018; Xu et al. 2019). From another view, such a safety aware-
ness system is within the issue of situation awareness which
has attracted researchers to focus on for aiding on-board
operation (Chauvin et al. 2008; Nilsson et al. 2008; Fossdal
2018; Li et al. 2019; Nisizaki 2019). However, most research
items stay in a conceptual stage without mathematical calcu-
lation and applicable data utilisation framework.

The novelty of the work in this paper locates mainly on
two points: (1) Using real log data collected from a commu-
ter ferry, instead of the data from simulators or other types
of publishable data (AIS data), to analyse the ship man-
oeuvring status. Log data outperform other sources by
directly reflecting captains’ navigating behaviours and
logics; (2) interpreting the log data by splitting the sailing
route into different scenarios with featured particularity,
instead of arbitrarily analysing the entire sailing route as a
whole. The proposed safety awareness system is verified in
a model predictive control loop which has been a popular
control algorithm in the research for the auto-piloting car
and autonomous vessel (TøNdel et al. 2003; Hagen et al.
2018; Tengesdal et al. 2020).

The paper is organised as follows: Section 2 introduces the
proposed method in detail, including data collection and pre-
processing, definition of split scenarios, pre-check before
applying machine learning algorithm, the design of SVM
and how the result can be interpreted by heat maps and

used to assess the safety level; Section 3 illustrates the result
in three parts, including the classification result by SVM,
the two types of figures demonstrating the classification
result, the online testing and the verification in the control
loop. At last, a conclusion of the paper is given as a sum
and prospect.

Nomenclature

CLF classifier
CRS cruising (scenario)
CVG converging (scenario)
DCK docking (scenario)
DPT departing (scenario)
KDE kernel density estimation
L; L′ label set; label set in each binary classifier
MPC model predictive control
MSL mean safety level
OH optimal hyperplane or maximum margin hyperplane
p̂; p̂N estimated density; normalised estimated density
RPM revolutions per minute
RSL receding safety level
SL safety level
SVM support vector machine
TRN turning (scenario)
t-SNE t-distributed stochastic neighbour embedding

2. Methodology

The framework for sailing status recognition is shown as
Figure 1. It includes several key steps: data collection and
pre-processing, the design of SVM and its implementation
on log data, interpretation of the classification result and its
visualisation, and at last, a quantitative evaluation function is
proposed to assess the level of sailing safety of the ferry
based on the classification result of the accumulated historical
log data. The contents included in Figure 1 will be extendedly
explained in the following subsections.

2.1. Data collection and pre-processing

Log data used in this paper are from a customised commut-
ing route between Trondhjem Biological Station and the
berthing port at the estuary of the Nidelva river located in
Trondheim, Norway (the white curve in the map in Figure
1 conceptually illustrates the route). The sailings on the com-
muting route are executed by R/V Gunnerus, a Research and
survey Vessel owned by NTNU. The mileage of this com-
muting route is around 5 kilometres. The vessel is equipped
with a 200 kW bow thruster at front for the positioning oper-
ation, two 500 kW main azimuth thrusters for the propul-
sion and course.

The database is constructed by log data from 16 sailings
from September 2016 to June 2017 in a traffic-free environ-
ment. The sampling frequency of log data is 1 Hz. The infor-
mation contained by the database can be sorted into three
groups: geographical information, ship motions in different
degrees of freedom and on-board machinery status. Since
the geographical information is distinctly related to different
scenarios (which will be defined in a later part), while we
want to seek the laws from the ship status itself, items in the
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database reflecting the geographical information are excluded.
According to the navigation and manoeuvring habits of cap-
tains, featured items are selected from collected data (Wu
et al. 2020). They are listed and sorted as in Table 1. All
eight featured items in Table 1 are designated as variables
for training the scenario recognition algorithm (support vector
machine in Section 2.4).

2.2. Definition for scenarios by human expertise

According to human expertise, a commuting sailing route can
be divided into different scenarios in terms of manoeuvring
commands and the vessel response which can be reflected by
collected log data. In this customised commuting route, five
scenarios are separated from the whole sailing, which are
described in detail as follows:

. Departing: the ferry sets off from the port and keeps
accelerating.

. Cruising: the ferry usually reaches the rated RPM and tra-
vels on the route smoothly.

. Turning: the ferry adjusts its course towards another direc-
tion. Deceleration and angular speed increase in this phase.

. Converging: the ferry moves in the narrow channel at a
speed lower than the rated, and it finally gets parallel to
the coastline with a short distance.

