
Cai Tian
D

octoral theses at N
TN

U
, 2021:122

ISBN 978-82-326-6070-4 (printed ver.)
ISBN 978-82-326-6516-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

D
oc

to
ra

l t
he

si
s Doctoral theses at NTNU, 2021:122

Cai Tian

Numerical studies of viscous 
flow around step cylinders

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f 
Ph

ilo
so

ph
ia

e 
D

oc
to

r
Fa

cu
lty

 o
f E

ng
in

ee
ri

ng
 

D
ep

ar
tm

en
t o

f M
ar

in
e 

Te
ch

no
lo

gy



Numerical studies of viscous 
flow around step cylinders

Thesis for the degree of Philosophiae Doctor

Trondheim, March 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Cai Tian



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering
Department of Marine Technology

© Cai Tian

ISBN 978-82-326-6070-4 (printed ver.)
ISBN 978-82-326-6516-7 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

Doctoral theses at NTNU, 2021:122

Printed by Skipnes Kommunikasjon AS 

NO - 1598



Contents

Abstract vii

Preface ix

Acknowledgment xi

Publication List xiii

1 Introduction 1

1.1 Viscous flow around a circular cylinder in steady flow . . . . 1

1.1.1 Flow regimes around a circular cylinder . . . . . . . . 1

1.1.2 Vortex shedding . . . . . . . . . . . . . . . . . . . . . 3

1.2 Vortex shedding behind step cylinders . . . . . . . . . . . . . 5

1.3 Vortex dislocation . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Vortex system around the step surface . . . . . . . . . . . . . 11

1.5 Motivation and objective . . . . . . . . . . . . . . . . . . . . . 13

1.6 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Numerical simulation technique 19

2.1 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Computational method . . . . . . . . . . . . . . . . . . . . . . 20

3 Summary of the articles 23

3.1 Part 1 - Vortex interaction behind single step cylinders . . . . 23

3.2 Part 2 - Vortex system around a single step cylinder . . . . . 32

4 Conclusions and Recommendations for Future Work 37

4.1 Main finding in the present thesis . . . . . . . . . . . . . . . . 37

4.2 Recommendation for future work . . . . . . . . . . . . . . . . 42

4.2.1 Vortex interactions in the direct mode wake of the
step cylinder with small diameter ratios . . . . . . . . 42

i



ii ii

4.2.2 Reynolds number and diameter ratio effects in the
vortex system around the step cylinder . . . . . . . . . 42

4.2.3 Turbulent wake behind step cylinders . . . . . . . . . 43

4.2.4 Oscillatory flow around step cylinders . . . . . . . . . 43

5 Article 1: Numerical investigation of flow around a step
cylinder 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Flow configuration and computational method . . . . . . . . 47

5.2.1 Introduction to MGLET . . . . . . . . . . . . . . . . . 47

5.2.2 Flow configuration and coordinate system . . . . . . . 48

5.3 Case summary and grid study . . . . . . . . . . . . . . . . . 49

5.3.1 Case overview . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.2 Grid independence study . . . . . . . . . . . . . . . . 51

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Overview of flow development . . . . . . . . . . . . . . 52

5.4.2 Streamwise vortices . . . . . . . . . . . . . . . . . . . 53

5.4.3 Spanwise vortex . . . . . . . . . . . . . . . . . . . . . 54

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Article 2: Antisymmetric vortex interactions in the wake
behind a step cylinder 61

7 Article 3: The long periodicity of vortex dislocations in the
wake behind a step cylinder 73

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Computational method and flow configuration . . . . . . . . . 76

7.2.1 Computational method . . . . . . . . . . . . . . . . . 76

7.2.2 Flow configuration . . . . . . . . . . . . . . . . . . . . 77

7.3 Grid study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Grid overview . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.2 Grid convergence study . . . . . . . . . . . . . . . . . 79

7.3.3 Comparing with previous studies . . . . . . . . . . . . 80

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4.1 Long periodicity of the vortex dislocations . . . . . . . 84

7.4.2 Computational challenges for investigating a long pe-
riodic phenomenon . . . . . . . . . . . . . . . . . . . . 90

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents iii

8 Article 4: Vortex dislocation mechanisms in the near wake
of a step cylinder 97

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1.1 Single step cylinder wake . . . . . . . . . . . . . . . . 98

8.1.2 Vortex dislocation . . . . . . . . . . . . . . . . . . . . 101

8.1.3 Objectives of the present study . . . . . . . . . . . . . 102

8.2 Flow configuration and computational aspects . . . . . . . . . 103

8.2.1 Flow configuration and coordinate system . . . . . . . 103

8.2.2 Computational method . . . . . . . . . . . . . . . . . 104

8.2.3 Grid convergence study . . . . . . . . . . . . . . . . . 104

8.2.4 Comparison with previous studies . . . . . . . . . . . 106

8.3 Features of the present wake flow . . . . . . . . . . . . . . . . 107

8.3.1 Overview of the flow development . . . . . . . . . . . 108

8.3.2 Necessity of monitoring the phase information of each
N- and L-cell vortex . . . . . . . . . . . . . . . . . . . 111

8.4 Two different phase difference accumulation mechanisms and
their effects on vortex interactions . . . . . . . . . . . . . . . 112

8.4.1 Two different phase difference accumulation mecha-
nisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4.2 Effects of two phase difference accumulation mecha-
nisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.4.2.1 Differences in formation positions of the NL-
loop1 and NL-loop2 . . . . . . . . . . . . . . 113

8.4.2.2 Variation of formation positions of the NL-
loop1 structures . . . . . . . . . . . . . . . . 116

8.5 Characteristics of the long N-cell cycles . . . . . . . . . . . . 119

8.5.1 Trend of Φf variation . . . . . . . . . . . . . . . . . . 119

8.5.2 Interruption of the antisymmetric phenomenon . . . . 120

8.5.3 Trigger value and threshold value of vortex dislocations120

8.6 Investigation on universality . . . . . . . . . . . . . . . . . . . 122

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.8.1 A method used to obtain the phase information and
phase difference of vortices . . . . . . . . . . . . . . . 127

8.8.2 Selection of the sampling region and the signal variable128

8.8.3 The method for obtaining the phase (ϕ) and the shed
position of vortices . . . . . . . . . . . . . . . . . . . . 129

8.8.4 Monitoring both the N- and L-cell vortex at the same
downstream position . . . . . . . . . . . . . . . . . . . 131



iv iv

8.8.5 The method to correct L-cell vortices from oblique
shedding effects . . . . . . . . . . . . . . . . . . . . . . 134

9 Article 5: Diameter ratio effects in the wake flow of single
step cylinders 139
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2 Flow configuration and computational aspects . . . . . . . . . 144

9.2.1 Flow configuration and coordinate system . . . . . . . 144
9.2.2 Computational method . . . . . . . . . . . . . . . . . 145
9.2.3 Grid convergence . . . . . . . . . . . . . . . . . . . . . 146

9.3 Diameter ratio effects on the shedding frequencies and the
extensions of vortex cells . . . . . . . . . . . . . . . . . . . . . 147
9.3.1 Diameter ratio effects on the S-cell vortex . . . . . . . 147
9.3.2 Diameter ratio effects on the N- and L-cell vortices . . 149

9.3.2.1 Formation of the N-cell vortex . . . . . . . . 149
9.3.2.2 Spanwise extensions and shedding frequen-

cies of the N- and L-cell vortices . . . . . . . 151
9.4 Interactions between the N- and L-cell vortices . . . . . . . . 154

9.4.1 Variation of phase difference between N- and L-cell
vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.4.2 D/d influences on the trigger and threshold values of
vortex dislocations . . . . . . . . . . . . . . . . . . . . 157

9.4.3 The number of the NL-loop structures . . . . . . . . . 160
9.4.4 Symmetric and antisymmetric vortex interactions . . . 160

9.5 Likelihood analysis . . . . . . . . . . . . . . . . . . . . . . . . 164
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.7 Appendix A: Streamwise velocity spectra in the D/d=2.0,

2.2, 2.4, 2.6, 2.8 and 3.0 cases . . . . . . . . . . . . . . . . . . 170
9.8 Appendix B: Detailed information of vortex dislocations in

the D/d=2.0, 2.6, 2.8 and 3.0 cases . . . . . . . . . . . . . . 172
9.9 Appendix C: Detailed information in D/d=2.1, 2.3, 2.5 and

2.7 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10 Article 6: Diameter ratio effects in the wake flow of single
step cylinders 183
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . 187

10.2.1 Flow configuration . . . . . . . . . . . . . . . . . . . . 187
10.2.2 Computational method . . . . . . . . . . . . . . . . . 188
10.2.3 Grid convergence, spanwise length convergence, and

statistical convergence . . . . . . . . . . . . . . . . . . 190



Contents v

10.3 Time-averaged flow around the step surface . . . . . . . . . . 191
10.4 Instantaneous flow around the step surface . . . . . . . . . . 197
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.6 Appendix: Grid convergence, spanwise length convergence,

and statistical convergence . . . . . . . . . . . . . . . . . . . . 202
10.6.1 Grid convergence . . . . . . . . . . . . . . . . . . . . . 202
10.6.2 Spanwise length convergence . . . . . . . . . . . . . . 204
10.6.3 Statistical convergence . . . . . . . . . . . . . . . . . . 205

11 Supplementary file 215
11.1 Supplementary file 1 . . . . . . . . . . . . . . . . . . . . . 217
11.2 Supplementary file 2 . . . . . . . . . . . . . . . . . . . . . 223
11.3 Supplementary file 3 . . . . . . . . . . . . . . . . . . . . . 227
11.4 Supplementary file 4 . . . . . . . . . . . . . . . . . . . . . 229
11.5 Supplementary file 5 . . . . . . . . . . . . . . . . . . . . . 231
11.6 Supplementary file 6 . . . . . . . . . . . . . . . . . . . . . 235
11.7 Supplementary file 7 . . . . . . . . . . . . . . . . . . . . . 239
11.8 Supplementary file 8 . . . . . . . . . . . . . . . . . . . . . 241



vi vi



Abstract

A step cylinder consists of a small diameter cylinder (d) attached coaxially
to a large diameter cylinder (D). Structures with a similar shape as the
step cylinder have been extensively used in many marine engineering ap-
plications, for example, the underwater hull of a semi-submersible offshore
platform, the supporting structures for a floating wind turbine, and the ma-
rine riser with staggered buoyance elements. In recent years, there has been
an increasing interest in the flow around step cylinders. Previous studies
investigated dominating vortex cells in step cylinder wakes, the vortex in-
teractions between them, and the force distributions on the surface of step
cylinders. However, there has been little discussions about the formation
mechanism and detailed process of vortex interactions, the diameter ratio
(D/d) effects in the wake, and the vortex system around the step cylinder
under a sub-critical Reynolds number (ReD). To focus on these aspects,
in the present thesis, the flow around step cylinders with diameter ratios
2 ≤ D/d ≤ 3 at two Reynolds numbers ReD=150 and 3900 were investi-
gated by directly solving the three-dimensional Navier-Stokes equations.

The new findings can be mainly divided into two parts. In the first
part, we investigated the vortex interactions in the wake behind step cylin-
ders with 2 ≤ D/d ≤ 3 at RD=150. Two types of N-cell cycles: the long
N-cell cycle, and the fundamental N-cell cycle, were first identified beside
the conventional N-cell cycle. Moreover, two newly observed vortex loop
structures were observed to antisymmetrically or symmetrically appear be-
tween the neighboring N-cell cycles in a long N-cell cycle. After developing
a reliable method that can be used to calculate the phase information of
vortices, the vortex interactions, especially the vortex dislocations were an-
alyzed in detail. A vortex dislocation mechanism, together with its effects
in the newly identified symmetric and antisymmetric vortex interactions,
were described.

In the second part, the flow around a step cylinder with D/d=2 at
ReD=3900 was investigated. Four horseshoe vortices were observed to form
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above the step surface in front of the upper small cylinder in the time-
averaged flow. Their developments were analyzed. Moreover, a pair of
base vortices and a backside horizontal vortex in the rear part of the step
surface behind the small cylinder were captured. For the instantaneous
flow, hairpin vortices were found to form between the legs of two counter-
rotating horseshoe vortices located on the same side of the step cylinder.
Furthermore, in the small cylinder wake, Kelvin-Helmholtz vortices were
observed to shed at an unexpectedly high shedding frequency.

The present thesis contributes a deeper and more complete physical
understanding of the wake behind step cylinders.
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Chapter 1

Introduction

1.1 Viscous flow around a circular cylinder in steady
flow

Cylindrical structures are widely used in the marine offshore industry, for
example, the hull of a Spar platform [1] and deep-water risers [2]. As flow
separates from a cylindrical structure’s surface, the subsequent well-known
vortex shedding generates significant flow-induced periodic loading on the
structure. Consequently, wake flow around circular cylinders has been a
popular research topic for engineers and scientists for decades. In this sec-
tion, a brief review of flow around a circular cylinder is described.

1.1.1 Flow regimes around a circular cylinder

To describe the flow around a circular cylinder, a governing non-dimensional
parameter, namely the cylinder Reynolds number, is introduced:

ReD =
UD

ν
, (1.1)

where U is the flow velocity, D represents the diameter of the cylinder, and
ν is the kinematic viscosity. The wake flow tremendously changes when
ReD increases from zero. The detailed information about the flow regimes
at different regimes of ReD is shown in Figure 1.1.

One can see that, when ReD is less than 5 (Figure 1.1 (a)) there is
no flow separation around the cylinder. As the Reynolds number increases
to the range 5 < ReD < 40 (Figure 1.1 (b)), the flow separates on the
cylinder wall to form a fixed pair of vortices behind the cylinder, and there
is no vortex shedding. For 40 < ReD < 200 (Figure 1.1 (c)), periodic two-
dimensional vortex shedding occurs, i.e., the vortex street does not vary

1
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Figure 1.1: Regimes of flow around a smooth, circular cylinder in steady
current (Images reproduced from Sumer and Fredsøe [4]).

in the spanwise direction [3]. As ReD exceeds 200, the wake flow starts
to transit into turbulent. Gerard and Williamson [3] reported distinctly
three-dimensional vortex shedding at 200 < ReD < 300.
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Figure 1.2: (a) Schematic sketch illustrating flow around the circular cylin-
der. (b) A zoom-in sketch of flow near the separation region highlighted by
the red rectangular in (a) (Images reproduced from Sumer and Fredsøe [4]).

When the Reynolds number becomes larger than ReD ≈ 300, the cylin-
der wake flow becomes completely turbulent as shown in Figure 1.1 (e). In
the meantime, the boundary layer over the cylinder surface stays laminar
in a wide Reynolds number regime 300 < ReD < 2 × 105, which is known
as the subcritical flow regime. As ReD further increases, the region of tran-
sition to turbulence first occurs at the separation point in Figure 1.1 (f) at
3× 105 < ReD < 3.5× 105. Then it moves upstream toward the stagnation
point when ReD continues to increase.

The boundary layer and wake flow of the circular cylinder become com-
pletely turbulent at ReD > 4.5×106, which is referred to as the transcritical
regime.

1.1.2 Vortex shedding

For all the flow regimes when ReD > 40 (Figure 1.1), one dominating phe-
nomenon is the vortex shedding. Sumer and Fredsøe [4] concluded that,
due to the adverse pressure gradient caused by the divergent flow at the
rear side of the cylinder, the boundary layer over the cylinder surface would
separate. As a consequence, a shear layer is formed. As shown in Figure 1.2,
the velocity distribution in the boundary layer along the cylinder surface
creates a significant amount of vorticity. When this vorticity convects into
the shear layer formed downstream of the separation point, it causes the
shear layer to roll up into a vortex with the same sign compared to that of
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Figure 1.3: (a) Prior to shedding of Vortex A, Vortex B is being drawn
across the wake. (b) Prior to shedding of Vortex B, Vortex C is being drawn
across the wake (Images reproduced from Sumer and Fredsøe [4]).

the incoming vorticity.

The vortex shedding process behind a circular cylinder was first sys-
tematically described by Gerrand [5]. According to his research, when the
small disturbances are introduced to the flow around a circular cylinder at
ReD > 40, the vortex at one side of the cylinder will grow larger than the
other side vortex. Then the alternative vortex shedding follows. As shown
in Figure 1.3 (a), when Vortex A becomes larger and stronger, it draws the
oppositely rotating Vortex B across the wake. The vorticity in Vortex A is
in the clockwise direction as indicated in Figure 1.2, while that in Vortex
B is in the anti-clockwise direction. As Vortex B approaches to Vortex A,
it will cut off the further supply of vorticity from the boundary layer to
Vortex A, and further cause Vortex A to shed. Then Vortex A convects
downstream as a free vortex. After Vortex A shed from its shear layer, a
new vortex (Vortex C) forms at the same side of the cylinder in Figure 1.3.
Now, the size and strength of Vortex B will increase. It plays the same role
as Vortex A did. Therefore Vortex C will be drawn across the wake and
finally lead to Vortex B’s shedding. This shedding process will continue to
occur alternatingly between the sides of the cylinder.

To describe the vortex shedding behind a circular cylinder, the nor-
malized vortex shedding frequency, namely the Strouhal number (St) is
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Figure 1.4: Strouhal number for a smooth circular cylinder. The solid curve
is from Williamson [3]. The dashed curve is from Roshko [6]. The dotted
curve is from Schewe [7]. (This image reproduced from Sumer and Fredsøe
[4]).

introduced:

St =
fvD

U
, (1.2)

where fv is the vortex shedding frequency, D is the diameter of the circular
cylinder, and U is the velocity of the steady current. Figure 1.4 shows how
the Strouhal number varies with the Reynolds number.

1.2 Vortex shedding behind step cylinders

Besides the uniform cylindrical structures, the structures with a similar
shape of the step cylinder illustrated in Figure 1.5 have been used in many
engineering applications, for example, the underwater hull of a semisub-
mersible offshore platform, the underwater support structure of a spar float-
ing wind turbine (Figure 1.6 (a)), and the steel lazy wave risers (Figure 1.6
(b)). In recent years, the flow around step cylinders has drawn a lot of
attention.

For a long step cylinder, there are two important parameters for the flow
past a single step cylinder, i.e., the Reynolds number ReD and the diameter
ratio (D/d). D/d is the ratio between the large- and small-diameter parts of
the step cylinder, and ReD is the Reynolds number introduced in Equation
1.1. The first systematic investigation of the wake flow behind a single step
cylinder is given by Lewis and Gharib [9]. Based on experimental analyses
in the wake of step cylinders with 1.44 < D/d < 1.76 at 67 < ReD <
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Figure 1.5: A sketch of step cylinder geometry
used in Article 1 ∼ 6 in the present thesis. The
diameter of the small and large cylinders are d
and D, respectively. l and L denote the length of
the small and large cylinders, respectively.

200, they first defined three main vortex interaction modes: a direct mode
when D/d < 1.25, a indirect mode when D/d > 1.55, and a transition
mode when 1.25 < D/d < 1.55. In the direct mode, vortices shed from
the small cylinder directly interact with those from the large cylinder in a
narrow region, which is referred to as the interface. While in the indirect
mode, one more frequency f3 (which is referred to as fN in the present
work) was identified in a so-called modulation zone, in which no direct
interaction was found between vortices with fS and fL. Figure 1.7 (a)
and (b) illustrate the direct and indirect modes, respectively. Meanwhile,
Lewis and Gharib [9] mentioned that the corresponding regions of D/d to
the different vortex interaction modes varied with the varying Reynolds
number. In 2006, Dunn and Tavoularis [10] validated the indirect mode
through experimental investigations in the wake of a step cylinder with
D/d ≈ 2 at 63 ≤ ReD ≤ 1100. Based on the three dominating shedding
frequencies, they identified three types of spanwise vortex cells: (1) S-cell
vortex with the highest shedding frequency fS behind the small cylinder, (2)
L-cell vortex shed from the large cylinder with shedding frequency fL, and
(3) N-cell vortex with the lowest shedding frequency fN located between
the S- and L-cell regions. The terminologies S-, N-, and L-cell vortices were
thereafter adopted in many studies [11, 12, 13] and are also used in all
articles included in the present thesis. The regions where these three vortex
cells occur are indicated in Figure 1.7.

The formation of the N-cell vortex is an essential feature in the wake be-
hind the step cylinder. The N-cell vortex has the lowest shedding frequency
among the three dominating vortex cells, i.e., the S-, N- and L-cell vortices.
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Figure 1.6: (a) A sketch of the SPAR-buoy floating offshore wind turbine
[8]. (b) A typical view of steel lazy wave risers (SLWR) (Retrieved from:
https:www.kongsberg.com).

Figure 1.7: (a) Flow visualization of the direct mode at Reynolds number
ReD =76 for the diameter ratio D/d=1.34. The S-S and L-L half-loop
structures are marked by the blue and green curves, respectively. (b)Flow
visualization of the indirect mode at Reynolds number ReD =99 for the
diameter ratio D/d=1.76. Images reproduced from Lewis and Gharib [9].

Similar low-frequency cells were also observed in the wake behind several
other configurations, e.g., the wake behind a free-end cylinder [14], the wake
behind a circular cylinder with flat end-plat [3], and the wake behind a con-
cave curved cylinder [15]. The previous studies [3, 10, 12, 16] attributed
the appearances of such low-frequency cells (N-cell-like vortex) to 3D ef-
fects, which include mainly two mechanisms: downwash and increased base
pressure. Bearman [17] and Williamson [3] found that the increased base
pressure could increase the vortex formation region and cause the vortex
shedding frequency to decrease. Zdravkovich [16] and Williamson [3] found
that the spanwise velocity (downwash) could not merely displace the vortex
formation region further downstream but also widen the separated shear
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Figure 1.8: Isosurfaces of Q = 2× 10−3 showing vortex structures’ develop-
ment in the wake behind a step cylinder with D/d = 2 at ReD = 150. T is
the period of one N-cell cycle. In (d) the S-S and L-L half-loop structures
are marked by the blue and green curves, respectively. Images reproduced
from Morton and Yarusevych [11].

layers before they roll up into vortices. These effects would also decrease
the vortex shedding frequency. For the wake behind the step cylinder, by
doing experiments and numerical simulations, Dunn & Tavoularis [10] and
Morton & Yarusevych [12] also suggested that the 3D effect is a plausible
explanation of the formation of the N-cell vortex.

Besides the formation mechanism of the N-cell vortex, Morton and Yaru-
sevych [11] further defined a cyclic feature in N-cell shedding. They found
that the spanwise extension of N-cell vortices sharply decreases after the
vortex dislocation occurs between the N- and L-cell vortices. Then the
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spanwise extension of the following N-cell vortices increases again until the
next vortex dislocation happens. They defined this cyclic change in the
spanwise length of N-cell vortices as the N-cell cycle. As an example, in
the N-cell cycle shown in Figure 1.8 (a), (b), (c), and (d), the length of the
N-cell vortices increases from N3 to N9. After the vortex dislocation occurs
in Figure 1.8 (d) and (e), at the beginning of the subsequent N-cell cycle.
the length of N13 (Figure 1.8 (f)) is clearly smaller than that of N9 (Figure
1.8 (e)).

1.3 Vortex dislocation

The phrase vortex dislocation was first introduced by Williamson [3] when
he investigated multiple vortex cells with different shedding frequencies in
his experiments of flow past a circular cylinder at ReD < 200. Neighboring
vortex cells were observed to move either in-phase or out-of-phase with each
other due to their different shedding frequencies. When these vortex cells
move out of phase, at the boundary between them, the contorted ’tangle’
of vortices appears and looks like dislocations that occur in solid materials.
Williamson [3] defined this kind of flow phenomenon as vortex dislocation.
He reported that, at ReD = 100, vortex dislocations occur at the boundary
between vortex cells (the end-plate cell of frequency fe and the single cell
of frequency fL) at a constant beat frequency fL − fe, accompanied by an
obvious minimum amplitude of the velocity fluctuations at the boundary.
In addition, the time trace of phase differences was plotted by comparing
velocity signals from different vortex cell regions. In 1992, Williamson [18]
further investigated the dislocation by adding a small ’ring’ on a circular
cylinder to force the dislocation to happen. This study revealed more de-
tailed features of vortex dislocations, such as the vortex dynamics and the
effects of vortex dislocations in the wake flow.

Behind step cylinders, vortex dislocations appear in the wakes with both
the direct and the indirect modes. For the direct mode, Lewis and Gharib
[9] found that, when S- and L-cell vortices are in phase, they connect to
each other one by one across the interface. However, due to their differ-
ent shedding frequencies, the phase difference between the corresponding S-
and L-cell vortices gradually increases. When they become out of phase,
the direct connection will be interrupted. At the same time, as shown in
Figure 1.7 (a), the S-S and L-L half-loop connections form between oppo-
sitely rotating S-cell vortices and L-cell vortices, respectively. The period
between two such interruptions is called a beat cycle. The corresponding
beat frequency can be calculated as fS-fL. The similar vortex dislocations
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and half-loop structures were also observed in Ref. [19].

Figure 1.9: A hydrogen bubble
flow visualization image show-
ing vortex structures in the
wake behind the step cylinder
with D/d = 2 at ReD = 1050.
The S-, N-, and L-cell vor-
tices are indicated. The white
dashed circle marks the vortex
dislocation between the S- and
N-cell vortices. Image repro-
duced from Morton and Yaru-
sevych [13].

For the indirect mode, the vortex dislocation was mainly investigated in
the wake behind a single step cylinder with D/d = 2 at ReD ≈ 150 in Refs.
[10, 11]. These studies concluded that the S-N cell boundary (the region
between the S- and N-cell vortices) is stable and slightly deflects spanwise
to the large cylinder direction. At this boundary, the vortex dislocations
between the S- and N-cell vortices occur at a beat frequency fS-fN . One
N-cell vortex always splits into two filaments in this dislocation process.
One of these filaments connects to a counter-rotating N-cell mate, and the
other connects to a S-cell vortex. The rest of the S-cell vortices that have no
connection with N-cell vortices form the S-S half-loop structures (the blue
curve in Figure 1.8 (d)). Unlike the S-N cell boundary, due to the N-cell
vortex’s length varies during one N-cell cycle [12], the N-L cell boundary
(the region between the N- and L-cell vortices) is unstable. When the phase
difference between the corresponding N- and L-cell vortices is small, every
L-cell vortex directly connects to its counterpart N-cell vortex. As the cor-
responding N-L vortex pair gradually becomes out of phase, in parallel with
the appearance of vortex dislocations, the spanwise extensions of the N-cell
vortices and the position of the N-L cell boundary vary periodically with a
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beat frequency fN -fL. During the vortex dislocation, half-loop connections
form between the L-cell vortices (the green curve in Figure 1.8 (d)). Fur-
thermore, as presented in Figure 1.9, Morton and Yarusevych [13] showed
that even in the wake behind a step cylinder with D/d = 2 at a higher
Reynolds number ReD = 1050, similar vortex cells and vortex dislocations
can be found.

An interesting long-period characteristic of the vortex dislocation was
first reported by McClure et al. [20] based on investigating flow past dual
step cylinders. They defined the period between two identical vortex dislo-
cations as the fundamental dislocation cycle. Vortex dislocations in other
types of wakes and mixing layers have been reported by many others. For
details, the reader is referred to the works of Refs. [21, 22, 23].

1.4 Vortex system around the step surface

In addition to the three main spanwise vortices mentioned in Sec. 1.2, the
streamwise vortex system around the horizontal step surface of step cylinder
has also been investigated in some previous studies[10, 12, 24, 25, 26]. By

Figure 1.10: (a) A hydrogen bubble flow visualization image showing the
streamwise vortex structures around the step cylinder with D/d = 2 at
ReD = 1100. (b) A simplified sketch of (a) indicating the junction and
edge vortices. Images reproduced from Dunn and Tavoularis [10].

using hydrogen bubble visualization method in the flow around a single step
cylinder with D/d = 2 at ReD = 1100, Dunn and Tavoularis[10] identified
two types of streamwise vortices, as indicated in Figure 1.10: (1) a pair
of edge vortices form at the edge of the step surface and toward the large
cylinder, (2) a junction vortex forms in front of the base of the small cylinder
and then wraps around the small cylinder to the downstream. They found
that the recirculating flow in front of the step cylinder causes the formation
of the junction vortex. The induced rotating flow by the junction vortex
and the blockage by the small cylinder together induce the forthcoming
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fluid sideways and spill over the edges of the step cylinder to form the
edge vortex. Moreover, they pointed out that, on the same side of the step
cylinder, the edge vortex is counter-rotating to the adjacent branch of the
junction vortex. By numerically investigating flow over a step cylinder with
D/d = 2 at ReD = 2000, Morton et al.[12] verified the existence of the
junction and edge vortices.

Besides, similar streamwise vortex system was also observed in the flow
around dual-step cylinders[24, 25, 26]. Based on numerically investigations
of the flow around dual-step cylinders with 1.1 < D/d < 4, 0.2 < L/D < 5
at ReD = 150, McClure et al. [24] captured the junction and edge vortices.
They further concluded that the junction vortex primarily connects to the
vortices shed from the large cylinder, while the edge vortex mainly connects
to the small cylinder vortices, as indicated in Figure 1.11. Ji et al. [25] first
numerically investigated the flow around a dual step cylinder undergoing
vortex induced vibrations. They also captured the junction and edge vor-

Figure 1.11: Streamwise vortical structures in the wakes of a dual step cylin-
der with D/d = 2, L/D = 5 at ReD = 150 visualized with (a) planar
streamlines in the front-back view, (b) isosurfaces of streamwise vorticity
ωx = ±0.06U/D: +gray, −white. The junction vortex and edge vortex are
indicated by the capital letter ’J’ and ’E’, respectively. Images reproduced
from McClure et al.,[24].

tices. By plotting the consecutive instantaneous vortex structures, Ji et al.,
[25] reported that the junction and edge vortices induce the L-cell vortices
with opposite rotating directions to connect to each other. Moreover, by
absorbing the strength of S-cell vortices, these streamwise vortices’ strength
increases as they convect downstream.

A nice sketch of the flow around a step cylinder in indirect vortex dislocation
mode is made by Dunn and Tavoularies [10], and reprinted here in Figure
1.12. This sketch is a good summary to discussions in Chapter 1.2 and 1.4.
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Figure 1.12: Sketch of the junction vortex and edge vortex shed from a step
cylinder. This image reproduced from Dunn and Tavoularis [10].

1.5 Motivation and objective

As described in Section 1.2, 1.3, and 1.4, the previous investigations in
the step cylinder wakes can be briefly divided into two aspects: 1. Vortex
interactions behind step cylinders; 2. Vortex system around the step surface
of step cylinders.

For the first aspect, due to the different shedding frequencies of the
neighboring vortex cells, complex vortex interactions, especially the vor-
tex dislocations, appear in both the direct and indirect modes of the step
cylinder wakes. Although the previous papers successfully outlined vortex
interactions between the S-, N-, and L-cell vortices, there are still several
fundamental questions that require explanations. For example:r What is the formation mechanism of the N-cell vortex?r How does phase difference accumulate between the corresponding S-,

N-, and L-cell vortices?r How does phase difference between the neighboring vortices trigger
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the vortex dislocations between them?

For the second aspect, the previous numerical studies mainly focused on
the vortex system around the step surface of step cylinders at relatively
low Reynolds number. In the experimental studies, due to the limitation of
the hydrogen bubble and electrolytic precipitation visualization methods, to
clearly illustrate vortices’ developments around the step surface is difficult.
Although the junction and edge vortices were identified, some fundamental
questions were left:r What is the formation mechanisms of the horseshoe vortices around

the step cylinder?r How do these streamwise vortices develop and interact with each
other?r How many types of streamwise vortices generating around the step
cylinder?

The overall objective of the present thesis is to offer a deeper and more
complete understanding of the vortex formations and vortex interactions
in the flow around step cylinders. This is achieved by the following sub-
objectives.

1. Use direct numerical simulations to visualize and investigate vortex
interactions between the main spanwise vortices in the wake behind
single step cylinders. Try to identify new vortex structures.

2. Develop a reliable method to monitor the phase information of every
S-, N-, and L-cell vortex.

3. Investigate the accumulation process of the phase difference between
neighboring vortex cells during their vortex dislocation processes. Ex-
plore the physical mechanism behind the vortex dislocation in the step
cylinder wakes.

4. Compare the wake flows behind step cylinders with different diameter
ratios. Investigate the diameter ratio effects in vortex formations and
vortex interactions in the step cylinder wake.

5. Use direct numerical simulations to investigate both the time-averaged
and instantaneous flows around the step cylinder at a relative high
Reynolds number. Try to identify different components of vortices
around the step cylinder, and investigate their developments and in-
teractions.
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1.6 Thesis organization

The present thesis is based on a collection of six articles, which are appended
in full-length at the end. Chapter 1 presents the introduction of this thesis,
which gives the overall background, motivation, and objectives. The other
chapters are as follows:

Chapter 2 gives a brief description of the numerical simulation technique
used in all investigations during my Ph.D. period.

Chapter 3 gives the summaries of the six appended articles.

Chapter 4 concludes the main original contributions of my Ph.D. study
and gives recommendations for potential future works.

Chapter 5, 6, 7, 8, 9, and 10 present article 1, 2, 3, 4, 5, and 6, respec-
tively.
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Chapter 2

Numerical simulation
technique

All investigations during my Ph.D. period are based on numerical simula-
tions. In this chapter, the basic details of the numerical simulation method-
ology used in my researches are briefly described.

2.1 Governing equation

The governing equations for the three-dimensional incompressible Newto-
nian fluid flow contain a mass conservation equation (2.1) and a time-
dependent full three-dimensional incompressible Navier-Stokes equation (2.2):

∂ui
∂xi

= 0, (2.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi, (2.2)

where xi stands for the three Cartesian directions (i=1, 2, 3), ui represents
the velocity in each of the three Cartesian direction, p is pressure, ρ is the
fluid density, ν is the kinematic viscosity of the fluid, fi represents the body
forces. Both ρ and ν are assumed to be constant.

For all simulations in my Ph.D. study, a thoroughly validated finite-
volume-based numerical code MGLET [1, 2] is used to directly solve the
governing equations without introducing any turbulent models. In this finite
volume method, the governing equations (2.1 and 2.2) are transferred to
their integral form (2.3 and 2.4) through integration over a control volume

19



20 20

Ω bounded by a surface A: ∮
A
uini dA = 0, (2.3)

∂

∂t

∫∫∫
Ω
ui dΩ +

∮
A
uiujnj dA = −1

ρ

∮
A
pni dA+

∮
A
ν
∂ui
∂xj

nj dA. (2.4)

Here, n represents the unit vector pointing out the control surface (dA)
of the control volume (dΩ). Note: The body force term fi in Eq. 2.2 is
neglected during the integration, because there is no external force applying
in the bulk of the fluid in my simulations.

2.2 Computational method

In MGLET, Eq. 2.3 and Eq. 2.4 are first discretized on a three-dimensional
staggered Cartesian grid. By using the midpoint rule and the central differ-
ence, the governing equations are integrated over the surfaces of the discrete
volumes. It leads to a second-order accuracy in space. In time, the integra-
tion is done by Williamson’s explicit low-storage three-order Runge-Kutta
scheme [3]. The pressure corrections are achieved by using Stone’s implicit
procedure (SIP)[4].

The use of a staggered Cartesian grid could cause the problem of inter-
preting the solid surface of the configuration in the computational domain.
MGLET solves this problem by introducing an immersed boundary method
(IBM). The surface of the geometry is represented by an unstructured tri-
angular mesh. The information of this mesh is directly transferred to IBM
to block the grid cells bounded by the meshed surface. Then, the quantities
on the grid cell at the fluid-solid interface are determined by interpolation
from the neighboring grid cells. A more detailed description and validation
of the IBM used in MGLET can be found in Ref. [5, 6].

For more detailed information regarding the computational domain, grid
resolution, and boundary conditions, please check individual articles.
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boundaries. PhD Thesis, Technische Universität München, München,
Germany 2010.



22 22



Chapter 3

Summary of the articles

This chapter gives a brief description of the six articles in the present thesis,
which focuses on two main topics. The first topic is treated in the first five
articles, which concentrate on vortex interactions, especially the vortex dis-
locations, in the wake flow behind single step cylinders at ReD = 150. The
sixth article mainly focuses on the vortex system around the step cylinder
at ReD = 3900, constituting the second topic in this thesis.

3.1 Part 1 - Vortex interaction behind single step
cylinders

Article 1 - Numerical investigation of flow around a step cylin-
der [1]

In this article, the flow around a single step cylinder with D/d = 2 at
ReD = 150 is investigated by using direct numerical numerical simulation
(DNS). As the first conference paper in my doctoral period, the main ob-
jectives are to investigate the flow past single step cylinder and familiarize
myself with the numerical code MGLET. In general, the results in this arti-
cle show good agreement with the previous similar studies [2, 3], including
the three dominating vortex cells (the S-, N-, and L-cell vortices), the vortex
dislocation between neighboring vortex cells, and the formation of stream-
wise vortices. The speculated repetition of the N-cell cycle in Ref. [3] is
verified in this article by capturing similar-shaped vortex loop structures in
the neighboring N-cell cycles. Moreover, these vortex loop structures are
observed to be antisymmetric in the neighboring N-cell cycles for the first
time. The desire to figure out how these vortex loop structures develop and
why they become antisymmetric motivated me to do further investigations.
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Article 2 - Antisymmetric vortex interactions in the wake
behind a step cylinder [4]

The primary goal of Article 2 is to investigate the remaining unsolved ques-
tions in Article 1: (1) How do the vortex loop structures form in every
N-cell cycle, (2) Why are the vortex loop structures antisymmetric in the
neighboring N-cell cycles. By illustrating the consecutive snapshots of the
vortex structures in one N-cell cycle, two types of vortex loop structures are
identified in one N-cell cycle: the fake loop (NL-loop) between N- and L-cell
vortices (the red curves in Figure 3.1) and the real loop (NN-loop) between
two N-cell vortices (the blue curves in Figure 3.1). Detailed observations

Figure 3.1: Isosurfaces of λ2=-0.15 showing vortex interactions occurring
at the N-L cell boundary during the vortex dislocation process. (a), (c), (e),
and (g) are observed from ’+Y’ to ’-Y’ sides, while (b), (d), (f), and (h) are
observed from the opposite side. The solid and dashed red curves indicate
NL-loops, the blue closed curve show NN-loop, and the green curves show
L-L half loops. Images reproduced from Article 2 [4].

show that there are, in total, two fake loops, one real loop, and one L-L half
loop generated during the vortex dislocation process in each N-cell cycle.
Additionally, after defining the side of the N-cell vortex in an NL-loop struc-
ture as the side of the loop itself, an antisymmetric phenomenon between
two adjacent N-cell cycles is clearly presented and defined. As shown in
Figure 3.2, the NL- and NN-loop structures occur antisymmetrically in the
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Figure 3.2: Isosurfaces of λ2=-0.2 in
four neighboring N-cell cycles show-
ing features and repetition of the NL-
and NN-loop structures. (a) and (c)
are observed from ’+Y’ to ’-Y’ sides,
while (b) and (d) are observed from
the opposite side. The NL- and NN-
loop structures are marked by the red
and blue curves, respectively. Images
reproduced from Article 2 [4].

neighboring N-cell cycles. Furthermore, the boundary between two neigh-
boring N-cell cycles is redefined. With the new boundary, 13 N-cell vortices
and 15 L-cell vortices are observed in every N-cell cycle in the 2:1 step
cylinder wake at ReD = 150 and D/d = 2.

More detailed descriptions and discussions related to the vortex dislo-
cations and the formation process of the NL- and NN-loop structures are
referred to Article 2.

Article 3 - The long periodicity of vortex dislocations in the
wake behind a step cylinder [5]

Article 3 follows the work presented in Article 2 and extended it further. The
main objective is to examine the long periodicity of the vortex interactions,
especially the vortex dislocations between the N- and L-cell vortices. Several
long time numerical simulations (more than 3000 time units (D/U)) are
conducted to illustrate and analyze the wake flow.

Following Article 2, this article presents more detailed and in-depth in-
vestigations on the antisymmetric vortex loop structures in the N-cell cycles.
First, the vortex loop structures, i.e., the NL-loops and the NN-loops, in
two neighboring N-cell cycles are illustrated by plotting the isosurfaces of
λ2. Careful observations indicate that the antisymmetry defined in Article
2 is not perfect. Figure 3.3[(a), (b)] and [(c), (d)] show that, between the
neighboring 1st and 2nd N-cell cycles, the corresponding NL-loops marked
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by the same color have small differences when comparing their detailed
structures as highlighted by black circles. Long time observations reveal

Figure 3.3: NL-loop structures at the 1st, 2nd, 16th, and 31th N-cell cycles
are plotted in [(a), (b)], [(c), (d)], [(e), (f)], and [(g), (h)], respectively. In
each N-cell cycle, the first appeared loop structure (NL-loop 1) is marked
by the green curve, and the second appeared loop structure (NL-loop 2) is
marked by the red curve. Solid and dashed curves indicate the loop structures
on the ’-Y’ and ’+Y’ sides, respectively. Images reproduced from Article 3
[5].

that the perfect antisymmetric NL-loop structures only appear after every
15 N-cell cycles. As presented in Figure 3.3[(a), (b)], [(e), (f)], and [(g),
(h)], the corresponding NL-loops are approximately perfect antisymmetric
between the 1st, 16th and 31th N-cell cycles, even when comparing their
detailed structures highlighted by the black circles. This long cyclic pro-
cess, served as a supplementary part, makes the definition of ’fundamental
dislocation cycle’ in Ref. [6] more complete: there are two types of the fun-
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damental dislocation cycles, i.e., the perfect symmetric cycle and the perfect
antisymmetric cycle. Moreover, the different duration of all the N-cell and
L-cell vortices in one N-cell cycle is found to brings the small phase shift
to every N-L vortex pair in the neighboring N-cell cycles, and further cause
the fundamental vortex dislocation cycle.

Last but not least, detailed discussions about the challenges of the grid
resolution on investigating the long period characteristic are given. For
the present case, although the detailed information (e.g., the number of N-
and L-cell vortices) in one fundamental vortex dislocation cycle varies when
continuing to refine the grid, the phenomenon and mechanism of the fun-
damental vortex dislocation cycle are proved to be valid for all investigated
cases.

More detailed descriptions and discussions related to the fundamental
vortex dislocation cycle and computational challenges are referred to Article
3 [5].

Article 4 - Vortex dislocation mechanisms in the near wake
of a step cylinder [7]

Article 4 focuses on physical interpretation of the mechanisms in vortex
dislocations between the N- and L-cell vortices. To achieve this, vortex dis-
location processes in the near wake behind two single step cylinders with
diameter ratio D/d = 2 and 2.4 at ReD = 150 are studied in depth. The
main objective is to thoroughly investigate the mechanisms of phase dif-
ference accumulation in the step cylinder wake, and their effect on vortex
interactions.

First, to monitor the phase information and phase difference of corre-
sponding N- and L-cell vortices, a phase-tracking method is developed and
validated. By using this method, Article 4 presents more detailed infor-
mation on how the phase difference (Φ) between the corresponding N- and
L-cell vortices is accumulated and finally triggers the formation of vortex
dislocations and concomitant NL-loop structures. A phase difference accu-
mulation mechanism is identified for the first time, i.e., Φ = Φf + Φc.
There are two qualitatively different physical factors contributing to the ac-
cumulation of Φ, one is different shedding frequencies (Φf ), the other one is
varying convective velocities in the different vortex cell regions (Φc). While
Φf is relatively well-known, the contribution from convective velocity Φc

has never been examined before.

Based on this new understanding of the phase difference accumulation
mechanism, the variations of the formation position of the NL-loop 1 and
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Figure 3.4: The just-formed NL-loop 1 structures in the first to the eighth
N-cell cycle are plotted from both the -Y and +Y sides. The black line marks
the formation position of NL-loop 1. Images reproduced from Article 4 [7].

NL-loop 2, and the irregularity of the NL-loop 1 formation are fully ex-
plained. For a pair of N- and L-cell vortices, as Φf decreases, Φc must
contribute more to ensure a sufficiently large Φ (we refer to it as the
trigger value) that can trigger the vortex dislocations. This makes the for-
mation position of the corresponding NL-loop structure move downstream.
The just-formed NL-loop 1 structures in the 1st to 8th N-cell cycles are plot-
ted from both the −Y and +Y sides in Figure 3.4(a-h). The corresponding
time trace of phase difference (ΦfU/D) is plotted in Figure 3.5. One can
see that, except for the sixth N-cell cycle, as ΦfU/D decreases from G1
to G7 in Figure 3.5 the formation position of the corresponding NL-loop 1
structure continues to move downstream from the 1st to the 7th N-cell cycle
in Figure 3.4(a-g).

Moreover, a long-time trace of the accumulation of Φf in Figure 3.5
clearly shows cyclic trends, which are caused by the phase shift of every
vortex pair in one N-cell cycle, as compared to the N-cell cycle before it.
The phase shift (S) can be expressed as

S = α
1

2fL
− β 1

2fN
, (3.1)

where α and β represent the number of L- and N-cell vortices in one N-cell
cycle; and fL and fN are the shedding frequencies of L- and N-cell vortices.
Due to the accumulation of this phase shift, the antisymmetric phenomenon
reported in Article 2 will be cyclically interrupted when Φf decreases below
a certain value. This value is referred to as the threshold value (the yellow
line in Figure 3.5). When Φf continues to decrease along the green line from
G1 to C8 in Figure 3.5, even by including the contribution of Φc, Φ is still
not large enough to induce the formation of the expected NL-loop 1 (N’99-
L114). In this N-cell cycle, one additional vortex pair shedding is needed to
make Φ sufficiently large to induce the formation of the NL-loop 1 (N100-
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Figure 3.5: Time trace of Φf between corresponding N- and L-cell vortices in
the first (LNC1) and second (LNC2) long N-cell cycles. The circles represent
Φf between an N-cell vortex ans its counterpart L-cell vortex. The green
and red circles indicate Φf , which eventually causes formation of the NL-
loop 1 and NL-loop 2 structures, respectively. From the first to the eighth
N-cell cycle, the green and red circles are numbered. Images reproduced from
Article 4 [7].

L’115 in Figure 3.4(h)). The additional one pair of N- and L-cell vortices
makes the number of N-cell vortices in the 8th N-cell cycle become even,
thereby interrupting the antisymmetric phenomenon. The NL-loop 1 forms
at the +Y side in both the 7th and 8th N-cell cycles in 3.4(g and h). This
interruption of the antisymmetric phenomenon is observed to appear after
every 7 or 8 N-cell cycles. Based on this phenomenon, the uninterrupted
series of antisymmetric N-cell cycles are defined as the long N-cell cycle. As
an example, the first two long N-cell cycles (LNC1 and LNC2) are indicated
in Figure 3.5.

In the last part of this article, the universality of our discussions and
conclusions from theD/d = 2 case is justified by investigating theD/d = 2.4
case.

Article 5 - Diameter ratio effects in the wake flow of single
step cylinder [8]

As an important extension of Article 2 and Article 4, Article 5 applies the
new findings in the previous two articles to a wider range of parameter
space. Article 5 reveals important tendencies as the diameter ratio (D/d)
changes. It also further validates the universality of all physical mechanisms
concluded in Article 2 and Article 4. In article 5, the near wake behind
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ten single cylinders with D/d ranging from 2 to 3 are studied at a fixed
ReD = 150.

First, the antisymmetric phenomenon in the D/d = 2 and 2.4 cases
mentioned in Article 2 and Article 4 is verified in the D/d = 2.6 case.
Moreover, in the D/d=2.2, 2.8, and 3.0 cases, the NL-loop 1 structure
is found to continuously appear at either the +Y or -Y side of the step
cylinder. Figure 3.6 shows that the NL-loop 1 structure continues to form
at the −Y side in the D/d = 2.2 case. This phenomenon is referred to

Figure 3.6: The just-formed NL-loop 1 structures in the 1st to 5th N-cell
cycles are plotted from both the -Y and +Y sides in the D/d = 2.2 case at
ReD = 150. Images reproduced from Article 5 [8].

as symmetric vortex interaction, in comparison with the already known
antisymmetric phenomenon. Further investigation shows that it is the parity
of the number of N- and L-cell vortices, i.e., β and α, in one N-cell cycle
in different D/d cases that determine whether symmetric or antisymmetric
vortex interactions appear in a specific D/d case. When β and α are even
numbers, symmetric vortex interactions will occur. Oppositely, when β and
α are odd numbers, antisymmetric vortex interactions will happen.

Moreover, by using the phase tracking method developed in Article 4,
the time traces of Φf in the D/d=2.0, 2.2, 2.4, 2.6, 2.8, and 3.0 cases are
monitored. An increasing tendency of Φf is first captured in the D/d=2.2,
2.6, and 3.0 cases. In these cases, the formation position of NL-loop 1 struc-
ture is observed to continuously move upstream as Φf increases. One can see
that, as Φf increases from G1 to G4 in Figure 3.7, the formation position of
the corresponding NL-loop 1 structure continues to move downstream from
the 1st to the 4th N-cell cycles in Figure 3.6(a-d). Similar to the decreasing
tendency of Φf reported in Article 4, the discovered increasing Φf tendency
also can cause the interruption of continuous antisymmetric or symmetric
vortex interaction phenomena. For example, as shown in Figure 3.6(d) and
(e), the continuous symmetric interactions are interrupted between the 4th
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Figure 3.7: Time trace of Φf between corresponding N- and L-cell vortices
in the first (LNC1), second (LNC2), and third (LNC3) long N-cell cycles.
The circles represent Φf between an N-cell vortex and its counterpart L-
cell vortex. The green and red circles indicate Φf , which eventually causes
formation of the NL-loop 1 and NL-loop 2 structures, respectively. From
the first to the eighth N-cell cycle, the green and red circles are numbered.
Images reproduced from Article 5 [8].

and 5th N-cell cycles in the D/d = 2.2 case. According to the time trace
of Φf , the trigger value of vortex dislocations is found to remain constant
when D/d varies. The threshold value of vortex dislocations decreases as
D/d increases, which further causes the number of NL-loop structures in
one N-cell cycle to increase from 2 in the D/d=2.0 case to 4 in the D/d=3.0
case.

