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Introduction

The existence of injective envelopes for modules over any ring yields minimal injective 
resolutions; dually, in settings where projective covers exist—such as for finitely gener-
ated modules over a semi-perfect noetherian ring—one can build minimal projective 
resolutions. These classic forms of minimality are encompassed by the following defini-
tion: a complex is minimal if every self homotopy equivalence is an isomorphism; see 
Avramov and Martsinkovsky [3]. In fact, Avramov, Foxby, and Halperin show [2] that 
every complex of injective modules decomposes as a direct sum of a minimal complex and 
a contractible complex, see also Krause [28], thus showing every complex has a minimal 
semi-injective resolution. A dual statement, considered initially by Eilenberg [12], holds 
in settings where projective covers exist.

A natural question is whether a complex of flat modules exhibits similar behaviour. 
Although flat covers do exist for modules over any ring, due to Bican, El Bashir, and 
Enochs [6], it turns out that minimality is poorly behaved for complexes of flat modules 
in general: indeed, there exist quasi-isomorphisms between minimal semi-flat complexes 
that are not isomorphisms of complexes (unlike the case for minimal semi-projective or 
semi-injective complexes), see for example Christensen and Thompson [10]. We thus re-
strict our focus to complexes of a special type of flat modules: the flat cotorsion modules.

Let R be a commutative noetherian ring. Enochs shows [13] that flat cotorsion R-
modules—i.e., those flat modules that are also right Ext-orthogonal to flat modules—
have a unique decomposition, whose structure is akin to that of injective modules over 
a noetherian ring as shown by Matlis [30]. Further, minimality criteria for complexes of 
flat cotorsion R-modules was given by Thompson [48]. One goal of this paper is to show 
that when R has finite Krull dimension, such complexes can be decomposed analogously 
to complexes of injective modules:

Theorem (See 1.9 and 2.4). Assume dimR < ∞. If Y is a complex of flat cotorsion 
R-modules, then Y = Y ′ ⊕ Y ′′, where Y ′ is minimal and Y ′′ is contractible.

In Section 3, we give two functorial approachs to construct a complex of flat cotorsion 
R-modules; one of them builds on work of Nakamura and Yoshino in [37], and the other is 
inspired by it. We also turn to considering semi-flat-cotorsion complexes, that is, semi-flat 
complexes of flat cotorsion R-modules, as well as replacements by such complexes in the 
derived category over R; see Appendix A. If F is a semi-flat complex, then Constructions 
3.1 and 3.3 yield functorial ways to build a semi-flat-cotorsion complex Y and a quasi-
isomorphism F → Y . In particular, we obtain:

Theorem (See 3.4). Assume dimR < ∞. Every R-complex has a minimal semi-flat-
cotorsion replacement in the derived category over R.

Although it is immediate from [48, Theorem 5.2] that every R-module has a minimal 
semi-flat-cotorsion replacement without the assumption of finite Krull dimension, the 
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assumption here is natural in considering unbounded complexes. One motivation for our 
approach is that not every R-module admits a surjection from, or injection to, a flat 
cotorsion R-module—see Example 3.11—and so our method differs from the one for 
complexes of injective modules given in [28, Appendix B].

In Section 4, we employ the functorial construction in Construction 3.3, along with 
the Auslander–Buchsbaum formula, to describe the structure of semi-flat-cotorsion re-
placements; see Lemma 4.1 and Theorem 4.6. In particular, this extends structure of 
the minimal pure-injective resolution of a flat module described by Enochs [14], and also 
recovers—see Corollary 4.7—the fact that the finitistic flat dimension of R is at most 
dimR. In addition, this structure gives a new proof of a classic result of Gruson and Ray-
naud [41] and Jensen [25]: an R-module of finite flat dimension has projective dimension 
at most dimR, see Theorem 4.9; in particular, the finitistic projective dimension of R is 
at most dimR and flat R-modules have projective dimension at most dimR.

In Section 5, we apply the other functorial construction, Construction 3.1, in the 
context of cosupport. The cosupport of an R-complex X is the set of prime ideals p such 
that RHomR(κ(p), X) is nontrivial in the derived category over R. As an analogue to 
work of Chen and Iyengar [8], we give in Example 5.11 an unbounded minimal complex Y
of flat cotorsion R-modules such that cosuppR Y is strictly contained in 

⋃
i∈Z cosuppR Y i. 

This gives a counterexample to [47, Theorem 2.7], unfortunately, and we proceed to give 
a correction—and improvement—for this result; see Theorem 5.4.

In the appendix, we define the notion of semi-flat-cotorsion replacements for any 
associative ring A, and point to how these complexes can be used to describe the derived 
category over A. In particular, we note that—due to a result of Gillespie [20]—every 
A-complex can be replaced by a semi-flat-cotorsion complex in the derived category over 
A, although minimality remains open; see Question A.10.

∗ ∗ ∗

Throughout, let R be a commutative noetherian ring. We use standard cohomological 
notation for R-complexes (that is, complexes of R-modules), and use H(−) to denote 
the cohomology functor. Denote by ModR the category of R-modules, C(R) the category 
of R-complexes, K(R) the homotopy category of R-complexes, and D(R) the derived 
category over R. A morphism α : X → Y in C(R) or K(R) is a quasi-isomorphism if 
H(α) is an isomorphism; an R-complex X is acyclic if H(X) = 0, and is contractible if 
X is isomorphic to the zero complex in K(R).

1. Decomposing complexes of flat cotorsion modules

For a complex P of finitely generated free modules over a local ring (R, m, k), there 
exists a decomposition P = P ′ ⊕ P ′′ such that k ⊗R P ′ has zero differential and P ′′ is 
contractible; this was shown in [2]. Although such a phenomenon does not extend to all 
complexes of infinitely generated projective modules (see Example 1.6), there does exist 
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a similar decomposition if we take complexes of m-adic completions of free modules. In 
this section, we explain this fact and extend it to the case of complexes of flat cotorsion 
modules.

We start with the following elementary lemma, in which R is not required to be local.

Lemma 1.1. Let a be an ideal of R, let T and T ′ be a-adic completions of projective 
R-modules, and let ϕ : R/a ⊗R T → R/a ⊗R T ′ be a homomorphism.

(1) There exists a homomorphism ϕ : T → T ′ such that R/a ⊗R ϕ = ϕ.
(2) Any such lifting ϕ : T → T ′ is an isomorphism if R/a ⊗R ϕ = ϕ is an isomorphism.

Remark 1.2. Write T = lim←−−n≥1(P/a
nP ) for a projective R-module P . For the proof of the 

lemma, we recall that there is a natural isomorphism T/anT ∼= P/anP for each n ≥ 1. 
This is well-known for specialists; when P is finitely generated, [32, §8] is sufficient, but 
even when P is infinitely generated, it is within classic commutative algebra, see [45, 
Corollary 2.1.10 and Proposition 2.2.3] or [37, Lemma 2.3]. Indeed, it is further known 
that the isomorphism holds true for any R-module, see [43, Theorem 1.1] or [45, Theorem 
2.2.5].

Proof of Lemma 1.1. Set φ1 = ϕ. For n ≥ 1, we have T/an+1T is a projective R/an+1-
module by Remark 1.2, hence a map φn : T/anT → T ′/anT ′ lifts to a map φn+1 :
T/an+1T → T ′/an+1T ′. Induction yields maps φn for every n ≥ 1, thus setting ϕ =
lim←−−n≥1 φn yields (1).

For (2), let ϕ : T → T ′ be any lifting of ϕ such that R/a ⊗Rϕ = ϕ is an isomorphism. 
Define φn : T/anT → T ′/anT ′ as the map induced by ϕ for n ≥ 1, where φ1 = ϕ. It 
is enough to show that each φn is bijective since ϕ = lim←−−n≥1 φn. We remark that any 
R/an-module M with (a/an)M = M is zero since the ideal a/an of R/an is nilpotent. 
Hence surjectivity of R/a ⊗R φn = ϕ implies φn is surjective, and in fact split surjective 
since T ′/anT ′ is projective over R/an. Thus injectivity of R/a ⊗R φn = ϕ also implies 
kerφn = 0, that is, φn is injective. �
Remark 1.3. When R is a local ring with maximal ideal m and T is the m-adic completion 
of a free R-module, the canonical map T → T/mT is a flat cover by [49, Proposition 
4.1.6], which can instead be used to verify Lemma 1.1 in this case.

The argument in the proof of Lemma 1.1 is inspired by the proof of [41, II, Proposition 
2.4.3.1], which shows that the m-adic completion of a flat R-module is isomorphic to the 
m-adic completion of a free R-module; see also [16, Lemma 6.7.4].

For an index set A and an R-module M , we denote by M (A) or 
⊕

A M the direct sum 
of A-copies of M . If (R, m, k) is local, then we write M̂ for the m-adic completion of M .
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Lemma 1.4. Assume (R, m, k) is a local ring. Let A and A′ be some index sets, and 

let ∂ : R̂(A) → R̂(A′) be a homomorphism of R-modules. There exist disjoint partitions 
A = B 	 C and A′ = B 	 C ′ and a commutative diagram of R-modules

R̂(A) ∂
R̂(A′)

R̂(B) ⊕ R̂(C)

∼=

[
1 0
0 ∂′

] R̂(B) ⊕ R̂(C′)

∼=

where k ⊗R ∂′ = 0.

Proof. There are isomorphisms k ⊗R R̂(A) ∼= k(A) and k ⊗R R̂(A′) ∼= k(A′), hence we 
may view k ⊗R ∂ as a linear transformation of k-vector spaces. Since ker(k ⊗R ∂) and 
im(k⊗R ∂) are subspaces (and hence direct summands), we may find disjoint partitions 
A = B 	 C and A′ = B 	 C ′ such that the following diagram commutes:

k(A) k⊗R∂
k(A′)

k(B) ⊕ k(C)

∼= α

[1 0
0 0

] k(B) ⊕ k(C′)

∼= β

The maps α and β lift, by Lemma 1.1, to isomorphisms α : R̂(B) ⊕ R̂(C) → R̂(A) and 

β : R̂(B) ⊕ R̂(C′) → R̂(A′). We thus obtain a commutative diagram:

R̂(A) ∂
R̂(A′)

R̂(B) ⊕ R̂(C)

∼= α

[
i f
g h

] R̂(B) ⊕ R̂(C′)

∼= β

where k ⊗R i = 1 and k ⊗R f = k ⊗R g = k ⊗R h = 0. Thus Lemma 1.1 implies that i
is an isomorphism; the conditions on f , g, and h allow for an elementary translation of 
the diagram into the desired one. �

We aim to apply Lemma 1.4 to a complex Y of m-adic completions of free modules. 
Towards this end, note that application of the lemma to ∂ = d0

Y replaces the 4-term 
complex Y −1 → Y 0 → Y 1 → Y 2 with the following one:
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R̂(D)

[0
a

]
R̂(B) ⊕ R̂(C)

[
1 0
0 ∂′

]
R̂(B) ⊕ R̂(C′)

[0 b ]
R̂(D′),

where k⊗R ∂′ = 0. Hence we can extract a direct summand Y ′′(0) of Y corresponding to 

a contractible complex 0 → R̂(B) =−→ R̂(B) → 0. By Lemma 1.4, we can further find such 
contractible direct summands Y ′′(−1) and Y ′′(1) of Y from d−1

Y and d1
Y respectively. 