. Docking: the ferry is with no surge speed but only sway,
by using the bow thruster to push itself into the berthing
point.

The rough illustration of the separation is shown in the map
in Figure 1, as five scenarios are marked with ovals in different
colours.

Hereupon, the original database is constructed as Equation
(1), where X represents for a database consisted of n items
described by eight variables mentioned in Table 1.

log data = {X; L}, X [ Rn×8, L [ Rn×1

L = {l1, l2, . . . , ln}

∀li [ L, li [ {departing, cruising, turning, converging, docking}

Figure 1. Framework of the proposed decision support system for sailing status recognition and safety evaluation (map resource: the Norwegian Mapping Authority).
(This figure is available in colour online.)

Table 1. Groups of featured log data items.

Groups Ship motion Machineries

Data items Heading (°) Bow thruster-RPM feedback (%)
Speed (knots) Port board-RPM feedback (%)
Pitch (°) Starboard-RPM feedback (%)

Port board-azimuth feedback (°)
Starboard-azimuth feedback (°)

SHIPS AND OFFSHORE STRUCTURES 3



2.3. Separability pre-check

Before designing the algorithm for the classifier, it is proper to
have a preview of the data to check whether the database is
separable. If it is, we may check at a further step to have a
sense whether it is linearly separable, approximate linearly
separable or not, so that we may determine some properties
of the classifier to be designed later.

Firstly, the database is examined by the t-distributed sto-
chastic neighbour embedding (t-SNE) algorithm (Maaten
and Hinton 2008). By the algorithm, the high-dimensional
database is converted into a visualisable low-dimensional data-
base:

X = {x1, x2, . . . , xn} [ Rn×8 −−−�t-SNE

Y = {y1, y2, . . . , yn} [ Rn×2
(2)

The t-SNE result is shown as in Figure 2. From the visual-
ised result, it can be clearly found that there is a trend for each
scenario to get clustered, hence it can be inferred that the sail-
ing route can be separated into different scenarios based on the
selected data.

Besides t-SNE, pair plots can be used to reflect the indepen-
dency of each class. Here, two pair plots are selected and
shown in Figure 3. From the self-correlation of port thruster
RPM, heading and speed, it shows that there is independency
between different scenarios. And bow thruster RPM also gives
useful information to tell scenarios apart, e.g. docking data
points are explicitly away from other scenarios when the
bow thruster is in correlation with port thruster RPM. It
should be noted that the power density function (PDF) value
of the bow thruster self-correlation at 0 is dominant over the
scale. This results from that the bow thruster is strictly kept
turned off in almost whole period over scenarios including
cruising, turning and converging. While in departing and
docking scenarios, the bow thruster is not kept at a fixed run-
ning rate, the scattering makes the PDF at each value to be tri-
vial against the counterpart at 0.

Since the database is with a dimensionality at 8, which can
be considered as a high dimensional database. From the pre-

check of t-SNE dimension reduction and the pair plots, we
may putatively assume scenarios in the sailing route described
by log data are approximate linearly separable.

2.4. Support vector machine

SVM algorithm is chosen to build a classifier to solve the
classification problem. The SVM algorithm is trained with col-
lected log data according to eight features in Table 1. In prac-
tice, we convert the multiclass classification problem into
several binary classification problems (Aly 2005). Then, there
will be a specific classifier CLFk for scenario k, and 5 in total
for all scenarios. Taking scenario k as an example, for the
data points whose original labels are the same as scenario k,
they will be given new labels 1; otherwise, they will be given
new labels −1. Then a new vector L′ will be created by updated
labels, and the vector will substitute the original label L. This
process can be expressed as follows:

CLFk:
l′i = 1, if li = k
l′i = −1, otherwise

{
(3)

For each binary classifier, there is a specific optimal hyper-
plane:

OHk:WkX + bk = 0 (4)

whereWk is the normal vector to the hyperplane. The optimal
hyperplane lies between two parallel hyperplanes:

OH+
k :WkX + bk = 1

OH−
k :WkX + bk = −1

(5)

Points on and above hyperplane OH+
k will be assigned label

1, and finally turns into label k. And points on and below
hyperplane OH−

k will be assigned label −1, and finally will
not be classified into the dataset of scenario k.