Furthermore, the likelihood of the appearance of antisymmetric or sym-
metric vortex interactions, and the likelihood of increasing or decreasing
phase differences are analyzed. Based on the investigations on the D/d=2.0,
2.2, 2.4, 2.6, 2.8 and 3.0 cases, Article 4 gives a predictio: when 2≤ D/d ≤3
the likelihood of increasing Φf and decreasing Φf are almost the same, but
the antisymmetric phenomenon is more likely to appear than the symmetric
phenomenon. Further observations in D/d=2.1, 2.3, 2.5 and 2.7 cases prove
our anticipation.

Last but not least, careful observations on the distributions of −w/U
and base pressure coefficient (Cpb) show that the formation of N-cell vortices
are caused by the joint influence of both increased −w/U and increased Cpb,
but the latter one plays a major role.
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3.2 Part 2 - Vortex system around a single step
cylinder

Article 6 - Vortex system around a step cylinder in a turbulent
flow field [9]

For the flow past a uniform circular cylinder, the particular Reynolds num-
ber 3900 is a benchmark, at which there are many accurate numerical sim-
ulations [10, 11, 12, 13] and experimental studies [14, 15]. However, until
now, no one has investigated flow around a step cylinder at such Reynolds
number. As a pioneer, the present study investigates the flow around a
single step cylinder with D/d = 2 at ReD = 3900 by using direct numerical
simulations (DNS). The main objective is to investigate the development
and interaction of the vortices around the step position.

In general, the results in this article show good agreement with previous
studies [2, 6, 6, 16, 17] with respect to the formation of the junction and edge
vortices around the step surface of the step cylinder. Meantime, the similar
base vortices identified in the flow past a wall-mounted cylinder by Ref. [18,
19, 20] are also captured in the rear part of the step surface. Furthermore,
the numerical results provide more complete and detailed information in the
flow around the step surface.

Figure 3.8: The time-averaged vor-
tex structures around the step surface
are illustrated by the isosurface of the
time-averaged λ2 = −9 at the top-
down viewpoint coloured by the time-
averaged streamwise vorticity ωx. Im-
ages reproduced from Article 6 [4].

First, the time-averaged iso-surfaces of λ2 and streamlines show that four
horseshoe vortices (H1, H2, H3, and H4) form in front of the step cylinder,
due to the flow recirculations and the flow separations on the junction sur-
faces between the root of the small cylinder and the step surface. As shown
in Figure 3.8, besides the conventional junction vortex H1 and the edge vor-
tex H3, two more horseshoe vortices H2 and H4 are clearly illustrated. The
corresponding Octupole Type of the time-averaged vortex structures is also
identified. Under the influence of the different flow tendencies in the small
and large cylinders’ wakes, the development tendencies of H1, H2, and H3
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become different when they extend to x/D > 0. Consequently, a critical
point for H1 and H3 is identified in Figure 3.8.

Figure 3.9: Instantaneous isosurface of λ2 = −0.2 showing vortex struc-
tures around the step position in the D/d = 2 case at ReD = 3900. The
vortices H1, H3, and H4 are marked by the green, pink, and blue curves,
respectively. The vortex bridge between H1 and H4 are indicated by the black
circle. Different hairpin vortices are marked by dotted curves with different
colors. Kelvin-Helmholtz vortex is represented by the yellow straight lines.
Images reproduced from Article 6 [9].

Moreover, the consecutive instantaneous iso-surfaces of λ2 and the ani-
mation attached in the supplementary file indicate that the four horseshoe
vortices exist in both the time-averaged and instantaneous flows. In the
forepart of the step surface (x/D < 0), the vortices H1, H2, H3, and H4 keep
their own vortical structure stable and slightly fluctuated as time varies. As
H4 extends to x/D > 0, a vortex bridge gradually forms between H4 and
H1, as marked by the black circle in Figure 3.9. When this vortex bridge
sheds from the end of H4 and connects to H3, a hairpin vortex forms. In
the neighboring region upstream of this hairpin vortex, other two or three
hairpin vortices form before the small turbulent eddies dominates the wake.
These hairpin vortices are shown by different dotted curves in Figure 3.9.

In the rear part of the step surface (x/D > 0), another remarkable
phenomenon is the appearance of Kelvin-Helmholtz (KH) vortex, which is
indicated by the solid yellow lines in Figure 3.9. These KH vortices shed
in an unexpected high shedding frequency behind the small cylinder. Our
results suggest that it is the formation of the hairpin vortex that amplifies
the convection of perturbations and further accelerates the formation of KH
vortices.
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Chapter 4

Conclusions and
Recommendations for Future
Work

In this chapter, the main findings in the present thesis are summarized.
Moreover the recommended future works are presented.

4.1 Main finding in the present thesis

For the flow past step cylinders, different types of vortex cells and their
interactions have been investigated in many studies. Especially for the three
dominating spanwise vortex cells, i.e., the S-, N, and L-cell vortices, due
to their different shedding frequencies, complex vortex interactions, vortex
dislocations, and concomitant vortex structures were observed and analyzed
in the step cylinder wakes by previous studies [1, 2, 3, 4, 5, 6]. However, the
formation mechanism of the vortex dislocations and how different diameter
ratios affect the vortex interactions in the step cylinder wakes still require
a thorough investigation. For these two parts, the most important original
observations in the present thesis are summarized as follows:

1. There are mainly three types of N-cell cycle in the wake behind single
step cylinders with 2 ≤ D/d ≤ 3 at ReD = 150:

(a) The N-cell cycle: as the N- and L-cell vortices move out-of-
phase, in parallel with the appearance of the vortex dislocations, the
spanwise length of the N-cell vortices and the position of the N-L cell
interface change periodically. This cyclic variation is defined as the
N-cell cycle. (Ref. [4])

37
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(b) The long N-cell cycle: the uninterrupted series of antisym-
metric or symmetric N-cell cycles are defined as the long N-cell cycle.
(Article 4 )

(c) The fundamental N-cell cycle (the fundamental dislocation cy-
cle): when the vortex alignments and vortex loop structures at one
side of the step cylinder in a N-cell cycle identically repeat at either
the same side or the opposite side of the step cylinder in other sub-
sequent N-cell cycle, the symmetric fundamental N-cell cycle or the
antisymmetric N-cell cycle appear, respectively. (Article 3 )

2. The vortex dislocation in one N-cell cycle is caused by the accumula-
tion of phase difference (Φ) between the corresponding N- and L-cell
vortices. There are two distinct physical mechanisms contributing to
the accumulation of Φ: one is different shedding frequencies (Φf ), the
other one is varying convective velocities in the different vortex cell
regions (Φc). Then, the phase difference accumulation mechanism can
be presented as Φ = Φf + Φc. (Article 4 )

3. During the vortex dislocation process in one N-cell cycle, there are
several NL-loop structures, NN-loop structures, SS- and LL-half loop
structures form. At ReD = 150, in one N-cell cycle, the number of
NL-loop structures increases as D/d increases. (Article 2 and Article
5 )

4. Two different vertex interaction scenarios are identified between the
neighboring N-cell cycles, namely antisymmetric and symmetric N-cell
cycles. (Article 2 and Article 5 )

Antisymmetry: when the NL-loop structure first forms at the
different side of the step cylinder in the neighboring N-cell cycles.

Symmetry: when the NL-loop structure first forms at the same
side of the step cylinder in the neighboring N-cell cycles.

5. Within one long N-cell cycle, the continuous antisymmetric or sym-
metric vortex interactions appear between subsequent N-cell cycles. It
is the parity of the number of N-cell vortex (β) and L-cell vortex (α) in
one N-cell cycle that determines whether symmetric or antisymmetric
vortex interactions appears in a certain D/d case. (Article 5 )

6. The trigger value and threshold value are defined. Both are important
parameters that control the vortex dislocation process. (Article 4 and
Article 5 ).
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The trigger value: when Φ becomes larger than the trigger value,
the vortex dislocation between the corresponding N- and L-cell vor-
tices happens.

The threshold value: Only when Φf becomes larger than the
threshold value, the vortex dislocation can occur between the cor-
responding N- and L-cell vortices.

Moreover, as D/d increases from 2 to 3, the threshold value is found
to decrease, but the trigger value remains constant. Based on the ap-
plication of the constant trigger value, several equations are purposed
to measure the number of N-cell vortex (β) and L-cell vortex (α) in
one N-cell cycle.

7. As the decreasing or increasing tendencies of Φf appears in one long N-
cell cycle, the formation position of the corresponding NL-loop struc-
ture is found to move downstream or upstream, respectively. (Article
4 and Article 5 )

As an example, in Figure 4.1, the long-time history of the vortex con-
nection topology behind the step cylinder with D/d = 2 at ReD = 150
schematically illustrates the vortex dislocation between the N- and L-cell
vortices, the different NL-loop structures, and the three types of N-cell cy-
cles.
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For the flow past step cylinders, the characteristics of the three main
spanwise vortex cells, i.e., the S-, N-, and L-cell vortices, have been discussed
in many previous studies [1, 2, 3, 4, 5, 6]. On the other hand, only a few
studies have analyzed the vortex system around step cylinders [2, 4, 7].
To make this part of knowledge more complete, the vortex system around
the step cylinder with D/d = 2 at ReD = 3900 is investigated. The main
observations are as follows:

1. Due to the flow recirculations and the flow separations on the junction
surfaces between the small cylinder’s root and the step surface, four
horseshoe vortices (H1, H2, H3, and H4) form on the step surface in
front of the small cylinder.

2. Under the influence of the different flow tendencies in the small and
large cylinders’ wakes, the spacial evolution of H1, H2, and H3 be-
come different. When they warp around the small cylinder and extend
downstream, the crossflow width of H2 and H3 continues to increase.
However, the crossflow width of H1 decreases. Consequently, a critical
point for H1 and H3 is defined.

3. As the vortex bridge between H1 and the end of H4 sheds from H4
and connects to H3, a hairpin vortex forms. In the neighboring region
upstream of this hairpin vortex, other two or three hairpin vortices
generate before the small turbulent eddies dominate the wake.

4. In the rear part of the step surface, a pair of base vortices and a
backside horizontal vortex are captured in the time-averaged flow.

5. Behind the small cylinder, the Kelvin-Helmholtz (KH) vortices form in
an unexpected high shedding frequency, comparing to the KH vortices
behind the circular cylinder with the same Red in Refs. [8, 9]. An
speculated explanation is that the formation of the hairpin vortex
amplifies the convection of perturbations and further accelerates the
formation of KH vortices.

An overall schematic of the flow around the step surface of the step
cylinder with D/d = 2 at ReD = 3900 is illustrated in Fig. 4.2, where the
main time-averaged vortex structures and flow features are identified.
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Figure 4.2: Schematic of the flow field for the single step cylinder with
D/d = 2 at ReD = 3900 showing the main flow features. To ease observa-
tions, the surface of the small cylinder is omitted.

4.2 Recommendation for future work

4.2.1 Vortex interactions in the direct mode wake of the step
cylinder with small diameter ratios

Most of the existed studies, including the present thesis, focused on the
vortex interactions in the indirect mode wake behind the step cylinders,
where the complex vortex interactions, vortex dislocations, and consequent
vortex loop structures were observed and discussed in detail. However,
the characteristics of the direct mode wake behind the step cylinders with
D/d < 1.25 have been seldomly analyzed. The smallest diameter ratio
that has been investigated is 1.13 by Lewis and Gharib in 1992 [1]. The
study related to the step cylinder cases with D/d < 1.1 is still blank. More
investigations in such wakes can be done in the future.

4.2.2 Reynolds number and diameter ratio effects in the vor-
tex system around the step cylinder

As described in Article 6 in the present thesis, four horseshoe vortices were
identified around the step cylinder with D/d = 2 at ReD = 3900. However,
the previous studies only observed one horseshoe vortex and one edge vortex
around the step cylinder at a relative low Reynolds number ReD = 150 and
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200. How the vortex system transfers from a step cylinder case at low
Reynolds number to a case at high Reynolds number, and how the different
diameter ratios affect the vortex system require a thorough investigation.

4.2.3 Turbulent wake behind step cylinders

For the wake flow behind step cylinders at sub-critical Reynolds numbers
(ReD > 300), the existed studies, including the present thesis, focused on
the main types of vortex cells, the vortex interactions between these vortex
cells, and the force distribution on the step cylinder surface. The detailed
turbulent wake characteristics, e.g., the shear-layer instability and the sta-
tistical study of physical quantities, have never been studied yet.

4.2.4 Oscillatory flow around step cylinders

In marine hydrodynamics, the oscillatory flow around a bluff body is a
popular and classical topic. With different Reynolds numbers (Re) and
Keulegan–Carpenter number (KC), many fascinating flow patterns have
been reported around uniform circular cylinders under the sinusoidal flow.
Moreover, the lift coefficients at a particular series of KC and ReD are of
interest for many VIV prediction methods. However, until now, there is no
study focusing on the oscillatory flow around step cylinder.
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Chapter 5

Article 1: Numerical
investigation of flow around
a step cylinder

Cai Tian1, Fengjian Jiang2, Bjørnar Pettersen1, Helge I. Andersson3

Abstract

Flow past a step cylinder with diameter ratio D/d = 2 at Reynolds num-
ber ReD = 150 was simulated by directly solving the three-dimensional
unsteady Navier-Stokes equations. The vortical structures and shedding
frequencies of the wake flow were studied in details. One kind of streamwise
vortices, i.e. the ’edge vortex’ was observed. Three main vortex cells (S-cell
vortex behind the small cylinder, L-cell vortex behind the large cylinder
and N-cell vortex in between) and the beat frequency which were reported
by previous papers were also precisely captured in the present simulation.
Additionally, half-loop connection between two L-cell vortices and loop con-
nection between two N-cell vortices were captured. Specially, we noticed
antisymmetric topology between two adjacent N-cell cycle periods.

1Department of Marine Technology, Norwegian University of Science and Technology,
No-7491 Trondheim, Norway

2SINTEF Ocean, NO-7052 Trondheim, Norway
3Department of Energy and Process Engineering, Norwegian University of Science and

Technology, No-7491 Trondheim, Norway
Published in Proceedings of 9th National Conference on Computational Mechanics,
Trondheim, Norway, May 11-12, pp. 369-384. CIMNE

45



46 46

5.1 Introduction

In recent years, interfering effects in the wake of a step cylinder Fig 5.1 a)
have received a lot of attention. Structures with similar shape of a step
cylinder are used in many industrial applications, for example, the hull of a
SPAR-platform, the outer wall of TV-towers, the supporting structures for
offshore wind turbines (fixed and floating), and so on.

There are two important variables when considering flow past a step
cylinder, i.e. the Reynolds number ReD and the ratio between diameters of
large cylinder and small cylinder (diameter ratio D/d). Many experimental
and numerical investigations have been out based on these two parameters.
Lewis and Gharib [1] reported two vortex interaction modes in the wake,
direct and indirect modes. The direct mode happens when the diameter ra-
tio is smaller than 1.25 (D/d < 1.25). In this mode, vortices shed from the
large cylinder and the small cylinder have direct connections, and the vortex
interaction between them takes place in a very narrow region around the
step. Only two dominating vortex shedding frequencies could be detected.
When the diameter ratio becomes larger than 1.55 (D/d > 1.55), the in-
direct mode takes place. Except for the two dominated vortex shedding
frequencies of the large and the small cylinder, another low vortex shedding
frequency could be captured in the wake region downstream of the step.
The vortex cell corresponding to this frequency was defined as N-cell by
Dunn and Tavoularis [2]. In paper [2], three types of spanwise vortices were
identified based on the shedding frequency: 1) S-cell vortex shedding from
the small cylinder with the highest vortex shedding frequency; 2) N-cell
vortex shedding in the interaction region [1] with the lowest vortex shed-
ding frequency; 3) L-cell vortex shedding from the large cylinder. Moreover,
Dunn and Tavoularis [2] also defined two kinds of streamwise vortices; the
edge vortex and the junction vortex. The junction vortex was caused by the
recirculation in the step region. The downwash of incoming fluid at the step
region induced the edge vortex. They used hydrogen bubbles to visualize
these two vortices by doing experiments with a step cylinder (D/d=2) for
ReD = 1230. Similar vortices were also observed by Morton and Yarusevych
[3]. However, they did not show them directly by numerical simulations.

All of the papers [1, 2, 3] mentioned that the N-cell is a cyclic phe-
nomenon (N-cell cycle). In [3], a detailed description and explanation were
given. Morton and Yarusevych [3] suggested that it is the dislocation [4]
in N-L cell boundary that causes the N-cell cycle. In their report, dur-
ing this dislocation, a half-loop connection between two L-cell vortices was
captured, but the repetition of L-cell half-loop connection was not shown.
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Weak cross-boundary or half-loop connections between N-cell vortices were
assumed to exist, but they did not observe it.

The primary aim of the present work is to show the structure of stream-
wise vortices and to investigate the dislocation process in the N-L cell bound-
ary. In order to achieve this, the flow past a step cylinder (D/d=2) at
Reynolds number 150 has been studied by means of solving the full three-
dimensional unsteady Navier-Stokes equations. The isosurface of λ2 [5] and
velocity spectra were plotted for detailed discussions.

5.2 Flow configuration and computational method

5.2.1 Introduction to MGLET

All simulations in this study were conducted by directly solving the full
three-dimensional unsteady Navier-Stokes equations for an incompressible
fluid. This is achieved with the code MGLET [6, 7]. In this second-order
finite-volume solver, the governing equations are in integral form:∫

A
u · n dA = 0 (5.1)

∂

∂t

∫∫∫
Ω
ui dΩ+

∮
A
ui u·n dA = −1

ρ

∮
A
p ii · n dA+ν

∮
A
grad ui·n dA (5.2)

where Ω is the control volume and A is the control surface, n is the unit
vector on dA pointing out of Ω, and ii is the Cartesian unit vector in xi
direction. The governing equations (5.1) and (5.2) are solved on a staggered
Cartesian grid. By discretizing equation (5.2), the following format could
be obtained:

∂u

∂t
= D(u) + C(u) +G(p) = f(u, p) (5.3)

In equation (5.3), D(u) represents the discretized diffusive term, C(u)
represents the discretized convective term, and G(p) represents the dis-
cretized pressure term. The surface integral is approximated by the mid-
point rule which is of second-order accuracy. The derivative in the integrand
of the diffusive term is approximated by a central-difference formulation,
which preserves the second-order accuracy. The volume integral in equation
(2) is simply approximated by the product of the value of the integrand in
the grid center and the control volume of the grid cell. The time integration
of equation (3) is done by an explicit low-storage third-order Runge-Kutta
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scheme [8] (details can be found in [9]). The general idea is to use an ex-
plicit time advancement scheme and correct the pressure through solving a
Poisson equation to fulfill a divergence-free velocity field:

div[(G(δp))]∆t = div(u∗) (5.4)

Equation (5.4) is referred to as the discrete analog of the Poisson equa-
tion, in which δp is the pressure correction, and u∗ is an intermediate ve-
locity field calculated by omitting the pressure term in equation (5.3). This
discretized Poisson equation is represented by a linear equation system at
every time marching step. This linear equation system is solved iteratively
by Stone’s Strongly Implicit Procedure (SIP) [10].

The use of a staggered Cartesian grid brings the problem of interpret-
ing the solid boundaries of the step cylinder in the computational domain.
This problem is solved in MGLET by introducing a direct-forcing Immersed
Boundary Method (IBM). In MGLET, the surface of the geometry is rep-
resented by an unstructured triangular mesh and read directly to IBM to
block grid cells bounded by this surface. Then the cells at the fluid-solid
interface will be transformed into internal boundary conditions by interpo-
lation [11] from the fluid cells in the vicinity of the bluff body geometry. A
more detailed description of the IBM used in MGLET can be found in [11].

5.2.2 Flow configuration and coordinate system

Figure 5.1 a) shows the shape of the step cylinder, in which D = 1m rep-
resents the diameter of the large circular cylinder and d = 0.5D represents
the diameter of the small circular cylinder. l and L represent the length
of the small and large cylinder, respectively. The computational domain
is depicted in Figure 5.1 b). The step cylinder was placed in a continu-
ous uniform flow, U = 1m/s, flowing in the X-direction. The inlet plane
is placed 10D upstream from center of the cylinder, while the outlet plane
is placed 20D downstream. The width of the domain in y-z plane is 20D.
The height of the domian is 30D, with the small and the large cylinders
occupying 5D and 25D, respectively. Morton and Yarusevych [3] used the
same domain size and cylinder length to model flow over a stepped cylinder
with the same Reynold number [3]. The following boundary conditions are
used in all simulations:

- The inflow boundary: uniform velocity profile u=U , v=0, w=0;

- The outlet boundary: Neumann boundary condition (∂u∂x = ∂v
∂x = ∂w

∂x =
0) and constant zero pressure condition;
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Figure 5.1: a) The stepped cylinder geometry considered in the present
study; b) Domain size illustrated from different viewpoints (Diameter of
large cylinder D is the length unit).

- The body surfaces: no-slip and impermeable wall;

- The other four surfaces: free-slip boundary condition;

5.3 Case summary and grid study

5.3.1 Case overview

Table 5.1: Case information of all simulations

Case ReD
Min Grid Spacing

∆
D

Grid cells
Nx ×Ny ×Nz

Total grid number CD

1 150 0.01 414×356×384 56.59 million 0.645
2 150 0.02 264×204×356 19.17 million 0.641
3 150 0.05 244×184×336 15.09 million 0.636
4 150 0.08 196×140×324 8.89 million 0.632
5 150 0.1 174×124×304 6.56 million 0.628

Specific details of all cases are summarised in Table 5.1. The Reynolds
number (ReD) in this study is defined based on the diameter of large cylin-
der D and free-stream velocity U , i.e. ReD = UD

ν where ν is the kinematic
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Figure 5.2: a) Mesh structures in x-z plane at y=0; b) A zoom-in plot of
mesh in the step region (white rectangle)

viscosity of the fluid. For all five cases, ReD = 150. The size of the computa-
tional domain for all cases is 30D×20D×30D. All cases are simulated on a
staggered Cartesian grid. In Fig 5.2 a), x-z plane view of the mesh structure
at y=0 is presented. It is clear that there are two black bands. The quality
of the grid in these two bands are better than the rest of the domain. These
two bands make sure that the grid resolution near the step cylinder is good
enough to resolve the flow phenomenon properly. Because of the abrupt
change of cylinder diameter, the flow around the step is expected to be very
complicated. A 2D × 2D × 2D “central block” wrapping the step area was
built up. Uniform grid spacing (given in Table 5.1 as “Min Grid Spacing”)
is used in the “central block”. A part of the uniform grid in the “central
block” is plotted in the zoom-in plot, as shown in Fig 5.2 b). The approxi-
mate position of this grid is indicated by a white rectangle in Fig 5.2 a). The
grid is gradually stretched outside of the central block to the far field and
the max expansion rate is lower than 1.04. An immersed boundary method
(IBM) [9, 11] is used to deal with the intersection between the Cartesian grid
and the curved surface of the step cylinder. The same numerical method
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was used recently by Jiang et al. [12] to simulate the wake behind a prolate
spheroid. In Fig 5.3, the drag coefficient CD = F totX /ρu2(dl +DL) and the
lift coefficient CL = F totY /ρu2(dl + DL) of the step cylinder for case 1 are
plotted. It can be observed that fully developed flow was obtained after 250
time units(D/U). All cases have been running for at least 600 time units
in parallel on a SGI Altix ICE X SLES − 11sp3 cluster system. The
time-step was set to guarantee the maximal CFL number lower than 0.6.

Figure 5.3: Drag coefficient and lift coefficient of step cylinder for Case 1.

5.3.2 Grid independence study

In order to ensure that the grid resolution is good enough to capture all
important fluid phenomena, especially the complicated flow close to the step,
five grids were generated for grid study, as shown in Table 5.1. First, a rough
check was done. Based on the data of mean total drag coefficients CD =
F totX /ρU2(dl + DL) in Table 5.1, an convergence tendency can be found.
Additionally, the difference between Case 1 and Case 2 is smaller than 0.6%
Then, mean streamwise velocity distributions along line AB (as indicated
in the subplot of Fig 5.4 b)) are calculated to illustrate the flow field near
the step. The distribution curves of ū

U are shown in Figure 5.4 a). It can
be observed that the finer the grid is, the more smoothly the curve becomes
(Case 1 and Case 2). The convergence tendency is clear by comparing
the discrepancy between adjacent curves. Moreover, the difference between
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Figure 5.4: a) Mean streamwise velocity ū
U distribution along line AB shown

in Fig (b); b) Coordinates and length of line AB (in x-z plane with y=0).

Case 1 and Case 2 is almost negligible. It is therefore safe to conclude that
the Case 1 has a fine enough grid resolution. All results presented in the
following discussions are therefore based on resolution Case 1.

5.4 Results

5.4.1 Overview of flow development

Figure 5.5: Vortex shedding in the wake of a step cylinder: a) Isosur-
faces λ2 = −0.1 for ReD = 150 and D/d=2; b) Isosurfaces by Morton
and Yarusevych [3] of Q ≈ 2 × 10−3 c) Flow visualization image by Dunn
and Tavoularis [2] for ReD = 150 and D/d=1.98.
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Overview of the vortical structures in the wake for ReD = 150 is il-
lustrated in Fig 5.5 a) by using isosurface of λ2 = −0.1. Similar to the
results of Morton and Yarusevych [3] and Dunn and Tavoularis [2], the vor-
tex structures can be mainly divided into three types, namely, the S-cell,
the N-cell and the L-cell. Comparing Fig 5.5 a), b) and c), we observed
that the overall wake structures obtained by the present numerical simu-
lation agrees well with previous numerical simulation [3] and experimental
results[2]. Although the streamwise vortices is not detectable in Fig 5.5, the
edge vortex was observed in the vicinity of the step. The junction vortex
which was observed in [2, 3] was not captured by the present study. As
can be observed in Fig 5.5, vortex structures in the N-cell area are far more
complicated than those in the S-cell and L-cell areas. Moreover, it seems like
all N-cell structures appear in the wake behind the large cylinder. Detailed
discussions are presented in section 4.3.

5.4.2 Streamwise vortices

Figure 5.6: a) Streamline near the step area at x-z plane with y=0; b)
Streamline of projected velocity vector in the y-z plane at a downstream
position of x=0.6 (i.e. Plane 2 shown in Fig 5.7 a))

As the flow reaches the region near the step, the streamlines at the
symmetry plane tend to separate at the leading edge of the small cylinder
and produce a recirculation at the step surface of the large cylinder, which
is shown in Fig 5.6 a). Due to this recirculation, a peak value of vorticity
ωy at the corresponding position was found in Fig 5.7 b). Based on the
vortex structure in Fig 5.7 a), the concentrated high vorticity region at the
shoulder in Fig 5.7 c) d) and the streamlines in Fig 5.6 b), it is clear that
there is a streamwise vortex pair near the step. As discussed in [2], there
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might exist two different kinds of streamwise vortices in the step cylinder
flow, i.e. the ‘junction vortex’ and the ‘edge vortex’, respectively. The
‘junction vortex’ is caused by recirculation, when viewing upstream, the
left-hand vortex tube should rotate clockwise while the right-hand vortex
should rotate counterclockwise. The ‘edge vortex’ has a different topology
than the ‘junction vortex’. Since the ‘edge vortex’ is essentially generated
by downwash at the edge of the step, it has an opposite rotating direction
compared to the ‘junction vortex’ on each side shoulder of the step [2].
In this way, we may identify the streamwise vortex in the present study.
In Fig 5.6 b), by plotting streamlines in y-z plane just behind the step
cylinder, it is easy to find that when viewing upstream from behind the step
cylinder, the left-hand vortex rotates counterclockwise and the right-hand
vortex rotates clockwise. It means that the streamwise vortex structure
marked by a white circle in Fig 5.7 a) is not the branch of a ‘junction
vortex’, but the ‘edge vortex’. Furthermore, the contours of ωx in y-z plane
at different x positions were presented in Fig 5.7 c) and d).

Figure 5.7: a) Isosurface λ2 = −0.1 showing vortex structure near the step;
b) Vorticity contour of ωy at x-z plane of y=0 ; c) Vorticity contour of ωx
at y-z plane of x=0 (i.e. Plane 1 in a)); d) Vorticity contour of ωx at y-z
plane of x=0.6D (i.e. Plane 2 in a))

5.4.3 Spanwise vortex

Figure 5.8 shows the streamwise velocity spectra obtained to analyze the
frequency and compositions of spanwise vortices. Also, by plotting the λ2
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Figure 5.8: Streamwise velocity spectra for x/D=2.5 and y/D=0.75

isosurfaces in Fig 5.9, the spanwise vortex structures in the wake can be
clearly observed. In order to analyze the generation of N-cell cycle (defini-
tion of N, S, L cell can be seen in Fig 5.5), we present consecutive images
through a N-cell cycle in Fig 5.9. Moreover, the features and repetitions of
N-cell cycle are shown in Fig 5.10. It is worthy to mention that the N-cell
cycle refers to the cyclic changes in the N-cell instead of the N-cell vortex
shedding, the differences will be explained in the following discussions.r Spanwise vortex shedding frequency

The streamwise velocity data is sampled at discrete points along a
line parallel to z-axis at x/D=2.5 and y/D=0.75. By Fast Fourier
Transform of the time-series of u, streamwise velocity (Euu) spectra
are presented in Fig 5.8. From this figure, three dominating peaks
can be observed, corresponding to S-cell StS = fSD/U = 0.306, N-
cell StN = fND/U = 0.154 and L-cell vortices StL = fLD/U =
0.177. Additionally a smaller peak at the beat frequency Stbeat =
fbeatD/U = 0.0232 is also captured. The beat frequency is caused
by linear combinations and harmonics of the shedding frequencies of
the adjacent vortices, which is commonly observed in quasiperiodic
spectra associated with spanwise vortex cells [4, 13]. In comparision,
[3] reported StS = 0.320, StN = fND/U = 0.157, StL = fLD/U =
0.179 and Stbeat = 0.022. The maximum discrepancy is smaller than
6%, which is totally acceptable.r Main spanwise vortex structures
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In Fig 5.9, first, behind the top half of the small cylinder, the S-cell
vortex structures are shed, one by one, regularly and parallel to each
other. This is similar to the wake structure behind a circular cylinder
without a step. Secondly, behind the lower part of the small cylinder,
due to the influence of the step, the complex connection between the
N and S cell vortex appears. The connection can be mainly divided
into two types: some of the S-cell vortices connected to the N-cell
vortices, some of the S-cell vortices connected to the other side S-cell
vortices forming a half-loop connection. For example, in Fig 5.9 a),
the connection between vortex S2 and N1 belongs to the first type;
while the connection between vortex S1 and S0 belongs to the second
type.

L− cell vortex: Similar to the S-cell vortex, behind the lower part of
the large cylinder, L-cell vortex structures are parallel to each other
regularly. When we come closer to the step, we observed complex
connections between the N-cell and L-cell vortices. In Fig 5.9, there
are mainly two types of connections. The first one is characterized by
a L-cell vortex connects to a corresponding N-cell vortex, like N5 to
L5, N7 to L7 and so on. The other type is characterized by one L-cell
vortex connects to the subsequent L-cell vortex forming a half-loop
connection, like L1’ to L0’ and L2’ to L3’ in Fig 5.10.

N−cell vortex: There are two kinds of N-cell shedding: N-cell vortex
shedding defined by StN and N-cell cycle shedding defined by Stbeat.
The time sequences in Fig 5.9 show the whole process of an N-cell cycle
development. It is clear that the vortex structures in a) and h) are very
similar, representing the same phase in two adjacent periods. From
Fig 5.9, it can be found that around 14 N-cell vortices are shed during
one N-cell cycle. This estimation agrees well with those reported in
[2, 3].

The features and repetition of N − cell cycle: The N-cell cycle is
caused by the dislocation between N-L boundary [3]. It means the
period of the N-cell cycle is long, compared to the three main vortex
cells. Moreover, during a N-cell cycle, the interactions and variations
of three vortex cells are very complicated. It is necessary to find
clear features that may help to identify the different cycles. Through
long time observation (more than 200D/U), two distinct characteris-
tics were captured, as shown in Fig 5.10. The first one is a half-loop
connection generated between two L-cells, like L1’ and L0’ in Fig 5.10
a). The other is that a N-cell vortex on one side connected to the
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Figure 5.9: Isosurface of λ2 = −0.1 showing N-cell development. T is the
period of one N-cell cycle defined by the beat frequency.

subsequent N-cell vortex on the other side, forming a loop connection,
like N0’ and N1’ in Fig 5.10 a). These two features always appear
together and only once during every N-cell cycle. The half-loop con-
nection was also captured by Morton and Yarusevych [3], but they did
not show the repetition of this feature. Meanwhile, they speculated
that the weak cross-boundary or half-loop N-cell vortex connections
may persist but they couldn’t observed it. The N-cell loop in Fig 5.10
nicely proves this speculation. To the authors’ knowledge, this is the
first time that the beat frequency is clearly identified and shown by
the L-cell half-loop and N-cell loop.
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Figure 5.10: Isosurface of λ2 = −0.2 showing features and repetitions of
N-cell cycle a) t=659; b) t=701; c) t=743; d) t=785 (’D/U’ is the time
unit).

5.5 Conclusion

The study shows good agreement with previous researches [2, 3]. For stream-
wise vortices, the ’jucntion vortex’ which was captured in [2] was not ob-
served in the present study. This may be explained by a Reynolds number ef-
fect. Dunn and Tavoularis [2] observed the ’junction vortex’ for ReD = 1230
which is much higher than in the present study. However, the ’edge vortex’
mentioned in [2] is captured in the present case and clearly shown in Fig 5.7
a). By calculating the streamwise velocity spectra, shedding frequencies
of three main vortex cells together with the beat frequency were captured.
The discrepancy is smaller than 6% compared to previous study [3]. The
repetition of N-cell cycle was shown clearly in Fig 5.10. This phenomenon
was speculated to exist in [3], but haven’t been presented by any results.
Another interesting observation is that the vortex structure is antisymmet-
ric. Finally, different from the speculation about half-loop connection in [3],
a full-loop connection between two N-cell vortices was observed.

In the future, higher Reynolds numbers (e.g. extending to 104) and
higher diameter ratios between large cylinder and small cylinder will be
investigated to explore when a ‘junction vortex’ can be observed. Addition-
ally, a study about how the loop connection for N-cell vortices is generated
and why the vortex structure become anti-symmetric would be of interest.
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Chapter 6

Article 2: Antisymmetric
vortex interactions in the
wake behind a step cylinder

Cai Tian1, Fengjian Jiang2, Bjørnar Pettersen1, Helge I. Andersson3

Abstract

Flow around a step cylinder at Reynolds number 150 was simulated by
directly solving the full Navier-Stokes equations. The configuration was
adopted from [Morton and Yarusevych, Physics of Fluids 22, 083602(2010)],
in which the wake dynamics were systematically described. A more detailed
investigation of the vortex dislocation process has now been performed. Two
kinds of new loop vortex structures were identified. Additionally, antisym-
metric vortex interactions in two adjacent vortex dislocation processes were
observed and explained. The results in this Letter serve as a supplement for
a more thorough understanding of the vortex dynamics in the step cylinder
wake.

In recent years, interfering effects in the wake of a step cylinder, as
shown in Fig 6.1, have received considerable attention. Structures with a
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Figure 6.1: Step cylinder geometry considered
(D/d = 2, l = 5D,L = 25D). The origin of
the coordinate system locates in the center at
the bottom of the large cylinder.

similar shape have been used in many industrial applications, for exam-
ple, the hull of a SPAR-buoy, the outer wall of TV-towers, the supporting
structures for fixed and floating offshore wind turbines, etc. There are two
important parameters for flow past a step cylinder, i.e. the ratio between
the large and the small cylinder diameter, D/d, and the Reynolds number
ReD = UD/ν (where U denotes the free-stream velocity and ν denotes the
kinematic viscosity). There exist many papers on the wake dynamics behind
a step cylinder, both experimentally [1, 2, 3, 4, 5, 6] and numerically[7, 8, 9].
Lewis and Gharib [3] reported two vortex interaction modes in the wake,
direct and indirect modes. The direct mode occurs when D/d < 1.25, where
vortices shed from the large cylinder and the small cylinder have direct con-
nections, and the vortex interaction between them takes place in a narrow
region around the step. Only two dominating vortex shedding frequencies
could be detected in this mode. When D/d > 1.55, the indirect mode takes
place. In addition to the two dominating shedding frequencies of the large
and small cylinder, another low shedding frequency could be captured in
the wake downstream of the step. The vortex cells corresponding to this
frequency were named N-cell by Dunn and Tavoularis [6]. They identi-
fied three types of spanwise vortices based on the shedding frequency: 1)
S-cell vortex shedding from the small cylinder with the highest shedding
frequency; 2) N-cell vortex shedding in the interaction region with the low-
est shedding frequency; 3) L-cell vortex shedding from the large cylinder.
Based on the different shedding frequencies and vortex interactions, Morton
and Yarusevych[9] defined vortex splitting and vortex dislocation in the two
interaction regions located between adjacent cells. In their paper, vortex
interactions between S-cell and N-cell vortices were specifically described.
However, vortex interactions between L-cell and N-cell vortices, and the vor-
tex dynamics during the dislocation at the N-L cell boundary, still require a
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complete explanation. The N-cell vortices shedding is a cyclic phenomenon
(N-cell cycle) [3, 6, 9], and Morton and Yarusevych [9] suggested that it is
the dislocation in the N-L cell boundary that causes the N-cell cycle. They
moreover inferred that there will be 28 S-cell vortices, 14 N-cell vortices,
and 16 L-cell vortices shed from the step cylinder during one N-cell cycle at
ReD = 150. This estimate is in good agreement with the results reported
by Dunn and Tavoularis [6].

The primary aim of the present Letter is to investigate the vortex inter-
actions and the vortex dislocations at the N-L cell boundary in the step
cylinder wake in detail. To achieve this, the flow past a step cylinder
(D/d=2) at ReD = 150 was studied by using a well-validated [10, 11] Direct
Numercial Simulation (DNS) code MGLET [12] to directly solve the full
Navier-Stokes equations. All aspects of the numerical details can be found
in a conference paper [13].

Figure 6.2: Streamwise velocity spectra of a sample line at x/D=2.5 and
y/D=0.75. The spectra were sampled over more than 50 N-cell cycles. We
have verified that this plot will not at all be influenced by the choice of the
sampling location in the near wake.

The streamwise velocity is sampled at discrete points along a line par-
allel to the z-axis at x/D=2.5 and y/D=0.75 (the same as in Morton and
Yarusevych [9]). The energy spectrum Euu is presented in Fig 6.2, from
which three dominating peaks are clearly observed, corresponding to S-cell
StθS = fSD/U = 0.3062, N-cell StN = fND/U = 0.1538 and L-cell vor-
tices StθL = fLD/U = 0.1778. In addition, a minor peak at the beat
frequency, i.e. the frequency of vortex dislocations at the N-L boundary[9],
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Table 6.1: The present simulation results compared with Eq 6.1. (Note:
StθS in Fig 6.2 is calculated based on the large cylinder diameter(D), St′θS
is based on the small cylinder diameter (d))

θL θS StθL St′θS StL StS

Present 17 0 0.1778 0.1531 0.1859 0.1531
Eq.(6.1) - - - - 0.1854 0.151

Stbeat = fLND/U = (fL − fN )D/U = 0.02355 is also captured. It is esti-
mated from Fig 6.3 c), that the shedding angle θL in the wake behind the
large cylinder is about 17◦, which means oblique shedding occurred. This
is consistent with the findings of Dunn and Tavoularis [6], who used the
same D/d = 2 in a wide range of ReD (63 < ReD < 1100) and noticed that
the vortex inclination in the wake behind the step cylinder is between 0◦

and 30◦ with respect to the cylinder axis. Morton and Yarusevych [9] also
reported that, due to oblique vortex shedding, the Strouhal numbers (St) of
the S- and L-cell are lower than those obtained in simulations of the wake
behind a uniform cylinder at the same ReD. If the oblique shedding data
are recast into a parallel-shedding Strouhal number St = Stθ/cos(θ), the
comparison with the empirical formula from Williamson and Brown [14]

St = 0.2731− 1.1129/Re0.5 + 0.4821/Re. (6.1)

in Table 6.1 shows that the St values deduced from this study fit closely
with Eq 6.1.

The generation of S-cell vortices and the vortex interactions between S-
and N-cell vortices have been discussed in detail by Morton and Yarusevych
[9]. Based on their work, the present study focuses on the complex interac-
tion between L- and N-cell vortices, of which some interesting features, not
reported before, will be presented and discussed.

The vortex structures of isosurface of λ2 [15] in the near wake are il-
lustrated by consecutive snapshots in Fig 6.3, where selected N- and L-cell
vortices are numbered. The time instant of Fig 6.3 a), t = 651.06D/U ,
was set as t = 0 to ease the discussion. We use a combination of capital
letters and numbers to label all N- and L-cell vortices, ’N’ or ’L’ denote
vortices belonging to N-cell or L-cell, respectively, while the number de-
notes the shedding order. To distinguish vortices shed from different sides
of the cylinder, we use numbers, e.g. 1, 2... indicating vortices shed from
the ”-Y” side, and numbers with prime, e.g. 1’, 2’..., to indicate vortices
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Figure 6.3: Isosurfaces of λ2=-0.15 showing vortex structures development.
The actual time t = 651.06D/U in a) is set to t = 0 to ease the disussions.
There are about two N-cell cycles from a) to l).

shed from the ”+Y” side. We have learned from previous studies [6, 9] that
the N-cell vortices change cyclically, referred to as N-cell cycles, and are
characterized by vortex dislocations between N- and L-cell vortices. Before
a vortex dislocation occurs, L-cell vortices shed in phase with N-cell vor-
tices. In other words, each L-cell vortex forms a direct connection with one
corresponding N-cell vortex, like N2-L3, N3-L4 etc. in Fig 6.3 b) and 6.3 c).
When a dislocation happens, complex vortex interactions take place, and
we call this process a vortex dislocation process. It has been reported in
a previous study [9] that, during the vortex dislocation process, two L-cell
vortices disconnect with their counterpart N-cell vortices and form a L-L
half loop as shown by the green curves in Fig 6.4 h)(i.e. L9’-L10). Through
the present study, we observed additional interesting features:

1. In addition to the L-L half loop, we have identified two other types of
loop structures in every N-cell cycle: the real loop (also called a N-N loop)
and the fake loop (also called a N-L loop).

2. The vortex interactions show distinct anti-symmetrical features be-
tween two adjacent N-cell cycles.
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These phenomena can be observed in the consecutive snapshots in Fig 6.4,
where the vortex structures are shown from both ’+Y’ and ’-Y’ sides of the
step cylinder in order to facilitate the discussion. In the fake loop structure,
a N-cell vortex connects to a L-cell vortex as shown by the red curves (both
solid and dotted) in Fig 6.4. We name this kind of loop a ’fake loop’, because
it has a similar appearance, i.e. a vortex-ring-like structure, as the following
’real loop’. However, their connection topology is essentially different. This
is very important for understanding the dislocation process. During the dis-
location process, when a L-cell vortex breaks away from the corresponding
N-cell vortex from the same side (L8’ and N7’ in Fig 6.4 a) and Fig 6.4 c)),
the L-cell vortex can not just end in the fluid and must therefore connect
with the N-cell vortex from the other side (L8’-N7 in Fig 6.4 c)). This leads
to the generation of a fake loop structure shown by the red curve in Fig 6.4
d). Following this process, the formation of the second fake loop L9 and N7’,
and a L-L half-loop (L10-L9’) becomes unavoidable for topological reasons.

Figure 6.4: Isosurfaces of λ2 = −0.15 showing vortex interactions occurring
at the N-L cell boundary during the dislocation process. (a, c, e, g) are
observed from ’+Y’ to ’-Y’ side, while (b, d, f, h) are observed from the
opposite side. Solid and dashed red curves indicate fake loops (N-L loop)
from different sides, blue closed curves show real loops (N-N loop) and green
curves show L-L half loops.

Different from the fake loop, the real loop is formed by two N-cell vortices
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shed from opposite sides connecting to each other. With the development
of the L-L half loop L10-L9’ in Fig 6.4 h), the N-cell vortex N8 looses its
counterpart L-cell vortex L10. Meanwhile, there is no isolated L-cell vortex
on the other side (L10’ connects neatly to N8’), which means that no fake
loop can be generated. However, the N8 vortex can not just end in the fluid.
Therefore two N-cell vortices shed from opposite sides inevitably connect to
each other to form a real loop structure, as indicated by the blue closed
curve in Fig 6.4 h).

Figure 6.5: Isosurface of λ2 =
−0.2 showing features and
repetitions of the N-cell cy-
cle.(a, c) are observed from
’+Y’ to ’-Y’ side, while (b, d,)
are observed from the opposite
side. Similar colors as used
in Fig 6.4 represent different
kinds of vortex loop structures.

The recognition of the real and fake loops further help us to observe
another interesting phenomenon in this wake, namely the antisymmetry. In
Fig 6.5, the snapshots from the wake in the same phase of four continuous
N-cell cycles are shown. It is clear that the L-L half loop and the loop
structures (both real and fake) all occurred anti-symmetrically instead of
symmetrically. In other words, real loops (N-N loop) from two adjacent
dislocation processes are led by N-vortices shed from opposite sides. The
same phenomenon occurs for the L-L half loop and the fake loop (N-L
loop). For example, in Fig 6.5 a) and c), the real loop is led by N1’ and
N14’ from ’+Y’ side, while the real loop in Fig 6.5 b) and d) is led by N8
and N21 from the ’-Y’ side. A similar sequence occurs for the L-L half loop.
To the authors’ best knowledge, this antisymmetric phenomenon, caused by
the intrinsically different vortex connection topology in adjacent dislocation
processes, has never been reported before.

The time history and vortex connection topology of the vortices in the
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Figure 6.6: Time history of the vortex shedding. The short straight black
lines represent the connection between the L-cell vortex and its counterpart
N-cell vortex. The same colors as used in Fig 6.4 reveal different kinds of
loop vortex structures.

wake are sketched in Fig 6.6 based on long-time observations. The corre-
sponding time sequence of the instantaneous iso-surfaces of λ2 can also be
seen in Fig 6.3. The straight short black lines in Fig 6.6 indicate connec-
tions between the L-cell vortex and its N-cell vortex counterpart. When one
N-cell vortex is connected to two L-cell vortices (e.g. N1 is connected to L1
and L2), a dislocation occurs.

In Fig 6.6, the first dislocation process begins from the ’-Y’ side (N1
connects to two L-cell vortices L1 and L2). This dislocation caused the fake
loop to appear firstly at the ’+Y’ side (L1 and N0’ connection). Then an-
other fake loop (L1’-N1), a L-L half-loop (L2-L2’) and a real loop (N1’-N2)
were generated in succession. This scenario can be observed in Fig 6.5 a).
Contrary, the second dislocation process begins from the ’+Y’ side (N7’ con-
nected to two L-cell vortices L8’ and L9’). The fake loop vortex structure
therefore firstly appeared on the -Y’ side (L8 - N7). The other loop struc-
tures are also antisymmetric with respect to the first dislocation process.
This scenario is shown in Fig 6.5 b). The third dislocation process is exactly
the same as the first one, e.g. Fig 6.5 c) compared with Fig 6.5 a). The
antisymmetrical periodic phenomenon can also be observed in Fig 6.7, in
which the time trace of a velocity time trace is plotted. This anti-symmetry
system gives the ratio of numbers of N-cells to L-cells 26/30≈ 0.867, which
agrees well with the ratio between the shedding frequencies fN/fL = 0.865.

By knowing the antisymmetric feature, one may incorrectly infer that
fig 5a) and 5c) form a complete N-cell cycle period. However, it is note-
worthy to mention that although two adjacent dislocation processes are
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Figure 6.7: Time trace of the streamwise velocity at a sample point
(x, y, z)/D = (2.5, 0.75, 19.5). ’D2’ means the second dislocation process
defined in Fig 6.6, same for D3, etc.

antisymmetric, the frequency of the N-cell cycle is still decided by the beat
frequency (fLN=fN -fL) rather than by twice the beat frequency. In other
words, although fig 5a) and b) are antisymmetric, they form a complete
N-cell cycle. The dislocation process is complicated and continues over four
L-cell vortices. We believe that the generation of the L-L half loops (e.g.
L2-L2’) should serve as the bound between two N-cell cycles. Based on this,
the period of the N-cell cycle is defined as the time between Line 1 and Line
3 (or Line 3 and line 5), shown in Fig 6.6. It is found that the duration
between two L-L half loops (the green dashed circle in Fig 6.6) is constant,
equal to 7.5 times the shedding period of L-cell vortices TL, regardless of
the antisymmetric scenario. This fits well with fL/fLN=7.55 from Fig 6.2.
This particular frequency ratio causes the observed antisymmetries. On the
other hand, if the frequency ratio had happened to be an integer, we believe
that the dislocation process would have been symmetric.