Then it is clear from the above matrices that the canonical map Y ′′(−1) ⊕ Y ′′(0) ⊕
Y ′′(1) → Y is a split monomorphism. This observation can be used to show the following 
lemma.

Lemma 1.5. Assume (R, m, k) is a local ring. If Y is a complex of m-adic completions of 
free R-modules, then Y = Y ′ ⊕ Y ′′, such that the complex k ⊗R Y ′ has zero differential 
and Y ′′ is contractible.

Proof. Applying Lemma 1.4 to dnY : Y n → Y n+1 for each n ∈ Z, extract a contractible 
direct summand Y ′′(n) of Y such that the differential of Y/Y ′′(n) in degree n is zero 
upon application of k ⊗R −. Then Y has a contractible direct summand of the form 
Y ′′ =

⊕
n∈Z Y ′′(n) =

∏
n∈Z Y ′′(n), and the differential of Y ′ = Y/Y ′′ is zero upon 

application of k ⊗R −. �
The next example exhibits the necessity of taking completions to obtain a suitable 

decomposition.

Example 1.6. Let (R, m, k) be a local ring with dimR ≥ 1. Let x ∈ m be an element that 
is not nilpotent. The localization Rx is therefore nonzero and has a projective resolution 
of the form P = (0 →

⊕
N R →

⊕
N R → 0); indeed, Rx

∼= R[Y ]/(1 − xY ) for an 
indeterminate Y , hence the exact sequence

0 R[Y ]
1−xY

R[Y ] Rx 0

provides such a resolution P . Since k⊗RRx = 0 and Rx is a flat R-module, the complex 
k ⊗R P = (0 →

⊕
N k

∼=−→
⊕

N k → 0) is exact, thus P has no nonzero direct summand 
P ′ such that k ⊗R P ′ has zero differential. However, P is not contractible since Rx is 
nonzero.

The goal of this section is to extend Lemma 1.5 above to the case of complexes of flat 
cotorsion modules, and so we begin with some basic facts about these. Here we return 
to the setting of any commutative noetherian ring R.

An R-module M is flat cotorsion if it is both flat and cotorsion, that is, M is flat and 
Ext1R(F, M) = 0 for every flat R-module F . Enochs shows in [13] that an R-module M
is flat cotorsion if and only if M ∼=

∏
p∈SpecR Tp, where Tp is the p-adic completion of 
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a free Rp-module. For an ideal a of R, let Λa = lim←−−n≥1(− ⊗R R/an) denote the a-adic 
completion functor; for an R-module M , also write ΛaM = M∧

a .
A motivation for studying complexes of flat cotorsion R-modules is their relationship 

to cosupport. The notion of cosupport was defined by Benson, Iyengar, and Krause [5], 
whose work was inspired by Neeman’s [40]. For an R-complex X, the cosupport of X is:

cosuppR X = {p ∈ SpecR | H(RHomR(κ(p), X)) �= 0},

where κ(p) stands for the residue field Rp/pRp. See also the equivalent characterizations 
in (2.1). This is dual to the notion of support defined by Foxby [18]; the support of X is:

suppR X = {p ∈ SpecR | H(κ(p) ⊗L
R X) �= 0}.

For an index set A, we have supp
⊕

A E(R/p) ⊆ {p}, where E(R/p) stands for the 
injective hull of R/p over R. Further, [16, Theorem 3.4.1(7)] yields an isomorphism

(
⊕

A Rp)∧p ∼= HomR(E(R/p),
⊕

A E(R/p)). (1.7)

From this and tensor-hom adjunction, we see that cosupp(
⊕

A Rp)∧p ⊆ {p}. Consequently 
it follows that a flat cotorsion R-module M has cosupport contained in a subset W of 
SpecR if and only if M ∼=

∏
p∈W Tp, where Tp is the p-adic completion of a free Rp-

module. We can therefore translate Lemma 1.5 to:

Lemma 1.8. Let p ∈ SpecR. If Y is a complex of flat cotorsion R-modules with 
cosuppR Y i ⊆ {p} for every i ∈ Z, then Y = Y ′ ⊕ Y ′′, such that the complex κ(p) ⊗R Y ′

has zero differential and Y ′′ is contractible.

Proof. Reduce to a local ring (R, m, k); this is just a restatement of Lemma 1.5. �
For a subset W of SpecR, we define dimW as the supremum of the lengths of strict 

chains of prime ideals in W . As is standard, dim(SpecR) is denoted by dimR; this is 
the Krull dimension of R. The next theorem is the main result of this section. In its 
proof, we use several basic facts about complexes of flat cotorsion R-modules; they are 
summarized at the end of this section.

Theorem 1.9. Let W ⊆ SpecR with dimW < ∞. If Y is a complex of flat cotorsion R-
modules with cosuppR Y i ⊆ W for every i ∈ Z, then Y = Y ′⊕Y ′′, such that the complex 
κ(p) ⊗R HomR(Rp, Y ′) has zero differential for every p ∈ W and Y ′′ is contractible.

Proof. We proceed by induction on dimW . First suppose dimW = 0. In this case, 
Y ∼=

∏
q∈W ΛqY by (1.18), and ΛqY consists of flat cotorsion R-modules having co-

support contained in {q} by (1.13). For each q ∈ W , we apply Lemma 1.8 to obtain 
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a decomposition ΛqY = Y ′(q) ⊕ Y ′′(q), where κ(q) ⊗R Y ′(q) has zero differential and 
Y ′′(q) is contractible. Taking a product over q ∈ W , we obtain a decomposition

∏
q∈W ΛqY =

∏
q∈W (Y ′(q) ⊕ Y ′′(q)) ∼=

(∏
q∈W Y ′(q)

)
⊕
(∏

q∈W Y ′′(q)
)
. (1.10)

A product of contractible complexes is contractible, hence 
∏

q∈W Y ′′(q) is contractible; 
moreover, (1.14) implies that for every p ∈ W there is an isomorphism

κ(p) ⊗R HomR(Rp,
∏

q∈W Y ′(q)) ∼= κ(p) ⊗R Y ′(p),

and the latter has zero differential.
Next suppose dimW = n > 0. Set Z =

∏
q∈maxW ΛqY . By (1.17), there is a degree-

wise split exact sequence of complexes of flat cotorsion R-modules:

0 X Y Z 0.

The complexes X and Z are complexes of flat cotorsion R-modules with cosupport in 
W \ maxW and maxW , respectively. As dim(W \ maxW ) < n and dim(maxW ) =
0 < n, we may apply the inductive hypothesis to obtain decompositions X = X ′ ⊕X ′′

and Z = Z ′ ⊕ Z ′′, where κ(p) ⊗R HomR(Rp, X ′) and κ(p) ⊗R HomR(Rp, Z ′) have zero 
differential for every p ∈ W and X ′′ and Z ′′ are contractible; see also (1.15). Letting 
π : X → X ′ be the canonical projection, there exists a complex P of flat cotorsion 
R-modules making the following push-out diagram commute:

0 X

π

Y

f

Z 0

0 X ′ P Z 0

The snake lemma yields an exact sequence of complexes of flat cotorsion R-modules 
0 → X ′′ → Y

f−→ P → 0; evidently, this sequence is degreewise split, and it follows from 
the proof of [3, Lemma 1.6] (see also [10, Propositions 2.5 and 2.6]) that the sequence 
splits in C(R) and f is a homotopy equivalence.

On the other hand, letting ι : Z ′ → Z be the canonical inclusion, we obtain a complex 
Q of flat cotorsion R-modules making the pull-back diagram commute:

0 X ′ P Z 0

0 X ′ Q

g

Z ′

ι

0

(1.11)

The snake lemma yields a degreewise split exact sequence 0 → Q 
g−→ P → Z ′′ → 0 of 

flat cotorsion R-modules. As Z ′′ is contractible, this sequence splits in C(R) and g is a 
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homotopy equivalence by the dual argument of the proof of [3, Lemma 1.6] (see also [10, 
Propositions 2.5 and 2.6]); let g′ : P → Q be a splitting of g in C(R), and note that g′
is also a homotopy equivalence. Thus we have a split exact sequence

0 ker(g′f) Y
g′f

Q 0,

where ker(g′f) is a contractible complex of flat cotorsion modules.
It remains to show that for every p ∈ W , the complex κ(p) ⊗R HomR(Rp, Q) has 

zero differential. To do so, we use the degreewise split exact sequence in the bottom 
row of (1.11). The modules in X ′ have cosupport contained in W \ maxW as X ′ is a 
direct summand of X; similarly the modules in Z ′ have cosupport contained in maxW . 
If p ∈ maxW , then κ(p) ⊗R HomR(Rp, X ′) = 0 by (1.15). This implies that

κ(p) ⊗R HomR(Rp, Q) = κ(p) ⊗R HomR(Rp, Z
′)

and that the latter has zero differential by construction. If p ∈ W \maxW , then we have 
HomR(Rp, Z ′) = 0 by (1.14) and hence

κ(p) ⊗R HomR(Rp, X
′) = κ(p) ⊗R HomR(Rp, Q),

where the former has zero differential by construction. �
Remark 1.12. It is known that a complex of objects in an abelian category admitting 
injective envelopes can be decomposed as a direct sum of a minimal complex and a 
contractible complex; see [28, Proposition B.2]. In our situation, however, it is not clear 
how the arguments of [28, Proposition B.2] can be employed; indeed, flat envelopes may 
not exist, and although flat covers do exist over any ring [6], there exists a minimal 
complex of flat cotorsion modules that is not built from flat covers, see Example 2.7. 
This is one motivation for modelling the arguments here on that of finitely generated 
free modules over a local ring.