While the SVM algorithm is designed, the database is
updated after every sailing so that the classifier built by SVM
evolves simultaneously. And the updated classifier can be
used to recognise the scenario status in subsequent sailings.
The idea of this training process is mainly borrowed from

Figure 2. Visualisation of dimension reduction result by t-SNE. (This figure is available in colour online.)
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Hold-out validation (Berrar 2019). Since we collected 16 sail-
ings’ log data, this process can be illustrated as in Table 2. In
Table 2, Classifiers 1–15 represent 15 different classifiers
train with 1–15 training sets (for example, a possible train-
ing-set combination for Classifier 3 could be Sailing dataset
No. 1, 2 and 3 or any other combinations of three sailing data-
sets), while test sets 1–16 mean No. 1–16 sailing datasets
(single sailing dataset).

2.5. Likelihood map and safety level calculation

As log data accumulated along the sailings run times by times,
the database for training the SVM classifier is getting larger.
Besides the eight featured data items, the geographical infor-
mation is also recorded. Therefore, another database can be
constructed based on the geographical information of those
data points which are correctly classified by the classifier.
And data points can be drawn on a geographical map reflect-
ing the site of each scenario in the sailing route. Then the map
can be converted into a heat map in terms of the density of the
geographical distribution of data points. At this step, kernel
density estimation method helps to calculate the estimated
density at each datum point xj:

p̂(xj) = 1
mh

∑m
i=1

K(
xj − xi

h
) (6)

where h (h > 0) is a smoothing parameter; K is the kernel for
scaling, and Gaussian kernel is chosen in this paper to estimate
the density. Then a 2D heat map illustrating the density distri-
bution can be drawn accordingly. Since the database is updated
after new sailing data are appended, the numerical value of the
density will become larger and larger, which implies that raw
density value itself does not contain standard useful infor-
mation to help the human to make decision. Therefore, to
avoid it from being nothing but fancy, we normalise the den-
sity scale into [0, 1]:

p̂N(xj) =
p̂(xj)−min ( p̂)

max ( p̂)−min ( p̂)
(7)

After the normalisation, the density will always be in a certain
scale and in a manner that we explicitly understand: the nor-
malised density 1 refers to the densest site on the sailing
route, while 0 refers to the sparsest site. The ferry is believed
to be safer when travelling on a site where the normalised den-
sity is higher, while the captain should be vigilant when the
ferry goes into the low normalised density site. Meanwhile,
heat maps can be converted to contours by an interpolation
operation based on the normalised density distribution. In
this paper, we choose the cubic spline interpolation method
to realise this conversion. Then the map is gridded, and the
density is calculated by the interpolation. By connecting grid
points with the same density value, the contour map is
obtained to demonstrate continuous approximation of the
density distribution at the vicinity area of the scenario. The
distribution function SL(y) can be obtained by ploy-fitting
the statistics of the safety level, where y represents the position.

2.6. Verification of how the safety level benefits in MPC

In this part, the concept of safety level is integrated into the
cost function to implement the MPC. The control scheme is
illustrated as in Figure 4. The vessel kinematics can be

Figure 3. Selected pair plots. (This figure is available in colour online.)

Table 2. Illustration of the classifier evolution process.

Testset

Classifier

1 2 … 15

1 – – – –
2 * – – –
… * * … –
15 * * * –
16 * * * *
Mean value * * * *

*represents a numeric value; – represents no calculation.
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represented as Equation (8). Since we do not consider environ-
ment loads at this stage, the right-hand side of the kinetic
equation τ is the input force which equals [ fu fv tr]′. η is the
pose vector as [N E ψ]′. R(ψ) is the horizontal plane rotation
matrix in terms of the yaw angle ψ. M is the system inertia
matrix. C(v) is the Coriolis-centripetal matrix. D(v) is the
damping matrix. H equals [1 0 0; 0 1 0], and y equals [N E]′.

ḣ = R(c)n
Mṅ+ C(n)n+ D(v)v = t

y = Hh
(8)

The original cost function is defined as follows:

J(t) = (y(t + 1)− yref )
TQ(y(t + 1)− yref )

+ Du(t + 1)TRDu(t + 1)
(9)

The optimisation goal is to minimise the cost function J; we
use the positive term (1− SL(y)) to conform to the implication
of safety level and the optimisation target. The cost function is
thus augmented as follows:

J∗(t) = (y(t + 1)− yref )
TQ(y(t + 1)− yref )

+ Du(t + 1)TRDu(t + 1)+W(1− SL(y(t + 1)))

(10)

Equations (9) and (10) give the cost function at one time-
step prediction, while MPC is predicting over a length of
time horizon Np to determine the best control candidate, so
the overall cost prediction at a certain time step can be rep-
resented as Equation (11).