Previous studies [6, 9] reported that there are 14 N-cell vortices and 16 L-
cell vortices during one N-cell cycle. However, after now having uncovered
the antisymmetry of two adjacent dislocation processes, we realize there
are actually 13 N-cell vortices and 15 L-cell vortices in one N-cell cycle.
Without paying attention to the antisymmetry of the vortex interaction,
one may conclude that the period from Line 2 to Line 4 in Fig 6.6 is a
N-cell cycle based on the fact that Fig 6.3 c) and Fig 6.3 h) correspond to
the same phase of the N-cell cycle, in which there are 14 N-cell vortices and
16 L-cell vortices (as reported by Morton and Yarusevych [9]). However, by
considering the antisymmetry, it is clear that, instead of Line 2 and Line 4,
the time lapse between Line 2 and Line 4’ should be counted as the N-cell
cycle period, during which there are 13 N-cell vortices and 15 L-cell vortices,
as documented in Fig 6.6.

In summary, our present results show good agreement with previous
studies, including distinct spanwise vortices, S-, N- and L-cells [6], and the
vortex dislocations [3, 6, 9] occurring at the N-L boundary. More impor-
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tantly, the numerical results provid more detailed information about the
vortex dislocation process, from which two new loop structures in this wake
were identified, i.e. the fake loop between N- and L-cell vortices, and the
real loop between two N-cell vortices. We have clearly shown that there are
in total two fake loops, one real loop, and one L-L half loop generated dur-
ing each dislocation process. Additionally, based on the new understanding
of the intrinsically different connection topology of real and fake loops, an
antisymmetry between two adjacent N-cell cycles has been observed and
reported for the first time. Due to this antisymmetric feature, different
from previous experiment [6] and simulation [9], we found that there are
13 N-cell vortices and 15 L-cell vortices in every N-cell cycle in the 2:1 step
cylinder wake at ReD = 150. The identification of the real and fake loop, to-
gether with the observation of the antisymmetric features in the dislocation
process, offer a deeper and more complete understanding of this wake phe-
nomenon. Although vortex dislocations are common in bluff body wakes, we
should mention the particularity of the phenomena reported in this Letter,
for which N-cell vortices play a central role. The N-cell vortex is probably
a unique feature of step cylinder wakes. Yet there exist the possibility that
similar vortical structures may appear in other wakes, albeit with different
appearances. We leave this as an open question for further investigation.

Computing resources was granted by the Norwegian Research Council
(Program for Supercomputing). The first author would like to thank China
Scholarship Council (CSC) for financial support.
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Chapter 7

Article 3: The long
periodicity of vortex
dislocations in the wake
behind a step cylinder

Cai Tian1, Fengjian Jiang2, Bjørnar Pettersen1, Helge I. Andersson3

Abstract

By directly solving the three-dimensional unsteady Navier-Stokes equations,
the wake flow behind a step cylinder with diameter ratio D/d = 2 at
Reynolds number ReD = 150 was investigated. The dominating frequency
components and vortex interactions in the wake were studied in detail. Same
as in previous studies, three spanwise vortex cells (the S-cell vortex behind
the small cylinder, the L-cell vortex behind the large cylinder and the N-
cell vortex between them) with different shedding frequencies were precisely
captured in the present paper. Complex vortex interactions occur between
these vortex cells. We focused on the vortex dislocations between the N-
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and L-cell vortices. A long periodicity of the vortex dislocation is reported
and analyzed. Several long time numerical simulations (more than 3000
D/U time units) were conducted to illustrate and analyze the wake flow.
Benefit from it, a long period characteristic of the vortex dislocation was
reported and analyzed. Additionally, the challenges of the grid resolution
for investigating the long period phenomenon were discussed.

7.1 Introduction

In recent years, the wake flow behind a step cylinder has attracted more and
more attention from researchers. Due to the abrupt change in diameter, the
vortical structures in the near wake behind the step cylinder are complex
even at a low Reynolds number, e.g. ReD = 150, as shown in figure 7.7.

When considering flow past a step cylinder, there are two important
parameters, i.e. the ratio between the large cylinder and the small cylinder
(diameter ratio D/d) and the Reynolds number (ReD). By doing laboratory
experiments, Lewis & Gharib [1] observed and reported two vortex interac-
tion modes, direct and indirect modes. When the diameter ratio is smaller
than 1.25, only two dominating vortex shedding frequencies can be captured
in the wake of the step cylinder, corresponding to the vortices shed from the
large cylinder and the small cylinder, respectively. These two vortex cells
directly connect to each other, and the vortex interactions between them
occur in a narrow region behind the step. This mode is called the direct
mode. The indirect mode happens when the diameter ratio (D/d) becomes
larger than 1.55. Besides the two dominating vortex shedding frequencies
of the small and large cylinder, a distinct frequency can be detected in the
region downstream of the step. Lewis & Gharib [1] defined the region con-
taining this distinct frequency as the modulation zone (the N-cell area in
the present paper, see figure 7.1). Based on the shedding frequencies and
locations of different vortex cells, Dunn & Tavoularis [2] defined three vor-
tex cells behind the step cylinder with D/d = 2: (1) S-cell vortex shedding
from the small cylinder with the highest vortex shedding frequency; (2)
L-cell vortex shedding from the large cylinder; (3) N-cell vortex shedding
near the step position between the S- and L-cell vortices, with the lowest
vortex shedding frequency. The shedding areas of these three vortex cells
are illustrated in figure 7.1. The terminologies S-cell, N-cell and L-cell were
later used in many studies [3, 4, 5, 6], and are also used in the present study.

Due to the different shedding frequencies, neighbouring vortex cells move
either in-phase or out-of-phase with each other. When they move out-
of-phase, the contorted ’tangle’ of vortices appears at the boundary be-
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Figure 7.1: The shedding areas of the three
vortex cells, i.e. S-, N- and L-cell area.

tween them, which looks like the dislocations that appear in solid materials.
Williamson [7] defined this kind of vortex interaction as the vortex disloca-
tion. The similar physical phenomena were also observed in the wake behind
the step cylinder. In 1992, Lewis & Gharib [1] observed that an inclined
interface between the N-cell and L-cell area appears at the beat frequency
(fL − fN ). They suspected that this inclined interface might be caused by
the variation of the actual spanwise length of the N-cell vortices. In 2010,
Morton & Yarusevych [3] proved this suspicion. By doing numerical simu-
lations, they clearly presented a cyclic variation of the N-cell vortices. In
their studies, as N- and L-cell vortices move out-of-phase, in parallel with
the appearances of the vortex dislocation, the spanwise length of the N-cell
vortices and the position of the N-L cell interface change periodically with
the beat frequency (fL-fN ). Morton & Yarusevych [3] defined these cyclic
variations as the N-cell cycle. In 2017, Tian et al. [6] further investigated the
vortex dislocation between N- and L-cell vortices in detail. They identified
two new loop structures: the NL-loop (the fake loop) structure formed be-
tween a N-cell and a L-cell vortex, and the NN-loop (the real loop) structure
formed between two adjacent N-cell vortices. Based on careful observations
of the formation processes of these loop structures, an antisymmetric vortex
interaction was also reported between two adjacent N-cell cycles.

In 2015, McClure et al. [8] were the first reported the long period char-
acteristic of the vortex dislocation by investigating flow past dual step cylin-
ders (1 < D/d < 4) at ReD = 150. They found that there is a continuous
variation in the vortex dislocations, i.e. the neighboring vortex dislocations
are not exactly the same. They also defined the time period between two
identical vortex dislocations as the fundamental dislocation cycle.

Compare to the interesting observations in this wake, what was much
less focus on in the literature is the computational challenges in conducting
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simulations of the step cylinder wakes. Many complex and small vorti-
cal structures play important roles in the vortex interactions in this wake.
These vortices are far more difficult to capture compared to the primary
vortices. In addition, insufficient grid resolution may have little influence
on the primary vortices, but will have strong effects on the vortex dislo-
cations. When we discuss the long period phenomena, this becomes even
more critical.

In the present paper, we investigate and report some interesting long
period phenomena, and a subsequent computational challenge. In order
to achieve this, the flow past a step cylinder (D/d = 2) at ReD = 150
is studied by means of solving the full three-dimensional unsteady Navier-
Stokes equations. The isosurface of λ2 and the time trace of velocity are
plotted and observed for a relatively long time period (more than 2000
D/U). Last but not least, the challenges of investigating the long periodic
phenomenon are discussed.

7.2 Computational method and flow configuration

7.2.1 Computational method

For all simulations in the present study, the full three-dimensional incom-
pressible Navier-Stokes equations were directly solved by the code MGLET
[9, 10]. In this second-order finite-volume solver, the governing equations
are in integral form: ∫

A
u · n dA = 0 (7.1)

∂

∂t

∫∫∫
Ω
ui dΩ+

∮
A
ui u·n dA = −1

ρ

∮
A
p ii · n dA+ν

∮
A
grad ui·n dA (7.2)

where A and Ω are the control surface and the control volume, respec-
tively. n is the unit vector on dA pointing out of Ω, and ii is the Cartesian
unit vector in xi direction. All simulations are done on a staggered Cartesian
mesh. After discretizing equation (10.2), we get

∂u

∂t
= D(u) + C(u) +G(p) = f(u, p) (7.3)

in which D(u) represents the discretized diffusive term, C(u) represents
the discretized convective term, and G(p) represents the discretized pres-
sure term. The midpoint rule is used to approximate the surface integral,
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leading to second-order accuracy in space. The diffusive term is approxi-
mated by a central-difference formulation, which preserves the second-order
accuracy. The time integration of equation (7.3) is conducted by a third-
order explicit low-storage Runge-Kutta scheme [11] (details can be found in
[12]). The pressure term is corrected by solving a Poisson equation to fulfill
a divergence-free velocity field:

div[(G(δp))]∆t = div(u∗) (7.4)

where δp is the pressure correction, u∗ is an intermediate velocity field
calculated by omitting the pressure term in equation (7.3) and ∆t is the
constant time step that ensures a CFL number smaller than 0.7. At every
marching time step, this discretized Poisson equation is represented by a lin-
ear equation system, which is solved by Stone’s Strongly Implicit Procedure
(SIP) [13].

The solid boundaries of the step cylinder is handled by an immersed
boundary method (IBM). In MGLET, we use an unstructured triangular
mesh to represent the surface of the geometry, and directly transfer infor-
mation to IBM to block grid cells bounded by this surface. Then the grid
cells at the fluid-solid interface will be set as internal cells by interpolating
the flow variables from the surrounding cells. A more detailed description
of the IBM used in MGLET can be found in [14].

7.2.2 Flow configuration

The geometry of the step cylinder investigated in the present paper is shown
in figure 7.2 (a), in which D is the diameter of the large circular cylinder,
and d is the diameter of the small cylinder. l and L are the length of the
small and large cylinder, respectively. The origin locates at the center of
the interface between the small and large cylinder. In figure 7.2 (b), the
coordinate system and the computational domain are shown, where x−,
y− and z−directions correspond to the streamwise, crossflow and spanwise
direction, respectively. The computational domain is a rectangular box
spanning 20D in the crossflow direction, 30D in the streamwise direction
and 45D in the spanwise direction. The total length of the step cylinder
equals 45D. These parameters are larger than that used by Morton and
Yarusevych [3] for modeling a step cylinder with the same D/d and ReD.
Boundary conditions applied in the present study are as follow:

- The inlet boundary: uniform velocity profile u=U , v=0, w=0;
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- The outlet boundary: Neumann boundary conditions for velocity com-
ponents (∂u/∂x = ∂v/∂x = ∂w/∂x = 0) and constant zero pressure
condition;

- The other four planes of the computational domain: free-slip boundary
conditions. For the two vertical planes: v = 0, ∂u/∂y = ∂w/∂y = 0,
For the two horizontal planes: w = 0, ∂u/∂z = ∂v/∂z = 0;

- The step cylinder surfaces: no-slip and impermeable wall condition;

Figure 7.2: (a) The step cylinder geometry investigated in the present study;
(b) Computational domain size, origin and coordinate system illustrated
from different viewpoints. Diameter of the large cylinder, D, is the length
unit. The origin locates at the center of the interface between the small and
large cylinder.

7.3 Grid study

7.3.1 Grid overview

Detailed grid information of all cases simulated is summarized in table 7.1.
The Reynolds number is calculated based on the uniform free-stream veloc-
ity (U) and the diameter of the large cylinder (D), i.e. ReD = UD/ν = 150
(ν is the kinematic viscosity of the fluid). The computational domain is
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Table 7.1: Grid information of all cases. The Reynolds number is 150 for
all cases (ReD = UD/ν = 150). Grid levels are illustrated in figure 7.3.

Case
Min grid
cell size

Number of
grid levels

Number of
grid cells in
one grid box

Time
step ∆t

Total number
of grid cells

(million)

1 0.025 5 30× 30× 30 0.0080 30.2
2 0.020 5 36× 36× 36 0.0067 48.8
3 0.015 6 24× 24× 24 0.0050 81.0
4 0.012 6 30× 30× 30 0.0040 173.8

divided into many cubic Cartesian grid boxes. In each grid box, N ×N ×N
cubic Cartesian grid cells are uniformly distributed. In the areas where
complex flow phenomena take place, such as in the region around the ’step’,
the area where the vortex dislocation happens, etc., the grid is refined by
equally splitting grid boxes (e.g. the level-1 box) into eight smaller cubic
grid boxes (i.e. the level-2 box). Hence, the grid resolution on level-2 is
two times better than that on level-1. This refinement process goes on au-
tomatically until the finest grid level (varies with cases shown in table 7.1)
is reached. In figure 7.3, a schematic illustration of the grid for Case2 is
shown.

7.3.2 Grid convergence study

Motivated by ensuring that the grid resolution is good enough to resolve
all important fluid phenomena, especially the complicated flow around the
step, four grids were generated for thegrid study, as shown in table 7.1.

First, we did a rough check by comparing vortex shedding frequencies of
the three vortex cells in all cases. In table 7.2, by conducting Fast Fourier
Transform of the time-series of the streamwise velocity u along a sampling
line at (x/D, y/D)=(0.6, 0.2), the Strouhal number (St) of the three dom-
inating vortex cells (S-cell StS = fSD/U , N-cell StN = fND/U and L-
cell StL = fLD/U) in the wake of the step cylinder are calculated and
presented. One can see that the differences in St of the same vortex cell
are small among all cases. The largest difference is (StS of Case2-StS of
Case3)/(StS of Case3)=1.7%, which is considerably small. Moreover, the
difference between Case3 and Case4 (the finest two cases) is smaller than
0.7%.



80 80

Table 7.2: The Strouhal number (St) of three dominating vortex cells (S-
cell StS = fSD/U , N-cell StN = fND/U and L-cell StL = fLD/U) for all
cases investigated. The results of one previous numerical study [3] and two
previous laboratory experiments [15, 16] are also shown. [Note: in our case,
StS is calculated based on the diameter of the large cylinder, a factor 2 is
used when obtain data from [15, 16].]

Case StS StN StL

1 0.2943 0.1532 0.1769
2 0.2950 0.1531 0.1771
3 0.2895 0.1545 0.1780
4 0.2921 0.1549 0.1784

Morton and Yarusevych [3] 0.320 0.157 0.179
Norberg [15] 0.297 - -

Williamson [16] 0.298 - -

Second, the mean streamwise velocity (ū/U) distributions are checked
along a line AB (as indicated in the subplot figure 7.4 (c)) and a line CD
(as indicated in the subplot figure 7.5 (b)) to illustrate the time averaged
flow conditions close to the step. The curves in figure 7.4 (a) are almost
identical, and the zoom-in plot 7.4 (b) clearly shows a convergent tendency
form Case1 to Case4. Additionally, the difference between Case3 and
Case4 is negligible. The flow field behind the step is more complicated
than that in front of the step. As shown in figure 7.5 (a), the curve from
Case1 shows obvious differences compared with the curves from the other
three cases. From the two zoom-in plots, figure 7.5 (c) and (d), one can see
that the maximum difference in ū/U between Case2, Case3 and Case4 is
only around 0.005. This means that, except for Case1, the flow field from
the other three cases fit each other well.

Furthermore, the time traces of the instantaneous spanwise velocity w
in the N-cell area where the velocity varies dramatically with time are plot-
ted for Case2, Case1 and Case4 in figure 7.6. The mean values and the
fluctuations of these curves coincide well.

7.3.3 Comparing with previous studies

In figure 7.7 (a), an overview of the vortex structures behind the step cylin-
der is illustrated by plotting the isosurface of λ2 = −0.05 [17]. The overall
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Figure 7.3: (a) A slice of the computational domain in the x − z plane
at y/D = 0. Each square represents the slice of a corresponding cubic
Cartesian grid box which contains N × N × N grid cells. In this figure,
there are five levels of grid boxes, where the first four levels are indicated by
numbers (1-4). Due to different minimum grid sizes, different cases have
either five or six levels of grid boxes. (b) Same as (a) but the slice positioned
in the x− y plane at z/D = 0− (at the large cylinder area). (c) A zoom-in
plot of the grid cells in the step region (red rectangle in (a)) for Case2; (d)
Same as (c) but the zoom-in area is indicated by a red rectangle in (b).

vortical structures from previous numerical simulations [3] and laboratory
experiments [2] are presented in figure 7.7 (b) and (c), respectively. The
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Figure 7.4: (a) Distributions of mean streamwise velocity ū
U along a sam-

pling line AB in the x−z plane at y/D = 0; (b) A zoom-in plot of the upper
part of curves in (a) (black rectangle in (a)); (c) A sketch of the sampling
line AB of length 0.8D, positioned 0.15D in front of the small cylinder.

Figure 7.5: (a) Distributions of mean streamwise velocity ū
U along a sam-

pling line CD in the x − z plane at y/D = 0; (b) A sketch of the sampling
line CD of length 6D, positioned 1D behind the large cylinder; (c) and (d)
Zoom-in plots of the lower part of curves in (a) (black rectangles in (a)).

wake structures compare well with each other in these three plots. In figure
7.7 (a), three vortex cell areas (the S-, N- and L-cell areas) are also clearly
illustrated. As Morton & Yarusevych [3], we also captured three dominat-
ing frequency components in the wake flow, as shown in table 7.2. The StL
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Figure 7.6: Time traces of the spanwise velocity (w/U) at point (x/D, y/D,
z/D)=(1, 0, -2.5) in the N-cell area. The red line is obtained from paper
[3]. T is the period of one N-cell cycle which is the same time scale as
Morton and Yarusevych used in [3].

Figure 7.7: Vortex shedding in the wake behind a step cylinder: (a) Isosur-
faces of λ2 = −0.05 [17] from our simulation, ReD = 150 and D/d = 2; (b)
Isosurfaces of Q ≈ 2 × 10−3 from [3], ReD = 150 and D/d = 2; (c) Flow
visualization image from [2], ReD = 150 and D/d = 2;

from our simulations fits well with theirs. Our StS and StN , however, are
somewhat lower than that from their simulations. As mentioned in previous
papers [2, 18, 19], the shedding of S-cell vortices is seldomly affected by the
step. Two laboratory experiments [15, 16] are introduced to validate our
StS . From table 7.2, one can see that our results compare better with the
experimental values. Moreover, the spanwise velocity data from paper [3] is
inserted in figure 7.6. The match between the present study and Morton &
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Yarusevych [3] is convincing, except for small differences in the lower part
of the curves.

Based on all these careful comparisons, we believe that, except for
Case1, the convergent tendency from Case2 to Case4 is clear. Moreover,
the difference between Case3 and Case4 is small, and both of them fit well
with previous results. However, due to the smaller time step size and large
number of grid cells, the computational cost of Case4 is significantly higher
that that of Case3. All discussions in the present paper are therefore based
on data from Case3.

7.4 Results

7.4.1 Long periodicity of the vortex dislocations

Figure 7.8: Isosurface of λ2 = −0.05 [17] showing the development of the
1st N-cell cycle on the ’-Y’ side of the step cylinder. The time t is set to
t=t*−2378.1D/U (t* is the actual time). Solid and dashed curves indicate
the loop structures on the ’-Y’ and ’+Y’ side, respectively.

In the present study, as in the previous investigations [2, 3], three vor-
tex cells (S-, N- and L-cell vortices) are captured in the wake behind the
step cylinder. Complex vortex interactions occur between them, especially
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between the N- and L-cell vortices. Due to different shedding frequencies,
the N- and L-cell vortices move either in-phase or out-of-phase. During this
process, vortex dislocations and vortex loop structures form. As shown in
figure 7.8, the formation of the 1st N-cell cycle is illustrated by consecutive
snapshots of isosurface of λ2. The time t is set to t=t*-2378.1D/U , where
t* is the actual time in the simulation (this applies through the paper). All
N- and L-cell vortices are labeled by a combination of capital letters and
numbers; ’N’ and ’L’ represent N- and L-cell vortices, respectively, while the
number indicates the shedding order. To differentiate vortices shed from the
different sides of the step cylinder, we use capital letters with primes (N’
and L’) to represent vortices shed from the ’+Y’ side; and capital letters
(N and L) to represent vortices shed from the ’-Y’ side. From figure 7.8 (a)
to (f), every N-cell vortex has one corresponding L-cell vortex shed from
the same side (e.g. N0 and L0; N’1 and L’1...). As the phase difference
between the N- and L-cell vortex accumulates [3], loop structures appear
when corresponding N- and L-cell vortices are out of phase. From figure 7.8
(g) to (j), loop structures (N8-L’9) and (N’9-L10) form, and are indicated
by green and red curves, respectively. Detailed descriptions of the formation
process of those loop structures can be found in paper [6]. Based on the
order of their appearances, we name the green curve as the NL-loop1, and
the red curve as the NL-loop2. Meantime, we define the side of a NL-loop
structure as the side of its N-cell vortex component. For example, the NL-
loop1 N8-L’9 (shown by green curves) in figure 7.8 (h) is identified to form
at the ’-Y’ side, because the N-cell vortex (N8) in this loop is at the ’-Y’
side.

Figure 7.9: NL-loop structures at the 1st and 2nd N-cell cycles are plotted
in [(a), (b)] and [(c), (d)], respectively. The same colors and definitions
used in figure 7.8 are also used here.
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In figure 7.9, by plotting the isosurface of λ2 = −0.05, the NL-loop
structures in the 1st and 2nd N-cell cycles are shown. The same colors
and definitions in figure 7.8 are used here. One can see that the NL-loop1
(N8-L’9) in the 1st N-cell cycle (figure 7.9 (a)) and the NL-loop1 (N’21-
L24) in the 2nd N-cell cycle (figure 7.9 (c)) are on different sides of the
step cylinder. This is the antisymmetry reported in our previous paper [6].
However, by comparing figure 7.9 (a) and (c); (b) and (d), one can see that
the corresponding NL-loops have small differences (highlighted by black
circles), which means the conventional antisymmetry is not perfect. These
differences are also reflected in the time traces of crossflow velocity (v) in the
center plane. When a vortex dislocation occurs, the adjacent vortices move
out phase. Meanwhile, the induced velocity fluctuations at the boundary
between the adjacent vortex cells are excepted to diminish. For different
dislocation processes, the corresponding distinct vortex alignments cause
different amount of reductions in the induced crossflow velocity (v). In
figure 7.10, the time trace of the crossflow velocity (v/U) is plotted at the
position (x/D, y/D, z/D)=(1.5, 0, -6), which is at the boundary between
the N- and L-cell vortices. The instants where the vortex dislocations in the
1st and 2nd N-cell cycle occur are marked by ’Dis1’ and ’Dis2’, respectively.
One can see that the obvious reductions in the induced crossflow velocity
are different at these two positions.

Figure 7.10: Time trace of the crossflow velocity (v) at a sampling point
(x/D, y/D, z/D)=(1.5, 0, -6). ”Dis1” represents the dislocation process
that occurs in the 1st N-cell cycle defined in figure 7.9, same for ”Dis2”.

The different alignments of N- and L-cell vortices induce slightly different
NL-loops and different reductions in the induced crossflow velocity in the
1st and 2nd N-cell cycles. From the NL-loop1 (N8-L’9) of the 1st N-cell
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cycle in figure 7.9 (a) to the NL-loop1 (N’21-L24) of the 2nd N-cell cycle in
figure 7.9 (c), there are 13 N-cell and 15 L-cell vortices. Compared to the
vortex pairs in the 1st N-cell cycle, the fact that 15× 1

2fL
−13× 1

2fN
= 0.064

(fN and fL are obtained from table 7.2-Case3) induces a small phase shift
to every vortex pair (a N-cell vortex and its counterpart L-cell vortex) in
the 2nd N-cell cycle. It means that the vortex alignment varies from one
N-cell cycle to another. Only when the vortex alignment becomes exactly
the same in two N-cell cycles, the corresponding vortex dislocations can be
exactly the same.

Considering vortices shed alternatingly from the ’+Y’ and ’-Y’ sides of
the step cylinder, the exactly same vortex alignment can appear at the same
side or different sides of the step cylinder. When the same vortex alignment
appears at the same side of the step cylinder in two N-cell cycles, their
subsequent NL-loop structures should be identical (i.e. perfect symmetric).
On the other hand, perfect antisymmetric NL-loop structures are expected.
We assume that there are two neighboring vortex cells: vortex cell-1 with
a shedding frequency f1, and vortex cell-2 with a shedding frequency f2. If
the number of cell-1 and cell-2 vortices are ’k’ and ’j’ between the two N-cell
cycles which have the same vortex alignment, expression 7.5

k × 1

2f1
= j × 1

2f2
(7.5)

should be satisfied. We keep the number ’2’ as a factor in both sides of ex-
pression (7.5), because the shedding frequency should be doubled when we
consider vortices from the ’+Y’ and ’-Y’ side separately (normally, the vor-
tex shedding frequency in a Karman vortex street is the shedding frequency
of a pair of vortices).

Figure 7.11: NL-loop structures at the 16th, 31th and 46th N-cell cycles are
plotted in [a), b)], [c), d)], and [e), f)]], respectively. The same colors and
definitions as in figure 7.8 are used here.
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After long time of observation, we found that the corresponding NL-loop
structures (NL-loop1: N8-L’9; NL-loop2: N’9-L10) in the 1st N-cell cycle,
and (NL-loop1: N’205-L236; NL-loop2: N206-L’237) in the 16th N-cell cycle
are perfect antisymmetric, as shown in figure 7.9 a), b) and figure 7.11 a)
b). Details are highlighted by black circles. Between these two N-cell cycles,
there are 183 N-cell vortices and 211 L-cell vortices which satisfy equation
(7.5), i.e.183× 1

2fN
= 211× 1

2fL
= 592 (fN and fL are obtained from table

7.2-Case3).
In addition, the NL-loop structures in the 31th and the 46th N-cell

cycle are plotted in figure 7.11 (c), (d), (e) and (f). One can see that, after
every 15 N-cell cycles, the perfect antisymmetric phenomenon appears. In
figure 7.12, the time traces of the crossflow velocity v are plotted at the
position (x/D, y/D, z/D)=(1.5, 0, -6). The y-coordinate of figure 7.12 (b)
is reversed (from v to −v) to ease the comparison. The position where a
vortex dislocation happens is marked by a combination of the capital letter
’D’ and its series number. One can see that these two plots almost coincide,
which proves that all of the vortex alignments and the corresponding NL-
loop structures are perfectly antisymmetric between D1-D15 and D16-D30.

This long cyclic process (around 650 D/U) is quite similar to the ’fun-
damental dislocation cycle’ defined by McClure et al. [8]. They focused
on the flow around a dual step cylinder. In their study, the same vortex
dislocations appeared at the same side of the dual step cylinder at certain
intervals, i.e. the perfect symmetry defined in the present paper. More-
over, they proposed equation (7.6) to measure the duration of the phase
realignment process (the same assumption used in equation (7.5) is also
used here).

f1

f2
=
m

n
(7.6)

The ’m’ and ’n’ are measured to the lowest possible integer value.
However, our observations clearly show that there is another type of the

fundamental dislocation cycles, i.e. the perfect antisymmetric cycle. Behind
the cylindrical structure, vortices alternatingly shed at the two sides of the
structure. The alignment of vortices appears at one side of the structure is
possible to repeat at either the same side or the other side of the structure.
By using equation (7.6), the anticipated number of vortices in one funda-
mental vortex dislocation cycle can only be even (2m cell-1 vortices, and
2n cell-2 vortices). It makes equation (7.6) only suitable for the cases with
perfectly symmetric fundamental dislocation cycles. In addition, when f1

and f2 are close, it is impossible to get the accurate value of ’m’ and ’n’.
For example, in our case, f1 = 0.1545 and f2 = 0.1780. It results in 197



7.4. Results 89

Figure 7.12: Time trace of the crossflow velocity (v) at a sample point (x,
y, z)/D=(1.5, 0, -6). ”D1” means the dislocation process that occurs in the
1st N-cell cycle defined in figure 7.9, same for ”D2”, etc.

N-cell vortices and 227 L-cell vortices in one fundamental vortex dislocation
cycle. Without observations, it seems impossible to get the correct value of
’m’ and ’n’.

In general, there are two types of the fundamental dislocation cycles,
i.e. the perfect symmetric cycle and the perfect antisymmetric cycle. The
different duration of 13 N-cell and 15 L-cell vortices brings the small phase
shift to every vortex pair of the N- and L-cell vortex in neighboring N-cell
cycles, and finally results in the ’fundamental dislocation cycle’. Ideally, the
duration of the cycle can be measured by equation (7.5). But, in practice,
it might be hard to get the accurate number of vortices without careful ob-
servations, especially when the shedding frequencies of neighboring vortices
are close.
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7.4.2 Computational challenges for investigating a long pe-
riodic phenomenon

As discussed in section 7.3.2, the results of our four cases show good conver-
gence, and compare well with previous studies [3, 6]. However, considering
the long periodicity of the fundamental dislocation cycle discussed in sec-
tion 7.4.1, the simulation time of our convergence tests might not be long
enough. Further investigations proves this.

Firstly, after another 1000 time units (D/U) simulation of Case 4, the
exact same fundamental vortex dislocation was observed. However, different
from Case 3, in Case 4, the same vortex dislocation appears at the same
side of the step cylinder, and there are 131 N-cell and 151 L-cell vortices in
one fundamental vortex dislocation cycle.

Furthermore, we set up a new case (named as Case5) to continue refining
our grid size from 0.012D to 0.010D. Still we cannot get exactly the same
result as we obtained from the Case 4. In the Case 5, in one fundamental
vortex dislocation cycle, the number of N- and L-cell vortices are 170 and
196, respectively.

Although, the number of vortices in one fundamental vortex disloca-
tion cycle varies for different cases, further investigation proves that all the
different cases converge to the same physical mechanism.

In figure 7.13, the isosurface of λ2 = −0.05 is plotted to illustrate the
NL-loop structures for different cases. Details of the loop structures are
highlighted by black circles. The figure is divided into three parts by two
dashed black lines: the left, middle and right part. As shown in the left part
of figure 7.13 ((a), (b), (g), (h), (m) and (n)), the same NL-loop structures
are observed in all three cases (Case3, Case4 and Case5). Even the details
of the loop structures highlighted by black circles are almost exactly the
same. It means, at this moment, all the three grid resolutions are able to
give the same vortex alignments, and the same vortex structures. For all
three cases, the N-cell cycle containing the NL-loop structures shown in the
left part of figure 7.13, is set up to the 1*st N-cell cycle. By comparing the
following N-cell cycles, we found that the differences between these three
cases are gradually accumulated.

In the middle part of figure 7.13, the NL-loop structures in the 2*nd
N-cell cycle are plotted for all three cases. One can see that the differences
in details of the NL-loop structures are still very small between the different
cases. However, as shown in the right part of figure 7.13, the loop structures
in the 5*th N-cell cycle are completely different for all three cases. This
transformation is caused by the accumulations of the minor differences in
the vortex shedding frequencies (fN and fL) between these three cases.
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Figure 7.13: Isosurface of λ2 = −0.05 [17] showing the NL-loop structures
in Case3, Case4 and Case5 on both ’+Y’ and ’-Y’ sides. The details of
the loop structures are highlighted by black circles. Two dashed lines divide
the figure into three parts: the left part (the NL-loop structures in the 1*st
N-cell cycle), the middle part (the NL-loop structures in the 2*nd N-cell
cycle) and the right part (the NL-loop structures in the 5*th N-cell cycle).

As shown in table 7.3, the differences of the shedding frequencies (fL and
fN ) are very small between these three cases. Normally, it is reasonable to
claim that these three cases are already converged. Actually, in a relatively
short time period, e.g. from the 1*st N-cell cycle (the left part of the figure
7.13) to the 2*nd N-cell cycle (the middle part of the figure 7.13), the wake
flow and vortex structures agree well between Case3, Case4 and Case5.
But after long time accumulations, e.g. from the 1*st N-cell cycle (the left
part of figure 7.13) to the 5*th N-cell cycle (the right part of the figure
7.13), even the small differences in the shedding frequencies can affect the
wake flow. Only when the shedding frequencies of different grid cases are
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Table 7.3: The Strouhal number (St) of N-cell vortex (StN = fND/U) and
L-cell vortex (StL = fLD/U) for Case3, Case4 and Case5.

Case Mean grid size (D) StN StL

3 0.015 0.1545 0.1780
4 0.012 0.1547 0.1783
5 0.010 0.1549 0.1784

exactly the same, the vortex alignment and vortex structures can be exactly
the same.

In general, we admit that even in Case5, the mesh resolution is still
not fully converged for fundamental vortex dislocations. It is very difficult
to get complete grid convergence when investigating the exceptionally long
period phenomenon. After a long time accumulation, even a tiny difference
could become big enough to affect the flow field. However we clearly show
that Case3, Case4 and Case5 are all able to give the same instantaneous
vortical structures in the near wake. The different detailed information (the
number of N- and L-cell vortices) in one fundamental vortex dislocation
cycle is caused by the accumulation of the minor difference in the vortex
shedding frequencies between these cases. The mechanism and the existence
of the two kinds of fundamental vortex dislocation cycles are valid for all
cases.

7.5 Conclusion

The present results show good agreement with previous studies [3, 6, 8],
such as the three dominating spanwise vortices (i.e. S-, N- and L-cell vor-
tices), vortex dislocations between the N- and L-cell vortex, loop structures
(NL-loop1 and NL-loop2) generated during the vortex dislocation process
and the antisymmetric phenomena between the neighboring N-cell cycles.
In addition, the long period characteristic of the vortex dislocation, i.e. the
fundamental dislocation cycle, was for the first time captured and analyzed
in the wake of the single step cylinder. We have clearly shown that the
different duration of 13 N-cell and 15 L-cell vortices during one N-cell cycle
brings the small phase shift to every vortex pair of N- and L-cell vortex,
and finally causes the ’fundamental vortex dislocation cycle’. In addition,
there are two kinds of fundamental dislocation cycles, i.e. the symmetric
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fundamental dislocation cycle, and the antisymmetric fundamental dislo-
cation cycle, which are determined by whether the same vortex alignment
appears on the same side of the step cylinder or not. Last but not least, we
discussed challenges of the grid resolution on investigating the long period
characteristic. We found that, for the present case, although the detailed
information (e.g. the number of N- and L-cell vortices) in one fundamen-
tal vortex dislocation cycle varies when continuing to refine the grid, the
mechanism of the fundamental vortex dislocation cycle is valid for all cases.

In the future, other Reynolds numbers and diameter ratios will be in-
vestigated to explore how the vortex shedding frequencies of N- and L-cell
vortices affect the formation and the length of the fundamental vortex dis-
location cycle.
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Chapter 8

Article 4: Vortex dislocation
mechanisms in the near wake
of a step cylinder

Cai Tian1, Fengjian Jiang2, Bjørnar Pettersen1, Helge I. Andersson3

Abstract

Vortex interactions behind step cylinders with diameter ratio D/d = 2 and
2.4 at Reynolds number (ReD) 150 were investigated by directly solving
the three-dimensional Navier-Stokes equations. In accordance with previ-
ous studies, three spanwise vortex cells were captured: S-, N- and L-cell
vortices. In this paper, we focused on vortex interactions between the N-
and L-cell vortices, especially the vortex dislocations and subsequent forma-
tions of vortex loop structures. The phase difference accumulation process
of every pair of corresponding N- and L-cell vortices and its effects on the
vortex dislocations were investigated. We revealed that the total phase dif-
ference between N- and L-cell vortices was accumulated by two physically
independent mechanisms, namely different shedding frequencies and differ-
ent convective velocities of these two cells. The second mechanism has never
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been reported before. The relative importance of these two mechanisms var-
ied periodically in the phase difference accumulation process of every pair
of corresponding N- and L-cell vortices. This variation caused the vortex
dislocation process and the subsequent formation of the loop structures to
change from one N-cell cycle to another. Our long-time observations also
revealed an interruption of the conventional antisymmetric vortex interac-
tions between two subsequent N-cell cycles in this wake. Moreover, the
trigger value and the threshold value in the phase difference accumulation
processes were identified and discussed. Both values contribute to better
understanding of the vortex dislocations in this kind of wake flow. Finally,
the universality of our discussions and conclusions was investigated.

8.1 Introduction

Cylindrical structures are widely used in the marine offshore industry, for
example, the hull of a SPAR-platform [1], deep water risers [2], etc. Wake
flow behind circular cylinders has been a popular topic of investigation
for researchers and engineers for decades. It is well-known that when the
Reynolds number (ReD) is less than 50, the wake flow around a circular
cylinder is laminar and steady, and there is no vortex shedding behind the
cylinder [3]. For 50 . ReD . 180, periodic two-dimensional vortex shed-
ding occurs in the wake behind the cylinder. When ReD exceeds 180, the
wake becomes three-dimensional. The well-known Mode A and Mode B
appear at ReD = 180 − 194 and ReD = 200 − 250, respectively [3]. Wake
turbulence and shear layer instabilities follow as ReD further increases.

However, even at ReD . 180, we can observe three-dimensional cylinder
wakes under certain circumstances, such as, cylinders with non-uniform in-
flow, cylinders with varying cross-sections, cylinders with free-ends, etc. In
these cases, three dimensionality is triggered by spanwise non-uniformity
in either the incoming flow or the configuration itself. Complex three-
dimensional wake dynamics appear, such as vortex split, vortex dislocation
and oblique shedding. In order to investigate these complex flow phenom-
ena, a single step cylinder becomes an ideal configuration in which geometric
complications are removed except for the sudden diameter change.

8.1.1 Single step cylinder wake

There are two important parameters in the wake flow behind a single step
cylinder, i.e., the Reynolds number (ReD) and the diameter ratio (D/d).
D/d is the ratio between the large and small diameter part of the step
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cylinder, while ReD = UD/ν (U represents the uniform inflow velocity, and
ν is the kinematic viscosity of the fluid).

The wake of step cylinders with 1.14 < D/d < 1.76 at 67 < ReD < 200
was initially investigated by Lewis & Gharib [4]. They reported two vortex
interaction modes: a direct and an indirect mode. The direct mode occurs
when D/d < 1.25, where two dominating shedding frequencies (fS and fL)
correspond to vortices shed from the small and large cylinder, respectively.
The interactions between these two kinds of vortices take place in a narrow
region referred to as the interface. When they are in phase, vortices from
the two wake regions connect to each other one by one across the interface.
When they are out of phase, the direct connection will be interrupted and
at least one half-loop connection between oppositely rotating vortices will
appear. The period between two such interruptions is called a beat cycle. In
the indirect mode (D/d > 1.55), in addition to fS and fL, another distinct
frequency f3 (which is referred to as fN in the present paper) can be detected
near the interface behind the large cylinder. This region was first named
the modulation zone by Lewis & Gharib [4]. It prevents direct interactions
between the vortices with shedding frequency fS and those with shedding
frequency fL. In the modulation zone, the velocity variation is modulated
by the main frequency behind the large cylinder, and an inclined interface
was found to occur at a beat frequency (fL−fN ). Lewis & Gharib [4] found
that the vortex interactions in the indirect mode are more complex than in
the direct mode.

Based on the three dominating shedding frequencies, Dunn & Tavoularis
[5] identified three types of spanwise vortices: (1) S-cell vortex shed from
the small cylinder with the highest shedding frequency fS , (2) N-cell vortex
shed in the modulation zone with the lowest shedding frequency fN , (3)
L-cell vortex shed from the large cylinder with shedding frequency fL. The
terminologies S-, N- and L-cell were thereafter adopted in many studies
[6, 7, 8, 9, 10, 11], and are also used in the present study. The regions where
these vortex cells occur are indicated in figure 8.1(a).

The interactions between different vortex cells in the indirect mode were
investigated in the wake behind a single step cylinder with D/d ≈ 2 and
ReD ≈ 150, experimentally by Dunn & Tavoularis [5] and numerically by
Morton & Yarusevych [8]. These studies concluded that the S-N cell bound-
ary (the region between the S- and N-cell vortices) is stable and deflects
spanwise into the large cylinder direction. At this boundary, one N-cell vor-
tex always connects to a counter-rotating N-cell mate and a S-cell vortex.
The vortex dislocations between the S- and N-cell vortices occur at a beat
frequency (fS − fN ) at the S-N cell boundary. During this dislocation pro-
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Figure 8.1: Vortex shedding in the wake behind a step cylinder: (a) Isosur-
faces of λ2 = −0.05 [12] from our simulation, ReD = 150 and D/d = 2;
(b) Isosurfaces of Q ≈ 2× 10−3 from Morton & Yarusevych [8], ReD = 150
and D/d = 2; (b) Flow visualization image from Dunn & Tavoularis [5],
ReD = 150 and D/d = 1.98.

cess, the half-loop connection between S-cell vortices is dominating. The
number of S- and N-cell vortices in a cyclic period (from one dislocation
process to the next) is determined by the ratio of the shedding frequencies
of these two cells (fS/fN ).

Unlike the S-N cell boundary, the N-L cell boundary (the region between
the N- and L-cell vortices) is unstable. As the phase difference between N-
and L-cell vortices accumulates, in parallel with the appearance of vortex
dislocations between N- and L-cell vortices, the shapes and lengths of the
N-cell vortices and the position of the N-L cell boundary vary periodically
with the beat frequency (fL − fN ). Morton & Yarusevych [8] defined these
cyclic changes as the N-cell cycle. Tian et al. [10] further investigated the
dislocation processes at the N-L cell boundary. Two new loop structures
were identified: the NL-loop (the fake loop) formed between a pair of N-
and L-cell vortices with opposite rotating directions, and the NN-loop (the
real loop) formed between two subsequent N-cell vortices with opposite ro-
tating directions. In addition, antisymmetric vortex interactions between
two adjacent N-cell cycles were reported based on careful observations of
the development of these two kinds of loop structures.

When ReD increases, the wake gradually becomes more complex. How-
ever, the three dominating spanwise vortices (S-, N- and L-cell vortices),
the vortex dislocation between them and the cyclic variation of the N-cell
vortices, are still observable in the wake flow [8]. In addition, Morton &
Yarusevych [7, 9] reported that the duration of the N-cell cycle varies and
fits a Gaussian distribution at relatively high ReD = 1050.

Other characteristics of the wake behind a single step cylinder with dif-
ferent diameter ratios and different Reynolds numbers have been discussed
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in several papers. Ko, Leung & Au [13], Yagita, Yoshihiro & Matsuzaki
[14], Norberg [15] and Dunn & Tavoularis [5] found that the vortex shed-
ding behind the small cylinder was seldom influenced, but the flow behind
the large cylinder was strongly affected by the step. When this induced
effect becomes strong enough, N-cell vortices appear [5, 15]. In addition to
the three main vortex cells (S, N and L), two pairs of streamwise vortices
(i.e. junction vortices and edge vortices) have also been identified around
the step region [5, 6, 11].

8.1.2 Vortex dislocation

It is widely accepted that most of the observations mentioned above for the
step cylinder are closely related to vortex dislocations. As an interesting
physical phenomenon, vortex dislocations have also been investigated in
various types of flow, such as in uniform cylinder wakes, mixing layers and
nonlinear waves.

The phrase vortex dislocation was first introduced by Williamson [16]
when he observed multiple vortex cells with different shedding frequencies
in his experiments of flow past a circular cylinder at ReD < 200. Neigh-
bouring vortex cells are observed to move either in-phase or out-of-phase
with each other due to their different shedding frequencies. When these vor-
tex cells move out of phase, at the boundary between them, the contorted
’tangle’ of vortices appears and looks like dislocations that appear in solid
materials. Williamson [16] defined this kind of flow phenomenon as vortex
dislocation. He reported that, at ReD = 100, vortex dislocations occur at
the boundary between cells (the end-plate cell of frequency fe and the single
cell of frequency fL) at a constant beat frequency fL − fe, accompanied by
an obvious minimum amplitude of the velocity fluctuations at the boundary.
In addition, by comparing velocity signals from different vortex cell regions,
the time trace of phase differences was plotted. Williamson [17] further
investigated the dislocation by adding a small ’ring’ on a circular cylinder
in order to force the dislocation to happen. This study revealed more de-
tailed features of vortex dislocations, such as the vortex dynamics and the
effects of vortex dislocations in the wake flow. An interesting long-period
characteristic of the vortex dislocation was first reported in McClure, Mor-
ton & Yarusevych [18] by investigating flow past dual step cylinders. They
defined the time period between two identical vortex dislocations as the
fundamental dislocation cycle. Further investigations of this characteristic
in the wake behind the single step cylinder can be found in Tian et al. [19].
Vortex dislocations in other types of wakes and mixing layers have been
reported by many others. For details, the reader is referred to the works of
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Gaster [20], Eisenlohr & Eckelmann [21] and Dallard & Browand [22].

8.1.3 Objectives of the present study

There have been many attempts to describe the vortex dislocations in the
step cylinder wake. Previous studies pointed out that it is the accumulation
of phase differences that causes the vortex dislocation between different
adjacent spanwise vortex cells. However, the investigations of how phase
differences accumulate and how they affect the vortex dislocations are still
limited.

Lewis & Gharib [4] and Williamson [16] and experimentally examined
the time trace of the phase difference by using probes to monitor veloc-
ity signals in different vortex cell regions positioned 10 cylinder diameters
downstream. However, at such a location, oblique vortex shedding, com-
plex vortex interactions and the stretching and tilting of the vortices make
it difficult to accurately evaluate phase differences. Another interesting phe-
nomenon in the wake flow behind the step cylinder is the cyclic changes of
the N-cell vortex, which was defined as the N-cell cycle by Morton & Yaru-
sevych [8]. However, they analyzed this phenomenon in a relatively short
time period containing only few N-cell cycles. Whether N-cell cycles have
any long-period variations or very low-frequency features is still unknown.

The primary goal of the present numerical study is to thoroughly inves-
tigate the mechanisms of phase difference accumulation in the step cylinder
wake, and their effect on vortex interactions. Considering that the wake
behind the small cylinder part is seldomly influenced by the step, and the
contributions of the streamwise vortices on the vortex dislocation between
the S- and N-cell vortices are unclear, we only focus on the vortex dislo-
cation between the N- and L-cell vortices. To achieve this objective, we
analyze the time and space signals of several flow quantities (velocity, vor-
ticity and λ2) obtained from a direct numerical simulation (DNS) of flow
past two different step cylinders with diameter ratios D/d = 2 and 2.4. In
order to change the diameter ratio of the step cylinder, we keep D constant,
and change d. These two cases share the same coordinate system, compu-
tational method and data analyze process. First, in §8.2, §8.3, §8.4 and
§8.5, the flow problem, the numerical settings and analyses of the wake flow
field are described in detail based on the D/d = 2 case. Then, in §8.6, the
universality of our discussions and conclusions is studied by investigating
the D/d = 2.4 case. Last but not least, we also aim to present a reliable
method that can be used to calculate the phase information (ϕ) and phase
difference (Φ) of vortices, since such a method is lacking in the literature.
Details of the method are included in appendix 8.8.1.
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8.2 Flow configuration and computational aspects

8.2.1 Flow configuration and coordinate system

Figure 8.2: (a) A sketch of the step cylinder geometry (D/d = 2); (b)
Computational domain, origin and coordinate system are illustrated from
two different viewpoints. The diameter of the large cylinder, D, is the length
unit. The origin locates in the center of the step, the interface between the
small and large cylinder.

A sketch of the D/d = 2 step cylinder geometry is shown in figure
8.2(a). L and l represent the length of the large and small part of the
cylinder, respectively. In figure 8.2(b), the computational domain and co-
ordinate system are shown, where x−, y− and z−direction correspond to
the streamwise, crossflow and spanwise direction, respectively. The origin
locates in the center of the interface between the small and large cylinder.
The inlet plane is 10D upstream from the center of the step cylinder, while
the outlet plane is 20D downstream. The spanwise height of the domain is
45D, of which the small and the large cylinders occupy 15D (l) and 30D
(L), respectively. The width of the domain is 20D. This domain is larger
than that used by Morton & Yarusevych [8] for the same D/d and ReD.
Boundary conditions applied in the present study are as follows:

- The inlet boundary: uniform velocity profile u=U , v=0, w=0;

- The outlet boundary: Neumann boundary condition for velocity com-
ponents (∂u/∂x

= ∂v/∂x = ∂w/∂x = 0) and constant zero pressure condition;
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- The other four sides of the computational domain: free-slip boundary
conditions (For the two vertical sides: v = 0, ∂u/∂y = ∂w/∂y = 0,
For the two horizontal sides: w = 0, ∂u/∂z = ∂v/∂z = 0);

- The step cylinder surfaces: no-slip and impermeable wall.