On the other hand, minimality of a complex of flat cotorsion modules with cosupport 
in {p} can be characterized by flat covers; see Theorem 2.3.

In the remainder of this section, we summarize several basic facts concerning flat 
cotorsion R-modules which are often used in this paper. Let F =

∏
q∈SpecR Tq be a flat 

cotorsion R-module, where Tq is the q-adic completion of a free Rq-module. The derived 
functors LΛp and RHomR(Rp, −) with p ∈ SpecR are useful for working with such a 
module; in particular, the following hold:

LΛp F ∼= ΛpF ∼=
∏

q⊇p
Tq; (1.13)

RHomR(Rp, F ) ∼= HomR(Rp, F ) ∼=
∏

q⊆p
Tq. (1.14)
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See [29, §4, p. 69] and [48, Lemma 2.2]. Not surprisingly, the above formulas extend to 
bounded complexes of flat cotorsion R-modules, see also (5.2). If for each q ∈ SpecR we 
write Tq = (

⊕
Bq

Rq)∧q for some index set Bq, then

κ(p) ⊗L
R RHomR(Rp, F ) ∼= κ(p) ⊗R HomR(Rp, F ) ∼=

⊕
Bp

κ(p), (1.15)

see also Remark 1.2.
For a finitely generated R-module M , there is also a canonical isomorphism

M ⊗R HomR(Rp, F ) ∼= HomR(Rp,M ⊗R F ). (1.16)

This map is given by the tensor evaluation map, and we only need to check right exactness 
of HomR(Rp, − ⊗R F ). This verification can be reduced to checking right exactness of 
HomR(Rp, − ⊗R Tq) for each prime q, as M is finitely presented, which can be checked 
by using (1.7).

We next explain a useful reduction technique for complexes of flat cotorsion R-modules 
that is used a number of times. Let W be a subset of SpecR and Y be a complex of flat 
cotorsion R-modules with cosuppY i ⊆ W . We may then write

Y = ( · · ·
∏

q∈W T i
q

∏
q∈W T i+1

q · · · ),

where Y i =
∏

q∈W T i
q and each T i

q is the q-adic completion of a free Rq-module. We 
denote by maxW the subset of W consisting of prime ideals which are maximal in W
with respect to inclusion. If p ∈ maxW , then

ΛpY = ( · · · T i
p T i+1

p · · · )

by (1.13). Thus, the chain map Y →
∏

p∈maxW ΛpY induced by the canonical chain 
maps Y → ΛpY yields a degreewise split exact sequence:

0 X Y
∏

p∈maxW ΛpY 0, (1.17)

where Xi =
∏

p∈W\maxW T i
p. In particular, if dimW = 0, then maxW = W and we 

have

Y ∼=
∏

p∈W ΛpY . (1.18)

2. Minimality criteria for complexes of flat cotorsion modules

We now aim to refine and recover [48, Theorem 3.5], which gives minimality criteria for 
complexes of flat cotorsion modules; our approach uses tools from the previous section.
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Let Y be an R-complex. There are important bi-implications about cosupport:

p ∈ cosuppR Y ⇐⇒ H(LΛp RHomR(Rp, Y )) �= 0 (2.1)

⇐⇒ H(κ(p) ⊗L
R RHomR(Rp, Y )) �= 0.

These characterizations were essentially shown in [5]; see also [42, Proposition 4.4].
The next lemma is a version of [48, Lemma 3.1]; the proof given here instead uses the 

notion of cosupport.

Lemma 2.2. Let f be a homomorphism of flat cotorsion R-modules. The following con-
ditions are equivalent:

(1) f is an isomorphism.
(2) Λp HomR(Rp, f) is an isomorphism for every p ∈ SpecR.
(3) κ(p) ⊗R HomR(Rp, f) is an isomorphism for every p ∈ SpecR.

Proof. A complex X satisfies cosuppR X = ∅ if and only if X is acyclic,1 see for example 
[5, Theorem 4.5]. By definition, f is an isomorphism if and only if cone(f) is acyclic. 
Hence cosuppR(cone(f)) = ∅ if and only if (1) holds. Finally, (2.1) along with (1.13), 
(1.14), and (1.15) yield this is also equivalent to (2) or (3). �

An R-complex X is minimal if every homotopy equivalence X → X is an isomorphism 
in C(R); see [3]. Compare the next result to [48, Theorems 3.5 and 4.1]; conditions (2) 
and (5) here are new. Let us simply denote by R̂p the p-adic completion of Rp.

Theorem 2.3. Let Y be a complex of flat cotorsion R-modules. The following conditions 
are equivalent:

(1) The complex Y is minimal.
(2) If Y = Y ′ ⊕ Y ′′ and Y ′′ is contractible, then Y ′′ = 0.
(3) For any p ∈ SpecR, the complex κ(p) ⊗R HomR(Rp, Y ) has zero differential.
(4) For any p ∈ SpecR, the complex Λp HomR(Rp, Y ) has no direct summand of the 

form 0 → R̂p
=−→ R̂p → 0.

(5) For any p ∈ SpecR and i ∈ Z, the canonical map T i+1 → coker(diT ) is a flat cover, 
where T = Λp HomR(Rp, Y ).

Proof. (1) ⇒ (2): This follows by [3, Proposition 1.7(3)].
(2) ⇒ (3): Fix p ∈ SpecR and set X = HomR(Rp, Y ). As X is a complex of flat cotor-

sion Rp-modules, see (1.14), we may apply Theorem 1.9 to X to obtain a decomposition 

1 This is a direct consequence of Neeman’s [38, Theorem 2.8], which says that D(R) is generated by the 
set {κ(p) | p ∈ SpecR}.
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X = X ′ ⊕X ′′ such that κ(p) ⊗R X ′ has zero differential and X ′′ is contractible. From 
the canonical projection π : X → X ′, form a push-out diagram:

0 X

π

Y Y/X 0

0 X ′ P Y/X 0

As in the proof of Theorem 1.9, the snake lemma yields a split exact sequence

0 X ′′ Y P 0.

The assumption (2) now implies X ′′ = 0, thus X = X ′. Hence it holds that

κ(p) ⊗R HomR(Rp, Y ) = κ(p) ⊗R X = κ(p) ⊗R X ′,

which has zero differential; (3) follows.
(3) ⇒ (1): Let f : Y → Y be a homotopy equivalence. Thus κ(p) ⊗R HomR(Rp, f) is 

also a homotopy equivalence for every p ∈ SpecR. However, since the complex κ(p) ⊗R

HomR(Rp, Y ) has zero differential, it follows that κ(p) ⊗RHomR(Rp, f) is an isomorphism 
for every p ∈ SpecR. Lemma 2.2 now yields that f is an isomorphism.

(3) ⇔ (4): Fix p ∈ SpecR and set T = Λp HomR(Rp, Y ). The forward implication 
follows by replacing Y by T in the implication (3) ⇒ (2) already proven above. Con-
versely, condition (4) forces diT : T i → T i+1 per Lemma 1.4 to have the property that 
κ(p) ⊗R diT = 0 for every i ∈ Z.

(3) ⇔ (5): Fix p ∈ SpecR and set T = Λp HomR(Rp, Y ). For each i ∈ Z, apply 
Lemma 2.5 below to the exact sequence

T i
di
T

T i+1 coker(diT ) 0

to show that T i+1 → coker(diT ) is a flat cover if and only if κ(p) ⊗R diT = 0. �
Corollary 2.4. Assume dimR < ∞. If Y is a complex of flat cotorsion R-modules, then 
Y = Y ′ ⊕ Y ′′ where Y ′ is minimal and Y ′′ is contractible.

Proof. Apply Theorem 1.9 and the equivalence (1) ⇔ (3) of Theorem 2.3. �
The next lemma is needed for the equivalence (3) ⇔ (5) in Theorem 2.3 above; notice 

that its proof shows an Rp-module M having a presentation by flat cotorsion modules 
with cosupport in {p} in fact has a resolution by such modules.
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Lemma 2.5. Let p ∈ SpecR and let T 0 and T 1 be p-adic completions of free Rp-modules. 
Suppose T 0 f−→ T 1 g−→ M → 0 is an exact sequence of Rp-modules. The map g is a flat 
cover of M over R if and only if κ(p) ⊗R f = 0.

Proof. If κ(p) ⊗R f �= 0, then Lemma 1.4 implies the complex T 0 f−→ T 1 has a direct 
summand R̂p

=−→ R̂p. The exact sequence T 0 f−→ T 1 g−→ M → 0 thus gives a decomposition 
g = [0 h ] : R̂p⊕T ′ → M , where R̂p⊕T ′ = T 1. The endomorphism 0 ⊕ idT ′ : R̂p⊕T ′ →
R̂p ⊕ T ′ is not an isomorphism, yet it satisfies g · (0 ⊕ idT ′) = 0 ⊕ h = g; hence g is not 
a flat cover.

Conversely, suppose that κ(p) ⊗R f = 0; this is equivalent to saying that κ(p) ⊗R g is 
an isomorphism. Suppose that there is a commutative diagram:

T 1

g

T 1
g

M

By assumption, all maps in this diagram become isomorphisms upon application of 
κ(p) ⊗R −, and so Lemma 1.1(2) implies that the map T 1 → T 1 is an isomorphism. 
Hence it remains to show that g is a flat precover, or equivalently, ker(g) is cotorsion. 
To show this, we will prove that there is an exact sequence

· · · T−2 T−1 T 0 f
T 1 g

M 0 , (2.6)

where all T i are p-adic completions of free Rp-modules. Then the truncated complex 
· · · → T−2 → T−1 → T 0 → 0 is a resolution of ker(g), and we can easily verify that 
ker(g) is cotorsion, by using Remark 3.2 and (A.1).

Set K = ker(f). The p-adic completion functor induces an isomorphism on both T 0

and T 1, hence we obtain the following commutative diagram:

0 K T 0 f

=

T 1

=

K∧
p T 0 f

T 1

By a simple diagram chase, the image of the map K∧
p → T 0 is precisely K, hence the 

second row is exact. Choose a surjection from a free Rp-module F → K; this induces 
a surjection F∧

p = T−1 → K∧
p by a standard argument (see the proof of [32, Theorem 

8.1]), hence we obtain a surjection T−1 → K. Repeating this process, we can construct 
an exact sequence as in (2.6). �
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The existence of the exact sequence (2.6) is also a consequence of a result of Dwyer 
and Greenlees [11, Proposition 5.2], which implies that M ∼= LΛp M in this setting.