J∗(t) =
∑t+Np

k=t+1

J∗(k) (11)

The sailing with the least MSL, among 16 historical sail-
ings, is selected as the reference to carry out the path follow-
ing task. Comparison will be made between the simulations
with different cost functions to verify the effect of the safety
level term.

2.7. Assessing the safety level by the contour map

At the last step in the proposed method, we establish a concept
of safety levels with respect to the normalised density distri-
bution described by contour maps. Safety levels (SL) are

directly represented by the normalised density of the geo-
graphical location. Hereupon, two dimensionless items can
be further calculated to reflect different aims of evaluation:
receding safety level (RSL) expressed as Equation (12) and
mean safety level (MSL) as Equation (13).

RSL(t) =

∑N(t)

N(t−DT)
pi

DT
(12)

MSL(t) =
∑N(t)

i=0
pi

N(t)
(13)

N is the number of accumulated log data points until the
moment t. ΔT is the number of sampled data points in the
receding horizon, while the receding horizon is chosen
manually.

RSL calculates the mean safety level in a fixed time scale.
The receding horizon for calculation is updated after each
sampling. MSL calculates the mean safety level from the start
to current moment t. MSL may reflect the overall safety
level; hence, it can be used to evaluate the performance of
the human manoeuvring in a sailing.

3. Results

The proposed method is implemented to the database built
upon collected 16 sailings’ log data. In this section, results
are presented in three parts: classification results from the
SVM classifier; the derived likelihood heat maps and nor-
malised numerical contour maps, and online testing. To
make the demonstration of the results and the correspond-
ing visualisation more comprehensible, result figures will
be partially demonstrated. While the selection of figures is
unbiased, it is believed that they are able to reflect the global
performance.

3.1. Classification result

According to Section 2.4 and Table 2, the classifier is built once
the first sailing’s log data is added to the SVM training data-
base. As the database evolves when new log data come into,
the classifier will be updated therewith. The demonstration
of the evolution result irrespective of scenarios is shown as
Table 3 and Figure 5.

Figure 4. Flowchart of the MPC control scheme. (This figure is available in colour online.)
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Table 3 shows that the precision of the classification result is
increasing as the classifier evolves. While in Figure 5, the pre-
cision plunges at the early stage and then rises back rapidly.
The diversity between datasets collected from different sailings
may account for it, since it is difficult to make an entirely cor-
rect description of another sailing by a classifier only trained
by very few sailing datasets (one or two). However, after
four sailings’ log data are added into the database, the classifier
can almost guarantee a precision over 90%. As the database is
larger, the precision of the classifier keeps growing. At last, the
mean value of the classification precision has been developed
over 96% based on whole collected sailings’ data.

After illustrating the result in a macro-scope, Figure 6
shows the classification precision with respect to different
scenarios, and it comprehensively reveals how different scen-
arios correlate pairwise. In Figure 6, the labels are abbreviated:
DPT for departing; CRS for cruising; TRN for turning; CVG

for converging and DCK for docking. From CLF No. 4 to
No. 9, the evolution improves its predicting capacity on
CVG scenario significantly, but the classifier incorrectly pre-
dicts many TRN data points as CVG, which results in the
declination of the prediction precision on TRN. Meanwhile,
the prediction precision on DCK also grows slightly. Then
by comparing the latter two, it shows that the predicting pre-
cision is improved remarkably on DPT from 84% to 90%.
However, the same problem occurs again that the prediction
precision on CVG continues to grow on sacrifice of the decli-
nation on TRN, in a moderate manner. In general, the per-
formance of the classifier is improved after several evolutions.

3.2. Likelihood heat maps and derived contours

According to the method introduced in Section 2.4, heat maps,
based on the accumulated database, can be drawn, as shown in
Figure 7. The first five subplots show the heat map of each
scenario, while the last subplot at the right bottom shows an
overview of the complete route.

The heat maps can help the reader, for example, captains
have a direct sense of the most travelled sites. And this feature
is prominent especially in scenarios cruising, turning, and con-
verging. However, since both the departing and docking are

Table 3. Illustration of the classifier evolution process.

Testset

Classifier

4 9 14

5 0.9031 – –
10 0.9723 0.9815 –
15 0.9675 0.9578 0.9610
Mean value 0.9370 0.9593 0.9684

Figure 5. Evolution of the classifier according to Table 2. (This figure is available in colour online.)

Figure 6. Confusion matrix reflecting precision by scenarios (left: CLF No.4; middle: CLF No. 9; right: CLF No. 14). (This figure is available in colour online.)