8.2.2 Computational method

For all cases in the present investigation, a thoroughly validated finite-
volume based numerical code MGLET [23] is used to directly solve the
incompressible Navier-Stokes equations. The midpoint rule is used to ap-
proximate the surface integral of flow variables over the faces of the discrete
volumes, leading to second-order accuracy in space. A third-order explicit
low-storage Runge-Kutta scheme [24] is used for time integration with a
constant time step 4t that ensures a CFL number smaller than 0.65. The
pressure-velocity coupling is handled by solving a Possion equation with
Stone’s strongly implicit procedure (SIP) [25]. The same code has recently
also been used to investigated other complex flows, such as the spheroid
wake [26] and the curved cylinder wake [27].

All simulations are conducted on a staggered Cartesian mesh, while
the solid surface of the step cylinder is handled by an immersed bound-
ary method (IBM) [28]. The computational domain is divided into cubic
Cartesian grid boxes, named level-1 boxes. In each of them, N × N × N
cubic Cartesian grid cells are uniformly distributed. In order to refine the
grid regions, where complex flow phenomena take place, such as the regions
close to the step cylinder geometry, the region around the ’step’, the regions
where vortex dislocations happen, etc., all the grid boxes (the level-1 box)
are equally split into eight smaller cubic boxes (the level-2 box). In each
level-2 box, there are also N ×N ×N cubic grid cells. Hence, the grid res-
olution on level-2 is two times finer than that on level-1. This split-process
goes on automatically until the finest grid level is reached. The overall prop-
erties of the grids for all simulations can be found in table 8.1. A schematic
illustration of the mesh design is shown in figure 8.3.

8.2.3 Grid convergence study

Table 8.2 shows the Strouhal number (St) of the three dominating vor-
tex cells (StS = fSD/U , StN = fND/U and StL = fLD/U) behind the
step cylinder calculated by Fast Fourier Transform of the time-series of the
streamwise velocity u along a vertical sampling line positioned at (x/D,
y/D)=(0.6, 0.2). For these four cases, the differences between St numbers
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Table 8.1: Detailed mesh information of all D/d = 2 cases. The Reynolds
number for all cases is ReD=UD/ν=150.

Case
Min grid
cell size

(D)

Time step
4tU/D

Number of
grid levels

Number of
grid cells in
one grid box

Total number
of grid cells

(million)

1 0.025 0.0080 5 30× 30× 30 30.2
2 0.020 0.0067 5 36× 36× 36 48.8
3 0.015 0.0050 6 24× 24× 24 81.0
4 0.012 0.0040 6 30× 30× 30 173.8

Figure 8.3: An illustration of the multi-level grids: (a) a slice of the com-
putational domain in the x− z plane at y/D = 0, (b) a slice of the compu-
tational domain in the x − y plane at z/D = 0− (at the large diameter D
region). Each square represents the slice of a corresponding cubic Cartesian
grid box which contains N ×N ×N grid cells. In this figure, there are five
levels of grid boxes, where the first four levels are indicated by numbers. Due
to different minimum grid sizes, different cases have either five or six levels
of grid boxes. (c) a zoom-in plot of the grid cells in the step region (red
rectangle in (b)) for Case2.
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Table 8.2: St of the three dominating vortex cells (S-cell StS = fSD/U , N-
cell StN = fND/U and L-cell StL = fLD/U) for all cases studied. Results
form Morton & Yarusevych [8] are from their numerical simulations for
a step cylinder with D/d = 2 at ReD = 150. The result from Norberg
[29] is calculated by equation 8.1 which was derived by Norberg based on
laboratory experiments. [Note: In our cases, StS is calculated based on
the large cylinder diameter, a factor 2 should be used when using Norberg’s
equation.]

Case 1 2 3 4
Morton & Yarusevych

[8]
Norberg

[29]

StS 0.294 0.295 0.290 0.292 0.320 0.297
StN 0.153 0.153 0.155 0.154 0.157 -
StL 0.177 0.177 0.178 0.178 0.179 -

of the same vortex cell are small. In figure 8.4(a), the distributions of mean
streamwise velocity along the line AB (as indicated in the subplot figure
8.4(a1)) for all four cases are plotted to illustrate the flow variation on the
’step’ just in front of the small cylinder. The curves in figure 8.4(a) and
a zoom-in view in figure 8.4(a2) clearly show a convergent tendency from
Case1 to Case4, and there are only minor differences between Case3 and
Case4. Moreover, figure 8.4(b) shows time traces of the spanwise velocity
(w) in the N-cell formation region where the velocity varies dramatically
with time. The fluctuations and the mean values of ’w’ from Case 3 and
Case 4 almost coincide. However, the computational cost of Case 4 is sig-
nificantly higher than that of Case 3, due to large number of grid cells
and smaller time step. The long-period features of the flow that we will
discuss in later sections require exceptionally long simulations (more than
3000D/U). All discussions are therefore based on data from Case 3. Case
4 was run only for a limited time for this convergence test.

8.2.4 Comparison with previous studies

An overview of the vortical structures in the wake of the step cylinder is
illustrated in figure 8.1(a) by plotting the isosurface of λ2 = −0.05 [12].
By comparing figures 8.1(a), (b) and (c), one can see that the overall wake
structures from the present study compare well with the previous numeri-
cal simulations by Morton & Yarusevych [8] and experiments by Dunn &
Tavoularis [5]. Behind the step cylinder, as mentioned in §8.1, the shedding
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Figure 8.4: (a) Distributions of mean streamwise velocity ū/U along a sam-
pling line AB in the x− z plane at y/D = 0; (a1) A sketch of the sampling
line AB of length 0.8D, positioned 0.15D in front of the small cylinder; (a2)
A zoom-in plot of the upper part of the curves in (a) (black rectangle in (a));
(b) Time traces of the spanwise velocity (w) at point (x/D, y/D, z/D) =
(1, 0, -2.5) in the N-cell region. The green line is obtained from Morton &
Yarusevych [8]. T is the period of one N-cell cycle which is the same time
scale as Morton & Yarusevych [8] used.

of S-cell vortices is barely influenced, which makes it reasonable to introduce
the correlation derived by Norberg [29]

St = 0.1835− 3.458/Re+ 1.51× 10−4Re. (8.1)

to validate our StS . From the data in table 8.2, we see that StS from
the present study is slightly lower than that from Morton & Yarusevych
[8], but compares better with the experimental value reported in Norberg
[29]. In addition, we have obtained spanwise velocity data from Morton &
Yarusevych [8] and displayed them in figure 8.4(b). The match between
the present study and Morton & Yarusevych [8] is convincing. Based on all
these careful comparisons, we believe that the grid resolution in Case 3 is
good enough to accurately simulate this flow.

8.3 Features of the present wake flow

Generally, the wake behind the two step cylinders (D/d = 2 and 2.4) in the
present study are very similar. In order to ease the discussions, only the
wake flow behind the D/d = 2 case is described in §8.3, §8.4 and §8.5. The
D/d = 2.4 case is presented as a justification case in §8.6.
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8.3.1 Overview of the flow development

Figure 8.5: (a) Streamwise velocity spectra along a spanwise line behind
the step cylinder at (x/D, y/D)=(0.6, 0.2); (b) Power spectrum plotted at
position (x/D, y/D, z/D) = (0.6, 0.2, -4.4), in which StN , StL, Stbeat and
an exceptionally low frequency St1 are marked by small black circles. (Note:
there is no S-cell vortex in the wake flow at spanwise position z/D = -4.4,
so StS does not show up in this figure.)

In figure 8.5(a), the streamwise velocity spectrum is obtained by means
of Discrete Fourier Transform (DFT) of continuous velocity data along a
vertical sampling line parallel to the Z-axis at position (x/D, y/D) = (0.6,
0.2), over a long period of 2500 time units (D/U). As in the previous stud-
ies [5, 8, 10], the three dominating frequency components (StS = fSD/U ,
StN = fND/U and StL = fLD/U) and the beat frequency (Stbeat =
fbeatD/U) are dominating.

The vortex structures in the near wake are illustrated by consecutive
snapshots of iso-surface of λ2 in figure 8.6. The time t is set to t = t∗ −
2378.1D/U , where t∗ is the actual time in the simulation. This applies all
through §8.3, §8.4 and §8.5. All N- and L-cell vortices are labeled by a
combination of capital letters and numbers; ’N’ and ’L’ represent N- and
L-cell vortices, respectively, while the number indicates the shedding order.
To differentiate vortices shed from different sides of the step cylinder, we use
capital letters with primes (N’ and L’) to represent vortices shed from the
+Y side; and only capital letters (N and L) to represent vortices shed from
the -Y side. In figure 8.6(a) to (f), every N-cell vortex has one corresponding
L-cell vortex with the same direction of rotation (e.g. N0 and L0; N’1 and
L’1...). Due to different shedding frequencies of N- and L-cell vortices,
loop structures appear when corresponding N- and L-cell vortices are out
of phase. From figure 8.6(g) to (h), loop structures (N8-L’9) and (N’9-L10)
form, and are indicated by green and red curves, respectively. Details of
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Figure 8.6: Iso-surface of λ2 = −0.05 showing developments of vortex struc-
tures on the -Y side. The time t is set to t = t∗−2378.1D/U (t∗ is the actual
time). Solid and dashed curves in (g) and (h) indicate the loop structures on
the -Y and +Y side, respectively. The red and green curves point to differ-
ent NL-loop structures. In (a) and (b), the black solid line at z/D = −2.9
and the black dashed line at z/D = −14 indicate the positions of vorticity
contours given in figure 8.9.

the formation processes of those loop structures were described in Tian et
al. [10]. Based on the order of their appearances, the green and red curves
are named the NL-loop1 and NL-loop2, respectively.

Based on long-time observations (2500D/U), a schematic topology sketch
is shown in figure 8.7. This will be used to introduce some important con-
cepts. In figure 8.7, the short and long straight lines represent the N- and
L-cell vortices, respectively. Between them, the curved solid lines connect
the N-cell vortex and its counterpart L-cell vortex. The dashed curves in-
dicate broken connections that are not able to persist due to dislocations.
Detailed visualizations of vortex connections and dislocations in the 1st N-
cell cycle are shown in figure 8.6. To ease the observation, we only show
the connections between the N- and L-cell vortices. The L-L and N-N loops
[10] are not shown in this figure.

We define the side of the N-cell vortex in a NL-loop structure as the
side of the loop itself. For example, the NL-loop N8-L’9 (shown by green
curves) in figure 8.6(g) is identified to form at the -Y side. As shown in
figure 8.7, from the 1st to 7th N-cell cycle, the NL-loop1 (the green curves)
appears alternatingly at +Y and -Y side between subsequent N-cell cycles.
This is what we called the antisymmetric vortex interactions in Tian et
al. [10]. However, an unexpected interruption of this antisymmetry is ob-
served between the 7th and 8th N-cell cycles. Figure 8.7 shows, in both the
7th and 8th N-cell cycles, that the NL-loop1 appears at the -Y side (green
curves connect to black short lines which represent the N-cell vortex on the
-Y side). We introduce the term long N-cell cycle to identify the uninter-
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Figure 8.7: Schematic topology sketches illustrating the long-time history
of the vortex connection topology and the vortex shedding. The thick black
and gray straight lines represent vortices on the -Y and +Y sides, respec-
tively. Only the N- and L-cell vortices are shown by short and long straight
lines. The connections between them are depicted by thin solid curves. Black
and gray solid curves indicate the connections between N-cell vortex and its
counterpart L-cell vortex. The red and green curves reveal different NL-loop
structures (same color code as used in figure 8.6). The dashed curves, on
the other hand, indicate broken connections that are not able to persist due
to dislocations. We define a new term long N-cell cycle containing several
conventional N-cell cycles, while the conventional N-cell cycle was firstly
defined by Morton & Yarusevych [8] and adopted also in the present study.

rupted series of antisymmetric N-cell cycles. Within one long N-cell cycle,
antisymmetric vortex interactions appear between subsequent N-cell cycles.
However, at the boundary between two long N-cell cycles, this antisymme-
try is interrupted. Our long-time observation covering 8 long N-cell cycles
shows that there are either 7 or 8 N-cell cycles in one long N-cell cycle. In
fact, an exceptionally low frequency (St1) is captured in figure 8.5(b) where
a power spectra at position (x/D, y/D, z/D) = (0.6, 0.2, -4.4) is shown.
The value of St1 is 0.0032, and is around Stbeat/7.5. This coincides well
with our observation that one long N-cell cycle contains either 7 or 8 N-cell
cycles. We believe that this low-frequency component is related to the long
N-cell cycles. More detailed information on this long-period phenomenon,
and the unexpected interruption, will be discussed in §8.5. The other vis-
ible frequency components in figure 8.5(b) are combinations of the basic
frequency components, i.e. StS , StN , StL and St1 [30].
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8.3.2 Necessity of monitoring the phase information of each
N- and L-cell vortex

All the interesting physical phenomena, i.e. the formations of NL-loops, the
unexpected interruption of the antisymmetry, etc, are directly related to
the vortex dislocations in the wake behind the step cylinder. A consensus
from the literature [4, 6, 16] is that vortex dislocations are attributed to
different shedding frequencies. In the present configuration, if both N- and
L-cell vortices shed regularly, it is natural to directly use fL and fN to
measure the phase difference (Φ) between N- and L-cell vortices. However,
the actual wake flow is more complicated. In figures 8.8(a) and (b), we plot
time traces of the instantaneous crossflow velocity (v) at two locations in the
L- and N-cell regions in the symmetry plane. Two dashed sinusoidal curves
with constant frequencies fL and fN are also plotted in the same figures.
By comparing figure 8.8(a) and (b), it is clear that, unlike the regularly
shed L-cell vortices, the shedding frequency of the N-cell vortex slightly
fluctuates during every N-cell cycle. This was also briefly mentioned by
Morton & Yarusevych [8], but not investigated further. The irregularity of
the N-cell shedding makes it challenging but necessary to monitor the phase
information of every N-cell vortex. Therefore, we developed a method to
obtain the phase information (ϕ) and the phase difference (Φ) of vortices.
Details can be found in appendix 8.8.1.

Figure 8.8: Time trace of the oscillating crossflow velocity (v) is plotted as
the solid line: (a) at sampling point (x/D, y/D, z/D) = (1.4, 0, -14.8)
in the L-cell region; (b) at the sampling point (x/D, y/D, z/D) = (1.4,
0, -2.8) in the N-cell region. For comparison, pure sinusoidal curves are
plotted as dashed lines with frequency fL in (a) and frequency fN in (b). fL
and fN are calculated by FFT obtained from figure 8.5.
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8.4 Two different phase difference accumulation
mechanisms and their effects on vortex inter-
actions

8.4.1 Two different phase difference accumulation mecha-
nisms

Figure 8.9: (a) and (c) Instantaneous spanwise vorticity ωz (ωz = ∂v/∂x−
∂u/∂y) contour plots in a (x, y) plane at N-cell region z/D = −2.9 (black
solid line in figure 8.6(a) and (b)); (b) and (d) are the same as (a) and
(c) but at L-cell region z/D = −14 (black dotted line in figure 8.6(a) and
(b)). By detecting the location of concentrated vorticity, the positions of
vortices N’9 and L’9 are marked by black lines. (Note: we have compared
the position of the center of the concentrated vorticity and the center in the
region defined by λ2-isolines, and confirmed only tiny differences.)

From figure 8.6, one can see that both the N- and L-cell vortices are
spanwise vortices. This means that the variation of the streamwise distance
between corresponding N- and L-cell vortices can reflect the changes in
their phase difference (Φ). In the present study, we use the location of
the most concentrated spanwise vorticity (ωz) to indicate the position of
the corresponding vortex. In figure 8.9, we plot instantaneous spanwise
vorticity ωz contours at a (x, y) plane in the N-cell region z/D = −2.9 and
L-cell region z/D = −14. Four black lines indicate the positions of vortices
N0 and L0. One can see that from tU/D = 4.5 to 9, the streamwise distance
between N0 and L0 increases from 1.8D (3.7D-1.9D) to 2.3D (7.7D-5.4D)
as they convect downstream. This means that, even after both N0 and L0
disconnect from the shear layer, as shown in figure 8.6(a)), Φ between them
continues to accumulate. By marking the moment when the N-cell vortex
just forms as an individual wake-type vortex, we divide the process of Φ
accumulation into two parts. Before this moment, Φ between the N- and
L-cell vortex is dominated by their different shedding frequencies, called Φf .
After this moment, Φ is caused by different convective velocities in the N-
and L-cell regions, and called Φc. Detailed descriptions of monitoring Φf
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and ϕ can be found in appendix 8.8.1. Due to the spatial inhomogeneity
of the convective velocity, it is difficult to accurately assess its effect on Φ.
Yet, the distributions of mean streamwise velocity (ū) in different vortex
cell regions can roughly indicate the influence.

Figure 8.10: (a) Distributions of the mean streamwise velocity (u/U) along
spanwise lines with the same x coordinate (x/D = 1.6), but for different
y coordinates. (b) Distributions of mean streamwise velocity ū/U along
spanwise lines with different x coordinates in the symmetry plane (y/D = 0).

In figure 8.10, the spanwise distributions of ū are plotted at several
downstream positions. As shown in figure 8.10(a), the mean streamwise
velocity in the N-cell region in the symmetry plane (y/D = 0) is nearly
0.2U less than that in the L-cell region. At the side plane y/D = 0.8, this
difference still reaches 0.1U . From figure 8.10(b), we see that the difference
in mean streamwise velocity is clear until a downstream position x/D = 4.
In other words, at least until x/D = 4 in the wake, the convective velocity
distribution is distinctly non-uniform in the spanwise direction. This non-
uniformity induces an additional Φ when the vortices convect downstream.
We note that this role of the non-uniform convection velocity and its effects
have never been addressed before.

8.4.2 Effects of two phase difference accumulation mecha-
nisms

8.4.2.1 Differences in formation positions of the NL-loop1 and
NL-loop2

The formation process of the NL-loop1 in each N-cell cycle is repetitive.
An example of this process is presented in figure 8.11, where the vortex
structures are shown from both +Y and -Y sides of the step cylinder. In
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figure 8.11(a) and (b), and the corresponding zoom-in plots (f) and (g), the
foot of vortex N8 completely disconnects from the shear layer at x/D =
2.8 (marked by a black line in figure 8.11(b) and (g)). At this moment
(tU/D = 33.3) the NL-loop1 structure has not yet formed, because there is
still no direct connection between N8 and L’9. It takes some more time for
N8 to convect downstream and eventually develop into the NL-loop1 with
L’9 at x/D = 3.3 and tU/D = 34.5. This process is indicated in figures
8.11(b-e) and the corresponding zoom-in plots (g-j). By following the same
process as described in §8.4.1, we found that from tU/D = 33.3 to 34.5,
the streamwise distance between vortex N’9 and L’9 increases from 5.3D
to 6.1D as they move downstream. When Φ between vortex N’9 and L’9
increases, L’9 gradually disconnects from its counterpart N’9 and forms the
NL-loop1 with N8 (see figure 8.11(k-o)).

Unlike the NL-loop1 structure which has a distinct formation position,
it is difficult to pinpoint where the NL-loop2 forms. As shown in figure
8.12(a-e), in the black circle area, it is not clear how the foot of vortex N’9
completely separates from the shear layer and subsequently connects to L10
as they move downstream. The connection between N’9 and L10 forms in
the very near wake before N’9 completely disconnects from the shear layer.
In order to compare with the formation process of the NL-loop1 structure
shown in figure 8.11, we use the same method to monitor the variation of the
streamwise distance between vortices N10 and L10. At tU/D = 36.9 (the
corresponding instantaneous iso-surface of the vortex structure is shown in
figure 8.12(g)), the distance between vortex N10 and L10 reaches 5.9D. This
is very close to the distance between N’9 and L’9 at tU/D = 34.5 (figure
8.11(n)), when L’9 successfully induces N8 to connect to itself and together
form the NL-loop1 structure. At tU/D = 36.9, as shown in figure 8.12(b),
the leg of vortex N’9 is at position x/D = 2.8. At the same downstream
position, the foot of vortex N8 already disconnects from the shear layer, as
shown in figure 8.11(b). It is reasonable to speculate that Φ between N10
and L10 becomes sufficiently large to attract N’9 to connect to L10 before it
disconnects from the shear layer. As a consequence, the formation position
of NL-loop2 is not so clear.

The time trace of Φf accumulation proves our speculation. By using
the method described in appendix 8.8.1, the time trace of Φf accumulation
in the 1st N-cell cycle is shown in figure 8.13(b). Circles in this figure
represent Φf of corresponding N- and L-cell vortices, in which the green
circle represents Φf between N’9 and L’9, and the red circle represents
Φf between N10 and L10. Eventually, the dislocations of the vortex pairs
corresponding to the green and red circles cause formations of the NL-loop1
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Figure 8.11: The formation process of the NL-loop1 structure in the 1st
dislocation process (defined in figure 8.7) is shown from the -Y and +Y side
in the first and third row, respectively. In the second row, zoom-in plots of
vortex structures at N-cell region (black rectangle in (a)) are shown. The
black circles highlight the position where the NL-loop1 forms.

structure (N8-L’9) and the NL-loop2 structure (N’9-L10), respectively.

One can see that the red circle represents a larger Φf value than the
green one, which means that Φf between N10 and L10 is larger than that
between N’9 and L’9. Therefore, compared to the vortex pair N10-L10, the
vortex pair N’9-L’9 needs a larger contribution of Φc to achieve a sufficiently
large Φ to trigger the vortex dislocation between them, and the subsequent
formation of the NL-loop1 (N8-L’9). In other words, due to the reduced need
of a contribution from Φc, the vortex dislocation between N10 and L10 and
the subsequent NL-loop2 (N’9-L10) is formed closer to the cylinder, which
causes the unclear formation position.
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Figure 8.12: The formation process of the NL-loop2 structure in the 1st
dislocation process is shown from both +Y and -Y sides. The black circles
highlight the position where the NL-loop2 structure is formed.

8.4.2.2 Variation of formation positions of the NL-loop1 struc-
tures

In figure 8.14, the NL-loop1s in the first eight N-cell cycles are plotted.
The black vertical lines show the positions where the NL-loop1 structures
just form. Except for the 6th N-cell cycle (figure 8.14(f)), the NL-loop1
structures alternatingly appear at the +Y and -Y side of the step cylinder
from the 1st to the 7th N-cell cycles (the first long N-cell cycle). The shape
and the formation position of the NL-loop1 structure also vary, as depicted
in figure 8.14(a-h).

In table 8.3, the relation between the formation positions of the NL-
loop1s in the 1st long N-cell cycle and their Φf are presented. One sees
that, except for the 6th N-cell cycle, the formation positions move down-
stream as the corresponding Φf decreases. This can easily be ascribed to the
already discussed two different phase difference accumulation mechanisms.
Formation of the NL-loop1 structures require sufficiently large Φ. Since Φf

decreases, Φc must contribute more, which consequently leads to a longer
formation time and further downstream formation position. To be more
clear, the relations between Φf and formation positions of the correspond-
ing NL-loop1s during the 1st-7th long N-cell cycles are plotted in figure
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Figure 8.13: (a) Time trace of Φf between corresponding N-cell and L-cell
vortices in the 1st (LNC1) and 2nd (LNC2) long N-cell cycle, i.e. from
the 1st to the 15th N-cell cycle. The circles represent Φf between a N-cell
vortex and its counterpart L-cell vortex. The green and red circles indi-
cate Φf which eventually causes formations of the NL-loop1 and NL-loop2
structures, respectively. From the 1st to the 8th N-cell cycle, the green and
red circles are numbered. (b) A zoom-in plot of the time trace of Φf in
the 1st N-cell cycle (the black dashed rectangle in (a)). From the left to
the right, circles represent Φf between the vortex pair N’1-L’1 to the vortex
pair N10-L10, respectively. (Note: The detailed calculation processes can
be found in appendix 8.8.1. All detailed data about Φf and the longer time
trace of Φf are included in the supplementary file 1. The trigger value and
the threshold value are estimated based on 55 N-cell cycles, as shown in
supplementary file 3.)

Figure 8.14: The NL-loop1 structures in the 1st to the 8th N-cell cycle are
plotted from both the -Y and +Y side (The 1st long N-cell cycle consists
of the 1st to the 7th N-cell cycles). From (a) to (h), the just formed NL-
loop1 in the 1st - 7th N-cell cycles are plotted, and the black line marks the
formation position of NL-loop1. The red circle in (f) highlights an irregular
absence of the NL-loop1 structure which will be discussed later.
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N-cell cycle No. 1 2 3 4 5 6 7

Formation
position x/D

3.3 3.7 3.8 4.1 4.3 - 5.2

ΦfU/D 4.485 4.470 4.345 4.275 4.225 4.115 4.085

Table 8.3: Formation positions and Φf which causes the NL-loop1s in the
1st to 7th N-cell cycle (the 1st long N-cell cycle). The corresponding vortex
structures are shown in figure 8.14(a-g). In the 6th N-cell cycle, there is a
loop formation failure.

8.15. Generally, except for several irregular points, the formation position
shifts downstream as Φf decreases. (Note: the appearances of the irregular
points will be discussed in §8.5.3.)

Figure 8.15: Relation between Φf and the formation position (x/D) of cor-
responding NL-loop1 structures in the 1st–7th long N-cell cycles (52 N-cell
cycles are included). Based on the trends of the curves, one stable range and
two unstable ranges are identified. A straight dashed line outlines the trend
of the stable range. The occasionally absent NL-loop1 structures in these
seven long N-cell cycles are marked by red color at the expected formation
positions which can be obtained by linear interpolation.

Based on the discussions above, we conclude that, for the NL-loop struc-
tures, Φ is accumulated by the joint influence of different shedding frequen-



8.5. Characteristics of the long N-cell cycles 119

cies and different convective velocities

Φ = Φf + Φc. (8.2)

As the relative magnitude of Φf and Φc varies, the formation processes of
the NL-loop structures change.

8.5 Characteristics of the long N-cell cycles

8.5.1 Trend of Φf variation

The time trace of Φf accumulation between corresponding N- and L-cell
vortices is plotted in figure 8.13(a). We use green and red circles to indicate
Φf of the pair of N- and L-cell vortices whose dislocation eventually causes
the NL-loop1 and NL-loop2, respectively. Two solid lines with the same
corresponding colors describe the decreasing tendency in Φf of both NL-
loop1 and NL-loop2 over time.

The gradual decrease of Φf in each N-cell cycle can be expressed as:

S = α
1

2fL
− β 1

2fN
(8.3)

where S (with dimension D/U) is a measure of the phase shift of every
vortex pair in one N-cell cycle, as compared to the N-cell cycle before it.
In this expression, α and β represent the number of L- and N-cell vortices
in one N-cell cycle. fL and fN are the shedding frequencies of L- and N-
cell vortices. In the present case, α = 15, β = 13, fLD/U = 0.1780 and
fND/U = 0.1545 (from figure 8.5), from which we obtain S = 0.064D/U .
This means that, in one N-cell cycle, the duration of 13 N-cell and 15 L-cell
vortices is not exactly the same. Although S has a very small value, after
a certain number of N-cell cycles, the accumulated difference becomes large
enough to influence the dislocation process. Moreover, by checking figure
8.13(a) and the supplementary file 1, one can find that from R1 to R7 or
from G1 to G7, Φf decreases by approximately 0.4D/U , i.e. Φf decreases
by around 0.067D/U after every N-cell cycle which is close to the S value
from expression 8.3.

It is worth mentioning that the numbers α = 15, β = 13 and S =
0.064D/U are related to the particular configuration studied. For different
configurations, i.e. different D/d and ReD, these numbers in expression 8.3
may vary. But what we observe in figure 8.13(a) will be a common feature,
because it is extremely unlikely to attain a S value exactly equal to zero.
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8.5.2 Interruption of the antisymmetric phenomenon

From figure 8.14(a) to (h), one can clearly see that the NL-loop1 structure
alternatingly appears at the -Y and +Y side of the step cylinder in sub-
sequent N-cell cycles. This is the antisymmetric phenomenon reported in
Tian et al. [10]. In the present case, the long-time observation reveals that
this antisymmetric phenomenon will be interrupted once in a while. As
shown in figure 8.14(g) and (h), instead of being antisymmetric, the loop
structures in the 7th and 8th N-cell cycles are symmetric. In these two
N-cell cycles, both NL-loop1 structures, i.e. N86-L’99 and N100-L’115, are
formed at the -Y side.

This interruption is caused by the decreasing tendency in Φf , as we dis-
cussed in §8.5.1. Normally, there are 13 N-cell and 15 L-cell vortices in one
N-cell cycle. The odd number of N-cell vortices causes the antisymmetric
phenomenon. However, as shown in figure 8.13(a), when Φf continues to
decrease along the green line from G1 to C8, it eventually becomes insuf-
ficient in point (C8). Even by including the contribution of Φc, Φ is still
not large enough to induce the formation of the expected NL-loop1 (N’99–
L114). Therefore, in this N-cell cycle, one additional vortex pair shedding
is needed to make Φ sufficiently large to induce formation of the NL-loop1.
The additional one pair of N- and L-cell vortices makes the number of N-
cell vortices in the 8th N-cell cycle become even, and thereby interrupts the
antisymmetric phenomenon. In the supplementary file 3, the time trace of
Φf between N- and L-cell vortices in the 1st to the 8th long N-cell cycles
(the 1st to the 55th N-cell cycles) is illustrated.

8.5.3 Trigger value and threshold value of vortex disloca-
tions

Based on the results from earlier papers [8, 16] and our discussions in §8.4
and §8.5.2, it is clear that only when Φ becomes sufficiently large, the vortex
dislocation process can be triggered. We call this value the trigger value.
Based on equation 8.2, Φ consists of two parts, Φf and Φc. Due to the
complexity of Φc, an accurate trigger value is hard to obtain, but an ap-
proximate value is possible to estimate. As we discussed in §8.4, unlike
the NL-loop1 structure which has a clear formation position, the NL-loop2
structure forms in the near wake. This makes it hard to define the exact
formation position of the NL-loop2. It means that the Φf which induces
this NL-loop2 is very close to the trigger value, and only a modest con-
tribution from Φc is needed. Therefore, by considering all the largest Φf

corresponding to the NL-loop2s, we can draw the blue line in figure 8.13(a)
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to approximate the trigger value (around 5.60D/U).

Besides the trigger value, there is another interesting value of Φf that
should be noticed. As we discussed in §8.5.2, when Φf continues to decrease
from G1 to C8 (figure 8.13(a)), the expected formation of the NL-loop1
(N’99-L118) fails. We can speculate that there is a threshold value for Φf ,
such that when Φf becomes less than this value, a vortex dislocation will
not occur, even when taking the contribution from Φc into account. By
connecting all of the smallest values of Φf in green (Φf inducing the NL-
loop1), the threshold value can be estimated by the yellow line in figure
8.13(a), with a value around ΦfU/D=4.30.

Due to the complexity of Φc, the formation of NL-loop structures be-
comes quite unstable when Φf is close to the trigger value or the threshold value.
As shown in figure 8.15, one stable Φf range and two unstable Φf ranges can
be identified. A dashed straight line outlines the trend in the stable range
(4.45 . ΦU/D . 4.65), in which the distribution of markers is concentrated,
and the formation position decreases almost linearly as Φf increases. Out-
side this stable range, the tendency becomes unclear. When Φf is smaller
than 4.45D/U , i.e. much smaller than the trigger value 5.60D/U and close
to the threshold value 4.30D/U , the contribution of Φc becomes significant
and determines whether the NL-loop1 is able to be formed or not. Figure
8.15 shows that, in the unstable range (4.30 . ΦfU/D . 4.45), all NL-
loop1s are generated beyond a downstream position x/D = 4, i.e. Φ of
these NL-loop1s can not exceed the trigger value upstream of x/D = 4. In
this situation, how much Φc can accumulate downstream of x/D = 4 de-
termines whether these NL-loop1s will appear or not. In figure 8.10(b), we
see apparent differences between the convective velocity in the N- and L-cell
regions, while these differences diminish as we move downstream. Down-
stream of x/D = 4, the differences become very small. In other words, the
accumulation of Φc is modest downstream of x/D = 4. Based on the above
observation, we can conclude that, for the NL-loop1s with Φf in then range
(4.30D/U − 4.45D/U), their phase differences are around a critical value,
and a small variation in Φc can influence their formation positions, and even
lead to unsuccessful formations. The fact that all the red markers in figure
8.15, which represent the occasionally absent NL-loop1s, are located in this
range also supports this conclusion.

Another unstable range appears when Φf corresponding to NL-loop1
becomes larger than 4.65D/U , which is close to the approximate level of
the trigger value. In this situation, only a small contribution from the
convective velocity is needed for NL-loop1 to form. Meanwhile, as shown
in figure 8.10(b), when x/D is smaller than 3 (x/D=1.4, 1.6, 1.8, 2, 3) the
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differences between the convective velocities in the N- and L-cell regions are
obvious. These differences are able to increase Φc rapidly. Variations in the
convective velocity could also affect the formation position, and lead to a
less clear tendency.

Detailed investigations show that many interesting and important fea-
tures of vortex dislocation in a step cylinder wake may easily be overlooked
if the observation time is too short. In the present case, during one long
N-cell cycle, most N-cell cycles need an odd number of N- and L-cell vor-
tices to accumulate sufficient Φ, and to trigger the vortex dislocation, which
leads to antisymmetry between subsequent N-cell cycles. However, between
two long N-cell cycles, the antisymmetry is interrupted. In our earlier pa-
per [10], we did not foresee this interruption, because we tried to conclude
that the antisymmetric dislocation process is a result of fL/fbeat ≈ 7.5,
such that two dislocations are needed to compensate for the frequency dif-
ferences between the N- and L-cells, and that the wake could return to
normal one-to-one shedding. However, more detailed observations based on
substantially longer simulations show that the small differences (i.e. S in
expression 8.3), which were ignored when we obtain the fL/fbeat ≈ 7.5 re-
lationship, are continuously accumulating and cause a decreasing tendency
in the time trace of Φf . This is exactly what causes the interruption of
the antisymmetry discussed in this section. We note again that these re-
sults require exceptionally long simulations. The value of S is so small that
it may easily be ignored in short-term observations. But it turns out to
lead to very interesting vortex dislocation phenomena. We mentioned that
McClure et al. [18] also reported similar small differences in the vortex
dislocations behind a dual step cylinder. However, instead of investigating
how different vortex dislocations vary, they focused on when two identical
vortex dislocations appear.

8.6 Investigation on universality

In order to investigate the universality of the two different phase difference
accumulation mechanisms and their effects on vortex dislocations, the wake
behind a step cylinder with D/d = 2.4 at the same ReD=150 is investigated.
All observations are consistent with our findings from the D/d = 2.0 case
and support our previous discussions and conclusions.

In general, comparing with the wake in the D/d = 2 case, the change
in D/d brings no fundamental changes. As shown in figure 8.16, the three
dominating frequency components, i.e. StS , StN , StL, and the beat fre-
quency Stbeat are all captured, similar as in figure 8.5(a). Moreover, similar
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non-uniform distributions of the mean streamwise velocity u are shown in
figure 8.17. This means that, for the D/d = 2.4 case, the differences in con-
vective velocities in the N- and L-cell regions can increase Φ when vortices
convect downstream, just as for D/d = 2.0 case.

Figure 8.16: Streamwise velocity spectra in the D/d = 2.4 case are calculated
based on 1200D/U continuous velocity data along a vertical sampling line
parallel to the Z-axis at position (x/D, y/D)=(0.6, 0.2).

Figure 8.17: Distributions of mean streamwise velocity ū/U in the D/d =
2.4 case.

In figure 8.18(a) and (b), the two phase difference accumulation mecha-
nisms (equation 8.2) are examined. As Φf decreases along the red and green
lines in figure 8.18(a), larger contributions from Φc are needed to make Φ
sufficiently large to trigger the vortex dislocation, which makes the forma-
tion positions of the NL-loop1 structures move downstream during two long
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Figure 8.18: (a) Time traces of Φf between N-cell and L-cell vortices are
plotted in the 1st and 2nd long N-cell cycles in the D/d = 2.4 case. The
same annotations as in figure 8.13 are also used here. (b) Relation between
Φf and the formation position (x/D) of NL-loop1 structures in the 1st and
2nd long N-cell cycles in the D/d = 2.4 case (same as in Fig. 8.15). (All
detailed data about ϕ and Φf is included in the supplementary file 2.)

N-cell cycles, as shown in figure 8.18(b).
This decreasing tendency in Φf corresponding to the NL-loop1 and NL-

loop2 in figure 8.18(a) can be explained by equation 8.3. In figure 8.18(a),
from G1 to G7, Φf decreases by 0.52D/U (4.69D/U -4.17D/U=0.52D/U),
i.e., it decreases by around 0.087D/U after every N-cell cycle, which is
close to the value from equation 8.3 (13× 1

2×0.1767U/D − 11× 1
2×0.1499U/D =

0.094U/D). As Φf continues to decrease, the expected interruption of the
conventional antisymmetry appears in the D/d = 2.4 case. The NL-loop1
structures in seven continuous N-cell cycles are plotted in figure 8.19(a) to
(g). The NL-loop1 alternatingly appears at the -Y and +Y side in the first
six N-cell cycles, i.e. from the 2nd to the 7th N-cell cycle, from figure 8.19(a)
to (f). But this conventional antisymmetry is interrupted in the 7th and 8th
N-cell cycles. In figure 8.19(f) and (g), the NL-loop1 appears at the same
side of the step cylinder. Based on the interruption of the antisymmetry,
the long N-cell cycle, the trigger value (blue line) and the threshold value
(yellow line) are also indicated in figure 8.18(a) and (b), similar as in the
D/d = 2 case.

These investigations prove that our discussions and conclusions in §8.4
and §8.5 are not only valid in the wake behind the step cylinder D/d=2
case, but also in other D/d cases.
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Figure 8.19: From (a) to (g), the NL-loop1 structures in the 2nd-8th N-cell
cycles are plotted from both the -Y and +Y side in the D/d = 2.4 case. The
black line marks the formation position of a NL-loop1.

8.7 Conclusions

We use direct numerical simulations to investigate vortex interactions, es-
pecially the vortex dislocations between the N- and L-cell vortices, in the
near wake behind two single step cylinders with diameter ratio D/d = 2
and 2.4 at ReD = 150. Our results of the D/d = 2 case show good agree-
ment with previous studies [5, 8, 10], with respect to the three dominating
spanwise vortices (i.e. S-, N-, and L-cell vortices), vortex dislocations occur-
ring at the N-L cell boundaries, loop structures (NL-loop1 and NL-loop2)
appearing during the dislocation processes, and antisymmetric phenomena
between subsequent N-cell cycles. In addition, the numerical results pro-
vide more detailed information on how the phase difference (Φ) between
the corresponding N- and L-cell vortices is accumulated and finally triggers
the formation of vortex dislocations and concomitant NL-loop structures.
A phase difference accumulation mechanism is identified for the first time,
i.e. Φ = Φf + Φc. We have clearly identified that there are two qualita-
tively different physical factors contributing to the accumulation of Φ, one
is different shedding frequencies (Φf ), the other one is varying convective
velocities in the different vortex cell regions (Φc). While Φf is relatively
well-known, the contribution from convective velocity Φc has never been
examined before.

Based on the new understanding of the phase difference accumulation
mechanism, we manage to obtain a clearer insight in various phenomena
during the dislocation process. Most importantly, the variations of the
formation position of the NL-loop1 and NL-loop2, and the irregularity of
the NL-loop1 formation have been fully explained. For a pair of N- and L-cell
vortices, as Φf decreases, Φc must contribute more to ensure a sufficiently
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large Φ (we refer to it as the trigger value) that can trigger the vortex
dislocations. This makes the formation position of the corresponding NL-
loop structure move downstream.

Moreover, long-time trace of the accumulation of Φf clearly shows cyclic
trends, which are caused by minute differences accumulated during each N-
cell cycle (as indicated by S in expression 8.3). Due to the accumulation
of this difference, the antisymmetric phenomenon, reported in Tian et al.
[10], will be cyclically interrupted when Φf decreases below a certain value.
We refer to this value as the threshold value. The long N-cell cycle is
defined based on this phenomenon. Finally, in §8.6, the universality of our
discussions and conclusions is justified by investigating the D/d = 2.4 case.

The identification of the phase difference accumulation mechanism, ex-
planations of the formation positions of the NL-loops and observations of the
long-period characteristics offer a deeper and more complete understanding
of the vortex dislocation phenomenon in the wake behind a step cylinder.

Although all investigations in the present paper are based on single step
cylinders at Reynolds number 150, the N- and L-cell vortices and their
vortex dislocations were observed in other step cylinder cases with 1.55<
D/d <2 at 67< ReD <1100 [5, 7, 8, 15]. In these cases, due to the abrupt
change in diameter, vortex shedding frequencies and convective velocities
are different in N- and L-cell regions. With these two mechanisms present
in the flow, we believe that our discussions and conclusions are also valid
for the above mentioned cases. We anticipate that the phase difference
accumulation mechanism we report here also exists in other wake flows that
contain several adjacent spanwise vortices. In addition, the method we have
developed to obtain the phase information and phase differences of vortices
may also be applicable in other wake flows.
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8.8 Appendix

8.8.1 A method used to obtain the phase information and
phase difference of vortices

In order to perform detailed investigations on how the phase difference be-
tween corresponding N- and L-cell vortices accumulates and triggers the
vortex dislocation, we need a reliable method to obtain the phase informa-
tion (ϕ) and the phase difference (Φ) of the wake vortices. According to
Green & Gerrard [31] and Griffin [32], the end of the vortex formation region
coincides with the location where the vortex strength becomes maximum.
By monitoring the time traces of the strength of a vortex and the corre-
sponding vorticity distribution along a center line at y/D = 0, we found
that in the present low-Reynolds-number case the time instant when the
vortex strength reaches its maximum coincides with the instant at which
the corresponding largest ωz appears at the center line. A detailed example
is shown in supplementary file 4. Based on this feature, the shed position
of a vortex is defined as the position where the corresponding largest ωz
appears at the center line. Moreover, ϕ of one vortex is defined as the time
instant when the corresponding ωz reaches its maximum at the sampling
point. At a downstream sampling point, Φ between a pair of the N- and
L-cell vortices is the time difference between the time instants when they
pass this sampling point:

Φ = ϕN − ϕL. (8.4)

Ideally, we monitor ϕN and ϕL at the shed position of the N- and L-cell
vortex, respectively. Then, by using equation (8.4), Φ can be obtained.
However, there are two challenges:

1. Only when both the N- and L-cell vortex are monitored at the same
downstream position, we can get Φ between them without taking the
effects from the convective velocity into account. Due to different
shedding frequencies, the shedding positions of the N- and L-cell vor-
tices are different. Moreover, the fluctuations in the shedding frequen-
cies of N-cell vortices, as discussed in §8.3.2, make the situation even
more complicated.

2. In the L-cell region, due to the oblique shedding, the phases of the
L-cell vortices vary when the sampling point shifts in the spanwise
direction.

The general process developed to overcome these two challenges is: (1)
Find the regular shedding regions of the N- and L-cell vortices. (2) Monitor
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shed positions of the N- and L-cell vortices, and find the suitable sampling
positions for both of them. (3) Develop a method to minimize effects of the
oblique shedding in the L-cell region. The complete processes of obtaining
Φ in the D/d = 2 case are described in the following.

8.8.2 Selection of the sampling region and the signal variable

The root mean square (RMS) of the spanwise vorticity ωz in a part of
the N-cell region (−3.2 < z/D < −2.4) and the L-cell region (−18.8 <
z/D < −15.8) are plotted in figure 8.20. From figure 8.20(a), one can see
that except for the lowest curve (at z/D=-2.4), the trends of the other five
curves are the same. Especially at position z/D= -2.8 and -2.9, the RMS
values coincide, as presented in the zoom-in view figure 8.20(a)-(II). This
means that the N-cell vortices can be treated as a regular shed spanwise
vortex in the region −3.2 . z/D . −2.6. In the L-cell region, as illustrated
in figure 8.20(b), the differences between the results of four sampling points
are negligible. The zoom-in view figure 8.20(b)-II) shows that the largest
difference in RMS of ωz is about 0.01U/D, i.e. only 0.3% of the peak value.
Generally, the regions (−3.2 . z/D . −2.6) and (z/D . −15.8) can be
treated as the regular shedding region of N- and L-cell vortices, respectively.

Figure 8.20: (a): (I) The distribution of RMS of vorticity component
ωzD/U in a part of the N-cell region (−3.2 < z/D < −2.4), (II) A zoom-in
view of the peak area of the curves in figure (I); (b): (I) The distribu-
tion of RMS of vorticity component ωzD/U in a part of the L-cell region
(−18.8 < z/D < −15.8), (II) A zoom-in view of the peak area of the curves
in figure (I).

As illustrated in §8.3.2, far away from the step position, vortices shed
regularly in the L-cell region. In figure 8.21, the vorticity magnitude |ω|,
and the three vorticity components (ωx, ωy and ωz) are checked at point
(x/D, y/D, z/D) = (1.5, 0, -15.8). The time traces of all three vorticity
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components completely repeat themselves with the same period as the L-
cell vortex. All vorticity components oscillate regularly enough to be used
to monitor Φ of L-cell vortices. On the other hand, in the N-cell region, the
vortex shedding is more complicated. In figure 8.22, at the position (x/D,
y/D, z/D) = (1.5, 0, -2.9), which is in the regular shedding region of N-
cell vortices, time traces of both ωx and ωy show substantial irregularities,
which are possibly caused by the intensive down-wash [5] and the two pairs
of streamwise vortices [5, 6], respectively. However, without disturbances,
ωz oscillates regularly in figure 8.22(d).

Figure 8.21: The time traces of magnitude of vorticity (|ω|D/U) and its
three components (ωxD/U , ωyD/U and ωzD/U) in the L-cell region at the
point (x/D, y/D, z/D)=(1.5, 0, -15.8) are plotted in (a), (b), (c) and (d),
respectively.

Figure 8.22: Same as in figure 8.21, but at a different position (x/D, y/D,
z/D)=(1.5, 0, -2.9), i.e. in the N-cell region.

In general, ωz of the N- and L-cell vortices oscillate regularly in parts of
their shedding regions. It therefore becomes reasonable to select ωz as the
signal variable.

8.8.3 The method for obtaining the phase (ϕ) and the shed
position of vortices

Both the N- and L-cell vortices shed alternatingly from the two sides of the
step cylinder. As mentioned in the beginning of Appendix. 8.8.1 and Sup-
plementary file 4, in the present low Reynolds number case, the strength of
a vortex and its induced vorticity at the center line (y/D=0) approximately
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reach their extreme values at the same time. Therefore, we can obtain ϕ and
the shed position of vortices by monitoring distributions of ωz in the sym-
metry plane. (Note: The following analysis is based on data obtained from
high-density (0.01D) sampling lines with sampling frequency 200U/D. Con-
sidering that the shedding frequency of the N- and L-cell vortex is around
0.2U/D, 200U/D is long enough to get the accurate results.)

1. Determination of ϕ and shed position of the vortex along a sampling
line.

By checking the variation of ωz along a sampling line in the symmetry
plane (y/D=0), the shed position and ϕ of each vortex can be ob-
tained. In figure 8.23(a), as a vortex passes through a sampling line
(from (x/D, y/D, z/D)=(1, 0, -15.8) to (2, 0, -15.8)), the distribu-
tions of ωz along this line are plotted in the period from tU/D=4.205
to 6.205 with a time interval 0.1D/U . In figure 8.23(a), the maximum
of each curve is marked by a small red circle, whose position (x/D,
ωzD/U) represents the core line position and strength of the source
vortex. A zoom-in plot of the red circle concentrated area (black rect-
angular area in (a)) is shown in figure 8.23(b), and the corresponding
time trace of these red circles is plotted in figure 8.23(c). The num-
ber below each red circle represents its temporal order. One can see
that, from the 1st to 10th red circle, the corresponding ωz gradually
reaches its maximum at x/D = 1.46 (as shown in figure 8.23(b)) and at
tU/D=5.265 (as shown in figure 8.23(c)). This means that the source
vortex contains maximum vorticity and separates from the shear layer
at x/D=1.46 when tU/D=5.265. In other words, the shed position of
this vortex is x/D=1.46, and corresponding ϕ at position (x/D, y/D,
z/D)=(1.46, 0, -15.8) is 5.265D/U .

2. Obtaining ϕ of vortices at a fixed sampling point.

For a fixed sampling point in the symmetry plane (y/D = 0), ωz
will oscillate as vortices pass through the point. When the core lines
of vortices pass the sampling point, ωz reaches its extremum at this
point. Figure 8.23(d) shows the oscillation of ωz at position (x/D,
y/D, z/D) = (1.46, 0, -15.8), from which the abscissa of the peaks
and troughs of this curve represents ϕ of vortices shed from the -Y
and +Y side of the step cylinder, respectively.
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Figure 8.23: a) From tU/D=4.205 to 6.205, distributions of vorticity
ωzU/D along a sampling line (from (x/D, y/D, z/D)=(1, 0, -15.8) to
(2, 0, -15.8)) are plotted with a time interval of 0.1D/U . The maximum of
each curve is marked by a small red circle; (b) A zoom-in plot of the rectan-
gular area in (a), where the number below each red circle represents the time
series of the corresponding curve; (c) Time trace of the maximum vorticity
ωzU/D (red circles in (a)); (d) Time trace of vorticity ωz at sampling point
(x/D, y/D, z/D)=(1.5, 0, -15.8).