We end the section with an example showing that statement (5) in Theorem 2.3 may 
be the best possible in terms of flat covers:

Example 2.7. Let k be an uncountable field and R = k[x, y]. The minimal pure-injective 

resolution of R is a minimal complex of flat cotorsion R-modules of the form 0 → P 0 d0

−→
P 1 d1

−→ P 2 → 0; see [35, Remark 3.3 and Theorem 4.8]. Although P 2 = coker(d0), the 
map d1 : P 1 → P 2 is not a flat cover.

A similar example can be constructed for the ring k[x, y](x,y), using Gruson’s [23, 
Proposition 3.2].

3. Functorial constructions of semi-flat-cotorsion replacements

In this section, we give two functorial ways to construct a chain map from a complex 
of flat modules to a complex of flat cotorsion modules such that its mapping cone is pure 
acyclic; recall that a complex P is pure acyclic if M ⊗R P is acyclic for any R-module 
M . In particular, this approach yields a replacement of a semi-flat complex that is both 
semi-flat and semi-cotorsion (defined below).

Although the setting of this first construction is a bit restricted, the construction itself 
is not complicated; moreover, it plays a key role in Example 5.11 below.

Construction 3.1. Assume dimR ≤ 1 or R is countable. Let P be an R-complex of 
projective modules. Let W be the set of maximal ideals of R. The canonical map 
P i →

∏
m∈W ΛmP i is a pure-injective envelope for each i ∈ Z, see [16, Remark 6.7.12]. 

Moreover, it follows from [16, Theorem 8.4.12, Corollary 8.5.10], [41, II, Corollary 3.3.2], 
and [26, Theorem 5.8] that the pure-injective dimension of P i is at most 1 (see also 
Remark 3.7) and so there is a short exact sequence of complexes

0 P
∏

m∈W ΛmP (
∏

m∈W ΛmP )/P 0

where every term of (
∏

m∈W ΛmP )/P is a flat cotorsion module, see [16, §8.5]. Regarding 
the above sequence as a double complex, denote its total complex by XP . The rows of 
this double complex are pure exact, that is, they are exact upon application of M ⊗R −
for any R-module M . A basic argument [27, Theorem 12.5.4] of double complexes shows 
that XP is pure acyclic. On the other hand, there is a commutative diagram

P 0

∏
m∈W ΛmP (

∏
m∈W ΛmP )/P
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where all arrows express the canonical chain maps. Regarding both rows as double com-
plexes, this morphism between double complexes naturally induces a chain map P → YP , 
where YP denotes the total complex of the second row. The mapping cone of the canoni-
cal map P → YP can be identified with XP , hence P → YP is a quasi-isomorphism with 
pure acyclic mapping cone. Moreover, YP is a complex of flat cotorsion R-modules.

A complex P is semi-projective if HomR(P, −) preserves acyclicity and P i is projective 
for every i ∈ Z; a complex F is semi-flat if − ⊗R F preserves acyclicity and F i is flat 
for every i ∈ Z. Semi-projective complexes and pure acyclic complexes of flat modules 
are both semi-flat. It follows that if P is semi-projective in Construction 3.1, then YP is 
semi-flat.

A complex C is semi-cotorsion if HomR(−, C) preserves acyclicity of pure acyclic 
complexes of flat modules and Ci is cotorsion for every i ∈ Z (see Appendix A). By the 
construction, YP consists of flat cotorsion R-modules. The next remark shows that YP

is also semi-cotorsion.

Remark 3.2. Let p ∈ SpecR. As R is noetherian, Λp is left adjoint to the inclusion 
of p-adically complete modules into ModR (this follows from [43, Theorem 1.1] which 
implies that Λp is idempotent, see also [45, Theorem 2.2.5] and [27, §4.1]); in addition, 
the functor − ⊗R Rp is left adjoint to the inclusion of p-local modules into ModR. 
Hence, if M is any R-module and Tp is the p-adic completion of a free Rp-module, then 
HomR(M, Tp) ∼= HomR(Λp(Mp), Tp).

Let T be a complex of p-adic completions of free Rp-modules. For any pure acyclic 
complex X of flat R-modules, we have HomR(X, T ) ∼= HomR(Λp(Xp), T ), and so 
HomR(X, T ) is acyclic because Λp(Xp) is contractible. To see this, we only need to 
notice that all cycle modules of X are flat, and Λp(− ⊗R Rp) sends a short exact se-
quence of flat R-modules to a split short exact sequence of flat cotorsion R-modules, see 
[29, §4, p. 69] and the second paragraph of Remark 1.3. Therefore T is semi-cotorsion.

Let W be a subset of SpecR with dimW < ∞ and let Y be a complex of flat cotorsion 
R-modules with cosuppY i ⊆ W for every i ∈ Z. Then we can easily show that Y is semi-
cotorsion by an inductive argument on dimW , using the above fact, (1.17), and (1.18). 
In particular, it follows that all complexes of flat cotorsion R-modules are semi-cotorsion 
when dimR < ∞.

On the other hand, when R is countable but of infinite Krull dimension, we can instead 
recover finiteness of projective dimension of flat modules, see Remark 3.7 and (3.10). 
From this, a standard argument shows that an acyclic complex of cotorsion modules 
has cotorsion cycle modules. Consequently any complex of cotorsion modules is semi-
cotorsion, as its semi-injective resolution (see Appendix A) yields a mapping cone which 
is semi-cotorsion.

We define a complex Y to be semi-flat-cotorsion if it is both semi-flat and semi-
cotorsion. The above remark shows that any semi-flat complex of flat cotorsion R-
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modules is semi-flat-cotorsion as long as R is of finite Krull dimension or countable.2 In 
particular, if P is assumed to be semi-projective (or semi-flat) in Construction 3.1, then 
the complex YP constructed therein is semi-flat-cotorsion.

Assume dimR < ∞. We now aim to give the construction of a functor from [37], which 
in particular sends semi-flat R-complexes to semi-flat-cotorsion ones. If W is a subset 
of SpecR with dimW = 0, then write λ̄W =

∏
p∈W Λp(− ⊗R Rp). There is a canonical 

morphism idC(R) → λ̄W ; see [37, Notation 7.1]. For a non-empty subset W of SpecR, 
a family of subsets W = {Wi}0≤i≤n is a system of slices of W if W =

⋃
0≤i≤n Wi, 

the intersections Wi ∩ Wj are empty for i �= j, dimWi = 0 for 0 ≤ i ≤ n, and Wi is 
specialization-closed in W ; see [37, Definition 7.6].

Construction 3.3. Assume dimR = d < ∞. Let W be a non-empty subset of SpecR
ordered by inclusion. Denote by W0 the set of maximal elements in W . If W \W0 is not 
empty, then define W1 to be the maximal elements of W \ W0. Iterating this process, 
we obtain a system of slices W = {Wi | 0 ≤ i ≤ n} of W . The natural transformations 
idC(R) → λ̄Wi yield (see [37, Remark 7.3]) a Čech complex of functors:

LW =

⎛⎜⎝ ∏
0≤i≤n

λ̄Wi

∏
0≤i<j≤n

λ̄Wj λ̄Wi · · · λ̄Wn · · · λ̄W0

⎞⎟⎠ .

For an R-complex X, we naturally get a double complex LWX, and the canonical chain 
maps X → λ̄WiX induce a morphism X → LWX of double complexes. Totalization 
yields a natural chain map X → totLWX.

Set AW = totLW , as in [34]; we see that AW is a functor on C(R) and there is a 
natural transformation aW : idC(R) → AW (this was written as �W in [37]).

If M is an R-module, then AWM = LWM . If F is a flat R-module, then the R-module 
λ̄WiF =

∏
p∈Wi

Λp(Fp) is flat cotorsion, see the second paragraph of Remark 1.3; thus if 
X is a complex of flat R-modules, then AWX is a complex of flat cotorsion R-modules.

Assume now that W = SpecR, so d = n. For each flat R-module Xi, it follows from 
[37, Corollary 7.12] that aWXi : Xi → AWXi is a (pure) quasi-isomorphism; we give a 
more elementary proof of this in Fact 3.6 below. Moreover, cone(aWX) is the totalization 
of the double complex

0 X
∏

0≤i≤d

λ̄WiX
∏

0≤i<j≤d

λ̄Wj λ̄WiX · · · λ̄Wd · · · λ̄W0X 0,

whose rows are pure exact, and so the totalization cone(aWX) is pure acyclic; see for 
example [27, Theorem 12.5.4]. It then follows that AW sends any semi-flat complex 

2 In fact, it follows from [46] or [4] that every complex of flat cotorsion modules is semi-cotorsion without 
any additional assumptions on the ring, and so every semi-flat complex of flat cotorsion modules is semi-flat-
cotorsion; see Lemma A.8. We provide the more elementary observation above for the reader’s convenience.
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to a semi-flat complex of flat cotorsion R-modules (cf. [37, Remark 7.13]), that is, a 
semi-flat-cotorsion complex per Remark 3.2.

A semi-flat-cotorsion replacement of an R-complex X is an isomorphism in D(R)
between X and a semi-flat-cotorsion R-complex; see Definition A.5.

Theorem 3.4. Assume dimR < ∞. Every R-complex has a minimal semi-flat-cotorsion 
replacement in D(R).

Proof. Let X be an R-complex with semi-flat resolution F → X. Construction 3.3
yields a semi-flat-cotorsion replacement F −→ AWF . By Corollary 2.4, the complex AWF

decomposes as AWF = Y ′ ⊕ Y ′′ where Y ′ is a minimal complex of flat cotorsion R-
modules and Y ′′ is contractible. As AWF is semi-flat, so is Y ′. We then have a diagram 
of quasi-isomorphisms Y ′ ←− F −→ X, where Y ′ is a minimal semi-flat-cotorsion R-
complex. �
Remark 3.5. Over a commutative noetherian ring, the notion of minimal semi-flat-
cotorsion replacements is a common generalization of minimal pure-injective resolutions 
of flat modules and minimal flat resolutions of cotorsion modules. Indeed, if M is a flat 
R-module, then its minimal pure-injective resolution P (built from pure-injective en-
velopes) consists of flat cotorsion modules [16, §8.5], is semi-flat as the mapping cone of 
M → P is pure acyclic, and is minimal [48, Theorem 4.1]. See also Theorem 2.3 and [16, 
Proposition 8.5.26]. Similarly, if M is cotorsion, then its minimal flat resolution F (built 
from flat covers) consists of flat cotorsion modules [16, Corollary 5.3.26] and is minimal 
[48, Theorem 4.1]; see also [49, §5.2]. Finally, a minimal semi-flat-cotorsion replacement 
(if it exists) is unique up to isomorphism in C(R); see Lemma A.4.