SHIPS AND OFFSHORE STRUCTURES 7



undergoing in a very concentrated site, the density distribution
appears to be somewhat diffusion. However, it is thought to be
in a tolerant extent, and can be ameliorated as the database is
larger.

Based on heat maps shown in Figure 7, a set of contours
with respect to each scenario can be drawn as Figure 8. Differ-
ent from the heat maps that provide an intuitive illustration
and sense of the most travelled area, the set of contours quan-
titatively demonstrates how the density distributes on a geo-
graphical map. Since contours are obtained by an
interpolation operation, its fidelity and creditability are depen-
dent on the quantity of data. In general, the overall trend in
each scenario has been shown. For example, in the contour
of cruising scenario – the closer to the centre of the heat
area, the larger the normalised density.

3.3. Accumulative manoeuvring knowledge for on-
board decision support

As the sailing data are classified by SVM (in Section 2.4) and
the results are obtained (in Section 3.1), informative statistics
on how captains manoeuvre the ferry during different scen-
arios are made as in Table 4.

Bow thruster is only turned on during departing and dock-
ing when a side force is needed to push the ferry into/out the
quay. The behaviours of port- and star-thruster are almost in
the same scale, except for the azimuth angle during docking
scenario. It depends on which side the ferry docks since solely
adjusting the azimuth angle of the outer thruster is able to
balance the torque generated at the bow thrust. Since in

this commuting route, the ferry docks at its star-board side
(e.g. the coastal to its right), the port-thruster becomes the
outer thruster so that its azimuth angle is adjusted as
required.

Since the calculated safety levels MSL and RSL are returned
to the captain in real time, when the calculated safety levels are
falling down to a certain extent, the captain can inspect his
manoeuvring commands according to the accumulative man-
oeuvring knowledge to help him regulate the ferry running in a
correct status.

3.4. Verification in the MPC loop

In this part, the path following simulation results will be shown
and assessed. Figure 9 shows the path of reference (Sailing No.
6), the original MPC and the improved MPC with safety level
(MPC-SL). The safety level assessment is given as Table 5. The
prediction horizon Np in MPC and MPC-SL is set as 10.

It should be emphasised that the way how we evaluate the
control performance shown in Figure 9 is slightly different
from the traditional approach. Traditionally, we balance the
input cost and the error reduction to have an optimal solution.
In addition to those two items, we augment the cost function
with a safety level SL(y) factor, as in Equation (10). Then it
becomes a balance among these three dimensions. Besides
having an acceptable reference path following, it requires to
have a better safety level evaluation, which is shown in Table
5 in detail.

From the safety level statistics in Table 5, we can implicitly
summarise that the safety level has a strong impact on the

Figure 7. Heat maps of different scenarios. (This figure is available in colour online.)

8 B. WU ET AL.



control. After the safety level term is added into the cost func-
tion, the overall safety level increases significantly, and so as in
scenarios DPT, CRS and TRN.

When the vessel travels in a narrow water tunnel in CVG,
where the gradient of the safety level can be very sharp, the
safety level suffers a decline but in a moderate level. When
the vessel is in the final bow thrusting stage, where the safety

Figure 8. Contour of different scenarios. (This figure is available in colour online.)

Table 4. On-board machinery status in different scenarios.

Actuator DPT CRS TRN CVG DCK

Bow-thruster (%) >0.1 – – – >10
Port-RPM (%) <60 >75 [40, 60] [40, 60] [0, 30]
Star-RPM (%) <60 >75 [40, 60] [40, 60] [0, 30]
Port-azimuth (°) >0.5 <1 >0.5 <2 >50
Star-azimuth (°) >0.5 <1 >0.5 <2 <1

Figure 9. Path following simulation by MPC (the path corresponds to Figure 1). (This figure is available in colour online.)
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level heat map almost concentrates on a point, it is difficult for
the vessel to be strictly in the circle of high safety so that the
safety level in DCK is low. In general, the safety level term
improves the control in terms of safety noticeably, which
suggests that the proposed methodology attains a good per-
formance and further study can be conducted in practice.

3.5. Safety level assessment

In this part, safety level assessments are conducted from two
aspects. One is sailing status recognition for a whole sailing
dataset, and another is safety level evaluation.