8.8.4 Monitoring both the N- and L-cell vortex at the same
downstream position

In figure 8.24, the shed positions of the N- and L-cell vortices at the first
500D/U are examined. Figure 8.24(b) shows that, at two spanwise positions
z/D = −15.8 and −17.8 (which are in the L-cell vortex’s regular shedding
region discussed in Appendix 8.8.2), most of the L-cell vortices shed at posi-
tion x/D=1.46. Only a few L-cell vortices shed at x/D=1.47. Considering
that 0.01D is a very small distance and equal to the spatial interval of the
sampling points, x/D=1.46 can be defined as the shed position of L-cell
vortices. On the other hand, as illustrated in figure 8.24(a), the shed posi-
tion of N-cell vortices severely fluctuates between x/D = 1.4 and 1.6, which
makes it hard to define a fixed shed position for all N-cell vortices. Luckily,
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Figure 8.24: a) Time traces of the shed positions of the N-cell vortices are
calculated along two sampling lines (from (x/D, y/D, z/D)=(1, 0, -2.8)
to (2, 0, -2.8)) and (from (x/D, y/D, z/D)=(1, 0, -2.9) to (2, 0, -2.9))
are plotted in red and black, respectively. Every small circle represents a N-
cell vortex. (b) Time traces of the shed positions of the L-cell vortices are
calculated along two sampling lines (from (x/D, y/D, z/D)=(1, 0, -15.8)
to (2, 0, -15.8)) and (from (x/D, y/D, z/D)=(1, 0, -17.8) to (2, 0, -17.8))
are plotted in red and black, respectively. Every small circle represents a
L-cell vortex.

as shown in Table 8.4, at the key instant when the vortex dislocations occur,
ϕ of the N-cell vortex is stable.

In table 8.4, ϕ of each vortex is calculated in two ways: 1.) In the first
column, ϕ is obtained along a sampling line (from (x/D, y/D, z/D)=(1, 0,
-2.9) to (2, 0, -2.9)) by using the method described in Appendix 8.8.3-(i).
2.) In the second column, ϕ is obtained by using the method described
in Appendix 8.8.3-(ii) at a fixed point (x/D, y/D, z/D)=(1.5, 0, -2.9),
in which x/D = 1.5 is the averaged shed position of the N-cell vortices.
The differences between these two calculation methods are shown in the
third column. The phases of the N-cell vortices that induced the vortex
dislocations and formations of the NL-loop structures are highlighted with
a gray background. At these key instants, the largest difference in ϕ is
0.015D/U , which is small and equal to the finest grid size (all analysis is
based on Case3 in Table 8.1). Differences at the other points are even smaller
than 0.1D/U . The present paper focuses on the trend of Φ accumulation,
rather than the exact value of Φ. We believe that these small differences
have negligible influence on our discussions and conclusions.

For the L-cell vortices, at x/D = 1.5, they already shed from the shear
layer and move regularly downstream. We admit that, from x/D = 1.46
(the shed position of the L-cell vortices) to 1.5, the convective velocity
contributes to the accumulation of Φ. Since these two points are only 0.04D
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apart in x-direction, the contributions from the convective velocity will be
limited. We believe that Φ calculated at x/D = 1.5 is still dominated by the
different shedding frequencies between the N- and L-cell vortices. Therefore,
the downstream position x/D = 1.5 is selected as the streamwise position
of the sampling points for both N- and L-cell vortices. The Φ between the
corresponding N- and L-cell vortices are calculated at this position, and
defined as Φf .

ϕ obtained from a
sampling line (D/U)

ϕ obtained at a fixed
point (D/U)

Difference
(D/U)

6.095 6.05 0.045
9.055 9.055 0
12.24 12.27 -0.03
15.625 15.585 0.04
18.78 18.73 0.05
22.12 22.2 -0.08
25.7 25.68 0.02
29 28.95 0.05

32.325 32.315 0.01
... ... ...

74.365 74.355 0.01
... ... ...

116.28 116.29 -0.01
... ... ...

158.29 158.3 -0.01
... ... ...

200.3 200.29 0.01
... ... ...

242.23 242.215 0.015

Table 8.4: Phase information ϕ of the N-cell vortices is obtained by two
methods. In the first column, we use the method described in appendix 8.8.3-
i) to obtain ϕ along a sampling line (from (x/D, y/D, z/D)=(1, 0, -2.9) to
(2, 0, -2.9)). In the second column, we use the method described in appendix
8.8.3-ii) to obtain ϕ at a fixed sampling point (x/D, y/D, z/D)=(1.5, 0,
-2.9). The differences between the first and second column are shown in the
third column. The ϕ of the N-cell vortices that induce vortex dislocations
are marked by gray shading.



134 134

8.8.5 The method to correct L-cell vortices from oblique
shedding effects

Due to the oblique shedding in the L-cell region shown in figure 8.1, ϕ
of the L-cell vortices varies as the observation position moves in spanwise
direction. In order to get rid of this effect, ϕ of the L-cell vortex is divided
into two parts.

ϕLM = ϕL + ϕθ. (8.5)

In equation (8.5), ϕLM is the phase of the L-cell vortex obtained at
a specific sampling position, ϕθ is the component of ϕLM which can be
affected by the oblique shedding, and ϕL is the other component that is
unaffected. In other words, when the sampling point moves in spanwise
direction within the L-cell region, ϕLM and ϕθ vary, but ϕL keeps constant.
As an example, we keep the monitoring position of the N-cell vortex at
(x/D, y/D, z/D)=(1.5, 0, -2.9), and capture ϕ of the L-cell vortices at two
sampling points (x/D, y/D, z/D)=(1.5, 0, -15.8) and (1.5, 0, -17.8). By
using equation (8.4), two time traces of Φf are calculated and shown in
figure 8.25(a) and (b), in which the small circles represent Φf between a N-
cell vortex and its corresponding L-cell vortex. One can see that the trend
of the curves coincide in figure 8.25(a) and (b). When the sampling position
of the L-cell vortex moves, the oblique shedding only causes a downward
shift of the curves from figure 8.25(a) to (b). By subtracting the average
value of all small red circles in each figure, we obtain a green curve (figure
8.25(a)) and a black curve (figure 8.25(b)), and we easily find that these
two curves almost coincide. The average value of all the small red circles is
ϕθ in equation (8.5). As long as the sampling position of the L-cell vortex
is far from the step position, after subtracting ϕθ, figure 8.25(c) can always
be obtained.

In the D/d = 2 case, by using the method described in this appendix,
we obtained ϕ of the N- and L-cell vortices at (x/D, y/D, z/D)=(1.5, 0,
-2.9) and (1.5, 0, -15.8), therefore Φf is calculated on this basis. Following
this method, Φf in the D/d = 2.4 case can also be obtained. The detailed
data of ϕ and Φf for both the D/d = 2 and 2.4 cases are included in the
supplementary file 1 and 2, respectively.
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Figure 8.25: Time traces of Φf during the 1st long N-cell cycle are calculated
at two groups of sampling points. (a) The calculations of Φf are based on ϕ
of the N- and L-cell vortices which are calculated at (x/D, y/D, z/D)=(1.5,
0, -2.9) and (1.5, 0, -17.8), respectively. (b) The calculations of Φf are
based on ϕ of N- and L-cell vortices which are calculated on (x/D, y/D,
z/D)=(1.5, 0, -2.9) and (1.5, 0, -15.8), respectively. (c) By using the
regression method described in 8.8.5, the results in green and black in (c)
have been obtained from (a) and (b), respectively. The circle represents Φf

between a N-cell vortex and the corresponding L-cell vortex. In order to ease
the observation, we reduce the size of the green circles.
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Chapter 9

Article 5: Diameter ratio
effects in the wake flow of
single step cylinders

Cai Tian1, Fengjian Jiang2, Bjørnar Pettersen1, Helge I. Andersson3

Abstract

Vortex interactions behind step cylinders with diameter ratio 2≤ D/d ≤3
at Reynolds number (ReD) 150 were investigated by directly solving the
three-dimensional Navier-Stokes equations. In accordance with the previous
paper [C. Tian, F. Jiang, B. Pettersen, and H. I. Andersson, J. Fluid Mech.
891 (2020)], some interesting characteristics of vortex dislocations, e.g. two
phase difference accumulation mechanisms, the trigger and threshold values
of vortex dislocations, antisymmetric vortex interactions, and long N-cell
cycles, were observed. By performing a detailed investigation of diameter
ratio effects, more features of vortex dynamics were discovered. In addi-
tion to the known antisymmetric vortex interactions, a symmetric vortex
interaction between neighboring N-cell cycles was observed. The long-time
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observations revealed an interruption of both these two types of vortex in-
teractions. By using a well-validated phase tracking method, we monitor
the time trace of phase difference accumulation process in different D/d
cases, from which decreasing (known) and increasing (new) phase difference
tendencies were identified. Both caused the interruption of continuous sym-
metric or antisymmetric phenomena, but through two distinct mechanisms.
Meanwhile, the diameter ratio effects on the trigger and threshold values
were discussed. Additionally, the likelihood of antisymmetric or symmetric
vortex interactions, and increasing or decreasing phase difference tendencies
were analyzed. Moreover, diameter ratio effects on shedding frequencies and
the extensions of three main vortex cells, i.e. S-, N- and L-cell vortices, were
described.

9.1 Introduction

In recent years, fluid flow around a step cylinder configuration, as shown
in Fig. 9.1, has been the focus of many studies. Flow past structures with
a similar shape occurs in many engineering applications, for example, the
outer wall of TV-towers, the underwater hull of a SPAR-buoy, the sup-
porting structures for fixed and floating offshore wind turbines, etc. For a
sufficiently long single step cylinder, there are mainly two important param-
eters, i.e. the diameter ratio (D/d), and the Reynolds number (ReD). D/d
is the diameter ratio between the large- and small-part of the step cylinder,
while ReD = UD/ν (where ν is the kinematic viscosity of the fluid, and U
represents the uniform inflow velocity).

Figure 9.1: A sketch of the step cylinder geome-
try. The diameter of the small and large cylin-
der are d and D, respectively. l is the length
of the small cylinder, and L is the length of the
large cylinder. The origin locates at the center of
the interface between the small and large cylin-
ders. The uniform incoming flow U is in the pos-
itive x-direction. The three directions are named
streamwise (x-direction), crossflow (y-direction)
and spanwise (z-direction).

Based on experimental investigations in the wake of a step cylinder with
D/d ≈ 2 at 63 < ReD < 1100, Dunn & Tavoularis [1] identified three types
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of spanwise vortices: (1) S-cell vortex shed from the small cylinder with
the highest shedding frequency fS , (2) L-cell vortex shed from the large
cylinder with shedding frequency fL and (3) N-cell vortex located between
the S- and L-cell vortices, with the lowest shedding frequency fN . Lewis &
Gharib [2] found that the N-cell vortex (the modulation zone) only exists
when D/d > 1.55, where there is no direct connection between the S- and
L-cell vortices. They called it the indirect mode. Meanwhile, a direct mode
was identified when D/d < 1.25, where the N-cell vortex disappears, and
the corresponding S- and L-cell vortices directly connect to each other.

The N-cell vortex has the lowest shedding frequency among the three
dominating vortex cells, i.e. the S-, N- and L-cell vortices. Similar low-
frequency cells were also observed in the wake behind several other config-
urations, e.g. the wake behind a free-end cylinder [3], the wake behind a
circular cylinder with flat end-plat [4], the wake behind a concave curved
cylinder [5], etc. The previous studies [1, 4, 6, 7] attributed the appear-
ances of such low-frequency cells (N-cell-like vortex) to 3D effects, which
include mainly two mechanisms: downwash and increased base pressure.
Bearman [8] and Williamson [4] found that the increased base pressure has
the effect of increasing the vortex formation region, and causes the vortex
shedding frequency to decrease. Zdravkovich [6] and Williamson [4] found
that the spanwise velocity (downwash) could not merely displace the vortex
formation region further downstream, but also widen the separated shear
layers before they roll up into vortices. These effects would also decrease
the vortex shedding frequency. For the wake behind the step cylinder, by
doing experiments and numerical simulations, Dunn & Tavoularis [1] and
Morton & Yarusevych [7] also concluded that the 3D effect is a plausible
explanation of the formation of the N-cell vortex. However, there is no fur-
ther discussion about the relative importance of these two 3D effects, i.e.
the downwash and the increased base pressure. In Sec. 9.3.2.1, their relative
importance will be discussed.

Whenever there are several spanwise-oriented vortex cells with different
frequencies, these vortices are either in phase or out of phase with each
other. As they move out of phase, a contorted ’tangle’ of vortices appears
at the boundary between them, which looks like dislocations that appear
in solid materials. Williamson [4] defined this kind of flow phenomenon
as vortex dislocation. By doing experiments of flow past a circular cylinder
with end-plates at ReD < 200, Williamson found that the vortex dislocation
occurs at the boundary between the central vortex cell of frequency fu and
the single vortex cell of frequency fl at a beat frequency fu-fl. Between
two neighboring vortex dislocations, he proposed to estimate the number of
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vortex shedding cycles of the central vortex cell (nu) and the single vortex
cell (nl) [4] as:

nu = fu/(fu − fl), (9.1)

nl = nu − 1. (9.2)

In the wake of a step cylinder, the vortex dislocations between S-, N-
and L-cell vortices were also the topic of many investigations [1, 2, 7, 9, 10,
11, 12]. All these studies concluded that the interactions between the S- and
N-cell vortices occur in a narrow S-N cell boundary (the region between the
S- and N-cell vortices) which is stable and deflects spanwise into the large
cylinder region. During the dislocation process, the N-cell vortex splits into
at least two filaments. One of these filaments connects to the subsequent
N-cell vortex of the opposite sign to form a hairpin-like vortex structure.
The other filament connects to the S-cell vortex [1, 11, 12, 13, 13]. Except
for the S-cell vortices that connect to the N-cell vortices, the rest of them
form S-S half loops [11], which appear at a beat frequency (fS − fN ).

Unlike the S-N cell boundary, the N-L cell boundary (the region between
the N- and L-cell vortices) is relatively wide and varies with time. Lewis &
Gharib [2] first observed an inclined interface region (the N-L cell boundary)
appearing behind the large cylinder at beat frequency (fL−fN ). Morton &
Yarusevych [11] explained this phenomenon: as the phase difference between
the N- and L-cell vortices accumulates, accompanying with the appearance
of vortex dislocations between N- and L-cell vortices, the shapes and lengths
of the N-cell vortices and the position of the N-L cell boundary periodically
change at the beat frequency (fL−fN ). They defined these cyclic variations
as the N-cell cycle [11]. More detailed vortex interactions in the N-cell cycles
were investigated by Tian et al. [14, 15, 16, 17]. They observed that, in the
wake behind a single step cylinder (D/d = 2) atReD=150, there are two NL-
loops (NL-loop 1 and NL-loop2), one NN-loop and at least one LL-half-loop
structure in one N-cell cycle. The phrase antisymmetric vortex interaction
was introduced to describe the phenomenon that the NL-loop structures
form at different sides of the step cylinder in the neighboring N-cell cycles.
Moreover, Tian et al. [17] reported that the total phase difference, Φ, is
accumulated by the joint influence of different shedding frequencies and
different convective velocities. This mechanisms was described as

Φ = Φf + Φc (9.3)

where Φf and Φc represent the Φ caused by different shedding frequencies
and different convective velocities, respectively. By tracking the phase in-
formation of N- and L-cell vortices, they measured Φf of every N-L vortex
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pair:
Φf = ϕN − ϕL. (9.4)

Here ϕN and ϕL represent the phase information of the corresponding N-
and L-cell vortices, respectively. By plotting the long-time trace of the
accumulation of Φf , a decreasing tendency of Φf was observed by Tian et
al. [17], which makes the formation position of the corresponding NL-loop
structure move downstream in subsequent N-cell cycles, and finally causes
an interruption of the continuous antisymmetric vortex interactions. An
uninterrupted series of antisymmetric N-cell cycles was identified as the
long N-cell cycle. The gradual decrease of Φf can be evaluated as:

S = α
1

2fL
− β 1

2fN
(9.5)

where S (with dimension D/U) is a measure of the phase shift of the N-
L vortex pair in one N-cell cycle, as compared to the corresponding N-L
vortex pair in the previous N-cell cycle. In this expression, α and β are
the number of L- and N-cell vortices in one N-cell cycle, respectively. Tian
et al.[17] found that only when Φf becomes larger than a certain value
(as referred to as the threshold value), taking Φc into account, Φ can be
sufficiently large (as referred to as the trigger value) to induce the vortex
dislocation and the formation of the NL-loops.

In previous papers [1, 11, 13, 18], vortex interactions between S- and
N-cell vortices were described in detail. The primary goal of the present
numerical study is to investigate the effects of the diameter ratio (D/d) on
the vortex interactions, especially the vortex dislocations between N- and
L-cell vortices in the wake behind the step cylinder. Considering that many
small streamwise vortices appear when ReD increases to 300, as shown by
Morton and Yarusevych [11]. These vortices disturb the observations of
vortex interactions, we choose to stay at ReD=150 to more clearly demon-
strate the detailed vortex connections. To achieve this, we analyse the space
and time signals of several flow quantities (velocity, vorticity and λ2 [19])
obtained from a direct numerical simulation (DNS) of flow past ten different
step cylinders with diameter ratios D/d=2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,
2.8 and 3.0. All these cases share the same coordinate system, grid resolu-
tion and computational method. By using a well validated phase difference
tracking method [17], the phase difference accumulation process is further
investigated.

All discussions in Sec. 9.2, 9.3 and 9.4 are based on the D/d=2.0, 2.2,
2.4, 2.6, 2.8 and 3.0 cases. In Sec. 9.2, the flow problem and the numer-
ical settings used are introduced. Then, the wake and the diameter ratio
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effects on the three main vortex cells, i.e. the S-, N- and L-cell vortices, are
described in Sec. 9.3. In Sec. 9.4, the diameter ratio effects on the vortex
dislocations between N- and L-cell vortices are discussed in detail, and ad-
ditional characteristics of the vortex dislocations are revealed. In Sec. 9.5,
we analyze the likelihood of different characteristics of vortex dislocations.
The D/d=2.1, 2.3, 2.5 and 2.7 cases are investigated to further support of
our discussions and strengthen our conclusions.

9.2 Flow configuration and computational aspects

9.2.1 Flow configuration and coordinate system

Figure 9.2: Computational domain, ori-
gin and coordinate system are illustrated
from (a) side view and (b) top-down view.
The diameter of the large cylinder, D, is
the length unit. The origin is located in
the centre of the step at the interface be-
tween the small and large cylinders.

The step cylinder investigated in the present paper is illustrated in
Fig. 9.1. The uniform incoming flow U is in the positive x-direction. In
Fig. 9.2, a side and a top-down view of the flow domain are shown. The
height of the domain is 45D, of which the small and the large cylinders oc-
cupy 15D (l) and 30D (L), respectively. The inlet boundary locates at 10D
upstream from the origin, and the outlet boundary locates at 20D down-
stream. The width of the domain is 20D. This domain size is comparable
to, or exceeds, that used in previous similar studies [11, 15, 17]. Most of
the results in the present paper are from the six cases D/d=2.0, 2.2, 2.4,
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2.6, 2.8 and 3.0. In order to keep the Reynolds number of the large cylinder
(ReD) at 150 in all cases, we keep D constant, and change d. Boundary
conditions used in the present study are as follows:

- The inlet boundary: uniform velocity profile u=U , v=0, w=0;

- The outlet boundary: Neumann boundary condition for velocity com-
ponents (∂u/∂x

= ∂v/∂x = ∂w/∂x = 0) and constant zero pressure condition;

- The other four sides of the computational domain: free-slip boundary
conditions (For the two vertical sides: v = 0, ∂u/∂y = ∂w/∂y = 0,
For the two horizontal sides: w = 0, ∂u/∂z = ∂v/∂z = 0);

- The step cylinder surfaces: no-slip and impermeable wall.

9.2.2 Computational method

The three-dimensional time-dependent incompressible Navier-Stokes equa-
tions are directly solved by a well-verified finite-volume based numerical
code MGLET [20]. The surface integral of flow variables over the faces
of the discrete volumes is approximated by using the midpoint rule, which
leads to second-order accuracy in space. The discretized equations are inte-
grated in time with a third-order explicit low-storage Runge-Kutta scheme
[21]. A constant time step ∆t is used to ensure a CFL number smaller than
0.65. The pressure corrections are handled by solving a Possion equation
with Stone’s implicit procedure (SIP) [22]. The same code has recently
been used to investigate other flows around three-dimensional bluff bodies,
such as the step cylinder wake [17], the spheroid wake [23] and the curved
cylinder wake [5].

In all simulations, an immersed boundary method (IBM) is used to
handle the cylindrical geometry inside the Cartesian grid. The details of
this IBM and its validation can be found in Ref. [24]. The overall properties
of the grids for all cases are shown in Table 9.1. A schematic illustration of
the mesh design can be found in Fig. 3 of Ref. [17]. First, the computational
domain is divided into equal-sized cubic Cartesian grid boxes, named the
level-1 grid. Each grid box is further equally divided into N ×N ×N cubic
grid cells. In the regions where complex flow phenomena take place, e.g.
the regions close to the step cylinder geometry, the regions where vortex
dislocations happen, etc., the grid boxes (the level-1 box) are equally split
into eight smaller cubic grid boxes (the level-2 grid box). There are also
N × N × N cubic grid cells in every level-2 grid box. Therefore, the grid
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resolution in the level-2 grid box is two times finer than that in the level-1
grid box. This refinement-process continuously goes on until a sufficient grid
resolution is reached. More detailed information of this local grid refinement
method can be found in Ref. [20].

9.2.3 Grid convergence

A detailed grid convergence study can be found in our previous paper
[17], which proves that in the D/d=2.0 case the minimum grid cell size
∆/D=0.015 is fine enough to resolve all physical phenomena of interest to
us.
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Figure 9.3: (a) Distributions of time-averaged streamwise velocity u/U along
a sampling line AB in the x − z plane at y/D=0 in the D/d = 2.8 case.
Inset: (b) a sketch of the position of sampling line AB of length 0.8D, at
x/D=-0.25; and (c) a zoom-in plot of the upper part of the curves in panel
(a) (black rectangle in panel).

We note that ∆ is normalized by D, therefore when it comes locally
around the small cylinder, the grid resolution may be challenged. As we
cover different D/d cases in the present study, the grid resolution for small
cylinder need to be addressed. When D/d=3 the Reynolds number of the
small cylinder (Red) is 50, which is very close to the Re range of the closed
wake regime (4-5 ≤ Re ≤ 30-48). In this Re range, there is no periodic
vortex shedding behind the cylinder. Considering that both the vortex
shedding and the abrupt change in diameter complicate the flow, the ma-
jor challenge to the local grid resolution around the small cylinder should
appear when D/d=2.8 (Red=53). The grid size in the D/d=2.8 case is fur-
ther refined from ∆/D =0.015 (Mesh A) to 0.012 (Mesh B) to check the
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Table 9.1: Detailed mesh information. The Reynolds number is ReD
=UD/ν=150. Mesh A is used in all cases. Mesh B is only used in the
D/d = 2.8 case for the grid convergence test.

Mesh
Minimum
grid cell

size, ∆/D

Time
step,
4tU/D

Number
of grid
levels

Number of
grid cells in
one grid box

Total number
of grid cells

(million)

A 0.015 0.005 6 24× 24× 24 124.1
B 0.012 0.004 6 30× 30× 30 243.3

grid convergence, as shown in Table 9.1. In Fig. 9.3(a), the distributions of
time-averaged streamwise velocity along the vertical line AB (as indicated
in inset Fig. 9.3(b)) for these two D/d=2.8 cases are plotted to illustrate
the flow variation on the ‘step’ in front of the small cylinder. As shown
in Fig. 9.3(a) and in the zoom-in view in the inset Fig. 9.3(c), only tiny
differences appear when the grid size is refined. Moreover, Fig. 9.4 shows
time traces of the crossflow velocity (v) in the interaction region between
the N- and L-cell vortices where the velocity varies dramatically with time
due to the vortex dislocations. The fluctuations and the mean values of v
from Mesh A and Mesh B almost coincide. However, the computational
cost of Mesh B is significantly higher than that of Mesh A, due to the large
number of grid cells and smaller time step. All discussions are therefore
based on grid resolution ∆/D =0.015. To ensure that the flow is properly
developed, all cases were simulated first for at least 300 time units (D/U),
and then continued for at least 2000D/U to collect the statistical data.

9.3 Diameter ratio effects on the shedding fre-
quencies and the extensions of vortex cells

9.3.1 Diameter ratio effects on the S-cell vortex

The diameter ratio D/d dramatically changes the wake, and influences each
vortex cell. This is indicated in Fig. 9.5, where the approximate exten-
sions of the S-, N- and L-cell vortices are marked. From Fig. 9.5(a) to
(c), one obvious change is the absence of the S-cell vortices in (c), i.e. the
D/d=3.0 case. As mentioned in Sec. 9.2, whenD/d increases from 2 to 3, the
Reynolds number of the small cylinder (Red) decreases from 75 to 50, which
is at the border between the steady separation regime (4−5 < Re < 30−48)
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Figure 9.4: Time traces of the crossflow velocity v at point (x/D, y/D,
z/D)=(1, 0, -6) in the D/d=2.8 case by using Mesh A and Mesh B. T is
the period of one N-cell cycle.

and the periodic laminar regime [27] (30 − 48 < Re < 180 − 200). Con-
sidering the disturbance caused by the vortex shedding behind the large
cylinder, we expected vortex shedding to be triggered also behind the small
cylinder. However, no vortex shedding can be observed there. As shown in
the 2nd column in Table 9.2, StS gradually increases as D/d increases. As a
result, there is one more S-cell vortex behind the small cylinder (D/d=2.4)
in Fig. 9.5(b), than in the D/d=2.0 case in Fig. 9.5(a). Comparing with
the empirical St′S in the 6th column of Table 9.2, the maximum difference
between StS and St′S is only 3.2%. The variation of StS is simply caused
by changes in Red, i.e clearly D/d dependent. In Fig. 9.6, the extensions
of the three vortex cells (the S-, N- and L-cell vortices) are shown. To find
it, streamwise velocity spectra for all six cases are calculated along a verti-
cal sampling line parallel to the z-axis at position (x/D, y/D)=(1.6, 0.4).
More detailed information about streamwise velocity spectra is shown in
Appendix 9.7. For a given spanwise position, only the spectral peaks with
the energy accounting for at least 4% of the total energy in the spectra at
this spanwise position are taken into consideration. In Fig. 7 in Ref. [11],
the authors used a similar method to identify different vortex cell regions.
In Fig. 9.6 (a-e), by connecting the lower end of the S-cell extension, a
black dashed curve is plotted to illustrate the variation of the S-cell regions.
Except for a very small decrease in Fig. 9.6(a), i.e. the D/d = 2 case, no
obvious change can be observed when D/d increases from 2 (Fig. 9.6(a))
to 2.8 (Fig. 9.6(e)). Generally, in the present low-Reynolds-number step
cylinder wakes, the flow behind the small cylinder is seldomly influenced by
the abruptly changed diameter at the step position when 2< D/d <3. This
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Table 9.2: Detailed information of the S-, N- and L-cell vortices in six
cases. In the 2nd, 3rd and 4th columns, Strouhal numbers of these three
dominating vortex cells (StS = fSD/U , StN = fND/U and StL = fLD/U)
are shown. They are obtained by means of a discrete Fourier transform
(DFT ) of continuous velocity data along a vertical sampling line with den-
sity 0.2D parallel to the z-axis at position (x/D, y/D)=(1.6, 0.4), over
at least 2000 time units (D/U). In the 5th column, ∆NL is calculated by
(StL − StN )/StL. θL is the oblique shedding angle of the L-cell vortices,
as shown in Fig. 9.5. In the 6th column, the empirical Strouhal number of
the small cylinder (St′s) is calculated as: St′S = (0.2663− 1.019/Red

0.5)× 2
from Norberg [25]. By means of the Williamson [26] correlation, StLθ =
(0.2731−1.1129/Re0.5

D +0.4821/ReD)×cos(θL), the empirical Strouhal num-
ber of the large cylinder (StLθ) is calculated and shown in the 8th column.
Note: the frequency resolution in this table is between 0.0004 U/D and
0.0005 U/D. A higher frequency resolution may lead to some minor dif-
ferences in the characteristic frequency in this table. These differences are
however small and do not affect our discussions and conclusions.

D/d StS StN StL ∆NL St′S θL StLθ

2.0 0.2895 0.1545 0.1780 13.2% 0.2972 16◦ 0.1776
2.2 0.3084 0.1516 0.1775 14.6% 0.3142 17◦ 0.1773
2.4 0.3221 0.1501 0.1771 15.2% 0.3297 17◦ 0.1773
2.6 0.3350 0.1491 0.1768 15.7% 0.3435 18◦ 0.1764
2.8 0.3444 0.1480 0.1765 16.1% 0.3558 18◦ 0.1764
3.0 no-shedding 0.1464 0.1761 16.9% - 18◦ 0.1764

agrees well with previous studies[1, 9, 17, 28].

9.3.2 Diameter ratio effects on the N- and L-cell vortices

9.3.2.1 Formation of the N-cell vortex

For the N- and L-cell vortices, the D/d effects are more complicated. Ta-
ble 9.2 and Fig. 9.5 show that both their shedding frequencies and extensions
are influenced. Before taking further steps, we would like to revisit a ba-
sic question, i.e. what causes the N-cell vortex. As mentioned in Sec. 9.1,
previous studies [1, 11] attributed the appearance of the N-cell vortex to a
combination of two 3D effects: downwash and increased base pressure. Both
these two 3D effects can increase the vortex formation region and cause the
vortex shedding frequency to decrease [4, 6, 8]. Instead of following the
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Figure 9.5: Instantaneous iso-surface of λ2=-0.05 at ReD=150: (a) the
D/d=2.0 case, (b) the D/d=2.4 case, and (c) the D/d=3.0 case. The
approximate extensions of the three vortex cells (S-, N- and L-cell vortices)
and the oblique shedding angle θL of the L-cell vortices are indicated. The S-
cell vortices in (a, b) are labeled by serial numbers. Note: the S-cell vortices
disappear in (c) due to Red=50 in the D/d=3.0 case. λ2=-0.05 is selected
to be consistent with the value of λ2 used in Refs. [15, 17]. The choice of
the λ2 value affects only the size of the vortex tubes but not their number.

Figure 9.6: Distributions of dimensionless vortex shedding frequency across
the span of the step cylinders at ReD = 150, D/d=2.0, 2.2, 2.4, 2.6, 2.8
and 3.0 cases are plotted in (a-f), respectively. By connecting the lower
end of the S- and N-cell regions, and the upper end of L-cells, the trend of
extensions of these three vortex cells are illustrated by a black, a blue and a
red dashed line, respectively.

previous studies to further discuss the N-cell vortex formation mechanism,
the relative importance of these two 3D effects is discussed in the following.

In Fig. 9.7(a) and (b), the distributions of time-averaged spanwise veloc-
ity −w/U and the time averaged base pressure coefficient Cpb are plotted,
respectively. By checking the lower end of N-cell extensions in Fig. 9.6 (blue



9.3. Diameter ratio effects on the shedding frequencies and the
extensions of vortex cells 151

dashed line), black circles are added to Fig. 9.7 to illustrate the end position
of the N-cell vortex region. Generally, the results agree well with previous
investigations [1, 4, 6, 7]. Clear spanwise velocity (downwash) −w/U and
increased base pressure Cpb can be observed in the N-cell region (the part
of the curves at the right side of the black circles). As D/d increases, this
becomes even more obvious. If −w/U is assumed to be the key factor that
causes the formation of the N-cell vortex, some paradoxical observations
arise. For example, by looking at the distribution of −w/U in the D/d=2.0
case, i.e. the solid blue line in Fig. 9.7(a), one can see that −w/U in the
L-cell region (z/D < −10) is even larger than that in a part of the N-cell
vortex area (−7 < z/D < −6). In other words, if we assume that it is the
strong −w/U that induces the formation of the N-cell vortex, the N-cell vor-
tex should extend to the area z/D < −10, instead of ending at z/D = −7
in the D/d=2.0 case. A similar paradox also appears in the D/d= 2.2, 2.4
and 2.6 cases. On the other hand, as shown in Fig. 9.7(b), Cpb in the N-cell
region is larger than that outside of the N-cell region for all six cases. In the
region z/D < −10, Cpb of the six cases approximately converges to a value
around -0.8. In the N-cell region, Cpb is obviously larger than this. In our
opinion, the appearance of the N-cell vortex can be the joint influence of
both the spanwise velocity −w/U and the increased base pressure Cpb (the
3D effects). The increased Cpb, however, plays a major role.

9.3.2.2 Spanwise extensions and shedding frequencies of the N-
and L-cell vortices

Table 9.3: Spanwise range of the S-N and N-L transition regions.

D/d S-N transition region N-L transition region

2.0 -0.8 ≤ z/D ≤ 0.2 -6.4 ≤ z/D ≤-3.0
2.2 -1.0 ≤ z/D ≤ 0 -7.0 ≤ z/D ≤ -3.4
2.4 -1.0 ≤ z/D ≤ 0 -7.6 ≤ z/D ≤ -3.8
2.6 -1.0 ≤ z/D ≤ 0 -8.0 ≤ z/D ≤ -4.0
2.8 -1.0 ≤ z/D ≤ 0.2 -8.6 ≤ z/D ≤ -4.6
3.0 - -9.2 ≤ z/D ≤ -5.4

In Fig. 9.6(a-e), one can clearly observe two transition regions along the
span of the step cylinder: (i) the S-N transition region where both the S-
and N-cell vortices may coexist, and (ii) the N-L transition region where
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Figure 9.7: (a) Time averaged spanwise velocity −w/U along a spanwise
sampling line at (x/D, y/D)=(1, 0) in the large cylinder region, (b) Time-
averaged base pressure coefficient Cpb measured by Cpb = (Pb−P0)/(0.5ρU2),
where P0 is the pressure at the inlet boundary, and Pb is the time-averaged
pressure along a sampling line at (x/D, y/D)=(0.53, 0) in the large cylin-
der region. (Note: Due to the way a curved surface is interpreted in IBM,
completely smooth surface pressure distributions are hardly obtained. Pb is
obtained at (x/D, y/D)=(0.53, 0), instead of at (x/D, y/D)=(0.5, 0). The
distance h = 0.03D is selected because it is slightly larger than the smallest
cell’s diagonal (

√
3 ∆ < h = 0.03D < 1.5

√
3 ∆, where ∆ = 0.015D), such

that we safely avoid wiggles possibly caused by cells directly cut by the cylin-
der surface, and still stay as close as possible to the surface.) The values of
−w/U and Cpb in the L-cell region (z/D=-16) are shown in the ninth and
tenth columns in Table 9.4.
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both the N- and L-cell vortices may coexist. The spanwise ranges of these
two transition regions are shown in Table 9.3. In agreement with previous
observations [1, 2, 11], the spanwise length of the S-N transition region is
significantly smaller than that of the N-L transition region. In Fig. 7 of
Ref. [11], Morton and Yarusevych showed that, both the S-N and the N-
L transition region keep constant, when ReD increases from 150 to 300 in
the D/d=2.0 case. In the present paper, we define the center position of
the transition region as its location. Table 9.3 shows that, at ReD=150,
the changed diameter ratios (2≤ D/d ≤3) have a limited effect on the S-
N transition region. The position of the S-N transition region shifts 0.2D
to the small cylinder side in the D/d=2.0 case, and the spanwise length
of the S-N transition region decreases from 1D to 0.8D in the D/d=2.8
case. Considering that the frequency analysis is based on data obtained
from a sampling line with density (0.2D) in spanwise (z) direction, these
fluctuations in S-N transition region can be neglected. On the other hand,
the variation in the N-L transition region is obvious. When D/d increases
from 2 to 3 (Fig. 9.6(a-f)), except for a tiny decrease in the D/d=3 case, the
spanwise length of the N-L transition region gradually increases from 3.4D
to 4D. Meanwhile, the position of the N-L transition region continuously
moves to the large cylinder side from z/D=-4.6D to -7.3D. As a result, at
the large cylinder side, the spanwise extension of the N-cell vortex increases,
whereas the spanwise extension of the L-cell vortex decreases. According to
discussions in Sec.9.3.2.1, this can be caused by the increased strength and
the increased impact area of the 3D effects (i.e. down wash and increased
base pressure), as shown in Fig. 9.7. As the N-cell region continuously
expands to the large cylinder side, shrinking of the L-cell region subsequently
appears.

The shedding frequencies of both N- and L-cell vortices are affected by
this joint influences of the spanwise velocity and the increased Cpb. As
mentioned in Sec. 9.1, both the increased Cpb and −w/U can reduce the
shedding frequency of the affected vortex. By combining information from
Table 9.2 and Fig. 9.7, it is clear that as the base pressure and the strength
of the spanwise velocity in the N-cell region increase from the D/d=2 to the
D/d=3.0 case, the corresponding StN continuous to decrease from 0.1545
to 0.1464, a drop of 5.2%. Meanwhile, StL only drops 1.1%, i.e. from
StL=0.1780 in the D/d=2.0 case to StL=0.1761 in the D/d=3.0 case. This
is because the N-cell region is closer to the step position than the L-cell
region is, which makes Cpb and −w/U in the N-cell region more sensitive
to the varying D/d. In Fig. 9.7 and Table 9.4, when D/d increases from
2 to 3, Cpb increases around 10% in the N-cell region but only 2% in the
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L-cell region. Similarly, −w/U in the N-cell region doubles from D/d=2 to
D/d=3.0 case. In the L-cell region, however, the increment is only 15%.
The different decline rates of StN and StL makes their difference (∆NL)
increases from 13.2% to 16.8%, as seen in the 5th column in Table 9.2.
We may speculate that ∆NL will continue to increase if D/d is further
increased. For fixed D and ReD, the maximum ∆NL can be obtained when
D/d tends to infinite, i.e. free end circular cylinder case. In support of this
speculation, Ayoub and Karamcheti [3] reported a 23% frequency drop from
the main cell to the end cell of a circular cylinder with one free end, which
is substantially larger than that in the present study.

9.4 Interactions between the N- and L-cell vor-
tices

9.4.1 Variation of phase difference between N- and L-cell
vortices

The gradual decrease of phase difference S (Eq. 9.5) is an important quantity
to characterize vortex dislocations, as discussed in Sec. 9.1. A positive
S value and a subsequent decreasing tendency in the time trace of the
phase difference were observed in the D/d=2 and 2.4 cases [16, 17]. We
hypothesized that an increasing tendency may also exist. This is confirmed
through more detailed parameter studies in the present paper.

By using the same phase-tracking method introduced by Tian et al. [17],
the time trace of Φf between corresponding N- and L-cell vortices in all six
D/d cases are illustrated in Fig. 9.8. We use green and red circles to indicate
Φf of the N-L vortex pairs whose dislocations eventually cause the NL-loop
1 and NL-loop2, respectively. The trends of these two kinds of circles are
illustrated by two solid lines with corresponding colors. Distinct decreasing
and increasing tendencies of Φf can be seen in the left and right parts of
Fig.9.8, respectively. Moreover, the relation between S and the correspond-
ing tendency of Φf are shown in Table 9.4, which makes it convincing to
conclude that the variation tendency of Φf is directly associated with the
sign of S. This relationship can be explained by some mathematical deriva-
tions. Let us assume that the number of N- and L-cell vortices are β and α
in one N-cell cycle.
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Figure 9.8: Time trace of Φf between corresponding N-cell and L-cell vor-
tices in several long N-cell cycles. Results at (a) D/d=2.0, (b) D/d=2.2,
(c) D/d=2.4, (d) D/d=2.6, (e) D/d=2.8 and (f) D/d=3.0. In (a), the
time t is set to t=t*-2378.1D/U, where t* is the actual time in the simula-
tion. In (b-f), t=t*-300D/U. The long N-cell cycles are marked by ’LNC’
with serial number. The circles represent the Φf between a N-cell vortex and
its counterpart L-cell vortex. The green, red, purple and pink circles indi-
cate the Φf which eventually cause formations of the NL-loop 1, NL-loop2,
NL-loop3 and NL-loop4, respectively. Detailed discussions about different
NL-loops are given in Sec. 9.4.3. In (b), the red and green circles in the
LNC1 and LNC2 are marked by ’R’ and ’G’ with its serial number. (All the
detailed data about the Φf are included in the Supplementary file.) By con-
sidering all the highest red points and all the lowest green points, the trigger
value and threshold value are marked by the blue and yellow horizontal lines,
respectively. The same method is also used in Fig. 13 in Tian et al. [17].
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The phase shift (∆Φf ) between the N-L vortex pairs with the same
serial number (e.g. k) in two randomly given neighboring N-cell cycles can
be measured:

∆Φf = Φf(i+1,k)
− Φf(i,k) (9.6)

where Φf(i+1,k)
and Φf(i,k) represent the phase difference of the k-th N-L

vortex pair in the (i + 1)th and i-th N-cell cycles, respectively. According
to Eq. 9.4, we can obtain:

Φf(i,k) = ϕNk+(i−1)β
− ϕLk+(i−1)α

(9.7)

and reformulate Eq. 9.6 as

∆Φf = (ϕNk+iβ − ϕLk+iα)− (ϕNk+(i−1)β
− ϕLk+(i−1)α

)

= (ϕNk+iβ − ϕNk+(i−1)β
)− (ϕLk+iα − ϕLk+(i−1)α

). (9.8)

Due to the N- and L-cell vortices are spanwise vortices with dominating
shedding frequencies, we can obtain:

ϕNk+iβ − ϕNk+(i−1)β
= β

1

2fN
, (9.9)

ϕLk+iα − ϕLk+(i−1)α
= α

1

2fL
. (9.10)

Based on Eqs. 9.5, 9.8, 9.9, and 9.10, the phase shift between the k-th N-L
vortex pair in neighboring N-cell cycles can be measured as

∆Φf = β
1

2fN
− α 1

2fL
= −S. (9.11)

One can easily see that positive S causes a decreasing Φf tendency, and
negative S causes an increasing Φf tendency. This is the first time such a
relationship is revealed.

By using the same method as described in Sec. 4 of Ref. [17], Fig. 9.9
illustrates the relations between Φf and formation positions of the corre-
sponding NL-loop 1 structures during a long N-cell cycle in all six cases.
No matter the tendency of Φf is increasing or decreasing, in a specific D/d
case, the smaller the Φf is, the more downstream the formation position of
the NL-loop 1 moves. This observation further supplements and validates
the relation between Φf and the formation position of the NL-loop 1[17], as
mentioned in Sec. 9.1.
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Table 9.4: Detailed information of vortex dislocations in six present D/d
cases. The number of N- and L-cell vortices in one N-cell cycle are β and
α, respectively. The variation rate of phase difference (S) is calculated by
Eq. 4. In the last two columns, −w/U and Cpb are obtained from Fig. 7 at
z/D=-16.

D/d β α
Symmetry or

Antisymmetry
SU/D

Tendency
of Φf

Threshold
value

Trigger
value

−w/U Cpb

2.0 13 15 Antisymmetry 0.064 Decrease 4.3 5.5 0.1422 -0.8018
2.2 12 14 Symmetry -0.153 Increase 4.2 5.5 0.1477 -0.7992
2.4 11 13 Antisymmetry 0.094 Decrease 4.1 5.4 0.1511 -0.7974
2.6 11 13 Antisymmetry -0.104 Increase 3.6 5.5 0.1531 -0.7958
2.8 10 12 Symmetry 0.229 Decrease 3.2 5.5 0.1563 -0.7932
3.0 10 12 Symmetry -0.059 Increase 3.0 5.5 0.1611 -0.7888

Figure 9.9: Relation between Φf and the formation position (x/D) of cor-
responding NL-loop 1 structures in a long N-cell cycle. Details of the for-
mation position of the NL-loop 1 in the D/d=2.2 and 2.4 cases is shown in
Fig. 13 and Fig. 14, respectively. Other cases are shown in Appendix 9.8.
Information of Φf is included in the Supplementary file.

9.4.2 D/d influences on the trigger and threshold values of
vortex dislocations

The trigger value and the threshold value, as first defined in Tian et al. [17],
are important quantities in a vortex dislocation process. They determines
when a vortex dislocation eventually takes place. When Φ is larger than the
trigger value, i.e. the corresponding Φf is larger than the threshold value,
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vortex dislocations will appear. In the present paper, based on investiga-
tions of the six D/d cases, additional features of the trigger value and the
threshold value are discovered.

In Fig. 9.8(a-f), the trigger value and the threshold value are obtained
and shown by the horizontal blue and yellow lines, respectively. Their spe-
cific values are listed in Table 9.4. One can see that, although D/d varies,
all the six cases approximately share the same trigger value 5.5 D/U . This
observation is consistent with McClure et al.[13], in which the authors found
that the vortex dislocation happens as vortex filaments approach 2π phase
misalignment. The authors assumed that when two neighboring vortex cells
simultaneously shed from the shear layer, they have zero phase difference.
However, when the slower shedding vortex sheds one shedding period be-
hind the faster shedding vortex cell, the phase difference between them is
2π. In the present paper, a 2π phase difference is equal to 1/(StL) ≈ 5.5.
In our opinion, this is because the corresponding N- and L-cell vortices are
adjacent spanwise vortices on the same side of the step cylinder. When Φf

of a N-L vortex pair exceeds one shedding period of the L-cell vortex, the
shear layer of the next L-cell vortex on the other side of the step cylinder
will cut down this L-cell vortex and induce a vortex dislocation happen.
Furthermore, the number of the N-cell vortex (β) in one N-cell cycle can be
measured as:

β = nint(2
1

StL
/(

1

StN
− 1

StL
) = nint(

2StN
(StL − StN )

) (9.12)

where 1/StL is the trigger value (the upper limit of Φf ), 1/StN − 1/StL is
the accumulating speed of the Φf and nint means rounding to the closest
integer. Essentially, the only difference between Eq. 9.12 and Eq. 9.1 from
Williamson’s work [4] is the factor ’2’, which is included here to emphasise
the importance of counting vortices from the −Y and +Y side indepen-
dently. Otherwise, it is easy to overlook the antisymmetric vortex interac-
tions. For the same reason, instead of Eq. 9.2, we propose that the number
of the L-cell (α) vortex can be measured as

α = β + 2. (9.13)

Detailed information will be discussed in Sec. 9.4.4.
Different from the constant trigger value, the threshold value contin-

ues to decrease as D/d increases from 2.0 to 3.0. Eq. 9.3 shows that, for
a fixed trigger value, the smaller the Φf is, the higher Φc is needed. To
reach the same trigger value, the decreasing tendency of the threshold value
should be caused by the increasing capacity of Φc. In other words, as D/d
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increases, if the maximum amount of Φc also increases, the vortex disloca-
tion can be triggered with a smaller Φf . Further investigations prove this
assumption. Owing to the spatial inhomogeneity of the convective velocity
and the complex vortex interactions, accurately evaluating Φc is difficult.
However, by comparing the distributions of the time-averaged streamwise
velocity in different vortex cells regions, the capacity of Φc in different cases
can be compared. In Fig. 9.10, the distributions of time-averaged stream-
wise velocity (u/U) in all six cases are plotted. First, in agreement with the
conclusion of Tian et al. [17], in the near wake (x/D = 2), clear differences
between u in the N-cell region (−5 < z/D < 0) and u in the L-cell region
(z/D < −10) can be observed for all six cases. These differences are sub-
stantially reduced when the sampling line moves downstream from x/D=2
to 5. Furthermore, the larger D/d is, the larger difference in u between the
N- and L-cell regions can be seen. For example, at x/D=2, the maximum
difference between u in the N- and L-cell region is 0.33U in the D/d=2.0
case, but reaches 0.54U in the D/d = 3 case. This observation clearly indi-
cates that, comparing to the smaller D/d case, a larger amount of Φc can
be accumulated in the larger D/d case.

Figure 9.10: Distributions of the time-averaged streamwise velocity (u/U)
along three vertical sampling lines parallel to the z-axis in the center plane
(y/D=0) at three positions x/D=2, 3 and 5 in the six D/d cases.
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9.4.3 The number of the NL-loop structures

According to Tian et al.[15, 17], two NL-loop structures, i.e. NL-loop 1 and
NL-loop2, one NN-loop and one LL-loop were captured in one N-cell cycle
in the D/d=2.0 and 2.4 cases. In the present paper, more features of the
number of the NL-loop structures are investigated.