In the precedent work [37], the Čech complex LW naturally appeared as a conse-
quence of the (generalized) Mayer–Vietoris triangles [37, Theorem 3.15]. For the reader’s 
convenience, we provide an alternative proof of the following fact from [37], which we 
used in Construction 3.3.

Fact 3.6. Assume dimR < ∞ and let W be a system of slices of SpecR. If F is a flat 
R-module, then the map aWF : F → AWF is a quasi-isomorphism. In particular, the 
mapping cone of aWF is a pure acyclic complex of flat R-modules.

Proof. Set C = cone(aWF ), which by definition is of the following form:

0 F
∏

0≤i≤n

λ̄WiF
∏

0≤i<j≤n

λ̄Wj λ̄WiF · · · λ̄Wn · · · λ̄W0F 0.
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The map aWF is a quasi-isomorphism if and only if C is acyclic, and so it will be enough 
to show suppR C = ∅; see [18, Lemma 2.6]. The statement will then follow from the next 
more general claim, by setting W = SpecR:

Claim: Let W be a non-empty subset of SpecR with dimW = n < ∞ and let W =
{Wi}0≤i≤n be a system of slices of W . If F is a flat R-module, then we have W ∩
suppR C = ∅, where C = cone(aWF ).

Proof of Claim: We proceed by induction on n. If n = 0, then C is the complex 0 → F →
λ̄WF → 0. As R/p is finitely presented, R/p ⊗R − commutes with the direct product 
and it follows that κ(p) ⊗R C is acyclic for any p ∈ W , hence W ∩ suppR C = ∅.

Next, suppose that n > 0. Set U =
⋃

1≤i≤n Wi and Ui = Wi+1. We obtain a system 
of slices U = {Ui}0≤i≤n−1 of U , which yields Čech complexes AUF and AU λ̄W0F as in 
Construction 3.3. Set C ′ = cone(aUF ) and C ′′ = cone(aU λ̄W0F ). The canonical map 
F → λ̄W0F between flat modules induces a chain map C ′ → C ′′ between mapping cones; 
here the first row is C ′ and the second row is C ′′:

0 F
∏

1≤i≤n

λ̄WiF · · · λ̄Wn · · · λ̄W1F 0

0 λ̄W0F
∏

1≤i≤n

λ̄Wi λ̄W0F · · · λ̄Wn · · · λ̄W0F 0

If we regard the above diagram as a double complex, then its total complex is C. Thus 
to show that W ∩ suppR C = ∅, it is enough to justify:

(i) If p ∈ U , then κ(p) ⊗R C ′ and κ(p) ⊗R C ′′ are acyclic.
(ii) If p ∈ W0, then κ(p) ⊗R − transforms all vertical maps into isomorphisms.

As dimU = n − 1, the inductive hypothesis implies (i). For p ∈ W0, application of 
κ(p) ⊗R − to the above diagram leaves only the left column nonzero, which becomes an 
isomorphism by the argument for the n = 0 case above, thus (ii) also holds. �

The construction of cone(aWF ) as a totalization of a double complex above is just 
an analogue of the corresponding construction of classic (extended) Čech complexes: 
For a sequence x1, ..., xn ∈ R, the Čech complex Č(x1, ..., xn) (see [7, §5.1]) is naturally 
isomorphic to Č(x1, ..., xn−1) ⊗R Č(xn). Note however, that one must be a bit cautious: 
If X is an R-complex of finitely generated modules, then (AWR) ⊗R X ∼= AWX, see 
[37, (8.4)], but this isomorphism need not hold for an arbitrary R-complex X. Moreover, 
λ̄Wj λ̄Wi need not be isomorphic to λ̄Wi λ̄Wj .

Remark 3.7. If dimR < ∞, then the minimal pure-injective resolution of a flat module, 
constructed as in Construction 3.3 and using Corollary 2.4, implies immediately that 
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the pure-injective dimension of any flat R-module is at most dimR, see also Remark 3.5
and [14, §2, Corollary]. Recall that Construction 3.1 uses this fact under the assumption 
dimR ≤ 1; this case is enough for one of the main aims in Section 5, see Example 5.11.

On the other hand, Construction 3.1 also treats any countable ring R (not only those 
of finite dimension), as the pure-injective dimension of any flat R-module is at most 1
for such rings. This follows as a consequence of Lemma 3.8 below as for each p ∈ SpecR
the R-module Rp admits a projective resolution similar to that of Example 1.6; see also 
[22, Lemma 2.12].

For any commutative noetherian ring R, we denote projective dimension by pdR and 
pure-injective dimension by p. idR.

Lemma 3.8. One has the following equality:

sup{pdR Rp | p ∈ SpecR} = sup{p. idR F | F ∈ FlatR}.

Before proving this lemma, recall that

sup{p. idR F | F ∈ FlatR} = sup{pdR F | F ∈ FlatR}, (3.9)

see [16, Theorem 8.4.12]. Hence Lemma 3.8 along with (3.9) yields

sup{pdR Rp | p ∈ SpecR} = sup{pdR F | F ∈ FlatR}. (3.10)

A similar equality to (3.10) was originally shown by Gruson and Raynaud [41, II, Theo-
rem 3.3.1] treating all multiplicatively closed subsets. It was strengthened by Enochs [14, 
§3, Corollary 1] showing (3.10), provided that the right hand side is finite, see also [16, 
Proposition 8.5.13]. Our Lemma 3.8 does not need any such finiteness, and furthermore 
it recovers these existing results via (3.9).

Proof of Lemma 3.8. Set n = sup{pdR Rp | p ∈ SpecR}. First, the inequality n ≤
sup{p. idR F | F ∈ FlatR} is clear by virtue of (3.9). Hence the equality follows trivially 
when n is infinite. Assume n < ∞ and fix a flat R-module F . Our goal is to show 
p. idR F ≤ n. Let C = (0 → PE0(F ) → PE1(F ) → · · · ) be a minimal pure-injective 
resolution of F , and note that C is a minimal complex of flat cotorsion modules, see 
Remark 3.5. Take any p ∈ SpecR. In view of (1.15) and Theorem 2.3, we only need to 
verify that Hi(κ(p) ⊗R HomR(Rp, C)) = 0 for i > n. For this purpose, we use a natural 
isomorphism in the category of complexes

κ(p) ⊗R HomR(Rp, C) ∼= HomR/p(κ(p), R/p⊗R C);

one can deduce this from (1.16). Now, by [16, Theorem 8.5.1], the complex R/p ⊗R C is 
a minimal pure-injective resolution of R/p ⊗R F over R/p, so it holds that
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RHomR/p(κ(p), R/p⊗R F ) ∼= HomR/p(κ(p), R/p⊗R C)

in D(R/p), since κ(p) = Rp/pRp coincides with the quotient field of R/p. Noting that 
pdR/p κ(p) ≤ n as pdR Rp ≤ n, we have

Hi(RHomR/p(κ(p), R/p⊗R F )) ∼= Hi(HomR/p(κ(p), R/p⊗R C)) = 0

for i > n, as desired. �
The next example shows the necessity for considering not semi-flat-cotorsion resolu-

tions but semi-flat-cotorsion replacements.

Example 3.11. Let k be a field, let R = k[x, y](x,y), and let M = R/(x2). We show there 
does not exist a complex of flat cotorsion R-modules having a quasi-isomorphism M → Y

or a quasi-isomorphism Y → M .
As x2M = 0, and every flat R-module is torsion-free, there are no nonzero homo-

morphisms from M to a flat R-module. This forbids the existence of a complex of flat 
cotorsion R-modules having a quasi-isomorphism M → Y .

We next consider homomorphisms from a flat cotorsion module F =
∏

p∈SpecR Tp

to M , where each Tp is the p-adic completion of a free Rp-module for p ∈ SpecR. 
As Λ(x)M ∼= M , we immediately have by Remark 3.2 and (1.13) an isomorphism 
HomR(F, M) ∼= HomR(T(x) ⊕ T(x,y), M). Fix f ∈ HomR(T(x), M) and let a ∈ T(x). 
As the image of yn is invertible in T(x) for all n ≥ 1, we obtain that f(a) =
ynf(a/yn) ∈ (x, y)nM for all n ≥ 1. Krull’s intersection theorem then yields that 
f(a) ∈

⋂
n≥1(x, y)nM = 0. As a ∈ T(x) is arbitrary, this shows f = 0, hence 

HomR(T(x), M) = 0.
Therefore, if there exists a complex Y of flat cotorsion R-modules with a quasi-

isomorphism Y → M , there must be a surjection T(x,y) → M . However, ideal-adic 
completion preserves surjectivity of morphisms by a standard argument (see the proof 
of [32, Theorem 8.1]), and so this would imply that the map T(x,y) → Λ(x,y)M induced 
by Λ(x,y) is surjective and factors through M , contradicting the fact that M → Λ(x,y)M

is not surjective.

Indeed, semi-flat-cotorsion replacements always exist over any ring. This is almost 
directly deduced from Gillespie’s work [20], which shows that pure acyclic complexes 
of flat modules and semi-cotorsion complexes form a complete cotorsion pair; see The-
orem A.6. However, we do not know whether minimal ones can be always obtained as 
in Theorem 3.4, see Question A.10. In addition, the constructions here yield additional 
information about the structure of semi-flat-cotorsion replacements, which we take ad-
vantage of in the next section.
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4. Structure of semi-flat-cotorsion replacements and finitistic dimensions

The goal of this section is to describe the structure of semi-flat-cotorsion replacements 
using the construction of the functor AW in Section 3, and give applications of this 
structure to finitistic flat and projective dimensions.