Figure 10 shows the result of the online sailing status recog-
nition testing. The dashed lines divide the timeline into seg-
ments remarking real periods of each scenario, while the
mark ‘+’ represents the recognised status at each sampling
step. There are two wild points in the DPT stage, where the
sampled data are incorrectly recognised as DCK and TRN.
The problem occurs mainly at the TRN stage, where the clas-
sifier improperly recognises the ferry to enter the next stage
ahead of the real situation, which may be resulted from the
similarity between the manoeuvring operations during the
late phase in TRN and the early phase in CVG. The classifier
has a good performance in judging CRS and DCK during
the online testing.

According to the defined terms in Section 2.7 and the
obtained contour maps, safety level evaluation is implemented
accordingly. The real-time safety level at each sampling step is
represented by diluted lines in Figure 11. Firstly, it should be
mentioned that since contour maps are derived for each scen-
ario separately and are not merged into one ensemble, the
safety level evaluation experiences a gap when the ferry transits
between two scenarios. Secondly, it is notable that, excluding

Table 5. Illustration of the classifier evolution process.

Scenario

Safety level

Ref. MPC MPC-SL

DPT 0.4203 0.4574 0.5449
CRS 0.4259 0.5135 0.6743
TRN 0.6851 0.6304 0.6999
CVG 0.5065 0.5938 0.5059
DCK 0.6161 0.4157 0.4158
Overall 0.5199 0.4574 0.5681

Figure 11. Calculated MSL and RSL (diluted lines are the real-time safe level). (This figure is available in colour online.)

Figure 10. Online testing of the sailing status recognition. (This figure is available in colour online.)
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the start and the end stage of the whole sailing, the safety level
is usually low at the start and end of each single scenario. It
may be explained according to the distribution shown in
Figure 7. In those heat maps, there is a conspicuous high-den-
sity area in each scenario, while at the start and the end, the
distribution inclines to disperse, which consequently results
in the decline of the safety level at the marginal area.

According to Section 2.7, the two items MSL and RSL,
reflecting the safety level from different aspects, are calculated,
and shown as in Figure 11. Since RSL calculates the average
safety level at a fixed length of the past period, there is a
delay to reflect the change of the safety level. This delay pro-
vides RSL the ability to reduce the effect at the start and the
end during the transition time between different scenarios,
which makes RSL to describe the sailing safety in a moderate
way. Since critical operations are expected to be taken at the
transition period between two scenarios, RSL drastically
decreases to a low level to reflect the high possibility of com-
mitting a mistake during the transition. MSL demonstrate
the safety level with a global insight. It is noticed that because
of the long-term steady sailing of the ferry, there is a swell of
the safety level during both CRS and CVG scenarios. At last,
MSL can provide an overall evaluation of the sailing safety.

RSL and MSL reflect the safety level from two aspects based
on the constructed safety level contour maps by a numerical
judgement explicitly. It provides an intuitive and quantitative
approach for the captain to take the advantage of the knowl-
edge accumulated on this commuting route.

4. Conclusion

This paper introduces a method to utilise log data from a ferry
to establish an on-board safety awareness system in order to
help humans to make decisions. Successful sailings are still
thought to be a good paradigm for both designing autonomous
ferries and evaluating the manoeuvre quality of every sailing.
Hence, we split a customised sailing route and define different
scenarios in favour of the human expertise. Collected data are
classified by an SVM algorithm and its results are presented as
figures of heat maps and contours by the statistical method.
Both sets of figures together may assist to evaluate the sailing
safety level. Since the ferry may deviate from the designated
path no matter under human operations or under autonomous
manoeuvring, the figures give a set of metrics to qualitatively
and quantitatively know whether the current situation is safe
or not, based on the past experience which is reflected by his-
torical log data. By defining new items reflecting safety levels
with respect to geographical locations, the result can be used
to optimise the control. MPC is designed with the safety
level term integrated to verify its significance. From the simu-
lation results, the safety level has a great impact on and ame-
liorates the control loop. From this research work, we
suggest a framework how log data can be comprehensively
used to provide on-board support and enhance the sailing
route safety. The main idea in this paper is to synthetically
use both human expertise and objective log data to make rudi-
ment work for autonomous navigation. It is also under a grand
framework that we aim to achieve reliable on-board decision
support and ship autonomy by finding, interpreting, learning,

and imitating the captains’ operating behaviours. For the
future work, first, since the log data collected in this paper
are from only one commuting route in moderate environment
conditions, log data from other commuting routes and types of
weather windows should be collected and analysed to examine
the universality of the proposed method; second, further study
can be focused on the sensitivity of the safety level to the gra-
dient in terms of geographic distance to optimise the control
performance.
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