In Fig.9.11(a-e), detailed visualizations of vortex connections and dis-
locations in the 1st N-cell cycle in the D/d = 2.6 case are shown. A cor-
responding topology sketch is plotted in Fig. 9.11(f). The short and long
vertical straight lines in the figure represent the N- and L-cell vortices, re-
spectively. Between them, the curved solid lines connect the N-cell vortex
and its counterpart L-cell vortex. The dashed curves indicate broken con-
nections that were not able to persist due to vortex dislocations. The three
NL-loops, i.e. the NL-loop 1 N4-L’5, the NL-loop2 N’5-L6 and the NL-loop3
N6-L’7, are marked in green, red and purple, respectively, in Fig. 9.11(b),
(c) and (d). Compared to the D/d = 2 case[17], as shown in Fig. 6 in Ref.
[17], a new NL-loop structure (the purple curve in Fig. 9.11(d)) forms after
the NL-loop2 (the red curve) in the D/d = 2.6 case in Fig. 9.11. Based
on the order of occurrences, the new NL-loop is identified as the NL-loop3,
which is believed to be caused by the decreasing threshold value. If we
hypothesize that the threshold value in the D/d=2.6 case was the same as
that in the D/d=2.0 case, the yellow line will move to the black dashed line
in Fig. 9.8(d). This will cause all green circles to become lower than the
threshold value. In other words, based on this hypothetical condition, the
number of NL-loops will return to 2 in the D/d=2.6 case, i.e. there will be
no vortex dislocation between N6 and L6.

When D/d continues to increase from 2.6 to 3.0, the threshold value
decreases from 3.9 to 3.6. Meanwhile, four NL-loops appear in one N-cell
cycle in the D/d=2.8 and 3.0 cases, as illustrated in Fig. 9.12. In general,
owing to the decreasing trend in the threshold value, the number of NL-
loops in one N-cell cycle is expected to continuously increase in the higher
D/d cases. For a fixed ReD, the maximum number of NL-loops should
appear in the free end cylinder case, i.e. when D/d becomes infinite.

9.4.4 Symmetric and antisymmetric vortex interactions

Antisymmetric vortex interactions were reported and discussed in the wake
behind the single step cylinders with D/d=2.0 and 2.4 by Tian et al.[15, 17].
In the present manuscript, by investigating four more cases D/d=2.2, 2.6,
2.8 and 3, an additional symmetric vortex interaction is observed. As exam-
ples, the NL-loop 1 structures in the neighboring N-cell cycles are plotted
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Figure 9.11: (a-e) Iso-surface of λ2=-0.05 showing developments of vor-
tex structures on the −Y side in the D/d = 2.6 case. Solid and dashed
curves indicate the loop structures on the −Y and +Y sides, respectively.
(f) Schematic topology illustrating the 1st N-cell cycle in the D/d=2.6 case.
The time t is t=t*-300D/U, where t* is the actual time in the simulation.

in the D/d=2.4 and 2.6 cases in Fig. 9.13 and 9.14, respectively. The NL-
loop 1 structures continuously appear at the -Y side of the step cylinder
in Fig. 9.13(a-d). We call this symmetric vortex interaction, in contrast to
the antisymmetric vortex interaction shown in Fig. 9.14. From the infor-
mation in Table 9.4, we learn that, in a certain D/d case, whether vortex
dislocations are symmetric or antisymmetric is determined by the parity
of the number of N- and L-cell vortices, i.e. β and α, in one N-cell cycle.
When β and α are even numbers, symmetric vortex interactions will ap-
pear. Oppositely, when β and α are odd numbers, antisymmetric vortex
interactions will happen. This is because both the N- and L-cell vortices
are shed alternatingly from the +Y and -Y side of the step cylinder. When
there are an even number of N- and L-cell vortices between the correspond-
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Figure 9.12: (a-e) Iso-surface of λ2=-0.05 showing developments of vortex
structures on the −Y side in the D/d=3.0 case. Solid and dashed curves
indicate the loop structures on the −Y and +Y sides, respectively. (f)
Schematic topology illustrating the 1st N-cell cycle in the D/d=3.0 case.
The time t is t=t*-300D/U, where t* is the actual time in the simulation.

ing NL-loop 1 structures in the neighboring N-cell cycles, these NL-loop 1
structures appear at the same side of the step cylinder, i.e. symmetric vor-
tex interactions. Otherwise, conventional antisymmetric vortex interactions
appear.

Long time observations reveal that not only the decreasing tendency of
Φf , but also the increasing tendency of Φf can occasionally interrupt the
continuous symmetric and antisymmetric vortex interactions. As described
in Sec. 9.1, when corresponding Φf continues to decrease in subsequent N-
cell cycles, one additional N-L vortex pair will be needed in a certain N-cell
cycle to make Φf sufficiently large to induce the formation of the NL-loop
structure. It is this one additional N-L vortex pair that changes the parity
of the number of N- and L-cell vortices, and further causes the interruption
of the repetitive symmetric or antisymmetric vortex interactions. For the
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Figure 9.13: From (a) to (e), the just-formed NL-loop 1 structures in the
1st to 5th N-cell cycles are plotted from both the -Y and +Y side in the
D/d=2.2 case. The red line marks the formation position of the NL-loop 1.
The time t is set to t = t∗ − 300D/U .

Figure 9.14: From (a) to (g), the just-formed NL-loop 1 structures in the
2nd to 8th N-cell cycles are plotted from both the -Y and +Y side in the
D/d=2.4 case. The red line marks the formation position of the NL-loop 1.
The time t is set to t = t∗ − 300D/U .

present cases with the discovered increasing tendency of Φf , the interruption
works in a different way.

In Fig. 9.8(b), (d) and (f), black dotted lines illustrate the increasing
tendency of Φf of the N-L vortex pair which is just before the N-L vortex
pair whose dislocation finally causes the formation of the NL-loop 1. In the
D/d = 2 case, along the black dotted line in Fig. 9.8, Φf increases from B1 to
B5, and eventually exceeds the threshold value in the 5th N-cell cycle (B5).
Under this circumstance, by including the contribution of Φc, Φ is large
enough to induce the formation of the NL-loop 1 (N’55-L64) in Fig. 9.13(e).
Between neighboring NL-loop 1 structures in Fig. 9.13(a-d), there are 12 N-
and 14 L-cell vortices. However, between Fig. 9.8(d) and (e), there are only
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11 N- and 13 L-cell vortices in the 5th N-cell cycle, i.e. one N-L vortex pair
less than in previous N-cell cycles. It is this one less N-L vortex pair that
causes the NL-loop 1 structure (N’55-L64) to form at the +Y side of the
step cylinder, and interrupts the continuous symmetric vortex interactions.
Similar situations are also observed in the D/d = 2.6 and 3.0 cases, which
are included in Appendix 9.9. In general, when Φf in advance becomes
smaller or larger than the threshold value, one more or one less N-L vortex
pair will change the parity of the number of N- or L-cell vortices in one N-cell
cycle, and further interrupts the continuously symmetric or antisymmetric
vortex interactions. There relationships, as far as the authors know, is the
first time to be revealed, could help to understand the vortex dynamics in
a vortex dislocation process more clearly.

9.5 Likelihood analysis

It’s striking to see from Table 9.4 that, among the six cases we investigated
here, three cases have the increasing tendency of Φf , and the other three
have the decreasing tendency. Moreover, three cases show symmetric vortex
interactions, while the other three show antisymmetric vortex interactions.
It is hard to believe these equal occurrences are all by coincidence. There-
fore, we present a likelihood analysis here. Based on StN and StL, we can
obtain

EN = 2StN/(StL − StN ), (9.14)

EL = 2StL/(StL − StN ) (9.15)

where EN and EL are exact values compared to the rounding value α in
Eq. 9.12. The differences (δ, δN and δL) between the exact values (EN and
EL) and the rounding values (β and α) can be expressed as follows:

δN = EN − β, (9.16)

δL = EL − α. (9.17)

According to Eq. 9.12, and 9.13, one can easily obtain:

δ = δN = δL. (9.18)

Based on Eq. 9.16, 9.17, and 9.18, the original Eq. 9.5 can be rewritten:

SU

D
= α

1

2StL
− β 1

2StN
= (EL − δL)

1

2StL
− (EN − δN )

1

2StN
=

δ(
1

2StN
− 1

2StL
) (9.19)
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Owing to the fact that the N-cell vortices shed slower than the L-cell vor-
tices, i.e. StN is always smaller than StL, and the value of both U and D are
positive, the sign of the S value in Eq. 9.19 is determined by the sign of δ. In
other words, when EN and EL are rounded to smaller β and α, respectively,
e.g. in the D/d=2.0, 2.4 and 2.8 cases, the corresponding δ value and the S
value become positive. Consequently, a decreasing tendency of Φf appears,
e.g. as shown in Fig. 9.8(a), (c) and (e). Otherwise, a negative δ and S lead
to an increasing tendency of Φf . Meanwhile, based on the parity of β and
α, the characteristic of vortex interactions (symmetry or antisymmetry) can
be deduced. Relations between EN and features of vortex dislocations are
shown in Table 9.5.

Table 9.5: Relation between EN and characteristics of vortex dislocations.
In the first column n represents natural (n =1, 2, 3, ...).

EN
Tendency of

Φf

Symmetry or
Antisymmetry

2n-1< EN <2n-0.5 Decrease Antisymmetry
2n-0.5< EN <2n Increase Symmetry
2n< EN <2n+0.5 Decrease Symmetry

2n+0.5< EN <2n+1 Increase Antisymmetry

Table 9.6: Detailed information of vortex dislocations in other four D/d
cases, i.e. D/d=2.1, 2.3, 2.5 and 2.7.

D/d StN StL β α
Symmetry or

Antisymmetry
SU/D

Tendency
of Φf

2.1 0.1529 0.1779 12 14 Symmetry 0.107 Decrease
2.3 0.1509 0.1775 11 13 Antisymmetry 0.172 Decrease
2.5 0.1496 0.1777 11 13 Antisymmetry -0.042 Increase
2.7 0.1485 0.1767 11 13 Antisymmetry -0.252 Increase

In Fig. 9.15(a), EN in the six cases are shown as six black circles. By
applying a 5th order interpolation polynomial in curve fitting to these six
circles, the black curve in Fig. 9.15(a) is obtained to describe the relation
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Figure 9.15: (a) EN in the D/d=2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 cases are
marked by black circles. By applying a 5th order interpolation polynomial
in curve fitting on these six circles, the black curve (EN = −5.706(D/d)5 +
77.805(D/d)4−426.295(D/d)3+1171.735(D/d)2−1615.737(D/d)+905.749)
is obtained to described the relation between EN and D/d. Moreover, EN in
the D/d=2.1, 2.3, 2.5 and 2.7 cases are plotted as red circles to justify the
curve fitting function. (b) Following the relation between EN and character-
istics of vortex dislocations in Table 9.5, the black, white, red and green bars
are plotted to show the cases with decreasing Φf tendency, the cases with
increasing Φf tendency, the cases with antisymmetric vortex interactions
and the cases with symmetric vortex interactions, respectively.

between EN and D/d. The justification of this curve is checked by simulat-
ing four more cases, i.e. the D/d=2.1, 2.3, 2.5 and 2.7 cases. After following
the same simulation and analysis processes as described in Sec. 9.4, informa-
tion of these four cases are shown in Table 9.6. More detailed information
is included in Appendix 9.9. By using Eq. 9.14, four red circles are plotted
in Fig. 9.15(a), which fit the black curve very well. This indicates a reason-
able curve fitting. Based on this curve and Table 9.5, Fig. 9.15(b) can be
sketched to show the different characteristics for all cases between D/d=2
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and 3. One can easily see that the total area of the red bar is larger than
that of the green bar. On the other hand, the total areas of the black and
white bars are almost the same. Therefore, we can anticipate that, when
D/d is randomly chosen between 2 and 3, the likelihood of increasing Φf

and decreasing Φf tendencies, are almost the same, whereas the likelihood
of antisymmetric vortex interactions is larger than that of symmetric vortex
interactions. This anticipation agrees well with our observations shown in
Table 9.6. In these four additional cases, the increasing Φf tendency ap-
pears in two cases, i.e. the D/d=2.5 and 2.7 cases. The other two cases show
decreasing Φf tendency. However, only the D/d = 2.1 case shows the sym-
metric vortex interactions. Antisymmetric vortex interactions are observed
in the other three cases. The present result indicates that the characteris-
tics of the vortex dislocations are determined by the shedding frequencies
of the N- and L-cell vortices. Meanwhile, as described in Sec.9.3.2, by af-
fecting the 3D effects (downwash and increased base pressure), the changed
diameter ratio influences the shedding frequencies of the N- and L-cell vor-
tices and the corresponding EN , which in turn affects the characteristics of
vortex dislocations. The likelihood of antisymmetric or symmetric vortex
interactions, and increasing or decreasing Φf tendencies are determined by
the relation between EN and D/d.

9.6 Conclusion

In the present paper, we use DNS to investigate vortex dynamics in the near
wake behind single step cylinders with 2 ≤ D/d ≤ 3 at ReD=150. Our re-
sults are consistent with previous studies [1, 11, 15, 17], with respect to the
mainly three dominating spanwise vortices (i.e. S-, N- and L-cell vortices)
and some interesting characteristics of vortex dislocations (i.e. two phase-
difference accumulation mechanisms (Φ = Φf + Φc), the NL-loop structures
appearing in the dislocation process, the trigger and threshold value of vor-
tex dislocations, antisymmetric vortex interactions between neighboring N-
cell cycles and its interruptions). In addition, the numerical results provide
a deeper and more complete information on step cylinder wakes.

First, by a fast Fourier transform (FFT) of time series of the streamwise
velocity u, shedding frequencies and extensions of three spanwise vortex
cells are investigated. As D/d increases from 2 to 3, the extension of the
S-cell vortex remain almost constant. The shedding frequency of the S-cell
vortex (StS) is simply dependent on Red. Meanwhile, an expansion of the
N-cell region and a shrinking of the L-cell region are observed. For the first
time, we report that, as D/d increases, the N-L transition region continues
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to move towards the large cylinder part, and its length gradually increases.
Since the N-cell region being closer to the step position than the L-cell
region, when D/d increases, the shedding frequency of the N-cell vortex
(StN ) decreases faster than the shedding frequency of the L-cell vortex
(StL). The oblique shedding angle (θL) of the L-cell vortex remains almost
unaffected. In the large cylinder part, the strength of the induced downwash
flow (−w/U) and the base pressure become larger, when D/d increases. By
carefully checking the distributions of −w/U and base pressure coefficient
(Cpb), we conclude that the formation of N-cell vortices are caused by the
joint influence of both increased −w/U and increased Cpb, but the latter
one plays a major role.

Moreover, based on long-time observations on iso-surfaces of λ2, we
found that, in the D/d=2.2, 2.8 and 3.0 cases, the NL-loop 1 structure
continues to appear at either the +Y or -Y side of the step cylinder. In
comparison with the already known antisymmetric phenomenon [15, 17],
we call this symmetric vortex interactions. By analyzing the number of N-
and L-cell vortices, i.e. β and α, in one N-cell cycle in different D/d cases,
we found that it is the parity of β and α that determines whether symmetric
or antisymmetric vortex interactions appears in a certain D/d case.

By using a reliable phase tracking method, we monitored the time trace
of Φf in the D/d=2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 cases. An increasing ten-
dency of Φf is first captured in D/d=2.2, 2.6 and 3.0 cases. In these cases,
the formation position of NL-loop 1 structures is observed to continuously
move upstream as Φf increases. Similar as the decreasing tendency of Φf

reported in Ref. [17], the discovered increasing Φf tendency also can cause
the interruption of continuous antisymmetric or symmetric vortex interac-
tion phenomena, but in a different way. According to the time trace of Φf ,
the trigger value of vortex dislocations is found to remain constant when
D/d varies. The threshold value of vortex dislocations decreases as D/d
increases, which further causes the number of NL-loop structures in one N-
cell cycle to increase from 2 in the D/d=2.0 case to 4 in the D/d=3.0 case.
Based on the application of a constant trigger value, we propose Eq. 9.12
and 9.13 to measure β and α. Comparing with the conventional Eq. 9.1 and
9.2, a new factor ‘2’ is introduced to emphasize the importance of counting
vortices from the -Y and +Y side independently. Otherwise, the antisym-
metric phenomenon is easy overlooked. Furthermore, a universal rule of
anticipating the qualitative features of vortex dislocations are summarized
in Table 9.5.

Finally, we analyze the likelihood of appearance of antisymmetric or
symmetric vortex interactions, and the likelihood of increasing or decreas-
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ing phase differences. Based on the investigations of D/d=2.0, 2.2, 2.4, 2.6,
2.8 and 3.0 cases, we predicted that, when 2≤ D/d ≤3, the likelihood of
increasing Φf and decreasing Φf are almost the same, but the antisymmet-
ric phenomenon is more likely to appear than the symmetric phenomenon.
Further observations in D/d=2.1, 2.3, 2.5 and 2.7 cases prove our anticipa-
tion.

In summary, by simulating altogether ten differentD/d cases, the present
paper provides more in-depth and complete understanding of the vortex dis-
location phenomenon. Some new observations, e.g. an increasing tendency
of Φf , the symmetric features and increased number of NL-loop structures
in the vortex dislocation process, help to outline a better picture and lead to
the identification of several important relationships. These include the rela-
tionship between α (β) and (anti-) symmetry, and the relationship between
tendency of Φf and S. Moreover, the method and formulas we used to ana-
lyze the likelihood of appearance of different features of vortex dislocations
may also be applicable in other wake flows.

Supplementary Material

By using the phase tracking method described in Ref.[17], the phase infor-
mation of N- and L-cell vortices and their phase differences in the D/d=2.0,
2.2, 2.4, 2.6, 2.8, and 3.0 cases are shown in the supplementary file 1, 5, 2, 6,
7, and 8, respectively. The N-L vortex pair whose phase difference induces
vortex dislocations is highlighted in gray.
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The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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9.7 Appendix A: Streamwise velocity spectra in
the D/d=2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 cases

In this appendix, all velocity spectra are calculated by a fast Fourier trans-
form (FFT) of at least 2000D/U continuous streamwise velocity (u) data
along a vertical sampling line parallel to the z-axis with density 0.2D posi-
tioned at (x/D, y/D)=(1.6, 0.4).

Figure 9.16: In the D/d=2.0 case, (a) a 3D version of velocity spectra
along a spanwise line behind the step cylinder at (x/D, y/D)=(1.6, 0.4),
where the shedding frequencies of the three main vortex cells (S-cell: StS =
fSD/U , N-cell: StN = fND/U and L-cell: StL = fLD/U) are marked.
(b) The projection of the panel (a) on the top-down view. Only points with
Euu/(Total Euu) ≥ 4 are shown.

Figure 9.17: (a, b) are same as Fig. 9.16(a, b), but in a different case
D/d=2.2.
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Figure 9.18: (a, b) are same as Fig. 9.16(a, b), but in a different case
D/d=2.4.

Figure 9.19: (a, b) are same as Fig. 9.16(a, b), but in a different case
D/d=2.6.

Figure 9.20: (a, b) are same as Fig. 9.16(a, b), but in a different case
D/d=2.8.
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Figure 9.21: (a, b) are same as Fig. 9.16(a, b), but in a different case
D/d=3.0.

9.8 Appendix B: Detailed information of vortex
dislocations in the D/d=2.0, 2.6, 2.8 and 3.0
cases

In this appendix, the just-formed NL-loop 1 structures in the first long
N-cell cycle are plotted in the D/d=2.0, 2.6, 2.8 and 3.0 cases from both
the −Y and +Y sides (in Figs. 9.22, 9.23, 9.24, and 9.8, respectively).
The red line marks the formation position of NL-loop 1. As discussed in
Sec. 9.4.4, when the NL-loop 1 structure appears alternately at the +Y
and −Y sides between subsequent N-cell cycles, the antisymmetric vortex
interactions appear. On the other hand, when the NL-loop 1 structure
continuously appears at the +Y or −Y side in the neighboring N-cell cycles,
the symmetric vortex interactions appear.
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Figure 9.22: From (a) to (g), isosurfaces of λ2=-0.05 showing formation
position and the side of the NL-loop 1 structure in the 1st long N-cell cycle
in the D/d=2.0 case. The antisymmetric phenomenon appears. The red
circle in panel (f) highlights an irregular absence of the NL-loop 1 structure,
which was discussed in Ref. [17]. The time t is set to t = t∗ − 2378.1D/U .

Figure 9.23: From (a) to (c),
isosurfaces of λ2=-0.05 show-
ing formation position and the
side of the NL-loop 1 structure
in the 1st long N-cell cycle in
the D/d=2.6 case. The an-
tisymmetric phenomenon ap-
pears.The time t is set to t =
t∗ − 300D/U .

Figure 9.24: From (a) to (c),
isosurface of λ2=-0.05 show-
ing formation position and the
side of the NL-loop 1 structure
in the 1st long N-cell cycle in
the D/d=2.8 case. The sym-
metric phenomenon appears.
The time t is set to t = t∗ −
300D/U .
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Figure 9.25: From (a) to (j), isosurface of λ2=-0.05 showing formation
position and the side of the NL-loop 1 structure in the 1st long N-cell cycle
in the D/d=3.0 case. The symmetric phenomenon appears. The time t is
set to t = t∗ − 300D/U .
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9.9 Appendix C: Detailed information in D/d=2.1,
2.3, 2.5 and 2.7 cases

This appendix includes four figures, i.e., Fig. 9.26-9.29. All velocity spectra
are calculated by a fast Fourier transform (FFT) of at least 2000D/U con-
tinuous streamwise velocity (u) data along a vertical sampling line parallel
to the z-axis with density 0.2D positioned at (x/D, y/D)=(1.6, 0.4). The
just-formed NL-loop 1 structures in the first long N-cell cycle are plotted
in the D/d=2.1, 2.3, 2.5 and 2.7 cases from both the −Y and +Y sides.
The red line marks the formation position of NL-loop 1. As discussed in
Sec. 9.4.4, when the NL-loop 1 structure appears alternately at the +Y
and −Y sides between subsequent N-cell cycles, the antisymmetric vortex
interactions appear. On the other hand, when the NL-loop 1 structure
continuously appears at the +Y or −Y side in the neighboring N-cell cy-
cles, the symmetric vortex interactions appear. Based on Sec. 9.4.1, by
observing the tendency of formation position of NL- loop 1 structures, the
variation of Φf can be obtained. When the formation position of NL-loop
1 structures continuously moves downstream or upstream in a long N-cell
cycles, the corresponding decreasing or increasing tendency of Φf appears,
respectively.
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Figure 9.26: In the D/d=2.1 case, (a) a 3D velocity spectra along a spanwise
line behind the step cylinder at (x/D, y/D)=(1.6, 0.4), where the shedding
frequencies of the three main vortex cells (S-cell: StS = fSD/U , N-cell:
StN = fND/U and L-cell: StL = fLD/U) are marked. From (b) to (f),
isosurface of λ2=-0.05 showing formation position and the side of the NL-
loop 1 structure in the 1st long N-cell cycle in the D/d=2.1 case. The
symmetric phenomenon and decreasing tendency of Φf appear. The time t
is set to t = t∗ − 300D/U .
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Figure 9.27: (a) is same as Fig. 9.26(a), but in a different case D/d=2.3.
From (b) to (e), isosurface of λ2=-0.05 showing formation position and the
side of the NL-loop 1 structure in the 1st long N-cell cycle in the D/d=2.3
case. The antisymmetric phenomenon and decreasing tendency of Φf ap-
pear. The time t is set to t = t∗ − 300D/U .

𝑆𝑡ௌ = 0.3287

𝑆𝑡௅= 0.1770
𝑆𝑡ே = 0.1496

100

80

60

40

20

0

𝐸
௨
௨

/t
ot

al
 𝐸
௨
௨

0
-5

-10
-15

(a)
𝑓𝐷/𝑈

0 0.1 0.2 0.3 0.4𝑧/D

Figure 9.28: (a) is same as Fig. 9.26(a), but in a different case D/d=2.5.
From (b) to (i), isosurface of λ2=-0.05 showing formation position and the
side of the NL-loop 1 structure in the 1st long N-cell cycle in the D/d=2.5
case. The antisymmetric phenomenon and increasing tendency of Φf ap-
pear. The time t is set to t = t∗ − 300D/U .
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Figure 9.29: (a) is same as Fig. 9.26(a), but in a different case D/d=2.7.
From (b) to (d), isosurface of λ2=-0.05 showing formation position and the
side of the NL-loop 1 structure in the 1st long N-cell cycle in the D/d=2.7
case. The antisymmetric phenomenon and increasing tendency of Φf ap-
pear. The time t is set to t = t∗ − 300D/U .



References 179

References

[1] Dunn W, Tavoularis S. Experimental studies of vortices shed from
cylinders with a step-change in diameter. J. Fluid Mech. 2006; 555:409–
437.

[2] Lewis CG, Gharib M. An exploration of the wake three dimensionalities
caused by a local discontinuity in cylinder diameter. Phys. Fluids A:
Fluid Dynamics 1992; 4(1):104–117.

[3] Ayoub A, Karamcheti K. An experiment on the flow past a finite cir-
cular cylinder at high subcritical and supercritical Reynolds numbers.
J. Fluid Mech. 1982; 118:1–26.

[4] Williamson CHK. Oblique and parallel modes of vortex shedding in the
wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech.
1989; 206:579–627.

[5] Jiang F, Pettersen B, Andersson HI, Kim J, Kim S. Wake behind a
concave curved cylinder. Phys. Rev. Fluids 2018; 3(9):094 804.

[6] Zdravkovich MM, Brand VP, Mathew G, Weston A. Flow past short
circular cylinders with two free ends. J. Fluid Mech. 1989; 203:557–575.

[7] Morton C, Yarusevych S, Carvajal-Mariscal I. Study of flow over a step
cylinder. Appl. Mech. Mater. 2009; 15:9–14.

[8] Bearman PW. Investigation of the flow behind a two-dimensional model
with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech.
1965; 21(2):241–255.

[9] Norberg C. An experimental study of the flow around cylinders joined
with a step in diameter. Proceedings of the 11th Australasian Fluid
Mechanics Conference, Hobart, Australia, vol. 1, 1992; 507–510.

[10] Vallès B, Andersson HI, Jenssen CB. Direct-mode interactions in the
wake behind a stepped cylinder. Phys. Fluids 2002; 14(4):1548–1551.

[11] Morton C, Yarusevych S. Vortex shedding in the wake of a step cylin-
der. Phys. Fluids 2010; 22(8):083 602.

[12] Morton C, Yarusevych S. Vortex dynamics in the turbulent wake of a
single step cylinder. ASME J. Fluids Eng. 2014; 136(031204).



180 180

[13] McClure J, Morton C, Yarusevych S. Flow development and structural
loading on dual step cylinders in laminar shedding regime. Phys. Fluids
2015; 27(6):063 602.

[14] Tian C, Jiang F, Pettersen B, Andersson HI. Numerical investigation of
flow around a step cylinder. Proceedings of 9th National Conference on
Computational Mechanics (CIMNE), Trondheim, Norway, May 11-12,
2017; 369–384.

[15] Tian C, Jiang F, Pettersen B, Andersson HI. Antisymmetric vortex
interactions in the wake behind a step cylinder. Phys. Fluids 2017;
29(10):101 704.

[16] Tian C, Jiang F, Pettersen B, HI Andersson. The long periodicity of
vortex dislocations in the wake behind a step cylinder. Proceedings
of 10th National Conference on Computational Mechanics (CIMNE),
Trondheim, Norway, June 3-4, 2019; 81–99.

[17] Tian C, Jiang F, Pettersen B, Andersson HI. Vortex dislocation mech-
anisms in the near wake of a step cylinder. J. Fluid Mech. 2020; 891.

[18] Ji C, Yang X, Yu Y, Cui Y, Srinil N. Numerical simulations of flows
around a dual step cylinder with different diameter ratios at low
Reynolds number. Eur. J. Mech. B/Fluids 2020; 79:332–344.

[19] Jeong J, Hussain F. On the identification of a vortex. J. Fluid Mech.
1995; 285:69–94.

[20] Manhart M. A zonal grid algorithm for DNS of turbulent boundary
layers. Computers & Fluids 2004; 33(3):435–461.

[21] Williamson JH. Low-storage Runge-Kutta schemes. J. Comput. Phys.
1980; 35:48–56.

[22] Stone HL. Iterative solution of implicit approximations of multidi-
mensional partial differential equations. SIAM J. Numer. Anal. 1968;
5:530–558.

[23] Jiang F, Andersson HI, Gallardo JP, Okulov L. On the peculiar struc-
ture of a helical wake vortex behind an inclined prolate spheroid. J.
Fluid Mech. 2016; 801:1–12.

[24] Peller N, Duc AL, Tremblay F, Manhart M. High-order stable inter-
polations for immersed boundary methods. Int. J. Numer. Meth. Fl.
2006; 52:1175–1193.



References 181

[25] Norberg C. Fluctuating lift on a circular cylinder: review and new
measurements. J. Fluid Struct. 2003; 17(1):57–96.

[26] Williamson CHK, Brown GL. A series in 1/
√
Re to represent the

Strouhal–Reynolds number relationship of the cylinder wake. J. Fluid
Struct. 1998; 12(8):1073–1085.

[27] Zdravkovich MM. Flow around circular cylinders: Volume 1: Funda-
mentals. Oxford university press, 1997.

[28] Yagita M, Kojima Y, Matsuzaki K. On vortex shedding from circular
cylinder with step. Bulletin of JSME 1984; 27(225):426–431.



182 182



Chapter 10

Article 6: Diameter ratio
effects in the wake flow of
single step cylinders

Cai Tian1, Fengjian Jiang2, Bjørnar Pettersen1, Helge I. Andersson3

Abstract

The vortex system around the step surface of a step cylinder with diam-
eter ratio D/d = 2 at Reynolds number (ReD) 3900 was investigated by
directly solving the three-dimensional Navier-Stokes equations. Formation
mechanisms and vortex dynamics of the complex vortex system were stud-
ied by performing a detailed investigation of both the time-averaged and
instantaneous flow fields. For the time-averaged flow, including the known
junction and edge vortices, in total, four horseshoe vortices were observed
to form above the step surface in front of the upper small cylinder. The
crossflow width of four horseshoe vortices varies differently as they convect
downstream. Moreover, we captured a pair of base vortices and a back-
side horizontal vortex in the rear part of the step surface behind the small
cylinder. For the instantaneous flow, hairpin vortices were found to form
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between the legs of two counter-rotating horseshoe vortices located on the
same side of the step cylinder. Furthermore, in the small step cylinder wake,
Kelvin-Helmholtz vortices were observed to shed at an unexpectedly high
shedding frequency.

10.1 Introduction

The flow around a uniform circular cylinder has been a popular research
topic for several decades because of its simple geometry and vast flow phe-
nomena in its wakes. As the Reynolds number ReD = UD/ν varies (D
represents the diameter of the circular cylinder, U and ν are the free-stream
velocity and the kinematic viscosity, respectively), the cylinder wake flow
exhibits distinctly different behaviors[1, 2]. When ReD is less than 5, there
is no flow separation around the cylinder. As ReD increases to the range
5 < ReD < 40, the flow separates on the cylinder wall to form a fixed
pair of vortices behind the cylinder, and there is no vortex shedding. For
40 < ReD < 180, periodic two-dimensional vortex shedding occurs. When
ReD exceeds 180, the wake becomes three-dimensional. Williamson [1]
reported the well-known mode A and mode B at ReD = 184 − 194 and
ReD = 200− 250, respectively. When the Reynolds number becomes larger
than ReD ≈ 300, the cylinder wake flow becomes completely turbulent.
While the boundary layer over the cylinder surface stays laminar in a wide
Reynolds number regime 300 < ReD < 2× 105, which is known as the sub-
critical flow regime[2]. In this regime, the particular Reynolds number 3900
is a benchmark, at which there are many accurate numerical simulations
[3, 4, 5, 6] and experimental studies [7, 8].

Besides the circular cylinder, due to the extensive applications in marine
engineering, e.g., the underwater hull of SPAR-buoy floating offshore wind
turbines [9] and the steel lazy wave risers [10, 11], the flow around the step
cylinder illustrated in Fig. 10.1(a) has also attracted attention in the recent
years.

In 1992, Lewis and Gharib[13] experimentally investigated the wake of a
single step cylinder with 1 < D/d < 2 at Reynolds number ReD = UD/ν in
the range 35 < ReD < 200. They identified three vortex interaction modes,
namely direct mode when D/d < 1.25, indirect mode when D/d > 1.55, and
transition mode when 1.25 < D/d < 1.55. In direct mode, vortices shed
from the small cylinder directly interact with those from the large cylinder
in a narrow region. The wake is dominated by two frequencies fS and fL
corresponding to shedding frequencies of the spanwise vortex structures be-
hind the small and large cylinder, respectively. In the indirect mode, one
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Figure 10.1: (a) A sketch of the step cylinder geometry. Diameter of the
small and large cylinders are d and D, respectively. l and L denote the length
of the small and large cylinders, respectively. The origin locates at the center
of the interface between the small and large cylinders. The uniform incoming
flow U is in the positive x-direction. The three directions are referred to as
streamwise (x-direction), crossflow (y-direction) and spanwise (z-direction).
(b) Perspective view of the instantaneous wake behind a single step cylinder
with D/d = 2 at ReD = 3900, taken at an arbitrary moment with the flow
fully developed. The wake structures are shown by the isosurfaces of λ2=-2
(Ref. [12]) from our simulation. To ease the observation, color contours of
crossflow velocity v/U are plotted in the (x, z)-plane at y/D = 0.

more frequency f3 (which is also referred to as fN by Dunn and Tavoularis
[14]) was identified in a so-called modulation zone, in which no direct inter-
action was found between vortices with fS and fL. Dunn and Tavoularis
[14] validated the indirect mode through experimental investigations in the
wake of a step cylinder with D/d ≈ 2 at 63 < ReD < 1100. Based on
the three dominating frequency components behind the step cylinder, they
identified three types of spanwise vortex cells: (1) S-cell vortex with the
highest shedding frequency fS behind the small cylinder, (2) L-cell vortex
shed from the large cylinder with shedding frequency fL, and (3) N-cell vor-
tex with the lowest shedding frequency fN located between the S- and L-cell
regions. An illustration of these three vortex cells are shown in Fig. 10.1(b).
According to Refs. [15, 16], the average length of the N-cell vortex was found
to decrease with increasing ReD or decreasing D/d. Due to the different
shedding frequencies of S-, N- and L-cell vortices, complex vortex interac-
tions and dislocations occurring between these three main vortex cells were
observed and analysed in Refs. [16, 17, 18, 19, 20]. Similar spanwise vor-
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tex cells and the vortex interactions between them were also observed and
investigated in the dual step cylinder wakes [21, 22, 23].

In addition to the three main spanwise vortex structures, the stream-
wise vortex system around the step surface has also been investigated in
several previous studies[14, 24, 25]. In an experimental study of the flow
around a single step cylinder with D/d = 2 at ReD = 1100, Dunn and
Tavoularis[14] identified two kinds of streamwise vortices: a pair of edge
vortices and a junction vortex. Edge vortices form around the leading edge
of the step surface, while a junction vortex originates upstream of where
the small cylinder interacts with the step. On the same side (+Y or −Y
side) of the step cylinder, these two types of vortices rotate in opposite di-
rections. Morton et al.[24] verified the existence of the junction and edge
vortices in their numerical investigations at a slightly higher Reynolds num-
ber, ReD=2000. Besides, McClure et al.[25] and Ji et al.[26, 27] reported
the existence of a similar streamwise vortex system in flow around dual-step
cylinders. McClure et al.[25] further concluded that the junction vortex pri-
marily connects to the vortices shed from the large cylinder, while the edge
vortex mainly connects to the small cylinder vortices. However, despite
these well verified findings, there still exist more flow details needed to be
thoroughly described and investigated. For example; how different types of
streamwise vortices develop in the flow around the step cylinder, how these
vortices interact with each other, and whether other types of streamwise
vortices exist around the step surface when ReD increases.

Besides the step cylinder, the time-averaged streamwise vortex system
has also been investigated in the wake of both surface-mounted finite cir-
cular and square cylinders. Sumner and Heseltine[28], Sumner et al.[29],
and Zhang et al.[30] reported that a dipole type, a quadrupole type, or a
six-vortices type appears depending on the aspect ratio and the Reynolds
number of the surface-mounted cylinder. Moreover, near the free-end, Park
and Lee [31], Krajnovic [32], and Hain et al. [33] observed a pair of stream-
wise tip vortices. By investigating the instantaneous and phase-averaged
flow around surface-mounted cylinders, recent studies [34, 35] suggested
that the tip vortices is primarily caused by the deformed main spanwise
vortices that connect back to the free end.

As mentioned before, ReD = 3900 is a benchmark for the flow past
a uniform circular cylinder, where there are many accurate numerical and
experimental studies. However, until now, no one has investigated flow
around a step cylinder at such Reynolds number. As a pioneer, the present
study investigates the flow around a single step cylinder with D/d = 2 at
ReD = 3900 by using direct numerical simulations (DNS). Our primary
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objectives are to investigate the formation mechanisms, vortex dynamics,
and interactions between the vortices around the step position. There-
fore, we restrict our analysis and discussions to the flow regions close to
the step surface. Sec. 10.2 introduces the flow problem and the numeri-
cal methodology. In Sec. 10.3, by analyzing the time-averaged flow, the
vortex system around the step surface is described. In addition to the con-
ventional junction and edge vortices, four other vortices are discussed. In
Sec. 10.4, based on the instantaneous flow field, the formations of hair-pin
vortices and Kelvin-Helmholtz vortices with an unexpectedly high shedding
frequency are described.

10.2 Numerical simulations

10.2.1 Flow configuration

In the present study, we investigate the flow around a step cylinder as shown
in Fig. 10.1(a). The uniform incoming flow U is in the positive x−direction.
The side and top-down views of the flow domain are illustrated in Fig. 10.2.
The streamwise length and the crossflow width of the computational domain
are Lx and Ly. The inlet plane is located Lx1 upstream from the centre of
the step cylinder, and the outlet plane is placed Lx2 downstream. In the
crossflow direction, the step cylinder is located in the middle of the domain.
The spanwise height of the domain is Lz, where the length of the small
and large cylinders occupy l and L, respectively. Detailed information of
the flow domains used in the present study is summarized in Table 10.1.
Boundary conditions are as follows:

- The inlet boundary: uniform velocity profile u=U , v=0, w=0;

- The outlet boundary: Neumann boundary condition for velocity com-
ponents (∂u/∂x = ∂v/∂x = ∂w/∂x = 0) and constant zero pressure
condition (p=0);

- The other four sides of the computational domain: free-slip boundary
conditions (For the two vertical sides: v = 0, ∂u/∂y = ∂w/∂y = 0,
For the two horizontal sides: w = 0, ∂u/∂z = ∂v/∂z = 0);

- The step cylinder surfaces: no-slip and impermeable wall.
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Figure 10.2: Computational domain, origin and coordinate system are il-
lustrated from (a) side view and (b) top-down view.

10.2.2 Computational method

In the present DNS study, the governing equations contain a mass conser-
vation equation (10.1) and a time-dependent full three-dimensional incom-
pressible Navier-Stokes equation (10.2):

∇ · u = 0, (10.1)

∂u

∂t
+ (u ·∇)u = ν∇2u− 1

ρ
∇p, (10.2)

where 5 is the Del operator, ν is the kinematic viscosity of the fluid, and
ρ is the constant fluid density. For all simulations, a thoroughly validated
finite-volume-based numerical code MGLET [36, 37] is used to directly solve
the governing equations (10.1 and 10.2) without introducing any turbulence
model. In MGLET, Eq. 10.1 and Eq. 10.2 are first discretized on a 3-D
staggered Cartesian grid. Then, by using the midpoint approximation, the
discretized equations are integrated over the surfaces of the discrete volumes.
This leads to a second-order accuracy in space. In time, the discretized
equations are integrated with Williamson’s third-order low-storage Runge-
Kutta scheme [38]. A constant time step ∆t is used to ensure a CFL number
smaller than 0.5. The pressure corrections are achieved by using Stone’s
implicit procedure (SIP) [39].
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The solid surface of the step cylinder is handled by an immersed bound-
ary method (IBM). We use an unstructured triangular mesh to represent
the surface of the geometry, and transfer information to IBM to block grid
cells bounded by this surface. Detailed description and validation of this
IBM can be found in Peller et al. [40]. The computational domain is first
divided into equal-sized cubic grid boxes, named the level-1 box. In each
grid box, there are N ×N ×N equal-sized cubic grid cells. For the region
where complex flow phenomena appear, e.g., the regions close to the step
cylinder and the region where vortices form, the grid boxes (the level-1 box)
are equally divided into eight small cubic grid boxes, named the level-2 box.
In every level-2 grid box, there are also N ×N ×N grid cells. This means
that the grid resolution in the level-2 box is two times finer than that in the
level-1 box. This grid refinement-process goes on automatically until the
finest grid level is reached. The grid structure in case Fine-B in the geomet-
rical symmetry plane (the (x, z)-plane at y/D=0) is plotted in Fig. 10.3 to
schematically illustrate the grid structure.

Figure 10.3: An illustration of the multi-level grids in the (x, z)-plane at
y/D = 0. Each square represents a slice of corresponding cubic Cartesian
grid box that contains N×N×N grid cells. Here, there are six levels of grid
boxes as indicated by numbers. Owing to different minimum grid cell sizes,
different cases studied in the present study have either five or six levels of
grid boxes.

Details of the mesh used in simulations are summarized in Table 10.1.
Since all grid cells are cubic, the minimum grid cell size (∆c/D) is the same
in x, y, and z directions. The four cases with the different minimum grid cell
sizes (∆c/D), i.e., the Coarse, Medium, Fine-A and Very Fine cases, are set
up for the grid study. In the geometry study, the mesh in the Fine-A case
is also used with the cases Fine-B and Fine-C, in which the vertical lengths
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Table 10.1: Detailed mesh and domain information of all simulations in the
present study. The case Coarse has five levels of grids, and the other cases
all have six levels of grids. The cases Coarse, Medium, Fine-A, and Very
Fine are used for the grid study. The cases, Fine-A, Fine-B, and Fine-C
are used for the spanwise-length study. As shown in Fig. 10.3, the minimum
grid cells (∆c/D) cover the region around the step cylinder.

Case
Min. Cell
size ∆c/D

Time step
∆tU/D

Domain Size
(Lx × Ly × Lz)/D

l/D L/D Lx1 Lx2
Number of grid

cells (×109)

Coarse 0.010 0.0025 81.60× 38.40× 14.40 4.80 9.60 28.80 52.80 0.20
Medium 0.00625 0.0015 74.80× 40.80× 18.00 6.00 12.00 27.20 47.60 0.84
Fine-A 0.005 0.0012 81.60× 38.40× 14.40 4.80 9.60 28.80 52.80 1.21

Very Fine 0.004 0.0010 81.92× 40.96× 15.36 5.12 10.24 30.72 51.20 2.67
Fine-B 0.005 0.0012 81.60× 38.40× 24.00 9.60 14.40 28.80 52.80 2.02
Fine-C 0.005 0.0012 87.04× 43.52× 32.64 10.88 21.76 32.64 54.40 2.71

of the small (l) and large cylinder (L) parts are varied.

10.2.3 Grid convergence, spanwise length convergence, and
statistical convergence

The detailed discussions about grid convergence, spanwise length conver-
gence, and statistical convergence are provided in Appendix 10.6. Based
on the outcome of these considerations, we conclude that the mesh and
configuration in the Fine-B case (see in Table 10.1) are sufficiently good
for reliable DNS simulations in the present study. The statistical results
obtained during the time period tU/D = 350− 850 is sufficiently steady for
the investigations in the present study. All simulations were performed on
an SGI ALTIX ICE X SLES - 11sp3 cluster at NTNU. In the case Fine-B,
there are six levels of grids containing in total 2.02 × 109 grid cells, with
minimum grid cell size ∆c/D = 0.005. To run this case, we used 3360
processors (2 GB memory per processor) for at least 800 000 time steps.
This single case consumed in total approximately 1.87 million CPU hours.
Recently, the same code MGLET has been used for simulations of wake flow
behind other cylindrical structures at the same Reynolds number 3900 in
Refs. [5, 41, 42], where similar minimum grid cell size and CFL criteria were
used.
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10.3 Time-averaged flow around the step surface

Similar to the flow around a finite-length cylinder[28, 30, 35], the appearance
of the time-averaged streamwise vortices is also a distinctive feature of the
flow around the step surface of the step cylinder. In Fig. 10.4(a) By plotting
the isosurfaces of time-averaged λ2=-9, a four horseshoe vortex system is
identified in Fig. 10.4(a), where H1, H2, H3, and H4 are clear. Besides
the conventional junction vortex (H1) and edge vortex (H3) reported in
Refs. [14, 24, 25], two new-observed vortices (H2 and H4) are identified.
Fig. 10.5(a) illustrates the evolution of these horseshoe vortices by projecting
streamlines on several planes. To ease the observation, vortex cores (red
lines in Fig. 10.5(a) and (b)) are calculated by using Tecplot post-processing
software, which uses algorithms based on techniques outlined by Ref. [44].
Additional information about the flow and vortices is shown in Fig. 10.5(b),
where the vortex core lines and the limiting streamlines are projected on
the step surface. Moreover, the time-averaged streamlines in the symmetry
plane (y/D = 0) are plotted in Fig. 10.6(a) and (b). Based on Fig. 10.5
and Fig. 10.6(a), one can see that the main horseshoe vortex H1 is caused
by both the leading edge separation and the impingement of the flow at the
upstream surface of the step cylinder. When the flow approaches the step
cylinder, an upward flow along the large cylinder is driven by the pressure
difference between the stagnation pressure on the large cylinder and the
pressure above the step surface at the same streamwise position. As the
upward flow reaches the leading edge of the large cylinder, it separates
and deflects to the incoming flow direction. After impinging the upstream
surface of the small cylinder in the symmetry plane at the attachment saddle
point A1 (the blue dot at z/D=0.26) in Fig. 10.6(a), a part of the flow is
directed upward and some move downward. The majority of the downward
flow attaches to the step surface at the attachment saddle point A2 (the
green dot at x/D=-0.28), and recirculates into the main horseshoe vortex
H1. The other downward flow separates along the small cylinder wall at
the separation saddle point S1 (the red triangle at z/D=0.03) and induces
the formation of vortex H2. The formation of vortex H3 is caused by the
separation of the backward flow beneath the vortex H1 on its way back
to the leading edge of the large cylinder at the separation point S2 (the
red dot at x/D=-0.42). The corresponding local separation line is marked
by the green dashed curve in Fig. 10.5(b). The neighboring H1 and H3
vortices are counter-rotating. Due to topological reasons, the vortex H4
appears upstream of H3 and rotates in the same direction as H1. As shown
in Fig. 10.6(a), without formation of H4, the flow induced by the counter-
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Figure 10.4: (a) The time-averaged vortex structures around the step surface
are illustrated by the isosurface of the time-averaged λ2 = −9 at the top-
down viewpoints coloured by the time-averaged streamwise vorticity ωx (ωx =
∂w/∂y− ∂v/∂z). (b) Same as (a) but λ2 = −0.2. In (a) and (b), the main
vortices around the step surface are indicated. The red dotted lines mark the
position x/D = 0. (Note: The vortex structures in the present paper were
checked by plotting both the isosurfaces of λ2 (Ref.[12]) and Q (Ref.[43]). No
obvious difference was observed. To ease the presentation and discussion,
only the isosurface of λ2 is used.)

clockwise rotating vortex H3 would conflict with the incoming flow. Between
the counter-rotating vortices H3 and H4, a reattachment saddle point A3 is
observed, as shown by the green triangle at x/D = −0.46 in Fig. 10.6(a).
In Fig. 10.5(c) and (d), the horseshoe vortices H1-H4 are illustrated by
three-dimensional streamlines in different colors.

After these four horseshoe vortices (H1, H2, H3 and H4) form in front
of the step cylinder, they wrap around the small cylinder and advect down-
stream. Based on Fig. 10.5(a) and Fig. 10.6(a), one can see that the con-
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Figure 10.5: (a) Time-averaged streamlines projected on several planes close
to the step surface. The main vortex components are indicated. (b) Time-
averaged streamlines projected on the step surface. The attachment saddle
point A2, the reattachment saddle point A3, the separation saddle point S2,
a backside separation saddle point S3, and two focal points Fl and Fr are
marked by the green dot, green triangle, red dot, red diamond, red circle
and red dotted circle, respectively. The critical point for H1 and H3 is
illustrated by two dashed black lines at x/D = 0.27. The local separation
line is illustrated by a green dashed line in (b). In (a) and (b), the vortex
core lines are plotted as red curves. (c) Three-dimensional flow evolution
pattern with H1 in red, H2 in black, H3 in brown, H4 in purple, Br in blue,
and Bl in green. (d) Same as (c) but view from behind.

ventional edge vortex [14, 24] (Er) rotates in the same direction as H3.
Furthermore, the time-averaged isosurface of λ2 in Fig. 10.4(a) and the in-
stantaneous isosurface of λ2 in Fig. 10.9(b) clearly show that as the horse-
shoe vortex H3 forms and wraps to the downstream, this vortex takes the
role as the conventional edge vortex. However, this formation mechanism of
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Figure 10.6: (a) Time-averaged streamlines in a (x, z)-plane at y/D = 0
in the fore part of the step cylinder, the four horseshoe vortices (H1, H2,
H3, and H4) are indicated. The same markers used in Fig. 10.5(a) are used
here: the attachment saddle point A2, the reattachment saddle point A3, the
separation saddle point S2, a backside separation saddle point S3 are marked
by the green dot, green triangle, red dot, and red diamond, respectively.
Moreover, an attachment saddle point A1 and a separation saddle point S1

are marked by a blue dot and red triangle, respectively. (b) Same as (a) but
in the rear part of the step cylinder, the backside horizontal vortex (BH)
is marked. (c) and (d) show the corresponding time-averaged magnitude of
velocity < MU > /U contours in (a) and (b), respectively.

the edge vortex (H3) is different from that reported by Dunn and Tavoularis
[14]. They suggested that when the incoming flow is blocked by the small
cylinder and pushed sideways by the rotating junction vortex, it spills over
the edges of the step surface and rolls up into the edge vortex. However,
Fig. 10.4 and 10.5 in the present study clearly show that the edge vortex is
a horseshoe vortex caused by the local separation of the backward flow be-
neath the junction vortex H1. Indeed, both the junction and edge vortex are
close to each other and the step surface, making it difficult to isolate them
and investigate their formation mechanisms experimentally. Different from
H1, H2 and H3 that extend relatively far into the wake flow (x/D >0.5), H4
ends at x/D ≈ 0. As shown in Fig. 10.4(a) and (b), when λ2 changes from
-9 to -0.2, H1, H2 and H3 extend further downstream and merge into mean
recirculation wakes. However, H4 still ends around x/D = 0, as marked by
the red dashed lines in Fig. 10.4(b). Further discussions about how H4 ends
will be provided in Sec. 10.4.