If dimR = d < ∞, we set Wi = {p ∈ SpecR | dimR/p = i}, and notice that 
W = {Wi}0≤i≤d is a system of slices for SpecR; see Section 3. In this setting, the 
functor AW is now defined as in Construction 3.3; it sends semi-flat complexes to semi-
flat-cotorsion complexes.

Lemma 4.1. Assume dimR = d < ∞. If F is a complex of flat R-modules with F i = 0
for i > 0, then AWF has the form:

· · ·
∏

p∈SpecR
T−1
p

∏
p∈SpecR

T 0
p

∏
dimR/p≥1

T 1
p · · ·

∏
dimR/p≥d

T d
p 0 · · ·

where each Tn
p is the p-adic completion of a free Rp-module. Moreover, if n ∈ Z and 

F i = 0 for i < n, then (AWF )i = 0 for i < n.

Proof. This is a direct consequence of the construction of AW . �
Set inf X = inf{i | Hi(X) �= 0} and supX = sup{i | Hi(X) �= 0} for an R-complex X; 

if H(X) = 0 then set inf X = ∞ = inf ∅ and supX = −∞ = sup∅.
If (R, m, k) is local and X is an R-complex that is isomorphic in D(R) to a bounded 

complex of flat R-modules, then the following is a version of the Auslander–Buchsbaum 
formula:

depthR X = depthR R + inf(k ⊗L
R X). (4.2)

This is a special case of the generalization given by Foxby and Iyengar [19, Theorem 
2.4]; in the case H(X) = 0, the equality (4.2) trivially holds. Here one may define 
depthR X = inf RHomR(k, X); see [19, Theorem 2.1 and Definition 2.3].

If p ∈ SpecR and X is an R-complex that is isomorphic in D(R) to a bounded 
complex of flat cotorsion R-modules, then an immediate consequence of (1.14) and (4.2)
is an equality:

depthRp
RHomR(Rp, X) = depthRp

Rp + inf(κ(p) ⊗L
Rp

RHomR(Rp, X)). (4.3)

Recall that R̂p stands for the p-adic completion of Rp. The first author noticed the 
formulation of the next lemma through a collaboration with Takahashi and Yassemi [36].
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Lemma 4.4. Assume dimR < ∞ and let p ∈ SpecR. Let X be an R-complex that is 
isomorphic in D(R) to a bounded complex of flat R-modules. If Y is a minimal semi-
flat-cotorsion replacement of X, then

depthRp
Rp − depthRp

RHomR(Rp, X) = sup{i | R̂p is a direct summand of Y −i}.

Proof. Let Y be a minimal semi-flat-cotorsion replacement of X; notice that Y is 
a bounded complex of flat cotorsion R-modules, by Corollary 2.4, Lemma 4.1 and 
Lemma A.4. As κ(p) ⊗L

Rp
RHomR(Rp, X) ∼= κ(p) ⊗Rp

HomR(Rp, Y ), and the latter 
complex has zero differential for every p ∈ SpecR by Theorem 2.3, we have

inf(κ(p) ⊗L
Rp

RHomR(Rp, X)) = inf{i | R̂p is a direct summand of Y i},

where the right hand side is − sup{i | R̂p is a direct summand of Y −i}. The claim now 
follows from (4.3). �
Remark 4.5. If an R-complex X has a minimal semi-flat-cotorsion replacement Y with 
Y i = 0 for i � 0, then one has Y i =

∏
p∈SpecR T i

p with T i
p = (

⊕
Bi

p
Rp)∧p and Bi

p =
dimκ(p) Hi(κ(p) ⊗L

R RHomR(Rp, X)), by (1.15), Theorem 2.3, and (5.2). When X is a 
cotorsion R-module, Y is nothing but a minimal flat resolution of X (see Remark 3.5), 
and B−i

p = dimκ(p) TorRp

i (κ(p), HomR(Rp, X)) is the ith dual Bass number in the sense 
of Enochs and Xu [17].

Let X be an R-complex. The flat dimension of X is defined as

fdR X = inf
{
sup{i | F−i �= 0}

∣∣X ∼= F in D(R), with F semi-flat
}
.

In the next theorem, we simply write depthRp for depthRp
Rp.

Theorem 4.6. Assume dimR = d < ∞. If M is an R-module with fdR M < ∞, then the 
minimal semi-flat-cotorsion replacement of M has the following form:

0
∏

depthRp≥d

T−d
p · · ·

∏
depthRp≥1

T−1
p

∏
p∈SpecR

T 0
p

∏
dimR/p≥1

T 1
p · · ·

∏
dimR/p≥d

T d
p 0.

Proof. Let M be an R-module with fdR M < ∞. The module M has a minimal 
semi-flat-cotorsion replacement Y ; moreover, it is isomorphic to a direct summand 
of the one in Lemma 4.1 by Corollary 2.4 and Lemma A.4, hence Y is bounded. 
Write Y i =

∏
p∈SpecR T i

p, where T i
p is the p-adic completion of a free Rp-module. Fix 

p ∈ SpecR. It now follows from Lemma 4.4, because depthRp
RHomR(Rp, M) ≥ 0, that 

T−i
p = 0 for i > depthRp

Rp as desired, where we just have T−i
p = 0 for all i ∈ Z if 

depthR RHomR(Rp, M) = ∞. �

p
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Theorem 4.6 specializes to give the structure of a minimal pure-injective resolu-
tion of a flat module shown in [14, Theorem 2.1] provided dimR < ∞. Also (per-
haps unsurprisingly) this implies that the finitistic flat dimension of R, defined to be 
sup{fdR M | M is an R-module with fdR M < ∞}, is at most dimR; this was shown by 
Auslander and Buchsbaum [1, Theorem 2.4]:

Corollary 4.7 (Auslander and Buchsbaum). The finitistic flat dimension of R is at most 
dimR.

Proof. Immediate by Theorem 4.6. �
Compare the next result with [9, Corollary 5.9].

Theorem 4.8. Assume dimR < ∞. If X is an R-complex that is isomorphic in D(R) to 
a bounded complex of flat R-modules, then

fdR X = sup{depthRp
Rp − depthRp

RHomR(Rp, X) | p ∈ SpecR}.

Proof. If H(X) = 0, then fdR X = −∞ and depthRp
RHomR(Rp, X) = ∞ for each 

p ∈ SpecR. Hence the above equality holds. Suppose that H(X) �= 0. Set n = fdR X

and let F be a semi-flat complex isomorphic to X in D(R) and satisfying both F i = 0
for i < −n and F i = 0 for i � 0. We obtain from Lemma 4.1 that the semi-flat-
cotorsion replacement AWF of F satisfies (AWF )i = 0 for i < −n. In other words, 
we have n ≥ sup{i | (AWF )−i �= 0}. Further, we can by Corollary 2.4 find a minimal 
semi-flat-cotorsion replacement Y of X as a direct summand of AWF . Then we have 
n ≥ sup{i | Y −i �= 0}, and this must be an equality since fdR X = n. It then holds that

n = sup{i | Y −i �= 0}

= sup
{

sup{i | R̂p is a direct summand of Y −i}
∣∣∣ p ∈ SpecR

}
= sup{depthRp

Rp − depthRp
RHomR(Rp, X) | p ∈ SpecR},

where the last equality follows from Lemma 4.4. �
We end the section by recovering two classic facts: First, that the finitistic projective 

dimension of R is at most dimR—this was originally proven by Gruson and Raynaud 
[41, II, Theorem 3.2.6]—and second, that flat R-modules have projective dimension at 
most dimR—this is due to Gruson and Raynaud [41, II, Theorem 3.2.6] and Jensen [25, 
Proposition 6].

Theorem 4.9 (Gruson–Raynaud, Jensen). If an R-module has finite flat dimension, then 
its projective dimension is at most dimR.
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Proof. We may assume d = dimR is finite. Let M be an R-module with fdR M < ∞
and let N be any R-module. It is sufficient to show ExtiR(M, N) = 0 for all i > d. Take 
a flat resolution F of N and replace it by Y = AWF in D(R); this is a right bounded 
complex of flat cotorsion modules as described in Lemma 4.1. Our goal is to show that 
Hi(RHomR(M, Y )) = 0 for i > d.

As above, set Wi = {p ∈ SpecR | dimR/p = i}. By iteration of (1.17), we can make 
a sequence of subcomplexes

0 = Yd+1 ⊂ Yd ⊂ Yd−1 ⊂ · · · ⊂ Y1 ⊂ Y0 = Y,

where each quotient complex Yi/Yi+1 is a complex of flat cotorsion modules with co-
support in Wi; that is, Yi/Yi+1 is isomorphic to 

∏
p∈Wi

T (p), where for each prime 
p ∈ SpecR, we have T (p) = Λp HomR(Rp, Y ) is a complex of flat cotorsion mod-
ules with cosupport in {p}, see (1.13) and (1.14). Thus it is enough to show that 
Hi(RHomR(M, T (p))) = 0 for i > d and p ∈ SpecR. Note that T (p)i = 0 for i > dimR/p

by Lemma 4.1.
Now, since T (p) is a complex of Rp-modules, we have

RHomR(M,T (p)) ∼= RHomR(Mp, T (p)).

By Corollary 4.7, the module Mp has a flat resolution P over Rp such that P i = 0 for 
i < − dimRp. Since P is semi-flat (over R) and T (p) is semi-cotorsion by Remark 3.2, 
we have

RHomR(P, T (p)) ∼= HomR(P, T (p)),

see (A.1). Combining these two isomorphisms, we obtain

Hi(RHomR(M,T (p))) ∼= Hi(HomR(P, T (p))) ∼= HomK(R)(P, T (p)[i]) = 0

for i > d ≥ dimR/p + dimRp, as desired. �
Indeed, Remark 3.7 and (3.9) are available as long as one verifies the inequality 

pdR F ≤ dimR for a flat R-module F ; this approach is close to that of Enochs [14, 
Proposition 3.1]. The inequality was also recovered in [37, §4] using a different approach, 
which inspired our new proof to simultaneously recover these two classic facts.

5. Cosupport: a refinement, correction, and counterexample

The goal of this section is to examine the relationship between the cosupport of an 
R-complex and the prime ideals appearing in a minimal semi-flat-cotorsion replacement; 
in particular, we seek to correct and improve [47, Theorem 2.7].
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As minimal semi-flat-cotorsion replacements exist at least for rings of finite Krull 
dimension, we will compare the cosupport of a minimal complex Y of flat cotorsion 
R-modules to the set 

⋃
i∈Z cosuppR Y i, which can be thought of as the prime ideals 

appearing in Y . We begin with a lemma showing one containment always holds:

Lemma 5.1. Let Y be a complex of flat cotorsion R-modules. The inclusion holds:

cosuppR Y ⊆
⋃
i∈Z

cosuppR Y i.