Another obvious feature is the different developments of H1 and H3.
Fig. 10.5(b) clearly shows that for x/D > 0 the width of H1 gradually
increases as moving to the downstream, while the width of H3 gradually
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decreases. The width here is referred to the crossflow distance between
the legs of the horseshoe vortex. Due to the different development tenden-
cies, we define a critical position x/D = 0.27 for H1 and H3 as marked
by the black dashed lines in Fig. 10.5(b). Upstream of it, the width of
H3 is larger than that of H1. Downstream of it, the scenario is opposite.
We find that it is the fact that H1 and H3 locate in different spanwise re-
gions that causes their qualitatively different spatial evolution. As shown in
Fig. 10.5(a), Fig. 10.6(a), and Fig. 10.7(a), when H1 and H3 wrap around
the small cylinder and extend to x/D = 0.1, H1 is still located above the
step surface (z/D > 0), while H3 already extends outside and below the
step surface. In Fig. 10.8, in comparison, the time-averaged streamlines
behind the small and large cylinder are plotted in the (x, y)-planes at
z/D = 0.1 and z/D = −0.05. The vortex core lines of H1, H2, and H3
are also projected in these planes. One can see that around the small cylin-
der, at 0 < x/D < 0.75, the incoming flow has an outward flow direction.
The width of the recirculation region gradually increases. On the contrary,
behind the large cylinder part, the incoming flow has an inward flow di-
rection at 0 < x/D < 0.75. According to these different flow directions,
from x/D = 0.1 to x/D = 0.7, the width of H1 increases from 0.98D in
Fig. 10.7(a) to 1.15D Fig. 10.7(b), while the width of H3 decreases from
1.00D to 0.90D. Moreover, due to the same reason, the width of H2 also
slightly increases as extends downstream above the step surface, as shown in
Fig. 10.5(b) and Fig. 10.6(a). At spanwise position far away from the step
surface, due to the diameter ratio, the wake width behind the small cylinder
is smaller than that behind the large cylinder. Close to the step surface,
however, for the wakes behind the small and large cylinders to smoothly
connect with each other, the flow behaves differently behind the small and
the large cylinders. A similar four-horseshoe vortex system has also been
reported in flow past a wall-mounted cylinder [45, 46, 47], but never been
observed before in the flow around a step cylinder. Moreover, the newly
observed opposite tendencies of crossflow widths of the horseshoe vortices
are unique. The behavior of the crossflow width is normally the same for
different vortex components of a horseshoe vortex system in the near wake
of flow around wall-mounted cylinders.

In addition to these four characteristic horseshoe vortices, we capture a
pair of counter-rotating base vortices (Br and Bl) generated from two focal
points Fr and Fl on the step surface behind the small cylinder, as shown
in Fig. 10.5(b). Between them, another backside horizontal vortex (BH) is
identified. Although, similar focal points and vortex structures have been
reported in the flow around a wall-mounted cylinder [48, 49, 50], it is sur-
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Figure 10.7: (a) Time-averaged streamlines in a (y, z)-plane at x/D=0.1.
(b) Same as (a) but at x/D = 0.7. The horseshoe vortex H1, H2, and H3
and the base vortex are marked. Note: the slight asymmetry in (b) is caused
by the marginal statistical time-sampling. The detailed discussion can be
found in Appendix 10.6.3.

Figure 10.8: (a) Time-averaged streamlines in a (x, y)-plane at z/D =
−0.1. (b) Same as (a) but at z/D = 0.05. The vortex core lines correspond-
ing to H1, H2, and H3 are projected in (a) and (b) by the blue, red and
green dotted lines, respectively.

prising to observe the formation of these vortices in such a narrow step
surface with only 0.25D radial width. Fig. 10.5(b) and Fig. 10.6(b) show
that when the back-flow caused by the recirculations reaches the trailing
edge of the large cylinder in the (x, z)-plane at y/D = 0, vortex BH forms
in the same way as H1 dose, as explained in the previous paragraph. The
corresponding backside separation saddle point is marked by the red di-
amond in Fig. 10.5(b) and Fig. 10.6(b). Moreover, Fig. 10.6(c) and (d)
show that the strength of the back-flow is much weaker than that of the
incoming flow. Consequently, different from the incoming flow that induces
four vortices (H1, H2, H3, and H4) in the forepart of the step surface, the
weak back-flow only induces one backside horizontal vortex (BH) on the
rear part of the step surface. Additionally, when the recirculation flow be-
hind the small cylinder reaches the two focal points Fr and Fl on the step
surface, it spirals upwards and moves into the positive x−direction to form
a pair of base vortices (Br and Bl), as indicated in Fig. 10.5(c) and (d).
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The corresponding swirls caused by these base vortices are seen in the (y,
z)-plane at x/D = 0.7 in Fig. 10.7(b), as highlighted by the black dashed
circles. Due to the modest strength of the recirculation flow, the backside
horizontal vortex (BH) and the pair of base vortices (Br and Bl) are weaker
compared to the horseshoe vortices. We can only observe four horseshoe
vortices in the isosurface plot of λ2 = −9 in Fig. 10.4(a). BH, Br, and Bl

become visible only in the isosurface plot of λ2 = −0.2. Moreover, the colors
of the streamwise vorticity ωx on the isosurfaces of Br and Bl are obviously
lighter than those of H1 and H3. These facts confirm the weak strength of
BH, Br, and Bl.

10.4 Instantaneous flow around the step surface

The instantaneous isosurface of λ2 is presented in the step region in Fig. 10.9
and Fig. 10.10. The boundary layer is laminar in the fore part of the step
cylinder, therefore the four horseshoe vortices seen in the time-averaged flow
field are also clearly observed in the instantaneous flow field at x/D < 0.
On the other hand, the vortex structures corresponding to BH, Br, and Bl

are difficult to be identified in the instantaneous flow. These vortices are
located in the turbulent wake of the small cylinder, which makes them in-
distinguishable in the small turbulent eddies. For x/D > 0, complex vortex
interactions and small turbulent eddies appear. Two instantaneous features
are remarkable: the formation of hairpin vortices between the horseshoe
vortices, and the formation of secondary spanwise vortices close to the rear
part of the small cylinder.

By plotting iso-surfaces of λ2 = −0.2 at six consecutive time instants in
Fig. 10.10, two stages are identified in the formation process of the hairpin
vortices: the initial stage (from Fig. 10.10(a) to (c)) and the developed
stage (in Fig. 10.10(d) and (f)) which are marked by the red and black
colors, respectively. Unlike the hairpin vortex structures that form between
two counter-rotating streamwise vortices located on different sides of the
obstacle structures [51, 52], in the present study, the hairpin vortex forms
between the legs of two counter-rotating vortices H1 and H3 on the same
side of the step cylinder. Additionally, before the hairpin vortex forms, a
special vortex bridge forms between two co-rotating vortices H1 and H4.
This stage is referred to as the initial stage. From Fig. 10.10(a) to (c), as
H4 extends from x/D =0 to x/D ≈ 0.12 a vortex bridge gradually forms
between H1 and H4 as marked by a black circle. In Fig. 10.10(d), when
the vortex bridge separates from H4 and reconnects to H3, a hairpin vortex
forms between two counter-rotating vortices H1 and H3, as indicated by
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Figure 10.9: (a) Instantaneous isosurface of the λ2=-2 together with color
contours of crossflow velocity v/U in the (x, y)-plane at y/D = 0. The
Kelvin-Helmholtz vortex and the S-cell vortex are marked by the red and
black lines, respectively. (b) A zoomed-in view of the step region (black
rectangle) in (a). The streamwise position x/D = 0 is marked by a short
green line.

Figure 10.10: Consecutive instantaneous isosurfaces of λ2=-0.2 showing de-
velopments of vortex structures around the step position in the ReD = 3900
case. The vortices H1, H3, and H4 are marked by the green, pink
and blue lines, respectively. (a) tU/D=860.052, (b) tU/D=860.172,
(c) tU/D=860.292, (d) tU/D=860.364, (e) tU/D=861.060, (f)
tU/D=861.300. The end position of H4 (the blue curve) is marked
by the red triangle.

the black dotted curve. In parallel, H4 shrinks back to x/D = 0, which
explains the fact that the time-averaged H4 ends at x/D ≈ 0 in Fig. 10.4,
as mentioned in Sec. 10.3. At the developed stage, from Fig. 10.10(d) to
(e), just in front of the hairpin vortex marked by the black dashed curve,
two more hairpin vortices form, as indicated by the red and green dashed
curves. These three hairpin vortices nest together to form a hairpin vortex
group. From Fig. 10.10(e) to (f), this vortex group convects downstream
from x/D ≈ 0.7 to x/D ≈ 1. To clearly show the formation process of the
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hairpin vortices, we upload an animation to the supplementary file, from
which one can clearly see that, in every vortex group, two or three hairpin
vortices form in every 0.3D/U .

Figure 10.11: Crossflow velocity (v) spectra at positions
(x/D, y/D, z/D)=(0.53, 0.4, 0.2) and (3, 0.6, 0.2) are plotted in
black and red, respectively. The frequency components corresponding to
fS and fKH are marked. Note that the frequency is nondimensionalized
based on the small cylinder’s diameter (d). (The value of fKH can also be
measured from the movie in the supplementary file.)

Figure 10.12: (a) Contours of time-averaged magnitude velocity fluctuation
< M ′UM

′
U > /UU plots in a horizontal plane at z/D=0.2, together with

instantaneous contours of λ2 = −9 at tU/D = 860.36 plot in red color; (b)
Same as (a) but at z/D = 3. The same instantaneous contours of λ2 = −9
in (a) are directly projected in (b).

Another remarkable instantaneous phenomenon is the secondary span-
wise vortices as highlighted by the red lines in Fig. 10.9(a). These vortices,
similar to those caused by the Kelvin-Helmholtz (KH) instability, are formed
before the main spanwise S-cell vortices (the black lines in Fig. 10.9(a)) shed
from the small cylinder. A pair of corresponding spiral flows (Fsr and Fsl)
are clearly captured in the time-averaged streamlines on the step surface in
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Fig. 10.5(b). The frequency of conventional KH vortices [53, 54] follows

fKH/fK = 0.0235×Re0.67 (10.3)

, in which fKH and fK represent the shedding frequency of the KH vortex
and the corresponding main Karman vortex, respectively. The main Kar-
man vortex behind the small cylinder in the present study is referred to as
fS in Fig. 10.11. The ratio between the KH and main Karman vortices in
the present study (i.e., fKH/fS=1.6/0.2 ≈ 8) is two times higher than the
empirical value from Eq. 10.3 (i.e., 0.0235× 19500.67 ≈ 4 where Red instead
of ReD is used because the focused KH vortex appears behind the small
cylinder). The conventional KH vortex is caused by the KH instability,
that amplifies the convection of perturbations in the shear layer. Accord-
ing to the previous study by Robinson[55], in which flow along a solid wall
was considered, the formation of the hairpin vortices was observed to help
promote convection of velocity perturbations from the wall to the flow in
the upper region. Fig. 10.12 shows that closer to the group of hairpin vor-
tices the velocity fluctuation clearly becomes stronger in the region where
KH vortices form. This implies that the KH vortex in the present study is
caused by the combined effects of both the KH instability and the instabil-
ity transported by the horseshoe vortex. This causes the unexpectedly high
shedding frequency fKH .

10.5 Conclusions

In the present study, we use DNS to investigate both the time-averaged and
instantaneous flow fields around the step cylinder with D/d = 2 at ReD =
3900. In general, our results show good agreement with previous studies
[14, 24, 25, 26] with respect to the formation of the junction and edge vortices
around the step surface of the step cylinder. Moreover, similar base vortices
identified in the flow past a wall-mounted cylinder by Refs. [48, 49, 50]
are also captured in the rear part of the step surface. Furthermore, our
numerical results provide more complete and detailed information about
the flow around the step surface.

The time-averaged iso-surfaces of λ2 and time-averaged streamlines show
that, due to the flow impingement, flow recirculation and flow separations
on the junction surfaces between the root of the small cylinder and the
step surface, four horseshoe vortices (H1, H2, H3, and H4) form above
the step surface in front of the upper small cylinder. In addition to the
conventional junction vortex (H1) and the edge vortex (H3), two additional
horseshoe vortices H2 and H4 are clearly identified. The resulting four
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horseshoe vortex system is therefore identified. Under the influence of the
different flow behaviors in the wakes of the small and large cylinders, the
H1, H2, and H3 vortices develop differently. When they reach x/D > 0 and
extend downstream, the crossflow width of H1 and H2 continue to increase,
however, the crossflow width of H3 decreases. Consequently, a critical point
for H1 and H3 is defined. Moreover, in the rear part of the step surface
(x/D > 0), we capture a pair of base vortices (Br and Bl) and a backside
horizontal vortex (BH).

By detailed investigations in the instantaneous flow, we find that the four
horseshoe vortices clearly exist in both the time-averaged and instantaneous
flow field. In the forepart of the step surface (x/D < 0), the vortices H1,
H2, H3, and H4 are quite stable and only slightly fluctuate in time. On
the other hand, vortices Br, Bl, and BH are difficult to be identified in the
instantaneous flow due to their weak strength. As H4 extends to x/D > 0, a
vortex bridge gradually forms between the legs of two co-rotating horseshoe
vortices H1 and H4. After this vortex bridge separates from the end of H4
at x/D ≈ 0.12, a hairpin vortex forms between the legs of two counter-
rotating horseshoe vortices H1 and H3 located on the same side of the step
cylinder. In the neighboring region upstream of this hairpin vortex, either
one or two more hairpin vortices form before convecting to the wake region
dominated by small turbulent eddies. Another remarkable phenomenon is

Figure 10.13: Schematic of the flow field for the single step cylinder with
D/d = 2 at ReD = 3900 showing the main flow features. To ease observa-
tions, the surface of the small cylinder is omitted.

the appearance of Kelvin-Helmholtz (KH) vortices with an unexpectedly
high shedding frequency behind the small cylinder. Our results suggest
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that their appearances are caused by the combined effects of both the KH
instability and the instability transported by the horseshoe vortices.

Based on the discussions in the present paper, an overall schematic of
the flow around the step surface of the step cylinder with D/d = 2 at
ReD = 3900 is illustrated in Fig. 10.13, where the main time-averaged
vortex structures and flow features are identified. To ease observations, the
geometry of the small cylinder is omitted.
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10.6 Appendix: Grid convergence, spanwise length
convergence, and statistical convergence

The present study focuses on the flow around the step surface of the step
cylinder. Therefore, in this section, we execute the convergence tests in
the region close to the step surface, i.e., the S- and N-cell regions (see in
Fig. 10.1(b)).

10.6.1 Grid convergence

Table 10.2 shows the Strouhal number (St) and the time-averaged drag
coefficient (CD) obtained in the S- and N-cell regions. In these two regions,
we capture two dominating frequencies StS and StN , corresponding to the
shedding frequencies of the main S- and N-cell vortices. The time-averaged
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Table 10.2: Strouhal numbers of the two dominating vortex cells (S-cell,
StS = fSD/U , and N-cell, StN = fND/U) are shown in the second and
third columns. They are obtained by means of a discrete Fourier transform
(DFT) of continuous velocity data along a vertical sampling line with density
0.01D parallel to the z−axis at position (x/D, y/D)=(2.02, 0), over at least
300 time units (D/U). In the last two columns, the time-averaged drag force
coefficients are calculated by using Eq. 10.4. Subscript S stands for the small
cylinder part 1< z/D <4, N stands for the large cylinder part in the N-cell
region -4< z/D <-1.

Case StS StN CDS CDN

Coarse 0.42 0.18 1.02 0.87
Medium 0.42 0.19 0.97 0.86
Fine-A 0.43 0.19 0.95 0.85

Very Fine 0.44 0.19 0.94 0.85

drag coefficient is normalized as

CDj =
Fxj

0.5ρAjU2
, j = S,N, (10.4)

where the subscript S represents the small cylinder part covered by the
S-cell vortex at 1 < z/D < 4, and N represents the large cylinder part
covered by the N-cell vortex at −4 < z/D < −1. Aj is the projected
areas of the different parts in the (y, z)-plane. One can easily calculate:
AS/D

2 = 1.5, and AN/D
2=3. When the mesh is refined from the case

Coarse to Very Fine, the data in Table 10.2 shows converging trends of
all quantities listed. Moreover, in Fig. 10.14, we plot the time-averaged
streamwise velocity < u > /U and the time-averaged pressure coefficient
(< CP >) along a vertical sampling line located at (x/D, y/D)=(2.02, 0).
< CP > is defined as

< CP >=
< P > −P0

0.5ρU2
, (10.5)

where < P > is the time-averaged pressure along the sampling line and P0

is the pressure at the inlet boundary. The curves in Fig. 10.14 clearly show a
converging tendency from the Coarse case to the Very Fine case. Especially
in the region (-5< z/D <3) close to the step position (z/D = 0), we barely
see any difference between the Fine-A and Very Fine cases.
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Figure 10.14: (a) Distribution of time-averaged streamwise velocity (< u >
/U) along a sampling line at (x/D, y/D)=(2.02, 0) in the Coarse, Medium,
Fine-A, and Very Fine cases. (b) Same as (a) but for the time-averaged
pressure coefficient (< CP > /U).

Figure 10.15: (a) Distribution of time-averaged streamwise velocity (< u >
/U) along a sampling line at (x/D, y/D)=(2.02, 0) in the Fine-A, Fine-
B and Fine-C cases. (b) Same as (a) but for the time-averaged pressure
coefficient (< CP > /U).

10.6.2 Spanwise length convergence

Due to the large number of grid cells and the smaller time step, the com-
putational cost of the Very Fine case is significantly higher than that of
the Fine-A case. Therefore, in the spanwise length convergence test, we
built Fine-B and Fine-C by using the same grid structures in Fine-A, and
changed the lengths of both the small (l) and large cylinder (L) cylinders
(see in Table 10.1).

Fig. 10.15 shows the distributions of < u > /U and < CP > along a
vertical sampling line at (x/D, y/D)=(2.02, 0) in the Fine-A, Fine-B and
Fine-C cases. The results show that the free-slip wall boundary condition
at the top and bottom of the domain have relatively strong influences on
the results in the Fine-A case. Especially at z/D = −9 which is close to the
bottom boundary (z/D = −9.6) in Fine-A, < u > /U and < CP > in Fine-
A are only one-third and half of those in Fine-B and Fine-C, respectively.
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Figure 10.16: (a) Contours of time-averaged streamwise vorticity < ωx >
D/U = ±4 and ±8 plotted in a (y, z)-plane at x/D=0.3. Solid and dashed
lines represent positive and negative values. (b) Contours of time-averaged
λ2 = −9 (Ref. [12]) plotted in the same plane used in (a).

On the other hand, the difference between the blue (Fine-B) and green
(Fine-C) dotted curves is very small, especially in the region around the
step position at −5 < z/D < 3. Furthermore, in Fig. 10.16, we plot the
time-averaged streamwise vorticity < ωx > D/U contours and the time-
averaged λ2 contours in a (y, z)-plane at x/D = 0.3, which is in the step
area just behind the small cylinder. The results of Fine-A show obvious
differences when comparing with the results of Fine-B and Fine-C. On the
other hand, the difference between results of Fine-B (the black curves) and
Fine-C (the green curves) is negligible. The overlap between the green and
black curves proves that the spanwise length in Fine-B and Fine-C cases
converge well in the flow field close to the step surface.

10.6.3 Statistical convergence

The discussions in Sec. 10.3 and Sec. 10.4 are based on both the instan-
taneous and time-averaged flows, therefore a careful examination of the
statistical convergence is necessary. We first simulated case Fine-B for 350
time units (D/U) to ensure that the flow is properly developed. Then the
time-averaged streamlines on the step surface are calculated based on the
velocity data with three different sampling times: tU/D from 350 to 650
in Fig. 10.17(a), tU/D from 350 to 850 in Fig. 10.17(b), and tU/D from
350 to 950 in Fig. 10.17(c). Similar time-averaged flow fields are shown in
the upstream part of the step surface (i.e., x/D < 0), where an attach-
ment line, a reattachment line, and one separation line are indicated. The
detailed formation mechanisms of these three special lines are described in
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Sec. 10.3. At their intersection points with the x−axis, the corresponding
attachment saddle point A2, reattachment saddle point A3, and separa-
tion saddle point S2 are marked in Fig. 10.17. To describe the position
of the attachment, reattachment, and separation lines, we define the posi-
tion of their corresponding saddle points as their own position. Based on
Fig. 10.17 and Table 10.3, one can easily see that the variation tendencies
of these three lines are similar. Moreover, the position of the attachment
and reattachment lines keep constant in all three subplots in Fig. 10.17.
Only the location of the local separation line moves 0.02D upstream from
Fig. 10.17(a) to Fig. 10.17(b), then remains unchanged from Fig. 10.17(b)
to Fig. 10.17(c). Moreover, in Fig. 10.17(d), the time-averaged streamlines
are plotted based on the velocity data within tU/D=650-950. The negligi-
ble difference between Fig.10.17(c) and (d) proves that no temporal feature
appears after tU/D=650. Morton and Yarusevych [56] used the hydrogen
bubble technique to illustrate the flow on the step surface of a dual step
cylinder with D/d = 2 at ReD=2100, as shown in Fig. 10.17(e). Although
the configuration and the Reynolds number are not the same as in the
present paper, both the attachment line and the local separation line are
similar and clear in their study and ours.

The 2nd order statistical convergence is also checked. In Fig. 10.18, the
contours of time-averaged magnitude velocity fluctuations< M ′UM

′
U > /UU

are plotted in a horizontal plane at z/D=0.2, based on three different time
periods. Based on the same time periods, Fig. 10.19 (a) and (b) show the
time-averaged Reynolds shear stress < u′v′ > /UU at (x/D, z/D)=(1, 7)
and (x/D, z/D)=(2, -14), respectively. Both Fig. 10.18 and 10.19 indicate
that the differences in the 2nd order velocity fluctuations between the time
periods tU/D=350-850 and tU/D=350-950 are negligible.

Table 10.3: Location of singular points for different sampling periods.

Time period
(tU/D)

A2

(x/D, y/D)
A3

(x/D, y/D)
S2

(x/D, y/D)
S3

(x/D, y/D)

350 – 650 (-0.40, 0) (-0.46, 0) (-0.28, 0) (0.38, 0.05)
350 – 850 (-0.42, 0) (-0.46, 0) (-0.28, 0) (0.36, 0.03)
350 – 950 (-0.42, 0) (-0.46, 0) (-0.28, 0) (0.36, 0.02)

Considering that the step cylinder configuration used in the present
study is symmetric about the x − z coordinate surface, under the uniform
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Figure 10.17: (a) Time-averaged streamlines projected on the step surface
based on the velocity data in the time range tU/D = 350 − 650. (b) Same
as (a) but based on the velocity data within tU/D = 350− 850. (c) Same as
(a) but based on the velocity data within tU/D = 350 − 950. (d) Same as
(a) but based on the velocity data within tU/D = 650 − 950. (e) Hydrogen
bubble surface visualization on the step junction of a dual-step cylinder for
ReD=2,100, D/d =2 from Morton and Yarusevych [56]. The attachment
saddle point A2, the reattachment saddle point A3, the separation saddle
point S2, and the backside separation saddle point S3 are marked by the
green dot, green triangle, red dot, and red diamond, respectively.

incoming flow in the x−direction, the time-averaged wake flow is also ex-
pected to be symmetric about the x−axis. However, as highlighted by the
red rectangle in Fig. 10.17, an unexpected asymmetry appears on the rear
part of the step surface at x/D > 0, where a separation saddle point is
marked by a red diamond. The crossflow distance between the red dia-
mond and the center red dotted line (y/D = 0) can reflect the strength of
the asymmetry. As shown in Fig. 10.17 and Table 10.3, the red diamond
continuously moves closer to the center red dotted line (y/D = 0) as the
simulation time increases, i.e.,the strength of the asymmetry in wake flow
continues to decrease with increasing simulation time length. If the simula-
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Figure 10.18: (a) Contours of time-averaged magnitude velocity fluctuation
(< M ′UM

′
U > /UU) plots in a horizontal plane at z/D = 0.2 based on the

velocity data tU/D =350-650. (b) Same as (a) but based on the velocity data
tU/D =350-850. (c) Same as (a) but based on the velocity data tU/D=350-
950.

tion time further increases to sufficiently long, a symmetric wake flow can
be expected, where the red diamond will locate exactly on the center red
dotted line. However, we think it is too time-consuming and unnecessary
to run the simulation even longer just to obtain a completely symmetric
time-averaged wake. Because first the asymmetry in Fig. 10.17(b) and (c)
are already weak, the red diamond only deflects 0.02−0.03D away from the
center line. And more importantly, this slight asymmetry has no effect on
our discussions in the present study.

In general, based on the results presented in this section, we conclude
that the mesh and configuration in the Fine-B case (see in Table 10.1) are
sufficiently good for reliable DNS simulations in the present study. The
statistical results obtained during both time periods tU/D = 350− 850 and
tU/D = 350 − 950 are sufficiently converged for the investigations in the
present study.
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Figure 10.19: (a) Co-variance of the velocity fluctuations (< u′v′ > /UU)
at (x/D, z/D)=(1, 7). (b) Same as (a) but at (x/D, z/D)=(2, -14).
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2 2 1.15 9.055 7.905 6.05 5.095 0.955 1 1
4 4 2.06 15.585 13.525 12.27 10.71 1.56 3 3
6 6 3.06 22.2 19.14 18.73 16.345 2.385 5 5
8 8 4.2 28.95 24.75 25.68 21.955 3.725 7 7
10 10 5.32 35.7 30.38 32.315 27.53 4.785 9 9 1
12 35.985 33.175 11
14 12 0.555 42.12 41.565 38.965 38.775 0.19 11 13
16 14 0.89 48.055 47.165 45.11 44.35 0.76 13 15
18 16 1.465 54.225 52.76 51.11 49.965 1.145 15 17
20 18 2.61 60.96 58.35 57.45 55.555 1.895 17 19
22 20 3.61 67.59 63.98 64.08 61.18 2.9 19 21

2 24 22 4.77 74.355 69.585 70.965 66.775 4.19 21 23
26 75.185 77.705 72.375 5.33 23 25
28 24 0.29 81.075 80.785 77.975 27
30 26 0.81 87.19 86.38 84.155 83.585 0.57 25 29
32 28 1.2 93.17 91.97 90.15 89.175 0.975 27 31
34 30 1.84 99.435 97.595 96.275 94.795 1.48 29 33
36 32 3.06 106.28 103.22 102.805 100.4 2.405 31 35
38 34 4.12 112.96 108.84 109.48 106.02 3.46 33 37
40 36 5.2 119.64 114.44 116.29 111.645 4.645 35 39 3
42 120.055 117.26 41
44 38 0.525 126.19 125.665 122.95 122.865 0.085 37 43
46 40 0.89 132.155 131.265 129.185 128.46 0.725 39 45
48 42 1.43 138.29 136.86 135.13 134.06 1.07 41 47
50 44 2.21 144.685 142.475 141.525 139.67 1.855 43 49
52 46 3.47 151.575 148.105 148.185 145.305 2.88 45 51

4 54 48 4.575 158.3 153.725 154.88 150.925 3.955 47 53
56 159.335 161.675 156.525 5.15 49 55
58 50 -0.015 164.92 164.935 162.145 57
60 52 0.675 171.21 170.535 168.17 167.74 0.43 51 59
62 54 1.02 177.165 176.145 174.145 173.335 0.81 53 61
64 56 1.72 183.46 181.74 180.21 178.94 1.27 55 63
66 58 2.63 189.995 187.365 186.865 184.545 2.32 57 65
68 60 3.93 196.88 192.95 193.57 190.15 3.42 59 67
70 62 5.095 203.67 198.575 200.29 195.765 4.525 61 69 5
72 204.175 201.385 71
74 64 0.41 210.19 209.78 207.05 206.985 0.065 63 73
76 66 0.88 216.255 215.375 213.305 212.58 0.725 65 75
78 68 1.32 222.3 220.98 219.23 218.18 1.05 67 77
80 70 2.215 228.8 226.585 225.435 223.78 1.655 69 79
82 72 3.23 235.43 232.2 232.175 229.38 2.795 71 81

6 84 74 4.415 242.215 237.8 238.93 235 3.93 73 83
86 243.42 245.6 240.63 4.97 75 85
88 76 -0.08 248.935 249.015 246.22 87
90 78 0.645 255.27 254.625 252.24 251.83 0.41 77 89
92 80 1.03 261.24 260.21 258.275 257.41 0.865 79 91
94 82 1.675 267.505 265.83 264.36 263.03 1.33 81 93
96 84 2.71 274.16 271.45 270.655 268.63 2.025 83 95
98 86 3.725 280.815 277.09 277.49 274.25 3.24 85 97
100 88 4.945 287.615 282.67 284.265 279.88 4.385 87 99 7
102 288.305 285.495 101
104 90 0.33 294.235 293.905 290.875 291.09 -0.215 89 103
106 92 0.735 300.25 299.515 297.325 296.7 0.625 91 105
108 94 1.16 306.28 305.12 303.255 302.325 0.93 93 107
110 96 2.03 312.775 310.745 309.45 307.925 1.525 95 109
112 98 3.165 319.53 316.365 315.945 313.545 2.4 97 111
114 100 4.21 326.205 321.995 322.77 319.17 3.6 99 113
116 102 5.46 333.015 327.555 329.595 324.765 4.83 101 115 8
118 333.155 330.365 117
120 104 0.65 339.405 338.755 336.22 335.965 0.255 103 119
122 106 0.995 345.325 344.33 342.35 341.535 0.815 105 121
124 108 1.53 351.475 349.945 348.335 347.145 1.19 107 123
126 110 2.555 358.105 355.55 354.76 352.73 2.03 109 125
128 112 3.765 364.915 361.15 361.365 358.355 3.01 111 127

9 130 114 4.78 371.555 366.775 368.14 363.96 4.18 113 129
132 372.39 374.925 369.575 5.35 115 131
134 116 0.24 378.245 378.005 375.19 133
136 118 0.8 384.395 383.595 381.365 380.8 0.565 117 135
138 120 1.19 390.39 389.2 387.34 386.4 0.94 119 137
140 122 1.84 396.66 394.82 393.495 392.02 1.475 121 139
142 124 2.94 403.375 400.435 400.14 397.615 2.525 123 141
144 126 4.19 410.24 406.05 406.755 403.23 3.525 125 143
146 128 5.17 416.84 411.67 413.54 408.855 4.685 127 145 10
148 417.285 414.47 147
150 130 0.505 423.38 422.875 420.23 420.08 0.15 129 149
152 132 0.845 429.35 428.505 426.38 425.685 0.695 131 151
154 134 1.365 435.475 434.11 432.35 431.29 1.06 133 153
156 136 2.195 441.905 439.71 438.72 436.89 1.83 135 155
158 138 3.39 448.7 445.31 445.505 442.515 2.99 137 157

11 160 140 4.595 455.53 450.935 452.17 448.14 4.03 139 159
162 456.53 458.935 453.74 5.195 141 161
164 142 0.09 462.2 462.11 459.32 163
166 144 0.76 468.45 467.69 465.465 464.92 0.545 143 165
168 146 1.125 474.43 473.305 471.425 470.495 0.93 145 167
170 148 1.84 480.74 478.9 477.51 476.105 1.405 147 169
172 150 2.79 487.295 484.505 484 481.69 2.31 149 171
174 152 3.935 494.06 490.125 490.885 487.315 3.57 151 173
176 154 5.11 500.855 495.745 497.49 492.935 4.555 153 175 12
178 501.36 498.55 177
180 156 0.435 507.405 506.97 504.21 504.165 0.045 155 179
182 158 0.84 513.42 512.58 510.49 509.775 0.715 157 181
184 160 1.305 519.49 518.185 516.44 515.38 1.06 159 183
186 162 2.27 526.075 523.805 522.665 520.995 1.67 161 185
188 164 3.27 532.695 529.425 529.285 526.615 2.67 163 187

13 190 166 4.43 539.47 535.04 536.195 532.235 3.96 165 189
192 540.65 542.79 537.845 4.945 167 191
194 168 -0.045 546.21 546.255 543.455 193

N-cell
vortex No.

L-cell
Vortex No.

N-cell
cycle No.

Vortices	in	the	'‐Y'	side	of	the	step	cylinder Vortices	in	the	'+Y'	side	of	the	step	cylinder
N-cell

cycle No.
L-cell

Vortex No.
N-cell

vortex No. Φ୤ φ୒ φN φL Φfφ୐

Supplementary file 1: Detailed information about the N- and L-cell vortices for the D/d=2 case.



196 170 0.615 552.475 551.86 549.415 549.055 0.36 169 195
198 172 0.96 558.42 557.46 555.465 554.66 0.805 171 197
200 174 1.62 564.68 563.06 561.52 560.26 1.26 173 199
202 176 2.785 571.46 568.675 567.89 565.865 2.025 175 201
204 178 3.805 578.09 574.285 574.61 571.48 3.13 177 203
206 180 4.99 584.875 579.885 581.485 577.085 4.4 179 205 14
208 585.48 582.68 207
210 182 0.435 591.51 591.075 588.17 588.28 -0.11 181 209
212 184 0.86 597.525 596.665 594.545 593.87 0.675 183 211
214 186 1.29 603.555 602.265 600.505 599.465 1.04 185 213
216 188 2.055 609.93 607.875 606.72 605.065 1.655 187 215
218 190 3.325 616.82 613.495 613.255 610.685 2.57 189 217

15 220 192 4.315 623.43 619.115 619.97 616.305 3.665 191 219
222 624.725 626.785 621.92 4.865 193 221
224 194 -0.195 630.145 630.34 627.535 223
226 196 0.635 636.58 635.945 633.41 633.14 0.27 195 225
228 198 0.965 642.515 641.55 639.525 638.745 0.78 197 227
230 200 1.545 648.7 647.155 645.53 644.35 1.18 199 229
232 202 2.415 655.19 652.775 652.01 649.965 2.045 201 231
234 204 3.73 662.13 658.4 658.63 655.585 3.045 203 233

16 236 206 4.72 668.735 664.015 665.385 661.205 4.18 205 235
238 669.62 672.15 666.82 5.33 207 237
240 208 0.175 675.4 675.225 672.42 239
242 210 0.74 681.56 680.82 678.555 678.02 0.535 209 241
244 212 1.13 687.55 686.42 684.495 683.62 0.875 211 243
246 214 1.855 693.875 692.02 690.65 689.22 1.43 213 245
248 216 2.88 700.515 697.635 697.38 694.83 2.55 215 247
250 218 4.165 707.41 703.245 704.02 700.44 3.58 217 249
252 220 5.27 714.12 708.85 710.795 706.05 4.745 219 251 17
254 714.45 711.65 253
256 222 0.555 720.605 720.05 717.52 717.25 0.27 221 255
258 224 0.95 726.6 725.65 723.635 722.85 0.785 223 257
260 226 1.465 732.715 731.25 729.61 728.45 1.16 225 259
262 228 2.35 739.215 736.865 735.885 734.055 1.83 227 261
264 230 3.41 745.895 742.485 742.735 739.675 3.06 229 263

18 266 232 4.615 752.71 748.095 749.385 745.29 4.095 231 265
268 753.7 756.095 750.9 5.195 233 267
270 234 0.095 759.4 759.305 756.505 269
272 236 0.73 765.635 764.905 762.65 762.105 0.545 235 271
274 238 1.105 771.61 770.505 768.625 767.705 0.92 237 273
276 240 1.855 777.97 776.115 774.75 773.31 1.44 239 275
278 242 2.86 784.595 781.735 781.115 778.925 2.19 241 277
280 244 3.95 791.305 787.355 788.04 784.545 3.495 243 279
282 246 5.115 798.085 792.97 794.69 790.165 4.525 245 281 19
284 798.585 795.775 283
286 248 0.425 804.615 804.19 801.355 801.385 -0.03 247 285
288 250 0.795 810.585 809.79 807.66 806.99 0.67 249 287
290 252 1.26 816.655 815.395 813.605 812.595 1.01 251 289
292 254 2.285 823.295 821.01 819.88 818.2 1.68 253 291
294 256 3.34 829.965 826.625 826.425 823.815 2.61 255 293

20 296 258 4.48 836.715 832.235 833.325 829.43 3.895 257 295
298 837.84 840.06 835.04 5.02 259 297
300 260 0.05 843.49 843.44 840.64 299
302 262 0.705 849.74 849.035 846.635 846.24 0.395 261 301
304 264 1.045 855.675 854.63 852.7 851.835 0.865 263 303
306 266 1.65 861.88 860.23 858.735 857.43 1.305 265 305
308 268 2.795 868.64 865.845 865.2 863.035 2.165 267 307
310 270 3.905 875.36 871.455 871.83 868.65 3.18 269 309
312 272 4.985 882.05 877.065 878.64 874.26 4.38 271 311 21
314 882.67 879.865 313
316 274 0.425 888.695 888.27 885.39 885.47 -0.08 273 315
318 276 0.875 894.745 893.87 891.74 891.07 0.67 275 317
320 278 1.325 900.8 899.475 897.705 896.675 1.03 277 319
322 280 2 907.09 905.09 903.95 902.28 1.67 279 321
324 282 3.23 913.94 910.71 910.575 907.9 2.675 281 323

22 326 284 4.34 920.67 916.33 917.245 913.52 3.725 283 325
328 921.945 924.025 919.14 4.885 285 327
330 286 -0.25 927.31 927.56 924.755 329
332 288 0.595 933.76 933.165 930.65 930.365 0.285 287 331
334 290 0.92 939.695 938.775 936.7 935.97 0.73 289 333
336 292 1.515 945.9 944.385 942.705 941.58 1.125 291 335
338 294 2.355 952.36 950.005 949.215 947.195 2.02 293 337
340 296 3.62 959.24 955.62 955.935 952.815 3.12 295 339

23 342 298 4.785 966.015 961.23 962.645 958.425 4.22 297 341
344 966.825 969.44 964.03 5.41 299 343
346 300 0.225 972.64 972.415 969.625 345
348 302 0.795 978.8 978.005 975.83 975.21 0.62 301 347
350 304 1.19 984.785 983.595 981.76 980.8 0.96 303 349
352 306 1.99 991.185 989.195 987.9 986.39 1.51 305 351
354 308 2.97 997.775 994.805 994.545 992 2.545 307 353
356 310 4.15 1004.57 1000.42 1001.34 997.61 3.73 309 355
358 312 5.325 1011.355 1006.03 1008 1003.225 4.775 311 357 24
360 1011.64 1008.835 359
362 314 0.57 1017.815 1017.245 1014.7 1014.445 0.255 313 361
364 316 0.945 1023.795 1022.85 1020.855 1020.05 0.805 315 363
366 318 1.48 1029.94 1028.46 1026.845 1025.655 1.19 317 365
368 320 2.475 1036.55 1034.075 1033.09 1031.265 1.825 319 367
370 322 3.49 1043.185 1039.695 1039.845 1036.885 2.96 321 369

25 372 324 4.65 1049.965 1045.315 1046.66 1042.505 4.155 323 371
374 1050.925 1053.27 1048.12 5.15 325 373
376 326 0.125 1056.66 1056.535 1053.73 375
378 328 0.67 1062.815 1062.145 1059.83 1059.34 0.49 327 377
380 330 1.035 1068.785 1067.75 1065.805 1064.945 0.86 329 379
382 332 1.805 1075.165 1073.36 1071.935 1070.555 1.38 331 381
384 334 2.935 1081.915 1078.98 1078.33 1076.17 2.16 333 383
386 336 3.99 1088.58 1084.59 1085.15 1081.785 3.365 335 385
388 338 5.19 1095.38 1090.19 1091.98 1087.39 4.59 337 387 26
390 1095.785 1092.99 389
392 340 0.525 1101.9 1101.375 1098.625 1098.58 0.045 339 391
394 342 0.895 1107.855 1106.96 1104.9 1104.165 0.735 341 393
396 344 1.385 1113.94 1112.555 1110.855 1109.755 1.1 343 395



398 346 2.3 1120.46 1118.16 1117.165 1115.355 1.81 345 397
400 348 3.525 1127.305 1123.78 1123.72 1120.97 2.75 347 399

27 402 350 4.54 1133.935 1129.395 1130.49 1126.585 3.905 349 401
404 1135.01 1137.3 1132.2 5.1 351 403
406 352 0.045 1140.665 1140.62 1137.815 405
408 354 0.725 1146.95 1146.225 1143.855 1143.425 0.43 353 407
410 356 1.065 1152.895 1151.83 1149.885 1149.03 0.855 355 409
412 358 1.67 1159.11 1157.44 1155.945 1154.635 1.31 357 411
414 360 2.685 1165.745 1163.06 1162.505 1160.25 2.255 359 413
416 362 3.955 1172.635 1168.68 1169.12 1165.87 3.25 361 415
418 364 4.93 1179.225 1174.295 1175.895 1171.485 4.41 363 417 28
420 1179.905 1177.1 419
422 366 0.35 1185.86 1185.51 1182.63 1182.705 -0.075 365 421
424 368 0.8 1191.91 1191.11 1188.92 1188.31 0.61 367 423
426 370 1.26 1197.97 1196.71 1194.865 1193.91 0.955 369 425
428 372 1.995 1204.315 1202.32 1201.125 1199.515 1.61 371 427
430 374 3.125 1211.06 1207.935 1207.88 1205.13 2.75 373 429

29 432 376 4.39 1217.93 1213.54 1214.515 1210.74 3.775 375 431
434 1219.14 1221.31 1216.34 4.97 377 433
436 378 -0.145 1224.595 1224.74 1221.94 435
438 380 0.65 1230.985 1230.335 1227.945 1227.535 0.41 379 437
440 382 1.01 1236.94 1235.93 1233.96 1233.13 0.83 381 439
442 384 1.62 1243.15 1241.53 1239.985 1238.73 1.255 383 441
444 386 2.52 1249.665 1247.145 1246.38 1244.335 2.045 385 443
446 388 3.64 1256.405 1252.765 1253.255 1249.955 3.3 387 445
448 390 4.85 1263.23 1258.38 1259.87 1255.575 4.295 389 447 30
450 1263.99 1261.185 449
452 392 0.27 1269.86 1269.59 1266.605 1266.79 -0.185 391 451
454 394 0.795 1275.99 1275.195 1273.04 1272.395 0.645 393 453
456 396 1.195 1281.99 1280.795 1278.975 1277.995 0.98 395 455
458 398 2.045 1288.45 1286.405 1285.15 1283.6 1.55 397 457
460 400 3.035 1295.06 1292.025 1291.65 1289.215 2.435 399 459
462 402 4.165 1301.81 1297.645 1298.58 1294.835 3.745 401 461
464 404 5.315 1308.575 1303.26 1305.17 1300.455 4.715 403 463 31
466 1308.87 1306.065 465
468 406 0.52 1314.995 1314.475 1311.845 1311.67 0.175 405 467
470 408 0.865 1320.94 1320.075 1318.01 1317.275 0.735 407 469
472 410 1.42 1327.095 1325.675 1324 1322.875 1.125 409 471
474 412 2.525 1333.815 1331.29 1330.305 1328.48 1.825 411 473
476 414 3.54 1340.44 1336.9 1336.96 1334.095 2.865 413 475

32 478 416 4.715 1347.225 1342.51 1343.86 1339.705 4.155 415 477
480 1348.115 1350.535 1345.31 5.225 417 479
482 418 0.235 1353.95 1353.715 1350.915 481
484 420 0.755 1360.07 1359.315 1357.045 1356.515 0.53 419 483
486 422 1.125 1366.04 1364.915 1363.04 1362.115 0.925 421 485
488 424 1.81 1372.33 1370.52 1369.145 1367.715 1.43 423 487
490 426 3.04 1379.18 1376.14 1375.625 1373.33 2.295 425 489
492 428 4.065 1385.815 1381.75 1382.32 1378.945 3.375 427 491
494 430 5.19 1392.545 1387.355 1389.155 1384.555 4.6 429 493 33
496 1392.955 1390.155 495
498 432 0.55 1399.105 1398.555 1395.85 1395.755 0.095 431 497
500 434 0.93 1405.08 1404.15 1402.095 1401.35 0.745 433 499
502 436 1.445 1411.195 1409.75 1408.065 1406.95 1.115 435 501
504 438 2.205 1417.57 1415.365 1414.405 1412.555 1.85 437 503
506 440 3.505 1424.495 1420.99 1421.015 1418.175 2.84 439 505

34 508 442 4.51 1431.12 1426.61 1427.73 1423.8 3.93 441 507
510 1432.225 1434.505 1429.415 5.09 443 509
512 444 -0.045 1437.795 1437.84 1435.03 511
514 446 0.665 1444.11 1443.445 1441.05 1440.64 0.41 445 513
516 448 1 1450.05 1449.05 1447.035 1446.25 0.785 447 515
518 450 1.65 1456.31 1454.66 1453.095 1451.855 1.24 449 517
520 452 2.58 1462.86 1460.28 1459.725 1457.47 2.255 451 519
522 454 3.89 1469.785 1465.895 1466.38 1463.085 3.295 453 521
524 456 4.97 1476.475 1471.505 1473.13 1468.7 4.43 455 523 35
526 1477.105 1474.305 525
528 458 0.365 1483.065 1482.7 1479.915 1479.905 0.01 457 527
530 460 0.845 1489.14 1488.295 1486.175 1485.5 0.675 459 529
532 462 1.28 1495.17 1493.89 1492.11 1491.095 1.015 461 531
534 464 2.11 1501.605 1499.495 1498.315 1496.69 1.625 463 533
536 466 3.145 1508.25 1505.105 1505.095 1502.3 2.795 465 535

36 538 468 4.37 1515.085 1510.715 1511.78 1507.91 3.87 467 537
540 1516.32 1518.495 1513.52 4.975 469 539
542 470 -0.09 1521.83 1521.92 1519.12 541
544 472 0.675 1528.195 1527.52 1525.15 1524.72 0.43 471 543
546 474 1.04 1534.16 1533.12 1531.2 1530.32 0.88 473 545
548 476 1.665 1540.39 1538.725 1537.245 1535.92 1.325 475 547
550 478 2.645 1546.99 1544.345 1543.53 1541.535 1.995 477 549
552 480 3.69 1553.66 1549.97 1550.4 1547.155 3.245 479 551
554 482 4.85 1560.44 1555.59 1557.095 1552.78 4.315 481 553 37
556 1561.205 1558.395 555
558 484 0.26 1567.075 1566.815 1563.74 1564.01 -0.27 483 557
560 486 0.725 1573.15 1572.425 1570.205 1569.62 0.585 485 559
562 488 1.115 1579.15 1578.035 1576.14 1575.23 0.91 487 561
564 490 2.005 1585.655 1583.65 1582.345 1580.84 1.505 489 563
566 492 3.075 1592.345 1589.27 1588.79 1586.46 2.33 491 565
568 494 4.185 1599.07 1594.885 1595.695 1592.08 3.615 493 567
570 496 5.37 1605.86 1600.49 1602.43 1597.69 4.74 495 569 38
572 1606.08 1603.285 571
574 498 0.59 1612.26 1611.67 1609.065 1608.875 0.19 497 573
576 500 0.93 1618.19 1617.26 1615.24 1614.465 0.775 499 575
578 502 1.48 1624.33 1622.85 1621.22 1620.055 1.165 501 577
580 504 2.54 1631 1628.46 1627.595 1625.655 1.94 503 579
582 506 3.68 1637.75 1634.07 1634.19 1631.265 2.925 505 581

39 584 508 4.76 1644.44 1639.68 1641.005 1636.875 4.13 507 583
586 1645.29 1647.8 1642.485 5.315 509 585
588 510 0.26 1651.155 1650.895 1648.095 587
590 512 0.81 1657.31 1656.5 1654.265 1653.7 0.565 511 589
592 514 1.19 1663.295 1662.105 1660.255 1659.3 0.955 513 591
594 516 1.815 1669.53 1667.715 1666.385 1664.91 1.475 515 593
596 518 2.965 1676.3 1673.335 1672.965 1670.525 2.44 517 595
598 520 4.13 1683.085 1678.955 1679.6 1676.145 3.455 519 597



600 522 5.135 1689.705 1684.57 1686.385 1681.765 4.62 521 599 40
602 1690.18 1687.375 601
604 524 0.485 1696.275 1695.79 1693.075 1692.985 0.09 523 603
606 526 0.86 1702.255 1701.395 1699.265 1698.595 0.67 525 605
608 528 1.38 1708.385 1707.005 1705.23 1704.2 1.03 527 607
610 530 2.14 1714.76 1712.62 1711.605 1709.81 1.795 529 609
612 532 3.37 1721.605 1718.235 1718.33 1715.43 2.9 531 611

41 614 534 4.555 1728.4 1723.845 1725.005 1721.04 3.965 533 613
616 1729.445 1731.805 1726.645 5.16 535 615
618 536 0.015 1735.05 1735.035 1732.24 617
620 538 0.71 1741.335 1740.625 1738.33 1737.83 0.5 537 619
622 540 1.065 1747.285 1746.22 1744.285 1743.42 0.865 539 621
624 542 1.765 1753.585 1751.82 1750.365 1749.015 1.35 541 623
626 544 2.705 1760.135 1757.43 1756.91 1754.625 2.285 543 625
628 546 3.875 1766.925 1763.05 1763.72 1760.24 3.48 545 627
630 548 5.09 1773.75 1768.66 1770.38 1765.855 4.525 547 629 42
632 1774.27 1771.465 631
634 550 0.425 1780.3 1779.875 1777.125 1777.075 0.05 549 633
636 552 0.87 1786.35 1785.48 1783.41 1782.675 0.735 551 635
638 554 1.32 1792.4 1791.08 1789.35 1788.28 1.07 553 637
640 556 2.235 1798.93 1796.695 1795.555 1793.885 1.67 555 639
642 558 3.23 1805.545 1802.315 1802.205 1799.505 2.7 557 641

43 644 560 4.39 1812.32 1807.93 1809.07 1805.125 3.945 559 643
646 1813.545 1815.665 1810.74 4.925 561 645
648 562 -0.105 1819.05 1819.155 1816.35 647
650 564 0.61 1825.365 1824.755 1822.31 1821.955 0.355 563 649
652 566 0.955 1831.315 1830.36 1828.365 1827.56 0.805 565 651
654 568 1.61 1837.575 1835.965 1834.42 1833.16 1.26 567 653
656 570 2.725 1844.305 1841.58 1840.75 1838.775 1.975 569 655
658 572 3.75 1850.945 1847.195 1847.515 1844.39 3.125 571 657
660 574 4.935 1857.735 1852.8 1854.365 1850 4.365 573 659 44
662 1858.4 1855.6 661
664 576 0.375 1864.375 1864 1861.015 1861.2 -0.185 575 663
666 578 0.8 1870.395 1869.595 1867.425 1866.795 0.63 577 665
668 580 1.215 1876.41 1875.195 1873.375 1872.395 0.98 579 667
670 582 2.025 1882.83 1880.805 1879.58 1878 1.58 581 669
672 584 3.255 1889.68 1886.425 1886.08 1883.615 2.465 583 671

45 674 586 4.295 1896.325 1892.03 1892.84 1889.235 3.605 585 673
676 1897.65 1899.68 1894.845 4.835 587 675
678 588 -0.185 1903.065 1903.25 1900.45 677
680 590 0.645 1909.495 1908.85 1906.305 1906.05 0.255 589 679
682 592 0.985 1915.43 1914.445 1912.45 1911.645 0.805 591 681
684 594 1.545 1921.59 1920.045 1918.445 1917.245 1.2 593 683
686 596 2.45 1928.11 1925.66 1924.885 1922.85 2.035 595 685
688 598 3.745 1935.025 1931.28 1931.485 1928.47 3.015 597 687

46 690 600 4.71 1941.61 1936.9 1938.24 1934.09 4.15 599 689
692 1942.51 1945 1939.705 5.295 601 691
694 602 0.175 1948.295 1948.12 1945.315 693
696 604 0.74 1954.465 1953.725 1951.44 1950.925 0.515 603 695
698 606 1.12 1960.45 1959.33 1957.395 1956.525 0.87 605 697
700 608 1.805 1966.74 1964.935 1963.545 1962.13 1.415 607 699
702 610 2.855 1973.41 1970.555 1970.24 1967.745 2.495 609 701
704 612 4.145 1980.31 1976.165 1976.865 1973.36 3.505 611 703
706 614 5.18 1986.955 1981.775 1983.655 1978.97 4.685 613 705 47
708 1987.38 1984.575 707
710 616 0.505 1993.485 1992.98 1990.38 1990.18 0.2 615 709
712 618 0.9 1999.48 1998.58 1996.505 1995.78 0.725 617 711
714 620 1.405 2005.585 2004.18 2002.47 2001.38 1.09 619 713
716 622 2.245 2012.04 2009.795 2008.775 2006.99 1.785 621 715
718 624 3.345 2018.755 2015.41 2015.62 2012.6 3.02 623 717

48 720 626 4.59 2025.605 2021.015 2022.25 2018.215 4.035 625 719
722 2026.615 2029 2023.815 5.185 627 721
724 628 0.085 2032.295 2032.21 2029.415 723
726 630 0.745 2038.55 2037.805 2035.56 2035.005 0.555 629 725
728 632 1.125 2044.52 2043.395 2041.535 2040.6 0.935 631 727
730 634 1.845 2050.845 2049 2047.635 2046.2 1.435 633 729
732 636 2.815 2057.435 2054.62 2054.03 2051.81 2.22 635 731
734 638 3.91 2064.155 2060.245 2060.95 2057.43 3.52 637 733
736 640 5.065 2070.93 2065.865 2067.555 2063.055 4.5 639 735 49
738 2071.48 2068.67 737
740 642 0.39 2077.485 2077.095 2074.24 2074.29 -0.05 641 739
742 644 0.79 2083.49 2082.7 2080.565 2079.9 0.665 643 741
744 646 1.235 2089.545 2088.31 2086.505 2085.505 1 645 743
746 648 2.235 2096.16 2093.925 2092.75 2091.12 1.63 647 745
748 650 3.255 2102.8 2099.545 2099.305 2096.735 2.57 649 747

50 750 652 4.405 2109.565 2105.16 2106.24 2102.355 3.885 651 749
752 2110.765 2112.89 2107.965 4.925 653 751
754 654 -0.025 2116.34 2116.365 2113.565 753
756 656 0.645 2122.605 2121.96 2119.5 2119.165 0.335 655 755
758 658 0.985 2128.54 2127.555 2125.58 2124.755 0.825 657 757
760 660 1.6 2134.755 2133.155 2131.61 2130.35 1.26 659 759
762 662 2.78 2141.54 2138.76 2138.02 2135.955 2.065 661 761
764 664 3.83 2148.2 2144.37 2144.68 2141.565 3.115 663 763
766 666 4.965 2154.94 2149.975 2151.53 2147.175 4.355 665 765 51
768 2155.575 2152.775 767
770 668 0.425 2161.6 2161.175 2158.27 2158.375 -0.105 667 769
772 670 0.88 2167.65 2166.77 2164.645 2163.97 0.675 669 771
774 672 1.31 2173.68 2172.37 2170.615 2169.57 1.045 671 773
776 674 1.995 2179.975 2177.98 2176.825 2175.175 1.65 673 775
778 676 3.25 2186.855 2183.605 2183.4 2180.795 2.605 675 777

52 780 678 4.295 2193.52 2189.225 2190.08 2186.415 3.665 677 779
782 2194.845 2196.865 2192.035 4.83 679 781
784 680 -0.275 2200.185 2200.46 2197.655 783
786 682 0.585 2206.655 2206.07 2203.5 2203.265 0.235 681 785
788 684 0.915 2212.595 2211.68 2209.6 2208.875 0.725 683 787
790 686 1.5 2218.79 2217.29 2215.6 2214.485 1.115 685 789
792 688 2.315 2225.225 2222.91 2222.09 2220.1 1.99 687 791
794 690 3.625 2232.155 2228.53 2228.76 2225.72 3.04 689 793

53 796 692 4.71 2238.85 2234.14 2235.49 2231.335 4.155 691 795
798 2239.74 2242.28 2236.94 5.34 693 797
800 694 0.16 2245.49 2245.33 2242.535 799



802 696 0.755 2251.675 2250.92 2248.69 2248.13 0.56 695 801
804 698 1.135 2257.65 2256.515 2254.62 2253.715 0.905 697 803
806 700 1.9 2264.01 2262.11 2260.755 2259.31 1.445 699 805
808 702 2.885 2270.61 2267.725 2267.45 2264.915 2.535 701 807
810 704 4.115 2277.45 2273.335 2274.16 2270.53 3.63 703 809
812 706 5.295 2284.235 2278.94 2280.88 2276.14 4.74 705 811 54
814 2284.545 2281.745 813
816 708 0.56 2290.71 2290.15 2287.605 2287.35 0.255 707 815
818 710 0.96 2296.71 2295.75 2293.76 2292.95 0.81 709 817
820 712 1.47 2302.825 2301.355 2299.735 2298.555 1.18 711 819
822 714 2.405 2309.38 2306.975 2305.97 2304.165 1.805 713 821
824 716 3.425 2316.02 2312.595 2312.755 2309.785 2.97 715 823

55 826 718 4.595 2322.805 2318.21 2319.51 2315.4 4.11 717 825
828 2323.82 2326.15 2321.015 5.135 719 827
830 720 0.07 2329.5 2329.43 2326.625 829
832 722 0.68 2335.715 2335.035 2332.725 2332.235 0.49 721 831
834 724 1.04 2341.685 2340.645 2338.705 2337.84 0.865 723 833
836 726 1.795 2348.05 2346.255 2344.835 2343.445 1.39 725 835
838 728 2.87 2354.745 2351.875 2351.195 2349.065 2.13 727 837
840 730 3.94 2361.43 2357.49 2358.06 2354.685 3.375 729 839
842 732 5.13 2368.225 2363.095 2364.825 2360.295 4.53 731 841 56
844 2368.695 2365.895 843
846 734 0.465 2374.755 2374.29 2371.47 2371.495 -0.025 733 845
848 736 0.83 2380.715 2379.885 2377.775 2377.085 0.69 735 847
850 738 1.305 2386.785 2385.48 2383.72 2382.68 1.04 737 849
852 740 2.27 2393.36 2391.09 2390.01 2388.285 1.725 739 851
854 742 3.425 2400.13 2396.705 2396.545 2393.9 2.645 741 853

57 856 744 4.495 2406.815 2402.32 2403.365 2399.515 3.85 743 855
858 2407.93 2410.185 2405.125 5.06 745 857
860 746 0.04 2413.575 2413.535 2410.73 859
862 748 0.725 2419.86 2419.135 2416.745 2416.335 0.41 747 861
864 750 1.07 2425.8 2424.73 2422.805 2421.93 0.875 749 863
866 752 1.655 2431.99 2430.335 2428.845 2427.535 1.31 751 865
868 754 2.715 2438.665 2435.95 2435.355 2433.145 2.21 753 867
870 756 3.93 2445.5 2441.57 2441.965 2438.76 3.205 755 869
872 758 4.925 2452.11 2447.185 2448.745 2444.375 4.37 757 871 58
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11.2 Supplementary file 2



0 0 0.635 339.98 339.345
2 2 1.135 346.095 344.96 342.975 342.155 0.82 1 1
4 4 2.175 352.765 350.59 349.34 347.775 1.565 3 3
6 6 3.46 359.69 356.23 356.2 353.41 2.79 5 5

1 8 8 4.69 366.56 361.87 363.115 359.08 4.035 7 7
10 367.505 369.96 364.69 5.27 9 9
12 10 0.17 373.305 373.135 370.32 11
14 12 0.82 379.58 378.76 376.525 375.945 0.58 11 13
16 14 1.495 385.88 384.385 382.605 381.57 1.035 13 15
18 16 2.73 392.75 390.02 389.225 387.2 2.025 15 17
20 18 4 399.625 395.625 396.125 392.84 3.285 17 19
22 20 5.145 406.43 401.285 403.02 398.475 4.545 19 21 2
24 406.905 404.095 23
26 22 0.51 413.035 412.525 409.81 409.715 0.095 21 25
28 24 1.02 419.165 418.145 416.12 415.335 0.785 23 27
30 26 1.955 425.73 423.775 422.35 420.955 1.395 25 29
32 28 3.28 432.7 429.42 429.22 426.595 2.625 27 31

3 34 30 4.515 439.575 435.06 436.1 432.24 3.86 29 33
36 440.69 442.945 437.875 5.07 31 35
38 32 0.055 446.365 446.31 443.5 37
40 34 0.715 452.645 451.93 449.595 449.12 0.475 33 39
42 36 1.3 458.855 457.555 455.745 454.74 1.005 35 41
44 38 2.465 465.65 463.185 462.23 460.37 1.86 37 43
46 40 3.76 472.585 468.825 469.21 466.005 3.205 39 45
48 42 4.975 479.435 474.46 476.05 471.645 4.405 41 47 4
50 480.08 477.27 49
52 44 0.47 486.17 485.7 482.845 482.89 -0.045 43 51
54 46 0.95 492.265 491.315 489.22 488.51 0.71 45 53
56 48 1.78 498.72 496.94 495.445 494.13 1.315 47 55
58 50 3.05 505.63 502.58 502.17 499.76 2.41 49 57

5 60 52 4.3 512.52 508.22 509.15 505.4 3.75 51 59
62 513.855 515.965 511.04 4.925 53 61
64 54 -0.18 519.3 519.48 516.67 63
66 56 0.68 525.785 525.105 522.67 522.295 0.375 55 65
68 58 1.215 531.95 530.735 528.78 527.92 0.86 57 67
70 60 2.325 538.695 536.37 535.22 533.55 1.67 59 69
72 62 3.61 545.62 542.01 542.11 539.19 2.92 61 71
74 64 4.805 552.45 547.645 549.035 544.83 4.205 63 73 6
76 553.265 550.455 75
78 66 0.3 559.185 558.885 555.85 556.075 -0.225 65 77
80 68 0.885 565.385 564.5 562.345 561.69 0.655 67 79
82 70 1.645 571.765 570.12 568.45 567.31 1.14 69 81
84 72 2.915 578.675 575.76 575.16 572.94 2.22 71 83

7 86 74 4.17 585.565 581.395 582.05 578.58 3.47 73 85
88 587.03 588.93 584.215 4.715 75 87
90 76 -0.315 592.34 592.655 589.84 89
92 78 0.57 598.845 598.275 595.68 595.465 0.215 77 91
94 80 1.08 604.98 603.9 601.925 601.09 0.835 79 93
96 82 2.09 611.625 609.535 608.235 606.715 1.52 81 95
98 84 3.415 618.595 615.18 615.16 612.355 2.805 83 97

8 100 86 4.655 625.47 620.815 622.035 618 4.035 85 99
102 626.44 628.85 623.63 5.22 87 101
104 88 0.21 632.27 632.06 629.25 103
106 90 0.79 638.465 637.675 635.43 634.87 0.56 89 105
108 92 1.44 644.735 643.295 641.585 640.485 1.1 91 107
110 94 2.65 651.58 648.93 648.145 646.11 2.035 93 109
112 96 3.925 658.49 654.565 655.135 651.745 3.39 95 111
114 98 5.125 665.32 660.195 661.96 657.385 4.575 97 113 9
116 665.82 663.01 115
118 100 0.545 671.985 671.44 668.74 668.63 0.11 99 117
120 102 1.03 678.09 677.06 675.005 674.25 0.755 101 119
122 104 1.95 684.64 682.69 681.29 679.875 1.415 103 121
124 106 3.235 691.57 688.335 688.085 685.51 2.575 105 123

10 126 108 4.47 698.445 693.975 695.05 691.155 3.895 107 125
128 699.61 701.87 696.795 5.075 109 127
130 110 -0.015 705.22 705.235 702.42 129
132 112 0.735 711.595 710.86 708.525 708.045 0.48 111 131
134 114 1.34 717.825 716.485 714.605 713.67 0.935 113 133
136 116 2.5 724.62 722.12 721.115 719.3 1.815 115 135
138 118 3.78 731.54 727.76 728.02 724.94 3.08 117 137
140 120 4.955 738.345 733.39 734.925 730.575 4.35 119 139 11
142 739.01 736.2 141
144 122 0.405 745.03 744.625 741.73 741.82 -0.09 121 143
146 124 0.94 751.18 750.24 748.15 747.435 0.715 123 145
148 126 1.785 757.65 755.865 754.3 753.05 1.25 125 147
150 128 3.09 764.59 761.5 761.1 758.68 2.42 127 149

12 152 130 4.335 771.475 767.14 767.985 764.325 3.66 129 151
154 772.775 774.845 769.96 4.885 131 153
156 132 -0.14 778.26 778.4 775.59 155
158 134 0.64 784.665 784.025 781.555 781.215 0.34 133 157
160 136 1.16 790.815 789.655 787.745 786.84 0.905 135 159
162 138 2.245 797.535 795.29 794.135 792.47 1.665 137 161
164 140 3.555 804.485 800.93 801.095 798.11 2.985 139 163
166 142 4.79 811.355 806.565 807.95 803.75 4.2 141 165 13
168 812.185 809.375 167
170 144 0.34 818.14 817.8 814.75 814.995 -0.245 143 169
172 146 0.865 824.28 823.415 821.24 820.605 0.635 145 171
174 148 1.59 830.625 829.035 827.42 826.22 1.2 147 173
176 150 2.845 837.515 834.67 834.06 831.85 2.21 149 175
178 152 4.06 844.39 840.33 841.05 837.49 3.56 151 177
180 154 5.275 851.215 845.94 847.87 843.125 4.745 153 179 14
182 851.57 848.755 181
184 156 0.61 857.8 857.19 854.625 854.38 0.245 155 183
186 158 1.105 863.925 862.82 860.8 860.005 0.795 157 185
188 160 2.12 870.57 868.45 867.145 865.635 1.51 159 187
190 162 3.41 877.505 874.095 873.995 871.275 2.72 161 189

15 192 164 4.63 884.36 879.73 880.92 876.925 3.995 163 191

N-cell
vortex No.

L-cell
Vortex No.

N-cell
cycle No.

Vortices	in	the	'‐Y'	side	of	the	step	cylinder Vortices	in	the	'+Y'	side	of	the	step	cylinder
N-cell

cycle No.
L-cell

Vortex No.
N-cell

vortex No. Φ୤ φ୒ φ୐ Φ୤φ୒ φ୐

Supplementary file 2: Detailed information about the N- and L-cell vortices for the D/d=2.4 case.



194 885.36 887.765 882.545 5.22 165 193
196 166 0.145 891.125 890.98 888.17 195
198 168 0.805 897.405 896.6 894.36 893.79 0.57 167 197
200 170 1.485 903.705 902.22 900.435 899.41 1.025 169 199
202 172 2.69 910.545 907.855 907.04 905.04 2 171 201
204 174 3.965 917.46 913.495 913.935 910.675 3.26 173 203
206 176 5.115 924.245 919.13 920.825 916.315 4.51 175 205 16
208 924.75 921.94 207
210 178 0.485 930.855 930.37 927.605 927.565 0.04 177 209
212 180 0.985 936.98 935.995 933.95 933.18 0.77 179 211
214 182 1.915 943.535 941.62 940.17 938.805 1.365 181 213
216 184 3.225 950.49 947.265 947.035 944.44 2.595 183 215

17 218 186 4.475 957.38 952.905 953.92 950.085 3.835 185 217
220 958.535 960.76 955.72 5.04 187 219
222 188 0.025 964.18 964.155 961.345 221
224 190 0.71 970.485 969.775 967.42 966.965 0.455 189 223
226 192 1.28 976.675 975.395 973.575 972.585 0.99 191 225
228 194 2.44 983.465 981.025 980.04 978.21 1.83 193 227
230 196 3.72 990.385 986.665 987.02 983.845 3.175 195 229
232 198 4.94 997.235 992.295 993.86 989.485 4.375 197 231 18
234 997.92 995.11 233
236 200 0.445 1003.98 1003.535 1000.65 1000.73 -0.08 199 235
238 202 0.94 1010.095 1009.155 1007.035 1006.345 0.69 201 237
240 204 1.75 1016.53 1014.78 1013.25 1011.965 1.285 203 239
242 206 3.035 1023.455 1020.42 1019.97 1017.6 2.37 205 241

19 244 208 4.275 1030.335 1026.06 1026.955 1023.24 3.715 207 243
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11.3 Supplementary file 3



Time trace of Φ௙ between N- and L-cell vortices is plotted in the 1st-8th N-cell cycles. Green
and red lines are plotted to describel the tendency of Φ௙ of the NL-loop1s and NL-loop2s. The
long N-cell cycles are marked by ‘LNC’ with serial number. The ‘trigger value’ and ‘threshold
value’ of vortex dislocations are marked by a blue and yellow line, respectively.

Supplementary file 3: Time trace of the 𝜱𝒇 between N- and L-cell vortices in the D/d=2 case.
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11.4 Supplementary file 4



Figure 1. (a) Instantaneous spanwise vorticity ω୸ (ω୸ ൌ 𝜕v 𝜕x⁄ െ 𝜕u 𝜕y⁄ ) contour plots in a
(x,y) plane at z/D = -14 at tU/D = 5.9. An isoline with λଶ ൌ െ1 is plotted in green. (b)
Distribution of ω୸ is plotted along a sampling line at (y/D, z/D) = (0, -14) within the range 1<
x/D <2, shown as a red line in subplot (a). (c) Time traces of maximum vorticity ω୸୫ୟ୶D/U
(black circle in (b)) and the vortex strength Γ/DU are plotted from tU/D = 4.6 to 7.5 with a time
interval of 0.1D/U. The resolution of the sampling line is 0.05D.

REFERENCES:
[1] GREEN, R.B. & GERRARD, J.H. 1993 Vorticity measurements in the near wake of a
circular cylinder at low Reynolds numbers. J. Fluid Mech. 246, 675-691.
[2] GRIFFIN, O.M. 1995 A note on bluff body vortex formation. J. Fluid Mech. 284, 217-224.

In the present case, the integration area is defined as the region within the corresponding isoline
λଶ ൌ െ1. By monitoring the time traces of the strength of a vortex and the corresponding
vorticity distribution along the center line at y/D = 0, we found that in the present low-
Reynolds-number case the instant when vortex strength reaches its maximum is also the instant
when the corresponding largest ω୸ appears at the center line. As an example, the formation
process of the vortex V is monitored and plotted in figure 1. In figure 1(a), the ω୸-contour and
the isoline for λଶ ൌ െ1 are plotted in the (x, y)-plane at the L-cell area z/D = -14 at tU/D = 5.9,
in which the vortex V is marked. By integrating ω୸ within the green circle surrounding vortex V,
the vortex strength Γ at tU/D = 5.9 can be obtained. At the same instant, the ω୸-distribution
along a sampling line (the red line in figure 1(a)) at (y/D, z/D)=(0, -14) is plotted in figure 1(b).
The peak of this distribution curve is marked and defined as ω୸୫ୟ୶. By repeating this process,
we were able to plot figure 1(c), from which one can see that the vortex strength and ω୸୫ୟ୶ at
the center line reach their maximum at the same time. This means that in the present low-
Reynolds-number case the time instant when the largest ω୸୫ୟ୶ appears at the center line, is the
approximate instant when the corresponding vortex is formed.

According to Green & Gerrard [1] and Griffin [2], the end of the vortex formation region
coincides with the location where the vortex strength becomes maximum. For a spanwise (z-dir.)
vortex, the vortex strength in terms of circulation (Γ) can be measured as: .

Supplementary file 4: An example of monitoring the phase information of vortex.
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11.5 Supplementary file 5



2 2 0.655 207.675 207.02 204.615 204.11 0.505 1 1
4 4 1.36 213.895 212.535 210.695 209.725 0.97 3 3
6 6 2.54 220.695 218.155 217.155 215.345 1.81 5 5
8 8 3.815 227.595 223.78 224.035 220.97 3.065 7 7

10 10 5 234.395 229.395 230.945 226.59 4.355 9 9 1
12 235.005 232.2 11
14 12 0.36 240.965 240.605 237.635 237.805 -0.17 11 13
16 14 0.845 247.055 246.21 244.035 243.41 0.625 13 15
18 16 1.54 253.36 251.82 250.15 249.015 1.135 15 17
20 18 2.77 260.21 257.44 256.605 254.625 1.98 17 19
22 20 4.005 267.07 263.065 263.5 260.25 3.25 19 21
24 22 5.135 273.815 268.68 270.375 265.875 4.5 21 23 2
26 274.295 271.485 25
28 24 0.42 280.325 279.905 277.07 277.1 -0.03 23 27
30 26 0.88 286.395 285.515 283.415 282.71 0.705 25 29
32 28 1.635 292.77 291.135 289.545 288.325 1.22 27 31
34 30 2.84 299.605 296.765 296.105 293.95 2.155 29 33
36 32 4.09 306.49 302.4 303.015 299.585 3.43 31 35
38 34 5.205 313.23 308.025 309.86 305.215 4.645 33 37 3
40 313.645 310.835 39
42 36 0.42 319.68 319.26 316.55 316.455 0.095 35 41
44 38 0.88 325.755 324.875 322.765 322.07 0.695 37 43
46 40 1.655 332.15 330.495 328.925 327.685 1.24 39 45
48 42 2.87 338.99 336.12 335.655 333.305 2.35 41 47
50 44 4.175 345.915 341.74 342.57 338.93 3.64 43 49
52 46 5.305 352.66 347.355 349.39 344.55 4.84 45 51 4
54 352.955 350.155 53
56 48 0.555 359.115 358.56 356.005 355.76 0.245 47 55
58 50 1.05 365.21 364.16 362.145 361.36 0.785 49 57
60 52 1.83 371.6 369.77 368.37 366.965 1.405 51 59
62 54 3.075 378.465 375.39 375.17 372.58 2.59 53 61

5 64 56 4.33 385.345 381.015 382.05 378.205 3.845 55 63
66 386.63 388.815 383.82 4.995 57 65
68 58 -0.17 392.075 392.245 389.435 67
70 60 0.645 398.505 397.86 395.375 395.05 0.325 59 69
72 62 1.125 404.6 403.475 401.48 400.665 0.815 61 71
74 64 1.98 411.08 409.1 407.77 406.285 1.485 63 73
76 66 3.245 417.98 414.735 414.55 411.92 2.63 65 75

6 78 68 4.465 424.83 420.365 421.46 417.55 3.91 67 77
80 425.99 428.225 423.18 5.045 69 79
82 70 -0.06 431.545 431.605 428.8 81
84 72 0.635 437.855 437.22 434.73 434.41 0.32 71 83
86 74 1.125 443.96 442.835 440.83 440.025 0.805 73 85
88 76 2.155 450.61 448.455 447.155 445.64 1.515 75 87
90 78 3.445 457.53 454.085 453.94 451.27 2.67 77 89

7 92 80 4.66 464.365 459.705 460.875 456.895 3.98 79 91
94 465.315 467.665 462.51 5.155 81 93
96 82 0.105 471.02 470.915 468.115 95
98 84 0.72 477.235 476.515 474.17 473.715 0.455 83 97

100 86 1.27 483.385 482.115 480.275 479.315 0.96 85 99
102 88 2.39 490.12 487.73 486.6 484.92 1.68 87 101
104 90 3.665 497.015 493.35 493.42 490.54 2.88 89 103

8 106 92 4.83 503.8 498.97 500.305 496.16 4.145 91 105
108 504.59 507.08 501.78 5.3 93 107
110 94 0.205 510.41 510.205 507.395 109
112 96 0.755 516.575 515.82 513.59 513.01 0.58 95 111
114 98 1.34 522.78 521.44 519.665 518.625 1.04 97 113
116 100 2.435 529.5 527.065 526.06 524.25 1.81 99 115
118 102 3.725 536.425 532.7 532.935 529.885 3.05 101 117
120 104 4.88 543.21 538.33 539.8 535.515 4.285 103 119 9
122 543.945 541.14 121
124 106 0.205 549.765 549.56 546.54 546.755 -0.215 105 123
126 108 0.735 555.915 555.18 552.945 552.37 0.575 107 125
128 110 1.375 562.17 560.795 559.015 557.985 1.03 109 127
130 112 2.465 568.89 566.425 565.57 563.61 1.96 111 129
132 114 3.78 575.83 572.05 572.485 569.24 3.245 113 131
134 116 4.985 582.655 577.67 579.335 574.86 4.475 115 133 10
136 583.275 580.475 135
138 118 0.325 589.2 588.875 586.025 586.075 -0.05 117 137
140 120 0.88 595.35 594.47 592.325 591.67 0.655 119 139
142 122 1.545 601.62 600.075 598.42 597.27 1.15 121 141
144 124 2.68 608.37 605.69 605.075 602.88 2.195 123 143
146 126 3.955 615.27 611.315 611.985 608.505 3.48 125 145
148 128 5.145 622.08 616.935 618.785 614.125 4.66 127 147 11
150 622.555 619.745 149

N-cell

vortex No.

L-cell

Vortex No.

N-cell

cycle No.

Vortices in the '-Y' side of the step cylinder Vortices in the '+Y' side of the step cylinder
N-cell

cycle No.

L-cell

Vortex No.

N-cell

vortex No. Φ� φ� φ� φ� Φ�φ�

Supplementary file 5: Detailed information about the N- and L-cell vortices for the D/d=2.2 case.



152 130 0.49 628.66 628.17 625.43 625.36 0.07 129 151
154 132 0.96 634.74 633.78 631.675 630.975 0.7 131 153
156 134 1.66 641.06 639.4 637.81 636.59 1.22 133 155
158 136 2.87 647.9 645.03 644.46 642.215 2.245 135 157
160 138 4.115 654.775 650.66 651.395 647.845 3.55 137 159
162 140 5.26 661.545 656.285 658.2 653.475 4.725 139 161 12
164 661.9 659.095 163
166 142 0.515 668.035 667.52 664.795 664.71 0.085 141 165
168 144 0.95 674.085 673.135 671.015 670.325 0.69 143 167
170 146 1.785 680.545 678.76 677.205 675.945 1.26 145 169
172 148 3.065 687.455 684.39 683.855 681.575 2.28 147 171

13 174 150 4.305 694.315 690.01 690.785 687.205 3.58 149 173
697.645 692.82 4.825 151 175
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11.6 Supplementary file 6



2 2 1.97 8.375 6.405 4.985 3.62 1.365 1 1
4 4 3.25 15.335 12.085 11.915 9.26 2.655 3 3
6 6 4.45 22.175 17.725 18.755 14.905 3.85 5 5 1
8 23.365 25.59 20.545 5.045 7 7
10 8 -0.025 28.97 28.995 26.18 9
12 10 0.555 35.185 34.63 32.135 31.81 0.325 9 11
14 12 1.465 41.73 40.265 38.38 37.445 0.935 11 13
16 14 2.78 48.695 45.915 45.165 43.09 2.075 13 15

2 18 16 3.955 55.52 51.565 52.07 48.74 3.33 15 17
20 18 5.16 62.36 57.2 58.925 54.385 4.54 17 19
22 62.825 60.015 21
24 20 0.36 68.81 68.45 65.7 65.64 0.06 19 23
26 22 1.065 75.14 74.075 71.885 71.26 0.625 21 25
28 24 2.26 81.975 79.715 78.465 76.895 1.57 23 27
30 26 3.47 88.84 85.37 85.435 82.54 2.895 25 29
32 28 4.665 95.68 91.015 92.285 88.19 4.095 27 31 3
34 96.65 99.13 93.83 5.3 29 33
36 30 0.125 102.405 102.28 99.465 35
38 32 0.7 108.61 107.91 105.485 105.095 0.39 31 37
40 34 1.685 115.235 113.55 111.875 110.725 1.15 33 39
42 36 2.965 122.165 119.2 118.77 116.375 2.395 35 41
44 38 4.195 129.04 124.845 125.625 122.025 3.6 37 43 4
46 130.48 132.45 127.665 4.785 39 45
48 40 -0.22 135.885 136.105 133.295 47
50 42 0.44 142.17 141.73 139.095 138.915 0.18 41 49
52 44 1.235 148.595 147.36 145.35 144.54 0.81 43 51
54 46 2.525 155.525 153 152.03 150.18 1.85 45 53

5 56 48 3.745 162.4 158.655 158.93 155.83 3.1 47 55
58 50 4.93 169.225 164.295 165.79 161.475 4.315 49 57
60 169.925 167.11 59
62 52 0.225 175.78 175.555 172.625 172.74 -0.115 51 61
64 54 0.89 182.075 181.185 178.88 178.37 0.51 53 63
66 56 2.01 188.835 186.825 185.335 184 1.335 55 65
68 58 3.25 195.725 192.475 192.26 189.65 2.61 57 67
70 60 4.44 202.555 198.115 199.16 195.295 3.865 59 69 6
72 203.75 206 200.935 5.065 61 71
74 62 -0.035 209.34 209.375 206.56 73
76 64 0.605 215.605 215 212.47 212.185 0.285 63 75
78 66 1.475 222.105 220.63 218.775 217.815 0.96 65 77
80 68 2.74 229.02 226.28 225.605 223.455 2.15 67 79

7 82 70 3.975 235.905 231.93 232.515 229.105 3.41 69 81
84 72 5.195 242.76 237.565 239.33 234.75 4.58 71 83
86 243.195 240.38 85
88 74 0.36 249.18 248.82 246.045 246.01 0.035 73 87
90 76 1.035 255.485 254.45 252.32 251.635 0.685 75 89
92 78 2.26 262.35 260.09 258.905 257.27 1.635 77 91
94 80 3.54 269.28 265.74 265.82 262.915 2.905 79 93
96 82 4.71 276.095 271.385 272.665 268.565 4.1 81 95 8
98 277.015 279.515 274.2 5.315 83 97
100 84 0.115 282.755 282.64 279.825 99
102 86 0.74 289.005 288.265 285.89 285.45 0.44 85 101
104 88 1.79 295.69 293.9 292.23 291.08 1.15 87 103
106 90 3.07 302.62 299.55 299.105 296.725 2.38 89 105
108 92 4.245 309.445 305.2 306.03 302.375 3.655 91 107 9
110 310.835 312.865 308.015 4.85 93 109
112 94 -0.205 316.255 316.46 313.645 111
114 96 0.515 322.6 322.085 319.47 319.275 0.195 95 113
116 98 1.29 329.005 327.715 325.695 324.9 0.795 97 115
118 100 2.54 335.9 333.36 332.44 330.54 1.9 99 117

10 120 102 3.765 342.775 339.01 339.4 336.19 3.21 101 119
122 104 4.98 349.63 344.65 346.21 341.83 4.38 103 121
124 350.28 347.465 123
126 106 0.285 356.19 355.905 352.995 353.095 -0.1 105 125
128 108 0.875 362.41 361.535 359.28 358.72 0.56 107 127
130 110 2.015 369.19 367.175 365.785 364.35 1.435 109 129
132 112 3.32 376.145 372.825 372.71 369.995 2.715 111 131
134 114 4.505 382.97 378.465 379.55 375.645 3.905 113 133 11
136 384.1 386.39 381.285 5.105 115 135
138 116 0.01 389.735 389.725 386.915 137
140 118 0.6 395.95 395.35 392.89 392.54 0.35 117 139
142 120 1.555 402.54 400.985 399.155 398.17 0.985 119 141
144 122 2.865 409.5 406.635 405.975 403.81 2.165 121 143

12 146 124 4.04 416.325 412.285 412.88 409.46 3.42 123 145
148 126 5.235 423.155 417.92 419.73 415.105 4.625 125 147
150 423.55 420.735 149
152 128 0.4 429.575 429.175 426.465 426.365 0.1 127 151
154 130 1.12 435.925 434.805 432.65 431.99 0.66 129 153

N-cell
vortex No.

L-cell
Vortex No.

N-cell
cycle No.

Vortices in the '-Y' side of the step cylinder Vortices in the '+Y' side of the step cylinder
N-cell

cycle No.
L-cell

Vortex No.
N-cell

vortex No. Φ� φ� φ� φ� Φ�φ�

Supplementary file 6: Detailed information about the N- and L-cell vortices for the D/d=2.6 case.



172 146 4.285 489.845 485.56 486.43 482.735 3.695 145 171 14
170 144 3.075 482.985 479.91 479.58 477.085 2.495 143 169
168 142 1.78 476.045 474.265 472.67 471.44 1.23 141 167
166 140 0.74 469.365 468.625 466.24 465.81 0.43 139 165
164 138 0.175 463.175 463 460.185 163
162 457.37 459.925 454.555 5.37 137 161
160 136 4.75 456.49 451.74 453.09 448.92 4.17 135 159 13
158 134 3.545 449.645 446.1 446.255 443.275 2.98 133 157
156 132 2.33 442.78 440.45 439.28 437.625 1.655 131 155

.
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11.7 Supplementary file 7



2 2 0.2575 59.14 58.8825 55.93 56.0675 -0.1375 1 1
4 4 1.1975 65.715 64.5175 62.395 61.6975 0.6975 3 3
6 6 2.5225 72.695 70.1725 69.23 67.3425 1.8875 5 5

1 8 8 3.7125 79.54 75.8275 76.11 72.9975 3.1125 7 7
10 10 4.9275 86.4 81.4725 82.975 78.6525 4.3225 9 9
12 87.1075 89.71 84.2925 5.4175 11 11
14 12 0.1425 92.885 92.7425 89.9275 13
16 14 1.0275 99.41 98.3825 96.04 95.5625 0.4775 13 15
18 16 2.2475 106.29 104.0425 102.845 101.2075 1.6375 15 17

2 20 18 3.4725 113.175 109.7025 109.765 106.8725 2.8925 17 19
22 20 4.6975 120.055 115.3575 116.6 112.5325 4.0675 19 21
24 120.9975 123.41 118.1825 5.2275 21 23
26 22 -0.0425 126.595 126.6375 123.8175 25
28 24 0.7925 133.07 132.2775 129.82 129.4525 0.3675 23 27
30 26 2.0225 139.95 137.9275 136.43 135.0975 1.3325 25 29

3 32 28 3.2275 146.82 143.5925 143.395 140.7625 2.6325 27 31
34 30 4.4375 153.685 149.2475 150.245 146.4225 3.8225 29 33
36 154.8925 157.1 152.0725 5.0275 31 35
38 32 -0.1425 160.385 160.5275 157.7125 37
40 34 0.5625 166.725 166.1625 163.53 163.3425 0.1875 33 39
42 36 1.7325 173.545 171.8125 170.13 168.9875 1.1425 35 41
44 38 2.9975 180.475 177.4775 177.015 174.6425 2.3725 37 43
46 40 4.1825 187.315 183.1325 183.88 180.3075 3.5725 39 45 4
48 42 5.2975 194.075 188.7775 190.765 185.9575 4.8075 41 47
50 194.4175 191.5975 49
52 44 0.4475 200.505 200.0575 197.27 197.2375 0.0325 43 51
54 46 1.4575 207.16 205.7025 203.745 202.8775 0.8675 45 53
56 48 2.7325 214.1 211.3675 210.67 208.5325 2.1375 47 55
58 50 3.9225 220.95 217.0275 217.535 214.1975 3.3375 49 57 5
60 52 5.1275 227.8 222.6725 224.4 219.8525 4.5475 51 59
62 228.3125 225.4925 61
64 54 0.2375 234.18 233.9425 231.05 231.1275 -0.0775 53 63
66 56 1.2525 240.84 239.5875 237.43 236.7625 0.6675 55 65
68 58 2.5025 247.745 245.2425 244.255 242.4125 1.8425 57 67

6 70 60 3.6825 254.59 250.9075 251.135 248.1275 3.0075 59 69
72 62 4.9175 261.475 256.5575 258.035 253.7375 4.2975 61 71
74 262.2025 264.745 259.3825 5.3625 63 73
76 64 0.1175 267.955 267.8375 265.0225 75
78 66 0.9525 274.43 273.4775 271.18 270.6575 0.5225 65 77
80 68 2.2475 281.385 279.1375 277.9 276.3075 1.5925 67 79

7 82 70 3.4475 288.25 284.8025 284.81 281.9675 2.8425 69 81
84 72 4.6625 295.115 290.4525 291.665 287.6275 4.0375 71 83
86 296.0925 298.495 293.2725 5.2225 73 85
88 74 -0.0175 301.71 301.7275 298.9075 87
90 76 0.7825 308.145 307.3625 304.845 304.5425 0.3025 75 89
92 78 1.9575 314.97 313.0125 311.545 310.1875 1.3575 77 91

8 94 80 3.2075 321.89 318.6825 318.47 315.8475 2.6225 79 93
96 82 4.4075 328.745 324.3375 325.305 321.5125 3.7925 81 95
98 329.9825 332.17 327.1625 5.0075 83 97
100 84 -0.2025 335.42 335.6225 332.8025 99
102 86 0.5775 341.84 341.2625 338.635 338.4425 0.1925 85 101
104 88 1.7275 348.64 346.9125 345.135 344.0825 1.0525 87 103
106 90 2.9525 355.53 352.5775 352.095 349.7425 2.3525 89 105
108 92 4.1475 362.38 358.2325 358.96 355.4075 3.5525 91 107 9
110 94 5.3075 369.18 363.8725 365.835 361.0525 4.7825 93 109
112 369.5075 366.6925 111
114 96 0.3775 375.52 375.1425 372.355 372.3225 0.0325 95 113
116 98 1.4575 382.24 380.7825 378.86 377.9625 0.8975 97 115
118 100 2.7425 389.19 386.4475 385.705 383.6125 2.0925 99 117
120 102 3.9075 396.02 392.1125 392.595 389.2825 3.3125 101 119 10
122 104 5.0925 402.855 397.7625 399.465 394.9375 4.5275 103 121
124 403.4025 400.5825 123
126 106 0.2725 409.315 409.0425 406.1 406.2225 -0.1225 105 125
128 108 1.1725 415.86 414.6875 412.5 411.8625 0.6375 107 127
130 110 2.4525 422.8 420.3475 419.365 417.5125 1.8525 109 129

11 132 112 3.6575 429.665 426.0075 426.25 423.2275 3.0225 111 131
134 114 4.8925 436.55 431.6575 433.095 428.8325 4.2625 113 133
136 437.2925 439.86 434.4725 5.3875 115 135
138 116 0.0825 443.005 442.9225 440.1075 137
140 118 1.0025 449.565 448.5625 446.215 445.7425 0.4725 117 139
142 120 2.2225 456.44 454.2175 452.945 451.3875 1.5575 119 141

12 144 122 3.4225 463.305 459.8825 459.9 457.0475 2.8525 121 143
146 124 4.6475 470.185 465.5375 466.74 462.7125 4.0275 123 145

N-cell
vortex No.

L-cell
Vortex No.

N-cell
cycle No.

Vortices in the '-Y' side of the step cylinder Vortices in the '+Y' side of the step cylinder
N-cell

cycle No.
L-cell

Vortex No.
N-cell

vortex No. Φ� φ� φ� φ� Φ�φ�

Supplementary file 7: Detailed information about the N- and L-cell vortices for the D/d=2.8 case.
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11.8 Supplementary file 8



1 2 2 3.106 204.64 201.534 201.195 198.699 2.496 1 1
4 4 4.356 211.555 207.199 208.09 204.369 3.721 3 3
6 212.849 214.97 210.024 4.946 5 5
8 6 -0.204 218.295 218.499 215.674 7
10 8 0.756 224.92 224.164 221.59 221.329 0.261 7 9
12 10 1.931 231.785 229.854 228.325 227.009 1.316 9 11

2 14 12 3.141 238.685 235.544 235.25 232.694 2.556 11 13
16 14 4.421 245.61 241.189 242.15 238.364 3.786 13 15
18 246.844 249.02 244.019 5.001 15 17
20 16 -0.159 252.335 252.494 249.664 19
22 18 0.806 258.965 258.159 255.63 255.324 0.306 17 21
24 20 1.996 265.845 263.849 262.38 261.004 1.376 19 23

3 26 22 3.221 272.75 269.529 269.305 266.694 2.611 21 25
28 24 4.481 279.665 275.184 276.205 272.359 3.846 23 27
30 280.839 283.065 278.014 5.051 29
32 26 -0.114 286.375 286.489 283.659 25 31
34 28 0.861 293.015 292.154 289.67 289.319 0.351 27 33
36 30 2.056 299.9 297.844 296.435 294.999 1.436 29 35

4 38 32 3.281 306.805 303.524 303.36 300.689 2.671 31 37
40 34 4.541 313.72 309.179 310.26 306.354 3.906 33 39
42 314.829 317.11 312.009 5.101 41
44 36 -0.069 320.415 320.484 317.654 35 43
46 38 0.911 327.065 326.154 323.715 323.314 0.401 37 45
48 40 2.111 333.955 331.844 330.495 328.999 1.496 39 47

5 50 42 3.341 340.86 337.519 337.415 334.684 2.731 41 49
52 44 4.601 347.775 343.174 344.315 340.349 3.966 43 51
54 348.824 351.155 345.999 5.156 45 53
56 46 -0.024 354.455 354.479 351.649 55
58 48 0.966 361.115 360.149 357.755 357.309 0.446 47 57
60 50 2.176 368.015 365.839 364.55 362.994 1.556 49 59

6 62 52 3.401 374.915 371.514 371.47 368.679 2.791 51 61
64 54 4.656 381.825 377.169 378.375 374.344 4.031 53 63
66 382.819 385.195 379.994 5.201 65
68 56 0.021 388.495 388.474 385.644 55 67
70 58 1.021 395.165 394.144 391.8 391.304 0.496 57 69
72 60 2.236 402.07 399.834 398.605 396.989 1.616 59 71

7 74 62 3.461 408.97 405.509 405.525 402.674 2.851 61 73
76 64 4.716 415.88 411.164 412.43 408.339 4.091 63 75
78 416.814 419.24 413.989 5.251 77
80 66 0.071 422.535 422.464 419.639 65 79
82 68 1.081 429.22 428.139 425.845 425.299 0.546 67 81
84 70 2.296 436.125 433.829 432.66 430.989 1.671 69 83

8 86 72 3.521 443.025 439.504 439.58 436.669 2.911 71 85
88 74 4.771 449.93 445.159 446.49 442.334 4.156 73 87
90 450.809 453.28 447.984 5.296 89
92 76 0.116 456.575 456.459 453.634 75 91
94 78 1.131 463.27 462.139 459.89 459.299 0.591 77 93
96 80 2.356 470.185 467.829 466.72 464.984 1.736 79 95

9 98 82 3.586 477.085 473.499 473.635 470.664 2.971 81 97
100 84 4.826 483.98 479.154 480.545 476.329 4.216 83 99
102 484.804 487.325 481.979 5.346 101
104 86 0.161 490.615 490.454 487.629 85 103
106 88 1.191 497.325 496.134 493.935 493.289 0.646 87 105
108 90 2.416 504.24 501.824 500.775 498.979 1.796 89 107

10 110 92 3.646 511.14 507.494 507.69 504.659 3.031 91 109
112 94 4.881 518.03 513.149 514.6 510.319 4.281 93 111
114 518.799 521.365 515.974 5.391 95 113
116 96 0.201 524.655 524.454 521.624 115
118 98 1.246 531.375 530.129 527.98 527.289 0.691 97 117
120 100 2.476 538.295 535.819 534.835 532.974 1.861 99 119
122 102 3.706 545.195 541.489 541.745 538.654 3.091 101 121 11
124 104 4.931 552.075 547.144 548.66 544.319 4.341 103 123
126 552.794 549.969 125
128 106 0.246 558.695 558.449 555.405 555.619 -0.214 105 127
130 108 1.301 565.43 564.129 562.025 561.284 0.741 107 129
132 110 2.536 572.35 569.814 568.89 566.974 1.916 109 131
134 112 3.766 579.25 575.484 575.795 572.654 3.141 111 133 12
136 114 4.986 586.125 581.139 582.715 578.309 4.406 113 135
138 586.784 583.964 137
140 116 0.291 592.735 592.444 589.445 589.614 -0.169 115 139
142 118 1.361 599.485 598.124 596.075 595.279 0.796 117 141
144 120 2.601 606.41 603.809 602.945 600.969 1.976 119 143
146 122 3.826 613.305 609.479 609.855 606.644 3.211 121 145 13
148 5.036 620.17 615.134 616.77 612.304 4.466 123 147
150 124 620.779 617.954 149
152 126 0.336 626.775 626.439 623.485 623.609 -0.124 125 151
154 128 1.421 633.54 632.119 630.12 629.274 0.846 127 153

N-cell
vortex No.

L-cell
Vortex No.

N-cell
cycle No.

Vortices in the '-Y' side of the step cylinder Vortices in the '+Y' side of the step cylinder
N-cell

cycle No.
L-cell

Vortex No.
N-cell

vortex No. Φ� φ� φ� φ� Φ�φ�

Supplementary file 8: Detailed information about the N- and L-cell vortices for the D/d=3.0 case.



176 146 0.436 694.865 694.429 691.565 691.594 -0.029 145 175
174 144 688.769 685.944 173
172 5.141 688.26 683.119 684.88 680.294 4.586 143 171
170 142 3.951 681.42 677.469 677.965 674.639 3.326 141 169 15
168 140 2.716 674.52 671.804 671.06 668.959 2.101 139 167
166 138 1.481 667.595 666.114 664.17 663.274 0.896 137 165
164 136 0.386 660.82 660.434 657.525 657.604 -0.079 135 163
162 134 654.774 651.949 161
160 5.091 654.215 649.124 650.825 646.299 4.526 133 159
158 132 3.891 647.365 643.474 643.91 640.644 3.266 131 157 14
156 130 2.661 640.465 637.804 637.005 634.964 2.041 129 155

.