This is proved in [37, Proposition 6.3] under several conditions; for example, if dimR <

∞, or if Y i = 0 for i � 0, then [37, Proposition 6.3] implies the above inclusion. In 
general, for p ∈ SpecR and a complex Y of flat cotorsion R-modules, one has

RHomR(Rp, Y ) ∼= HomR(Rp, Y ) and LΛp Y ∼= ΛpY. (5.2)

The first isomorphism holds as every complex of flat cotorsion modules over any ring is 
semi-cotorsion by Šťovíček [46, Theorem 5.4] or Bazzoni, Cortés-Izurdiaga, and Estrada 
[4, Theorem 1.3] (or Remark 3.2 if dimR < ∞), along with (A.1); see [37, Proposition 
2.5] for the second isomorphism.

Proof of Lemma 5.1. By (5.2), we obtain the next isomorphisms:

LΛp RHomR(Rp, Y ) ∼= LΛp HomR(Rp, Y ) ∼= Λp HomR(Rp, Y ). (5.3)

Hence, by (1.13), (1.14), and (2.1), if p ∈ cosuppR Y then p ∈
⋃

i∈Z cosuppR Y i. �
Let X be an R-complex. If Hi(X) = 0 for i � 0 and I is a minimal semi-injective 

resolution of X, then suppR X =
⋃

i∈Z suppR Ii, as essentially shown by Foxby [18]. 
However, Chen and Iyengar provide in [8] an example of an unbounded R-complex X
whose minimal semi-injective resolution I satisfies suppR X �

⋃
i∈Z suppR Ii.

Similarly, there exists a complex X with minimal semi-flat-cotorsion replacement Y
such that cosuppR X �

⋃
i∈Z cosuppR Y i, see Example 5.11. In particular, this yields 

a counterexample to the statement of [47, Theorem 2.7]; indeed, the argument in [47, 
p. 257, l. 5] is incorrect. The author of that paper sincerely apologizes for his mistake. 
To redeem this result, we prove in Theorem 5.4 a correction (and improvement) to [47, 
Theorem 2.7]. In particular, our correction is sufficient to verify all results of [47] that 
use [47, Theorem 2.7].

Theorem 5.4. Let Y be a minimal complex of flat cotorsion R-modules. Suppose that one 
of the following conditions holds:

(1) HomR(Rp, Y ) is semi-flat for all p ∈ SpecR;
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(2) Y i = 0 for i � 0.

Then one has an equality:

cosuppR Y =
⋃
i∈Z

cosuppR Y i.

In particular, this shows that if X is an R-complex having a minimal semi-flat-cotorsion 
replacement Y that satisfies either condition (1) or (2) in Theorem 5.4, then cosuppR X

agrees with the set of prime ideals appearing in Y .

Remark 5.5. The assumption of (1) is an analogy of [8, Proposition 2.1]. Clearly it is 
satisfied if Y i = 0 for i � 0. Moreover, it is also satisfied when R is regular, see [24, 
Theorem 1.2 and Proposition 3.3].

The condition (2) is the same as the original statement. To salvage this case, we need 
the next lemma; it essentially follows from a result of Auslander and Buchsbaum [1] on 
finitistic flat dimension; this was reproved in Corollary 4.7 above.

Lemma 5.6. Let Y be a minimal complex of flat cotorsion R-modules. Assume that Y is 
acyclic and Y i = 0 for i � 0. Then Y = 0 in C(R).

Proof. Suppose that Y �= 0 in C(R) and deduce a contradiction. We can take a prime 
ideal p ∈

⋃
i∈Z cosuppR Y i. Since Y is acyclic, so is Λp HomR(Rp, Y ) by (5.3); this 

complex satisfies the same condition as Y , and so we may replace Y by Λp HomR(Rp, Y ). 
Thus we may assume Y is a complex consisting of flat cotorsion modules with cosupport 
in {p}; in particular, Y is an Rp-complex. Moreover, without loss of generality, we may 
assume that Y i = 0 for i < 0 and Y 0 �= 0.

Now, fix an integer n > dimRp and consider the truncation

Y ′ = ( · · · 0 Y 0 · · · Y n 0 · · · ).

Since Y is acyclic, Y ′ can be regarded as a flat resolution of C = coker(dn−1
Y ) over Rp. 

Minimality of Y implies that κ(p) ⊗Rp
Y has zero differential by Theorem 2.3, and hence 

κ(p) ⊗Rp
Y ′ has zero differential as well. Thus TorRp

n (κ(p), C) ∼= κ(p) ⊗Rp
Y 0 �= 0. This 

implies that dimRp < n = fdRp
C < ∞, contradicting that the finitistic flat dimension 

of Rp is at most n; see for example Corollary 4.7. �
Proof of Theorem 5.4. Let p ∈ SpecR, and assume that p /∈ cosuppR Y . By Lemma 5.1, 
we only have to show that p /∈

⋃
i∈Z cosuppR Y i.

Suppose that condition (1) holds. We then have by (5.2) that

κ(p) ⊗L
R RHomR(Rp, Y ) ∼= κ(p) ⊗L

R HomR(Rp, Y ) ∼= κ(p) ⊗R HomR(Rp, Y ).
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Minimality of Y implies that κ(p) ⊗RHomR(Rp, Y ) has zero differential by Theorem 2.3. 
In addition, κ(p) ⊗RHomR(Rp, Y ) is acyclic by (2.1) since p /∈ cosuppR Y . It follows that 
κ(p) ⊗R HomR(Rp, Y ) = 0 in C(R). Hence p /∈

⋃
i∈Z cosuppR Y i by (1.15).

Next suppose that condition (2) holds. Together, (2.1) and (5.3) yield that the 
complex Λp HomR(Rp, Y ) is an acyclic complex of flat cotorsion modules. Further, 
as Y i = 0 for i � 0, we also have (Λp HomR(Rp, Y ))i = 0 for i � 0. Minimality 
of Y implies Λp HomR(Rp, Y ) is minimal, by Theorem 2.3, hence Lemma 5.6 yields 
Λp HomR(Rp, Y ) = 0 in C(R), that is, p /∈

⋃
i∈Z cosuppR Y i. �

Remark 5.7. Using finitistic injective dimension (see [1, Theorem 2.4] and [31, Theorem 
1]) it can also be shown that if I is a minimal R-complex of injective modules with 
Ii = 0 for i � 0, then there is an equality suppR I =

⋃
i∈Z suppR Ii. Compare this with 

[8, Proposition 2.1].

Our next task is to give an example of an R-complex X whose minimal semi-flat-
cotorsion replacement Y satisfies cosuppR X �

⋃
i∈Z cosuppR Y i. Although our example 

is analogous to [8, Proposition 2.7], a key role is played by Construction 3.1 and the 
following result which gives a condition for this construction to yield a minimal complex.

Lemma 5.8. Assume dimR ≤ 1 or R is countable. Let P be a complex of projective R-
modules such that R/p ⊗RP has zero differential for every minimal prime p. The complex 
YP in Construction 3.1 is minimal.

Proof. It is enough to show that κ(q) ⊗R HomR(Rq, YP ) has zero differential for every 
prime ideal q of R, by Theorem 2.3. Denote by W the set of maximal ideals of R. For 
n ∈ W , application of Λn to the exact sequence

0 P
∏

m∈W ΛmP (
∏

m∈W ΛmP )/P 0

preserves exactness per [29, §4, p. 69] and sends the map P →
∏

m∈W ΛmP to an 
isomorphism, see (1.13). It follows that the complex C = (

∏
m∈W ΛmP )/P consists of 

flat cotorsion modules with cosupport in (SpecR) \W , so by (1.15),

κ(q) ⊗R HomR(Rq, YP ) ∼=
{
R/q⊗R HomR(Rq,ΛqP ), if q ∈ W ,
R/q⊗R HomR(Rq, C[−1]), if q /∈ W.

(5.9)

Now fix q ∈ SpecR. Application of R/q ⊗R − to the canonical surjection∏
m∈W ΛmP → C yields a surjective chain map

R/q⊗R

∏
m∈WΛmP R/q⊗R C . (5.10)

Moreover, it holds that
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R/q⊗R

∏
m∈WΛmP ∼=

∏
m∈W (R/q⊗R ΛmP ) ∼=

∏
m∈WΛm(R/q⊗R P ),

see [37, Lemma 2.3] for the second isomorphism. Taking a minimal prime ideal p with 
p ⊆ q, we have R/q ⊗R P ∼= R/q ⊗R R/p ⊗R P , therefore the assumption on P implies 
that Λm(R/q ⊗R P ) has zero differential, and so does 

∏
m∈W Λm(R/q ⊗R P ). Thus both 

complexes appearing in (5.10) have zero differential.
To complete the proof, apply HomR(Rq, −) to (5.10):

HomR(Rq, R/q⊗R

∏
m∈WΛmP ) → HomR(Rq, R/q⊗R C),

where the both complexes have zero differential. Regarding this chain map as a double 
complex, we see from (1.16) that its total complex is nothing but the complex κ(q) ⊗R

HomR(Rq, YP ). Going back to (5.9), we conclude that YP is minimal. �
We now give a counterexample to [47, Theorem 2.7].

Example 5.11. Let k be a field and R = k[[x, y]]/(x2). Set m = (x, y) and p = (x). We 
construct an R-complex X and a semi-flat-cotorsion replacement YP of X such that 
cosuppR X = {m} and 

⋃
i∈Z cosuppR Y i

P = {p, m}. Let M = R/(x). As R is m-adically 
complete, R is flat cotorsion hence the complex

F = ( · · · x
R

x
R

x
R 0 )

is a minimal resolution of M by flat cotorsion R-modules. Theorem 5.4 implies 
cosuppR M = {m}. We set P =

⊕
i∈Z F [i] and X =

⊕
i∈ZM [i]. The quasi-isomorphism 

F −→ M induces a quasi-isomorphism P −→ X. Furthermore, since each F [i] is semi-flat, 
one obtains that P is also semi-flat.

The differential of P is given by multiplication by x, hence R/p ⊗R P has zero differ-
ential. Construction 3.1 applied to the complex P yields a quasi-isomorphism P → YP

with pure acyclic mapping cone, where YP is semi-flat-cotorsion by construction and 
minimal by Lemma 5.8. Furthermore, for each n ∈ Z, one has Pn ∼=

⊕
N R. Since 

dimR > 0, the direct sum 
⊕

N R is not isomorphic to its m-adic completion Λm(
⊕

N R). 
Thus the quotient module Λm(

⊕
N R)/(

⊕
N R) is non-trivial, and we see from the proof 

of Lemma 5.8 that this is a flat cotorsion module with cosupport in {p}. Therefore, the 
minimal semi-flat-cotorsion replacement YP of X contains non-trivial flat cotorsion mod-
ules with cosupport in both {m} and {p}. In other words, 

⋃
i∈Z cosuppR Y i

P = {p, m}.
However, we claim cosuppR X = {m}. Indeed, there is an isomorphism of complexes 

X ∼=
∏

i∈ZM [i], and hence cosuppR X =
⋃

i∈Z cosuppR M [i] = {m}. Consequently we 
have

cosuppR X = cosuppR YP �
⋃

cosuppR Y i
P .
i∈Z
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We further point out that HomR(Rp, −) may not preserve semi-flatness for complexes 
of flat cotorsion modules. Indeed, although YP is semi-flat, if HomR(Rp, YP ) was also 
semi-flat then the above strict containment would contradict the conclusion of Theo-
rem 5.4.
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Appendix A. Semi-flat-cotorsion replacements for associative rings

In this appendix, let A be an associative ring with identity. Here, left A-modules and 
complexes of left A-modules are simply referred to as A-modules and A-complexes, re-
spectively. Let C(A) denote the category of A-complexes, K(A) the homotopy category of 
A-complexes, and D(A) the derived category over A. We first recall what it means for an 
A-complex X to be semi-projective, semi-injective, or semi-flat3; these have assumptions 
on the components of X in addition to being K-projective, K-injective, or K-flat in the 
sense of Spaltenstein [44].

• X is semi-projective if HomA(X, −) preserves acyclicity and Xi is projective for every 
i ∈ Z.

• X is semi-injective if HomA(−, X) preserves acyclicity and Xi is injective for every 
i ∈ Z.

• X is semi-flat if − ⊗A X preserves acyclicity and Xi is flat for every i ∈ Z.

An A-module C is called cotorsion if Ext1A(F, C) = 0 for all flat A-modules F . There 
is a natural corresponding notion—see Enochs and García Rozas [15, Definition 3.3 and 
Proposition 3.4]—for a complex of cotorsion A-modules as well: an A-complex X is semi-
cotorsion if HomA(−, X) preserves acyclicity of pure acyclic complexes of flat A-modules 
and Xi is cotorsion for every i ∈ Z; recall that a complex of flat A-modules is pure acyclic 
if and only if it is acyclic and semi-flat. A standard argument shows that an A-complex 
C such that Ci is cotorsion for all i ∈ Z and Ci = 0 for i � 0 is semi-cotorsion.

For a semi-flat A-complex F and semi-cotorsion A-complex C, we have an isomor-
phism in D(A):

3 In the literature, the prefix “DG-” is also used in place of “semi-”. We follow notation of [2].
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RHomA(F,C) ∼= HomA(F,C); (A.1)

this follows by noting that the mapping cone of a semi-projective resolution P → F is 
pure acyclic. It then follows from (A.1) that

HomD(A)(F,C) ∼= HomK(A)(F,C). (A.2)

In particular, a morphism in D(A) between A-complexes that are both semi-flat and 
semi-cotorsion can be realized by a morphism in K(A). This naturally leads us to make 
the next definition:

Definition A.3. An A-complex X is semi-flat-cotorsion if − ⊗A X preserves acyclicity, 
HomA(−, X) preserves acyclicity of pure acyclic complexes of flat modules, and Xi is 
flat cotorsion for every i ∈ Z.

In other words, an A-complex is semi-flat-cotorsion if and only if it is semi-flat and 
semi-cotorsion.

Recall that an A-complex X is said to be minimal if every homotopy equivalence 
X → X is an isomorphism in C(A); see [3]. The next lemma follows from (A.2) and the 
definition of minimality.

Lemma A.4. Let X and Y be minimal semi-flat-cotorsion complexes that are isomorphic 
in D(A). Then X ∼= Y in C(A).

In particular, the zero complex is the only acyclic minimal semi-flat-cotorsion complex.
Although every complex has a semi-flat resolution, not every complex has a semi-

flat-cotorsion resolution (see Example 3.11); instead, we consider the following natural 
notion:

Definition A.5. A semi-flat-cotorsion replacement of an A-complex X is an isomorphism 
in D(A) between X and a semi-flat-cotorsion A-complex.

The next result is due to Gillespie [20].

Theorem A.6. Every A-complex X has a semi-flat-cotorsion replacement.

Proof. Let F −→ X be a semi-flat resolution. By [20, Corollary 4.10]4, the pair of pure 
acyclic complexes of flat modules and semi-cotorsion complexes forms a complete cotor-
sion pair on the category of A-complexes; in particular, this implies there is an exact 
sequence of A-complexes,

4 Although the result is stated for commutative rings, it is well-known that Gillespie’s argument holds 
without this assumption; see also [50].
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0 → F → Y → P → 0,

where Y is semi-cotorsion and P is a pure acyclic complex of flat modules. The complex 
P is semi-flat, hence Y is semi-flat as well. It now follows that Y is a semi-flat-cotorsion 
replacement of X. �

Analogous to the roles of semi-projective complexes and semi-injective complexes, 
(A.2) and Theorem A.6 show that semi-flat-cotorsion complexes also describe the derived 
category:

Corollary A.7. The homotopy category of semi-flat-cotorsion A-complexes is equivalent 
to D(A).

Šťovíček [46, Theorem 5.4] shows that every complex of flat cotorsion A-modules is 
semi-cotorsion; in fact, a recent result of Bazzoni, Cortés-Izurdiaga, and Estrada shows 
that every complex of cotorsion A-modules is semi-cotorsion [4, Theorem 1.3]. We now 
have the following characterization:

Lemma A.8. An A-complex X is semi-flat-cotorsion if and only if X is semi-flat and Xi

is cotorsion for every i ∈ Z.

Proof. The forward implication is trivial. The converse is by [46, Theorem 5.4] or [4, 
Theorem 1.3]. �

As a consequence of this lemma, a complex X of flat cotorsion A-modules such that 
Xi = 0 for i � 0 is semi-flat-cotorsion.

Remark A.9. Another important role is played by complexes of flat cotorsion modules; 
they describe the pure derived category of flat modules, as defined by Murfet and Salarian 
[33], whose work was motivated by Neeman [39]. The pure derived category is defined 
as the Verdier quotient of the homotopy category of complexes of flat A-modules by the 
subcategory of pure acyclic complexes. Gillespie’s result [20, Corollary 4.10] implies that 
the pure derived category may be identified with a subcategory of the homotopy category 
of complexes of flat cotorsion A-modules, see also [21, Lemma 5.1 and Theorem 6.6]. If 
any flat A-module has finite projective dimension, as over a commutative noetherian ring 
of finite Krull dimension, then it is not hard to see (without using Lemma A.8) that any 
pure acyclic complex of flat cotorsion A-modules is contractible; this assumption implies 
that the pure derived category coincides with the homotopy category of complexes of 
flat cotorsion A-modules. Indeed, these two categories are equivalent over any ring by 
[46, Corollary 5.8] or [4, Theorem 1.3].
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By Corollary 2.4, over a commutative noetherian ring of finite Krull dimension, each 
complex of flat cotorsion modules decomposes as a direct sum of a minimal one and a 
contractible one. However, we do not know whether this holds in general.

Question A.10. Let Y be a complex of flat cotorsion A-modules. Does Y decompose as 
a direct sum Y ′ ⊕ Y ′′, where Y ′ is minimal and Y ′′ is contractible?

For special complexes, this question has an affirmative answer.

Proposition A.11. Let F be a complex of flat A-modules and assume the canonical sur-
jections F i → im(diF ) and F i+1 → coker(diF ) are flat precovers for all i ∈ Z. Then 
F = F ′ ⊕ F ′′, where F ′ is minimal and F ′′ is contractible.

In particular, if Y is an acyclic complex of flat cotorsion A-modules, then we have 
Y = Y ′ ⊕ Y ′′, where Y ′ is minimal and Y ′′ is contractible.

Proof. For each i ∈ Z, consider the exact sequence

0 im(diF ) F i+1 coker(diF ) 0,

and take a flat cover P i+1 → coker(diF ). The flat precover F i+1 → coker(diF ) factors 
through this flat cover via some split surjection F i+1 → P i+1, hence we may write F i+1 =
P i+1 ⊕ Qi+1. Observe from the exact sequence that the injection Qi+1 → F i+1 lifts to 
an injection Qi+1 → im(diF ), which also splits. Using the flat precover F i → im(diF )
and the exact sequence, we can give a split injection from the contractible complex 
Q(i) = (0 → Qi+1 =−→ Qi+1 → 0) into F , where Q(i) is concentrated in degrees i and 
i +1. The split injections Q(i) → F for each i ∈ Z induce a map 

⊕
i∈ZQ(i) → F , which 

one can further check is a split injection, and whose quotient F ′ has the property that the 
canonical surjection (F ′)i+1 → coker(diF ′) is a flat cover for each i ∈ Z by construction. 
Thus F = F ′ ⊕ F ′′ where F ′′ =

⊕
i∈ZQ(i) is evidently contractible and F ′ is minimal 

by [48, Theorem 4.1].5
The second assertion follows from the first along with [46, Theorem 5.4] or [4, Theorem 

1.3]. �
When A is a left perfect ring, the flat modules are the projective modules, hence every 

surjection from a flat module is a flat precover. In this case, Proposition A.11 provides 
an affirmative answer to Question A.10; its proof is modelled on an argument dual to 
[28, Appendix B].

Complementary to the last statement of Proposition A.11, one may also consider a 
restriction of Question A.10 to the case of semi-flat-cotorsion complexes. Solving the 

5 Although [48, Theorem 4.1] implicitly assumes the ring is commutative noetherian, this assumption is 
not needed in the proof.
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restricted question is thus equivalent to showing the existence of minimal semi-flat-
cotorsion replacements for all complexes, by (A.2) and the definition of minimality.
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